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Abstract

We propose a new approach to the study of representations of quantum affine (su-
per)algebras, motivated from super duality. Namely, we study a category of interest
by finding its bosonic or fermionic counterpart, and then construct supersymmetric ana-
logues and functors to interpolate bosons and fermions. A key role is played by R-matrices
and their spectral decompositions, which enables a uniform treatment for super and non-
super cases.

In this thesis, we consider two module categories of quantum affine (super)algebras
of type A. First, the category of polynomial representations is studied, where a uniform
approach is possible thanks to the powerful Schur-Weyl-type duality. We construct a
functor that directly relates the category for quantum affine algebras to the one for su-
peralgebras, and lift it to an equivalence between inverse limits of categories.

Second, we introduce a category of infinite-dimensional representations called g-oscillator
representations, whose irreducible objects naturally correspond to finite-dimensional ir-
reducible representations. Since the former can be seen as a bosonic counterpart of the
latter, we explain the correspondence by introducing an analogous category for quantum
affine superalgebras. In the spirit of super duality, the connection provided by the super

analogue is expected to give rise to an equivalence of categories.

Key words: Super duality, quantum affine algebra, general linear Lie superalgebra, R-
matrix, Schur-Weyl duality, oscillator representation
Student Number: 2017-22587
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Chapter 1
Introduction

Quantum groups, more specifically quantizations of universal enveloping algebras of Kac-
Moody algebras, have arguably been one of the most significant and interesting objects
in modern mathematics. They appear as hidden yet fundamental algebraic structures in
various branches of mathematics, such as mathematical physics, combinatorics, number
theory, harmonic analysis, algebraic geometry and noncommutative geometry.

Among Kac-Moody algebras, the best-understood class is formed by affine Lie alge-
bras. Their importance stems from an interplay between two completely different descrip-
tions: as an infinite-dimensional analogue of complex semisimple Lie algebras, and as a
central extension of loop algebras. While the same applies to quantum affine algebras, an
extra structure called a universal R-matrix arises as a result of quantization, which is a
characteristic of quantum groups.

The original motivation of Drinfeld [28] and Jimbo [47] to introduce quantum groups
was to find a systematic method to obtain solutions, R-matrices, of the celebrated Yang—

Baxter equation
Rm(U, v)ng(u, U})Rgg (?}7 w) = R23(U, w)ng(u, U})ng(l&, U)

in pursuit of integrability in (1+1)D quantum field theory. A specific model is realized
by a tensor product of finite-dimensional representations of a quantum affine algebra, to
which the universal R-matrix applies to produce an R-matrix in a uniform manner. Since
the ubiquity of the Yang—Baxter equation is a source of the wide occurrence and utility
of quantum groups, it is no surprise that R-matrices have played an essential role in the

representation theory of quantum affine algebras.
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1.1 Quantum affine superalgebras

Lie superalgebras are Z/27Z-graded generalizations of Kac-Moody algebras, introduced by
Kac [48] as a uniform approach to bosons and fermions. Accordingly, quantum affine
superalgebras arise from supersymmetric integrable systems and related R-matrices [87].
Moreover, it has recently been recognized that their variants associated with psl(2,2)
realize the S-matrix of string worldsheet in the context of AdS/CFT correspondence (6]
or the R-matrix of deformed Hubbard model [90].

Despite rising interests, finite-dimensional representations of quantum affine superal-
gebras are much less understood than those in non-super cases. Since introduced, they
have been studied mainly in connection with integrable models [3, 6, 87|, hence limited
to specific representations. It is only recently that a systematic study has begun: for
type A quantum affine superalgebra Uq(é\[ M| ~), obtained are a classification of the finite-
dimensional irreducibles [96]; fundamental representations and simple tensor products
[98,99]; asymptotic limit of Kirillov-Reshetikhin modules, Q-operators and generalized
Baxter’s T'Q) relations {100, 101]. This success is due to the existence of a Drinfeld real-
ization [94] and an RTT presentation [98] for Uq(é\[ mn), which are not known in general.

In non-super cases, two different presentations of quantum affine algebras provide us
two different perspectives on finite-dimensional representations. The Drinfeld realization
[29] is a quantum version of the loop algebra realization of affine Lie algebras, and the
associated highest weight theory is a suitable framework for finite-dimensional represen-
tations. Especially the corresponding character theory, called ¢-characters |34], has been
studied by various methods and leads to a number of significant developments, which
include the T-system [37,68,82] and a generalization of Bethe ansatz equations and Bax-
ter’s T'Q relations [32]. We remark that the aforementioned works on quantum affine
superalgebras by Zhang are also in this vein.

More familiar Drinfeld-Jimbo presentation allows one to utilize powerful tools from
the representation theory of quantum groups, such as crystals and canonical bases. The
pioneering work is [58|, establishing fundamental results on the structure of tensor prod-
ucts of fundamental representations in terms of singularities of normalized R-matrices (see
Section 2.2.2). Although it made use of heavy tools most of which are yet unavailable for
superalgebras, the idea has been refined and developed to yield remarkable results, most
notably Schur—Weyl-type duality functors [51] and a monoidal categorification of cluster
algebras [60, 62].
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Under both approaches lies the R-matrix, and the absence of it is one of critical
difficulties in the representation theory for quantum affine superalgebras. Indeed, Zhang’s
works relied to a degree on explicit computations and specific modules, and a uniform
approach is still desirable. Moreover, no direct relation to non-super theory has been

known, other than that they arise as special cases M =0 or N = 0.

1.2 Super duality

Several difficulties in representation theory of quantum affine superalgebras already appear
in the classical theory. For instance, the Weyl group of a Lie superalgebra is too small to
control the representation theory, and so many results for integrable representations of Lie
algebras cannot be directly generalized to super cases. Already a fundamental problem
of finding finite-dimensional irreducible characters took 20 years to be solved, in a rather
non-elementary way through the Kazhdan—Lusztig theory involving geometry of super
Grassmannians [89] or categorification of quantum group representations [10].

Super duality [20,21] is a novel and powerful approach to the representation theory of
Lie superalgebras. Roughly speaking, super duality views a representation of g and the
corresponding one of g as the fermionic and the bosonic aspects of the same representation
of g, respectively. This gives an explicit connection between representations of g and g
via the ones of g, and hence provides a useful viewpoint to super representation theory.

Typically, a super duality is based on a triple of parabolic Bernstein-Gelfand-Gelfand
categories: O of a Lie (super)algebra g, O, of the corresponding Lie (super)algebra

gm, and the one O; . of the intermediating Lie superalgebra g,,,,. They are connected

Im4n

by truncation functors T and T from O- . to O,,, and 5%7 which are given explicitly by

Im+n
picking out only bosons and fermions, respectively. Super duality asserts that at infinite

rank limit m,n — oo, T and T become equivalences of highest weight categories:

;..
T T
O,.. @ﬁm (1.2.1)
Tml T
Ogm 6971,
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where T,,, T, are truncations to finite ranks.

To illustrate it, let us explain briefly how super duality solves the irreducible character
problem for gy = gl y, the general linear Lie superalgebra. Recall that in a parabolic
BGG category Oy, of gy = gl n, the problem is solved by Kazhdan-Lusztig theory:
once we compute a transition matrix between the basis of irreducible modules and the one

of parabolic Verma modules in O,,, an irreducible character can be written as a linear

gnN>»
combination of parabolic Verma characters, which are easy to compute.

Let 6§N be a category of finite-dimensional gl,; y-modules, and O, . a certain module

92N
category over gl oy associated with a non-standard choice of a Borel subalgebra. Iden-
tifying gl v and gl y with subalgebras of glyoy, the truncations 7" and T are defined
in a natural way and induce functorial connections between the categories which become
equivalences after an infinite rank limit N — oo. This completes the above diagram.

Since the transition matrix gets stabilized as N — oo and truncations preserve simples
and Vermas, the same matrix solves the problem in the limit category O,_, and hence
in 6500 through T o T~'. Applying Ty, we obtain a solution for @ﬁw that is the finite-
dimensional irreducible characters of gl in terms of KL polynomials (from Oy, ) and
Verma characters (of gl ).

The same strategy works to lift various properties of Oy, to Og,, or vice versa.

gN>
Consequently, we understand that finite-dimensional representations of gl 5 behave as
infinite-dimensional representations of gl,,, y in a BGG category, rather than as finite-
dimensional’s as naively expected. This gives a conceptual explanation on difficulties in

super theory, and tells us how to overcome them (see the introduction of [21]).

1.3 Main results

Throughout this thesis, ¢ is assumed to be an indeterminate. Let gA[ miy = 8y n@ClE, t1]
be the affine Lie superalgebra (or the loop superalgebra) associated with gl . The aim of
this thesis is to understand representations of the quantum affine superalgebra U, ;(g[ M| N)
of type A. The approach we take here, motivated from super duality, is rather new and
gives a way to understand representations of quantum affine superalgebras in connection
with those of quantum affine algebras.

More precisely, let U(e) be the generalized quantum group of affine type A associated
with a (01)-sequence € with M 0’s and N 1’s, which recovers the usual quantum affine

algebra of type A when M = 0 or N = 0. We study representations of the generalized

3 "
4 =21l
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quantum group U(e) when M # N, and relate module categories of U(e) and U(€') for a
subsequence €’ of €, including non-super cases. Since there exists an algebra isomorphism
between U (e) and Ué(g?[]m ~) (up to mild extension), our study is naturally related to the
one of quantum affine superalgebras.

Two module categories are to be considered. First, the category of polynomial repre-
sentations is especially parallel to the non-super cases thanks to a Schur—Weyl-type du-
ality, and we are able to establish a super-duality-type equivalence between the category
for generalized quantum groups and the one for quantum affine algebras. The other is the
category of g-oscillator representations of U, ( é\[n), whose irreducible objects naturally cor-
respond to irreducible finite-dimensional representations through super analogues. Since
g-oscillators can be seen as bosonic counterparts of finite-dimensional representations, it
is expected that there exists a super duality for the correspondence. Below we explain

the results in more details.

1.3.1 Generalized quantum groups

Generalized quantum groups U (€) are Hopf algebras over Q(q), which are not super but the
parities are implicitly encoded by €. When ¢ is homogeneous, that is €pr0 = (0,...,0) or
eoy = (1,...,1), U(€) recovers Ué(gA[y) or U’ (QIN), respectively. In general generalized
quantum groups do not quantize U (gl M| ~), but still arise as symmetry algebras of certain
R-matrices. Those R-matrices are obtained by 2D reductions of solutions of a tetrahedron
equation (a 3D analogue of the Yang—Baxter equation) |70].

Although U(e) is not really the same as the quantum affine superalgebra, it is closely
related to. Indeed, we provide an algebra isomorphism between U(e) and Ué(a[m ML
after a mild extension, which gives rise to an equivalence between module categories.
This equivalence is not a priori monoidal since the isomorphism does not respect comul-
tiplications. Nevertheless, we expect that representation theories of U(¢) and U;(é\[M‘ ~N)
are intimately linked. For example, weight space decomposition is preserved under the
equivalence, and so is the usual character.

Using the algebra isomorphism, we prove the existence of the universal R-matrix for
U(e) by defining a nondegenerate Hopf pairing (c¢f. [78]). This is a main advantage of
U(e) over Ué(gA[M| ~) that allows us to adopt the methods in the representation theory of

quantum affine algebras to the one of U(e).

!The definition of Ué(g[MlN) implicitly depends on ¢, see Definition 3.1.4.
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1.3.2 Super duality for polynomial representations

Let C(e) be the category of finite-dimensional U (e)-modules with polynomial weights.
For usual quantum affine algebras Ué(;[n), every irreducible object in this category can
be obtained as a quotient of a tensor product of fundamental representations V(w;),
(t=1,....,n—1, 2 € Q(q)*). Moreover, V(w;), can be realized as an affinization of the
i-th g-exterior power of V(wy), the natural representation of U,(sl,).

More precisely, the fusion construction [56] of an irreducible representation is imple-

mented by taking the image of a composition of normalized R-matrices
Ry oy viwm (21/22) 2 V(@1) 2 @V (@) 2, — Qq)(21/22) (g, 2] V(wm)z @V (@),

a U’ (5A[ )-linear map that satisfies the Yang-Baxter equation. As explained, it is well-
known that the poles of Ry D, 1(21/22) in 21/2 contain much information on the
structure of V(w;)., ® V (@, ),. Therefore, roughly speaking, the category C(eg),) is gen-
erated by fundamental representations {V (w;).} and its monoidal structure is determined
by their normalized R-matrices.

Accordingly, our study of C(¢) for general e begins from the construction of fundamen-
tal representations and R-matrices for U (¢). We introduce the I-th fundamental represen-
tation W, () of U(e€) (I € Z>) from the [-th g-supersymmetric (encoded by €) power of
the natural representation Wi ..

The universal R-matrix for U(e) gives rise to the normalized R-matrix
2;)nrm(zl/z2) : Wl,e(zl) ® Wm,e('zZ) — Q(Q)(Zl/'z?) ®Q(q)[zf1,z2i1} Wm,G(ZQ) ® Wl,6(21>

and we compute its spectral decomposition, that is the formula

|l m|+21

norm Z H 2 — q\l m|+2i Pl

teH, (Im) i=1

where Pf’m is a projection to the irreducible component V.((I +m —t,t)) of W (z1) ®
Wine(22) = Wi e(22) ® W) ((21) over the finite type subalgebra Ll(e)

The key observation is that the coefficients in the spectral decomposition of R;')"™ for
U(e) is independent of e. In particular, the set of poles of Ri5™ remains the same for

any choice of sufficiently large € (so that H.(I,m) is stabilized), including € = €. This

3 o i
6 -":I'H._E 'kl-. H 1_“
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suggests that the monoidal category C(€) has a similar structure for any e. For example,
following the argument of [60] we prove that the composition of specializations (whenever

defined) of normalized R-matrices
R(l,c) - Wy (c1) @ @W, (cr) — Wiele) @ @Wy,(c1)

has simple image or zero, which is a super analogue of the fusion construction.
Indeed, such a heuristic can be made more precise, by introducing a super analogue of

a generalized quantum affine Schur-Weyl duality functor [51], an exact monoidal functor
Fe : R-gmod — Cz(€) C C(e)

for a quiver Hecke algebra R of type A,,. Here Cz(€) is a monoidal Serre subcategory of
C(e) that is an analogue of the Hernandez—Leclerc subcategory for quantum affine algebras
[41]. The functor allows us to analyze Cz(¢) uniformly in €, in terms of the representation
theory of quiver Hecke algebras.

Now we explain this similarity in the context of super duality. We introduce a trun-
cation functor t$, : C(e) — C(€’) for a subsequence ¢ of e. The truncation preserves all
the ingredients above, namely fundamental representations, R-matrices and their spectral
decompositions. In particular, tv$, is compatible with the duality functor F, in the sense
that tv, o F. = F. naturally.

Decomposing Cz(€) = @+, Cr(€) by degree and F, = @,., F, we can identify F!
with a super analogue of the Iquantum affine Schur-Weyl duaﬂty functor in [17]. As in
non-super cases, this functor can be shown to be an equivalence whenever ¢ < M+ N, and
hence t¢ is also an equivalence on the degree ¢ components for every e, ¢ whose lengths
are larger than /.

It can be interpreted as a super-duality-type equivalence as follows. Let € = (1, €3, .. .)
be an infinite (01)-sequence with infinitely many 0’s and 1’s. Taking an ascending chain
of finite subsequences €¥) of €, we can define C,(¢) as the limit of an inverse system
<C§(e(k)),ttiz),1)>k>l and Cz(e®) = @ C5(¢>). Similarly we obtain Cz(€*) and Cz(e>)

with respect to € and €>, the subsequences of €* consisting of 1’s and 0’s from €*

respectively. Then truncations induce equivalences of categories Sy and Sypo that fit
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into the following diagram, and hence a super duality:

Cz(GOO)
Sool0 Sojoo
Cy () : . Cy () (1.3.1)
Cz(€npo) Cz(€opn)-

Since any (01)-sequence € is a subsequence of €, we have a truncation tr. : Cz(e*) —
Cz(e) as well. Therefore, we can lift known properties of the category Cz(eo,) (of poly-
nomial representations of U, (gl.)) to the one C(e) for quantum affine superalgebras. Two
examples are given: the T-system for Kirillov-Reshetikhin-type modules and a descrip-
tion of the Grothendieck ring of Cz(e).

1.3.3 Oscillator representations and super duality

As another manifestation of the super duality philosophy in the representation theory of
quantum affine algebras, we introduce a category @OSC of g-oscillator representations® of
U/ (gA[ ). They are infinite-dimensional in general and so not much of structures have been
studied so far, except through a general study [36 80] (which is at its earliest stage) on
the affinization O of a BGG category, containing Oose.

On the other hand, OOSC is generated by fundamental g-oscillator representations
Wys(x), which can be seen as another bosonic analogue of finite-dimensional fundamental
representations V(w;),. In the virtue of super duality, this alludes that they would show
similar behaviors with finite-dimensional representations, and such an analogy can be ex-
plained by considering super analogues of g-oscillator representations and truncations.

Let us first explain the classical picture. Take n > 4 and fix 2 < r < n—2. There exists
a (91,4 (n_ry, GLg)-duality on a tensor power of a bosonic Fock space S(C™@&C"™")®". The
irreducible gl,,-modules occurring in this space are infinite-dimensional highest weight rep-
resentations, and called oscillator representations [44]|. Thanks to the duality, they form

a semisimple monoidal category O,s. whose Grothendieck ring structure is determined by

2We remark that they are different from the g-oscillator representations [2] related to Baxter’s Q-
operators, which are infinite-dimensional representations of the Borel subalgebra U, (b) and also referred

as prefundamental representations [40]. See also Remark 5.3.3.
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the branching rule of GL,.

If we consider instead a fermionic counterpart A(C™@®C"~")®* it is actually isomorphic
to the (-th power of the usual exterior power A(C") of the natural representation C" of
gl,. It still carries a duality between finite-dimensional representations of gl, and GL,,
and hence more familiar category F of finite-dimensional polynomial representations of
gl,, can be understood from the representations of GL, in the same way as above.

In summary, we have two (gl,, GL,)-dualities with the same one ends, and hence
the category Oy and F are simultaneously controlled by the same representation theory.
Moreover, one is obtained from the other by switching bosons and fermions. This strongly
indicates the existence of super duality, which is indeed true but intricate.

The second goal of this thesis is to establish a quantum affine version of such a cor-
respondence. For this, we begin from constructing a g-analogue of oscillator representa-
tions. This is performed by investigating a decomposition of tensor powers of g-deformed
bosonic Fock space W, Indeed, they are semisimple and their irreducible components
are infinite-dimensional highest weight U,(gl,)-modules, which recover the irreducible os-
cillator representations of gl, under the classical limit ¢ — 1.

To introduce an affine version, the idea is to replace polynomial representations of
U,(gl,) in the study of polynomial representations of Ué(gA[n), by g-oscillator represen-
tations of U,(gl,). Let Oose be the category of Ué(gA[n)—modules that are direct sums of
irreducible g-oscillator representations over U,(gl,), and we call the objects in @OSC the
g-oscillator representations of U, ;(an)

Then we can adapt the methods above for polynomial representations to g-oscillators.
We construct fundamental g-oscillator representations of U, é(a [,,) and normalized R-matrices
on their tensor products, and compute the spectral decomposition. Since the classical de-
composition of tensor products of two fundamental g-oscillator representations are not
of finite length, there is no well-defined notion of denominators. Still, it is possible to
consider poles of coefficients in the spectral decomposition, and the fusion construction
can be justified.

By fusion we obtain a family of irreducible objects in Oose that naturally corresponds
to the one of finite-dimensional irreducible U, é(g/;\[n)—modules. This correspondence can be
made more direct by introducing a super analogue of g-oscillator representations.

Motivated by super duality, we take an alternating (01)-sequence € = (0101...10),
and repeat the above constructions over U(€) to obtain a category @OSC,E of g-oscillator

representations of U(e). Then truncation functors from O e to @OSC, and to a category
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@Osc,g of finite-dimensional representations of U ; (g[n) connect irreducible g-oscillators and
finite-dimensional irreducible representations of U (gl,,), through interpolating irreducible

g-oscillator representations of U(€). In conclusion, we obtain the following diagram

~

osc,€

~
Oosc Oosc .€

which resembles the super duality diagram (1.2.1). We strongly expect that the truncation
functors become equivalences after taking a proper infinite rank limit, and we propose
several evidences towards a desired quantum affine super duality.

Finally, we remark that oscillator representations arise more naturally in other types.
For example, the spin representations of so05, can be constructed using a Clifford algebra.
If one repeats it with a Weyl algebra, a bosonic counterpart of the Clifford algebra, one
obtains the oscillator representations of sp,,, [44]. As above, one can establish a pair of
Howe dualities for this spin-oscillator correspondence, which is again nicely explained by

a super duality [21]. Their quantum affine versions are studied in |74, 76].

1.4 Organization

This thesis is organized as follows.

e Chapter 2 provides a pragmatic review on Lie superalgebras, quantum affine algebras

and quiver Hecke algebras, focusing on type A case.

e In Chapter 3, we introduce generalized quantum groups U () of affine type A. We
give an algebra isomorphism between U(¢) and the quantum affine superalgebra
U;(&M‘N) in Section 3.1.2. In Section 3.1.3 we use this isomorphism to prove the
existence of a nondegenerate Hopf pairing on U(e), and hence of a universal R-
matrix. We also recall in Section 3.2 basic facts on polynomial representations of a
subalgebra U/ (€) of finite type A from [75,77].

e In Chapter 4 we study the category C(¢) of polynomial representations of U(e). In
Section 4.1 we give a quick review on the super duality for polynomial representa-

tions of gl n. Section 4.2 is devoted to a supersymmetric generalization of impor-

10 .__:lx_g-l _'\-\.I: i i |
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tant constructions in the theory of finite-dimensional representations of quantum
affine algebras Ué(gln): fundamental representations (Section 4.2.1), normalized R-
matrices with the spectral decomposition (Section 4.2.2), the fusion construction of
irreducible representations (Section 4.2.3) and a generalized quantum affine Schur—
Weyl duality functor(Section 4.2.4). Then we introduce truncation functors to relate
polynomial representations of U (€) and U(¢’) for a subsequence €’ of € (Section 4.3.1).
The highlight is a super-duality-type equivalence (Theorem 4.3.28), which is estab-
lished from the equivalence of duality functors at high ranks (Section 4.3.2), and an

interpretation of the infinite rank limit by inverse limits of categories (Section 4.3.3).

e Chapter 5 begins with a brief account on Howe dualities, to motivate oscillator rep-
resentations and associated super duality. We define and study g¢-oscillator repre-
sentations of U,(gl,,) in Section 5.2 with their super analogues, aiming to reproduce
the following two results on polynomial representations: the tensor product decom-
position (5.2.2) and the compatibility with truncations (Theorem 5.2.14). Then we
define the category 6OSC of g-oscillator representations of U é(g/l\[n), and its super ver-
sion, connected by truncations (Section 5.3.1). Our study of @OSC is parallel with
the case of polynomial representations. We introduce fundamental g-oscillator rep-
resentations (Section 5.2.1) and normalized R-matrices with a computation of their
spectral decomposition (Section 5.3.2). Again we apply the fusion construction to
obtain a family of irreducible objects in @OSC (Section 5.3.3). We conclude the chap-

ter with discussions towards a super duality explaining the correspondence.

e Chapter 6 consists of detailed proofs of several results in this thesis.
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Chapter 2
Preliminaries

In this chapter, we review necessary backgrounds on Lie superalgebras, quantum affine
algebras and quiver Hecke algebras. Since this thesis deals only with type A cases, we
focus on type A and make the exposition as concrete as possible.

In Section 2.1, we recall basic facts on the general linear Lie superalgebra gl and its
finite-dimensional representations. Section 2.2 is devoted to (untwisted) quantum affine
algebras and their finite-dimensional representations. Specifically, we concentrate on fun-
damental representations, normalized R-matrices and the fusion construction, which will
be reproduced for quantum affine superalgebras in later chapters. The final Section 2.3 is
on quiver Hecke algebras, as they will play a crucial role in the investigation of polynomial
representations via Schur—Weyl-type duality in Chapter 4.

The following notations will be used throughout the thesis:

o CMIN . a vector superspace whose even part is CM and odd part is CV.

|v| : the parity of a homogeneous vector v in a superspace V.

S, : the symmetric group on n letters.

& : the set of partitions.
e /() : the length of a partition A.
e K(A) : the Grothendieck group of an abelian category .A.

e k = Q(q), for indeterminate q.

12 i—-'i O



CHAPTER 2. PRELIMINARIES

e For n € Z and a symbol z,

e m [m],!
= - ! pum _— 1 LA ]_ pu—
When we put x = ¢, we omit ¢ and just write [n] = [n],.

e For a k-algebra A, z,y € A and t € k, we define [z, y];, = xy — tyz.

e For a statement P, §(P) =1 if P is true and 6(P) = 0 if not. As a special case, we
also write 6;; = d(i = j).

2.1 General linear Lie superalgebra gl y

In this section, we recall several basic facts on Lie superalgebras, focusing on the general
linear Lie superalgebra gl in order to keep the presentation explicit. Up to a slight
modification, most of statements here remain true for basic Lie superalgebras. See [24,81]

for general introductions on basic Lie superalgebras.

Definition 2.1.1. For a C-vector superspace V' = V5& V4, the endomorphism superalgebra

End(V') has a structure of Lie superalgebra by the supercommutator

[z,y] = zy — (1) Wlyz,

called the general linear Lie superalgebra gl(V).
When V = CM_ gl(V) is also denoted by glyy-

As always, it is convenient to consider a matrix representation of gl y. Take a

CMIN indexed by

homogeneous ordered basis {e; };ci(any of
IIMIN)={1<---<M<M+1<---<M+N}
with the parity

|el|:...:‘eM|:6’ ’eM+1’:"':’eM+N’:T'

Then each element of gl y can be written with respect to this basis as an (M + N) x

3 y 1 | s
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CHAPTER 2. PRELIMINARIES

(M + N)-matrix of the block form

@ 2)

where A and D are M x M- and N x N-matrices, respectively. The even part (gly, )5
consists of the matrices with B = C' = 0, while the odd part (gl y)7 of those with
A = D = 0. Note that as a Lie algebra, (gly;n)5 = gly © gly. We also define the

supertrace
A B
str =trd —trD
C D

and the special linear Lie superalgebra slyyy is defined as the kernel of str.

Fori,j € I[(M|N), let Ei; denote the element of gl with the matrix representation
(Eij) = 0i05 with respect to the above basis. Then {Ej;}i jermn) is a homogeneous
basis of gl -

The Lie subalgebra b of diagonal matrices is a Cartan subalgebra of gl y, which is

by definition a Cartan subalgebra of the even subalgebra (gly/y)5. Let us take the dual

basis {0; }iciarny for b* of the {Ej; }icran -
As a prototype of basic Lie superalgebras, gl, v has the following structures analogous

to those of finite-dimensional semisimple Lie algebras.

e With respect to the adjoint action, g,y has the root space decomposition

glyn =0 @ga

aced

for some ® C h*, where for a € h*

ga = {z € glyn [ 1, 2] = a(h)x for all h € b}

e The set of roots & = &5 U &7 is given by

g = {0 =8 |i # 3 inj < Mori,j > M},
by = {£(6 — ;) |1 < M < j},

and gs,—5, = CEj;. Here the parity of a root « is determined by whether g, C
(83 )5 O 8o C (8layn)T-

14 i-'i O



CHAPTER 2. PRELIMINARIES
e The supertrace form

glyy X glyyy — C
(A, B) — str(AB)

defines a nondegenerate invariant supersymmetric bilinear form (-, -) on gl It

induces a nondegenerate bilinear form §h* as well, given by

1 ifi=j<M

(6i,5j): -1 ifi=3>M
0 if 1 # j.
Then we also have
+2 ifae P
(CY,O&) =
O lf o & (I)T'

In contrast, there exist several substantial differences with non-super ones. Especially,
the Weyl group of gl is defined to be the one &) x Sy of even part, which is much
smaller than &y n as expected from its non-super counterpart gl,,, . This results in
critical obstructions of the study of representations of Lie superalgebras.

For example, Borel subalgebras are not necessarily conjugate under the Weyl group
action. Recall that from the matrix representation of gl above, we get the standard
Borel byq of upper-triangular matrices. However, if we take another ordered basis {v; }ier
of CMIN parametrized by I = {1 < 2 < --- < M + N} with a different Z/2Z-grading,
then the corresponding matrix representation of gl yields another Borel subalgebra
(of upper-triangular matrices) that is not conjugate to bgyq.

Indeed, if we have two Z/2Z-grading on I, then the associated Borel subalgebras are
conjugate to each other if and only if two gradings are the same. Thus, the conjugacy
classes of Borel subalgebras are classified by (01)-sequences: a sequence € = (€1, ..., €p4n)
of M 0’s and N 1’s, which assigns Z/2Z-grading on I by |i| = ¢;. In particular, the
standard Borel byq corresponds to ey n = (OM 1N ). We will use the notation gl, when
we want to stress the choice of a Borel subalgebra of g,y associated with e.

