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Abstract

We propose a new approach to the study of representations of quantum affine (su-
per)algebras, motivated from super duality. Namely, we study a category of interest
by finding its bosonic or fermionic counterpart, and then construct supersymmetric ana-
logues and functors to interpolate bosons and fermions. A key role is played by R-matrices
and their spectral decompositions, which enables a uniform treatment for super and non-
super cases.

In this thesis, we consider two module categories of quantum affine (super)algebras
of type A. First, the category of polynomial representations is studied, where a uniform
approach is possible thanks to the powerful Schur–Weyl-type duality. We construct a
functor that directly relates the category for quantum affine algebras to the one for su-
peralgebras, and lift it to an equivalence between inverse limits of categories.

Second, we introduce a category of infinite-dimensional representations called q-oscillator
representations, whose irreducible objects naturally correspond to finite-dimensional ir-
reducible representations. Since the former can be seen as a bosonic counterpart of the
latter, we explain the correspondence by introducing an analogous category for quantum
affine superalgebras. In the spirit of super duality, the connection provided by the super
analogue is expected to give rise to an equivalence of categories.

Key words: Super duality, quantum affine algebra, general linear Lie superalgebra, R-
matrix, Schur–Weyl duality, oscillator representation
Student Number: 2017-22587
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5.3.1 Category Ôosc,ϵ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.2 R-matrix and spectral decomposition . . . . . . . . . . . . . . . . . 104
5.3.3 Fusion construction of irreducible q-oscillator representations . . . . 110
5.3.4 Correspondence of irreducibles and super duality . . . . . . . . . . 112

6 Proofs 115
6.1 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.1.1 Proof of Lemma 4.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1.2 Proof of Theorem 4.3.13 . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.1 Proof of Proposition 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.2 Proof of Conjecture 5.3.16 for s = 1 . . . . . . . . . . . . . . . . . . 128

Abstract (in Korean) 142

iii



Chapter 1

Introduction

Quantum groups, more specifically quantizations of universal enveloping algebras of Kac-
Moody algebras, have arguably been one of the most significant and interesting objects
in modern mathematics. They appear as hidden yet fundamental algebraic structures in
various branches of mathematics, such as mathematical physics, combinatorics, number
theory, harmonic analysis, algebraic geometry and noncommutative geometry.

Among Kac-Moody algebras, the best-understood class is formed by affine Lie alge-
bras. Their importance stems from an interplay between two completely different descrip-
tions: as an infinite-dimensional analogue of complex semisimple Lie algebras, and as a
central extension of loop algebras. While the same applies to quantum affine algebras, an
extra structure called a universal R-matrix arises as a result of quantization, which is a
characteristic of quantum groups.

The original motivation of Drinfeld [28] and Jimbo [47] to introduce quantum groups
was to find a systematic method to obtain solutions, R-matrices, of the celebrated Yang–
Baxter equation

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v)

in pursuit of integrability in (1+1)D quantum field theory. A specific model is realized
by a tensor product of finite-dimensional representations of a quantum affine algebra, to
which the universal R-matrix applies to produce an R-matrix in a uniform manner. Since
the ubiquity of the Yang–Baxter equation is a source of the wide occurrence and utility
of quantum groups, it is no surprise that R-matrices have played an essential role in the
representation theory of quantum affine algebras.
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CHAPTER 1. INTRODUCTION

1.1 Quantum affine superalgebras

Lie superalgebras are Z/2Z-graded generalizations of Kac-Moody algebras, introduced by
Kac [48] as a uniform approach to bosons and fermions. Accordingly, quantum affine
superalgebras arise from supersymmetric integrable systems and related R-matrices [87].
Moreover, it has recently been recognized that their variants associated with psl(2, 2)

realize the S-matrix of string worldsheet in the context of AdS/CFT correspondence [6]
or the R-matrix of deformed Hubbard model [90].

Despite rising interests, finite-dimensional representations of quantum affine superal-
gebras are much less understood than those in non-super cases. Since introduced, they
have been studied mainly in connection with integrable models [3, 6, 87], hence limited
to specific representations. It is only recently that a systematic study has begun: for
type A quantum affine superalgebra Uq(ĝlM |N), obtained are a classification of the finite-
dimensional irreducibles [96]; fundamental representations and simple tensor products
[98, 99]; asymptotic limit of Kirillov-Reshetikhin modules, Q-operators and generalized
Baxter’s TQ relations [100, 101]. This success is due to the existence of a Drinfeld real-
ization [94] and an RTT presentation [98] for Uq(ĝlM |N), which are not known in general.

In non-super cases, two different presentations of quantum affine algebras provide us
two different perspectives on finite-dimensional representations. The Drinfeld realization
[29] is a quantum version of the loop algebra realization of affine Lie algebras, and the
associated highest weight theory is a suitable framework for finite-dimensional represen-
tations. Especially the corresponding character theory, called q-characters [34], has been
studied by various methods and leads to a number of significant developments, which
include the T -system [37,68,82] and a generalization of Bethe ansatz equations and Bax-
ter’s TQ relations [32]. We remark that the aforementioned works on quantum affine
superalgebras by Zhang are also in this vein.

More familiar Drinfeld–Jimbo presentation allows one to utilize powerful tools from
the representation theory of quantum groups, such as crystals and canonical bases. The
pioneering work is [58], establishing fundamental results on the structure of tensor prod-
ucts of fundamental representations in terms of singularities of normalized R-matrices (see
Section 2.2.2). Although it made use of heavy tools most of which are yet unavailable for
superalgebras, the idea has been refined and developed to yield remarkable results, most
notably Schur–Weyl-type duality functors [51] and a monoidal categorification of cluster
algebras [60,62].
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CHAPTER 1. INTRODUCTION

Under both approaches lies the R-matrix, and the absence of it is one of critical
difficulties in the representation theory for quantum affine superalgebras. Indeed, Zhang’s
works relied to a degree on explicit computations and specific modules, and a uniform
approach is still desirable. Moreover, no direct relation to non-super theory has been
known, other than that they arise as special cases M = 0 or N = 0.

1.2 Super duality

Several difficulties in representation theory of quantum affine superalgebras already appear
in the classical theory. For instance, the Weyl group of a Lie superalgebra is too small to
control the representation theory, and so many results for integrable representations of Lie
algebras cannot be directly generalized to super cases. Already a fundamental problem
of finding finite-dimensional irreducible characters took 20 years to be solved, in a rather
non-elementary way through the Kazhdan–Lusztig theory involving geometry of super
Grassmannians [89] or categorification of quantum group representations [10].

Super duality [20,21] is a novel and powerful approach to the representation theory of
Lie superalgebras. Roughly speaking, super duality views a representation of g and the
corresponding one of g as the fermionic and the bosonic aspects of the same representation
of g̃, respectively. This gives an explicit connection between representations of g and g

via the ones of g̃, and hence provides a useful viewpoint to super representation theory.
Typically, a super duality is based on a triple of parabolic Bernstein-Gelfand-Gelfand

categories: Ogn of a Lie (super)algebra gn, Ogm of the corresponding Lie (super)algebra
gm, and the one Õg̃m+n

of the intermediating Lie superalgebra g̃m+n. They are connected
by truncation functors T and T from Õg̃m+n

to Ogm and Ogn , which are given explicitly by
picking out only bosons and fermions, respectively. Super duality asserts that at infinite
rank limit m,n→∞, T and T become equivalences of highest weight categories:

Õg̃∞

Og∞ Og∞

Ogm Ogn

T
≃

T
≃

Tm Tn

(1.2.1)

3



CHAPTER 1. INTRODUCTION

where Tm, T n are truncations to finite ranks.
To illustrate it, let us explain briefly how super duality solves the irreducible character

problem for gN := glM |N , the general linear Lie superalgebra. Recall that in a parabolic
BGG category OgN of gN := glM+N , the problem is solved by Kazhdan–Lusztig theory:
once we compute a transition matrix between the basis of irreducible modules and the one
of parabolic Verma modules in OgN , an irreducible character can be written as a linear
combination of parabolic Verma characters, which are easy to compute.

Let OgN be a category of finite-dimensional glM |N -modules, and Õg̃2N a certain module
category over glM |2N associated with a non-standard choice of a Borel subalgebra. Iden-
tifying glM+N and glM |N with subalgebras of glM |2N , the truncations T and T are defined
in a natural way and induce functorial connections between the categories which become
equivalences after an infinite rank limit N →∞. This completes the above diagram.

Since the transition matrix gets stabilized as N →∞ and truncations preserve simples
and Vermas, the same matrix solves the problem in the limit category Og∞ , and hence
in Og∞ through T ◦ T−1. Applying TN , we obtain a solution for OgN , that is the finite-
dimensional irreducible characters of glM |N in terms of KL polynomials (from OgN ) and
Verma characters (of glM |N).

The same strategy works to lift various properties of OgN to OgN , or vice versa.
Consequently, we understand that finite-dimensional representations of glM |N behave as
infinite-dimensional representations of glM+N in a BGG category, rather than as finite-
dimensional’s as naively expected. This gives a conceptual explanation on difficulties in
super theory, and tells us how to overcome them (see the introduction of [21]).

1.3 Main results

Throughout this thesis, q is assumed to be an indeterminate. Let ĝlM |N = glM |N⊗C[t, t−1]

be the affine Lie superalgebra (or the loop superalgebra) associated with glM |N . The aim of
this thesis is to understand representations of the quantum affine superalgebra U ′

q(ĝlM |N)

of type A. The approach we take here, motivated from super duality, is rather new and
gives a way to understand representations of quantum affine superalgebras in connection
with those of quantum affine algebras.

More precisely, let U(ϵ) be the generalized quantum group of affine type A associated
with a (01)-sequence ϵ with M 0’s and N 1’s, which recovers the usual quantum affine
algebra of type A when M = 0 or N = 0. We study representations of the generalized

4



CHAPTER 1. INTRODUCTION

quantum group U(ϵ) when M ̸= N , and relate module categories of U(ϵ) and U(ϵ′) for a
subsequence ϵ′ of ϵ, including non-super cases. Since there exists an algebra isomorphism
between U(ϵ) and U ′

q(ĝlM |N) (up to mild extension), our study is naturally related to the
one of quantum affine superalgebras.

Two module categories are to be considered. First, the category of polynomial repre-
sentations is especially parallel to the non-super cases thanks to a Schur–Weyl-type du-
ality, and we are able to establish a super-duality-type equivalence between the category
for generalized quantum groups and the one for quantum affine algebras. The other is the
category of q-oscillator representations of Uq(ĝln), whose irreducible objects naturally cor-
respond to irreducible finite-dimensional representations through super analogues. Since
q-oscillators can be seen as bosonic counterparts of finite-dimensional representations, it
is expected that there exists a super duality for the correspondence. Below we explain
the results in more details.

1.3.1 Generalized quantum groups

Generalized quantum groups U(ϵ) are Hopf algebras over Q(q), which are not super but the
parities are implicitly encoded by ϵ. When ϵ is homogeneous, that is ϵM |0 = (0, . . . , 0) or
ϵ0|N = (1, . . . , 1), U(ϵ) recovers U ′

q(ĝlM) or U ′
−q−1(ĝlN), respectively. In general generalized

quantum groups do not quantize U(ĝlM |N), but still arise as symmetry algebras of certain
R-matrices. Those R-matrices are obtained by 2D reductions of solutions of a tetrahedron
equation (a 3D analogue of the Yang–Baxter equation) [70].

Although U(ϵ) is not really the same as the quantum affine superalgebra, it is closely
related to. Indeed, we provide an algebra isomorphism between U(ϵ) and U ′

q(ĝlM |N)
1,

after a mild extension, which gives rise to an equivalence between module categories.
This equivalence is not a priori monoidal since the isomorphism does not respect comul-
tiplications. Nevertheless, we expect that representation theories of U(ϵ) and U ′

q(ĝlM |N)

are intimately linked. For example, weight space decomposition is preserved under the
equivalence, and so is the usual character.

Using the algebra isomorphism, we prove the existence of the universal R-matrix for
U(ϵ) by defining a nondegenerate Hopf pairing (cf. [78]). This is a main advantage of
U(ϵ) over U ′

q(ĝlM |N) that allows us to adopt the methods in the representation theory of
quantum affine algebras to the one of U(ϵ).

1The definition of U ′
q(ĝlM |N ) implicitly depends on ϵ, see Definition 3.1.4.

5



CHAPTER 1. INTRODUCTION

1.3.2 Super duality for polynomial representations

Let C(ϵ) be the category of finite-dimensional U(ϵ)-modules with polynomial weights.
For usual quantum affine algebras U ′

q(ŝln), every irreducible object in this category can
be obtained as a quotient of a tensor product of fundamental representations V (ϖi)x

(i = 1, . . . , n− 1, x ∈ Q(q)×). Moreover, V (ϖi)x can be realized as an affinization of the
i-th q-exterior power of V (ϖ1), the natural representation of Uq(sln).

More precisely, the fusion construction [56] of an irreducible representation is imple-
mented by taking the image of a composition of normalized R-matrices

Rnorm
V (ϖl),V (ϖm)(z1/z2) : V (ϖl)z1⊗V (ϖm)z2 −→ Q(q)(z1/z2)⊗Q(q)[z±1

1 ,z±1
2 ]V (ϖm)z2⊗V (ϖl)z1 ,

a U ′
q(ŝln)-linear map that satisfies the Yang–Baxter equation. As explained, it is well-

known that the poles of Rnorm
V (ϖl),V (ϖm)(z1/z2) in z1/z2 contain much information on the

structure of V (ϖl)z1 ⊗V (ϖm)z2 . Therefore, roughly speaking, the category C(ϵ0|n) is gen-
erated by fundamental representations {V (ϖi)x} and its monoidal structure is determined
by their normalized R-matrices.

Accordingly, our study of C(ϵ) for general ϵ begins from the construction of fundamen-
tal representations and R-matrices for U(ϵ). We introduce the l-th fundamental represen-
tation Wl,ϵ(x) of U(ϵ) (l ∈ Z≥0) from the l-th q-supersymmetric (encoded by ϵ) power of
the natural representation W1,ϵ.

The universal R-matrix for U(ϵ) gives rise to the normalized R-matrix

Rnorm
l,m (z1/z2) :Wl,ϵ(z1)⊗Wm,ϵ(z2) −→ Q(q)(z1/z2)⊗Q(q)[z±1

1 ,z±1
2 ]Wm,ϵ(z2)⊗Wl,ϵ(z1)

and we compute its spectral decomposition, that is the formula

Rnorm
l,m (z) =

∑
t∈Hϵ(l,m)

t∏
i=1

1− q|l−m|+2iz

z − q|l−m|+2i
P l,mt

where P l,mt is a projection to the irreducible component Vϵ((l + m − t, t)) of Wl,ϵ(z1) ⊗
Wm,ϵ(z2) ∼=Wm,ϵ(z2)⊗Wl,ϵ(z1) over the finite type subalgebra Ů(ϵ).

The key observation is that the coefficients in the spectral decomposition of Rnorm
l,m for

U(ϵ) is independent of ϵ. In particular, the set of poles of Rnorm
l,m remains the same for

any choice of sufficiently large ϵ (so that Hϵ(l,m) is stabilized), including ϵ = ϵ0|N . This

6



CHAPTER 1. INTRODUCTION

suggests that the monoidal category C(ϵ) has a similar structure for any ϵ. For example,
following the argument of [60] we prove that the composition of specializations (whenever
defined) of normalized R-matrices

Rϵ(l, c) :Wl1,ϵ(c1)⊗ · · · ⊗Wlt,ϵ(ct) −→Wlt,ϵ(ct)⊗ · · · ⊗Wl1(c1)

has simple image or zero, which is a super analogue of the fusion construction.
Indeed, such a heuristic can be made more precise, by introducing a super analogue of

a generalized quantum affine Schur–Weyl duality functor [51], an exact monoidal functor

Fϵ : R-gmod −→ CZ(ϵ) ⊂ C(ϵ)

for a quiver Hecke algebra R of type A∞. Here CZ(ϵ) is a monoidal Serre subcategory of
C(ϵ) that is an analogue of the Hernandez–Leclerc subcategory for quantum affine algebras
[41]. The functor allows us to analyze CZ(ϵ) uniformly in ϵ, in terms of the representation
theory of quiver Hecke algebras.

Now we explain this similarity in the context of super duality. We introduce a trun-
cation functor trϵϵ′ : C(ϵ) → C(ϵ′) for a subsequence ϵ′ of ϵ. The truncation preserves all
the ingredients above, namely fundamental representations, R-matrices and their spectral
decompositions. In particular, trϵϵ′ is compatible with the duality functor Fϵ, in the sense
that trϵϵ′ ◦ Fϵ ∼= Fϵ′ naturally.

Decomposing CZ(ϵ) =
⊕

ℓ≥0 CℓZ(ϵ) by degree and Fϵ =
⊕

ℓ≥0F ℓϵ , we can identify F ℓϵ
with a super analogue of the quantum affine Schur–Weyl duality functor in [17]. As in
non-super cases, this functor can be shown to be an equivalence whenever ℓ < M+N , and
hence trϵϵ′ is also an equivalence on the degree ℓ components for every ϵ, ϵ′ whose lengths
are larger than ℓ.