Now let us consider finite-dimensional representations of g,y and see what is different

from the ones of gl,,, ;. Upon a choice of a Borel subalgebra b, one can do the highest

15 .-:l-..\._ﬂ-l _'\-\.::_ 'Iii
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CHAPTER 2. PRELIMINARIES

weight theory for gl with respect to b: for each A € h*, we construct a Verma module
of highest weight A, which has a unique irreducible quotient L(b,\). It is not a priori
clear how much a choice of Borel affects the theory, but the following facts are known (see
[24, Section 1.5, 2.1]):

e For any Borel b, every finite-dimensional irreducible gl,y-module is of highest
weight with respect to b.

e For another Borel b’, L(b, ) is also of highest weight with respect to b’, and the
b’-highest weight vector (and so its highest weight) can be found by means of odd

reflections.

o [(bga,A) is finite-dimensional if and only if A € h* is dominant with respect to the
even subalgebra gl,, @ gly, that is,

)\i—)\i+1,)\j—)\j+1GZZOforanyi:1,...,M,j:M—|—1,...,M+N,

where \ = ZieH(MW) Ai0;.
On the other hand, the following difficulties are much harder to overcome:
e Linkage is not entirely controlled by its Weyl group &), x Gy.
e Finite-dimensional gl,; y-modules are not semisimple in general.

e There is no uniform formula (such as Weyl character formula) for finite-dimensional

irreducible characters.

It is now understood that these originate from a BGG category of gl , which is equivalent
to the (limit of) category of finite-dimensional representations of gl y by super duality.
We do not give here a general account on super duality, and content ourselves with the
one in the introduction. Rather, specific examples that are related to the main results of
this thesis will be given at the beginning of Chapter 4 and 5. We refer interested readers

to [24], and also to [19] for generalizations beyond classical Lie superalgebras.

Remark 2.1.2. There are two classes of finite-dimensional gl y-modules that exhibit
as nice behaviors as in non-super case. The first one is formed by typical representations
(see [24, Section 2.2]): their highest weights are so special that this small Weyl group

16 .-:l-..\._ﬂ-l _'\-\.::_ 'Iii
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Sy x Gy fully controls the linkages between them, and hence semisimplicity and Weyl-
type character formula can be obtained as in non-super cases.

The second class consists of polynomial representations. They are in resonance with
the representations of symmetric groups in virtue of the Schur-Weyl duality (see [24,
Section 3.2]), and so can be treated uniformly with the ones of gl;,, . When we study
quantum affine analogues of polynomial representations in Chapter 4, the corresponding

Schur-Weyl-type duality will be again used in a crucial way.

2.2 Quantum affine algebra

In this section, we first recall the definition of (untwisted) affine Lie algebras and quan-
tum affine algebras. Then we explain several basic constructions [1, 58] which will be
reproduced for super cases in later chapters. For a detailed account on quantum affine
algebras, we refer the reader to recent surveys [14,39).

2.2.1 Affine Lie algebras and quantum affine algebras

Let g be a finite-dimensional complex simple Lie algebra of rank n—1. The corresponding
Cartan matrix (a;;); j=1,. n—1 is determined by
2(0@, Oéj)

Qij = <h‘i7aj> = (Oé' Oé')

Y

where «; is the simple root, h; the simple coroot and (-, - ) the (normalized) Killing form
on g.
We define the affine Lie algebra g associated with g by

g=g®C[t*]e CC o Cd,
whose Lie bracket is given by
[z @t" +ad,y @™ +bd] = [z,y] @ ™" + nd, _m(z,y)C + amy @ t" — bnx @ "

for 2,y € g, n,m € Z and a,b € C, and C is central. Then g is an example of the
Kac-Moody algebra of untwisted affine type [49]. Namely, g is the Kac-Moody algebra

associated with the generalized Cartan matrix A = (aij)ij—o,.n—1 Obtained from the
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Cartan matrix for g by adjoining the 0-th row and column:
ag; = (—0",05), aj=(h;;—0) (j=1,...,n—1), ap=(0",0)

where 6 (resp. 6V) is the maximal root (resp. coroot) of g. It is known that A is
symmetrizable, that is, there exist positive integers! d; (i = 0,1,...,n — 1) such that
d;a;; = d;aj; for all 4, j.

As a Kac-Moody algebra, g has the weight lattice

P=7ZAN®ZAN D - - LN, 1 DL
and the dual weight lattice
PY =7Zhy®Zh, ® - ZLhy_1 ©Zd
paired with P by
(hi, \j) = 045, (hi,0) =0=(d,A;), (d,0)=1

Take simple roots
a; = Z a;i\j + 0;00 € P,
j
and let ITY = {hg, hy,...,h,—1} and IT = {ag, a1, ..., ,—1} be the set of simple coroots
and simple roots, respectively. Note that we have § = 0 + «y.
The tuple (A, P, II, PV, 11Y) is called a Cartan datum associated with A.

Definition 2.2.1. The quantum group U,(g) associated with the above Cartan datum
(A, P11, PV, 11V) is the Q(q)-algebra generated by e;,f; (i = 0,1,...,n— 1) and ¢" (h €
PY) subject to the following defining relations:
=1, " =qq",
e, ¢ fig" = q @D,
ki — k7t
eifj — fiei = dij———7,
i1 Ti—q

i i

¢"eig " =q

Lwe always choose d; so that the greatest common divisor of di,...,d,_1 is 1.
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17(11'3' r T
1—ay| 1w
i [ et
M - ~a for i # 7,
aij
1 —aj; 1—ay;—k
(—1)" I NOfTT =0
k=0 o g

where ¢; = ¢% and k; = qf‘ L
The quantum affine algebra U,(g) is the subalgebra of U,(g) generated by e;, f; and
L (i=0,1,...,n—1).

The quantum group U,(g) and the quantum affine algebra U;(g) have a Hopf algebra

structure given by

Ad"=d"®¢", ekt +1®e, fir iol+kef;

S:q"—q " e —eki, fir —ki'fi

Therefore, the category of finite-dimensional modules has the structure of a rigid monoidal

category (see [15, Section 5.1] for definition).
Remark 2.2.2. Let Py = P/Z6 be the classical weight lattice, whose dual is given by

n—1
P} = Homy(Pa, Z) = {h € PV| (h,6) = 0} = @ Zh..

[
1=0

Then the quantum affine algebra U, (g) can be seen as the quantum group associated with
a Cartan datum (A, Pu, {a;}, Py, {h:}), where we are abusing notations «; € P.. Note
that {a;} is not linearly independent in P, as ag + 6 = 0.

In the study of finite-dimensional representations, it is more natural to use quantum
affine algebras Uj(g), rather than U,(g). Indeed, every nontrivial integrable representa-
tion of U,(g) is infinite-dimensional [49, Chapter 12|. Responsible is the imaginary root
0, and so we have to reduce the weight lattice P to P, to consider finite-dimensional

representations.

There is another presentation of U} (g) called the Drinfeld realization [4,29], which is a
quantum analogue of the realization of g as a (central extension of) loop algebra g[t,t!].
This presentation also possesses a triangular decomposition, and the corresponding highest
weight theory is suitable to study finite-dimensional representations of U/ (g).
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The weights with respect to the diagonal subalgebra in the Drinfeld realization are
called f-weights. Then the finite-dimensional irreducible representations are ¢-highest
weight modules and classified by their /-highest weights. Furthermore, the character the-
ory in (-weights, called the g-character [34], plays a fundamental role in the development
of the theory of finite-dimensional representations for quantum affine algebras. Since we
will not pursue this direction in the sequel, we refer the reader to [14] for further expla-

nation.

2.2.2 Finite-dimensional representations of quantum affine alge-

bras

In this section, we take the algebraic closure of Q(g) in [J,,-, C((¢"/™)) as a base field k,
and define U} (g) over k with the same presentation as above.
A U}(g)-module V is said to be integrable if V' has the weight space decomposition

V= @ Vi, V\= {v eV|kv= qz{hiwu for all z}

AEP,

and the actions of e;, f; (1 = 0,1,...,n—1) on V are locally nilpotent. Note that the second
condition follows automatically when we consider finite-dimensional representations with
the weight space decomposition. Every module in this thesis is assumed to be integrable.
Recall that for A € P, the integer (C, ) is called the level of . Then the image P
of the set P° of level 0 weights under the projection cl : P — P, can be identified with
the weight lattice of g by
w; = cl(A; — aAy),

where a; is the coefficient of h; in #Y. We call w; € PCO1 the i-th level 0 fundamental
weight. It is known that any finite-dimensional integrable Ué(ﬁ)—module has weights in
PO,

Let V(w;), denote the i-th fundamental representation of spectral parameter x, for
i=1,2,...,n—1and z € k* [58], which plays the role of a fundamental representation
in the theory of integrable representations of Kac-Moody algebras. For example, every
finite-dimensional irreducible U} (g)-module can be obtained as a quotient of a submodule
of a tensor product of fundamental representations, where the submodule is generated by

the tensor product of dominant extremal weight vectors (or ¢-highest weight vectors [16]).
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Fundamental representations have various nice properties, such as the existence of
canonical bases with simple crystals. We do not give here a general construction by [58].
Instead, we focus on the type A case [1, Appendix B|, where they can be explicitly realized

on the g-exterior powers of the natural representation V().

Example 2.2.3. Let us consider the fundamental representations of type A quantum
affine algebra U, (sl,,).

For 1 <i <n-—1and x € k¥, V(w;), has a basis {b;} labeled by subsets J of
Z/nZ = {1,2,...,n} of i elements. The action of the generators with respect to this

basis is given by

obr — .T(siob(J\{Z‘+1})U{i} if 7 + 1€ J, 7 ¢ J
0] =
0 otherwise,

x_aiob(J\{i})u{HH ifieJ i+1 ¢ J

fiby =
0 otherwise,
gby ificdit1l¢J

I{?Z‘bJ: q_le 1fZ¢J,Z+1€J

by otherwise.

If we set 9y = wy and 0 = wy — wp_q for 2 < k < n — 1, then wt(b;) = ZjeJ(Sj.
In particular, a weight space V(w;)s, is spanned by a single vector by . ;3 that is an
¢-highest weight vector. It is also called a dominant extremal weight vector of V(w;), an
analogue of a highest weight vector.

Note that the above description is valid even for ¢ = 0,n, resulting in the trivial

representation. Hence, by convention we also set V(wy), = V(w,). = k.

Next, we explain the fusion construction, which produces the finite-dimensional irre-
ducible U (g)-modules as quotients of tensor products of fundamental representations in
a proper order. The key ingredient is the normalized R-matrix, whose construction is to
be recalled now.

For an integrable U (g)-module V, define the affinization V,¢ to be a P-graded U, (g)-

module
Vag = k[ @V, (Vag)r = 2F Vo for X =rvocl(A) + kb € P
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where ¢ : Py — P is defined by ¢(cl(A;)) = A;. The U (g)-action is given by
e =2"®e¢, fi=2"1f, k=11k,.

For any = € k*, we set V, = Vg /(2 — 2)Vag. In particular, V; =V and (V,), = V,,. For
example, we have V(w;), = (V(w;)1), and hence compatible with the notation. We also
write V, .= V,g for indeterminate z.

There exists a k[z;, 25 ® U;(g)-linear map

RIXI/I,]I;(\/{(ZD ZZ) Va W, — k(zh ZQ) ®k[z1i1,z§t1] (WZ2 ® ‘/;1)

called a universal R-matriz (see section 4.2.2 for construction). When V = V(w;) and
W = V(w;), we have distinguished vectors u., € V and ug, € W, the dominant extremal

weight vectors. We normalize R“‘/n(gi)y( ) to

Rzgrm(zlv ZQ) : V(wl)zl ® V(wj)z2 — k(zlv 22) ®k[zit1,z2i1] (V(wj)zé ® V(wl)zl)

uwi ® uwj- — uw]- ® uwm

and call it a normalized R-matriz.

It is known that R}'S™(z1, 22) only depends on 2;/zo, and its image is contained in
k(21/22) ®u(z1 /221 (V (@) 2y @ V(@i), ). Let dij(2) € k[z] be the denominator of RP5™,
namely the monic polynomial of minimal degree such that the image of d;;(21/22) - R}F™
is in V(w;j)., ® V(w;),. If x,y € k™ are such that d; ;(z/y) # 0, then we can specialize

R}9™ to obtain a U} (g)-module homomorphism
Rij(xfy): V(wi)e @ V(w;)y — V(w;)y @ V(@i

We refer to |85, Section 4| for denominator formulas for various quantum affine algebras.

Above all, normalized R-matrices solve the Yang-Baxter equation:
(Rig™ @ 1) (Lo RI™) o (RI™ © 1) = (1o RI™) o (RIF™ @ 1) 0 (10 RIF™)

holds as a map from V(w;),, ® V(w;)., ® V(wg).,. Therefore, for any w € &, we can
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define without ambiguity the composition

Ril i V(@) ® @V (wi,)s — k(21,00 20)® (V(wiw(n)zw(l) Q- ® V<wiw(t))zw(t)>

with respect to any reduced expression of w. If ¢i,...,¢ € k* are given such that
dij:ik

at Zi = Cq,

(¢j/ck) # 0 for all j < k satistying w(j) > w(k), then we also obtain its specialization

RZ) it (Ch B 7Ct) : V(wil)cl Q- V<wit)6t — V(wiwu))cw(l) Q- V<wiw(t))cw(t)'

.....

Theorem 2.2.4 ([58]). Suppose that iy,...,i; € {1,....,n—1} and ¢1,...,¢; € kK™ are
such that dy, ;, (cj/cr) # 0 for all j < k. Then the following statements hold.

(1) V(wiy)e, @@V (w@y,)., is generated by g, @+ Qug, , and V(w;, )o@ - @V (@i, )e,

is cogenerated by Uz, & -+ @ Ug, .

(2) The head of V(wiy)e, @+ - @V (wy,)e, and the socle of V(wy,)e, @ -+ @V (w;, )e, are

simple.

(3) For the longest element wy of S, the image of

R;lio z‘t(cla st 7ct) : V<wi1>c1 K- V(wit>ct — V(wit)ct K- V<wi1>c1

-----

is isomorphic to the head of V(wi)e @ -+ @ V(wy,)e, and the socle of V(w;,)e, ®

« @ V(@i )e, - In particular, the image is simple.

Conversely, for any finite-dimensional irreducible Ué(ﬁ)—module V', there exists a pair of
sequences (i1,...,1;) € {1,...,n— 1}, (c1,...,¢) € (KX)', unique up to permutation,
such that di, ;, (c;/ck) # 0 for all j < k, and V is isomorphic to the head of V(w;,)e, ®
- ®@ V(@i )e,» and so to the image of R ; (c1,...,¢).

.....

Therefore, any finite-dimensional irreducible Uj(g)-module can be obtained as the
image of a composition of normalized R-matrices on a tensor product of fundamental
representations. This method is called a fusion construction [56], and originates from the
fusion of solvable lattice models in mathematical physics.

Recall from the last part of Section 2.2 that the finite-dimensional irreducible Uy (g)-
modules are classified by their /-highest weights. More precisely, finite-dimensional irre-

ducibles are in bijection with dominant ¢-weights, which are by definition (n — 1)-tuples
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(¥;(2))iz1,..n—1 of rational functions in z such that

1
\I/Z(z)z degPiPi(ZQi )

q; P for some polynomial P; € C[z] with constant term 1.

For example, the fundamental representation V' (w;), corresponds to

14 o(i)(=D)rg Moz ifj=i
Py(z) =

1 otherwise,

where h (resp. h") is the Coxeter (resp. dual Coxeter) number of g, and o(i) = £1 is
chosen so that o(i) = —o(j) whenever a;; < 0 [84, Remark 3.3].

If V and W are {-highest weight U} (g)-modules with the ¢-highest weight vector v and
w respectively, then v ® w € V ® W is of f-highest weight, whose /-weight is equal to
the (componentwise) product of the ones of v and w. Hence, if one knows the ¢-highest
weight of the given finite-dimensional irreducible U/ (g)-module, then one can easily find

the pair of sequences in the above theorem.

Example 2.2.5. We continue to consider the type A example. Observe that V(w;) is
already irreducible over U, (sl,,) with highest weight w;. Then as a U,(sl,)-module, the

tensor product decomposition is given by

min{l,m}

V(w) @ V(o) = @ V(@i4m—t + @),

t=max{l+m—n,0}

where V(A) denotes the irreducible highest weight representation of U,(sl,) of highest
weight A (in the right hand side, we understand wy = @, = 0).
Since the normalized R-matrix Rj5™(21/22) is also Uy(sl,)-linear, by Schur’s lemma

we can write it as

min{l,m}

L (21/22) = > pi" (21 22) P

t=max{l+m—n,0}

for some pi™(z) € k(z), where PI'™ is a projection from V(w;) ® V(w,,) to the direct
summand V (w;1pm—t + @) of V(w,,) ® V(w;). This expression is called the spectral
decomposition of the normalized R-matrix, and known to contain much information on
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the structure of V(w;), ® V(wp,),-

The coefficients p/™ (z) are given in [27]:

min{l,m} Jm=2it2

I,m Z ( q
; | | : 2.2.1
Pt (z) s 1 ( q)l+m—2z+227 ( )

from which one obtain the denominator formula

min{l,m}

()= J] (1 (g
i=max{l+m—-n+1,1}
(1= (~g)=PH22) (1 = (g2 (L= (g)*72) <
(1= (~g) 7)1~ (~g)mHz) (1= (g me) L > .

In general, the denominator is much easier to compute than the spectral decomposition.

2.3 Quiver Hecke algebra

Quiver Hecke algebras or Khovanov-Lauda-Rouquier algebras are vast generalizations of
the affine Hecke algebra of type A. They were first introduced by Khovanov-Lauda [65] and
Rouquier [88] independently to categorify the negative half of quantum groups. Since then,
there have been growing interests and studies on quiver Hecke algebras, their cyclotomic
quotients (which categorify integrable highest weight modules) and representations.

More recently, another aspect of quiver Hecke algebras was discovered in [51], as a
partner of quantum affine algebras in spirit of the celebrated Schur—Weyl duality. Mo-
tivated from a duality between finite-dimensional representations of Ué(;[n) and those
of affine Hecke algebras of type A [17,26, 35|, they introduce a general construction of
a quiver Hecke algebra action on a (completion of) tensor product of representations of
quantum affine algebras, and hence a functorial relation between two representation the-
ory.

The purpose of this section is to provide a background on quiver Hecke algebras,
needed for constructing and making use of the duality functor in Section 4.2.4. After a
quick review on quiver Hecke algebras, we consider a quiver Hecke algebra of type A, and
its finite-dimensional simple modules, following the approach of [51,57]. One can observe
a similarity with the story of Section 2.2.2, striking enough to motivate the existence of
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CHAPTER 2. PRELIMINARIES

the duality.
Throughout this section, we fix a base field k.

2.3.1 Quiver Hecke algebra

Let A = (a;); jes be a symmetrizable generalized Cartan matrix with positive integers d;
(i € J) such that d;a;; = d;a;; for all i, j € J. Set

N[J] = {Zcme Z[J]|ci € ZZO},

where Z[J] is a free abelian group generated by J. Note that N[.J] is naturally identified
with the positive cone (), of the root lattice of the corresponding Kac-Moody algebra
g(A), by i <> o;. For =3, ,¢;-i € N[J] with ht(8) := > ¢; = ¢, we put

JB:{V:(VM...,I/Z)GJZ|1/1—|—...+VZ:6}.

Suppose that we are given a matrix (Q;;(u,v)); jes with entries Q;;(u,v) € klu, v]

satisfying
(1) Qij(u,v) = Qji(v,u) for i # j and Qy(u,v) =0,
(2) the coefficient of uPv? (p, q € Z>o) in Q;j(u, v) is zero unless d;a;;p+d;a;;q9 = —2d;a,,
(3) the coefficient of u=*7 in @);;(u, v) is nonzero.

Definition 2.3.1. The quiver Hecke algebra R(S) at § € N[J] associated with (Q;;)i jes
is the Z-graded k-algebra generated by

e(V) (VEJ/B)v Tk (k:177ht(ﬁ))7 Tm (m:Lvht(ﬁ)_l)v
subject to the following defining relations:

e(v)e(V') = d,e(v), Z e(v) =1,

veJh

Tl = T Tk, xke(V) = e(v)xy, TmG(V) = 6(3m(V))Tm,
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—e(v) if k=m and v, = Vi1
(Tm@k — Zs,, () Tm)e(V) = 1 e(v) if k=m+1and v,, = V11
0 otherwise,
726(V) = Qupiss (T Tims1)e(V),  TonToy = T T if [m —m'| > 1,

(Tm+17_m7—m+1 - Tme+17—m)e(V)

Qum,um+1 (IM7xm+1)_Qum,um+1 (Im+27xm+1) 6(]/)
_ ITm—Tm-+2

if vy = Vo

0 otherwise,

and the grading

dege(v) =0, degape(v)=ay,,,, degTme()= —ay,, v, -

We also set

Rt)= € R(B) (t=1), R=EPRE)

ht(8)=¢ >0

where R(0) = k. By the standard argument in the theory of Hecke algebras, we have

R(B) = EB k[z1, ..., zde(v)Ty,

veJB wed,

as a vector space, when ht(3) = ¢. Here 7, = 7, - - - 7;, is defined after fixing a reduced

l
expression? w = 8i, - -+ s;, for each w € &,.

For 81, By € N[J] with ht(81) = {1, ht(52) = {o, let

6(617B2> = Z €(V1, s ’V51+€2> € R(ﬂl +62)'

(Vl ----- Vel)e‘]ﬂl
(Vey 415170, +5)ETP2

Then we have a k-algebra homomorphism

R(B1) ® R(B2) — e(B1, B2)R(B1 + B2)e(B1, B2)

e(vi,...,vg) @e(vy, ... vp) — e(v, .. v, Vi, .o 0,),

2Note however that 7,, does depend on the choice of a reduced expression, as the braid relation in 7,

does not hold in the quiver Hecke algebras.
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T @ 1= xre(fr, f2), 1@ xp — xp1e(Pr, B2),
Tm & 1 Tme<517 52)7 1® Tm! Tfl-i-m'e(ﬁl’BQ)’

so that R(f; + 52) has a right R(/51) ® R(fs)-module structure. Hence one can define the
convolution product of an R(f;)-module M; and an R(f;)-module M, by

My o My = R(B1 + B2) @risi)er(s) (M1 @ My)

which is an R(f; + f2)-module.
Consider the category R(/3)-gmod of finite-dimensional graded R(/3)-modules, and

R-gmod = @ R(5)-gmod.

BEN[J]

Then the category R-gmod is equipped with a monoidal structure by the convolution
product, and the degree shift ¢ defined by (¢M), = M, for M = @, ., M}, € R-gmod.
Consequently, the Grothendieck group

K(R-gmod) = @ K(R(A)-gmod)
BEN[J]

possesses a Z[g*!]-algebra structure. Similar construction works for the category R(3)-gproj
of finitely generated projective graded R(B3)-modules, yielding another Z[g*']-algebra
K (R-gproj).

Now let U, (g) be the integral form of the negative half of the quantum group asso-
ciated with the given generalized Cartan matrix, that is, the subalgebra over A = Z[¢*!]
generated by divided powers f™/[m|! (i € J, m € Z>(). The original motivation of intro-
ducing quiver Hecke algebras is the following categorification theorem.

Theorem 2.3.2 ([65,88]). For a symmetrizable generalized Cartan matriz A and a pa-
rameter matriz (Qij)i e, let R(B) be the quiver Hecke algebra associated with (Q);;). Then
there exists an Z[q*']-algebra isomorphism

Uy (g) = K(R-gproj) EBK B)-gproj), Ujy(g)” = K(R—gmod)

where U (g)" is the graded dual over Z[qg*!| with respect to the —Q. -grading.
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Moreover, the first (resp. latter) isomorphism matches the set of indecomposable pro-
jective (resp. simple) modules with the (resp. dual) canonical basis when A is symmetric
and chark = 0 [91], and even gives a monoidal categorification of the quantum cluster
algebra structure on U, (g)" [54]. In addition, there exist certain quotients called the
cyclotomic quiver Hecke algebras known to categorify the integrable highest weight repre-
sentations of U,(g) [50], while a large part of structures and representations of cyclotomic
quiver Hecke algebras are still unknown.

Next, we recall the notion of renormalized R-matrices for modules over symmetric

quiver Hecke algebras |51, Section 1.3].

Definition 2.3.3. A quiver Hecke algebra R(f) associated with A and (Q;j) is said to

be symmetric if A is symmetric and Q;;(u, v) is a polynomial in v — v for all ¢, j € J.

Every quiver Hecke algebra that will appear in this thesis is symmetric. Let us intro-
duce elements

(TmZm — TmTm)e(V) i vy = Vi
gome(y) = .
Tme(V) if vy # Uy

of R(B), where v € J?P and 1 < m < ¢ —1 (¢ = ht(B)). Unlike the generators 7,,, the
family {¢m F1<m<e—1 satisfies the braid relation, and so we obtain a well-defined element
ww for w € &, by taking any reduced expression of w. Moreover, one can check the

following properties:
(1) Forw e & and 1 < k <4, 0y, = Tup()Puos
(2) Forwe &pand 1 <m <l —1,ifw(k+1) =w(k)+ 1, then @, 7, = Tuk)Pw-

Hence given an R(f;)-module M; (i = 1,2), we obtain an R(/3; + (B2)-module homomor-
phism

Ryn:MoN — NoM

Uy @ U — Pulht(8),ht(52)] (U2 & U1)

where w[ly, ly] € &y, 14, is defined by

k+10y itk </t
k’—fl lfk>£1

wlly, b(k) =
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For an R(()-module M, define the affinization of M to be the k[z] ® R(f)-module
M, = k[z] ® M on which the generators act by

e(v)=1®e(V), Tm=1& Ty,
T =201+ 1 xy,

where z is an indeterminate (of degree 2). Then we define a renormalized R-matriz by
an My = Z_SR(MI)Z,M2|Z:O : Ml o Mg — MQ ¢} Ml

where s is the largest nonnegative integer such that imR ), m, C 2° R, (ay). [51, Propo-
sition 1.10]. In particular, rps, as, never vanishes.
Since the braid relation is satisfied by ¢,,, renormalized R-matrices solve the Yang-

Baxter equation
Yy NYLNYL M =YL MYL NYMN : LoMoN — NoMolL.

Again this allows us to define without ambiguity a module homomorphism

vor o Miosoo My — Myayo -0 Myg

for any w € &, and R(f;)-module M;. We remark that although rys a;, # 0 for any
i,J, it may happen that rf,
Corollary 2.9|).

u, Vanishes for some w (see [51, Proposition 1.15], [59,

.....

2.3.2 Quiver Hecke algebra of type A and their simple modules

We fix the following Dynkin quiver I' of type A.:

o o o o o ce (2.3.1)

1 & =
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with the associated Cartan matrix (a;;); jez defined by

2 ifi=y
a; =49 —1 ifi=7+1

0 otherwise.
Let J = Z, and put

Pij(u,v) = (u—v)% where d;; is the number of arrows from i to j in T,

Qij(u,v) = Pij(u,v)Pj;(v,u) fori# j.

Then we obtain a symmetric quiver Hecke algebra R(f3) associated with the quiver T'.

Let us recall the classification of the finite-dimensional simple R(f)-modules following
[51,57]. Recall that the positive roots of the Kac-Moody algebra of type A, are of the
form

ﬂ(a,b) =Qpt+ Qg1+

for pairs (a,b) of integers such that a < b. We call such a pair a segment of length
¢ =0b—a+ 1. Thus, the positive roots are in bijection with the segments. We also assign

to the latter the lexicographic order
(a,0) < (V) <= a<d or (a=d,b<¥).

A finite sequence of segments ((a1,b1),. .., (a, b)) is called a multisegment, and is said
to be ordered if (ag,br) > (ag+1,bp11) forall 1 <k <t —1.

For each segment (a, b) of length ¢, we define a 1-dimensional R(f4))-module L(a,b) =
ku(a,b) defined by

u(a,b) ifv=(a,a+1,...,b)
zru(a,b) = thu(a,b) =0, e(v)u(a,b) =
0 otherwise.

As we have seen in the last subsection, for an ordered multisegment ((a1,b1), ..., (as, b)),
there is an R(S3)-module homomorphism (8 = >"_, Ba:s:))

r' : L(ay,by) o0 L(ay, b)) — L(ag, b)) o0 L(ag,by),

T 1 .
31 :I_E _'k..-_'l_'-i. -"_Il_



CHAPTER 2. PRELIMINARIES

associated with the longest element wy € &;.

Proposition 2.3.4 ([51,57|). There exists a one-to-one correspondence between the or-
dered multisegments and the finite-dimensional simple graded R-modules (up to isomor-

phisms and grading shifts), given by
((al, bl), ey (a/t, bt)) —— hd (L(al, bl) o:---0 L(at, bt)) .
Moreover, r™ has a simple image which is isomorphic to hd (L(ay,by) o -+ o L(ag, by)).
As an example, one has the following result for ordered couples of segments.

Proposition 2.3.5 (|51, Proposition 4.3|). Let two segments (a,b) > (a’, V') be given.