It can be interpreted as a super-duality-type equivalence as follows. Let ϵ∞ = (ϵ1, ϵ2, . . . )

be an infinite (01)-sequence with infinitely many 0’s and 1’s. Taking an ascending chain
of finite subsequences ϵ(k) of ϵ∞, we can define CℓZ(ϵ∞) as the limit of an inverse system(
CℓZ(ϵ(k)), trϵ

(k)

ϵ(k−1)

)
k≥1

and CZ(ϵ∞) =
⊕
CℓZ(ϵ∞). Similarly we obtain CZ(ϵ∞) and CZ(ϵ∞)

with respect to ϵ∞ and ϵ∞, the subsequences of ϵ∞ consisting of 1’s and 0’s from ϵ∞

respectively. Then truncations induce equivalences of categories S0|∞ and S∞|0 that fit

7



CHAPTER 1. INTRODUCTION

into the following diagram, and hence a super duality:

CZ(ϵ∞)

CZ(ϵ∞) CZ(ϵ∞)

CZ(ϵn|0) CZ(ϵ0|n).

S∞|0

≃
S0|∞

≃

(1.3.1)

Since any (01)-sequence ϵ is a subsequence of ϵ∞, we have a truncation trϵ : CZ(ϵ∞)→
CZ(ϵ) as well. Therefore, we can lift known properties of the category CZ(ϵ0|n) (of poly-
nomial representations of U ′

q(ĝln)) to the one C(ϵ) for quantum affine superalgebras. Two
examples are given: the T -system for Kirillov–Reshetikhin-type modules and a descrip-
tion of the Grothendieck ring of CZ(ϵ).

1.3.3 Oscillator representations and super duality

As another manifestation of the super duality philosophy in the representation theory of
quantum affine algebras, we introduce a category Ôosc of q-oscillator representations2 of
U ′
q(ĝln). They are infinite-dimensional in general and so not much of structures have been

studied so far, except through a general study [36, 80] (which is at its earliest stage) on
the affinization Ô of a BGG category, containing Ôosc.

On the other hand, Ôosc is generated by fundamental q-oscillator representations
Wosc

l (x), which can be seen as another bosonic analogue of finite-dimensional fundamental
representations V (ϖi)x. In the virtue of super duality, this alludes that they would show
similar behaviors with finite-dimensional representations, and such an analogy can be ex-
plained by considering super analogues of q-oscillator representations and truncations.

Let us first explain the classical picture. Take n ≥ 4 and fix 2 ≤ r ≤ n−2. There exists
a (glr+(n−r), GLℓ)-duality on a tensor power of a bosonic Fock space S(Cr∗⊕Cn−r)⊗ℓ. The
irreducible gln-modules occurring in this space are infinite-dimensional highest weight rep-
resentations, and called oscillator representations [44]. Thanks to the duality, they form
a semisimple monoidal category Oosc whose Grothendieck ring structure is determined by

2We remark that they are different from the q-oscillator representations [2] related to Baxter’s Q-
operators, which are infinite-dimensional representations of the Borel subalgebra Uq(b) and also referred
as prefundamental representations [40]. See also Remark 5.3.3.
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CHAPTER 1. INTRODUCTION

the branching rule of GLℓ.
If we consider instead a fermionic counterpart Λ(Cr∗⊕Cn−r)⊗ℓ, it is actually isomorphic

to the ℓ-th power of the usual exterior power Λ(Cn) of the natural representation Cn of
gln. It still carries a duality between finite-dimensional representations of gln and GLℓ,
and hence more familiar category F of finite-dimensional polynomial representations of
gln can be understood from the representations of GLℓ in the same way as above.

In summary, we have two (gln, GLℓ)-dualities with the same one ends, and hence
the category Oosc and F are simultaneously controlled by the same representation theory.
Moreover, one is obtained from the other by switching bosons and fermions. This strongly
indicates the existence of super duality, which is indeed true but intricate.

The second goal of this thesis is to establish a quantum affine version of such a cor-
respondence. For this, we begin from constructing a q-analogue of oscillator representa-
tions. This is performed by investigating a decomposition of tensor powers of q-deformed
bosonic Fock space Wosc. Indeed, they are semisimple and their irreducible components
are infinite-dimensional highest weight Uq(gln)-modules, which recover the irreducible os-
cillator representations of gln under the classical limit q → 1.

To introduce an affine version, the idea is to replace polynomial representations of
Uq(gln) in the study of polynomial representations of U ′

q(ĝln), by q-oscillator represen-
tations of Uq(gln). Let Ôosc be the category of U ′

q(ĝln)-modules that are direct sums of
irreducible q-oscillator representations over Uq(gln), and we call the objects in Ôosc the
q-oscillator representations of U ′

q(ĝln).
Then we can adapt the methods above for polynomial representations to q-oscillators.

We construct fundamental q-oscillator representations of U ′
q(ĝln) and normalizedR-matrices

on their tensor products, and compute the spectral decomposition. Since the classical de-
composition of tensor products of two fundamental q-oscillator representations are not
of finite length, there is no well-defined notion of denominators. Still, it is possible to
consider poles of coefficients in the spectral decomposition, and the fusion construction
can be justified.

By fusion we obtain a family of irreducible objects in Ôosc that naturally corresponds
to the one of finite-dimensional irreducible U ′

q(ĝln)-modules. This correspondence can be
made more direct by introducing a super analogue of q-oscillator representations.

Motivated by super duality, we take an alternating (01)-sequence ϵ = (0101 . . . 10),
and repeat the above constructions over U(ϵ) to obtain a category Ôosc,ϵ of q-oscillator
representations of U(ϵ). Then truncation functors from Ôosc,ϵ to Ôosc, and to a category

9
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Ôosc.ϵ of finite-dimensional representations of U ′
q(ĝln) connect irreducible q-oscillators and

finite-dimensional irreducible representations of U ′
q(ĝln), through interpolating irreducible

q-oscillator representations of U(ϵ). In conclusion, we obtain the following diagram

Ôosc,ϵ

Ôosc Ôosc.ϵ

trϵϵ trϵϵ

which resembles the super duality diagram (1.2.1). We strongly expect that the truncation
functors become equivalences after taking a proper infinite rank limit, and we propose
several evidences towards a desired quantum affine super duality.

Finally, we remark that oscillator representations arise more naturally in other types.
For example, the spin representations of so2n can be constructed using a Clifford algebra.
If one repeats it with a Weyl algebra, a bosonic counterpart of the Clifford algebra, one
obtains the oscillator representations of sp2n [44]. As above, one can establish a pair of
Howe dualities for this spin-oscillator correspondence, which is again nicely explained by
a super duality [21]. Their quantum affine versions are studied in [74,76].

1.4 Organization

This thesis is organized as follows.

• Chapter 2 provides a pragmatic review on Lie superalgebras, quantum affine algebras
and quiver Hecke algebras, focusing on type A case.

• In Chapter 3, we introduce generalized quantum groups U(ϵ) of affine type A. We
give an algebra isomorphism between U(ϵ) and the quantum affine superalgebra
U ′
q(ĝlM |N) in Section 3.1.2. In Section 3.1.3 we use this isomorphism to prove the

existence of a nondegenerate Hopf pairing on U(ϵ), and hence of a universal R-
matrix. We also recall in Section 3.2 basic facts on polynomial representations of a
subalgebra Ů(ϵ) of finite type A from [75,77].

• In Chapter 4 we study the category C(ϵ) of polynomial representations of U(ϵ). In
Section 4.1 we give a quick review on the super duality for polynomial representa-
tions of glM |N . Section 4.2 is devoted to a supersymmetric generalization of impor-

10
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tant constructions in the theory of finite-dimensional representations of quantum
affine algebras U ′

q(ŝln): fundamental representations (Section 4.2.1), normalized R-
matrices with the spectral decomposition (Section 4.2.2), the fusion construction of
irreducible representations (Section 4.2.3) and a generalized quantum affine Schur–
Weyl duality functor(Section 4.2.4). Then we introduce truncation functors to relate
polynomial representations of U(ϵ) and U(ϵ′) for a subsequence ϵ′ of ϵ (Section 4.3.1).
The highlight is a super-duality-type equivalence (Theorem 4.3.28), which is estab-
lished from the equivalence of duality functors at high ranks (Section 4.3.2), and an
interpretation of the infinite rank limit by inverse limits of categories (Section 4.3.3).

• Chapter 5 begins with a brief account on Howe dualities, to motivate oscillator rep-
resentations and associated super duality. We define and study q-oscillator repre-
sentations of Uq(gln) in Section 5.2 with their super analogues, aiming to reproduce
the following two results on polynomial representations: the tensor product decom-
position (5.2.2) and the compatibility with truncations (Theorem 5.2.14). Then we
define the category Ôosc of q-oscillator representations of U ′

q(ĝln), and its super ver-
sion, connected by truncations (Section 5.3.1). Our study of Ôosc is parallel with
the case of polynomial representations. We introduce fundamental q-oscillator rep-
resentations (Section 5.2.1) and normalized R-matrices with a computation of their
spectral decomposition (Section 5.3.2). Again we apply the fusion construction to
obtain a family of irreducible objects in Ôosc (Section 5.3.3). We conclude the chap-
ter with discussions towards a super duality explaining the correspondence.

• Chapter 6 consists of detailed proofs of several results in this thesis.

11



Chapter 2

Preliminaries

In this chapter, we review necessary backgrounds on Lie superalgebras, quantum affine
algebras and quiver Hecke algebras. Since this thesis deals only with type A cases, we
focus on type A and make the exposition as concrete as possible.

In Section 2.1, we recall basic facts on the general linear Lie superalgebra glM |N and its
finite-dimensional representations. Section 2.2 is devoted to (untwisted) quantum affine
algebras and their finite-dimensional representations. Specifically, we concentrate on fun-
damental representations, normalized R-matrices and the fusion construction, which will
be reproduced for quantum affine superalgebras in later chapters. The final Section 2.3 is
on quiver Hecke algebras, as they will play a crucial role in the investigation of polynomial
representations via Schur–Weyl-type duality in Chapter 4.

The following notations will be used throughout the thesis:

• CM |N : a vector superspace whose even part is CM and odd part is CN .

• |v| : the parity of a homogeneous vector v in a superspace V .

• Sn : the symmetric group on n letters.

• P : the set of partitions.

• ℓ(λ) : the length of a partition λ.

• K(A) : the Grothendieck group of an abelian category A.

• k = Q(q), for indeterminate q.

12



CHAPTER 2. PRELIMINARIES

• For n ∈ Z and a symbol x,

[n]x =
xn − x−n

x− x−1
, [n]x! = [n]x[n− 1]x · · · [1]x,

[
m

n

]
x

=
[m]x!

[n]x![m− n]x!
.

When we put x = q, we omit q and just write [n] = [n]q.

• For a k-algebra A, x, y ∈ A and t ∈ k, we define [x, y]t = xy − tyx.

• For a statement P , δ(P ) = 1 if P is true and δ(P ) = 0 if not. As a special case, we
also write δij = δ(i = j).

2.1 General linear Lie superalgebra glM |N

In this section, we recall several basic facts on Lie superalgebras, focusing on the general
linear Lie superalgebra glM |N in order to keep the presentation explicit. Up to a slight
modification, most of statements here remain true for basic Lie superalgebras. See [24,81]
for general introductions on basic Lie superalgebras.

Definition 2.1.1. For a C-vector superspace V = V0⊕V1, the endomorphism superalgebra
End(V ) has a structure of Lie superalgebra by the supercommutator

[x, y] = xy − (−1)|x||y|yx,

called the general linear Lie superalgebra gl(V ).
When V = CM |N , gl(V ) is also denoted by glM |N .

As always, it is convenient to consider a matrix representation of glM |N . Take a
homogeneous ordered basis {ei}i∈I(M |N) of CM |N , indexed by

I(M |N) = {1 < · · · < M < M + 1 < · · · < M +N}

with the parity

|e1| = · · · = |eM | = 0, |eM+1| = · · · = |eM+N | = 1.

Then each element of glM |N can be written with respect to this basis as an (M + N) ×

13



CHAPTER 2. PRELIMINARIES

(M +N)-matrix of the block form (
A B

C D

)
where A and D are M ×M - and N × N -matrices, respectively. The even part (glM |N)0
consists of the matrices with B = C = 0, while the odd part (glM |N)1 of those with
A = D = 0. Note that as a Lie algebra, (glM |N)0

∼= glM ⊕ glN . We also define the
supertrace

str

(
A B

C D

)
= trA− trD

and the special linear Lie superalgebra slM |N is defined as the kernel of str.
For i, j ∈ I(M |N), let Eij denote the element of glM |N with the matrix representation

(Eij)kl = δikδjl with respect to the above basis. Then {Eij}i,j∈I(M |N) is a homogeneous
basis of glM |N .

The Lie subalgebra h of diagonal matrices is a Cartan subalgebra of glM |N , which is
by definition a Cartan subalgebra of the even subalgebra (glM |N)0. Let us take the dual
basis {δi}i∈I(M |N) for h∗ of the {Eii}i∈I(M |N).

As a prototype of basic Lie superalgebras, glM |N has the following structures analogous
to those of finite-dimensional semisimple Lie algebras.

• With respect to the adjoint action, glM |N has the root space decomposition

glM |N = h⊕
⊕
α∈Φ

gα

for some Φ ⊂ h∗, where for α ∈ h∗

gα = {x ∈ glM |N | [h, x] = α(h)x for all h ∈ h}.

• The set of roots Φ = Φ0 ∪ Φ1 is given by

Φ0 = {δi − δj | i ̸= j; i, j ≤M or i, j > M},
Φ1 = {±(δi − δj) | i ≤M < j},

and gδi−δj = CEij. Here the parity of a root α is determined by whether gα ⊂
(glM |N)0 or gα ⊂ (glM |N)1.

14
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• The supertrace form

glM |N × glM |N −→ C

(A,B) 7−→ str(AB)

defines a nondegenerate invariant supersymmetric bilinear form ( · , · ) on glM |N . It
induces a nondegenerate bilinear form h∗ as well, given by

(δi, δj) =


1 if i = j ≤M

−1 if i = j > M

0 if i ̸= j.

Then we also have

(α, α) =

±2 if α ∈ Φ0

0 if α ∈ Φ1.

In contrast, there exist several substantial differences with non-super ones. Especially,
the Weyl group of glM |N is defined to be the one SM ×SN of even part, which is much
smaller than SM+N as expected from its non-super counterpart glM+N . This results in
critical obstructions of the study of representations of Lie superalgebras.

For example, Borel subalgebras are not necessarily conjugate under the Weyl group
action. Recall that from the matrix representation of glM |N above, we get the standard
Borel bstd of upper-triangular matrices. However, if we take another ordered basis {vi}i∈I
of CM |N parametrized by I = {1 < 2 < · · · < M + N} with a different Z/2Z-grading,
then the corresponding matrix representation of glM |N yields another Borel subalgebra
(of upper-triangular matrices) that is not conjugate to bstd.

Indeed, if we have two Z/2Z-grading on I, then the associated Borel subalgebras are
conjugate to each other if and only if two gradings are the same. Thus, the conjugacy
classes of Borel subalgebras are classified by (01)-sequences : a sequence ϵ = (ϵ1, . . . , ϵM+N)

of M 0’s and N 1’s, which assigns Z/2Z-grading on I by |i| = ϵi. In particular, the
standard Borel bstd corresponds to ϵM |N := (0M , 1N). We will use the notation glϵ when
we want to stress the choice of a Borel subalgebra of glM |N associated with ϵ.

Now let us consider finite-dimensional representations of glM |N and see what is different
from the ones of glM+N . Upon a choice of a Borel subalgebra b, one can do the highest
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weight theory for glM |N with respect to b: for each λ ∈ h∗, we construct a Verma module
of highest weight λ, which has a unique irreducible quotient L(b, λ). It is not a priori
clear how much a choice of Borel affects the theory, but the following facts are known (see
[24, Section 1.5, 2.1]):

• For any Borel b, every finite-dimensional irreducible glM |N -module is of highest
weight with respect to b.

• For another Borel b′, L(b, λ) is also of highest weight with respect to b′, and the
b′-highest weight vector (and so its highest weight) can be found by means of odd
reflections.

• L(bstd, λ) is finite-dimensional if and only if λ ∈ h∗ is dominant with respect to the
even subalgebra glM ⊕ glN , that is,

λi − λi+1, λj − λj+1 ∈ Z≥0 for any i = 1, . . . ,M, j =M + 1, . . . ,M +N,

where λ =
∑

i∈I(M |N) λiδi.

On the other hand, the following difficulties are much harder to overcome:

• Linkage is not entirely controlled by its Weyl group SM ×SN .

• Finite-dimensional glM |N -modules are not semisimple in general.

• There is no uniform formula (such as Weyl character formula) for finite-dimensional
irreducible characters.

It is now understood that these originate from a BGG category of gl∞, which is equivalent
to the (limit of) category of finite-dimensional representations of glM |N by super duality.
We do not give here a general account on super duality, and content ourselves with the
one in the introduction. Rather, specific examples that are related to the main results of
this thesis will be given at the beginning of Chapter 4 and 5. We refer interested readers
to [24], and also to [19] for generalizations beyond classical Lie superalgebras.

Remark 2.1.2. There are two classes of finite-dimensional glM |N -modules that exhibit
as nice behaviors as in non-super case. The first one is formed by typical representations
(see [24, Section 2.2]): their highest weights are so special that this small Weyl group
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SM ×SN fully controls the linkages between them, and hence semisimplicity and Weyl-
type character formula can be obtained as in non-super cases.

The second class consists of polynomial representations. They are in resonance with
the representations of symmetric groups in virtue of the Schur–Weyl duality (see [24,
Section 3.2]), and so can be treated uniformly with the ones of glM+N . When we study
quantum affine analogues of polynomial representations in Chapter 4, the corresponding
Schur–Weyl-type duality will be again used in a crucial way.

2.2 Quantum affine algebra

In this section, we first recall the definition of (untwisted) affine Lie algebras and quan-
tum affine algebras. Then we explain several basic constructions [1, 58] which will be
reproduced for super cases in later chapters. For a detailed account on quantum affine
algebras, we refer the reader to recent surveys [14,39].