(1) If any of the following holds: @' < a <b<¥V,a>b+1, ora=d <V <b, then
L(a,b) o L(a', V) is irreducible and

L(a,b) o L(a',b') = L(d',¥') o L(a,b)

18 an isomorphism.

(2) If d’ <a <V <b, then we have an exact sequence

0 —— L(d’,b) o L(a,b') —— L(a,b) o L(d', V) )

(—> L(d',V) o L(a,b) —— L(d’,b) o L(a,b') —— 0.
(3) If a=V + 1, then we have an exact sequence

0 — L(a',b) — L(a,b) o L(d',¥') — L(a',t') o L(a,b) — L(a’,b) —> 0.

Here we ignore the grading and r denotes the corresponding renormalized R-matrix.

Remark 2.3.6. Observe that the above theory of modules over type A, quiver Hecke
algebras resembles that of type A affine Hecke algebras [9,92,95]. This can be understood
through an algebra isomorphism between them (after a completion) [11, 88|, which will
be explained and used to prove the equivalence of generalized quantum affine Schur-Weyl

duality functor later in Chapter 4.
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Chapter 3
Generalized Quantum Groups of type A

In this chapter, we introduce the generalized quantum group U(e) of affine type A [70].
Since it is a variant of the usual quantum affine superalgebra U, (5[ MmN ), we first seek for
a relation between them, namely an algebra isomorphism up to a mild extension. Then
we use the isomorphism to construct a nondegenerate Hopf pairing on U(¢), which leads
to a universal R-matrix by the standard argument of [78]. We also recall some basic facts
on polynomial representations of the finite type subalgebra U (€).

Let us fix here notations which will be used throughout this thesis.

o ¢ =(€1,€9,...,6,) : a(01)-sequence of length n > 4

o M =|{i|le =0} and N =|{i|e = 1}|.
o ey ¢ a (01)-sequence with ¢; = -+~ =€)y =0, ey =+ = eppny = L.

Pin = @, Z0; : a free abelian group of rank n.

Poo =iy Z>00; C Prin.

deg A = >\ for A =>"\id; € Pso.

q ife; =0

¢ = (=1)gV" = (i € T).

—q ! ifeg=1

3 y 1 |
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CHAPTER 3. GENERALIZED QUANTUM GROUPS OF TYPE A

e q(-, ) : ak-valued symmetric biadditive form on Pj, defined by
q(A, p) = qu'cidi for A = Zciéia = Zdi(sz' € Fhn.

e (-|-): asymmetric bilinear form on Pg, such that (6;0;) = (—1)%d;;.

1={0,1,...,n—1}.

ai:5i—5i+1€Pﬁn (ZE[)

Toyen = {i € I'| (a4|ay) = 22}, Toaa = {0 € I | (i) = 0}.

, 0 ifi€ Ly
o p(i) =

1 ifie Ly
o P =@, ;7Z6; ®ZJ : a free abelian group of rank n + 1.
o a;=0; — ;11 + ;00 € P°.
Q=@,;Za; CP°, Q=73 Zsoov.
e hi(B8) =3 d; for B =3 dicv; € Q4.

e cl: P’ — Py, : the linear map defined by cl(8;) = d;, cl(8) = 0.

A subscript ¢ € [ is always understood modulo n.
Note that Py, is the weight lattice for gly, y (equivalently, for gly,, y), and Pg is the
set of polynomial weights. Moreover, P is the set of level zero weights of the affine Lie

superalgebra g[M‘N (see Section 2.2.2).

3.1 Generalized quantum group of affine type A

3.1.1 Definition

Definition 3.1.1 ([70,79]). Given a (01)-sequence € of length n, the generalized quantum
group of affine type A associated with € is defined to be the k-algebra U(€), generated by
e, fi (i €1)and k, (i € Psy) subject to the following defining relations:

ko =1, kypp = kuk,
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kpeik, ' = a(p, ai)es,  kufik," = a(p, —o) fi,

ki — k!
eifj — fiei = 5ijm,

e;=f=0 (i € Ioaa),
eiej —ejei = fif;— fifi=0  (i—j# %l (modn)),
efe; — (—1)%[2]e;eje; + ejef =0
fefi— (=02 fififi+ fif7 =0

€i€i—1€i€it1 — €i€j1+1€;€i—1 + €;11€;€;_16€;

(1 € Ioyen and i — j = £1 (modn)),

—e;_1€i¢016; + (—1)9[2)e;e;_1€i016, = 0
fificififirn = fifirrfificr + fir fifici fi
— ficrfifirrfi + ()2 fifica fisa fi =0

(i € Ioaa),

where we put k; = k.

Moreover, U(e) is endowed with a Hopf algebra structure given by
Ak, k,®k, e—ek ' +1®e, fi—[i@1+ke fi,
S kﬂ — k;l, e; — —eik‘i, fz — —l{l_lfl
We let U(€e)™ (resp. U(e)™) be the subalgebra generated by e; (resp. f;) for i € I, and

U(e)" the one generated by k, for u € Ps,. Then the proof of [43, Theorem 3.1.5] applies

here to prove the following triangular decomposition.

Proposition 3.1.2. The multiplication
Ue)T@U(e) @U(e)™ — Ule)

s an isomorphism of k-vector spaces.

Observe that if €; = 0 (resp. ¢; = 1) for all j € I, then U(e) recovers the quantum
affine algebra of type A. More precisely, its subalgebra generated by e;, fi, k' (i € I) is
isomorphic to U, (sl,) (resp. U" q,l(;[n)) or its quotient by ¢“ — 1.

When € is obtained from e by permuting entries, U (€) is related to U(e) by the following
algebra isomorphism. This can be seen as a super analogue of the Lusztig’s braid group

symmetry on quantum groups [78, Chapter 37| (¢f. [94, Proposition 8.2.1]).
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Proposition 3.1.3 ([79]). Suppose that € is obtained from € by permuting the entries €;
and €;11 for some i € I. There exists an algebra isomorphism T; : U(e) — U(€) given by

ks) = ksiyy  Tilksy,) = ks, Tilks) = ks, (J# 4,1+ 1),

) = —fiki,  Ti(fi) = —k; e,

ej) - [ei76j]Qz(Oéi7aj)’ Tz(f]) = [fj’ fi}Qg(auaj)*l (|Z - ]| = 1)7
)=¢, Ti(f) =1 (i—jl>1)

where q¢( -, - ) denotes the biadditive function associated to €.

Finally, we introduce a bar involution, the Q-algebra involution on U(€) given by
q=9q -, €; = €4, fz_fla kﬂ_ku'

3.1.2 Quantum affine superalgebra and algebra isomorphism

Let us recall the definition [94] of a quantum affine superalgebra, namely a quantized

universal enveloping algebra of an affine Lie superalgebra gA[M‘ N-

Definition 3.1.4. Let U(e) be the k-superalgebra generated by E;, F; (i € I) and K,
(1 € Pgy) with parities

subject to the following defining relations:

Ko=1, Kupw=K,Ky,
K“Ei[(;1 = ¢ g KMFiK;l = ¢ e

; i Ka- - K—a~
E,F; — (_1)p(Z)P(J)F’jEi = (D)0 —
qa—4q
E}=F!=0 (i € loaa),

EE; — (—1)PPOEE, = F;F; — (—1)PPOEE =0 (i —j #=+1 (modn)),
E?E; — 2]E;E;E; + E;E} =0

1 € loyen and i — j = £1 (modn)),
FF—PIREF+ BE =0 et

T 1 . I
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(£, [[Ei1, Bi] (—1ypt-1g, Biga] (—1ywi-n+0p1 g1 ] (C1ypi-nptirn+r = 0 (i € Ioa)
t odd )
[Fia HFi—h E](—l)l’(i_l)q7 E—‘rl](71)(17(75—1)‘5‘1)?(75-‘-1)(1*1](71)p(i—1)+p(i+1)+1 =0

There is a Hopf (super)algebra structure on U(e) by the same formula as above. Note
that when M # N, the subalgebra of U(e) generated by F;, F;, KX is isomorphic to the
quantum affine superalgebra U;(sA[M| ~) [94, Theorem 6.8.2], more precisely its quotient

by the canonical central element.

Remark 3.1.5. A Drinfeld realization for quantum affine superalgebras U, (sA[M| ~) is also

established in [94, Section 8|, using a braid group symmetry (cf. [4]).

Observe that the defining relations of U(€) and U (e) differ only by signs. We resolve
this discrepancy by adjoining sign operators o; to the algebras, as follows.

Introduce a commutative bialgebra ¥ over k generated by o; (j € I) satisfying O'j2~ =1,
with the comultiplication A(o;) = 0;®0;. Then U (€) carries a ¥-module algebra structure
given by

0,;K,=K,, o0;E= (—1)s@le) g, o, F; = (1)@l

that is, the multiplication and the unit morphism are »-module homomorphisms. Thus
we can form a semidirect product U(e)[o] of U(e) and ¥, and similarly we obtain U (€)[o].

Now let us assume M # 0. Given ¢, there exists a unique sequence 1 < i; < iy <
-+« < 4; < n such that

€i—1 7é €, = €jp+1 = " = 6ik+1_1 7£ 6ik+1 for 1 S k S l.

Here we understand the subscripts modulo n, and 4,,; = ;. For example, to e = (001011)

corresponds the sequence 1 < 3 <4 < 5. Put
JSj 20'10'2"'O'j (j :]I)

We assign to each generators E;, F;, Ks, (i € I, j € II) of U(e) certain elements 7(E;),
7(F3), T(Ks,;) of U(e)[o] respectively. First, we define

T(K(;j) = k’(;J.O'j.
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(1) If i € Loyen With (€, €,41) = (0,0), then we set
T(E;) =e;, 7(F)=fi
(2) If i € Iogqqa with (€, €;,41) = (0,1), then we set
T(E;) = €e0<;, T(F;) = fi0<i0:0:41.

(3) If ¢ € Ieyen with (&,€,41) = (1,1), then i € {ig, i + 1,...,ix1 — 2} for some k.
When k£ < [, we set

T(E;) = —ei(0i0i41) " *, 7(Fy) = fi(oi0i41) ™,
and when k£ =1,
—€;\0;0; =i+l — Ji\O;0; =i ify <i<n
HE) = ( +1)‘ | ~(F) = fi( +1)' | 1 <1 <
—e;(030 1)L —filoioip) T i1 <6 <y - 2.

(4) If i € Ioga with (€, €41) = (1,0), then ¢ = dpq — 1 for some k. When k < [, we set
T(E) = ejo<i(—0i0i41)* 7%, 7(F}) = fio<i(0051)* %
and when k£ =1,

7(E) = eio<i(—0,001) "0 1(F) = fioci(0i0i,,) 0L

The following table illustrates the image of F; and F; under 7 for e = (001011):

1€1 0 1 2 3 4 5
E; €00<6 €1 €20<9 —€30<30304 €40<4 —€5050¢
F; Joo<6o601 | f1 | f20<20203 f30<3 f10<40405 /s

Theorem 3.1.6 (c¢f. [75, Proposition 4.4]). Suppose that M # 0. Then T extends to a
k-algebra isomorphism 7 : U(€)[o] — U(e)[o] with T(o;) = 0.

T 1 . I
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Proof. 1t is straightforward to check that 7 maps the defining relations of U(e) to zero.
For example, take € = (001011) and let us verify

T(K o, )7(Es)T(K_g,) — T(q1*21%) B3) = 0.
Indeed, from the above table we have

T(Koy)T(B3)T(K _o,) = —kooo03€3010904k5 L0903
= koesky '010904
= q(a, a3)e3010204
= —q 'e3010904

— T(q(aﬂo@)E?))‘

Since one can define the inverse map in the same manner, 7 is invertible. O]

Remark 3.1.7. The isomorphism 7 induces an equivalence between module categories of
U(e) and U (€), which preserves the notions of weight (see Remark 3.2.2). However, since

7 does not respect the comultiplication, this equivalence is not monoidal a priori.

3.1.3 Universal R-matrix

In the theory of quantum groups, a standard way to construct an intertwiner on a tensor
product of two modules is to apply to the tensor product a distinguished element ©,
called a universal R-matriz, in the (often completed) tensor square of the quantum group.
Drinfeld 28| provided a systematic method to construct a (quantum group with) universal
R-matrix as the Casimir element of a nondegenerate Hopf pairing (see for example [64,
Chapter XI|).

In this section, we reformulate a half of the generalized quantum group U (€)™~ following
[78]. The key result is Theorem 3.1.10, which asserts that the Serre relations for U(e)
generate the radical of a symmetric bilinear form on a free associative algebra ‘f(¢). This
implies the nondegeneracy of a Hopf pairing on U(e), and hence a universal R-matrix.

Let 'f(€) be the free associative k-algebra with unity generated by 6; for ¢ € I, which
is Q4-graded with |0;| = ;. We define an algebra homomorphism r : 'f(e) — 'f(¢) ® 'f(e)
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CHAPTER 3. GENERALIZED QUANTUM GROUPS OF TYPE A
by 7(6;) = 6; ® 1 + 1 ® 6;, where the multiplication on 'f(€) ® 'f(¢) is twisted by

(71 ® 2) (11 @ 42) = a(|z2], |11]) 7 (2131) ® (2212)
for homogeneous s, ;.
For later use, let us also introduce a k-linear map ;7 : 'f(e) — "f(¢) (i € I) defined by

(1) ;7(1) =0, ;r(0;) = 6;; for j € I,

(2) ir(zy) = ir(x)y + q(|z|, ;) 'x - 7(y) for homogeneous ,
and r; : 'f(e) — 'f(€) by

(1) 7(1) =0, r;(0;) = 0;; for j € I,

(2) ri(zy) = zri(y) + q(ly|, a;) "'ri(z)y for homogeneous y.
Proposition 3.1.8. There exists a unique k-valued symmetric bilinear form (., ) on 'f(e)
satisfying

(1) (1,1) =1, (6:;,6;) = b,

(2) (z,yy) = (r(x),y®Yy) forz, y, y" €'f(e),

(3) (z2',y) = (x ®@2',7(y)) for z, ', y € 'f(e),

where we set (1 ® xa,y1 @ Yo) = (21, y1)(T2,y2). Moreover, the following property holds:

(Oiz,y) = (y,ir(x)), (20i,y) = (2, 7:(y))-

Proof. The proof is a straightforward induction on the height with respect to the Q.-
grading on 'f(e), see |78, Chapter 1]. ]

Let Z denote the radical of this bilinear form. Consider a k-algebra U(e) generated by
E;, F; (i € I) and K,, (11 € Pjn) subject to the relations

Ko=1, Knw=K,Ky,
K#EiKZLl = q(p, ) E;, K#FiKZLl = q(p, o) 'Fy,
mn-mmz%&ifg
qa—dq
h(Eo,...,E,) = h(Fo,...,F,) =0 whenever h(y,...,0,) € Z, for h € k(zg,...,z,).

Y

& =
L |  §
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CHAPTER 3. GENERALIZED QUANTUM GROUPS OF TYPE A

Lemma 3.1.9. The following elements are contained in the radical Z:
(1) 6% fori € Ioaa,
(2) 6,0, —0,;60; if i —j # £1 (modn),
(3) 6260, — (—1)<[2]0;0,6; + 0;6? if i € Ioyen and i — j = £1 (modn),
(4) 0,0;-10;0;:1—0,0;110;0;,_1+0;110;0;,_10;—0; 10,0, 10,4+ (—1)[2]0,0;_10;116; if i € Ioaa.

Proof. It can be checked by a direct calculation (see |78, Proposition 1.4.3] for (2),(3)).

For example, for i € I,q4q,
(07,07) = (0:,7(07)) = (0;, (1 + alv, o) 1)0;) =0

as q(i, ;) = ¢;giy1 = — 1. [

By the lemma, we obtain a surjective algebra map 7 : U(¢) — U(e). The following
theorem is our first main result, which enables us to reproduce the Lusztig’s construction

of a universal R-matrix.
Theorem 3.1.10. When M # N, the map 7 : U(e) — U(e) is an isomorphism.
Proof. As above, we define U(e)[o] and consider the algebra maps

U(e)lo] — U(e)[o] — U(e)[o]

where we use the same symbol 7 to denote the obvious extension of .

As in Proposition 3.1.2, U(€)[o] also has the triangular decomposition
Ue)lo] =U(e)" @ U(e)’lo] @ U(e)~

where U(€)°[o] is the (semi)direct product of U(€)? and X. One can show that U(e)
and U(e) possess similar decompositions, and 7 respects the decomposition. Hence, it is

sufficient to prove that the restrictions
Tlueey: : U()* — Ule)*

are injective.

T 1 .
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CHAPTER 3. GENERALIZED QUANTUM GROUPS OF TYPE A

Suppose we are given y € U(e)* Nker 7, which can be assumed to be homogeneous
as Ty + preserves the ) -grading. Let us also assume /3 := |y| has the minimal height
such that U(e)§ Nker # 0.

Since 7 is an isomorphism, there exists a unique x € U (E)E and a monomial < in o}
such that 7(z¢) = y. We claim that = 0, which follows by [94, Proposition 6.5.1] once
we check that

zF; — (—1)POPA Eg =0 forallie I

Indeed, using the defining relations of U(e) we can express

xF, — (_1)p(i)p(5)}7’ix — -I/Kai + 'I,/K—ai

for some 2, 2" € U(e);_,, . Write 7(2') = /o’ and 7(2") = y" 0" for some ', y" € U(e);_,,

and o', 0" € ¥. Applying 7w o 7 to the above identity, we get
0=m(y) Ko, +7(y" K a,5"

for some ¢’, ¢ € ¥\ {0} since n7(x) = 7(y)s~ = 0. By the triangular decomposition
of U(e)[o], we obtain w(y)K,,¢" = 7(y")K_,,¢" = 0, or equivalently 7(y') = n(y") = 0.
Then the minimality of ht(3) implies 3 = y” = 0 and hence 7(xF; — (—1)?OPP) Fiz) = 0.

Since 7 is an isomorphism, this completes the proof. O

As a consequence, when M # N we obtain algebra isomorphisms
£ f(e) ="f(e) /T — U(e)*

defined by 0" = e;, 67 = f; (i € I). For each 8 € Q, take a basis Bs of f(€)z and its
dual basis Bj = {b*|b € Bs} with respect to the nondegenerate bilinear form on f(e).
Put
05 =(q—q "D vt e cUle)f oU(e),
beBg
with ©p = 1® 1.

Let us also take a completion

Uueyraue) =@ [ uedoue;.

YEQ y=a+p

T 1 .
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CHAPTER 3. GENERALIZED QUANTUM GROUPS OF TYPE A

Now the following theorem can be proved in a similar way with |78, Theorem 4.1.2].

Theorem 3.1.11. The element

O= > O5cl(e)'®U(e)
BEQ+

satisfies the following properties.

(1) For any u € U(e), we have

where A(u) = A(w). Moreover, this property uniquely determines Ogp.
(2) Let © =Y 05 where Op == (~ ® ~)(Op). Then OO = OO = 1 holds.

We call the element © a universal R-matriz. In Section 4.2.2, we will use this element
to construct a U (€)-linear map from a tensor product of two U (€)-modules to the opposite

tensor product.

3.2 Finite type subalgebra and its polynomial repre-

sentations

Definition 3.2.1. The generalized quantum group u (€) of finite type A is defined as the
subalgebra of U (e) generated by e;, fi (i € 1\ {0}), k, (1 € Pan).

Similarly defined subalgebra U () of U (¢) is isomorphic to the quantum group Uqg(glan)
associated to the Lie superalgebra gly;y with a Borel subalgebra labeled by e. Since the
isomorphism 7 in Theorem 3.1.6 restricts to the one between U(e) and U(e) (up to the
extension by X), there exists a concrete connection between representations of u (€) and
those of Uy (gl ). In this context, let us give a quick review on certain finite-dimensional
representations which appear in later chapters, called polynomial representations, of U (€).

For a U(e)-module V and A € Py, define the A-weight space of V by

Vi={veV]|kw=q(\pvfor p € Py,}.
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CHAPTER 3. GENERALIZED QUANTUM GROUPS OF TYPE A

Clearly, e;V\ C Viia, and f;Vy C Vi_,,. We denote by wt(V') the set of weights of V.
Since the Cartan parts of U(€) and U(e) are the same, we define the notion of weights of

U(e)-modules in exactly the same way.

Remark 3.2.2. For a U,(gly;y)-module W, the A-weight space of W is defined by
Wy = {w eW|Kw= ¢"Mw for e Pﬁn} )

It agrees with our notion for u (€)-modules via the isomorphism 7. Namely, let V be a
U(e)-module with the weight space decomposition V = @ rep, Va- We extend the U(e)-

action on V to a U(e)[o]-action by assigning
ojv = (_1)6j(6le)U

for j € I and v € V. Pulling it back through 7, we obtain a U(€)[o]-module structure on
V. Then the subspace V), is the A-weight space under the U (e)-action. Indeed, for v € V)
with A = > ¢;0; and =) d;0; € Py, we have

d; €;Cid; €jcid;
Kov=1(K,v=Fk, Haj v=(—1)=9% k0 = (=1)=99% q(p, Nv = ¢,

jel

Let C(e) be the category of finite-dimensional polynomial representations of U (€).
By definition, C (€) consists of finite-dimensional u (€)-modules V' with a weight space

decomposition

We also denote by C(e) the full subcategory of C(e) of V such that every weight of V is
of degree ¢. Then we have
Cle) = EPCiie).

£>0

The irreducible modules in C (¢) are classified by their highest weights, which are
parametrized by hook partitions. A partition A = (A1, Ag,...) is called an (M|N)-hook
partition if A1 < N, and let &) n denote the set of (M |N)-hook partitions.

To each A € &) n, we assign a finite-dimensional irreducible highest weight u (€)-
module V() as follows (cf. [24, Section 2.4.1]). Define a tableau H) . of shape A by the

following recursive rule:
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(1) Fill the first row (resp. column) with 1 if ¢, = 0 (resp. ¢ = 1).

(2) After filling a subdiagram g of A\ with 1,2, ..., k, fill the first row (resp. column) of
A pwith k+1if €01 =0 (resp. €41 = 1).

Then V() is defined to have the highest weight Zieﬂ m;0;, where m; is the number of i’s
in H)\7€.

Example 3.2.3. The U(¢)-module V,((1)) can be seen as a quantum analogue of the

CMIN

natural representation of gl.. Indeed, consider the n-dimensional k-vector space

vz@k\@

on which U(e) acts by

kyle) =a(p, ), exle)=0dirt1ler), fole) = diklext1)-

Then it is easy to check that V' is an irreducible highest weight U (¢)-module with highest
weight d1, hence isomorphic to V.((1)).

Furthermore, it is known [7,75,77| that for each ¢ > 1, V®* is semisimple and its simple
components are exactly those V() for the (M|N)-hook partitions A of . In particular,
any tensor product of V,(A)’s is again semisimple, and the composition multiplicities are

given by the usual Littlewood-Richardson coefficients. For example, we have

VD) @ V((m) = @ Vill+m—t,1)) (3.2.1)

teHe(l,m)

where H.(I,m) = {t|0 <t < min{l,m}, (I+m—t,t) € Py n}. Note that this index set
is nothing but

{max{l +m —n,0}, max{l +m —n,0} +1,... min{l,m}} ife=¢gp

Hc(l,m)=<{0,1,...,min{l,m,n — 1}} if € = €101
{0,1,...,min{l,m}} otherwise
(3.2.2)

(recall that we are assuming n > 4).

T 1 . I
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Remark 3.2.4. The character of V,()) is given by a hook Schur polynomial [8]. When
€ = em|n, the existence of crystal base is also known, which is again explained in terms
of semistandard Young tableaux [7,77].

At the heart of the above results lies the following Schur—Weyl-type duality.

Theorem 3.2.5 (|77, Theorem 3.1]). Let V = V.((1)) and R : V¥2 — V2 be a U(e)-
linear map defined by

qq; |ei) ® |e;) ifi=7

R (le:) @ lej)) = 4 qle;) ® |e;) ifi>j

(@* = 1)]e) @ lej) +qley) @e) ifi<j.
Let Hy(q?) be the finite Hecke algebra (see Definition 4.3.10). Then V& is a (U(€), Hy(¢?))-
bimodule whose right Hy(q*)-action is given by hy, = Ry, where R, denotes the map given

by applying R on the m-th and (m + 1)-st factors of V&

Furthermore, the functor

Je - Hy(¢*)-mod — C'(e)
M — V' @p, 2y M

1s an equivalence of categories if £ < n.
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Chapter 4

Super duality for polynomial

representations

We begin our study of representations of quantum affine superalgebras from polynomial
representations of U (e). The main result is an equivalence between monoidal categories
Cz(€) obtained as an inverse limit of categories Cz(e™)) of polynomial representations of
U(e®), for any (01)-sequence € of infinite length. In particular, from the equivalence
with Cz(€>®) (or Cz(€*)) where €° = (1°°), we obtain a concrete connection between
polynomial representations of quantum affine algebras and those of superalgebras. Such

a super-duality-type equivalence (Theorem 4.3.28) is depicted by the following diagram:

Cz (EOO) Cy (EOO ) .

For finite-dimensional representations of quantum affine algebras, the pioneering work
[58] teaches us that fundamental representations and their normalized R-matrices are
building blocks, and information on tensor product structure can be extracted from sin-
gularities (or spectral decomposition) of normalized R-matrices.

In the spirit of [58|, we introduce fundamental representations W, (x) in the category
C(e) of polynomial representations of U(¢), and construct normalized R-matrices Rj'p™.
The spectral decomposition of Rj;™ is computed, which is observed to be the same

as the one in non-super cases. This allows us to generalize to arbitrary € in a uniform
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CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

manner, several important constructions from the representation theory of quantum affine
algebras, such as fusion construction of irreducibles [53| and generalized quantum affine
Schur-Weyl duality functor F, [51].

To turn this analogy into a mathematical entity, we introduce truncation functors
that relate C(¢) for various e. They are motivated from the super duality formalism for
Lie algebras, and accordingly expected to be equivalences of categories, after taking an
infinite rank limit. We prove that the degree ¢ component of the Schur—Weyl-type duality
functor F., is an equivalence whenever n > ¢, namely at high ranks. Using the notion
of inverse limit categories, we lift those partial equivalences to monoidal equivalences
between inverse limit categories Cz(e>), which we interpret as a quantum affine analogue
of a super duality.

Since the existence of the universal R-matrix is only known when M # N (Theo-

rem 3.1.11), we put

E ={e=(e1,....&) € {0,1}"| [{ile; = O} # [{il; = 1}}, €=]&

r>4

and tacitly assume that € is in £. We also endow £ with a partial order
¢ < e <= € is a proper subsequence of e.

The results of this chapter are based on [72].

4.1 Super duality for polynomial representations of gl,

The category F,, of polynomial representations of gl,, is semisimple, whose simple objects
are parametrized by partitions A of length not larger than n. Namely, we identify such a

partition A\ with a dominant weight

i=1

where {0;}7; C b* is the dual basis of {E;}", C b, and then L, ()) is the irreducible
highest weight gl -module with highest weight A.
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A large part of this category can be understood through an algebra isomorphism

o

K(.Fn) — A(xl,...,a:n)
[Ln(N)] — sa

obtained by taking the character. Here A,, = A(xy,...,x,) denotes the ring of symmetric
polynomials in zy,...,2,. For example, that {L,(\)}s <, is a complete set of simples
corresponds to the fact that {s,} ¢(n)<n i a Z-basis of A,,, the tensor product decomposition
of Ln(A) @ Ly (p) is given by the Littlewood-Richardson rule sys, = »_ ¢} ,s,, and so on.

On the combinatorics side A,,, it is more natural to consider its inverse limit, the ring
of symmetric functions A in infinitely many indeterminates 1, xo,.... For instance, the
basis of A,, is parametrized by partitions with length not larger than n, rather than all
the partitions. It leads to a degeneration: in A, the product s(1)sm) is computed by the
Pieri’s formula, but in A,, the summands corresponding to partitions of length larger than
n are missing in the same product. In contrast, such a degeneration does not occur in the
product of single-row partitions s(;s(,). Certainly there exists an asymmetry in A,, that
does not appear in the limit A. Indeed, A enjoys an algebra involution s, > syt.

On the representation theory side, sy (resp. s(y) is the character of the exterior
power A'(C") (resp. symmetric power S'(C")), where C" is the natural representation of
gl,,. Hence, the asymmetry arises from the difference of symmetric and exterior power (or,
bosonic and fermionic). This can be remedied by considering representations of infinite
rank Lie algebra gl , which corresponds to the inverse limit A on the combinatorics side.

Now the symmetry s, <> sy in A should be understood as an exchange of bosons
and fermions, at least at the level of heuristics. Remarkably, this can be made into
a mathematical theorem, as an equivalence of categories (after taking inverse limits).

The idea is to introduce an intermediating Lie superalgebra gl,,, and two truncation

nln
functors which pick out only bosons or fermions. Then the inﬁrllite rank limit assures
that nothing is lost in the course of truncations, hence equivalences (see (1.2.1)). This
method, developed in [20,21], is called super duality, and yields an interesting and useful
perspective on representation theory of Lie (super)algebras. In the remaining of this
section, we explain how super duality is constructed in this easiest example.