2.2.1 Affine Lie algebras and quantum affine algebras

Let g be a finite-dimensional complex simple Lie algebra of rank n−1. The corresponding
Cartan matrix (aij)i,j=1,...,n−1 is determined by

aij = ⟨hi, αj⟩ =
2(αi, αj)

(αi, αi)
,

where αi is the simple root, hi the simple coroot and ( · , · ) the (normalized) Killing form
on g.

We define the affine Lie algebra ĝ associated with g by

ĝ = g⊗ C[t±1]⊕ CC ⊕ Cd,

whose Lie bracket is given by

[x⊗ tn + ad, y ⊗ tm + bd] = [x, y]⊗ tm+n + nδn,−m(x, y)C + amy ⊗ tm − bnx⊗ tn

for x, y ∈ g, n,m ∈ Z and a, b ∈ C, and C is central. Then ĝ is an example of the
Kac-Moody algebra of untwisted affine type [49]. Namely, ĝ is the Kac-Moody algebra
associated with the generalized Cartan matrix A = (aij)i,j=0,...,n−1 obtained from the

17



CHAPTER 2. PRELIMINARIES

Cartan matrix for g by adjoining the 0-th row and column:

a0j = ⟨−θ∨, αj⟩ , aj0 = ⟨hj,−θ⟩ (j = 1, . . . , n− 1), a00 = ⟨θ∨, θ⟩

where θ (resp. θ∨) is the maximal root (resp. coroot) of g. It is known that A is
symmetrizable, that is, there exist positive integers1 di (i = 0, 1, . . . , n − 1) such that
diaij = djaji for all i, j.

As a Kac-Moody algebra, ĝ has the weight lattice

P = ZΛ0 ⊕ ZΛ1 ⊕ · · · ⊕ ZΛn−1 ⊕ Zδ

and the dual weight lattice

P∨ = Zh0 ⊕ Zh1 ⊕ · · · ⊕ Zhn−1 ⊕ Zd

paired with P by

⟨hi,Λj⟩ = δij, ⟨hi, δ⟩ = 0 = ⟨d,Λj⟩ , ⟨d, δ⟩ = 1.

Take simple roots
αi =

∑
j

ajiΛj + δi,0δ ∈ P,

and let Π∨ = {h0, h1, . . . , hn−1} and Π = {α0, α1, . . . , αn−1} be the set of simple coroots
and simple roots, respectively. Note that we have δ = θ + α0.

The tuple (A,P,Π, P∨,Π∨) is called a Cartan datum associated with A.

Definition 2.2.1. The quantum group Uq(ĝ) associated with the above Cartan datum
(A,P,Π, P∨,Π∨) is the Q(q)-algebra generated by ei,fi (i = 0, 1, . . . , n − 1) and qh (h ∈
P∨) subject to the following defining relations:

q0 = 1, qh+h
′
= qhqh

′
,

qheiq
−h = qαi(h)ei, qhfiq

−h = q−αi(h)fi,

eifj − fjei = δij
ki − k−1

i

qi − q−1
i

,

1we always choose di so that the greatest common divisor of d1, . . . , dn−1 is 1.
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1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

e
1−aij−k
i eje

k
i = 0

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

f
1−aij−k
i fjf

k
i = 0

for i ̸= j,

where qi = qdi and ki = qhii .
The quantum affine algebra U ′

q(ĝ) is the subalgebra of Uq(ĝ) generated by ei, fi and
k±1
i (i = 0, 1, . . . , n− 1).

The quantum group Uq(ĝ) and the quantum affine algebra U ′
q(ĝ) have a Hopf algebra

structure given by

∆ : qh 7→ qh ⊗ qh, ei 7→ ei ⊗ k−1
i + 1⊗ ei, fi 7→ fi ⊗ 1 + ki ⊗ fi,

S : qh 7→ q−h, ei 7→ −eiki, fi 7→ −k−1
i fi.

Therefore, the category of finite-dimensional modules has the structure of a rigid monoidal
category (see [15, Section 5.1] for definition).

Remark 2.2.2. Let Pcl = P/Zδ be the classical weight lattice, whose dual is given by

P∨
cl = HomZ(Pcl,Z) = {h ∈ P∨ | ⟨h, δ⟩ = 0} =

n−1⊕
i=0

Zhi.

Then the quantum affine algebra U ′
q(ĝ) can be seen as the quantum group associated with

a Cartan datum (A,Pcl, {αi}, P∨
cl , {hi}), where we are abusing notations αi ∈ Pcl. Note

that {αi} is not linearly independent in Pcl, as α0 + θ = 0.
In the study of finite-dimensional representations, it is more natural to use quantum

affine algebras U ′
q(ĝ), rather than Uq(ĝ). Indeed, every nontrivial integrable representa-

tion of Uq(ĝ) is infinite-dimensional [49, Chapter 12]. Responsible is the imaginary root
δ, and so we have to reduce the weight lattice P to Pcl to consider finite-dimensional
representations.

There is another presentation of U ′
q(ĝ) called the Drinfeld realization [4,29], which is a

quantum analogue of the realization of ĝ as a (central extension of) loop algebra g[t, t−1].
This presentation also possesses a triangular decomposition, and the corresponding highest
weight theory is suitable to study finite-dimensional representations of U ′

q(ĝ).
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The weights with respect to the diagonal subalgebra in the Drinfeld realization are
called ℓ-weights. Then the finite-dimensional irreducible representations are ℓ-highest
weight modules and classified by their ℓ-highest weights. Furthermore, the character the-
ory in ℓ-weights, called the q-character [34], plays a fundamental role in the development
of the theory of finite-dimensional representations for quantum affine algebras. Since we
will not pursue this direction in the sequel, we refer the reader to [14] for further expla-
nation.

2.2.2 Finite-dimensional representations of quantum affine alge-
bras

In this section, we take the algebraic closure of Q(q) in
⋃
m>0C((q1/m)) as a base field k,

and define U ′
q(ĝ) over k with the same presentation as above.

A U ′
q(ĝ)-module V is said to be integrable if V has the weight space decomposition

V =
⊕
λ∈Pcl

Vλ, Vλ =
{
v ∈ V | kiv = q

⟨hi,λ⟩
i u for all i

}
and the actions of ei, fi (i = 0, 1, . . . , n−1) on V are locally nilpotent. Note that the second
condition follows automatically when we consider finite-dimensional representations with
the weight space decomposition. Every module in this thesis is assumed to be integrable.

Recall that for λ ∈ P , the integer ⟨C, λ⟩ is called the level of λ. Then the image P 0
cl

of the set P 0 of level 0 weights under the projection cl : P → Pcl can be identified with
the weight lattice of g by

ϖi := cl(Λi − a∨i Λ0),

where a∨i is the coefficient of hi in θ∨. We call ϖi ∈ P 0
cl the i-th level 0 fundamental

weight. It is known that any finite-dimensional integrable U ′
q(ĝ)-module has weights in

P 0
cl.

Let V (ϖi)x denote the i-th fundamental representation of spectral parameter x, for
i = 1, 2, . . . , n− 1 and x ∈ k× [58], which plays the role of a fundamental representation
in the theory of integrable representations of Kac-Moody algebras. For example, every
finite-dimensional irreducible U ′

q(ĝ)-module can be obtained as a quotient of a submodule
of a tensor product of fundamental representations, where the submodule is generated by
the tensor product of dominant extremal weight vectors (or ℓ-highest weight vectors [16]).
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Fundamental representations have various nice properties, such as the existence of
canonical bases with simple crystals. We do not give here a general construction by [58].
Instead, we focus on the type A case [1, Appendix B], where they can be explicitly realized
on the q-exterior powers of the natural representation V (ϖ1).

Example 2.2.3. Let us consider the fundamental representations of type A quantum
affine algebra U ′

q(ŝln).
For 1 ≤ i ≤ n − 1 and x ∈ k×, V (ϖi)x has a basis {bJ} labeled by subsets J of

Z/nZ = {1, 2, . . . , n} of i elements. The action of the generators with respect to this
basis is given by

eibJ =

xδi0b(J\{i+1})∪{i} if i+ 1 ∈ J, i /∈ J

0 otherwise,

fibJ =

x−δi0b(J\{i})∪{i+1} if i ∈ J, i+ 1 /∈ J

0 otherwise,

kibJ =


qbJ if i ∈ J, i+ 1 /∈ J

q−1bJ if i /∈ J, i+ 1 ∈ J

bJ otherwise.

If we set δ1 = ϖ1 and δk = ϖk − ϖk−1 for 2 ≤ k ≤ n − 1, then wt(bJ) =
∑

j∈J δj.
In particular, a weight space V (ϖi)ϖi

is spanned by a single vector b{1,2,...,i} that is an
ℓ-highest weight vector. It is also called a dominant extremal weight vector of V (ϖi), an
analogue of a highest weight vector.

Note that the above description is valid even for i = 0, n, resulting in the trivial
representation. Hence, by convention we also set V (ϖ0)x = V (ϖn)x = k.

Next, we explain the fusion construction, which produces the finite-dimensional irre-
ducible U ′

q(ĝ)-modules as quotients of tensor products of fundamental representations in
a proper order. The key ingredient is the normalized R-matrix, whose construction is to
be recalled now.

For an integrable U ′
q(ĝ)-module V , define the affinization Vaff to be a P -graded U ′

q(ĝ)-
module

Vaff = k[z±1]⊗ V, (Vaff)λ = zk ⊗ Vcl(λ) for λ = ι ◦ cl(λ) + kδ ∈ P
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where ι : Pcl −→ P is defined by ι(cl(Λi)) = Λi. The U ′
q(ĝ)-action is given by

ei = zδi0 ⊗ ei, fi = z−δi0 ⊗ fi, ki = 1⊗ ki.

For any x ∈ k×, we set Vx = Vaff/(z − x)Vaff . In particular, V1 ∼= V and (Vx)y ∼= Vxy. For
example, we have V (ϖi)x ∼= (V (ϖi)1)x and hence compatible with the notation. We also
write Vz := Vaff for indeterminate z.

There exists a k[z±1
1 , z±1

2 ]⊗ U ′
q(ĝ)-linear map

Runiv
V,W (z1, z2) : Vz1 ⊗Wz2 −→ k(z1, z2)⊗k[z±1

1 ,z±1
2 ] (Wz2 ⊗ Vz1)

called a universal R-matrix (see section 4.2.2 for construction). When V = V (ϖi) and
W = V (ϖj), we have distinguished vectors uϖi

∈ V and uϖj
∈ W , the dominant extremal

weight vectors. We normalize Runiv
V (ϖi),V (ϖj)

to

Rnorm
i,j (z1, z2) : V (ϖi)z1 ⊗ V (ϖj)z2 −→ k(z1, z2)⊗k[z±1

1 ,z±1
2 ] (V (ϖj)z2 ⊗ V (ϖi)z1)

uϖi
⊗ uϖj

7−→ uϖj
⊗ uϖi

,

and call it a normalized R-matrix.
It is known that Rnorm

i,j (z1, z2) only depends on z1/z2, and its image is contained in
k(z1/z2)⊗k[(z1/z2)±1] (V (ϖj)z2 ⊗ V (ϖi)z1). Let di,j(z) ∈ k[z] be the denominator of Rnorm

i,j ,
namely the monic polynomial of minimal degree such that the image of dij(z1/z2) · Rnorm

i,j

is in V (ϖj)z2 ⊗ V (ϖi)z1 . If x, y ∈ k× are such that di,j(x/y) ̸= 0, then we can specialize
Rnorm
i,j to obtain a U ′

q(ĝ)-module homomorphism

Ri,j(x/y) : V (ϖi)x ⊗ V (ϖj)y −→ V (ϖj)y ⊗ V (ϖi)x.

We refer to [85, Section 4] for denominator formulas for various quantum affine algebras.
Above all, normalized R-matrices solve the Yang-Baxter equation:

(Rnorm
j,k ⊗ 1) ◦ (1⊗Rnorm

i,k ) ◦ (Rnorm
i,j ⊗ 1) = (1⊗Rnorm

i,j ) ◦ (Rnorm
i,k ⊗ 1) ◦ (1⊗Rnorm

j,k )

holds as a map from V (ϖi)z1 ⊗ V (ϖj)z2 ⊗ V (ϖk)z3 . Therefore, for any w ∈ St, we can
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define without ambiguity the composition

Rw
i1,...,it

: V (ϖi1)z1⊗· · ·⊗V (ϖit)zt −→ k(z1, . . . , zt)⊗
(
V (ϖiw(1)

)zw(1)
⊗ · · · ⊗ V (ϖiw(t)

)zw(t)

)
with respect to any reduced expression of w. If c1, . . . , ct ∈ k× are given such that
dij ,ik(cj/ck) ̸= 0 for all j < k satisfying w(j) > w(k), then we also obtain its specialization
at zi = ci,

Rw
i1,...,it

(c1, . . . , ct) : V (ϖi1)c1 ⊗ · · · ⊗ V (ϖit)ct −→ V (ϖiw(1)
)cw(1)

⊗ · · · ⊗ V (ϖiw(t)
)cw(t)

.

Theorem 2.2.4 ([58]). Suppose that i1, . . . , it ∈ {1, . . . , n − 1} and c1, . . . , ct ∈ k× are
such that dij ,ik(cj/ck) ̸= 0 for all j < k. Then the following statements hold.

(1) V (ϖi1)c1⊗· · ·⊗V (ϖit)ct is generated by uϖi1
⊗· · ·⊗uϖit

, and V (ϖit)ct⊗· · ·⊗V (ϖi1)c1
is cogenerated by uϖit

⊗ · · · ⊗ uϖi1
.

(2) The head of V (ϖi1)c1 ⊗ · · · ⊗V (ϖit)ct and the socle of V (ϖit)ct ⊗ · · · ⊗V (ϖi1)c1 are
simple.

(3) For the longest element w0 of St, the image of

Rw0
i1,...,it

(c1, . . . , ct) : V (ϖi1)c1 ⊗ · · · ⊗ V (ϖit)ct −→ V (ϖit)ct ⊗ · · · ⊗ V (ϖi1)c1

is isomorphic to the head of V (ϖi1)c1 ⊗ · · · ⊗ V (ϖit)ct and the socle of V (ϖit)ct ⊗
· · · ⊗ V (ϖi1)c1. In particular, the image is simple.

Conversely, for any finite-dimensional irreducible U ′
q(ĝ)-module V , there exists a pair of

sequences (i1, . . . , it) ∈ {1, . . . , n − 1}t, (c1, . . . , ct) ∈ (k×)t, unique up to permutation,
such that dij ,ik(cj/ck) ̸= 0 for all j < k, and V is isomorphic to the head of V (ϖi1)c1 ⊗
· · · ⊗ V (ϖit)ct, and so to the image of Rw0

i1,...,it
(c1, . . . , ct).

Therefore, any finite-dimensional irreducible U ′
q(ĝ)-module can be obtained as the

image of a composition of normalized R-matrices on a tensor product of fundamental
representations. This method is called a fusion construction [56], and originates from the
fusion of solvable lattice models in mathematical physics.

Recall from the last part of Section 2.2 that the finite-dimensional irreducible U ′
q(ĝ)-

modules are classified by their ℓ-highest weights. More precisely, finite-dimensional irre-
ducibles are in bijection with dominant ℓ-weights, which are by definition (n− 1)-tuples
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(Ψi(z))i=1,...,n−1 of rational functions in z such that

Ψi(z) = qdegPi

i

Pi(zq
−1
i )

Pi(zqi)
, for some polynomial Pi ∈ C[z] with constant term 1.

For example, the fundamental representation V (ϖi)x corresponds to

Pj(z) =

1 + o(i)(−1)hq−h∨xz if j = i

1 otherwise,

where h (resp. h∨) is the Coxeter (resp. dual Coxeter) number of ĝ, and o(i) = ±1 is
chosen so that o(i) = −o(j) whenever aij < 0 [84, Remark 3.3].

If V and W are ℓ-highest weight U ′
q(ĝ)-modules with the ℓ-highest weight vector v and

w respectively, then v ⊗ w ∈ V ⊗W is of ℓ-highest weight, whose ℓ-weight is equal to
the (componentwise) product of the ones of v and w. Hence, if one knows the ℓ-highest
weight of the given finite-dimensional irreducible U ′

q(ĝ)-module, then one can easily find
the pair of sequences in the above theorem.

Example 2.2.5. We continue to consider the type A example. Observe that V (ϖi) is
already irreducible over Uq(sln) with highest weight ϖi. Then as a Uq(sln)-module, the
tensor product decomposition is given by

V (ϖl)⊗ V (ϖm) ∼=
min{l,m}⊕

t=max{l+m−n,0}

V (ϖl+m−t +ϖt),

where V (λ) denotes the irreducible highest weight representation of Uq(sln) of highest
weight λ (in the right hand side, we understand ϖ0 = ϖn = 0).

Since the normalized R-matrix Rnorm
l,m (z1/z2) is also Uq(sln)-linear, by Schur’s lemma

we can write it as

Rnorm
l,m (z1/z2) =

min{l,m}∑
t=max{l+m−n,0}

ρl,mt (z1/z2)P l,mt

for some ρl,mt (z) ∈ k(z), where P l,mt is a projection from V (ϖl) ⊗ V (ϖm) to the direct
summand V (ϖl+m−t + ϖt) of V (ϖm) ⊗ V (ϖl). This expression is called the spectral
decomposition of the normalized R-matrix, and known to contain much information on
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the structure of V (ϖl)x ⊗ V (ϖm)y.
The coefficients ρl,mt (z) are given in [27]:

ρl,mt (z) =

min{l,m}∏
i=t+1

z − (−q)l+m−2i+2

1− (−q)l+m−2i+2z
, (2.2.1)

from which one obtain the denominator formula

dl,m(z) =

min{l,m}∏
i=max{l+m−n+1,1}

(1− (−q)l+m−2i+2z)

=

(1− (−q)|l−m|+2z)(1− (−q)|l−m|+4z) · · · (1− (−q)l+mz) if l +m ≤ n

(1− (−q)|l−m|+2z)(1− (−q)|l−m|+4z) · · · (1− (−q)2n−l−mz) if l +m > n.

In general, the denominator is much easier to compute than the spectral decomposition.

2.3 Quiver Hecke algebra

Quiver Hecke algebras or Khovanov-Lauda-Rouquier algebras are vast generalizations of
the affine Hecke algebra of typeA. They were first introduced by Khovanov-Lauda [65] and
Rouquier [88] independently to categorify the negative half of quantum groups. Since then,
there have been growing interests and studies on quiver Hecke algebras, their cyclotomic
quotients (which categorify integrable highest weight modules) and representations.

More recently, another aspect of quiver Hecke algebras was discovered in [51], as a
partner of quantum affine algebras in spirit of the celebrated Schur–Weyl duality. Mo-
tivated from a duality between finite-dimensional representations of U ′

q(ŝln) and those
of affine Hecke algebras of type A [17, 26, 35], they introduce a general construction of
a quiver Hecke algebra action on a (completion of) tensor product of representations of
quantum affine algebras, and hence a functorial relation between two representation the-
ory.

The purpose of this section is to provide a background on quiver Hecke algebras,
needed for constructing and making use of the duality functor in Section 4.2.4. After a
quick review on quiver Hecke algebras, we consider a quiver Hecke algebra of type A∞ and
its finite-dimensional simple modules, following the approach of [51,57]. One can observe
a similarity with the story of Section 2.2.2, striking enough to motivate the existence of
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the duality.
Throughout this section, we fix a base field k.

2.3.1 Quiver Hecke algebra

Let A = (aij)i,j∈J be a symmetrizable generalized Cartan matrix with positive integers di
(i ∈ J) such that diaij = djaji for all i, j ∈ J . Set

N[J ] =

{∑
i∈J

ci · i ∈ Z[J ] | ci ∈ Z≥0

}
,

where Z[J ] is a free abelian group generated by J . Note that N[J ] is naturally identified
with the positive cone Q+ of the root lattice of the corresponding Kac-Moody algebra
g(A), by i↔ αi. For β =

∑
i∈J ci · i ∈ N[J ] with ht(β) :=

∑
ci = ℓ, we put

Jβ =
{
ν = (ν1, . . . , νℓ) ∈ J ℓ | ν1 + · · ·+ νℓ = β

}
.

Suppose that we are given a matrix (Qij(u, v))i,j∈J with entries Qij(u, v) ∈ k[u, v]

satisfying

(1) Qij(u, v) = Qji(v, u) for i ̸= j and Qii(u, v) = 0,

(2) the coefficient of upvq (p, q ∈ Z≥0) in Qij(u, v) is zero unless diaiip+djajjq = −2diaij,

(3) the coefficient of u−aij in Qij(u, v) is nonzero.

Definition 2.3.1. The quiver Hecke algebra R(β) at β ∈ N[J ] associated with (Qij)i,j∈J

is the Z-graded k-algebra generated by

e(ν) (ν ∈ Jβ), xk (k = 1, . . . , ht(β)), τm (m = 1, . . . , ht(β)− 1),

subject to the following defining relations:

e(ν)e(ν ′) = δνν′e(ν),
∑
ν∈Jβ

e(ν) = 1,

xkxk′ = xk′xk, xke(ν) = e(ν)xk, τme(ν) = e(sm(ν))τm,

26



CHAPTER 2. PRELIMINARIES

(τmxk − xsm(k)τm)e(ν) =


−e(ν) if k = m and νm = νm+1

e(ν) if k = m+ 1 and νm = νm+1

0 otherwise,

τ 2me(ν) = Qνm,νm+1(xm,xm+1)e(ν), τmτm′ = τm′τm if |m−m′| > 1,

(τm+1τmτm+1 − τmτm+1τm)e(ν)

=


Qνm,νm+1 (xm,xm+1)−Qνm,νm+1 (xm+2,xm+1)

xm−xm+2
e(ν) if νm = νm+2

0 otherwise,

and the grading

deg e(ν) = 0, deg xke(ν) = aνk,νk , deg τme(ν) = −aνm,νm+1 .

We also set
R(ℓ) =

⊕
ht(β)=ℓ

R(β) (ℓ ≥ 1), R =
⊕
ℓ≥0

R(ℓ)

where R(0) = k. By the standard argument in the theory of Hecke algebras, we have

R(β) =
⊕

ν∈Jβ ,w∈Sℓ

k[x1, . . . , xℓ]e(ν)τw,

as a vector space, when ht(β) = ℓ. Here τw = τi1 · · · τil is defined after fixing a reduced
expression2 w = si1 · · · sil for each w ∈ Sℓ.

For β1, β2 ∈ N[J ] with ht(β1) = ℓ1, ht(β2) = ℓ2, let

e(β1, β2) =
∑

(ν1,...,νℓ1 )∈J
β1

(νℓ1+1,...,νℓ1+ℓ2
)∈Jβ2

e(ν1, . . . , νℓ1+ℓ2) ∈ R(β1 + β2).

Then we have a k-algebra homomorphism

R(β1)⊗R(β2) −→ e(β1, β2)R(β1 + β2)e(β1, β2)

e(ν1, . . . , νℓ1)⊗ e(ν ′1, . . . , ν ′ℓ2) 7−→ e(ν1, . . . , νℓ1 , ν
′
1, . . . , ν

′
ℓ2
),

2Note however that τw does depend on the choice of a reduced expression, as the braid relation in τm

does not hold in the quiver Hecke algebras.
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xk ⊗ 1 7→ xke(β1, β2), 1⊗ xk′ 7→ xℓ1+k′e(β1, β2),

τm ⊗ 1 7→ τme(β1, β2), 1⊗ τm′ 7→ τℓ1+m′e(β1, β2),

so that R(β1 + β2) has a right R(β1)⊗R(β2)-module structure. Hence one can define the
convolution product of an R(β1)-module M1 and an R(β2)-module M2 by

M1 ◦M2 := R(β1 + β2)⊗R(β1)⊗R(β2) (M1 ⊗M2)

which is an R(β1 + β2)-module.
Consider the category R(β)-gmod of finite-dimensional graded R(β)-modules, and

R-gmod =
⊕
β∈N[J ]

R(β)-gmod.

Then the category R-gmod is equipped with a monoidal structure by the convolution
product, and the degree shift q defined by (qM)k = Mk−1 for M =

⊕
k∈ZMk ∈ R-gmod.

Consequently, the Grothendieck group

K(R-gmod) =
⊕
β∈N[J ]

K(R(β)-gmod)

possesses a Z[q±1]-algebra structure. Similar construction works for the categoryR(β)-gproj
of finitely generated projective graded R(β)-modules, yielding another Z[q±1]-algebra
K(R-gproj).

Now let U−
A (g) be the integral form of the negative half of the quantum group asso-

ciated with the given generalized Cartan matrix, that is, the subalgebra over A = Z[q±1]

generated by divided powers fmi /[m]! (i ∈ J, m ∈ Z≥0). The original motivation of intro-
ducing quiver Hecke algebras is the following categorification theorem.

Theorem 2.3.2 ([65, 88]). For a symmetrizable generalized Cartan matrix A and a pa-
rameter matrix (Qij)i,j∈J , let R(β) be the quiver Hecke algebra associated with (Qij). Then
there exists an Z[q±1]-algebra isomorphism

U−
A (g)

∼= K(R-gproj) =
⊕
β

K(R(β)-gproj), U−
A (g)

∨ ∼= K(R−gmod)

where U−
A (g)

∨ is the graded dual over Z[q±1] with respect to the −Q+-grading.
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Moreover, the first (resp. latter) isomorphism matches the set of indecomposable pro-
jective (resp. simple) modules with the (resp. dual) canonical basis when A is symmetric
and chark = 0 [91], and even gives a monoidal categorification of the quantum cluster
algebra structure on U−

A (g)
∨ [54]. In addition, there exist certain quotients called the

cyclotomic quiver Hecke algebras known to categorify the integrable highest weight repre-
sentations of Uq(g) [50], while a large part of structures and representations of cyclotomic
quiver Hecke algebras are still unknown.

Next, we recall the notion of renormalized R-matrices for modules over symmetric
quiver Hecke algebras [51, Section 1.3].

Definition 2.3.3. A quiver Hecke algebra R(β) associated with A and (Qij) is said to
be symmetric if A is symmetric and Qij(u, v) is a polynomial in u− v for all i, j ∈ J .

Every quiver Hecke algebra that will appear in this thesis is symmetric. Let us intro-
duce elements

φme(ν) =

(τmxm − xmτm)e(ν) if νm = νm+1

τme(ν) if νm ̸= νm+1

of R(β), where ν ∈ Jβ and 1 ≤ m ≤ ℓ − 1 (ℓ = ht(β)). Unlike the generators τm, the
family {φm}1≤m≤ℓ−1 satisfies the braid relation, and so we obtain a well-defined element
φw for w ∈ Sℓ by taking any reduced expression of w. Moreover, one can check the
following properties:

(1) For w ∈ Sℓ and 1 ≤ k ≤ ℓ, φwxk = xw(k)φw,

(2) For w ∈ Sℓ and 1 ≤ m ≤ ℓ− 1, if w(k + 1) = w(k) + 1, then φwτk = τw(k)φw.

Hence given an R(βi)-module Mi (i = 1, 2), we obtain an R(β1 + β2)-module homomor-
phism

RM,N :M ◦N −→ N ◦M
u1 ⊗ u2 7−→ φw[ht(β1),ht(β2)](u2 ⊗ u1)

where w[ℓ1, ℓ2] ∈ Sℓ1+ℓ2 is defined by

w[ℓ1, ℓ2](k) =

k + ℓ2 if k ≤ ℓ1

k − ℓ1 if k > ℓ1.

29



CHAPTER 2. PRELIMINARIES

For an R(β)-module M , define the affinization of M to be the k[z] ⊗ R(β)-module
Mz = k[z]⊗M on which the generators act by

e(ν) = 1⊗ e(ν), τm = 1⊗ τm,
xk = z ⊗ 1 + 1⊗ xk,

where z is an indeterminate (of degree 2). Then we define a renormalized R-matrix by

rM1,M2 = z−sR(M1)z ,M2|z=0 :M1 ◦M2 −→M2 ◦M1

where s is the largest nonnegative integer such that imR(M1)z ,M2 ⊂ zsRM2,(M1)z [51, Propo-
sition 1.10]. In particular, rM1,M2 never vanishes.

Since the braid relation is satisfied by φm, renormalized R-matrices solve the Yang-
Baxter equation

rM,NrL,NrL,M = rL,MrL,NrM,N : L ◦M ◦N −→ N ◦M ◦ L.

Again this allows us to define without ambiguity a module homomorphism

rwM1,...,Mt
:M1 ◦ · · · ◦Mt −→Mw(1) ◦ · · · ◦Mw(t)

for any w ∈ St and R(βi)-module Mi. We remark that although rMi,Mj
̸= 0 for any

i, j, it may happen that rwM1,...,Mt
vanishes for some w (see [51, Proposition 1.15], [59,

Corollary 2.9]).

2.3.2 Quiver Hecke algebra of type A and their simple modules

We fix the following Dynkin quiver Γ of type A∞:

· · · // ◦ // ◦ // ◦ // ◦ // ◦ // · · ·
−2 −1 0 1 2

(2.3.1)
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with the associated Cartan matrix (aij)i,j∈Z defined by

aij =


2 if i = j

−1 if i = j ± 1

0 otherwise.

Let J = Z, and put

Pij(u, v) = (u− v)dij where dij is the number of arrows from i to j in Γ,

Qij(u, v) = Pij(u, v)Pji(v, u) for i ̸= j.

Then we obtain a symmetric quiver Hecke algebra R(β) associated with the quiver Γ.
Let us recall the classification of the finite-dimensional simple R(β)-modules following

[51, 57]. Recall that the positive roots of the Kac-Moody algebra of type A∞ are of the
form

β(a,b) := αa + αa+1 + · · ·+ αb

for pairs (a, b) of integers such that a ≤ b. We call such a pair a segment of length
ℓ = b− a+1. Thus, the positive roots are in bijection with the segments. We also assign
to the latter the lexicographic order

(a, b) ≤ (a′, b′) ⇐⇒ a < a′ or (a = a′, b ≤ b′).

A finite sequence of segments ((a1, b1), . . . , (at, bt)) is called a multisegment, and is said
to be ordered if (ak, bk) ≥ (ak+1, bk+1) for all 1 ≤ k ≤ t− 1.

For each segment (a, b) of length ℓ, we define a 1-dimensionalR(β(a,b))-module L(a, b) =
ku(a, b) defined by

xku(a, b) = τmu(a, b) = 0, e(ν)u(a, b) =

u(a, b) if ν = (a, a+ 1, . . . , b)

0 otherwise.

As we have seen in the last subsection, for an ordered multisegment ((a1, b1), . . . , (at, bt)),
there is an R(β)-module homomorphism (β =

∑t
i=1 β(ai,bi))

rw0 : L(a1, b1) ◦ · · · ◦ L(at, bt) −→ L(at, bt) ◦ · · · ◦ L(a1, b1),
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associated with the longest element w0 ∈ St.

Proposition 2.3.4 ([51, 57]). There exists a one-to-one correspondence between the or-
dered multisegments and the finite-dimensional simple graded R-modules (up to isomor-
phisms and grading shifts), given by

((a1, b1), . . . , (at, bt)) 7−→ hd (L(a1, b1) ◦ · · · ◦ L(at, bt)) .

Moreover, rw0 has a simple image which is isomorphic to hd (L(a1, b1) ◦ · · · ◦ L(at, bt)).

As an example, one has the following result for ordered couples of segments.

Proposition 2.3.5 ([51, Proposition 4.3]). Let two segments (a, b) ≥ (a′, b′) be given.

(1) If any of the following holds: a′ < a ≤ b ≤ b′, a > b′ + 1, or a = a′ ≤ b′ ≤ b, then
L(a, b) ◦ L(a′, b′) is irreducible and

L(a, b) ◦ L(a′, b′) r−→ L(a′, b′) ◦ L(a, b)

is an isomorphism.

(2) If a′ < a ≤ b′ < b, then we have an exact sequence

0 L(a′, b) ◦ L(a, b′) L(a, b) ◦ L(a′, b′)

L(a′, b′) ◦ L(a, b) L(a′, b) ◦ L(a, b′) 0.
r

(3) If a = b′ + 1, then we have an exact sequence

0 −→ L(a′, b) −→ L(a, b) ◦ L(a′, b′) r−→ L(a′, b′) ◦ L(a, b) −→ L(a′, b) −→ 0.

Here we ignore the grading and r denotes the corresponding renormalized R-matrix.

Remark 2.3.6. Observe that the above theory of modules over type A∞ quiver Hecke
algebras resembles that of type A affine Hecke algebras [9,92,95]. This can be understood
through an algebra isomorphism between them (after a completion) [11, 88], which will
be explained and used to prove the equivalence of generalized quantum affine Schur-Weyl
duality functor later in Chapter 4.
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Generalized Quantum Groups of type A

In this chapter, we introduce the generalized quantum group U(ϵ) of affine type A [70].
Since it is a variant of the usual quantum affine superalgebra Uq(ĝlM |N), we first seek for
a relation between them, namely an algebra isomorphism up to a mild extension. Then
we use the isomorphism to construct a nondegenerate Hopf pairing on U(ϵ), which leads
to a universal R-matrix by the standard argument of [78]. We also recall some basic facts
on polynomial representations of the finite type subalgebra Ů(ϵ).

Let us fix here notations which will be used throughout this thesis.

• ϵ = (ϵ1, ϵ2, . . . , ϵn) : a (01)-sequence of length n ≥ 4

• M = |{i | ϵi = 0}| and N = |{i | ϵi = 1}|.

• ϵM |N : a (01)-sequence with ϵ1 = · · · = ϵM = 0, ϵM+1 = · · · = ϵM+N = 1.

• I = {1 < 2 < · · · < n}.

• Pfin =
⊕

i∈I Zδi : a free abelian group of rank n.

• P≥0 =
⊕

i∈I Z≥0δi ⊂ Pfin.

• deg λ =
∑
λi for λ =

∑
λiδi ∈ P≥0.

• qi = (−1)ϵiq(−1)ϵi =

q if ϵi = 0

−q−1 if ϵi = 1
(i ∈ I).
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• q( · , · ) : a k-valued symmetric biadditive form on Pfin defined by

q(λ, µ) =
∏

qcidii for λ =
∑

ciδi, µ =
∑

diδi ∈ Pfin.

• ( · | · ) : a symmetric bilinear form on Pfin such that (δi|δj) = (−1)ϵiδij.

• I = {0, 1, . . . , n− 1}.

• αi = δi − δi+1 ∈ Pfin (i ∈ I).

• Ieven = {i ∈ I | (αi|αi) = ±2}, Iodd = {i ∈ I | (αi|αi) = 0}.

• p(i) =

0 if i ∈ Ieven
1 if i ∈ Iodd.

• P 0 =
⊕

i∈I Zδi ⊕ Zδ : a free abelian group of rank n+ 1.

• αi = δi − δi+1 + δi,0δ ∈ P 0.

• Q =
⊕

i∈I Zαi ⊂ P 0, Q+ =
∑

Z≥0αi.

• ht(β) =
∑
di for β =

∑
diαi ∈ Q+.

• cl : P 0 → Pfin : the linear map defined by cl(δi) = δi, cl(δ) = 0.