Introduce the following index set

~ 1 3
[=¢-<l<-<2<--
R
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with Z/2Z-grading given by |i| = 2i. Let V be the infinite-dimensional vector superspace
over C with a basis {v;}, with the induced Z/2Z-grading. We also set

~ _ o~ /1
1=1NnZ, ]I:]Iﬂ(§+Z)

and V (resp. V) is defined to be the subspace of 1% spanned by v; for i € I (resp. i € I).

Let g = End(‘7) be the Lie superalgebra of linear endomorphisms on ‘7, with the
standard basis {Em}r,seﬁ' Namely, E,; is defined to be the linear map v; — 9; sv,, whose
parity is given by |r| 4+ |s|. The Lie superalgebra g is the infinite rank general linear Lie

superalgebra gl accompanied with the following data:

o000

e Cartan subalgebra b= D,5CL:,
e Borel subalgebra b= D, CE,s.

Observe that this Borel subalgebra corresponds to a (infinite) (01)-sequence (01010...),
and hence not a standard one.

We take g = End(V), § = End(V) which are regarded as subalgebras of g naturally,
and corresponding Cartan b,k and Borel b,b. Both g and g are isomorphic to the Lie
algebra gl_, not super.

Next, we define module categories. Given A € &2, we define weights

A=) NGl A=) N, b eh,

i€l sel
A =>"0(\),6, € b
rel

where ()\) = (9@)%, O(N)1.0(N)s, .. ) is defined by

0(\); = max{\; — 5,0}, 6(N),

i=3

=max{\, —j+ 1,0} (j€Z).

Let z()\) be the irreducible highest weight g-module with highest weight \? with
respect to the Borel subalgebra b, and similary L(A) over g and L()\) over §. Hence, a

partition A simultaneously parametrizes irreducible representations of three different Lie

IEquivalently, \?, X\, A\? are the weights of the tableaux H e defined in Section 4.2 with respect to
e = (10101...), (000...), (111...) respectively.
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(super)algebras. Also note that chL()\) = sy and chL(\) = sy, while L()) interpolates
the correspondence L(A) <+ L()\) (which amounts to sy < sy¢).
The category F is defined to be the category of g-modules V such that

(1) V =,z Va with dim Vi < oo and wt(V) is finitely dominated,
(2) V is a direct sum of L(\)’s for A € 2.

Similarly we define F, F for g, g, respectively. In this case, F = F and is the category of
polynomial representations of gl .
Finally, we define the truncation functors that relate the module categories introduced.

Given a g-module V with a weight space decomposition Vo= P ‘77, we form the

YED*
w(V)=EPV, &V)=PV.

V€D veh”

subspaces

Then te(V) (resp. te(V)) is closed under the action of the subalgebra g (resp. g). More-
over, for a g-module homomorphism f : V= W, we obtain by restriction a g-linear map
te(f) : M — N and a g-linear map t(f) : M — N. Then using odd reflections and

comparing characters, one can prove that

e (Z(A)) — L0\, & (L()\)) — T

for any A € &. Therefore, we obtain functors

te: F— F, @w:F—F

called truncations.

Now super duality asserts that
Theorem 4.1.1 ([20]). The truncations tr, tv are equivalences of highest weight categories.

Hence we obtain the following diagram:

T 1 .
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and a nontrivial autoequivalence tr o (tt) ™" on F = F. At the level of Grothendieck ring
K (F), which is isomorphic to the ring of symmetric functions A via the character map,
it induces the involution sy — sy:. Thus, super duality provides a categorification of this
important symmetry on A.

The goal of this chapter is to establish a quantum affine analogue of this diagram.

4.2 Finite-dimensional representations of U/(¢)

4.2.1 Fundamental representations

As explained in Section 3.2, the notion of polynomial representations of u (€) directly

generalizes to U(€). In accordance with Chapter 5, let us put it in the following way.

Definition 4.2.1. Let C(¢) (resp. C*(€)) be the category of U(e)-modules that belong to
C(e) (resp. C(e)) as U(e)-modules.

Again we have

Cle) =EHcie).

>0

Let us introduce a family of U(e)-modules that play fundamental roles in the study of

polynomial representations of U(e). Consider a supersymmetric Fock space

W.= P kim),

meZ (e)
where
Zi(G) :{m: (ml,...,mn)\mi EZZO ifﬁi:O, m; € {0,1} leZ: 1}

This space carries a natural U(e)-action, with an arbitrary choice of € k*, given by?

ky lm) = q(u, Y m;d;) [my),

jel
e; lm) = z%°[my1] |m + e; — e;11)

film) = 27%[m;] [m — €; + ei}1) ,

2As a rule, we always assume |m) = 0 unless m € Z" (e).
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for i € I and p € Ps,. We denote this U(e)-module by W,(x).

Proposition 4.2.2. The U(e)-module W,(x) has the following direct sum decomposition

W.(z) = P Wiclz), Wilz) = @ k|m)

>0 |m|=]
where | m| = > m;. Moreover, each W, (x) is irreducible over U(e).

Definition 4.2.3. For [ > 0, the U(e)-module W, (z) is called the [-th fundamental

representation with spectral parameter x.

When € = ¢, and 0 < I < n, W, () is isomorphic to the [-th fundamental repre-
sentation® V(w;) over U’_q,l(gA[n). At the other extreme € = €0, W, ((x) becomes the
Kirillov-Reshetikhin module (see Remark 4.3.16) over U,(gl,) corresponding to a single-
row partition ([). Thus, our W, (z) interpolates two most important finite-dimensional
representations of quantum affine algebras of type A, while one is fermionic and the other
is bosonic.

The following proposition records basic properties of fundamental representations.
Proposition 4.2.4. The following properties hold.
(1) As a U(e)-module, W (x) = V.((1)) and hence W,.(x) € C(e).

(2) For anyx,y € k*, a tensor product Wy () @Wo, (y), as all(e)-module, is semisim-

ple and decomposes into

Wie(@) @ W) = D Vel +m —t.1)). (4.2.1)

teHe(I,m)

Definition 4.2.5. The category Cz(¢) is defined to be the monoidal Serre subcategory of
C(e) generated by W, (¢*"™'*1) for all | € Z>y and n € Z.
We also put C(€) = Cz(e) N C%(e), so that Cz(e) = @ C(e).

In other words, Cz(¢) is the smallest full subcategory containing all W (¢*" 1) such

that it is closed under taking subobjects, quotients, extensions and tensor products. Note

3Recall that we have set V(wg) = V(w,) = k in Example 2.2.3.
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that each C5(¢) is not closed under tensor products. Rather, the degree is additive in

taking tensor product, that is
VoW el (e) if Veclhe), Wedc ().

The following lemma tells us that Cz(e) is already generated by W, (¢*") for n € Z.

Note that when e = (1"), the exact sequence below recovers the one in |1, Lemma B.1].

Lemma 4.2.6. For { > 2, we have the following exact sequence:
0= Wie(1) = Wi(¢"™9) @ Wi_1.(q) RELN Wic1,e(q) @ Wi (¢ ™) = Wi (1) — 0.

Proof. The middle map is given by the normalized R-matrix that will be introduced in
the next subsection, and the other two are given explicitly. Then the exactness follows

from the spectral decomposition of R-matrix. See Section 6.1.1 for detailed proof. m

From the discussion on R-matrices in the next subsection, it will become clear that to
understand the structure of tensor products of fundamental representations, it is sufficient
to consider the subcategory Cz(€). Moreover, it is well-known that every irreducible
polynomial representation of g[M‘ N appears as a composition factor of tensor powers of
the natural representation CMIV. Since the first fundamental representation W ((z) is
its quantum affine analogue, the study of polynomial representations of U(¢€) essentially

reduces to the one of Cz(e).

Remark 4.2.7. Suppose € = €y, and let us restrict ourselves to modules over Ué(;[n)
(¢ = —q¢'). The corresponding category Cz is called Hernandez-Leclerc category or
skeleton subcategory [41]. By the result of [58] (see Theorem 2.2.4), any finite-dimensional
irreducible representation of U;(sA[n) is a tensor product of spectral parameter shifts of
irreducibles in the category Cz. Since a finite-dimensional irreducible representation of
U;(gA[n) can be obtained as a tensor product of an irreducible polynomial representation
and a one-dimensional representation, it is indeed enough to study Cz(eg),) to understand
finite-dimensional representations of Ué(g ().

On the other hand, if € is not homogeneous, then there are far more finite-dimensional
gl.-modules than polynomial representations. Consequently, Cz(€) does not cover all the

finite-dimensional representations of U (¢€) (cf. [96, Proposition 4.15]).
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4.2.2 R-matrix

Next, we introduce a U(e)-linear map Rjp:™ on Wi(z1) @ Wi, (22), called the normalized
R-matrix. Then information on tensor product structure is contained in the spectral

decomposition of R}'O:™, as is well-known in the non-super cases. This map is constructed

by applying to the tensor product the universal R-matrix © constructed in Chapter 3.

To obtain a well-defined map, we use the affinization technique to obtain a well-defined

intertwiner (see Section 2.2.2), following [58] together with the standard construction |78].
For V' € C(¢), we define the affinization of V as

Vg =k[z" @V
for an indeterminate z, which is also a U(€)-module by
e, =2Qe, fi=z2"%® f, k,=1® k,.
As in non-super case, V,g is P’-graded by
(Vagp)r = 2 ® Vapy for A=rcocl(N) +kd

where ¢ : Pg, — PV is the section of cl : P® — Py, defined by ¢(d;) = 8; for i € I. Then
the multiplication by z can be understood as a degree § automorphism of Vg, and we
define for x € k*

Ve = Vag/(z — 2)Vag.

For example, we have W, (y). = W, (zy).
For V, W € C(e), let us take a completion

Var@Wag = Y [] Vaw)ass ® (Wan) s

\uEPO BEQ+

of the tensor product V,g ® Wog, and also the opposite completion

Vag@Wag = Z H (Vat)a—p @ (Wat) ut

A\ uEPO BEQ 4

so that U(e)*@U(e)~ and U(e)"DU(e)t act on Vig@Wag and V,g®@Wag respectively.
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Observe that since the sets of weights of V and W are bounded above, we have

VaH®Waff =k [[21/22]] Ok[z1 /2] (Vaff ® Waff)?
Wt ®Vag = k [21/22] @kfzr/20) Wast @ Vi)

where we write Vog = V,,, Wag = W.,.
Let Tl : Vag@Wag — Vag@Wag be defined by

Ma(v ® w) = a(cl(p), cl(v))o @ w

for v € (Vag), and w € (Wag),, and s : Vag®@Wag — Wag®@Vag the flip v @ w — w ® v.
Repeating the proof of [78, Theorem 32.1.5] replacing (II there with Il, we obtain an

intertwiner between two completions.

Theorem 4.2.8. We have an isomorphism of U(€)-modules
R =0 o0llgos: Vig@Wag — Wag®Vig.
Restricting the domain, we also obtain a U (e)-linear map
RYW : Var © Wag — k[21/22] @y z0) W @ Vi),

and either is called a universal R-matriz as well. They satisfy the following important

property: for M, N, L € C(¢), the following diagrams

RYSN,L
MNQL ——— MQLIN —— 5 LOM®N, (4.2.2)
idy @R R4 ®idn
Ryt oL
M®NQ®L — »y NQ M ® L . ‘ »y NQ LM (4.2.3)
RipN@idr dy@RYEY

commute, where we omit affinizations and scalar extensions. It can be proved just as
in the non-super case, see [78, Section 32.2|. Note also that the Yang-Baxter equation

follows from these two diagrams.
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Let us explain more explicitly on intertwiners between tensor products of fundamental

representations. We change the base field to k temporarily, and let
t (21, 22) : Wie(21) @ Wine(22) — K [21/ 2] @iz /20) Wine(22) @ Wie(21))

be the universal R-matrix for W, . and W, ., where 21, 2 are indeterminates. Recall from
(4.2.1) that as a U(e)-module,

Wie(@) @ W) = @ Vi(l+m—tt)) (z,y k).

teHe(lI,m)
For s = max H.(l,m), since R}"™" is invertible, we have

univ

Im (21, 22)

Ve((t4m—s,s)) = Prm(21/22)idv, (14m—s.5))
for some nonzero ¢;.,(21/22) € k[21/22], by Schur’s lemma. Put
min{l,m} 1 — gitm—2i+2,

c(z) = H

i=t+4+1

o — ql+m—2i+2

for t € H.(I,m). We define the normalized R-matriz by

norm univ

i (2) = rm(2) " es ()R (2)

where 2 = 21 /2,. It is a unique k[2", 25! ® U (¢)-linear map normalized by

Lo (2)

Ve((I4+m—s,s)) — CS(Z)ist?
because of the following irreducibility of tensor products of fundamental representations.

Theorem 4.2.9. For l,m € Zxq, the tensor product W, (x) @ Wi, (y) is irreducible for

generic x,y € k*.

Proof. It follows from the irreducibility of W (1) ® W, (1) |77, Theorem 4.7] and a

general commutative algebra argument [55, Lemma 3.4.2]. ]
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Take a projection onto the ¢-th classical component
Pr™ Wie(@) @ Wine(y) — V(L +m —1,1)) C Wine(y) @ Wie(2).

This is of course defined up to a scalar multiple, and we normalize it by choosing a U (€)-

highest weight vector
'U(l, m, t) € ‘/6((1 +m— tv t)) C Wl,e ® Wm,e~

which will be explained in Section 4.3.1. Then again by Schur’s lemma, we can write

norm Z Pt P ; ,m

teHe(l,m)

for some p;(z) € k(z). This expression of R};;™(z) is called the spectral decomposition
of the normalized R-matrix, and known to contain much information on the structure
of Wi(z) @ Wi (y). We will compute the spectral decomposition in Section 4.3.1, by

connecting it to the known one (2.2.1) in the non-super cases.

Theorem 4.2.10. For l,m € Z>, we have

min{l, m} l+m 21_’_2

norm Z H — ql+m 53 Pl m (424)

teH (I;m) i=t+1

where z = z1/zy and we understand the coefficient of Pmm{l my 10 be 1.

Remark 4.2.11. In [70], an intertwiner R;,,(z) on a tensor product W, (z) @ Wy, (v)
is obtained as a result of 2D reduction of a solution of a tetrahedron equation. By the
uniqueness of the normalized R-matrix, one can directly check that the map R, ()
coincides with our R}%™(z). When e = (17, 0"), it is possible to compute the spectral
decomposition of Ry ,,(z) in an explicit way [70, Section 6], and the formula for general €
follows as in the proof of Theorem 4.2.10 (¢f. [74, Section 7]).

In our study of C(e) for general ¢, a crucial observation is that the coefficients of the
spectral decomposition (4.2.4) are the same for any e. The only difference lies in classical
decompositions, but they also coincide if the length of € is large enough, as seen in (3.2.2).

Therefore, in the virtue of Theorem 2.2.4 we expect that the tensor product structure
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of given two modules over U (€) should be the same with the non-super one, at sufficiently

high ranks. We will turn this idea into a mathematical statement in the following sections.

4.2.3 Fusion construction of irreducible polynomial representa-

tions

As a first step, we construct simple modules in C(¢) by means of a fusion construction
[56]. We prove the validity of the fusion construction for general €, adapting the argument
of [53]. Since this is done uniformly in e, this gives a natural correspondence between
irreducible polynomial representations over U(¢) for any e.

Let V, W € C(e) and R{Ay the universal R-matrix on Vg ® Wae. We say that Ry is
rationally renormalizable [53] if there exists a € k((21/22))* such that Ry takes values
in Wog ® Vog. If it is the case, then one can choose such a so that a %ﬂlv, 21=c1,20=c, dOES
not vanish for any ¢y, c; € k*. We put ryyw = aR™|,,—,,—1.

For example, R}”;;V is rationally renormalizable, which is obvious from the formula
(4.2.4). Then for any simple V,W € Cz(e), Ry} is rationally renormalizable thanks to

the following lemma.

Lemma 4.2.12 (cf. [60, Propositions 2.11 and 2.12|). For U(e)-modules V' and W, Ri{Ay

18 rationally renormalizable in any one of the following cases:

(1) V (resp. W) is a subquotient of Vi (resp. Wo) and R{EYy, (resp. Ry, ) is rationally

renormalizable,

(2) V=Vi®V; (resp. W = W1 @ Wy) and both Ry, and Ry, (resp. Rifyy, and

univ

Vi, ) are rationally renormalizable.

As in Section 2.2.2, we want to prove that the image of the composition of ryy is
simple unless it vanishes. We first consider the case of two modules.

Theorem 4.2.13. Suppose that irreducible VW € C(€) are such that R“‘/“{}’, “}{/“‘YV and

univ

v are rationally renormalizable with
ryy € kxidv®2 or rww € kxidw®2.

Then the image of rv,w is trreducible, and isomorphic to the head of V@ W and the socle
of W®V.
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Proof. For reader’s convenience, we present the proof following [53]. We assume ry €
k*idy ez, for the proof for the other case being symmetric.

Take a nonzero submodule S of W ® V. Since Ryfjy and Ry, are rationally renor-
malizable, there exist a,b € k((21/22))* such that

univ univ

I.V,VV =a VW [21=22=1; rVV,W = b W, W lz1=22=1"

Then we also obtain
Clb unlv . Saff & Waff — Waff & Saffa

and the following diagram

abRuniv
S,W R
Saff ® Waff ” aff & Saff

J: ldW®aRunlv Run"x/(@ldv J:

Wag ® Vagg @ Wag ———— Wag @ Wag @ Vg ———— Wag @ Wag @ Vagr.

which is commutative by (4.2.2), (4.2.3). As we specialize at 1, we obtain

AbREY |2y =20 =1

SW ’ > WS

| |

idw Qry. w

WoVeW Y oW oV —Wevey .y o w oV

where we use the assumption ryw € k*idye2. Consequently we derive S @ W C W ®
rV1W(S ).

Now we can find a submodule K of V such that S C W ® K and K @ W C ry,3,,(S5)
[53, Lemma 3.10]. Since S is nonzero, so is K, which also implies S = V. But then
VoW C I“_/’IW(S) and so the image of ry s is contained in S. Since we have taken S
arbitrarily, this means that imryy  is the unique simple submodule of W ® V, in other

words its simple socle. O
By an induction on the number of tensor factors, we obtain the following corollary.
Corollary 4.2.14. Suppose that irreducible Vy,...,V, € C(€) are given such thatl such
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that R?,m“}j is rationally renormalizable with rv, v, € kide2 for any 1 <i,5 <t. Let
r:Vi® -V, —Ve -V

be the composition of vy, v, associated with a reduced expression of the longest element of

S;. Then the image of r is irreducible unless it is zero.

univ

Im is rationally

Now let us specialize to fundamental representations. As explained, R

renormalizable by taking a renormalization

I‘l,m(Zl/Zz) = dl,m(21/22) ?%m,

where
min{l,m}

() = [ (z—d*m2+2) (1.2.5)
k=1

is called the denominator of the normalized R-matrix. Note that if ¢;/cy € k* is not a

zero of d; ,,(z), then we can specialize the normalized R-matrix itself to obtain
Rimye(cr, c2) =Ry (er/c2) : Wie(e1) @ Wane(c2) — Wine(c2) ® Wie(cr),

which is just a scalar multiple of r;,,(c1/cs). In particular, they have the same image.
Therefore, from the above corollary, we obtain the following fusion construction for U(e)-

modules.
Corollary 4.2.15. Supposel = (I1,...,1l;) € (Zso)t and c = (c1, ..., ¢;) € (kKX)" are given
such that c;/c; is not a zero of dy, 1 (z/z;) for any i < j. Let

Rlﬁ(c) : Wll,e(cl) Q- Wlt,e(ct) — Wlt,e(ct) X ® Wll,e(cl> (426>

be the composition of specializations Rzolrjm(ci/cj) associated with a reduced expression of

the longest element of &,. Then the image of Ry.(c) is irreducible unless it is zero.
Let P (resp. P, ) be the set of pairs (I, ¢) such that

() L= (ly,....l;) € (Zso) and ¢ = (cy, ..., ¢;) € (kX) (vesp. ¢; € "2 for all 4) for

some t > 1,
(2) for any i < j, ¢;/c; is not a zero of dy, ;;(2i/2;).
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For (I,¢) € P*, we can define R (c) as above, and we set

e W.(l,c) : the image of R;(c),

o PH(e)={(l,e) € PT|W.(,c) # 0}, and similarly P; ().
Here we understand W, (I, ¢) = W, (c1) when ¢t = 1. Note that W,(l,c) € C="(¢), for
W(l, ¢) being a quotient of

Wll,e(cl) K- W[hg(ct) c Czli(e).

In the next subsection, we will see that every irreducible module in the category Cz(e) is
indeed obtained by the fusion construction.

Finally, we record here an important property that follows by a similar argument with
the proof of Theorem 4.2.13.

Proposition 4.2.16. Forl,m > 1 and x,y € k*, we have
Homu(e) (WLE(ZL‘) (%9 mee(y), Wm75(y) X W176($)) =k- rhm(x/y).

Proof. The argument of [54, Proposition 3.2.9], which is for modules over quiver Hecke

algebras, applies to our case as well. O

4.2.4 Generalized quantum affine Schur-Weyl duality

Next, we analyze the structure of the monoidal category Cz(€) using the generalized
quantum affine Schur-Weyl duality functor [51]. Since such a functor is defined on the
poles of normalized R-matrices of a given family of representations, the construction is
uniform for any €, including the non-super cases €y, €o|n-

Let R(B) be the quiver Hecke algebra of type A, introduced in Section 2.3.2. Recall
that R(() is defined by the data

Pij(%?)) = (U - U)éi“‘j, Qij(u>v) = ‘5@ # j)ﬂj(“ﬁ)ﬂi(%“)
fori,5 € J =1Z.

Define X : J — kX by X (i) = ¢~%, so that X(i)/X(j) = ¢ 27 is a zero of the

denominator d; ;(z) = z — ¢* if and only if j =i+ 1.

62 :l_ﬂ-l _'\-\.I:_'I'!



CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

Fix £ > 0 and let Xi,..., X, be indeterminates. For v = (vy,...,v,) € J¢, put

O, =k[X; —X(n),...,Xe — X(v)],

the completion of the localization of k[X;,..., X, at X; = X(v;) (i = 1,...,¢). We also
take its field of fractions K, of @,. Note that for f € k(Xy,...,X,) that is regular at

X; = X(v;) for all i, we may expand f formally to regard f € Q,.
For 5 € N[J] with ht(3) = ¢, we define associative k-algebras

Op = @ Ope(v), Kg= @ K,e(v)

veJh veJh

whose multiplications are given so that e(v)’s are orthogonal central idempotent elements.

For V i= Wi )ar, V® can be regarded as a k[X{", ..., X;!] ® U(e)-module where

X, corresponds to the action of z on the ¢-th component. We define

~~~~~~~~~~~~~~

regarding Vgﬁ as a subspace of Vﬂfﬁ .

Let 7,,, be the endomorphism on Vi&” induced from RIT™ on the m-th and (m +1)-st

component on V&, that is,

7777777777777

forve J? feK,and v ®- - ®@v, € V®. Since RIT™ is U(e)-linear, so is r,,,. Then it

can be proved that there exists a right R(f)-module structure on VH?’B given by
e(v) = projection onto K,e(v) @+ XE1 Vet c v,
e(v)zy, = e(v) X (1)~ (Xi — X (1),

ewrm =1 (5ks) i v =

e(y)rmPVm7V7n+l (xm‘i’l? xm) lf Vm 7£ Vm+17

e(V)Tm =

which is compatible with the left ¢(¢)-action.
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Proposition 4.2.17. For 8 € N[J|, VE? is invariant under the R(B)-action.

Proof. Since the spectral decomposition (4.2.4) coincides with the one for the case € = €y,

the argument in [51, Theorem 3.3| works equally well. O

Consequently, we obtain a (U(e), R(3))-bimodule V¥ and a functor
Fep: M — VS’ @pey M

taking a left R(5)-module M to produce a U(e)-module F, g(M). We also put

Jre,ﬁz @fﬁ,ﬂa fEZ@Fe,K-

ht(8)=¢ £>0

Theorem 4.2.18 (c¢f. [51, Theorems 3.4, 3.8]). The functor F.p is exact and induces
Fer: R(0)-gmod — C'(¢), F.: R-gmod — C(e).

Moreover, the functor F. is monoidal.

We shall describe the image of simple R-modules under F.. Considering the results in

Section 2.3.2, we first do for the one-dimensional R-modules L(a,b).

Proposition 4.2.19 (c¢f. [51, Proposition 4.9]). For a segment (a,b) of length ¢, we have
Fe(L(a,b)) = W€,6(q_a_b)'

Proof. By |51, Proposition 3.5, it holds when a = b. Then we use induction on ¢ as
in the proof of [51, Proposition 4.9]. Namely, we apply F. to the exact sequence in
Proposition 2.3.5(3) with ¢’ = a = b, ¥ = b — 1. Then the middle map is a nonzero

multiple of Rl’éfl(qff) by Proposition 4.2.16. Comparing it with the exact sequence in

Lemma 4.2.6, we obtain the conclusion. O]

Next, we prove that F. maps renormalized R-matrices to normalized R-matrices.

Lemma 4.2.20. Suppose that (a,b), (a',0') are segments of lengths ¢, {' respectively, such
that (a,b) > (a/,b'). Then for c = ¢ %" and ¢ = ¢, ¢/c is not a zero of dyu(2).

Moreover, the map
Fe(rL(a,b),L(a/,b/)) . WZ,e(C) & WZ’,G(C/> — WZ/,E<C/) & Wﬁ,e(c)
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is equal to a monzero constant multiple of Ry9™(c/c) unless

ad<a<b<b M=1and N<bV —a+1.

Proof. As (a,b) > (a/,V'), we have ¢’/ + 0 —a — b < ¢’ — {, and then the first assertion

follows from the denominator formula
doo(2) = (2 — ") (z = ¢72) o (2 = ¢0F2).

For the second one, it suffices to prove that F(rp(p) L)) is nonzero except in the

prescribed case since
Homu(e) (WZ,E(C) & Wz/ﬁ(C/), W[/’E(C/) & We}e(c)) =k- Z%fm(c/cl)

from Proposition 4.2.16.
According to Proposition 2.3.5, r = rz(a4),(a’,p) 1S DOt an isomorphism if and only if

either @/ < a <V <bora="b+1. In those cases, we have the following exact sequence

0 —— Wi o(@ ) @ Weyo(q7"Y) ——— Wi(c) @ We () )

Fe(r) , /
[—> WZ/75<C,) (024 Wg,e(c> _ Wehe(q—a —b) ® WZZ’E(q_a_b ) 0

by applying F. to the exact sequences in Proposition 2.3.5(2),(3), where ¢; = b—a' + 1
and ¢, =V —a+ 1. Then F.(r) =0 if and only if

dim (wgl,€(q-a’—b) ® WZQ,E@—@—’)’)) = dim (Wy.(¢) @ Weo(c))

or equivalently, the classical decompositions of Wy, ((¢=* %) @ Wi, (¢7*") and Wy (¢) ®
Wy (') coincide. From (3.2.2), this happens exactly when ¢’ < a < b < b, M =1 and
N <V —a-+1. O

Hence, we obtain a super analogue of [51, Theorem 4.11].

Theorem 4.2.21. Let ((a1,b1),. .., (as, b)) be an ordered multisegment with €, = by —ay+
1 and £ =Y Uy, and L the corresponding irreducible R’ (£)-module. If N = |{ile; = 1}| >
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U for allk =1,...,t, then Wc(l, ¢) is nonzero and
F (L) =W, c)

fO’l“l = (61, . 7&) and c = (C]—a1—b17 o ’q—(lt—bt>'

Proof. Since F. is exact, everything follows once we check that F(rr(a,s).L(a;0;)) 18
nonzero for every ¢ < j. That condition is ensured by the assumption N > ¢, for all
k. Indeed, as a; < a; < b; < b; implies b; —a; +1 < b; —a; +1 ={; < N, the exception

in Lemma 4.2.20 cannot happen. [

In particular, F. sends simple R-modules to simple U(e)-modules or zero. Together
with the classification of simple R-modules (Proposition 2.3.4), this allows us to find all
the irreducible objects in Cz(e).

Theorem 4.2.22. For any irreducible V € Cyz(e), there exists (I,¢) € Pj(€) such that
V=W.(,c).

Proof. By definition of Cz(e) and Lemma 4.2.6, V' is a composition factor of W (¢~%') ®
< @W (¢~ %) for some jy, . .., j; € Z. Then Theorem 4.2.21 implies that V is isomorphic
to F.(M) for some composition factor M of L(j;)o---0o L(js). Such M can be obtained

as the image of

" : L(ay,by) o---o L(ag, by) — L(as,by) oo L(ay, by)

2

for some ordered multisegment ((ay,b;),. .., (at, b)) by Proposition 2.3.4. Thus, F.(M)
W(l, c) for

Il = (bl —a; + 1, .. .,bt — ay + 1)7 c = (q—a1—b17 o 7q_at_bt>’

and clearly (I, ¢) € Pyz(e). O

4.3 Super duality

So far, we have reproduced several important constructions in the representation theory
of quantum affine algebras, for U(¢) in a uniform manner. In this section, we establish

a concrete connection between C(e) and C(€’) for € < e. As we can choose € = ¢y as
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well, this includes a connection to the module category of quantum affine algebras, and

eventually explains the uniformity observed.

4.3.1 Truncation

Given € € &,, let € = (€},...,€,_,) be the sequence obtained by removing the i-th entry

y *n—1

¢; from e. Let I' ={1,...,n — 1} which is Z/2Z-graded by ¢, I' ={0,1,...n — 2} and

P =P zs;,

Jer
the weight lattice for U(¢').
Theorem 4.3.1 ([77, Theorem 4.3|). There exists a k-algebra map ¢, : U(€') — U(e)
defined on the generators e}, fi (j € I') and ks, (1 €1') of U(€') by

ks,  ifl1<i<i—1

]{352 —
ks, ifi<l<n-—1,

Case 1. If 2 <i<n—1, then

(€5, f7) ifj=0,1,...,i—2
<€;’ fJ/) — Qei—l’ ei]Cl(Oéi—hOéi)? Lfi, fi—l]q(aiﬂ,ai)_l) ifj=i—1
(€j+15 fi+1) ifj=1d,...,n—2,
Case 2. If i =n, then
(ej, f7) if j #0

(€}, f;) — o
({enfla eO}q(an,hcxo)a [an fnfl]q(an_l,ao)—l) ij = O,

Case 3. If i =1, then

([en—h €o]q(an,1,ao), [f07 fn—l]q(an,l,ao)*l) Zf] =0

(€5, f3) —
(€5, f5) if 7 #0.
More generally, if € = (¢],...,€,_,) is obtained from € by removing €;,, .. ., ¢, for some
iy < -+ < i, we define a k-algebra homomorphism ¢ : U(e') — U(e) as a successive

67 #:x_"i _k;: T



CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

composition of the above algebra homomorphism®.
Now for V' € C(e), let

S, (V) = ) V,.

(18sy ) =--=(nldi,.)=0

Proposition 4.3.2 ([77, Proposition 4.4]). The following properties hold.

(1) The subspace t5 (V) of V is closed under the U(€')-action induced by ¢S, and hence

a U(€')-module contained in the category C(€').
(2) As a U(€')-module, we have te5,(V @ W) = t5,(V) @ t&,(W).

For any U(e)-linear map f : V. — W for V, W € C(¢), the restriction of f on the
subspaces

is a well-defined U(¢’)-module homomorphism. Therefore, we obtain a monoidal functor

tr,, which can be easily seen to be exact as well.

Definition 4.3.3. The exact monoidal functor
teS, : C(e) — C(€)

is called a truncation.

We obtain a functor < : C(¢) — C(€') in the same manner, also called a truncation.
Not only being exact and monoidal, truncations also preserve the ingredients we have
used for the study of C(e).

Proposition 4.3.4 (|77, Propositions 4.5, 4.6]). For € <€, let M’ and N’ be the numbers
of 0°s and 1's in € respectively.

(1) For \ € c@]\4“\/,
Vel()\) ’Lf)\ € @M’\N/

0 otherwise.

1A different ordering of €;,,. .., ¢, affects ¢¢, only by conjugations by 7; in Proposition 3.1.3.
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(2) Forl € Zsy and x € k*,

leel ([E) Zf (l) S yMﬂN’

s (Wie(x)) =
0 otherwise.

In particular, truncations are well-defined between subcategories Cz(¢) and Cz(¢').

Lemma 4.3.5. For € < ¢, we have

@« ( norm(Z)) —_ norm (Z)

e l,m,e I,m,e’

Proof. Follows from the uniqueness of normalized R-matrices. [

In particular, truncations preserve the specializations R ) (7,y) = Ripme(z/y).

Putting it all together, we conclude that truncations respect the fusion construction.
Theorem 4.3.6. For ¢ < e and (I,¢) € P*(e), we have
tes, We(l,e)) = Wa (1, c).
Moreover, since the bimodule Vgﬂ in Section 4.2.4 is a scalar extension of a tensor
product of (W ¢)as, it is compatible with the truncation, and so is the duality functor F..
Lemma 4.3.7. For € < e, there exists a natural isomorphism &, o F. = For.

Those two compatibilities indicate that truncations correctly relates C(e) and C(¢),
which explain the uniformity of constructions in €. In the next subsection, we will prove
that t¢ is indeed a (partial) equivalence, by establishing a similar claim for the duality
functor F..

To illustrate how truncation functors work, let us consider two applications. First,
we shall prove the stability in e of the classical decomposition of an irreducible module
We(l, c). Let m&l’c)(e) denote the composition multiplicity of V.(\) in W.(I, ¢) as a U(e)-
module, for A € Py n.

Theorem 4.3.8. For (I,¢) € Pt and a partition \, there exists m® ¢ Z>o such that
(1) mg\l’c) =0 = mE\l’c)(e) =0 for all e,

(2) mf\l’c) #0 = mE\l’c)(e) = m&hc) whenever m/\l’c)(e) # 0.
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Proof. By Proposition 4.3.4(1), if there exists an ¢ € & such that mf\l’c)(e) # 0, then
m&l’c)(e) = mg\l’c)(e’) for any € > e. If there are €, ¢ with mE\l’c)(e), mf\l’c)(e’) # 0, then by

taking € > €, €, again we get

mi (e) = my (") = m{ ().
Hence the composition multiplicity mg\l’c) (€) stabilizes to a nonnegative integer mE\l’c), as
e> 0. O

In particular, to compute the character of W, (I, ¢) is equivalent to do the corresponding
irreducible representation of U; (;[n), for large enough n.

Next, a similar argument proves the spectral decomposition (4.2.4) of Rji™(z), as we
now explain. We first clarify the normalization of the projection Ptl’m. Fix e € £ and

l,m € Zxo. Take " = (€],...,€,) > e such that for € = egn», we have

Wl,e”(l‘) ® Wm,e” (y) = @ ‘/6”(([ +m—t, t))’
0<t<min{l,m}

WZ,E’(m) ® Wm,e’(y) = @ Ve'((l +m —t, t)),

0<t<min{l,m}

over U(e") and U(€'), respectively. That is, we may choose €’ with many 1’s, so that
Ho(l,m) ={0,1,...,min{l,m}}.
Take a highest weight vector v'(I,m,t) of Vo ((I +m — t,t)) in Wi o(x) @ Wie(y)

uniquely determined by the condition

U/(l, m,t) c Elﬁ/ ® Em,e%
v'(l,m,t) = |€1 +--teteu o+ el+m—t> X |61 + -+ em> (modq_lﬁz,a X £m7e/)

where £, is a lower crystal lattice of W, spanned by |m) over A5, Define similarly
v'(m, 1, t).
Recall that by definition of truncation, we may regard

Va((L4+m—t,8)) = & Var (L +m — £,8)) C Vaur((L+m — 1, 1)),

SHere, A, denotes the subring of Q(q) consisting of rational functions regular at ¢ = oco.
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and then we define a U(€”)-lincar map
,P?m  Wier(2) @ Win,en (y) — Waner (y) @ Wier (2)
to be the unique map that maps v'(l,m,t') to d;pv'(m, [, t). Again regarding

Vi((l+m—t1) CVa((l+m—t1t) (teH(,m)),
Wie(®) @ Wine(y) C Wier(2) @ Winen (y),

we obtain the desired projection
,P?m i Wie(2) @ Wine(y) — Wine(y) @ Wie(2)

by restriction. Note that Ptl’m does not depend on the choice of ¢’ and z,y € k*.

Proof of Theorem 4.2.10. Given l,m € Z>q and €, we fix € and € as above. Write

e = Y )P

teHe(l,m)

for e = ¢, ¢ or €, where Ptl’m denotes the projection accordingly. Recall from (2.2.1) that

the spectral decomposition for ¢ = €g~ is known to be
|

min{l,m} 5 gm2i2

q
pt,e’(z) = H 1 — ql+m72i+2z'
i=t+1

Since t¢ (Rrom,) = R, and ¢ (PF™) = PP™ for all ¢ = 0,...,min{l,m} by our

17 /
I,m,e l,m,e

choice of €’, we obtain

Pt.e (Z) = Pt (2)

Now that
" Plﬂn lftEH l,m
w'(pim) = 4 7 A
0 otherwise,
we truncate to e the spectral decomposition of Ry to conclude the proof. O
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4.3.2 Equivalence of duality functors
The main result of this subsection is the following equivalence.

Theorem 4.3.9. For { < n, we have an equivalence of categories
F.o: R7(£)-mody — Ch(e).
Together with Lemma 4.3.7, we understand that for given ¢, the truncation
e, : Ch(e) — Ch()

is an equivalence whenever the length of € is larger than ¢. Therefore, if € is infinite, the
whole functor tv : Cz(¢) — Cz(¢') should be an equivalence of monoidal categories. We
will deal with the infinite rank issue in the next subsection.

To prove the theorem, we first identify the quiver Hecke algebra R(¢) with the affine
Hecke algebra after completion. There is a well-known Schur—Weyl-type duality between
affine Hecke algebras and quantum affine algebras of type A, and we establish its super
analogues by adapting the approach of [17]. Then the desired equivalence is obtained by
lifting this duality to quiver Hecke side.

Let us first recall the definition of the affine Hecke algebra.

Definition 4.3.10. For ¢ > 2, the affine Hecke algebra Hi%(q?) is the k-algebra generated
by X' (1 <k </{) and h,, (1 <m < {— 1) subject to the following relations:

PPt Pon = g1 honPoms 1, hanho = B ha (|m — m/| > 1),
(hm = ¢*) (e + 1) = 0,
XpXp = Xp Xy, X0 X '=X'X, =1,
PonXnhm = P Xty P Xe = Xphm  (k #m,m + 1).

We also put H3(¢?) =k and H(¢?) = k[X*!].
The finite Hecke algebra Hy(q?) is the subalgebra generated by h,, (1 <m < £ —1).

Since the braid relation holds between h,,, it is well-known that one can define h,,
for w € &, without ambiguity by choosing any reduced expression w = s;,s;, - - - s;, and

setting hy, = hy, - - hy,. Moreover, { X" - X" hy}a,ez.0wes, (tesp. {hw}uwes,) is a basis
of Hi(¢?) (resp. Hy(g?).
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Next, we consider completions of H3(q?). Set (see Section 4.2.4 for notations)

.......

KHM () = Ky @0, OH (7).

They are associative k-algebras by

(@° = DX (fe(v) = sm(f)e(sm(v))
Xm+1 - Xm

hmfe(v) = sm(f)e(sm(v))hm +

for fe(v) € K,.
Introduce intertwining elements ®,, € KH(¢?) (m =1,...,¢ — 1) defined by

(q2 B 1)Xm+1

D, =Ny — .
Xm+1 - Xm

As the name suggests, ®,, satisfies the following properties which can be checked by

straightforward but cumbersome computations:

Py f(Xony Xing1)e(v) = f( X1, Xin)e(sm (V) P,
¢, 0, =D,,P, (lm—m|>1),
Q1 Pr11Pm = Pt 1 P Pt
~ X1 — X ) Xon = X1
Xm — Xt X1 — X

e(v),

for f(Xm, Xms1) € k(Xon, Xony1). Let us normalize ®,, to

Y Xm - Xm+1

o, = o

Xm+1 - QQXm "
so that ®2, = 1.
Now let
RI(0) =k [x1,. .. 2] ufer..) BT (0)

-----

be a completion of R’(¢), with the naturally extended multiplication.
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Theorem 4.3.11 (|11,88]). There is a k-algebra isomorphism
U R (0) — OH(¢?)
defined by

Ule(v)) = e(v),
U(e(v)ar) = e(v) X (ve) (X5 — X (i),

)

)X (

() (@ — 1) (XX (1) ' = Xopsr X Un)™D) ™ if Vi1 = Vi

U(e(v)mm) = 6(7/)(1)771 (XmX(Vm)il - m+1X(Vm+1)71) if U1 = Um + 1
(

()P, otherwise.

Let Hf(¢?)-mod; denote the category of finite-dimensional H(¢?)-modules such
that the eigenvalues of Xj (1 <k < /) lies in the set {X(j) = ¢¥},.;, = ¢**. Our choice

of a completion implies an equivalence
H(¢*)-mod; ~ OH (¢*)-mod

where the right hand side denotes the category of finite-dimensional @ H¢ (¢%)-modules on
which e(v) acts as the projection to the simultaneous generalized eigenspace corresponding
to v.

Similarly, the category R’(¢)-mody of (not necessarily graded) finite-dimensional R’ (¢)-
modules on which 2, acts nilpotently is equivalent to the category R’ (£)-mod of (not nec-
essarily graded) finite-dimensional R’ (¢)-modules.

To sum up, the algebra isomorphism ¥ induces an equivalence
OH}™(¢*)-mod ~ ]%J(ﬁ)-mod

and hence we obtain
U* - H(¢?)-mod; — R (¢)-mod.

We shall use this equivalence to identify F. with another duality functor arising from
affine Hecke algebras, which we now explain.

Recall that the functor F., is given by the tensor product with the (U(e), R7(¢))-
bimodule V¥ = Oy Ry, x V& where V& =W, (X)) @ - W) (X,) for indeter-

-----

T 1 . I
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minates X1, ..., X,. The application of the normalized R-matrix on m-th and (m + 1)-st

factors gives rise to the linear map

Ryt VO — k( X, Xing1) Ozt x+

m—+1
Then one can prove the following lemma by verifying the defining relations of H2f(q?).

Lemma 4.3.12. The U(¢)-module V® carries a right H (¢*)-module structure given by

(f @)Xy = (Xif) @,

X1 — X (¢*> — 1)Xm+1>
Qv)hy, = RU)| —————Rn+ —
(f ) (f ) < Xm o 1 Xm+1 _ Xm

for fUeV® 1<k<landl<m</l—1.
Consequently we obtain a (U(e), OH}¥(¢?))-bimodule V** and the functor
e H?H(q2)—modj — C%(e)

M — V{S@@ ®@H?H(q2) M

Comparing the above formulas, this QH2(¢?)-action is compatible under ¥ with the
R’ (¢)-module structure given in Section 4.2.4. Therefore, we arrive at a natural isomor-
phism

£ 3 ~ *
el — E,ZO‘II )

and then Theorem 4.3.9 follows immediately from the following super analogue of [17].
Since its proof is rather technical and irrelevant to our discussion, we put it in a separate
Section 6.1.2.

Theorem 4.3.13. For ¢ < n, the functor

e H?H(qg)-modj — Cé(e)

M — V5" ®oma) M

s an equivalence of categories.

Corollary 4.3.14. Let € = (e1,...,€,) and its subsequence € = (€},...,€,,) be given. If

75 -":I'H._-ﬂ: O



CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

n' > {, then the truncation induces an equivalence of categories
S, 1 Che) — CL(€).

As an application, we obtain short exact sequences called T'-system, for generalized
quantum groups. For r, s € Z>o and c € k*, define the Kirillov-Reshetikhin type module

Wr#(c) = W.(I,¢) where l=(r,...,r) € (Z=0)%, ¢ = (g 2"V ... cq 2 ¢).

When € is homogeneous, W!*(c¢) recovers the usual Kirillov—Reshetikhin module for quan-
tum affine algebras of type A" (see Remark 4.3.16 below). In particular, W"*(c) =

n—1

V.((s7)) as a U(e)-module unless (s) ¢ Pun, in which case W!**(c) = 0.

Proposition 4.3.15. There exists a short exact sequence

0 — W (e) @ Wi eg™?) — Wir() @ Wi(eq™®) — @ Wi(eq™!) — 0.

r’'=r+tl

for any r,s € Z>y and c € k*.

Proof. Since the result for arbitrary ¢ can be obtained by the shift of spectral parameter,
we may take ¢ = ¢"~! so that the whole sequence belongs to the subcategory C2"*(e).

In case of € = ¢, the existence of such a short sequence is well-known under the
name of T-system [37,68,82]. For general ¢, take € such that ¢ > € and the number N’
of I’s in ¢’ is larger than 2rs.

/

C%rs (6/) .

7 €
tef ‘o|N’
~

C3*(e) C3*(eoinv)

The choice of € together with Corollary 4.3.14 implies that ttE;I
that we can lift the T-system in C7°(egn7) to C;*(€¢'). Since te is exact, applying it to the

is an equivalence, so

N/

lifted sequence in C}*(¢’) gives us the desired exact sequence by Theorem 4.3.6. ]

Remark 4.3.16. The Kirillov—Reshetikhin module Wf;) associated with r € {1,...,n—
1} and s € Zs; over the quantum affine algebra Ué(s?[n) is defined to be the finite-

3 y j §
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dimensional irreducible module whose Drinfeld polynomial (P;(u));=1. . -1 is given by

.....

Il (1 —ag®2u) ifi=r
q if o # .

Bi(u) =

Then for r < n, Wy, (c) corresponds to Wl(z) [84, Remark 3.3] for a = —o(r)(—q) "¢,
where ~: k — k is an automorphism induced from ¢ = —¢~! and o : I\ {0} — {£1} is

chosen such that o(i) = —o(j) whenever a;; # 0. Hence, W!**(¢) corresponds to Ws(j;)qQ,QS.

It is known that KR modules of quantum affine algebras possess a number of nice
properties, most notably the existence of crystal bases [86] and the T-system. The T-
system, a family of short exact sequences, is now understood as an exchange relation
in the theory of cluster algebras, and hence KR modules are a starting point towards
a monoidal categorification of cluster algebras [41,60,62]. We expect that KR modules
for quantum affine superalgebra play a similarly important role (e.g. see [75] for crystals

when € = epn).

4.3.3 Inverse limit category

We interpret the infinite rank limit involved in super duality as the inverse limit of cate-
gories. In this section, we construct inverse limits of C(e) and record general properties,
following the exposition of [31].

For the remaining of this chapter, we fix €° = (¢);>1 = (€1, €2,...), with infinitely
many 0’s and 1’s for convenience. Take an ascending chain (¢*)),5; of subsequences of
€@ such that €® = lim, ¢® and ¢* € & for all k.

Definition 4.3.17. Define the inverse limit category

C(e*) = lim C(e®)
to be the category whose

(1) objects are pairs V = ((Vi)k>1, (fx)r>1) such that

Ve €C(eM),  fo: ' (Vi) — Vi (k>1)
where ttf ™! = ttii;rl) and fj, is a U(e®)-module isomorphism;

3 " § o
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(2) morphisms from V = ((Vi), (fx)) to W = ((Wx), (gx)) are sequences ¢ = (¢ )x>1 of
S HOmu(e(k))(Vk, W) which make the following diagram commute for all &k

W) — 1

ey P (frgr) Pk

f‘C£+1 (Wk—l—l) # W..

For each k£ > 1, we associate a functor
tr, - C(e°) — C(e™)

given by tv, (V) = Vi and tei(¢) = ¢, for an object V.= ((Vi), (fx)) and a morphism
¢ = (¢r).

The inverse limit category is an abelian category with a monoidal structure given by
VoW = ((Vie @ Wi)is1, (fk @ gr)r>1)

where V = ((Vi), (fx)) and W = ((Wy), (gx)), and tr is exact. The following property

also follows from standard arguments.

Lemma 4.3.18. Given a category C with a family of functors (Fj, : C — C(¢®)))3>
such that ttZ“ o0 Fyi1 = Fy, for all k > 1, there exists a functor

F=limF, : C — C(e)

such that tv, o F = Fy, for all k > 1. Moreover, F' is exact if every Fj, is exact. If C is a

monotidal category and every Fy is monoidal, then so is F.

Remark 4.3.19. If we take another ascending chain (¢*));>; for € and construct the
inverse limit category C(e>) = @C(?k)), then we have an equivalence of categories

C(e®) ~ C (¢). Indeed, given any finite subsequence ¢ of €, we can find €*) > € so that

(k)

¢ o trg, which does not depend on the choice of k.

we can define a truncation tr. = tt

Then these truncations are assembled to a functor C(e*°) — C(e*°) by Lemma 4.3.18, and
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vice versa. Therefore, the category C(e*) is independent of the choice of an ascending
chain (¢®) and the requirement ¢*) € £ does not affect C(e) at all.

As observed in Section 4.3.1, fundamental representations, normalized R-matrices and

their specializations are compatible with truncations. Hence we may take an object

Wieo(x) = (W0 (@))iz1, (fr)rz1) € C(€%)

for | € Z>p and x € k*, and a morphism
R(ll,lz),ew(clucQ) = (3(11712),6(@ (01762))k21 : Wl1,e°°<cl)®wl2,e°°<c2> — ng,eoo(02)®Wll,eoo (c1)

for ¢1,co € k* such that dj, 4,(c1/ca) # 0.
For (I,¢) € P*, we also put

We(l,¢) = imRy < (€) = Wyaw (€)), ., € C(e),

k>1

where R .~(c) is the composition of R, ;)= (¢, ¢;) as in the finite rank cases. Observe
that We=(l, ¢) is nonzero for any (I,¢) € P*. Indeed, if we take a large enough & so that
l; < Ny for all i, then ttng;VkWG(m (I,c) = We,y (Le) # 0, and so W) (1, ¢) # 0 for all
k' > k. Then the simplicity of We (I, €) is immediate from the following easy lemma.

Lemma 4.3.20. An object V € C(e*) is simple if it is nonzero and for all k, t;V is

simple or zero.

Proof. Let U be a nonzero subobject of V, with tr,U regarded as a submodule of tt,V for
all k. For minimal &y such that tv,, U # 0, we have tr,U = tt;V for all £ > ky due to the
irreducibility of tv,V. But then

e, U = ttiottkOU = ttiottkOV =,V

for all &k < kg as well. O
Proposition 4.3.21. For (I,¢) € P, W.=(l,¢) is a simple object in C(e).

We can also define the inverse limit C(e) of C(¢®™), in which category the analogue

of Lemma 4.3.20 holds with the same proof. Namely, we have simple objects

Voo ) = ((Vawr (V). ()

T 1 . I
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for A € &2, where V ) () is understood to be zero if A ¢ Py, |n,. Applying Lemma 4.3.18
to forgetful functors, we may regard W.(l, ¢) as an object in C(e). Then we obtain the

following classical decomposition of simple objects in C(e*).

Proposition 4.3.22. For (I,¢) € PT, We(l, ¢) is a semisimple object in C(e®) and

(T,0)
Wes (1, ) @‘/eoo A)Em
AP

where mg\l’c) 15 the multiplicity in Theorem 4.3.8.

Remark 4.3.23. In the formalism of super duality for classical Lie superalgebras, the
inverse limit of module categories can be understood as a module category of infinite rank
Lie superalgebras. We expect that our limit C(e>) is also closely related to certain module

category of infinite rank quantum affine algebra Uq(;[oo) (e.g. [38]).

Definition 4.3.24. (1) Cz(e*) is the full subcategory of C(e>) consisting of V = (V},)
such that V;, € Cz(e®®) for all k and the composition length of Vj stabilizes for
sufficiently large k.

(2) For £ € Zso, C5(e®) is defined to be the full subcategory of Cz(e*) consisting of
V = (Vi) with V; € C5(e®) for all k.

Note that a finite length condition is imposed in the definition of Cz(¢*), and so it is

not exactly the inverse limit of the categories Cz(¢®). Still, we have the following result.
Proposition 4.3.25. (1) We have Cz(¢>) = @520 CL(e>).

(2) For { € Zso, we have Ch(e LCE , the inverse limit category associated
with {C4(®)}1>1 defined as in Definition 4 3’ 17.

Proof. (1) We prove that any V = (V;) € Cz(€*) is a direct sum of objects from C5(>)
for finitely many ¢. Write Vi, = @@, V}{ for Vif € CY(¢). If we set £, = max{¢|V}{ # 0}, then
the sequence (£)r>1 is bounded above. Otherwise, £(V;) grows indefinitely as tef V,* =
Vi 0, which is impossible by definition of Cz(¢>). Hence we have V = @D, V for
sufficiently large n, where V¢ = (V)i>1 € C5(e>). B

(2) The inverse limit A = 1'&16’%(6("“)), clearly contains C5 () as a subcategory. Take
V = (Vi) € A, and let us check that the composition length ¢(V}) of V} is stabilized for