A subscript i ∈ I is always understood modulo n.
Note that Pfin is the weight lattice for glM |N (equivalently, for glM+N), and P≥0 is the

set of polynomial weights. Moreover, P 0 is the set of level zero weights of the affine Lie
superalgebra ĝlM |N (see Section 2.2.2).

3.1 Generalized quantum group of affine type A

3.1.1 Definition

Definition 3.1.1 ([70,79]). Given a (01)-sequence ϵ of length n, the generalized quantum
group of affine type A associated with ϵ is defined to be the k-algebra U(ϵ), generated by
ei, fi (i ∈ I) and kµ (µ ∈ Pfin) subject to the following defining relations:

k0 = 1, kµ+µ′ = kµkµ′ ,
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kµeik
−1
µ = q(µ, αi)ei, kµfik

−1
µ = q(µ,−αi)fi,

eifj − fjei = δij
ki − k−1

i

q − q−1
,

e2i = f 2
i = 0 (i ∈ Iodd),

eiej − ejei = fifj − fjfi = 0 (i− j ̸≡ ±1 (modn)),

e2i ej − (−1)ϵi [2]eiejei + eje
2
i = 0

f 2
i fj − (−1)ϵi [2]fifjfi + fjf

2
i = 0

(i ∈ Ieven and i− j ≡ ±1 (modn)),

eiei−1eiei+1 − eiei+1eiei−1 + ei+1eiei−1ei

− ei−1eiei+1ei + (−1)ϵi [2]eiei−1ei+1ei = 0

fifi−1fifi+1 − fifi+1fifi−1 + fi+1fifi−1fi

− fi−1fifi+1fi + (−1)ϵi [2]fifi−1fi+1fi = 0

(i ∈ Iodd),

where we put ki := kαi
.

Moreover, U(ϵ) is endowed with a Hopf algebra structure given by

∆ : kµ 7→ kµ ⊗ kµ, ei 7→ ei ⊗ k−1
i + 1⊗ ei, fi 7→ fi ⊗ 1 + ki ⊗ fi,

S : kµ 7→ k−1
µ , ei 7→ −eiki, fi 7→ −k−1

i fi.

We let U(ϵ)+ (resp. U(ϵ)−) be the subalgebra generated by ei (resp. fi) for i ∈ I, and
U(ϵ)0 the one generated by kµ for µ ∈ Pfin. Then the proof of [43, Theorem 3.1.5] applies
here to prove the following triangular decomposition.

Proposition 3.1.2. The multiplication

U(ϵ)+ ⊗ U(ϵ)0 ⊗ U(ϵ)− −→ U(ϵ)

is an isomorphism of k-vector spaces.

Observe that if ϵj = 0 (resp. ϵj = 1) for all j ∈ I, then U(ϵ) recovers the quantum
affine algebra of type A. More precisely, its subalgebra generated by ei, fi, k±1

i (i ∈ I) is
isomorphic to U ′

q(ŝln) (resp. U ′
−q−1(ŝln)) or its quotient by qC − 1.

When ϵ̃ is obtained from ϵ by permuting entries, U(ϵ̃) is related to U(ϵ) by the following
algebra isomorphism. This can be seen as a super analogue of the Lusztig’s braid group
symmetry on quantum groups [78, Chapter 37] (cf. [94, Proposition 8.2.1]).
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Proposition 3.1.3 ([79]). Suppose that ϵ̃ is obtained from ϵ by permuting the entries ϵi
and ϵi+1 for some i ∈ I. There exists an algebra isomorphism Ti : U(ϵ) −→ U(ϵ̃) given by

Ti(kδi) = kδi+1
, Ti(kδi+1

) = kδi , Ti(kδj) = kδj (j ̸= i, i+ 1),

Ti(ei) = −fiki, Ti(fi) = −k−1
i ei,

Ti(ej) = [ei, ej]qϵ̃(αi,αj), Ti(fj) = [fj, fi]qϵ̃(αi,αj)−1 (|i− j| = 1),

Ti(ej) = ej, Ti(fj) = fj (|i− j| > 1)

where qϵ̃( · , · ) denotes the biadditive function associated to ϵ̃.

Finally, we introduce a bar involution, the Q-algebra involution on U(ϵ) given by

q = q−1, ei = ei, fi = fi, kµ = k−1
µ .

3.1.2 Quantum affine superalgebra and algebra isomorphism

Let us recall the definition [94] of a quantum affine superalgebra, namely a quantized
universal enveloping algebra of an affine Lie superalgebra ĝlM |N .

Definition 3.1.4. Let U(ϵ) be the k-superalgebra generated by Ei, Fi (i ∈ I) and Kµ

(µ ∈ Pfin) with parities

p(Ei) = p(Fi) = p(i), p(Kµ) = 0,

subject to the following defining relations:

K0 = 1, Kµ+µ′ = KµKµ′ ,

KµEiK
−1
µ = q(µ|αi)Ei, KµFiK

−1
µ = q−(µ|αi)Fi,

EiFj − (−1)p(i)p(j)FjEi = (−1)ϵiδij
Kαi
−K−αi

q − q−1
,

E2
i = F 2

i = 0 (i ∈ Iodd),
EiEj − (−1)p(i)p(j)EjEi = FiFj − (−1)p(i)p(j)FjFi = 0 (i− j ̸≡ ±1 (modn)),

E2
iEj − [2]EiEjEi + EjE

2
i = 0

F 2
i Fj − [2]FiFjFi + FjF

2
i = 0

(i ∈ Ieven and i− j ≡ ±1 (modn)),
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[Ei, [[Ei−1, Ei](−1)p(i−1)q, Ei+1](−1)(p(i−1)+1)p(i+1)q−1 ](−1)p(i−1)+p(i+1)+1 = 0

[Fi, [[Fi−1, Fi](−1)p(i−1)q, Fi+1](−1)(p(i−1)+1)p(i+1)q−1 ](−1)p(i−1)+p(i+1)+1 = 0
(i ∈ Iodd).

There is a Hopf (super)algebra structure on U(ϵ) by the same formula as above. Note
that when M ̸= N , the subalgebra of U(ϵ) generated by Ei, Fi, K±1

αi
is isomorphic to the

quantum affine superalgebra U ′
q(ŝlM |N) [94, Theorem 6.8.2], more precisely its quotient

by the canonical central element.

Remark 3.1.5. A Drinfeld realization for quantum affine superalgebras U ′
q(ŝlM |N) is also

established in [94, Section 8], using a braid group symmetry (cf. [4]).

Observe that the defining relations of U(ϵ) and U(ϵ) differ only by signs. We resolve
this discrepancy by adjoining sign operators σi to the algebras, as follows.

Introduce a commutative bialgebra Σ over k generated by σj (j ∈ I) satisfying σ2
j = 1,

with the comultiplication ∆(σj) = σj⊗σj. Then U(ϵ) carries a Σ-module algebra structure
given by

σjKµ = Kµ, σjEi = (−1)ϵj(δj |αi)Ei, σjFi = (−1)ϵj(δj |αi)Fi,

that is, the multiplication and the unit morphism are Σ-module homomorphisms. Thus
we can form a semidirect product U(ϵ)[σ] of U(ϵ) and Σ, and similarly we obtain U(ϵ)[σ].

Now let us assume M ̸= 0. Given ϵ, there exists a unique sequence 1 ≤ i1 < i2 <

· · · < il ≤ n such that

ϵik−1 ̸= ϵik = ϵik+1 = · · · = ϵik+1−1 ̸= ϵik+1
for 1 ≤ k ≤ l.

Here we understand the subscripts modulo n, and il+1 := i1. For example, to ϵ = (001011)

corresponds the sequence 1 < 3 < 4 < 5. Put

σ≤j = σ1σ2 · · ·σj (j = I).

We assign to each generators Ei, Fi, Kδj (i ∈ I, j ∈ I) of U(ϵ) certain elements τ(Ei),
τ(Fi), τ(Kδj) of U(ϵ)[σ] respectively. First, we define

τ(Kδj) = kδjσj.
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(1) If i ∈ Ieven with (ϵi, ϵi+1) = (0, 0), then we set

τ(Ei) = ei, τ(Fi) = fi.

(2) If i ∈ Iodd with (ϵi, ϵi+1) = (0, 1), then we set

τ(Ei) = eiσ≤i, τ(Fi) = fiσ≤iσiσi+1.

(3) If i ∈ Ieven with (ϵi, ϵi+1) = (1, 1), then i ∈ {ik, ik + 1, . . . , ik+1 − 2} for some k.
When k < l, we set

τ(Ei) = −ei(σiσi+1)
i−ik+1, τ(Fi) = fi(σiσi+1)

i−ik ,

and when k = l,

τ(Ei) =

−ei(σiσi+1)
i−il+1

−ei(σiσi+1)
i−(il−n)+1,

τ(Fi) =

−fi(σiσi+1)
i−il if il ≤ i ≤ n

−fi(σiσi+1)
i−(il−n) if 1 ≤ i ≤ i1 − 2.

(4) If i ∈ Iodd with (ϵi, ϵi+1) = (1, 0), then i = ik+1 − 1 for some k. When k < l, we set

τ(Ei) = eiσ≤i(−σiσi+1)
ik+1−ik , τ(Fi) = fiσ≤i(σiσi+1)

ik+1−ik−1,

and when k = l,

τ(Ei) = eiσ≤i(−σiσi+1)
i1−(il−n), τ(Fi) = fiσ≤i(σiσi+1)

i1−(il−n)−1.

The following table illustrates the image of Ei and Fi under τ for ϵ = (001011):

i ∈ I 0 1 2 3 4 5

Ei e0σ≤6 e1 e2σ≤2 −e3σ≤3σ3σ4 e4σ≤4 −e5σ5σ6
Fi f0σ≤6σ6σ1 f1 f2σ≤2σ2σ3 f3σ≤3 f4σ≤4σ4σ5 f5

Theorem 3.1.6 (cf. [75, Proposition 4.4]). Suppose that M ̸= 0. Then τ extends to a
k-algebra isomorphism τ : U(ϵ)[σ]→ U(ϵ)[σ] with τ(σj) = σj.
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Proof. It is straightforward to check that τ maps the defining relations of U(ϵ) to zero.
For example, take ϵ = (001011) and let us verify

τ(Kα2)τ(E3)τ(K−α2)− τ(q(α2|α3)E3) = 0.

Indeed, from the above table we have

τ(Kα2)τ(E3)τ(K−α2) = −k2σ2σ3e3σ1σ2σ4k−1
2 σ2σ3

= k2e3k
−1
2 σ1σ2σ4

= q(α2, α3)e3σ1σ2σ4

= −q−1e3σ1σ2σ4

= τ(q(α2|α3)E3).

Since one can define the inverse map in the same manner, τ is invertible.

Remark 3.1.7. The isomorphism τ induces an equivalence between module categories of
U(ϵ) and U(ϵ), which preserves the notions of weight (see Remark 3.2.2). However, since
τ does not respect the comultiplication, this equivalence is not monoidal a priori.

3.1.3 Universal R-matrix

In the theory of quantum groups, a standard way to construct an intertwiner on a tensor
product of two modules is to apply to the tensor product a distinguished element Θ,
called a universal R-matrix, in the (often completed) tensor square of the quantum group.
Drinfeld [28] provided a systematic method to construct a (quantum group with) universal
R-matrix as the Casimir element of a nondegenerate Hopf pairing (see for example [64,
Chapter XI]).

In this section, we reformulate a half of the generalized quantum group U(ϵ)− following
[78]. The key result is Theorem 3.1.10, which asserts that the Serre relations for U(ϵ)
generate the radical of a symmetric bilinear form on a free associative algebra ′f(ϵ). This
implies the nondegeneracy of a Hopf pairing on U(ϵ), and hence a universal R-matrix.

Let ′f(ϵ) be the free associative k-algebra with unity generated by θi for i ∈ I, which
is Q+-graded with |θi| = αi. We define an algebra homomorphism r : ′f(ϵ)→ ′f(ϵ)⊗ ′f(ϵ)
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by r(θi) = θi ⊗ 1 + 1⊗ θi, where the multiplication on ′f(ϵ)⊗ ′f(ϵ) is twisted by

(x1 ⊗ x2)(y1 ⊗ y2) = q(|x2| , |y1|)−1(x1y1)⊗ (x2y2)

for homogeneous x2, y1.
For later use, let us also introduce a k-linear map ir :

′f(ϵ) −→ ′f(ϵ) (i ∈ I) defined by

(1) ir(1) = 0, ir(θj) = δij for j ∈ I,

(2) ir(xy) = ir(x)y + q(|x| , αi)−1x · ir(y) for homogeneous x,

and ri : ′f(ϵ) −→ ′f(ϵ) by

(1) ri(1) = 0, ri(θj) = δij for j ∈ I,

(2) ri(xy) = xri(y) + q(|y| , αi)−1ri(x)y for homogeneous y.

Proposition 3.1.8. There exists a unique k-valued symmetric bilinear form ( , ) on ′f(ϵ)

satisfying

(1) (1, 1) = 1, (θi, θj) = δij,

(2) (x, yy′) = (r(x), y ⊗ y′) for x, y, y′ ∈ ′f(ϵ),

(3) (xx′, y) = (x⊗ x′, r(y)) for x, x′, y ∈ ′f(ϵ),

where we set (x1 ⊗ x2, y1 ⊗ y2) = (x1, y1)(x2, y2). Moreover, the following property holds:

(θix, y) = (y, ir(x)), (xθi, y) = (x, ri(y)).

Proof. The proof is a straightforward induction on the height with respect to the Q+-
grading on ′f(ϵ), see [78, Chapter 1].

Let I denote the radical of this bilinear form. Consider a k-algebra U(ϵ) generated by
Ei, Fi (i ∈ I) and Kµ (µ ∈ Pfin) subject to the relations

K0 = 1, Kµ+µ′ = KµKµ′ ,

KµEiK
−1
µ = q(µ, αi)Ei, KµFiK

−1
µ = q(µ, αi)

−1Fi,

EiFj − FjEi = δij
Kαi
−K−1

αi

q − q−1
,

h(E0, . . . ,En) = h(F0, . . . ,Fn) = 0 whenever h(θ0, . . . , θn) ∈ I, for h ∈ k ⟨x0, . . . , xn⟩ .
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Lemma 3.1.9. The following elements are contained in the radical I:

(1) θ2i for i ∈ Iodd,

(2) θiθj − θjθi if i− j ̸≡ ±1 (modn),

(3) θ2i θj − (−1)ϵi [2]θiθjθi + θjθ
2
i if i ∈ Ieven and i− j ≡ ±1 (modn),

(4) θiθi−1θiθi+1−θiθi+1θiθi−1+θi+1θiθi−1θi−θi−1θiθi+1θi+(−1)ϵi [2]θiθi−1θi+1θi if i ∈ Iodd.

Proof. It can be checked by a direct calculation (see [78, Proposition 1.4.3] for (2),(3)).
For example, for i ∈ Iodd,

(θ2i , θ
2
i ) = (θi, ir(θ

2
i )) = (θi, (1 + q(αi, αi)

−1)θi) = 0

as q(αi, αi) = qiqi+1 = −1.

By the lemma, we obtain a surjective algebra map π : U(ϵ) −→ U(ϵ). The following
theorem is our first main result, which enables us to reproduce the Lusztig’s construction
of a universal R-matrix.

Theorem 3.1.10. When M ̸= N , the map π : U(ϵ) −→ U(ϵ) is an isomorphism.

Proof. As above, we define U(ϵ)[σ] and consider the algebra maps

U(ϵ)[σ]
τ−→ U(ϵ)[σ] π−→ U(ϵ)[σ]

where we use the same symbol π to denote the obvious extension of π.
As in Proposition 3.1.2, U(ϵ)[σ] also has the triangular decomposition

U(ϵ)[σ] ∼= U(ϵ)+ ⊗ U(ϵ)0[σ]⊗ U(ϵ)−

where U(ϵ)0[σ] is the (semi)direct product of U(ϵ)0 and Σ. One can show that U(ϵ)
and U(ϵ) possess similar decompositions, and π respects the decomposition. Hence, it is
sufficient to prove that the restrictions

π|U(ϵ)± : U(ϵ)± −→ U(ϵ)±

are injective.
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Suppose we are given y ∈ U(ϵ)+ ∩ kerπ, which can be assumed to be homogeneous
as π|U(ϵ)+ preserves the Q+-grading. Let us also assume β := |y| has the minimal height
such that U(ϵ)+β ∩ kerπ ̸= 0.

Since τ is an isomorphism, there exists a unique x ∈ U(ϵ)+β and a monomial ς in σj

such that τ(xς) = y. We claim that x = 0, which follows by [94, Proposition 6.5.1] once
we check that

xFi − (−1)p(i)p(β)Fix = 0 for all i ∈ I.

Indeed, using the defining relations of U(ϵ) we can express

xFi − (−1)p(i)p(β)Fix = x′Kαi
+ x′′K−αi

for some x′, x′′ ∈ U(ϵ)+β−αi
.Write τ(x′) = y′σ′ and τ(x′′) = y′′σ′′ for some y′, y′′ ∈ U(ϵ)+β−αi

and σ′, σ′′ ∈ Σ. Applying π ◦ τ to the above identity, we get

0 = π(y′)Kαi
ς ′ + π(y′′)K−αi

ς ′′

for some ς ′, ς ′′ ∈ Σ \ {0} since πτ(x) = π(y)ς−1 = 0. By the triangular decomposition
of U(ϵ)[σ], we obtain π(y′)Kαi

ς ′ = π(y′′)K−αi
ς ′′ = 0, or equivalently π(y′) = π(y′′) = 0.