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large k. Recall from Theorem 4.2.22 that the simple objects in C4(¢*)) are of the form
W (L, e) for (I,¢) € P (e®) with £ = 2 1;. Moreover, as a U(e®))-module, W (1, ¢)
is a direct sum of V,u ()\) for partitions A of £. But if the number of 0’s in ¢ exceed
¢, then every partition A of ¢ are in &, and V.4 () is nonzero. Thus the composition
length of V) as a U (")-module is stabilized once ¢*) has at least ¢ 0’s, and then so is
0(Vy). O

Remark 4.3.26. Recall that we know all the simple objects in the category C(¢®))
(Theorem 4.2.22), from which it also follows that ttf" sends simples to simples or zero.
Using a criterion [31, Lemma 4.1.5] for simplicity of objects in inverse limit categories and
the parametrization [16, 58| (see Section 2.2.2) of finite-dimensional irreducible represen-
tations of U, (;[n) (see also [33] for U ;(é\[n)), we obtain a complete classification of simple
objects in Cz(e>*). Namely, they are of the form W.=(l,¢) for (I,¢) € P;, and the pair

(1, ¢) is uniquely determined up to permutation.

4.3.4 Super duality

Finally, we are ready to establish the super duality. By Lemma 4.3.18, replacing C(e>)

with Cf(e>), the duality functors (F,u ¢)r>1 now induce exact functors

Feo g+ R(0)-mody — C(€>),
Froo = @fé}()j : R-mody — Cz (%),

>0

where F.~ is monoidal in addition. The following result, which follows from a general

property of inverse limit categories, is the final step.

Proposition 4.3.27. The functor Fe=, is an equivalence of categories, and so Feo s a

monoidal equivalence.

Proof. Recall that for sufficiently large k, F.x , and tej™ : C(e®+1)) — CH(eW) are
equivalences by Theorem 4.3.9 and Corollary 4.3.14, respectively. The latter one also
implies that try, : C5(e*V) — C5(¢™) is an equivalence for large k, by [31, Lemma 3.1.3].
Since F ) o = tvg, 0 Feoo g for any k > 1, the result follows. O

Put
EOO = (gi)izl = (0,0,0, Ce ), EOO = (Ei)izl = (1, 1, 1, . )
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CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

Let C7(e>) and Cz(¢) be defined as above, associated with ascending chains (¢ = ¢)
and (e® =

that e®) <€) and €®) < %) and we set

€oi) respectively. Then we can find an increasing sequence {r;} and {s;} such

e(sk)

Sk = ttif:"g) otty, Sop =ty otr,,
which does not depend on ry, sj.
C(e)
C5(€xjo) Cr(€ojk)
Then they induce exact functors Syjo and Spje
C(e>)
CL(e) C(e),
which sum up to exact monoidal functors
Cz(e>)
Cz (™) Cz(€),

Now we come to a climax of this chapter, which can be viewed as a quantum affine

analogue of the super duality introduced in Section 4.1.
Theorem 4.3.28. The functors S0 and Sy are equivalences of monoidal categories.

As an application, let us give a description of Grothendieck ring of the category Cz(¢)
for any €. Recall that the Grothendieck ring of Cz(€>) is Zxo-graded:

K(Cz(e)) = P K (CL(e™)).

>0
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CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS
Let S={(l,a)|l € Z>o, a €l + 1+ 2Z} and

R = Z[tl,a] (La)es

the polynomial ring generated by ¢; o, graded by degt;, = .

Proposition 4.3.29. There is an isomorphism of graded rings

K(Cz(e*)) — R
Wi (q")] ¥ tia.

Proof. For k > 1, it is well-known [33] (see also [34, Corollary 2|) that K(Cz(eo)) is
isomorphic to

R, = Z[tl,a]lglgk,(l,a)es ch

€olk+1

o induces a

by matching [Wl,eo‘k(qa)] with ¢;,, which respects the grading. Since tv

map Ry — Ry given by #3411, = 0 for all a, we derive
K (Cy(e*)) = imK (Cz(eop)) = UmR;, = R’

and so as a graded ring, K(Cz(€>*)) = R. Since K(Cz(€>)) = K(Cz(¢*)) by Theorem
4.3.28, we obtain the desired isomorphism. O]

In particular, it induces a surjective ring homomorphism

R — K(Cy(e®))
ta — Wi (¢)]

by composing with truncation try. Hence, if there is a relation that holds in sufficiently
large ranks in the Grothedieck ring of the category of finite-dimensional modules over
U ;(gA[n), then we can lift it to K (Cz(¢)) for any e. The T-system in the previous subsection

is one such example.

Corollary 4.3.30. Let € € € and (1, ¢) € P} (¢) be given. If we have

Woutt 0] =x ({Arante] })
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CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

for some x € R and a sufficiently large k, then we obtain the same identity in K(Cyz(¢)):

Well, o)l = x {WVee(@)]}) -

Remark 4.3.31. Recall that in the super duality in Section 4.1, we have g =g = gl and
so super duality induces an autoequivalence on the category @ = O which categorifies
the involution sy — syt on the ring of symmetric functions.

In our case, there exists a Q-algebra isomorphism ~ : U(eq),,) — U(enpo) given by
a: _q_la azeia f’L:fZa ku:ku'

This induces an equivalence between Cz(€>°) and Cz(€>). If we identify their Grothendieck
rings under this equivalence, then our equivalence Sy © So_lio from super duality induces
an involution on K (Cz(€*)), which can be viewed as a quantum affine analogue of the

above involution on the ring of symmetric functions.
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Chapter 5

AN

Oscillator representations of Ug(gl,,)

In this chapter, we initiate the study of g-oscillator representations of Uq(g[n). They
are (level 0) infinite-dimensional representations, but still share similar tensor product
structures with finite-dimensional representations. On one hand, such a similarity stems
from the fact that the spectral decompositions of R-matrices for g-oscillators are very
close to the ones for finite-dimensional representations. On the other hand, they can be
viewed as another bosonic counterpart of finite-dimensional representations, and hence
should be intimately related to them under the super duality philosophy.

We define the category Opse Of g-oscillator representations of U, (g[n) as affinizations of
the one Oy of g-oscillator representations of U,(gl,) (¢f Definition 4.2.1). Namely, the
role of polynomial U (¢)-modules in Chapter 4 is now played by g-oscillator representations
of U,(gl,,), which are g-analogues of oscillator representations of gl,,.

Hence, to study @OSC, we first need to reproduce the results in Section 3.2 for ¢-
oscillators of U,(gl,,). This is done in Section 5.2 whose main result is the decomposition
(5.2.2), from which we deduce the semisimplicity and the decomposition of tensor products
of two irreducible g-oscillator representations corresponding to single rows.

Then we may adopt the same approach as in Chapter 4. Fundamental g-oscillator rep-
resentations Wp*°(x) and normalized R-matrices are defined. We compute the spectral
decomposition of normalized R-matrices, which allows us to construct irreducible objects
in @OSC by fusion, as in Section 4.2.3. Consequently, we obtain a natural correspondence
between irreducible g-oscillator representations and irreducible finite-dimensional repre-
sentations obtained from the same data (I, ¢) by fusion constructions, which is more strik-

ing than the one in Chapter 4 in that g-oscillator representations are infinite-dimensional.
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

As a first step toward a quantum affine super duality for this correspondence, we
introduce a analogous category (505“ for generalized quantum group U(€), where € =
(010...10) is an alternating (01)-sequence originated from classical super duality. We
can repeat the above constructions in the super case, and define truncation functors from
@05075 to @OSC, and to a category of finite-dimensional representations of Uq(g? [,,). However,
to establish a super-duality-type equivalence seems to be much harder, as is the same in
classical theory. Instead we shall give some evidences, including T-systems and a relation
to finite-dimensional representations of U (e n).

The results of this chapter is based on [73|, with a more uniform account as in [74].

5.1 Howe duality and oscillator representations of gl,

To motivate g-oscillator representations, let us briefly review a pair of Howe dualities, from
which a nice correspondence between oscillators and finite-dimensional representations of
gl,, is obtained.

The celebrated skew Howe duality of type A refers to the following (gl,,, G Ly)-bimodule

decomposed as a direct sum of simples:

W= AC)* = P Vg, (\) @ Var,(N) (5.1.1)
LN)<L

(A <n

where Vi, () (resp. Vg (A")) is the finite-dimensional irreducible representation of GL,
(resp. gl,,) associated with A € & (resp. A'). The joint action of gl, and GL, on the
tensor power of fermionic Fock space W has various nice properties, such as double cen-
tralizer property, semisimplicity and multiplicity-freeness. This gives rise to a method to
understand representations of gl, occurring in the bimodule in terms of the representation
theory of GL,, and vice versa.

More precisely, let 7, be the (semisimple) category generated by Vg (\') for all
A € & with £(A\') < n, which is closed under tensor products. We denote by K(GLy)
the Grothendieck group of the category of polynomial representations of GGL,, and then
K(GL) = @,., K(GLy) has a coalgebra structure given by the branching rule. Then the
Grothendieck _ring of F, is a homomorphic image of the dual of the coalgebra K(GL),
hence the name duality.

On the other hand, if we replace A(C™) with the symmetric algebra S(C"), we obtain
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

another duality called the Howe duality of type A,

Exactly the same argument applies to the category F,, generated by Vg (A) with () < n.
In fact, F,, = F, and is the category of polynomial representations of gl,. Thus we obtain

two ring surjections

where [Vy (A")] and [V, ()] correspond to the same element in K (GL)* (cf. Section 4.1).

In general, suppose we have two dualities (g, G;) on W®* and (g, G,) on W for Lie
(super)algebras g and g and a Lie group (or algebra) G, for all ¢ > 1. If the irreducible G-
modules occurring in both dualities are the same, then we can expect that the semisimple
monoidal categories generated by irreducible g- and g-modules in W and W have parallel
structures.

We shall recall another Howe duality [44] which is paired with the skew Howe duality
(5.1.1) in the above sense. Let us fix r € {2,3,...,n — 2}. A new bosonic Fock space is
the same as S(C") as a vector space, but with a twisted gl,,-action: Put

WO .= S(C™ & C"") = Clal, ..., &5 Ty -, ).

) T

It has a gl ® gl,,_,-action induced from the natural gl,_,-module C"~" and the dual C"*
of the one of gl.. To extend it to a gl -action, we only need to define the actions of e,

and f,, and they are given by
o 0

855;’: al‘r_;'_l ’

*
e, = fr =2 241

To describe the irreducible gl ,-modules appearing in (W°<)®¢ let

PGL) ={A=(\,...., N) €Z | N\ > > N}

T 1 . I
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

be the set of generalized partitions of length ¢. It is well-known that P(G L) parametrizes

the finite-dimensional irreducible representations of GL, (with integral weights), and we

denote by Vg, () the one associated with A € P(GLy). Let us also set P(GLg) = {0}.
When A\ € P(GLy) can be written as

A== 2> A== =0> N1 2> 2N
for some s < t, we put
M= (A2 0), AT = (A > > —A).

If instead A\, > 0 (resp. A; < 0), then we put AT = A\ A7 = 0 (resp. AT =0, \™ =
(=Xg, ..., —A1)). Clearly, \* are partitions!. Set

/P(GLE)(r,nfT) - {)‘ S P(GLZ) ’f()\_) <r, g(}\-ﬁ-) <n-— T}'

For A € P(GLy)(rn—r), we define a weight

s L
Wrr = —Aw, + Z )\i(STJri -+ Z )\jér—(j—f) € Pqn (512)

i=1 j=t-+1

where w, = §; + - -+ + ¢, is the r-th fundamental weight of gl,.

We denote by V* the irreducible highest weight gl,-module of highest weight wy .
By convention, we put VV? = C, the trivial representation. Since Wy, is never dominant,
every V* is infinite-dimensional. More precisely, it is contained in the parabolic BGG
category associated with the Levi subalgebra of gl,, generated by e;, f; (i # r) and h. Now

we can state the desired duality.

Theorem 5.1.1 ([44]). There exists a GLg-action on (W)® which commutes with
the gl,-action, and as a (gl,, GL;)-module (W°)®* has the following multiplicity-free
decomposition

(Wosc>®€ _ @ V)\ ® VGL@ ()\)

AG’P(GLZ) (ryn—r)

We call V* an irreducible oscillator representation of gl,. They were first studied in

IPartitions are distinguished from generalized partitions, in that they consist only of positive integers.

3 y j §
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

connection with unitarizable representations of real Lie groups, in different names such
as Segal-Shale-Weil representations or metaplectic representations [63].
Let Oes be the category of gl -modules V' such that

(1) V =8D,cp,, Vi with dimV}, < oo and wt(V') is finitely dominated,

(2) V =&B5, Ve where V; is a direct sum of V*’s for A € P(GLy)(n—r), and V; = 0 for
all sufficiently large /.

Thanks to the duality, O, is a semisimple monoidal category whose monoidal structure
is given by the branching rule of GL,. Namely, for given A\ € P(GL¢)4n—r) and p €
P(GLy)(rn—r), we have

povie @
vEP(GLyyyr) (rim—r)

where cf , is the multiplicity of Vi, (A\) ® Var,, (1) in the restriction of the G Ly p-module
VGLM,(V) to GLy; x GLy.

On the other hand, we know from (5.1.1) that the branching multiplicity ¢, is also
equal to the multiplicity of Vi (v) in Vi (A) @ Vg (1), if A, pi, v are partitions. Hence to
compute cf,, in general, we have to take a tensor product with enough power of the deter-
minant representation and then compute the tensor product multiplicity. In turn, tensor
products of two irreducible oscillator representations are in general of infinite length, as

shown in the following example.

Example 5.1.2. For [, m € Z, we have

VOgym = yhb) gyhttb-g. .. = @5yt (5.1.3)

tEZZO
where [; = max{l,m} and ly = min{l, m}.

Now recall that this pair of Howe dualities consists of an exterior power and a sym-
metric power, or a fermionic and a bosonic Fock space. This alludes to the possibility of
supersymmetric construction, with accompanied super duality explaining the correspon-
dence of V* and Vi, (A). Let us briefly explain how to construct the super duality, which

is actually more intricate than the one in Section 4.1.
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)
Introduce the following (01)-sequences:

€= = (9 ® ), 9 =(0,1,0,1,...,0,1) (5.1.4)

S

2
for a,b > 1. We put re = 2a, which plays the role of r in the above construction for gl,,.

Let us also take the following subsequences of e:
e=(0%,0""Y), €= (141", &= (01" (5.1.5)

with re =re =r. = a.

For € = €,¢€,€,¢, let gl¢ be the central extension of gl at «,, (see Section 5.2.2 for a
precise definition). Let O, be a (version of) parabolic BGG category of glf, associated
with the Levi subalgebra [, generated by e;, f; (i € I'\{r}) and b, defined as in Section 4.1.

The extra central extension is to define truncation functors, which constitute the following

N
\(9

diagram:

O(G(a) 71b

-

Oe

O(Oa,e(b),()) (516)

N

Here the categories in the middle row are defined in a similar manner.

O..

€alb

The category Oes is a full subcategory of Oc. Moreover, for each A € P(GLg)(rn—r),
one can construct a super analogue V' € O, such that tg (V) = V2, while tc€ (V) is
the finite-dimensional irreducible gl,,,-module that corresponds to the same G L,-module
as Vg‘ in the above pair of Howe dualities.

Taking limits a, b — oo properly, we obtain equivalences of categories

O

O¢ /(’) f \

€000

O,

under which the (inverse limit of) category O is equivalent to the (inverse limit of)

category of finite-dimensional representations.
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

The goal of this chapter is to establish a quantum affine analogue of the above cor-
respondence of irreducible oscillators and irreducible finite-dimensional representations,

and give some ideas towards the corresponding quantum affine super duality.

Remark 5.1.3. The name oscillator representation is coined by Howe, as a partner of spin
representations (see the end of [44, Section 2|). Indeed, oscillator representations of sp,,,
are constructed by replacing the Clifford algebra in a realization of spin representations
of 509, with the Weyl algebra. Moreover, the corresponding Howe duality for oscillator
representations is obtained by directly switching the exterior power in the skew Howe
duality of type D (for spin representations) to the symmetric power, without a twist.
Recently, a quantum affine analogue of this spin-oscillator correspondence is obtained
in [74], namely between finite-dimensional representations of U;(qul)) and g-oscillator
representations of Ué(Yn(l)) for (X,Y) = (C,D) or (D,C). This enables a computation
of spectral decompositions of normalized R-matrices for fundamental representations of

U, (8py,), which was unknown before.

5.2 Oscillator representations of U,(gl,)

We first introduce g-oscillator representations of U,(gl,). Since the constructions are
uniform, we may consider super cases at the same time.
For the remaining of this chapter, we assume the following notations, some of which

override the ones in Chapter 3:
e We will freely use the notations in Section 5.1.

e Each € € &, is implicitly accompanied with a choice of r € I\ {0,1,n — 1}, and we
put

Im={1,...,r}, It={r+1,...,n},

e =(€1,...,6), €4 = (€g1,...,€n).
 Pine=7ZN DL & - ® Zb, with a symmetric bilinear form (-|-) given by

) 0 ifiel
(52'75]') - <_1) 162']'7 (Ar,e|Ar,e) - 07 (6i7Ar,e) — o
1 ifiel".
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

® Poge="1ZNAre— 3 icr- Z>00; + D jer+ Z>00;.

e q(-,-),q(-, ) : k*-valued symmetric biadditive forms on Py, . defined by

a(\p) = [[ @ d\ p) = e Ceattddg(x p)
for A\ =0A,c+ > cidi, p=0Nc+ > did; € P

e For ¢ = ¢\ {¢;}, we revise the algebra homomorphism ¢¢ : U(€) — U(e) to ¢ and
the truncation t, (V) of a U(e)-module V', according to the change of the weight
lattice from Pp, t0 Pan.. See Theorem 5.2.4 and (5.2.1) below.

e We redefine U(¢€) to be the algebra generated by e;, f; (i € I) and k, (1t € Pin,e) with
the same defining relations. The finite type subalgebra U (€) is defined accordingly.

o U(e_,e;) : the subalgebra of U(e) generated by e;, fi (i # 0,7) and k, (it € Pan)-

o Vi ey(Mp) =V (=A) ®@ Ve () : irreducible Ul(e_, e, )-module, where V. (=) is
the dual of a U(e_)-module V,_()).

The algebra U(e€) defined in Chapter 3 is a subalgebra of the redefined one, generated
by e;, fi (i € I) and ks, (j € I). See also Remark 5.2.10.

5.2.1 Fock space and fundamental g-oscillator representations

Consider again the supersymmetric Fock space

W.= & kim)

meZY (€)

but now with different decomposition

We=Pwre, wee= P kim)

lez I(m)=l
where we put
m|_=my+---+m,, |ml[ =mu -+ my,
|1’l’1| - |1’l’1|+ + |Il’1|_ ) l(m) — |m|+ - |m|_ .
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

Given x € k*, let us assign the following action of generators of U(€) on W,:

>—q sert ™ lmy)
>= ) (iel),

/faj lm) = ¢“qm) (j €I"),

epm) =x|m+e; +e,),

folm) = =27 my][m,] jm —e; —e,),

ei m) = [m;] |m —e; + e;41) R
I

film) = [m;1] jm+e; — e;41) (el

e, |m) = —[m,|[m, 1] [m — e, — e, 1),

frim)=m+e.+e.),

s m) = e jm o5~ ejor)

£, hm) = [m,] et

Proposition 5.2.1. For x € k*, the above formula defines a U(e)-action on W..
Moreover, for each | € Z, the subspace W% is closed under the U(e)-action and

irreducible over U((e).

We denote the resulting U (e)-module by W*¢(z) and Wy:(x) respectively, and call
the latter the [-th fundamental q-oscillator representation. When we regard them as Zj{(e)—
modules, we simply omit x for being irrelevant.

Note that the weight of |m) € W is

wt |rn) = Ar,e — Z m;0; + Z mjéj < Pﬁnyé.

i<r j>r

Asald (€)-module, Wy is an irreducible highest weight representation generated by
a highest weight vector

‘ler+1> if [ Z 0
|—le,) ifl<0.

v =

Remark 5.2.2. Suppose ¢; = 1 for all 4, in which case Wi%¢(z) is finite-dimensional, and
even zero unless —r <[ <n-—r. If —r <[ <n—r, then as a qu_l(ﬁl )-module, WOSC( )
is the (I 4 r)-th fundamental representation V' (cwy,),. Here U’ __,(gl,) is identified with
the subalgebra of U(¢) generated by e;, fi, ks, (see Remark 5.2.10).
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On the other hand, when ¢; = 0 for all 7, again we find U(;(gA[n) as a subalgebra of U (¢),
and then the U,(gl,)-module W2 can be seen as a g-analogue of the bosonic Fock space

W€ in the previous section.

Remark 5.2.3. In [67], more general g-oscillator representations of Ué(,‘;\[n), which are
level one in the context of level-rank duality, are introduced. By general we mean that
the distribution of particles and holes can be arbitrary, while our definition is the case

with first r holes, and then n — r particles.

Suppose € is obtained from € by removing ¢;. We redefine truncation functors to make
it compatible with g-oscillator representations. First, let us consider a slight twist of the

algebra homomorphism ¢¢ from Theorem 4.3.1.

Theorem 5.2.4. There exists a k-algebra homomorphism gﬁ, :U(') — U(e) defined on
the generators e}, f; (j € I') and k, (11 € Pane) by

ks, fl1<i<i-1
kn, o> ka,., ks
’ ks, ifi<l<n-—1,
Case 1. If 2 <1 < r, then
(
(€5, f7) f0<j<i—2
(eja f]) — ([ei7€i—1]q(&i—1,&i)717 [fi—l?fi]Q(aifhai)) Zf] =1-1
\(€j+1, fi+1) ifi <j<n-—2

Case 2. If r+1<i:<n-—1,

(

(€5, ) f0<j<i—2
<€j’ fJ) — ([ei*1>€i]Q(Oéi—1,ai)7 fi, fifl]Q(aiﬂ,Oéi)_l) ifj=1i—1
\(@j+1, fiv1) ifi<j<n-2
Case 3. If i =n, then
(&5, f3) ifj#0

(€5, f) — L
([enfla eO}q(anfl,ao)a [an fnfl]q(an_l,ao)—l) Zf] = 07

Case 4. If i =1, then

([61760](31(0407061)_17 [vafl]q(ao,al)) ifj=0
(ejr1, fir1) if 3 # 0.

(), f3) —
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More generally, if € = (¢},...,€,_,) is obtained from € by removing €;,, ..., €, for some

) Sn—r
iy < -+ < i, we define a k-algebra homomorphism ¢ : U(e') — U(e) as a successive
composition of the above algebra homomorphism.

For a U(e)-module V' with wt(V) C Psq, define

e, (V) = ay) v, (5.2.1)
pewt(V)
(Pr(s)[6:,)==(pr(s2)|5:,)=0

where pr : Psg C ZA, &6 Z6; — P Z0; is the projection A, . — 0. In the same manner
as in Section 4.3.1, we obtain an exact monoidal functor tt, defined on U (e)-modules with

weights in P> .. Again, it is easy check the following lemmas.
Lemma 5.2.5. Forl € Z and x € k*, we have as a U(€')-module,

Wee(x) if (1) € P(GL1) e e,

0 otherwise.

e (Wi (a)) =

Lemma 5.2.6. For p € Py . and v € Py, N, , we have as aZj{(e’_,eﬂr)-module

€ ~ ‘/(6/_76/)(/’1/71/) Zflue gM’_|N’_ andVE <@]\4/ IN/
te. <V(€—7€+)(:u’ V)) = ’ . A
0 otherwise.

Proof. By Proposition 4.3.4, for Ay € &y, |n,, we have

‘/ﬁ/i()\i) if A e @Mgzv;

0 otherwise.

1%

tfii (Ver (A1)

5.2.2 Oscillator representations of U,(gl,)

The main result of this section is Theorem 5.2.14 and (5.2.2), which are reproductions
of Proposition 4.3.4 and (3.2.1) for € = €, € or € (see (5.1.4), (5.1.5) for notation). Since
g-oscillator representations in the case ¢ = € will turn out to be finite-dimensional, we

only need to prove them for € = €, €.

7 " i
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Unlike polynomial representations, where quantum Schur-Weyl duality (Theorem 3.2.5)
was available, we do not have a quantum version of the Howe duality. Instead, we make
use of the classical limit to prove the case ¢ = €, and then truncations to lift it to the

remaining one € = €.
Proposition 5.2.7. For { > 1, W(2)®¢ is semisimple as a U(e)-module.

Proof. Introduce a nondegenerate symmetric bilinear form on W¢(x)

n

_\n m;(m;—1)
(jm), [m')) = dmmeg == 2 [[[ma)!

i=1

for m, m’ € Z7 (¢), and an anti-involution 1 on U(e)

U(ku) - k/u
(

(_q2)ei—ei+1qifik;il if 4 <7
77(61) = (_QQ)ET—IqTka;TI lfl =7
infik;il if 4 > 7,
)

(=@*) g ke it <7
n(f;) = (=) g ke, ifi=r
Kqiilkoziei ifi>r

for p € Pin and i € I\ {0}. Then one can check that
(1) m@mn)eA=Aom,
(2) (zv,w) = (v,n(z)w) for x € U(e) and v, w € W(z),

(3) For the A..-lattice
Lo= P Axlm)cwe,

meZ7 (e)
we have (L4, Loo) C Aso, and the induced form on L., /q 'L, is positive-definite.

Now the semisimplicity can be shown along the argument of |7, Theorem 2.12]. ]

Let us introduce g-analogues of irreducible oscillator representations of gl,. For A €

P(GLy), define Ay, € Psg as follows:

3 y j §
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

(1) If €,41 = 0 (resp. €41 = 1), then fill the first row (resp. column) of A™ with r + 1.
After filling a subdiagram p C At with » + 1,...,r + k, fill the first row (resp.
column) of A"/ with r + &k + 1 if €441 = 0 (resp. €4x11 = 1).

(2) Fill A~ in the same way with r,r — 1,7 —2,....

(3) Let m; be the number of occurrences of i’s in A*, and define

A)\,e = fAnE — Z mldz + Z mjcsj.

iel~ jer+

In other words, (m,41,mM12,...) (vesp. (m,,m,_q,...)) is the content of the tableau
Hy+ o+ (resp. Hy- .-). Hence the weight A, . is well-defined if and only if A\* € PN+,
and we put

P(GLo) (e ;) = {A € P(GLy) | \* € Py n=}

€_,E4

For example, we have

P(G L) n—r) if € =€,

P(GLy) (e ey) = '
{AeP(GL)|n—1> XM, M > —r} ife=eqp.

Definition 5.2.8. For A € P(GLy),

€_,€4))
o

U(e)-module with highest weight A, .

we denote by V2 the irreducible highest weight

Example 5.2.9. The [-th fundamental g-oscillator representation Wy¢(z) is isomorphic

to V) as a U(e)-module.

Next, we consider classical limits. Let 5 be a 2-cocycle on gl, defined by 5(X,Y) =
str([J, X]Y) for J = .+ Ej;. Define a central extension gl = gl. € Cc with respect to

B, that is ¢ is central in gIf and
(X, Y] = XY — (=1)PCPV)Y X 4 B(X,Y)c
for homogeneous X,Y € gl.. In particular, we have

[Ei,i+17 E’i+1,i] =5, — (—1)6#6”1Ei+1,1+1 — (=1)"0pc=h; (iel\{0}).

T 1 . I
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

The dual weight lattice Py

fin,e

=Zc® P ZE;; of glt is indeed in a perfect pairing with
Psn e given by

<52'7Ejj> = 0y, (0i,¢) = <Ar,67Eii> =0, <Ar,6>c> =1,
from which we obtain an isomorphism of abelian groups ¢ : Ps, . — Pg’me given by

$(6;) = (—1)Ey +6(i €TM)e, ¢(Are) = > Ej
jer+
such that (A|u) = (A, ¢(u)) for A, pu € Paye. Note that ¢(a;) = (—1)%h;.
We identify gl, with the subalgebra of gl¢ generated by E; 11, Eip1; (1 =1,...,n—1)
and ¢(0;) (j =1,...,n). When we restrict to this subalgebra, the weight lattice Pg, . for
gl¢ degenerates to P, through A, . = (=1)* 0,41 + -+ - + (=1)"0y,..

Remark 5.2.10. When ¢ = €, U(e) = U(e) can be identified under the isomorphism ¢

with Ué(é\[;bﬂ), the quantum group associated with a Cartan datum (see Section 2.2.1)

(At(lllby Pﬁn,w {ai}7 Pf;/mp {hz = QS(O(Z)})

Since the classical limit is not well-defined for I/ (¢), we first have to regard V> as a
module over the quantum superalgebra U (€) using the algebra isomorphism 7. Here U (¢)
is also redefined as the algebra generated by E;, F; (i € I \ {0}) and K, (1t € Ppn,e) with
the same relations as in Definition 3.1.4, and the algebra isomorphism 7 in Theorem 3.1.6
restricts to

7 U(e)[o] — U(e)[o).

Suppose V is a highest weight U/ (€)-module with highest weight A, . for some A\ €
P(GL¢)(c_e,)- Pulling V back through 7, we obtain a U(e)-module V7 and let V7 be the
A-span of {F}, --- F; v|iy,...,is € I\ {0}, s > 0} for a highest weight vector v. Define
the classical limit V7 = Vi ®4 C, where C is an A-algebra by ¢ = 1. Then we obtain an
algebra homomorphism U(gl*) —s End(V7) given by the induced action of U(e), namely

Eiix1— L, B, — F,
Ks, — K

Ky, — Kj,.
q—q! ‘

0;
¢(0:) — =

O(Are) —

08 y | ui 1_]| =]



CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

Now one can easily verify the following lemma.
Lemma 5.2.11. As a gl-module, V™ is a highest weight module of highest weight Ay ..

In the proofs below, we shall use another truncations, associated with a sequence

atkbtk

el ) for k > 1 that contains €*" as a subsequence obtained by removing the first

and the last 2k entries in €% and (¢®+%) 0) respectively. We will use the notation

€ = el@thd*h) {0 emphasize this truncation. Note that if A € P(GLy)(c_e.), then A €
P(GLy)_z,) as well and Ay = Ajz.

Proposition 5.2.12. For ¢ = €,€,€, any highest weight Zj{(e)-submodule of (W)t s
isomorphic to V2 for some A € P(GLy)

eier)-

Proof. Let V be a highest weight /(¢)-submodule of (W)®¢, which is irreducible by the
semisimplicity of (W¢)®* (Proposition 5.2.7).

When € = €, €, it can be shown using Lemma 5.2.11 that the classical limit of (W/25¢)®*
is isomorphic to (W°)®¢ W& respectively. Then the classical limit of V is a highest
weight submodule, and hence isomorphic to V* for some \ € P(GLy¢)(c_ e,y by dualities
Theorem 5.1.1, (5.1.1) respectively.

Finally assume € = €, and let v be a highest weight vector of V. Note that if v is in the
component Vie_ . )(u,v), then |p| and |v| are minimal among other U(e_, e,)-components
of V. We may further assume that a and b are large enough, so that Vie_e,)(u,v) # 0.
Indeed, take € = €@ Tkb+5) for k > 0, and identify v € (W*)®¢ C (We)®L. Then it is
easy to check that v is also a u (€)-highest weight vector, and we may choose V' to be the
U(€)-submodule generated by v from the beginning.

Now we have tt&(Vie_ e, )(1t, 7)) = Vie_ 2,y (1, v) # 0. If we let w be a U(e_, €, )-highest
weight vector of Vie_e,)(i,v), then by the minimality of |u| and |v|, w is also a U(€)-
highest weight vector of t£(V). Since (W2*)®* is finite-dimensional, the weight of w is
of the form A,z for some A € P(GL)e. This implies that the weight of v is Ay, as
desired. ]

In particular, we understand that the classical limit of Vé‘ is, as a gl, ,,,-module,
isomorphic to the tensor product of the irreducible oscillator representation V* and the

trivial representation C with I = 1.
Lemma 5.2.13. Let € = €@*0+h) for | > 1.

(1) For A € P(GLy)(c_e,) such that V> C (W)?, we have V2 C (W)L,
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

(2) For A € P(GLy) e z,) such that V& C (W)®, we have

Ve)\ if A € ,P(GLE)(e,,eJr)

0 otherwise.

12

tee(V2)

Proof. (1) Let v be a U(€)-highest weight vector of V) € (W2)®L ¢ (W)=l As in the
proof of Proposition 5.2.12, v is also a u (€)-highest weight vector. Since v has weight
Aye = Ayz, we have V2 C (W)@t

(2) First assume A € P(GLy)(c_.,). Then a highest weight vector v of V2 belongs to
te€(12) and is a U(€)-highest weight vector as well, which implies V2 C te€(V2). If this
containment is proper, we can find another /(€)-highest weight vector w € tec(V2) \ ko
by semisimplicity of t€(V2) C (W*)®*. But again as above, w is also a U(€)-highest
weight vector in V2 of weight less than A, ¢, which is absurd.

Now suppose A € P(GLy)(c_c.)- Then there exists i € Ig\Ie such that (pry_(Axz)[6;) #
0, where Iz = {1,2,...,2a + 2b + 4k + 1} is the index set for €. Since Az is the highest
weight of V2, for each 1 € wt(V2) one can easily find j € Iz \ I such that (pry_(u)]d;) # 0.
Hence tt£(V2) = 0. O

Now we arrive at the main result of this subsection.

Theorem 5.2.14. For A\ € P(GL¢)(c_e,), we have

Vi if A €EP(GL)@ e,

0 otherwise,

12

s, (Vj)

for € =€ ore.

Proof. First note that for € = €, €,

( o/sc)@é ~ @ O})x/)EBdA

AEP(GL) @ )

by the semisimplicity, classical limits and classical dualities. We also have from Proposi-
tion 5.2.12,

W)™ = PV

AeS
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

for some S C P(GLy)(e_e,) and d? € Zs.

Step 1. We first prove the assertion for A € S, when € = €. Let V = V2 with a highest
weight vector v.

Suppose A € P(GLy)e_e,)- Then the argument in the proof of Proposition 5.2.12
tells us that (V') contains a u (€)-highest weight vector of highest weight Az, and so
V2 C t&(V). To prove the equality, we consider the classical limit V7, which is a highest
weight U(gl¢)-module with highest weight A, .. The truncation tt&(V7) is defined in the
same way as in (5.2.1), and using the argument of [20, Lemma 3.5], it can be proved
that tt&(V7) is also a highest weight module with highest weight Aye. Since t&(V7) is a
finite-dimensional gl;_,-module, this implies that it is irreducible and so the character of
tes(V7) coincides with that of V2. This gives the desired equality.

Next, suppose that A ¢ P(GL¢)e e,). Taking € = ¢ with A € P(GLo)z %,y
we have V& C (W)®¢ and ©€(V2) = V by Lemma 5.2.13. On the other hand, we just
have proved that tt%(Vé‘) = Vi/\’ and it can be easily seen that ttg(Vé‘) = 0. Now

€

(V) = teSo ttf(V2) = o tef(V2) = E(V2) = 0

as expected.

Step 2. We claim S = P(GLy)(c_e,) and d} = d*. Indeed, given A € P(GLy)e_c,),
we again take € as above and then V2 C (W) by Step 1. Applying tes, we get
V2 = tf (V2) € (We<)® and hence A € S.

Step 3. Finally, suppose € = € and let A € P(GLy)(c_e,) be given. Since P(GLy) (e ,)
is contained in P(GLy) (e e,), V2 C (W)® and its highest weight vector v is in the
component Vie_ . )(A7,AT). Once again, a highest weight vector w € Vie (A7, A7) C
tee(V)) is also a U(€)-highest weight vector by the minimality of [A\~| + [A*]. Hence w

generates V) C tr&(V2). Now it remains to compare both ends of the following identity

D O =T e (W) = P e ()™

XEP(GL)(e_ e ) AEP(GLY)(e_ e )
keeping in mind that V2 C tt§(V2) and P(GL¢) e e,) C P(GLe)(e_ey)- O

Corollary 5.2.15. For e = €,€ or €, we have the following Z/Ol(e)—module decomposition

weete e (522

)\GP(GL@)(€775+)
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

where d* = dim Vg, (N).

In particular, we obtain from (5.1.3)

050 ® Wosc @ V (I1+t,l2—t) (523)

£>0

as a U(e)-module, for € = €, €.

Definition 5.2.16. For € = €, €, €, let Oy be the category on/o{(e)-modules V such that
(1) V=6D,cpVy with dimV,, < co and wt(V') is finitely dominated,

(2) V =@&B,5, Vi where V; is a direct sum of Vs for A € P(GLy)
all sufficiently large /.

,and V, = 0 for

(e—,e4)

Again we put Vf) = k. Here we do not require that V itself is of finite length. Indeed,
already VP @ V™ has infinitely many irreducible components. On the other hand, the
multiplicity of each VE’\ in V € Qg is finite, due to the finite-dimensionality of weight

spaces of V.

Proposition 5.2.17. The category Ogsce 15 a semisimple monoidal category.

5.3 Oscillator representations of Uq(g/;\[n)

We proceed to affine types. In the remaining of this chapter, € stands for either €, €, or €,
unless otherwise stated.

5.3.1 Category @OSC,E

Definition 5.3.1. The category (/Q\OSC,E of g-oscillator representations of U(e) is defined to
be the category of U (€)-modules V such that V belongs to Qg as a U (e)-module.

The category @OSC,E is closed under taking submodules, quotients and tensor products
(Proposition 5.2.17). Moreover, since wt(V') C Psq for V € (/9\050,6, the truncation (5.2.1)
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

is well-defined on @Osc,e, and then we obtain exact monoidal functors

~ ~
Oosc, € Oosc €

by Theorem 5.2.14.

In the context of super duality, the category (505676 serves as a module category of
intermediating superalgebra. In the following subsections, we will see that irreducible
representations of Ué(gA[n) in category @050,5/ for € = €,€ are indeed interpolated by
irreducible objects in (505076.

Note that since P(GL¢)e_e,) is a finite set for all £ > 0, the ¢(€)-modules in (5050; are
finite-dimensional. Moreover, (/Q\OSC; contains all finite-dimensional fundamental represen-
tations We(z) = V(@i ).. Hence it is a category of finite-dimensional representations of
Ué(glz 1), Whose image under the forgetful functor (with respect to E]é(g/y\ lors) C Ué(é\lz )
is exactly the category of finite-dimensional representations of Uz(gl, ;).

On the other hand, (/9\05% (or its image under the forgetful functor) is by definition
the category of g-oscillator representations of Ué(g[a +41)- A conjectural super duality
asserts that this category has a parallel structure with a category of finite-dimensional
representations, although almost every object in @OSC& is infinite-dimensional.

Restricted to the subalgebra Uy (s?[a+b+1), the category @OSC& is a full subcategory of the
affinization O [36] of the BGG category O for the quantum group U,(sl,4p+1). Mukhin
and Young [80] generalized to O several basic results on finite-dimensional representations
of U;(g): they introduced the notion of (-highest weight modules and g-characters in 6,
classified the irreducibles by their /-highest weights, and so on.

It should be interesting to understand our g-oscillator representations in this context.
Here we present the (-highest weight of the fundamental g-oscillator representations of

U;(;[n), whose proof can be found in Section 6.2.1.

Proposition 5.3.2. Asa Ué(;[n)—module, the [-th fundamental g-oscillator representation
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

Wps¢(1) is an £-highest weight module with (-highest weight ¥ = (V;(2))ien oy given by

"

(" +u)(d+qu)™ ifl<0andi=1r—1
T LCh s A (R R K
k>0 (¢" +u)(1+qu)™! if1>0andi=r+1
(1 otherwise,
where u = (—q~1)"z.

Remark 5.3.3. Observe that the component W, (2) of the (-highest weight of W§*(—(—¢)")

is trivial for all 7, except
4 1—gz

1—qg!
This is the reciprocal of the ¢-highest weight of the r-th finite-dimensional fundamental

U.(z) =

representation V(w,) of Ué(sA[n) (up to a spectral parameter shift).
Recall that the ¢-highest weight of the KR module Ws(z)l_s (Remark 4.3.16) is

Hk 1( 2k qulql S ) 1 —q_SZ
\I]’"(Z)_ 2k 2441—s —q S~
[l (1— qq*~*z) 1 — ¢z

Hence, the (-highest weight of W§*(z) can be seen as the one of the KR module with

s = —1, which is of course not defined.

Recently, Zhang constructed a generic asymptotic limit of KR modules, say Wérc) for
¢ # 0 [100]. It is an infinite-dimensional U} (g)-module® contained in the category O, and
our W§™(x) is indeed one example of such a limit, Wig,l. On one hand, it is a module-
theoretic realization of the analytic continuation considered in [80]. On the other hand, it
is a generalization of the asymptotic limit construction of prefundamental representations
over the Borel subalgebra U,(b) of U,(g) [40], which recovers them by the non-generic

limit ¢ = 0.

5.3.2 R-matrix and spectral decomposition

The construction of universal R-matrices in Section 4.2.2 also works for g-oscillator rep-

resentations. Namely, one can define the affinization Vg = V @ C[2*] of V € (5()5@6, and

2In [100], the construction is originally for g = gl M|~ and the one for simple Lie algebras g is treated

in its appendix.
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF Uq(gA[n)
then the universal R-matrix
unlv . Vaff ® Waff e Waff ®Vaff

for V,W € Ogsepe-
Let us focus on fundamental g-oscillator representations: let R}“#LVE = %}‘éc,wm . We
have

}lfrlzve(vl ® Um) = a<21/22)<vm 0%y 'Ul)

for some a(z) € k[2]*. Put

[Lpintithimy = e it i > 0
c(z) = !

and define the normalized R-matrix

norm __ C(Z)&(Z)ilRuniv

l,m,e l,m,e*

We remark that R0 (v @ vy) = ¢(2)(vm @ vp), that is PO is not the identity on the

1m,e
tensor product v; ® vy, of ¢-highest weight vectors if im > 0.
For t € Zsg, let us define a U(e)-linear map P W@ WL — WL @ Wi a
in Section 4.3.1. Namely, put € = @55 for &k > 0 such that V;llﬂ’lrt) # 0. Take a
U(€)-highest weight vector vo(l, m,t) of Vglﬂ’lz D] nWERWre (and so in WPE@Wps,

identifying W= = tt%( ’s) CWPE) that corresponds to the one in its crystal base at

q = o0. Then we choose a projection Pt for e = € normalized by
7)1‘%7m<vo(l7 m, t/)) - (5t,t/7j0(m7 la t)7

and the one for € = €, € is obtained by truncation from €.

Now we ask for the spectral decomposition

fe(2) =Y pe(2)P,

>0

for pi(z) € k(z). The strategy is similar with the case of polynomial representations:

we prove the irreducibility of generic tensor products of two fundamental g-oscillator
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

representations, which implies that the truncation preserves the normalized R-matrix.
Then we lift the known spectral decomposition of the normalized R-matrix R}z, i.e. for

finite-dimensional fundamental representations.
Let us first prove the irreducibility of Wi¢(z) @ Wiyt (y) for generic x,y € k* in the

le

case of € = €. From here to the proof of Theorem 5.3.7, we put n =a+b+ 1 and r = a
as in Section 5.1.

Let [,m € Z be given. We shall find all U (€)-highest weight vectors u; of WP*(z) ®
W (y), and then establish a connection between them under the action of U(€).

Set [ = max{l,m}, l = min{l, m} and

lo ifly>0
L= max{—ll, lg, 0} - _ll if ll < 0
0 if iy > 02> 1,

Equivalently, L is the smallest nonnegative integer such that [y + L > 0 > [y — L. Then

the tensor product decomposition (5.2.3) becomes

Wlosc(x) ® WﬁfC(y) — V(l) ® V(m) =~ @ V(l1+L+i’l2_L_i). (531)

i=—L

Let us write v; = |m), v,, = |m’) for m, m’ € (Zs,)". Put
vh, = Im+a(e, +e.41)) @ [m' +b(e, + e,41))
for a,b > 0 and

Im +a(—e 41+ ey2)) @M +b(—e.p1 +e42)) ifla>0
lm+a(e,_; —e,)) ® |m' +b(e,_1 —e,)) if 11, <0

Ua,b =

for a,b > 0 with a + b < L. Note that Ugfo = U ® Uy

Lemma 5.3.4. The U(€)-highest weight vector u; of Y +Ltil=L=i) jp Jpose () @05 (y)

s given by
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(1) fori >0,

W — i ) : ~(ml+2i—2kny Im| + i+ 1 — K][i +1 — K] o
2 [ I T+ #I )]

§=0 k=1

(2) for =L <i < —1,

o e

j=0

Proof. 1t is straightforward to verify e,u; = e, 1u; = 0, while eju; = 0 for k £ 0,7, r + 1
O

is clear.

Next, we describe how the U (€)-highest weight vectors are related under the U(e)-

action. Put

F* = (erq1- - ensen_1)(er_1 - e261)e,
E+ = fO(fl e fr—2fr—1)(fn—1 e fr+2fr+1)7
er(€ria engtn1)(er1---ezer)eq iflp >0

er(€rs1 -+ €noen_1)(€r_o---e2e1)ey if I3 <0,

Jo(fi -+ frmafrot)(fam1 -+ frogsfrgo) fr i1 >0
Jo(fr-- frosfro)(fu1 - fraaforr) fr i1 <0,

The following lemma can be proved by a direct computation as well.
Lemma 5.3.5. In W*(z) @ W(y), we have the following identities.
(1) Fora,b> 0,

+.+ |m|—2b—1, +
Fru Vap = ?J%b+1+$q Vat1,b>

Etv), = —a o+ |Ulllavg i, —y b+ ml] Doy,

(2) Fora,b>0 witha+b<1L,
Fog, = —yllm| = blug,,y — 2™ [ll] — alog

T 7, -1 =1
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

E v, = _x_l[a]v;l,b - y_lq_|l|+2a[b]va_,b—1-

Using the identities, we show that all the u (€)-highest weight vectors are generated

from ug, for generic x,y.

Lemma 5.3.6. For generic x,y € k*, we have
(1) fori >0, Fru; € K*usyq +kfou; + (i # O)kfr@)ui,l,
(2) for =L <i <0, whenly >0, F~u; € k*u;—y + kfrqu; +6(i # O)kfﬁ)luiﬂ,
(3) for =L <i <0, whenl; <0, Fu; € kK*u;—y + kf_qu; + 6(i # O)]kfﬁ)lu”l.

More precisely, if we regard x and y as indeterminates, then the coefficient of u;41 in

F*u; is a nonzero polynomial in x and y.

Proof. We only prove (1), leaving the other two to the reader. Considering the classical

decomposition (5.3.1) and weights, we can write

F+Uz‘ = Z Cffr(k)uiﬂ—k

k>0

for some CF € k. First, one can verify by a direct computation that
X Fu; = [2[Jm] + 4] [i] (yg ™2 — 2" u

which implies C¥ = 0 whenever k > 2, and also the identity

o 2)(lm + il

|m|—2i+1 xqmﬂ).
E (1] + |m| + 2¢ + 1)[|I] + |m| + 2i]

(yq

Next, by comparing the coefficients of 1)2_0 of both sides of
erFru; = —CH|I| + |m| + 2i]u; — C2[|I| + |m]| + 2i + 1] frui_1,
we obtain a formula for C}. Then we substitute C}, C? in

F+uz~ = CZQUZ'_H + C’Z»lfrui + C’ffp)ui_l
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with the obtained formulas, and then compare the coefficients of Ui++1,0’ to conclude that

C? is a nonzero polynomial in z,y (regarded as indeterminates). O

Theorem 5.3.7. For generic x,y € k*, the tensor product Wp*°(x) @ W(y) is an

irreducible U (€)-module.

Proof. Taking a nonzero U (€)-submodule K of W¢(z) @ W(y), we claim
(1) K contains ug = v; ® vy,
(2) wp generates WP*(z) @ W(y) for generic z, y.

We first prove (1). Since Wo¢(z) @ W<(y) is semisimple over U(€), K contains a U (€)-
highest weight vector, say w;.

Suppose —L < ¢ < —1. We first observe that E~ u; is a nonzero scalar multiple of u; 1.
Indeed, that E~u; # 0 can be verified by computing the coefficient of v, ; ; in E™u;,
using Lemma 5.3.5. Since E~u; has the same weight as u;41 and W (z) @ W (y)
is multiplicity-free over U (€), to conclude it remains to check that e;E~u; = 0 for all
j € I'\ {0}. Actually, it is enough to do it for j =r,r+1ifly >0o0r j=r,r—1ifl; <0
by a weight comparison. If [, > 0, then

_ k. — k1
e B u = folfi - frafro1)(famr o frasfroe) —— i

q9—q

=—[l+m+i+2fo(fr froafr-1)(fa1 - frrsfrr2)ui = 0,
er1 B u = erp1 fo(fr o froafoot)(fam1 oo frasfrgo) frs = E-eppqu; = 0.

The case [; < 0 is similar. Consequently, u;,1 € k*E u; C K, and so uy € K. One can
do analogously in the case i > 0, arguing with E*u;.

Provided uy € K, an easy induction proves that u; € K fori > 0 (resp. —L <i < —1),
thanks to Lemma 5.3.6 (1) (resp. (2)). This completes the proof of the irreducibility. [

Theorem 5.3.8. For ¢ = €, €, €, the tensor product W (x) @ Wit (y) is an irreducible
U(e)-module for generic x,y € k*.

Proof. Since WP¥(x) = V(w,44), if 0 <7 +1 < N and zero otherwise, the irreducibility

l,e

in the case € = € is well-known [58].
For the remaining case € = ¢, first identify
Wre (x) @ W (y) C Wi (z) @ Wire(y)

l,e
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

as a vector space. Given a nonzero v € Wpe(xr) @ Wyt (y), we can find a nonzero
v € Wre(x) @ Wit (y) by applying finitely many FE;j, F;y (for i < r) or E;_y, F; (for
i > r) for some i's with ¢; = 1. Since Wp¥(z) @ Wyt (y) is irreducible, v generates
WP () @Wie (y) and in particular, all the classical components YEFTET (1> 0). Again

by the irreducibility of plitth=h , the submodule generated by v contains all Ve(ll+t’l2_t),
namely Wi¢(z) @ W (y). O

Therefore, the normalized R-matrix

o WEE (1) @ Wikt (22) — (21, 22) @yt sy W () @ WiE(21)

l,m,e

is uniquely characterized as the k|2, 2] @ U (¢)-linear map satisfying RIO™ (v, @ v,,) =

l,m,e
c(2) (v @ vy).

Lemma 5.3.9. For € = € or €, we have

tte ( norm) — norm

€ l,m,€ l,m,e’*
Now the spectral decomposition follows from the argument in Section 4.2.2.
Theorem 5.3.10. For e = € or €, we have

1— q\l m|+22

R%nfl ZH q|l m|+2i Pl’m (532>

t>0 i=1

up to a scalar multiple. Here the coefficient of Pé’m 15 understood to be 1.

Remark 5.3.11. In the proof of Theorem 5.3.7, we have seen that EFu; is again an

highest weight vector u;+;, up to a nonzero scalar multiple. Hence it is possible to directly

norm
l,;m,e>

compute the spectral decomposition of R see [74, Theorem 7.12] for example.

5.3.3 Fusion construction of irreducible ¢-oscillator representa-

tions

We apply the fusion construction to fundamental g-oscillator representations to obtain a

family of irreducible representations in the category (505676.
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

Given [y, 1y € Z, suppose ¢1, ¢y € k* are such that ¢;/co ¢ q'll_l2|+2Z>°. According to
the spectral decomposition (5.3.2), we can specialize the normalized R-matrix to obtain
a U(e)-linear map

Ry )e(er, 2) = Rigige(er/ea) : Wi(er) @ Wini(ea) — Widea) @ Wiki(er).

lo.e I, e
Let P be the set of pairs (I, ¢) such that
() l=(l,....l)) €Z* and ¢ = (c1,. .., c;) € (k*)* for some £ > 1,
(2) ci/c; ¢ qlli7lil+22>0 for all i < j.

For (I,¢) € Pt with ¢ > 2, we define a U(¢)-linear map

Rl,e ( ) WOSC ( ) WOSC ( ) — WObC ( ) WOSC ( )

lle ly,e ly,e l1e

by taking the composition of R, ;) (ci, c;) associated with a reduced expression of the
longest element of G,.

Note from (5.3.2) that R (c,c) is a nonzero scalar multiple of the identity map on
(We(e))®?. Although Ry9™ is not rationally renormalizable, we may argue as in the

proof of Theorem 4.2.13 to prove an analogue for g-oscillator representations.

Theorem 5.3.12. For (1,¢) € PT¢, the image of Ry .(c) is an irreducible representation

i Ogsec unless it is zero.

We put
We(l,c) = imR; (c)

and when ¢ = 1, W.((l1), (c1)) == W% (c1). Again, it is not easy to determine exactly
when W, (1, ¢) is nonzero in general, but we have the following criterion as in the case of

polynomial representations.

Proposition 5.3.13. Let ¢ = €, € or €. For (I,¢) € PT°°, W.(l,c) is nonzero if I" €
P(GL)(c_e,), where I™ denotes the rearrangement of l into a weakly decreasing sequence.

In particular, W.(1, ¢) is nonzero for all sufficiently large a,b.

Proof. First suppose € = €. The assumption It € P(GLyg)(c_ ) ensures that 0 < I; +a <
a+ b for all i, so that Wi"¢(¢;) = V (@i, 4a)c,- If we let w; be a dominant extremal weight
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

vector of V(@ 4a)c;, then Ry is normalized so that it maps w; ® w; to w; @ w;. In
particular, R;z(c) maps wy ® -+ - ®@ wy to wy ® - - - ® wy and so We(l, ¢) # 0.

For the cases € = € or €, we take € = e®*0*h for k > 0 such that " € P(GL)=.
The above argument tells us that W=(I, ¢) contains a classical component Vg generated
by wy ®---®w;. By Theorem 5.2.14, Vg C Wke(l, ¢) as well. One can directly check that
V' wf(VL) so that We(L,¢) # 0, and again by Theorem 5.2.14 we have W,(l, c) #
0. O

5.3.4 Correspondence of irreducibles and super duality

Since truncations to €, € preserve fundamental g-oscillator representations and normalized

R-matrices, we finally obtain the following correspondence.

Theorem 5.3.14. For € = € or €, we have
tes(We(l, e)) = We(l, c).

Therefore, We(l, ¢) interpolates the finite-dimensional irreducible U’ (g[a 4p)-module
We(l, ¢)? and the irreducible g-oscillator U, (al, +p41)-modules We(I, c) if they are nonzero.

To sum up, we have the following diagram

~ ~
Oosc, € Oosc,E

in which irreducible g-oscillator representations and irreducible finite-dimensional repre-
sentations correspond naturally. In the spirit of super duality, we expect that the trun-
cations trg, tvg between the categories @OSC,E and @osc,e' for € = €, € become equivalences
of categories, after taking a suitable limit of € and €.

As an evidence, we propose an exact sequence which should be viewed as a T-system

for g-oscillator representations. For [ € Z, s € Z>, and ¢ € k*, we introduce KR-type

3 Although the condition of P+:°5¢ on spectral parameters is stronger than the one of P, every finite-
dimensional irreducible module can still be obtained as We(l, ¢) for some (I, ¢) € PT05¢.
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modules in (’A)OSC@

Whs

osc

() =Well.e), L=(l.....1), e=(cg™,....cq%c).

Note that the corresponding irreducible representation in @OSC; is indeed the KR module
Ws(lj T), which implies the following classical irreducibility via truncation.
Proposition 5.3.15. As a U(€)-module,

V) if (1) € P(GLs) (rnr)

0 otherwise.

I

Wi (c)

Clearly, Wi (c) is nonzero if and only if (I°) € P(GLs)(n—r), as can be seen from

Proposition 5.3.13 as well. In particular, W2%:(c) # 0 for any s > 1.

0osc

Conjecture 5.3.16. There exists a short exact sequence in @OSC:

0 — W) @ Wi t(q™?) — W) @ Whi(g™?) — @ Wiig™) — 0.
U'=14+1

The corresponding exact sequence in 603(33 is the usual T-system of quantum affine al-
gebras (Proposition 4.3.15). We will give the proof for the base case s = 1 in Section 6.2.2,
and we expect that the general case can be proved by an induction in s.

Indeed, the known T-system for quantum affine algebras tells us via truncation that
the classical decompositions of the tensor products in the sequence match. Moreover,
from the known denominator formula for tensor products of KR modules (see e.g. [85]),
one can prove using Theorem 5.3.12 that the tensor products W4 (1) @ Whi—1(g=2) and

’ _ . . . . .
QX W's(q~!) are irreducible. Hence, it remains to construct nonzero U (e€)-linear maps

i}v_}ii;e composition vanishes, for which induction is expected to work.

Finally, we conclude this chapter with asremark on the corresponding category of
U(e)-modules, for € = €,p5. Recall from Section 5.1 that in the classical picture, the equiv-
alence between the category of oscillator representations and the one of finite-dimensional
representations is obtained by two super dualities, and a module category of gl, = gl,, is