Then the minimality of ht(β) implies y′ = y′′ = 0 and hence τ(xFi − (−1)p(i)p(β)Fix) = 0.
Since τ is an isomorphism, this completes the proof.

As a consequence, when M ̸= N we obtain algebra isomorphisms

± : f(ϵ) := ′f(ϵ)/I −→ U(ϵ)±

defined by θ+i = ei, θ−i = fi (i ∈ I). For each β ∈ Q+, take a basis Bβ of f(ϵ)β and its
dual basis B∗

β = {b∗ | b ∈ Bβ} with respect to the nondegenerate bilinear form on f(ϵ).
Put

Θβ = (q − q−1)ht(β)
∑
b∈Bβ

b+ ⊗ (b∗)− ∈ U(ϵ)+β ⊗ U(ϵ)
−
−β

with Θ0 := 1⊗ 1.
Let us also take a completion

U(ϵ)+⊗̂ U(ϵ)− =
⊕
γ∈Q

∏
γ=α+β

U(ϵ)+α ⊗ U(ϵ)−β .
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Now the following theorem can be proved in a similar way with [78, Theorem 4.1.2].

Theorem 3.1.11. The element

Θ =
∑
β∈Q+

Θβ ∈ U(ϵ)+⊗̂ U(ϵ)−

satisfies the following properties.

(1) For any u ∈ U(ϵ), we have
Θ∆(u) = ∆(u)Θ

where ∆(u) := ∆(u). Moreover, this property uniquely determines Θβ.

(2) Let Θ =
∑

Θβ where Θβ := (¯ ⊗ ¯)(Θβ). Then ΘΘ = ΘΘ = 1 holds.

We call the element Θ a universal R-matrix. In Section 4.2.2, we will use this element
to construct a U(ϵ)-linear map from a tensor product of two U(ϵ)-modules to the opposite
tensor product.

3.2 Finite type subalgebra and its polynomial repre-
sentations

Definition 3.2.1. The generalized quantum group Ů(ϵ) of finite type A is defined as the
subalgebra of U(ϵ) generated by ei, fi (i ∈ I \ {0}), kµ (µ ∈ Pfin).

Similarly defined subalgebra Ů(ϵ) of U(ϵ) is isomorphic to the quantum group Uq(glM |N)

associated to the Lie superalgebra glM |N with a Borel subalgebra labeled by ϵ. Since the
isomorphism τ in Theorem 3.1.6 restricts to the one between Ů(ϵ) and Ů(ϵ) (up to the
extension by Σ), there exists a concrete connection between representations of Ů(ϵ) and
those of Uq(glM |N). In this context, let us give a quick review on certain finite-dimensional
representations which appear in later chapters, called polynomial representations, of Ů(ϵ).

For a Ů(ϵ)-module V and λ ∈ Pfin, define the λ-weight space of V by

Vλ = {v ∈ V | kµv = q(λ, µ)v for µ ∈ Pfin} .
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Clearly, eiVλ ⊂ Vλ+αi
and fiVλ ⊂ Vλ−αi

. We denote by wt(V ) the set of weights of V .
Since the Cartan parts of U(ϵ) and Ů(ϵ) are the same, we define the notion of weights of
U(ϵ)-modules in exactly the same way.

Remark 3.2.2. For a Uq(glM |N)-module W , the λ-weight space of W is defined by

Wλ =
{
w ∈ W |Kµw = q(µ|λ)w for µ ∈ Pfin

}
.

It agrees with our notion for Ů(ϵ)-modules via the isomorphism τ . Namely, let V be a
Ů(ϵ)-module with the weight space decomposition V =

⊕
λ∈Pfin

Vλ. We extend the Ů(ϵ)-
action on V to a Ů(ϵ)[σ]-action by assigning

σjv = (−1)ϵj(δj |λ)v

for j ∈ I and v ∈ Vλ. Pulling it back through τ , we obtain a Ů(ϵ)[σ]-module structure on
V . Then the subspace Vλ is the λ-weight space under the Ů(ϵ)-action. Indeed, for v ∈ Vλ
with λ =

∑
cjδj and µ =

∑
djδj ∈ Pfin, we have

Kµv = τ(Kµ)v = kµ
∏
j∈I

σ
dj
j v = (−1)

∑
ϵjcjdjkµv = (−1)

∑
ϵjcjdjq(µ, λ)v = q(µ|λ)v.

Let C̊(ϵ) be the category of finite-dimensional polynomial representations of Ů(ϵ).
By definition, C̊(ϵ) consists of finite-dimensional Ů(ϵ)-modules V with a weight space
decomposition

V =
⊕
λ∈P≥0

Vλ.

We also denote by C̊ℓ(ϵ) the full subcategory of C̊(ϵ) of V such that every weight of V is
of degree ℓ. Then we have

C̊(ϵ) =
⊕
ℓ≥0

C̊ℓ(ϵ).

The irreducible modules in C̊(ϵ) are classified by their highest weights, which are
parametrized by hook partitions. A partition λ = (λ1, λ2, . . . ) is called an (M |N)-hook
partition if λM+1 ≤ N , and let PM |N denote the set of (M |N)-hook partitions.

To each λ ∈ PM |N , we assign a finite-dimensional irreducible highest weight Ů(ϵ)-
module Vϵ(λ) as follows (cf. [24, Section 2.4.1]). Define a tableau Hλ,ϵ of shape λ by the
following recursive rule:
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(1) Fill the first row (resp. column) with 1 if ϵ1 = 0 (resp. ϵ1 = 1).

(2) After filling a subdiagram µ of λ with 1, 2, . . . , k, fill the first row (resp. column) of
λ/µ with k + 1 if ϵk+1 = 0 (resp. ϵk+1 = 1).

Then Vϵ(λ) is defined to have the highest weight
∑

i∈Imiδi, where mi is the number of i’s
in Hλ,ϵ.

Example 3.2.3. The Ů(ϵ)-module Vϵ((1)) can be seen as a quantum analogue of the
natural representation CM |N of glϵ. Indeed, consider the n-dimensional k-vector space

V =
⊕
i∈I

k |ei⟩

on which Ů(ϵ) acts by

kµ |ei⟩ = q(µ, δi), ek |ei⟩ = δi,k+1 |ek⟩ , fk |ei⟩ = δi,k |ek+1⟩ .

Then it is easy to check that V is an irreducible highest weight Ů(ϵ)-module with highest
weight δ1, hence isomorphic to Vϵ((1)).

Furthermore, it is known [7,75,77] that for each ℓ ≥ 1, V⊗ℓ is semisimple and its simple
components are exactly those Vϵ(λ) for the (M |N)-hook partitions λ of ℓ. In particular,
any tensor product of Vϵ(λ)’s is again semisimple, and the composition multiplicities are
given by the usual Littlewood-Richardson coefficients. For example, we have

Vϵ((l))⊗ Vϵ((m)) ∼=
⊕

t∈Hϵ(l,m)

Vϵ((l +m− t, t)) (3.2.1)

where Hϵ(l,m) = {t | 0 ≤ t ≤ min{l,m}, (l+m− t, t) ∈PM |N}. Note that this index set
is nothing but

Hϵ(l,m) =


{max{l +m− n, 0},max{l +m− n, 0}+ 1, . . . ,min{l,m}} if ϵ = ϵ0|n

{0, 1, . . . ,min{l,m, n− 1}} if ϵ = ϵ1|n−1

{0, 1, . . . ,min{l,m}} otherwise
(3.2.2)

(recall that we are assuming n ≥ 4).
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Remark 3.2.4. The character of Vϵ(λ) is given by a hook Schur polynomial [8]. When
ϵ = ϵM |N , the existence of crystal base is also known, which is again explained in terms
of semistandard Young tableaux [7, 77].

At the heart of the above results lies the following Schur–Weyl-type duality.

Theorem 3.2.5 ([77, Theorem 3.1]). Let V = Vϵ((1)) and R : V⊗2 −→ V⊗2 be a Ů(ϵ)-
linear map defined by

R (|ei⟩ ⊗ |ej⟩) =


qqi |ei⟩ ⊗ |ei⟩ if i = j

q |ej⟩ ⊗ |ei⟩ if i > j

(q2 − 1) |ei⟩ ⊗ |ej⟩+ q |ej⟩ ⊗ |ei⟩ if i < j.

Let Hℓ(q
2) be the finite Hecke algebra (see Definition 4.3.10). Then V⊗ℓ is a (Ů(ϵ), Hℓ(q

2))-
bimodule whose right Hℓ(q

2)-action is given by hm = Rm, where Rm denotes the map given
by applying R on the m-th and (m+ 1)-st factors of V⊗ℓ.

Furthermore, the functor

Jℓ : Hℓ(q
2)-mod −→ C̊ℓ(ϵ)

M 7−→ V⊗ℓ ⊗Hℓ(q2) M

is an equivalence of categories if ℓ ≤ n.
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Chapter 4

Super duality for polynomial
representations

We begin our study of representations of quantum affine superalgebras from polynomial
representations of U(ϵ). The main result is an equivalence between monoidal categories
CZ(ϵ∞) obtained as an inverse limit of categories CZ(ϵ(k)) of polynomial representations of
U(ϵ(k)), for any (01)-sequence ϵ∞ of infinite length. In particular, from the equivalence
with CZ(ϵ∞) (or CZ(ϵ∞)) where ϵ∞ = (1∞), we obtain a concrete connection between
polynomial representations of quantum affine algebras and those of superalgebras. Such
a super-duality-type equivalence (Theorem 4.3.28) is depicted by the following diagram:

CZ(ϵ∞)

CZ(ϵ∞) CZ(ϵ∞).

S∞|0

≃
S0|∞

≃

For finite-dimensional representations of quantum affine algebras, the pioneering work
[58] teaches us that fundamental representations and their normalized R-matrices are
building blocks, and information on tensor product structure can be extracted from sin-
gularities (or spectral decomposition) of normalized R-matrices.

In the spirit of [58], we introduce fundamental representations Wl,ϵ(x) in the category
C(ϵ) of polynomial representations of U(ϵ), and construct normalized R-matrices Rnorm

l,m .
The spectral decomposition of Rnorm

l,m is computed, which is observed to be the same
as the one in non-super cases. This allows us to generalize to arbitrary ϵ in a uniform
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manner, several important constructions from the representation theory of quantum affine
algebras, such as fusion construction of irreducibles [53] and generalized quantum affine
Schur–Weyl duality functor Fϵ [51].

To turn this analogy into a mathematical entity, we introduce truncation functors
that relate C(ϵ) for various ϵ. They are motivated from the super duality formalism for
Lie algebras, and accordingly expected to be equivalences of categories, after taking an
infinite rank limit. We prove that the degree ℓ component of the Schur–Weyl-type duality
functor Fϵ,ℓ is an equivalence whenever n > ℓ, namely at high ranks. Using the notion
of inverse limit categories, we lift those partial equivalences to monoidal equivalences
between inverse limit categories CZ(ϵ∞), which we interpret as a quantum affine analogue
of a super duality.

Since the existence of the universal R-matrix is only known when M ̸= N (Theo-
rem 3.1.11), we put

Er = {ϵ = (ϵ1, . . . , ϵr) ∈ {0, 1}r | |{i|ϵi = 0}| ≠ |{i|ϵi = 1}|} , E =
⋃
r≥4

Er,

and tacitly assume that ϵ is in E . We also endow E with a partial order

ϵ′ < ϵ ⇐⇒ ϵ′ is a proper subsequence of ϵ.

The results of this chapter are based on [72].

4.1 Super duality for polynomial representations of gln
The category Fn of polynomial representations of gln is semisimple, whose simple objects
are parametrized by partitions λ of length not larger than n. Namely, we identify such a
partition λ with a dominant weight

λ =
n∑
i=1

λiδi ∈ P+
fin

where {δi}ni=1 ⊂ h∗ is the dual basis of {Eii}ni=1 ⊂ h, and then Ln(λ) is the irreducible
highest weight gln-module with highest weight λ.

48



CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

A large part of this category can be understood through an algebra isomorphism

K(Fn)
∼=−→ Λ(x1, . . . , xn)

[Ln(λ)] 7−→ sλ

obtained by taking the character. Here Λn = Λ(x1, . . . , xn) denotes the ring of symmetric
polynomials in x1, . . . , xn. For example, that {Ln(λ)}ℓ(λ)≤n is a complete set of simples
corresponds to the fact that {sλ}ℓ(λ)≤n is a Z-basis of Λn, the tensor product decomposition
of Ln(λ)⊗ Ln(µ) is given by the Littlewood-Richardson rule sλsµ =

∑
cνλµsν , and so on.

On the combinatorics side Λn, it is more natural to consider its inverse limit, the ring
of symmetric functions Λ in infinitely many indeterminates x1, x2, . . . . For instance, the
basis of Λn is parametrized by partitions with length not larger than n, rather than all
the partitions. It leads to a degeneration: in Λ, the product s(1l)s(1m) is computed by the
Pieri’s formula, but in Λn the summands corresponding to partitions of length larger than
n are missing in the same product. In contrast, such a degeneration does not occur in the
product of single-row partitions s(l)s(m). Certainly there exists an asymmetry in Λn that
does not appear in the limit Λ. Indeed, Λ enjoys an algebra involution sλ 7→ sλt .

On the representation theory side, s(1l) (resp. s(l)) is the character of the exterior
power Λl(Cn) (resp. symmetric power Sl(Cn)), where Cn is the natural representation of
gln. Hence, the asymmetry arises from the difference of symmetric and exterior power (or,
bosonic and fermionic). This can be remedied by considering representations of infinite
rank Lie algebra gl∞, which corresponds to the inverse limit Λ on the combinatorics side.

Now the symmetry sλ ↔ sλt in Λ should be understood as an exchange of bosons
and fermions, at least at the level of heuristics. Remarkably, this can be made into
a mathematical theorem, as an equivalence of categories (after taking inverse limits).
The idea is to introduce an intermediating Lie superalgebra gln|n and two truncation
functors which pick out only bosons or fermions. Then the infinite rank limit assures
that nothing is lost in the course of truncations, hence equivalences (see (1.2.1)). This
method, developed in [20,21], is called super duality, and yields an interesting and useful
perspective on representation theory of Lie (super)algebras. In the remaining of this
section, we explain how super duality is constructed in this easiest example.

Introduce the following index set

Ĩ =
{
1

2
< 1 <

3

2
< 2 < · · ·

}
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with Z/2Z-grading given by |i| = 2i. Let Ṽ be the infinite-dimensional vector superspace
over C with a basis {vi}i∈Ĩ with the induced Z/2Z-grading. We also set

I = Ĩ ∩ Z, I = Ĩ ∩
(
1

2
+ Z

)
and V (resp. V ) is defined to be the subspace of Ṽ spanned by vi for i ∈ I (resp. i ∈ I).

Let g̃ = End(Ṽ ) be the Lie superalgebra of linear endomorphisms on Ṽ , with the
standard basis {Ers}r,s∈Ĩ. Namely, Ers is defined to be the linear map vi 7→ δi,svr, whose
parity is given by |r| + |s|. The Lie superalgebra g̃ is the infinite rank general linear Lie
superalgebra gl∞|∞, accompanied with the following data:

• Cartan subalgebra h̃ =
⊕

i∈ĨCEii,

• Borel subalgebra b̃ =
⊕

r≤sCErs.

Observe that this Borel subalgebra corresponds to a (infinite) (01)-sequence (01010 . . . ),
and hence not a standard one.

We take g = End(V ), g = End(V ) which are regarded as subalgebras of g̃ naturally,
and corresponding Cartan h, h and Borel b, b. Both g and g are isomorphic to the Lie
algebra gl∞, not super.

Next, we define module categories. Given λ ∈P, we define weights

λ =
∑
i∈I

λiδi ∈ h∗, λ♮ =
∑
s∈I

λt
s+ 1

2
δs ∈ h

∗
,

λθ =
∑
r∈Ĩ

θ(λ)rδr ∈ h̃∗

where θ(λ) =
(
θ(λ) 1

2
, θ(λ)1, θ(λ) 3

2
, . . .

)
is defined by1

θ(λ)j = max{λj − j, 0}, θ(λ)j− 1
2
= max{λtj − j + 1, 0} (j ∈ Z).

Let L̃(λ) be the irreducible highest weight g̃-module with highest weight λθ with
respect to the Borel subalgebra b̃, and similary L(λ) over g and L(λ) over g. Hence, a
partition λ simultaneously parametrizes irreducible representations of three different Lie

1Equivalently, λθ, λ, λ♮ are the weights of the tableaux Hλ,ϵ defined in Section 4.2 with respect to
ϵ = (10101...), (000...), (111...) respectively.
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(super)algebras. Also note that chL(λ) = sλ and chL(λ) = sλt , while L̃(λ) interpolates
the correspondence L(λ)↔ L(λ) (which amounts to sλ ↔ sλt).

The category F̃ is defined to be the category of g̃-modules V such that

(1) V =
⊕

λ∈h̃∗ Vλ with dimVλ <∞ and wt(V ) is finitely dominated,

(2) V is a direct sum of L̃(λ)’s for λ ∈P.

Similarly we define F , F for g, g, respectively. In this case, F = F and is the category of
polynomial representations of gl∞.

Finally, we define the truncation functors that relate the module categories introduced.
Given a g̃-module Ṽ with a weight space decomposition Ṽ =

⊕
γ∈h̃∗ Ṽγ, we form the

subspaces
tr(Ṽ ) =

⊕
γ∈h∗

Ṽγ, tr(Ṽ ) =
⊕
γ∈h∗

Ṽγ.