at the middle of them (see (5.1.6)).

Observe from definition that besides € =€, WpL® is finite-dimensional as well, and zero

if [ > b. Moreover, the proofs in Section 5.2.2 can be repeated with ¢ = ¢ (¢' = ¢ in
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CHAPTER 5. OSCILLATOR REPRESENTATIONS OF U,(gl,)

Theorem 5.2.14), thanks to the following classical duality.

Theorem 5.3.17 (|23, Theorem 3.3|). There exists a (gl,p, GL¢)-bimodule structure on
(W)L with the following multiplicity-free decomposition into simple bimodules decom-
position

wet= @ V@ Ve

)\GP(GLz)(577E+)

Consequently, we obtain the category 6osc,€ of g-oscillator representations of U(e),
which are in fact finite-dimensional due to the finite dominance condition on weights.
More specifically, if one restricts to the subalgebra corresponding to gl, (rather than gl?),
then the irreducible g-oscillator representations V' are exactly the duals of the irreducible
polynomial representations, namely those of nonpositive integral weights.

Therefore, our study of g-oscillator representations is somehow dual or complemen-
tary to the one of polynomial representations in Chapter 4. At this stage, it is hard to
investigate the structure of tensor products of a polynomial representation and a dual of
one, for instance as it is not semisimple even over the finite type subalgebra (cf. [99]).
Nevertheless, it should be an interesting problem to understand this unique structure of
tensor products of representations of quantum affine superalgebras, under the philosophy

of super duality.
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Chapter 6

Proofs

6.1 Chapter 4

6.1.1 Proof of Lemma 4.2.6

In this section we prove Lemma 4.2.6. The proof consists of direct calculations as indicated
in [1, Lemma B.1], but we give details for the reader’s convenience as it is little more
involved.

We claim that there exists an exact sequence of the following form for each ¢ > 2:

0 — Wel) % Wiq'™) @ Wier(@) = Weerla) @ Wiela'™) =5 Wi (1) — 0,
(6.1.1)
for some U(e)-linear maps ¢y and ¢, and R = RI5™ (¢7*). Recall from Theorem 4.2.10

that
1 — z¢*

12(z) =P+ P, (6.1.2)

z—q"
which is equal to P; when z = ¢~*.

We may assume that €; = 0. Indeed, the result for arbitrary e follows by choosing
€ > e with €] = 0 and truncating the exact sequence (6.1.1) for € to €, keeping Proposi-
tion 4.3.2, 4.3.4 and Lemma 4.3.5 in mind.

Recall that when €, = 0, the U(e)-highest weight vectors of V.((¢)) and V,((¢ — 1,1))
in the decomposition Wi (z) @ Wi—1.(y) = Ve((¢)) @ Vo((¢ — 1,1)) are given by

le) @ [(€—1)er), Je) ®[(€—2)er +ez) — "' |ez) ® (L — 1)er) (6.1.3)
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respectively. On the other hand, when €; = 1 the highest weight vectors become more
complicated, which is the reason why we assume €; = 0.
Let us define v, and 15 by

Y1 (jm)) = Z ley) ® |m — ey) ([mk] H qmj>

1<k<n k<j<n

o (lm) ® |eg)) = |m + ey) H g

k<j<n

for [m) and 1 < k < n. Here we also understand |m) = 0 whenever m ¢ Z7 (¢) . Note
that when € = (1), 1; and v, coincide with the maps in [1, Lemma B.1| up to a constant

multiple.
Lemma 6.1.1. The maps 1, and ¢ are U(e)-linear.

Proof. Since the proof is rather straightforward, let us show that ¢y commutes with e;
(1 € I), and leave the other details to the reader.

Case 1. Suppose that ¢ € I \ {0}. First we have

eitbr [m) = " [my] [[ ¢ e (Jex) @ [m — ex))

>k
= > [l L a™ mii]ler) ® m — e+ e — e
k#i,i+1 i>k
+ [mi] H q" [mip1 — 1] ]eir1) ® [m + €; — 2e;41) (6.1.4)
J>i+1
m; —my; mit1—1
+ [mig] H q" g g led) © lm—eipg)
J>i+1
+[m] [ ¢ [mii]le:) ® lm —eip)
i>i

Let (%) denote the sum of last two terms, that is,

() = [mia] T] ¢ a7 ™y " en) @ m — e + [my] [ [ @™ [miga] le:) @ [m — e;41) .
j>it1 >

Suppose first that e; [m) = 0. Note that e; |m) = 0 if and only if m;,; = 0 or m;,; # 0,

m; =1 =¢. If myz; =0, then e;4y jm) = 0. In the other case, |m — e, + €, —e;,1) is
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nonzero if and only if k£ =1i. So (6.1.4) is equal to
m; m; —my; Mit1—1
() = i) TT @™ (Imid ™= + a7 g2 ) les) @ Jm — eiia).
j>it1

Since

[mz] qmi+1 + qi—miq;?rflfl _ [1] qm¢+1 + (_q)qﬁ?l*l

)@+ (gt i e =0,

g+ (—q)(=¢1)° if €11 =1=mj41,
— 0,

we have e;11 |[m) = 0 = 1y¢; |m) whenever ¢; jm) = 0.

Next suppose that e; [m) # 0 (necessarily m; 1 # 0). We have

Yre; lm) = [m; ] [m +e; —ejp)

= [Miy1] Z [my,] H q" |ex) ® |m — e +€; — e;41)

ki, it1 >k
+ i) iy = 1] T a7 leinn) ® [m = 2ei0 +ey)
>i+1
+ [mi] [mi+ 1 [ [ ™ lei) © jm — ei1) -
Jj>i
It is equal to (6.1.4) if
(%) = [Mmga] [ms + 1] q! quj le;) ® |m —e;q) . (6.1.5)
J>i

Indeed, we have two possibilities: either m; = 0 or m; # 0 with ¢; = 0. In the first case,

we have

(%) = [mi1] H q" 'qzﬁ?lil &) ® [m —e;11),
J>it1
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and the product can be written as

m.i _1 .
mipmt _ JIsid™ a7 it e =0
[T av-ai =57

j>itl [Lisipia™ if €1 =1=m4y.
=[[am-a"
>
which implies (6.1.5). In the other case, as [[,.;,,¢™ - ¢iy7 " 1= = T1,5:4™ - q7* by the

same reason, we have

=TT ot led © hm = esia) [musa] (il g +a7™)
J>i

=Tam - a e ® Im = esir) [ms] [mi + 1].

j>i

Hence (6.1.5) holds.
Case 2. Suppose that ¢ = 0. The proof is similar except that we should consider

spectral parameters. First, we have

eovr|m) =3 [mi] [Ta™eo (lex) @ Im — ex))

i>k
=3 ] [ ¢ i) lex) ® [m — e, + €, — 1) - q
k#£1,n i>k
+ [my] qui mq —1]]e1) ® |lm — 2e; +e,) - ¢
7>1
+ ] [T @™ - 4™ " lew) ® [m — e1) - ¢
7>1

+ [mn] [mu] len) @ [m —ey) - q.
Note that since ¢ = ) m;, we have in the third term above

qu] Qn m1 1q1 —¢ q—mlq q;nl 1(].

j>1

Similarly we have

Yreg | m) = [my] ¢ [m +e, —e;) -1
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=[ma] > [m] [ ™ - qlex) ® lm — ey, + e, — e1)

k£1,n J>k
+ ] [y — 1 [ [ ¢™ - qler) ® |m — 2e; +e,,)
i>1

+ [ma] [mn + 1] le,) ® lm —ey) .

Now the same argument applies as in Case 1. If ¢y jm) = 0, then either m; = 0 or m; # 0
with m, = 1 = ¢,. In the first case, we clearly have ¢;ep |m) = epi); [m) = 0. In the
latter case, we have

eotr m) = [mu] ([ g +¢7™ (=¢7) "¢ ) len) @ Im —e;) = 0

1—-mq ,m1—1

as ¢ —qq q vanishes regardless of ;.

Next, if eg J[m) # 0 and m4 # 0, then again we have ¥ eo |m) = ety |m) since

my] (0 + ¢ ™gm! if m, =0
[mu] ([ma) g+ ¢ ™ q, "¢ q) = ] (044 ql_ q_) s
[ma] (M) g+ g™ g ™ g™ 'q) if m, #0, €, =0

= [mq] [m,, + 1].
This completes the proof. n
Lemma 6.1.2. (1) 1 is injective and R o 1p; = 0.
(2) 1y is surjective and 1y 0 R = 0.

Proof. (1) It is clear that 1, is injective since v, is nonzero and W (1) is irreducible.
By definition, we have 11 (|le;)) = C'le;) ® |(¢ — 1)e;) = C'vy for a nonzero constant
C (6.1.3). The U (e)-highest weight vector vy is sent to zero by R since R = P; by (6.1.2).
This implies that R o ¢; = 0.
(2) Since 19 is nonzero and W, (1) is irreducible, it is surjective. Note that vy =
(0 —1)er) ®|ea) —q|( —2)e; + e2) ® |er) generates ImR, which is isomorphic to V' ((£—
1,1)). Since 19(ve) = 0, we have 15 0 R = 0. O

Lemma 6.1.3. The sequence (6.1.1) is ezact.
Proof. By the previous lemmas and the universal mapping properties of Ker and Coker,
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we have the following commutative diagram of U (e)-modules:

Wgﬁ(l) — 0

|

0 — KearR —— Wi(2) @ Wi_1.(y) = Wi1.(y) @ Wi () — CokerR — 0

A

[

0 — Wg,e(l)

Hence two vertical arrows are isomorphisms. This implies that (6.1.1) is exact. O

6.1.2 Proof of Theorem 4.3.13

We assume that ¢ < n. Put F = ]-";E. We first show that

st Hi(g*)-mod C'(e) (6.1.6)

Mﬁﬁ- V®Z ®H¢(q2) M

is an equivalence of categories, almost following the arguments in [16, Section 4.3—4.6].
The exception is a part of Lemma 6.1.5 that uses the even Serre relation, which is replaced
here with a more direct computation not involving Serre relations.

The following easy lemma is essential for the later argument.
Lemma 6.1.4 (¢f. [16, Lemma 4.3]).

(1) Let M be a finite-dimensional Hy(q?)-module. If v € V®* has nonzero components

in each isotypical component of Jo(M), then the k-linear map

M —— V®Z ®Hz(l]2) M = %(M) 3

mr———— v®@m
18 1njective.

(2) Let {v;:=|e;) |i=1,...,n} be the standard basis of V. If iy,... iy € {1,...,n}
are distinct, then the Z/D{(e)-module V& s generated by a single vector vy, @ - - @ v;,.

In particular, the vector satisfies the condition in (1).
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We first prove that JF is essentially surjective. Suppose that W € C(e) is given.
By Theorem 3.2.5, there exists a Hy(¢?)-module M for which W = J,(M) = V* @ M
as a U(e)-module. We shall extend the Hy(¢2)-action on M to H(¢?) so that W =
VO Q2 M 2 V" Qompr(g2) M as a U(e)-module.

For1<j</{setvd) =0, - ® Vj @V, QUi @ -+ - @ vp. Regarding Vet @, (q2) M
as a U(e)-module, the weight of fy (’U(j) ® m) isé+---+0,€ P. As

{vi, ® - ®@w;, |1 <iy,... 1 < are distinct} (6.1.7)
is a basis of (V®£)61+---+55’ we can write as
fo (v(j) ®m) = Z(Uh ® - ®v;,) @ my, (6.1.8)

i

where the sum is over i = (i, . .., %) such that v;, ®- - -®uv;, belongs to (6.1.7), and m; € M.
In fact, considering the Hy(q¢?)-action by R in Theorem 3.2.5, for each i = (iy,...,%) in
(6.1.8), there exists h; € Hy(g?) such that

Uz'1®"'®vig:<U2®"‘®Uj®U1®Uj+1®"‘®W)hi-
Hence (6.1.8) is reduced to
fo@P @m) = (1@ - @, Qv @V ® - ®@v) @, (6.1.9)

for some m’ € M. By Lemma 6.1.4, such m’ is unique. Therefore we obtain a k-linear
endomorphism o € End(H,(¢?)) sending m to m/. Considering eg-action instead yields

ozj. So we have

eo (V9 @m) = (Aj(en?) @ a(m) = Y (Aileo)o?) @ af (m),

1<4<8

fo (0 @m) = (A;(fo)o) @ a; (m) = Y (Ailfo)v?) @ a; (m),

1<i<e

(6.1.10)

where A;(eg) and A;(fy) are given by

Ai(eo) = 1% @ eg @ (kg "),
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Az(fo) _ kg@i—l ® fO ® 1®€—i7

acting on V®’. Note that A;(eg)v?) = 0 unless i = j. Indeed, v in (6.1.10) can be
replaced by arbitrary v € V&£,

Lemma 6.1.5. For v € V® and m € M, we have

cov@m) =Y (Aj(eo)v) @ af (m),

1<j<t

folo@m) =" (A;(fo)v) @ aj (m).

1<j<t

Proof. We only prove the case for fj, since the other case is similar. Take v = v;, ®---®uv;,.
If none of i; is equal to n, then A;(fo)v = 0 for any j. On the other hand, we have
fo(v@m) = 0 since &;, + -+ + §;, — 8, + &; is not a weight of V. Hence the identity
holds.

For each pair of sequences

=i <jo< <), V=01<gi<---<3js)

in {1,...,¢}, which are disjoint, let VU4) be the subspace of V¥’ spanned by vectors of
the form vy, ® --- ® v, where iy, =1 (1 <t <r), iy =n (1 <t <s)andi; # 1,n for
others. Clearly V¥ = VUd) | so that we may prove the identity for v in each VU4,

In addition, it is enough to check the identity for v = v;, ® --- ® v;, € V) with
no vy, ..., U,_1 appearing more than once, due to Lemma 6.1.4(2) (with respect to the
subalgebra of Z/{(e) generated by e;, f; and kI fori = 2,...,n— 1). There is always such
a vector since £ < n.

We shall prove the identity by induction on s. We start with s = 1, and use induction
on r. The case when r = 0 and s = 1 has already been done when we define osz with
v =),

Suppose that it is true for r — 1. Choose v = v;, ® - -+ ® v;, € VU4 such that only
Vs, ..., Up_1 appear as a factor of v without repetition (which is possible as s, > 1). Let
v’ be the vector obtained from v by replacing the last vy (that is, v;,) by vq so that v has

one less v; than v. By our choice of v, e;v" = v. Then we compute as

folv@m) = foer(vV @m) = ei fo(v @m) = e Z (A;(fo)v') ® o (m)

J
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=e (ql|{t|t<wt<ﬁ}|v”) ® a, (m)
J1
_ q;|{t|t<r,jt<]'1}| (611)”) & O‘jz (m)
— |t |t<r, <y —5(jr<j! S g _
=q H | t<r, j <J1Hq1 3(Jr<41) [<1®]r 1 Qe ® 1®Z gr)vu] ®Oéji(m>
—[qt]t<r, 5e<di . i _
= q ‘{ t 1}‘ [(1@]7 1 Qe ® 1®€ j,)U//:| ® O-/ji(m)

= (8 (fo)v) @z (m) = > (8;(fo)v) ® aj (m).

J

Here the third equality follows from induction hypothesis on r, v” is the resulting vector
of replacing (the unique) v, factor of v" by vy, the last equality holds since v has exactly
one v, factor, and 6(P) is 1 if the statement P is true and 0 otherwise.

Now assume the result for s—1 and let us prove it for s > 2. Choose v = v;, ®- - -®v;, €
VYUi) such that v,_; does not appear as a factor of v and for each i = 2, ..., n — 2, v;
occurs at most once (which is possible as s > 2). We shall compute [e,_1, fn_1] fo(v @ m)
in two different ways.

We first have

1-s s—1
4,  — 4,
len—1, fu-1] folv @m) = Wfo(v@)m), (6.1.11)
-1
since [e,_1, fu_1] = % and the weight of fo(v ® m) is

> b+ 56, + 01 — O

ir#En—1n

Next, by similar arguments for (6.1.9), fo (v ® m) can be written as a sum of vy ® my
for some my € M and vx = v, ® -+ ® v, with none of vy, is equal to v,_;. Hence
fn-1fo (v ®m) =0 and so

[en1, fn1] fo(v@m) = —fu1en 1 folv@m) = = fr1 foen—1(v @ m). (6.1.12)
We first compute
s—1,11

eno1(v@m) = (en1v) @m = (g5 0" + g2 + -+ 0%) @m,

where v"? is obtained from v by replacing j,-th factor (which is v,) by v,_1. The vector
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v"P has one less v,,’s than v, so that the induction hypothesis deduces

foen—1 (v®@m) ZQfL Pfo(v"? @m) = Zq Z (Ae(fo)v™") ® ay (m).

By definition of A.(fo),

qz*1*5(u>l))q;|{k|jk<t}|v//,p,u if t = j! for some u # p,

Ai(fo)o"? =

0 otherwise.

where v”"P* is obtained from v"? by replacing j.-th factor (which is v,) by v;. Since any

nonzero v""P* has exactly one v,,_1,
famrfoens W@ mM) = fos Y a7 Z (A(fo)v"?) @ o (m)
p:

s
-3 [ e o)
p=1

wép

s
_ Z qif un 1—38(u>p) \{k|3k<1u}|qul+5(u<p) Pyt ® Oéjj’l (m)]
= Luz#p

where v* is obtained from v by replacing j,-th factor (which is v,) by v;. Now for
1 <wu < s, the coefficient of v" ® a, (m) is

Zq I{klak<Ju}| 1— p+zq 1I{’~ﬂ|Jk<Ju}| 2-p

p<u p>u
u—1
_—Hklik<iu}l § : s—p u—2 1— }: s—p—lgu—1,1-
=q dpn dpn p+ dyn P 4, 4 P

17
—\{k|Jk<Ju}| qu-l—u 1-2p _ qn q |{kﬂk<Ju}q7z] __qq_nl °
n n

Finally, combining the computation of (6.1.11) and (6.1.12) we obtain

g—q" g—q"
fo(v®m)=W[fn 1, €n—1] fo(v@m) = an 1foen—1 (v ®m)
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Z i, (fo)u ®O‘ =

t

At fo ®04t< )

l
=1

since Ay (fo)v = ¢“ ¢ ki< e and A +(fo)v = 0 for t # ji. This completes the

inductlon. ]

Now, we define
Xilm:oz;c(m) (me M, 1<j<1). (6.1.13)

J

Lemma 6.1.6. M is an HT(q?)-module with respect to (6.1.13), and W is isomorphic

to V©* ®pa(q2) M as a U(e)-module.

Proof. The proof is almost identical to the one in [16], and we leave it to the reader. [
This completes the proof for essential surjectivity of F.

Lemma 6.1.7. The functor F is fully faithful.

Proof. First, F is faithful since 7, is faithful. So it suffices to show that F; is surjective
on morphisms.

Suppose that F : Fy(M) — Fo(M') is a U(e)-linear map for M, M’ € H(¢*)-mod.
Since J; is an equivalence, there is a Hy(q?)-linear map f : M — M’ such that J,(f) = F.
Since F' is U(e)-linear, egF' (v @ m) = F (eg (v ® m)). The left hand side is equal to

eoF (ve@m)=-ey(v® f(m ZA ep)v ® X, f(m),
while the right hand side is

Fleg(v@m))=F (Z Aj(eo)v ® X,-m> = Z Aj(eo)v @ f(X;m).

J

Now for each ¢, we can choose a vector v( ) so that Aj(eg)v = 0 unless j =4, and at the
same time A;(ep)v is of the form v;, ® --- ® v;,, whose factors are all distinct v;’s. For
example, we may take v(1) = v; ® vy ® - - ® vp. Putting v = v(i) in the above identities,
we obtain X, f(m) = f(X;m) by Lemma 6.1.4. Hence f is HT(¢?)-linear as well. O

Therefore, F in (6.1.6) is an equivalence of categories. Since every simple object in

H(g%)-mod is a quotient of L(a;) o ---o L(a,) for some ay,...,a, € k, where o is a
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convolution product, and F(L(ay) o--- 0 L(ag)) = Wi(a1) ® - - ® Wi (ae), F induces the
equivalence
e H(g?)-mody — Cf(e).

This completes the proof of Theorem 4.3.13.

6.2 Chapter 5

6.2.1 Proof of Proposition 5.3.2

Let us first recall the notion of /-weights of representations of quantum affine algebras. The
quantum affine algebra U} (g[n) has another set of generators xft, kit hi, (i€ IN{0}, t €
Z, s € Z\ {0}) (see [5] for defining relations).

Let ¢ (1 € 1\ {0},k > 0) be the element determined by the following identity of

formal power series in z:

Z Vin?" = kjexp <(q —q") Z hivszs) .
s=1

k=0

AU, (;[n)—module V is called an (-highest weight module if it is generated by an ¢-highest
weight vector v, that is, :L‘;:kl) = 0 and ¢, v = Vv for all ¢ € I\ {0}, k& > 0 and
some scalars W, ;. Collecting those scalars in power series W;(z) = > \Ifijkzk, the tuple
U = (V,(2))ien foy is called the ¢-highest weight of V.

Every (type 1) finite-dimensional irreducible U;(gln)—module is an (-highest weight
module. Conversely, an /-highest weight module is finite-dimensional if its /-highest weight
U = (V;(2))ien foy is of the form

for uniquely determined polynomials P;(z) € k[z] with constant term 1 [16, Theorem 3.3].

Now let us regard W**(1) as a U, (fjln)—module by restriction. We shall prove that v, €
WPse(1) is an ¢-highest weight vector with the ¢-highest weight given in Proposition 5.3.2.
Since z;;v; = 0 for all i € I'\ {0} and ¢ € Z by a weight consideration, the problem is to
compute the action of 9, on v;. To do this, we recall the following lemmas expressing

Vi1 in terms of root vectors Ejs_o,. We refer the reader to [5] for unexplained notations
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and definitions below.
Fix amap o: I\ {0} — {£1} such that o(i + 1) = —o(i) for all i € I \ {0}.

Lemma 6.2.1 (|5, Lemma 1.5]). Fori e I\ {0} and k > 0, we have
Vig = 0(0)*(q — ¢ ki (Brs—ar€s — 4 € Brsa,) -

Lemma 6.2.2 (|46, Lemma 4.3]). Fori € I\ {0} and k > 0, we have

1
qg+q!

Eer1)5—a; = — (Bs—a€iBrs—a; — 4 2€iFs—a,Frs—a,

_Ek6fa¢E6faiei + q72Ek6faieiE6fai) .
Lemma 6.2.3 (|46, Lemma 4.7]). Fori € I\ {0}, we have

Esa, = (=) (i1 en)eir - e2e)eo+ > Ch i (@)ej, - €5,
jl ~~~~~ jnfl

where the sum is over the sequences (ji, . .., jn_1) € I such that Zk L, = Zjel\{i} a;
with j,—1 #0 and C},._ ;. ,(q) € £q*=°.

Proof of Proposition 5.3.2. We claim that v; is an ¢-highest weight vector with the given

(-highest, weight. By weight consideration, z;,v; = 0 for all i € I'\ {0}, ¢ € Z. Let us

show that that v; is a simultaneous eigenvector of 1; ;, with the eigenvalues V; ;, above.
First assume [ > 0. Since eju; = 0 for all j € I\ {0}, we have by Lemma 6.2.3,

Es—o,v1=(=¢" )" (erp1- - €n1)(er1- - €1)equy

= (=¢ )" les + (I + Deri),

and then

1
qg+qt

= 2]( (g )" "I+ 1A+ ¢ ) +q 2 (= )" 21 +2]) le, + (I + Depsr)

[
=(—=¢ )" g M+ —q 1+ 2]) ler + (14 1)eppa)
—(—¢q I)M Y 3|er + (I +1)e 1)

Essa,u1 = — (Bs—a,erEs—a, —q 2, E5_o, + q *Es_a,e:Es5_0,) vy

127 ¥ _'H.I:_ 1-]5 '_.-:_Ii
|



CHAPTER 6. PROOFS

Repeating similar computation and using Lemma 6.2.2, we have
Eps-a,tr = (=1)" (=g )" (g e + (L4 Depia)
and by Lemma 6.2.1

Uror = o(r)*(q — ¢ 1)k, (Ekcifozrer - q_QerEkéfar) Uy
=o(r)*(g—q g g+ (=) (=g )T
O(T)k(qflfl _ ql+1)(_q71>nk(_q7171)kvl.

Thus we obtain

V(o =) rpztor = (q‘l_l — (@ =Y {O(T)(—q_l)"(—q_l_l)z}k) v

k>0 E>1

—1-1 —1-1
-1 I+1 -1y 4 u u+q
= — — _— vy = ———0
(q (4 1 )1 + q—l—lu) Tl "

where u = o(r)(—¢~1)"z. The computation of ¥, () is similar, where we begin from

Es—on i =(—q"")"*(erpa. .. en1)(er...e2e1)equ,

— (=g Dot +ersa)

For i # r, r + 1, it is obvious since Es_,,v; = 0. The case when [ < 0 can be dealt with

by the same computation. O

6.2.2 Proof of Conjecture 5.3.16 for s =1

Recall the sequence to be proved (5.3.16) (with s = 1):

0 — WE2(1) — Wee(1) @ Wee(q2) -5 Wess (g7 @ Wi (q) — 0.

osc

Let ¢ be a linear map defined by

¢ |m) @ m') — =Y ] [Ta™ ™ jm —e;) ® [m + ;)

i<r k<i
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+ 3 ) [T ™ ™ m+e;) @ jm' — ;).

j>r <k

which will be shown below to be a U(€)-module homomorphism. Then 1 is automatically
surjective as its codomain Wy (¢~") ® W (¢ ™) is irreducible by Theorem 5.3.12.

The remaining map is a canonical inclusion, as W42 (1) is constructed as the image of

Ri(q™,1) - W™ (g7%) @ Wi (1) — W™(1) @ W™ (¢7).

Once we show that W52 (1) is in the kernel of ¢ (as a submodule of W¢(1) @ Wrs(¢~2)),

the conclusion follows by comparing the classical decompositions of the modules appearing
in the sequence (see (5.3.1), Proposition 5.3.15). To sum up, the proof now reduces to

showing the following two lemmas.
Lemma 6.2.4. The map v is U(€)-linear.

Proof. Since the proof consists of straightforward computations, let us check only the
following three cases and leave the others to the reader.
Case 1. [th,e,] =0 for 1 < a < r: We compute

el @) =v (T et o)

5 (qm —Mg4q [me] Im — e, + €e441) ® |m/>)
:qmg*m;-&-l [ma]
[~ Bierlim = oot eap)id [l Tk fm — e + ey — ) @ [m' - e)
+Zj>r[ j] H]<k qu Mk |m_ea+ea+1 +e]> X |m/ —e]>

o [ — i Ml Hk<' q(m/ieﬁeaﬂ)kimk Im —e;) ® |m' —e, +e.1 +€)
+ [ma] =L ,_Z ml —m ,
+ 2 oM T ™7™ M+ €)) @ |m' — e, + eq41 — €;)

and
e m m'))) = e - Zz‘gr [m] Hkgi qm;“_mk lm — e;) ® |m + e;)
a(w<| > ® | >)) a <+ Zj>r[m;‘] Hj<k; qmﬁe—mk |m + ej> ® |m/ - ej))

- Z[m] H qmﬁc—mk (q_(m/+ei)a_(m/+ei)a+l [(m —e;)o] m — e, +eqr1 —€;) @ |m’' + ez>>

+[(m' + €;)e) Im —€;) ® m’ — e, + .41 +€;)

i<r k<i

- g e [my) [m — e, + €qp1 + ej) ® [m' — e;)
+2_m [Tam™ ( +[m! , -

j>r j<k o m+e;) ®|m' —e, +e. 1 —ej)
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Let us compare the coefficients of |[m — e,) ® |m’ + e,,1). In the first one, it is

_qm;_m:”l [ma May1 + 1 H qu T — [m:z] [ma] H qm;“_mk
k<a+1 k<a

quk mk( matl o graAmeni =l g ;‘1+q_m&_1>,

k<a

q —q
and in the other,

] [T @7 g e ] — ] [T ¢ [l + 1
k<a+1 k<a

quk mg (_ + q —2mg41—1 qmﬁLJrl + quﬁlfl>
k<a

q—q‘1

and so they are the same. Other coefficients are easier to check, so we omit them.

Case 2. [, e.] = 0: Let us compare

e (lm m))) — —qm;+m;+1+1[mr][mr+l] |m_er_er+1>®‘m/>
der(jm)  m'))) w( B TR )

= - qm;+m;+1+l[mr] [mrJrl]
—Yl(m —e, — e, ) [[gmk ™)k Im — e, — €41 — €;) @ [m' +¢;)
i<r k<i
+ 0[] T g mmermers)i m — e, — e, + €;) ® |m’ —e;)
j>r <k
— [my][my 4]
— 2 [mi] [Tgt™ e m — e;) @ |m' — e, — €41 + )
i<r  k<i
+Z[(m/ e, — er+1)j] Hq(m’_er—er+l)k—mk |m + ej> ® ‘m/ —e, — e — ej>
j>r i<k

and

e m m’))) = e - Zz‘gr[mi] Hkgi g Im — ;) ® |m + e;)
r(¢(| > & | >)) r (+ Zj>r[m;‘] H]’<k qufmk |m + ej> Q |m, . ej>)
=> [mi] [Jamm

i<r k<i
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(g (m — ), [my] [m — e, — ey — ) @ [ + ;)
+[(m' + €;),][m; ] [m —e;) ® |m’' — e, —e, 11 + &)

- S [

J>r i<k

+[m;~][(m/ - ej)r+1] |m + ej> (9 |ml +e +e, — ej>

. (qm,rﬂm,_e“““[mm<m ) M — e — ey + ;) @ - ej>>

First, the coefficient of |m — e,) ® |[m’ — e,41) in the former is

=" el o] [T @+ il Jime] [ Lo e

r+l<k k<r
Since |m) ® [m') € (WP*)®?, we have 3, (mj, —mg) = >, (m), — my) so that
H qufmk _ qmr+1fm;+1 qukfmk
r+l1<k k<r

Hence the above coefficient can be rewritten as

r+1 quk my ( mh+2my41+1 _'_qm r+1 + q -1 qu’Tfl>
-9 k<r

and similary the one in the latter is

[mr] H qm;—mk [m; + 1][m;+1] - [m;-i—l] H qm;—mkqm’r+m’r+1 [mr] [mr—f—l + 1]
k<r r+l<k

7“+1 quk my < m!+1 qugfl . qm;+2m7.+1+1 + qm;fl)
N k<r

respectively, which are equal. The other coefficients are done as follows:

e lm—2e, —¢€.,1)®|m +e,):

qm;.+m;.+1+1 [mr . 1] [mr] [mr—H] H qm; —mkq
k<r

= [m,] [ [ a7 ™o e 2 m, — 1fmy ],
k<r
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e m—e —€41—€)R|m' +e) (i#7r):

g e ) fm]fm] [ [ o™ = [ lmg]mea]g et T

k<i k<i

e m+e )@ m —e. —2e.4) :
[ ][ ][ — H g = [ml ][]y — H g,
r+l1<k r+l1<k
e m+e)Rm —e —e41—¢€;) (jF#r+1):

[ )y )] T T ™ = [y ][] T T a7,

Jj<k i<k
e m—e —e41+e)m —e;) (jFr+1):

m;+m;+l+1[mr J[myial[m H qu ™ = ;] H qm;“_mIC [m][m4],

i<k i<k

q

m-—e)Qm—e.—e.+e) (i #7r):

mh—my __ m) mk
[ r 7“+1 ml Hq k ml Hq k r r—i—l]

k<i k<i

Case 3. [, eq] = 0: Taking care of spectral parameters, we obtain

t(eo(jm) ® jm’))) = (

q—mll—m;l—l |m +e + en> ® ’m/>
+¢ % |m) ® |m’ +e; +e,)

S [(m+e; + e, [[¢mmtertens i m + e +e, —e) ® |m’ + e;)

_ el -1 i ki
q +Z[m9]nqm§€—(m+e1+en)k |m+el +en+ej> ® |m/_ej>
Jj>r i<k
=S [Tt jm — e) @ [ + e + e, + 1)
+ qu i<r k<i
+_[(m' + e + )] [[ g™ oo Im + ;) @ Im’ + e + e, — €;)
J>r j<k
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and
m —mg _
eo(t(jm) ® |m’)) — il mz Hm ¢ m — ;) @ [m + e;)
+Z]>r j<k‘q £ m + e;) @ [m! _e]>
z<r Z k<i +q ! |m_el> ‘m/+el +en+ei>
+ S T g m ey ey o) @ m' —ej) )
o i<k ¢ 'm+e;) @ m' +e +e, —e)

The coefficient of |m + e,,) ® |[m’ + e;) in the former is

/

—m},—1 —2mq—m/,—3 mh,—1 —mj,—3
—q +qm +gml =g

—g T g 4 1) 4 P ml, + 1] =

while the one in the latter is

_q—mil—3 + q—2m1—mfn—3 + qm’n—l _ q—m’n—l
q—qt

/ /
my—m

n2gml g7 ml) =

/
mi—my

—[malq q

Y

which coincide. The other coeflicients are easier:

U /

o m+e +2e,)®m' —e,) : ¢ my] = [m),]q”

mi—m}+1 q72
)

e m+te +e,+e)@m —e;) (j#n):

—m/—m! || m, —m / || m), —my —mh—m! —2
q 1 n— q k k — [mj] q k kq 1 nTe,

i<k i<k

o Im—ey)®|m' +2e +e,) g [mulg™ g = [a]g™ Mg
e m—¢e)®|m'+e +e,+e€) (1 #1):
i [Ta™ ™ q = [mi] [T g™ ™ q",
K<i k<i
e m+e +e,—e)@m +e) (i#1):

! —m! —1 ’_ 1 r_ —m! —m! —2
g ] quk gl = [my] quk My gmmy—mi, =2
k<i k<i
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e Imte)@m tete, o) (j#n) :

-2 m;] H qm;—mkq _ [m;] H qmﬁc—mkq—l‘

j<k j<k
UJ

L2 (1) is isomorphic to VI as a U (e)-
module, it is generated by the ¢ (€)-highest weight vector u_; € W<(1) @ W(q~2) as

a submodule. Thus it is enough to prove the following statement.

Recall the notations from Section 5.3.2. Since W52

Lemma 6.2.5. ¢)(u_r) = 0.

Proof. Let us check it when [ > 0 (so that L = 1), leaving the other case | < 0 to the

reader. Recall from Lemma 5.3.4 that u_; = Z 0 Apu

ol—p where

Up_,l—p - |(l )eT+1 +per+2> ® |per+1 + (l )er+2>

R ()

k=1

By definition of v, we have

(v, ) =Pld ™ |1 = p+ Deri1 +peri2) @ |(p — Derr + (I — p)eria)
+ [ =pl (I =plers1+ (p+ 1)ersa) @ perpa + (I — p— 1)e,io)

and then

l
—l) = ZAP1/}(U])_,Z—p)
p=0

l
A +1 [—2p—2
S (AP 0 e+ (04 Deres) @ persn + (1 — p— Dera)
+Ap[l_p]

as desired. ]
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