Then tr(Ṽ ) (resp. tr(Ṽ )) is closed under the action of the subalgebra g (resp. g). More-
over, for a g̃-module homomorphism f : Ṽ → W̃ , we obtain by restriction a g-linear map
tr(f) : M → N and a g-linear map tr(f) : M → N . Then using odd reflections and
comparing characters, one can prove that

tr
(
L̃(λ)

)
= L(λ), tr

(
L̃(λ)

)
= L(λ)

for any λ ∈P. Therefore, we obtain functors

tr : F̃ −→ F , tr : F̃ −→ F

called truncations.
Now super duality asserts that

Theorem 4.1.1 ([20]). The truncations tr, tr are equivalences of highest weight categories.

Hence we obtain the following diagram:

F̃

F F

tr
≃

tr
≃
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and a nontrivial autoequivalence tr ◦ (tr)−1 on F = F . At the level of Grothendieck ring
K(F), which is isomorphic to the ring of symmetric functions Λ via the character map,
it induces the involution sλ 7→ sλt . Thus, super duality provides a categorification of this
important symmetry on Λ.

The goal of this chapter is to establish a quantum affine analogue of this diagram.

4.2 Finite-dimensional representations of U(ϵ)

4.2.1 Fundamental representations

As explained in Section 3.2, the notion of polynomial representations of Ů(ϵ) directly
generalizes to U(ϵ). In accordance with Chapter 5, let us put it in the following way.

Definition 4.2.1. Let C(ϵ) (resp. Cℓ(ϵ)) be the category of U(ϵ)-modules that belong to
C̊(ϵ) (resp. C̊ℓ(ϵ)) as Ů(ϵ)-modules.

Again we have
C(ϵ) =

⊕
ℓ≥0

Cℓ(ϵ).

Let us introduce a family of U(ϵ)-modules that play fundamental roles in the study of
polynomial representations of U(ϵ). Consider a supersymmetric Fock space

Wϵ =
⊕

m∈Zn
+(ϵ)

k |m⟩ ,

where

Zn+(ϵ) = {m = (m1, . . . ,mn) |mi ∈ Z≥0 if ϵi = 0, mi ∈ {0, 1} if ϵi = 1} .

This space carries a natural U(ϵ)-action, with an arbitrary choice of x ∈ k×, given by2

kµ |m⟩ = q(µ,
∑
j∈I

mjδj) |m⟩ ,

ei |m⟩ = xδi0 [mi+1] |m+ ei − ei+1⟩ ,
fi |m⟩ = x−δi0 [mi] |m− ei + ei+1⟩ ,

2As a rule, we always assume |m⟩ = 0 unless m ∈ Zn
+(ϵ).
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for i ∈ I and µ ∈ Pfin. We denote this U(ϵ)-module by Wϵ(x).

Proposition 4.2.2. The U(ϵ)-module Wϵ(x) has the following direct sum decomposition

Wϵ(x) =
⊕
l≥0

Wl,ϵ(x), Wl,ϵ(x) =
⊕
|m|=l

k |m⟩

where |m| =
∑
mi. Moreover, each Wl,ϵ(x) is irreducible over U(ϵ).

Definition 4.2.3. For l ≥ 0, the U(ϵ)-module Wl,ϵ(x) is called the l-th fundamental
representation with spectral parameter x.

When ϵ = ϵ0|n and 0 ≤ l ≤ n, Wl,ϵ(x) is isomorphic to the l-th fundamental repre-
sentation3 V (ϖl) over U ′

−q−1(ĝln). At the other extreme ϵ = ϵn|0, Wl,ϵ(x) becomes the
Kirillov-Reshetikhin module (see Remark 4.3.16) over U ′

q(ĝln) corresponding to a single-
row partition (l). Thus, our Wl,ϵ(x) interpolates two most important finite-dimensional
representations of quantum affine algebras of type A, while one is fermionic and the other
is bosonic.

The following proposition records basic properties of fundamental representations.

Proposition 4.2.4. The following properties hold.

(1) As a Ů(ϵ)-module, Wl,ϵ(x) ∼= Vϵ((l)) and hence Wl,ϵ(x) ∈ C(ϵ).

(2) For any x, y ∈ k×, a tensor productWl,ϵ(x)⊗Wm,ϵ(y), as a Ů(ϵ)-module, is semisim-
ple and decomposes into

Wl,ϵ(x)⊗Wm,ϵ(y) ∼=
⊕

t∈Hϵ(l,m)

Vϵ((l +m− t, t)). (4.2.1)

Definition 4.2.5. The category CZ(ϵ) is defined to be the monoidal Serre subcategory of
C(ϵ) generated by Wl,ϵ(q

2n+l+1) for all l ∈ Z≥0 and n ∈ Z.
We also put CℓZ(ϵ) := CZ(ϵ) ∩ Cℓ(ϵ), so that CZ(ϵ) =

⊕
CℓZ(ϵ).

In other words, CZ(ϵ) is the smallest full subcategory containing all Wl,ϵ(q
2n+l+1) such

that it is closed under taking subobjects, quotients, extensions and tensor products. Note
3Recall that we have set V (ϖ0) = V (ϖn) = k in Example 2.2.3.
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that each CℓZ(ϵ) is not closed under tensor products. Rather, the degree is additive in
taking tensor product, that is

V ⊗W ∈ Cℓ+ℓ′Z (ϵ) if V ∈ CℓZ(ϵ), W ∈ Cℓ
′

Z (ϵ).

The following lemma tells us that CZ(ϵ) is already generated by W1,ϵ(q
2n) for n ∈ Z.

Note that when ϵ = (1n), the exact sequence below recovers the one in [1, Lemma B.1].

Lemma 4.2.6. For ℓ ≥ 2, we have the following exact sequence:

0 Wℓ,ϵ(1) W1,ϵ(q
1−ℓ)⊗Wℓ−1,ϵ(q) Wℓ−1,ϵ(q)⊗W1,ϵ(q

1−ℓ) Wℓ,ϵ(1) 0.R

Proof. The middle map is given by the normalized R-matrix that will be introduced in
the next subsection, and the other two are given explicitly. Then the exactness follows
from the spectral decomposition of R-matrix. See Section 6.1.1 for detailed proof.

From the discussion on R-matrices in the next subsection, it will become clear that to
understand the structure of tensor products of fundamental representations, it is sufficient
to consider the subcategory CZ(ϵ). Moreover, it is well-known that every irreducible
polynomial representation of glM |N appears as a composition factor of tensor powers of
the natural representation CM |N . Since the first fundamental representation W1,ϵ(x) is
its quantum affine analogue, the study of polynomial representations of U(ϵ) essentially
reduces to the one of CZ(ϵ).

Remark 4.2.7. Suppose ϵ = ϵ0|n and let us restrict ourselves to modules over U ′
q̃(ŝln)

(q̃ = −q−1). The corresponding category CZ is called Hernandez-Leclerc category or
skeleton subcategory [41]. By the result of [58] (see Theorem 2.2.4), any finite-dimensional
irreducible representation of U ′

q(ŝln) is a tensor product of spectral parameter shifts of
irreducibles in the category CZ. Since a finite-dimensional irreducible representation of
U ′
q(ĝln) can be obtained as a tensor product of an irreducible polynomial representation

and a one-dimensional representation, it is indeed enough to study CZ(ϵ0|n) to understand
finite-dimensional representations of U ′

q(ĝln).
On the other hand, if ϵ is not homogeneous, then there are far more finite-dimensional

glϵ-modules than polynomial representations. Consequently, CZ(ϵ) does not cover all the
finite-dimensional representations of U(ϵ) (cf. [96, Proposition 4.15]).
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4.2.2 R-matrix

Next, we introduce a U(ϵ)-linear map Rnorm
l,m on Wl(z1) ⊗Wm(z2), called the normalized

R-matrix. Then information on tensor product structure is contained in the spectral
decomposition of Rnorm

l,m , as is well-known in the non-super cases. This map is constructed
by applying to the tensor product the universal R-matrix Θ constructed in Chapter 3.
To obtain a well-defined map, we use the affinization technique to obtain a well-defined
intertwiner (see Section 2.2.2), following [58] together with the standard construction [78].

For V ∈ C(ϵ), we define the affinization of V as

Vaff = k[z±1]⊗ V

for an indeterminate z, which is also a U(ϵ)-module by

ei = zδi0 ⊗ ei, fi = z−δi0 ⊗ fi, kµ = 1⊗ kµ.

As in non-super case, Vaff is P 0-graded by

(Vaff)λ = zk ⊗ Vcl(λ) for λ = ι ◦ cl(λ) + kδ

where ι : Pfin −→ P 0 is the section of cl : P 0 −→ Pfin defined by ι(δi) = δi for i ∈ I. Then
the multiplication by z can be understood as a degree δ automorphism of Vaff , and we
define for x ∈ k×

Vx = Vaff/(z − x)Vaff .

For example, we have Wl,ϵ(y)x ∼=Wl,ϵ(xy).
For V, W ∈ C(ϵ), let us take a completion

Vaff⊗̂Waff =
∑

λ,µ∈P 0

∏
β∈Q+

(Vaff)λ+β ⊗ (Waff)µ−β

of the tensor product Vaff ⊗Waff , and also the opposite completion

Vaff⊗̃Waff =
∑

λ,µ∈P 0

∏
β∈Q+

(Vaff)λ−β ⊗ (Waff)µ+β

so that U(ϵ)+⊗̂ U(ϵ)− and U(ϵ)−⊗̃ U(ϵ)+ act on Vaff⊗̂Waff and Vaff⊗̃Waff respectively.
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Observe that since the sets of weights of V and W are bounded above, we have

Vaff⊗̂Waff = k Jz1/z2K⊗k[z1/z2] (Vaff ⊗Waff),

Waff⊗̃Vaff = k Jz1/z2K⊗k[z1/z2] (Waff ⊗ Vaff).

where we write Vaff = Vz1 , Waff = Wz2 .
Let Πq : Vaff⊗̂Waff −→ Vaff⊗̂Waff be defined by

Πq(v ⊗ w) = q(cl(µ), cl(ν))v ⊗ w

for v ∈ (Vaff)µ and w ∈ (Waff)ν , and s : Vaff⊗̂Waff −→ Waff⊗̃Vaff the flip v ⊗ w 7→ w ⊗ v.
Repeating the proof of [78, Theorem 32.1.5] replacing fΠ there with Πq, we obtain an
intertwiner between two completions.

Theorem 4.2.8. We have an isomorphism of U(ϵ)-modules

Runiv
V,W := Θ ◦ Πq ◦ s : Vaff⊗̂Waff −→ Waff⊗̃Vaff .

Restricting the domain, we also obtain a U(ϵ)-linear map

Runiv
V,W : Vaff ⊗Waff −→ k Jz1/z2K⊗k[z1/z2] (Waff ⊗ Vaff),

and either is called a universal R-matrix as well. They satisfy the following important
property: for M,N,L ∈ C(ϵ), the following diagrams

M ⊗N ⊗ L M ⊗ L⊗N L⊗M ⊗N,
idM⊗Runiv

N,L

Runiv
M⊗N,L

Runiv
M,L⊗idN

(4.2.2)

M ⊗N ⊗ L N ⊗M ⊗ L N ⊗ L⊗M
Runiv

M,N⊗idL

Runiv
M,N⊗L

idN⊗Runiv
M,L

(4.2.3)

commute, where we omit affinizations and scalar extensions. It can be proved just as
in the non-super case, see [78, Section 32.2]. Note also that the Yang-Baxter equation
follows from these two diagrams.
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Let us explain more explicitly on intertwiners between tensor products of fundamental
representations. We change the base field to k temporarily, and let

Runiv
l,m (z1, z2) :Wl,ϵ(z1)⊗Wm,ϵ(z2) −→ k Jz1/z2K⊗k[z1/z2] (Wm,ϵ(z2)⊗Wl,ϵ(z1))

be the universal R-matrix forWl,ϵ andWm,ϵ, where z1, z2 are indeterminates. Recall from
(4.2.1) that as a Ů(ϵ)-module,

Wl,ϵ(x)⊗Wm,ϵ(y) ∼=
⊕

t∈Hϵ(l,m)

Vϵ((l +m− t, t)) (x, y ∈ k×).

For s = maxHϵ(l,m), since Runiv
l,m is invertible, we have

Runiv
l,m (z1, z2)|Vϵ((l+m−s,s)) = φl,m(z1/z2)idVϵ((l+m−s,s))

for some nonzero φl,m(z1/z2) ∈ k Jz1/z2K, by Schur’s lemma. Put

ct(z) =

min{l,m}∏
i=t+1

1− ql+m−2i+2z

z − ql+m−2i+2

for t ∈ Hϵ(l,m). We define the normalized R-matrix by

Rnorm
l,m (z) = φl,m(z)

−1cs(z)Runiv
l,m (z)

where z = z1/z2. It is a unique k[z±1
1 , z±1

2 ]⊗ U(ϵ)-linear map normalized by

Rnorm
l,m (z)|Vϵ((l+m−s,s)) = cs(z)idVs ,

because of the following irreducibility of tensor products of fundamental representations.

Theorem 4.2.9. For l,m ∈ Z≥0, the tensor product Wl,ϵ(x)⊗Wm,ϵ(y) is irreducible for
generic x, y ∈ k×.

Proof. It follows from the irreducibility of Wl,ϵ(1) ⊗ Wm,ϵ(1) [77, Theorem 4.7] and a
general commutative algebra argument [55, Lemma 3.4.2].
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Take a projection onto the t-th classical component

P l,mt :Wl,ϵ(x)⊗Wm,ϵ(y) −→ Vϵ((l +m− t, t)) ⊂ Wm,ϵ(y)⊗Wl,ϵ(x).

This is of course defined up to a scalar multiple, and we normalize it by choosing a Ů(ϵ)-
highest weight vector

v(l,m, t) ∈ Vϵ((l +m− t, t)) ⊂ Wl,ϵ ⊗Wm,ϵ.

which will be explained in Section 4.3.1. Then again by Schur’s lemma, we can write

Rnorm
l,m (z) =

∑
t∈Hϵ(l,m)

ρt(z)P l,mt

for some ρt(z) ∈ k(z). This expression of Rnorm
l,m (z) is called the spectral decomposition

of the normalized R-matrix, and known to contain much information on the structure
of Wl(x) ⊗ Wm(y). We will compute the spectral decomposition in Section 4.3.1, by
connecting it to the known one (2.2.1) in the non-super cases.

Theorem 4.2.10. For l,m ∈ Z≥0, we have

Rnorm
l,m (z) =

∑
t∈Hϵ(l,m)

min{l,m}∏
i=t+1

1− ql+m−2i+2z

z − ql+m−2i+2
P l,mt (4.2.4)

where z = z1/z2 and we understand the coefficient of P l,mmin{l,m} to be 1.

Remark 4.2.11. In [70], an intertwiner Rl,m(z) on a tensor product Wl,ϵ(x) ⊗Wm,ϵ(y)

is obtained as a result of 2D reduction of a solution of a tetrahedron equation. By the
uniqueness of the normalized R-matrix, one can directly check that the map Rl,m(z)

coincides with our Rnorm
l,m (z). When ϵ = (1N , 0M), it is possible to compute the spectral

decomposition of Rl,m(z) in an explicit way [70, Section 6], and the formula for general ϵ
follows as in the proof of Theorem 4.2.10 (cf. [74, Section 7]).

In our study of C(ϵ) for general ϵ, a crucial observation is that the coefficients of the
spectral decomposition (4.2.4) are the same for any ϵ. The only difference lies in classical
decompositions, but they also coincide if the length of ϵ is large enough, as seen in (3.2.2).

Therefore, in the virtue of Theorem 2.2.4 we expect that the tensor product structure
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of given two modules over U(ϵ) should be the same with the non-super one, at sufficiently
high ranks. We will turn this idea into a mathematical statement in the following sections.

4.2.3 Fusion construction of irreducible polynomial representa-
tions

As a first step, we construct simple modules in C(ϵ) by means of a fusion construction
[56]. We prove the validity of the fusion construction for general ϵ, adapting the argument
of [53]. Since this is done uniformly in ϵ, this gives a natural correspondence between
irreducible polynomial representations over U(ϵ) for any ϵ.

Let V,W ∈ C(ϵ) and Runiv
V,W the universal R-matrix on Vaff ⊗Waff . We say that Runiv

V,W is
rationally renormalizable [53] if there exists a ∈ k((z1/z2))

× such that aRuniv
V,W takes values

in Waff ⊗ Vaff . If it is the case, then one can choose such a so that aRuniv
V,W |z1=c1,z2=c2 does

not vanish for any c1, c2 ∈ k×. We put rV,W = aRuniv|z1=z2=1.
For example, Runiv

l,m is rationally renormalizable, which is obvious from the formula
(4.2.4). Then for any simple V,W ∈ CZ(ϵ), Runiv

V,W is rationally renormalizable thanks to
the following lemma.

Lemma 4.2.12 (cf. [60, Propositions 2.11 and 2.12]). For U(ϵ)-modules V and W , Runiv
V,W

is rationally renormalizable in any one of the following cases:

(1) V (resp. W ) is a subquotient of V0 (resp. W0) and Runiv
V0,W

(resp. Runiv
V,W0

) is rationally
renormalizable,

(2) V = V1 ⊗ V2 (resp. W = W1 ⊗W2) and both Runiv
V1,W

and Runiv
V2,W

(resp. Runiv
V,W1

and
Runiv
V,W2

) are rationally renormalizable.

As in Section 2.2.2, we want to prove that the image of the composition of rV,W is
simple unless it vanishes. We first consider the case of two modules.

Theorem 4.2.13. Suppose that irreducible V,W ∈ C(ϵ) are such that Runiv
V,V , Runiv

W,W and
Runiv
V,W are rationally renormalizable with

rV,V ∈ k×idV ⊗2 or rW,W ∈ k×idW⊗2 .

Then the image of rV,W is irreducible, and isomorphic to the head of V ⊗W and the socle
of W ⊗ V .
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Proof. For reader’s convenience, we present the proof following [53]. We assume rW,W ∈
k×idW⊗2 , for the proof for the other case being symmetric.

Take a nonzero submodule S of W ⊗ V . Since Runiv
V,W and Runiv

W,W are rationally renor-
malizable, there exist a, b ∈ k((z1/z2))

× such that

rV,W = aRuniv
V,W |z1=z2=1, rW,W = bRuniv

W,W |z1=z2=1.

Then we also obtain
abRuniv

S,W : Saff ⊗Waff −→ Waff ⊗ Saff ,

and the following diagram

Saff ⊗Waff Waff ⊗ Saff

Waff ⊗ Vaff ⊗Waff Waff ⊗Waff ⊗ Vaff Waff ⊗Waff ⊗ Vaff .

abRuniv
S,W

idW⊗aRuniv
V,W bRuniv

W,W⊗idV

which is commutative by (4.2.2), (4.2.3). As we specialize at 1, we obtain

S ⊗W W ⊗ S

W ⊗ V ⊗W W ⊗W ⊗ V W ⊗W ⊗ V

abRuniv
S,W |z1=z2=1

idW⊗rV,W idW⊗W⊗V

where we use the assumption rW,W ∈ k×idW⊗2 . Consequently we derive S ⊗W ⊂ W ⊗
r−1
V,W (S).

Now we can find a submodule K of V such that S ⊂ W ⊗K and K ⊗W ⊂ r−1
V,W (S)

[53, Lemma 3.10]. Since S is nonzero, so is K, which also implies S = V . But then
V ⊗W ⊂ r−1

V,W (S) and so the image of rV,W is contained in S. Since we have taken S

arbitrarily, this means that imrV,W is the unique simple submodule of W ⊗ V , in other
words its simple socle.

By an induction on the number of tensor factors, we obtain the following corollary.

Corollary 4.2.14. Suppose that irreducible V1, . . . , Vt ∈ C(ϵ) are given such that such

60



CHAPTER 4. SUPER DUALITY FOR POLYNOMIAL REPRESENTATIONS

that Runiv
Vi,Vj

is rationally renormalizable with rVi,Vi ∈ kidV ⊗2
i

for any 1 ≤ i, j ≤ t. Let

r : V1 ⊗ · · · ⊗ Vt −→ Vt ⊗ · · · ⊗ V1

be the composition of rVi,Vj associated with a reduced expression of the longest element of
St. Then the image of r is irreducible unless it is zero.

Now let us specialize to fundamental representations. As explained, Runiv
l,m is rationally

renormalizable by taking a renormalization

rl,m(z1/z2) = dl,m(z1/z2)Rnorm
l,m ,

where

dl,m(z) =

min{l,m}∏
k=1

(z − ql+m−2k+2) (4.2.5)

is called the denominator of the normalized R-matrix. Note that if c1/c2 ∈ k× is not a
zero of dl,m(z), then we can specialize the normalized R-matrix itself to obtain

R(l,m),ϵ(c1, c2) := Rnorm
l,m (c1/c2) :Wl,ϵ(c1)⊗Wm,ϵ(c2) −→Wm,ϵ(c2)⊗Wl,ϵ(c1),

which is just a scalar multiple of rl,m(c1/c2). In particular, they have the same image.
Therefore, from the above corollary, we obtain the following fusion construction for U(ϵ)-
modules.

Corollary 4.2.15. Suppose l = (l1, . . . , lt) ∈ (Z≥0)
t and c = (c1, . . . , ct) ∈ (k×)

t are given
such that ci/cj is not a zero of dli,lj(zi/zj) for any i < j. Let

Rl,ϵ(c) :Wl1,ϵ(c1)⊗ · · · ⊗Wlt,ϵ(ct) −→Wlt,ϵ(ct)⊗ · · · ⊗Wl1,ϵ(c1) (4.2.6)

be the composition of specializations Rnorm
li,lj

(ci/cj) associated with a reduced expression of
the longest element of St. Then the image of Rl,ϵ(c) is irreducible unless it is zero.

Let P+ (resp. P+
Z ) be the set of pairs (l, c) such that

(1) l = (l1, . . . , lt) ∈ (Z≥0)
t and c = (c1, . . . , ct) ∈ (k×)t (resp. ci ∈ qli+1+2Z for all i) for

some t ≥ 1,

(2) for any i < j, ci/cj is not a zero of dli,lj(zi/zj).
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For (l, c) ∈ P+, we can define Rl,ϵ(c) as above, and we set

• Wϵ(l, c) : the image of Rl,ϵ(c),

• P+(ϵ) = {(l, c) ∈ P+ |Wϵ(l, c) ̸= 0}, and similarly P+
Z (ϵ).

Here we understand Wϵ(l, c) = Wl1,ϵ(c1) when t = 1. Note that Wϵ(l, c) ∈ C
∑
li(ϵ), for

Wϵ(l, c) being a quotient of

Wl1,ϵ(c1)⊗ · · · ⊗Wlt,ϵ(ct) ∈ C
∑
li(ϵ).

In the next subsection, we will see that every irreducible module in the category CZ(ϵ) is
indeed obtained by the fusion construction.

Finally, we record here an important property that follows by a similar argument with
the proof of Theorem 4.2.13.

Proposition 4.2.16. For l,m ≥ 1 and x, y ∈ k×, we have

HomU(ϵ) (Wl,ϵ(x)⊗Wm,ϵ(y),Wm,ϵ(y)⊗Wl,ϵ(x)) = k · rl,m(x/y).

Proof. The argument of [54, Proposition 3.2.9], which is for modules over quiver Hecke
algebras, applies to our case as well.

4.2.4 Generalized quantum affine Schur-Weyl duality

Next, we analyze the structure of the monoidal category CZ(ϵ) using the generalized
quantum affine Schur–Weyl duality functor [51]. Since such a functor is defined on the
poles of normalized R-matrices of a given family of representations, the construction is
uniform for any ϵ, including the non-super cases ϵM |0, ϵ0|N .

Let R(β) be the quiver Hecke algebra of type A∞, introduced in Section 2.3.2. Recall
that R(β) is defined by the data

Pij(u, v) = (u− v)δi+1,j , Qij(u, v) = δ(i ̸= j)Pij(u, v)Pji(v, u)

for i, j ∈ J = Z.
Define X : J −→ k× by X(i) = q−2i, so that X(i)/X(j) = q−2(i−j) is a zero of the

denominator d1,1(z) = z − q2 if and only if j = i+ 1.
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Fix ℓ > 0 and let X1, . . . , Xℓ be indeterminates. For ν = (ν1, . . . , νℓ) ∈ J ℓ, put

Oν = k JX1 −X(ν1), . . . , Xℓ −X(νℓ)K ,

the completion of the localization of k[X1, . . . , Xℓ] at Xi = X(νi) (i = 1, . . . , ℓ). We also
take its field of fractions Kν of Oν . Note that for f ∈ k(X1, . . . , Xℓ) that is regular at
Xi = X(νi) for all i, we may expand f formally to regard f ∈ Oν .

For β ∈ N[J ] with ht(β) = ℓ, we define associative k-algebras

Oβ =
⊕
ν∈Jβ

Oνe(ν), Kβ =
⊕
ν∈Jβ

Kνe(ν)

whose multiplications are given so that e(ν)’s are orthogonal central idempotent elements.
For V := (W1,ϵ)aff , V ⊗ℓ can be regarded as a k[X±1

1 , . . . , X±1
ℓ ] ⊗ U(ϵ)-module where

Xi corresponds to the action of z on the i-th component. We define

V ⊗β
O = Oβ ⊗k[X±1

1 ,...,X±1
ℓ ] V

⊗ℓ, V ⊗β
K = Kβ ⊗k[X±1

1 ,...,X±1
ℓ ] V

⊗ℓ,

regarding V ⊗β
O as a subspace of V ⊗β

K .
Let rm be the endomorphism on V ⊗β

K induced from Rnorm
1,1 on the m-th and (m+1)-st

component on V ⊗ℓ, that is,

Kνe(ν)⊗k[X±1
1 ,...,X±1

ℓ ] V
⊗ℓ Ksm(ν)e(sm(ν))⊗k[X±1

1 ,...,X±1
ℓ ] V

⊗ℓ

fe(ν)⊗ (v1 ⊗ · · · ⊗ vℓ) sm(f)e(sm(ν))⊗ (· · · ⊗ Rnorm
1,1 (vm ⊗ vm+1)⊗ · · · )

for ν ∈ Jβ, f ∈ Kν and v1 ⊗ · · · ⊗ vℓ ∈ V ⊗ℓ. Since Rnorm
1,1 is U(ϵ)-linear, so is rm. Then it

can be proved that there exists a right R(β)-module structure on V ⊗β
K given by

e(ν) = projection onto Kνe(ν)⊗k[X±1
1 ,...,X±1

ℓ ] V
⊗ℓ ⊂ V ⊗β

K ,

e(ν)xk = e(ν)X(νk)
−1(Xk −X(νk)),

e(ν)τm =

e(ν)(rm − 1)
(

1
xm−xm+1

)
if νm = νm+1

e(ν)rmPνm,νm+1(xm+1, xm) if νm ̸= νm+1,

which is compatible with the left U(ϵ)-action.
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Proposition 4.2.17. For β ∈ N[J ], V ⊗β
O is invariant under the R(β)-action.

Proof. Since the spectral decomposition (4.2.4) coincides with the one for the case ϵ = ϵ0|n,
the argument in [51, Theorem 3.3] works equally well.

Consequently, we obtain a (U(ϵ), R(β))-bimodule V ⊗β
O and a functor

Fϵ,β :M 7−→ V ⊗β
O ⊗R(β) M

taking a left R(β)-module M to produce a U(ϵ)-module Fϵ,β(M). We also put

Fϵ,ℓ =
⊕

ht(β)=ℓ

Fϵ,β, Fϵ =
⊕
ℓ≥0

Fϵ,ℓ.

Theorem 4.2.18 (cf. [51, Theorems 3.4, 3.8]). The functor Fϵ,β is exact and induces

Fϵ,ℓ : R(ℓ)-gmod −→ Cℓ(ϵ), Fϵ : R-gmod −→ C(ϵ).

Moreover, the functor Fϵ is monoidal.

We shall describe the image of simple R-modules under Fϵ. Considering the results in
Section 2.3.2, we first do for the one-dimensional R-modules L(a, b).

Proposition 4.2.19 (cf. [51, Proposition 4.9]). For a segment (a, b) of length ℓ, we have

Fϵ(L(a, b)) ∼=Wℓ,ϵ(q
−a−b).

Proof. By [51, Proposition 3.5], it holds when a = b. Then we use induction on ℓ as
in the proof of [51, Proposition 4.9]. Namely, we apply Fϵ to the exact sequence in
Proposition 2.3.5(3) with a′ = a = b, b′ = b − 1. Then the middle map is a nonzero
multiple of Rnorm

1,ℓ−1(q
−ℓ) by Proposition 4.2.16. Comparing it with the exact sequence in

Lemma 4.2.6, we obtain the conclusion.

Next, we prove that Fϵ maps renormalized R-matrices to normalized R-matrices.

Lemma 4.2.20. Suppose that (a, b), (a′, b′) are segments of lengths ℓ, ℓ′ respectively, such
that (a, b) ≥ (a′, b′). Then for c = q−a−b and c′ = q−a

′−b′, c/c′ is not a zero of dℓ,ℓ′(z).
Moreover, the map

Fϵ(rL(a,b),L(a′,b′)) :Wℓ,ϵ(c)⊗Wℓ′,ϵ(c
′) −→Wℓ′,ϵ(c

′)⊗Wℓ,ϵ(c)
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is equal to a nonzero constant multiple of Rnorm
ℓ,ℓ′ (c/c′) unless

a′ < a ≤ b′ < b, M = 1 and N ≤ b′ − a+ 1.

Proof. As (a, b) ≥ (a′, b′), we have a′ + b′ − a − b ≤ ℓ′ − ℓ, and then the first assertion
follows from the denominator formula

dℓ,ℓ′(z) = (z − qℓ+ℓ′)(z − qℓ+ℓ′−2) · · · (z − q|ℓ−ℓ′|+2).

For the second one, it suffices to prove that Fϵ(rL(a,b),L(a′,b′)) is nonzero except in the
prescribed case since

HomU(ϵ) (Wℓ,ϵ(c)⊗Wℓ′,ϵ(c
′),Wℓ′,ϵ(c

′)⊗Wℓ,ϵ(c)) = k · Rnorm
ℓ,ℓ′ (c/c′)

from Proposition 4.2.16.
According to Proposition 2.3.5, r = rL(a,b),L(a′,b′) is not an isomorphism if and only if

either a′ < a ≤ b′ < b or a = b′ + 1. In those cases, we have the following exact sequence

0 Wℓ1,ϵ(q
−a′−b)⊗Wℓ2,ϵ(q

−a−b′) Wℓ,ϵ(c)⊗Wℓ′,ϵ(c
′)

Wℓ′,ϵ(c
′)⊗Wℓ,ϵ(c) Wℓ1,ϵ(q

−a′−b)⊗Wℓ2,ϵ(q
−a−b′) 0

Fϵ(r)

by applying Fϵ to the exact sequences in Proposition 2.3.5(2),(3), where ℓ1 = b − a′ + 1

and ℓ2 = b′ − a+ 1. Then Fϵ(r) = 0 if and only if

dim
(
Wℓ1,ϵ(q

−a′−b)⊗Wℓ2,ϵ(q
−a−b′)

)
= dim (Wℓ,ϵ(c)⊗Wℓ′,ϵ(c

′)) ,

or equivalently, the classical decompositions ofWℓ1,ϵ(q
−a′−b)⊗Wℓ2,ϵ(q

−a−b′) andWℓ,ϵ(c)⊗
Wℓ′,ϵ(c

′) coincide. From (3.2.2), this happens exactly when a′ < a ≤ b′ < b, M = 1 and
N ≤ b′ − a+ 1.

Hence, we obtain a super analogue of [51, Theorem 4.11].

Theorem 4.2.21. Let ((a1, b1), . . . , (at, bt)) be an ordered multisegment with ℓk = bk−ak+
1 and ℓ =

∑
ℓk, and L the corresponding irreducible RJ(ℓ)-module. If N = |{i|ϵi = 1}| ≥
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ℓk for all k = 1, . . . , t, then Wϵ(l, c) is nonzero and

Fϵ(L) ∼=Wϵ(l, c)

for l = (ℓ1, . . . , ℓt) and c = (q−a1−b1 , . . . , q−at−bt).

Proof. Since Fϵ is exact, everything follows once we check that Fϵ(rL(ai,bi),L(aj ,bj)) is
nonzero for every i < j. That condition is ensured by the assumption N ≥ ℓk for all
k. Indeed, as aj < ai ≤ bj < bi implies bj − ai + 1 < bj − aj + 1 = ℓj ≤ N , the exception
in Lemma 4.2.20 cannot happen.

In particular, Fϵ sends simple R-modules to simple U(ϵ)-modules or zero. Together
with the classification of simple R-modules (Proposition 2.3.4), this allows us to find all
the irreducible objects in CZ(ϵ).

Theorem 4.2.22. For any irreducible V ∈ CZ(ϵ), there exists (l, c) ∈ P+
Z (ϵ) such that

V ∼=Wϵ(l, c).

Proof. By definition of CZ(ϵ) and Lemma 4.2.6, V is a composition factor ofW1,ϵ(q
−2j1)⊗

· · ·⊗W1,ϵ(q
−2jℓ) for some j1, . . . , jℓ ∈ Z. Then Theorem 4.2.21 implies that V is isomorphic

to Fϵ(M) for some composition factor M of L(j1) ◦ · · · ◦ L(jℓ). Such M can be obtained
as the image of

rw0 : L(a1, b1) ◦ · · · ◦ L(at, bt) −→ L(at, bt) ◦ · · · ◦ L(a1, b1)

for some ordered multisegment ((a1, b1), . . . , (at, bt)) by Proposition 2.3.4. Thus, Fϵ(M) ∼=
Wϵ(l, c) for

l = (b1 − a1 + 1, . . . , bt − at + 1), c = (q−a1−b1 , . . . , q−at−bt),

and clearly (l, c) ∈ PZ(ϵ).

4.3 Super duality

So far, we have reproduced several important constructions in the representation theory
of quantum affine algebras, for U(ϵ) in a uniform manner. In this section, we establish
a concrete connection between C(ϵ) and C(ϵ′) for ϵ′ < ϵ. As we can choose ϵ′ = ϵ0|N as
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well, this includes a connection to the module category of quantum affine algebras, and
eventually explains the uniformity observed.

4.3.1 Truncation

Given ϵ ∈ En, let ϵ′ = (ϵ′1, . . . , ϵ
′
n−1) be the sequence obtained by removing the i-th entry

ϵi from ϵ. Let I′ = {1, . . . , n− 1} which is Z/2Z-graded by ϵ′, I ′ = {0, 1, . . . n− 2} and

P ′ =
⊕
j∈I′

Zδ′j,

the weight lattice for U(ϵ′).

Theorem 4.3.1 ([77, Theorem 4.3]). There exists a k-algebra map ϕϵϵ′ : U(ϵ′) −→ U(ϵ)
defined on the generators e′j, f ′

j (j ∈ I ′) and kδ′l (l ∈ I′) of U(ϵ′) by

kδ′l 7−→

kδl if 1 ≤ l ≤ i− 1

kδl+1
if i ≤ l ≤ n− 1,

Case 1. If 2 ≤ i ≤ n− 1, then

(e′j, f
′
j) 7−→


(ej, fj) if j = 0, 1, . . . , i− 2(
[ei−1, ei]q(αi−1,αi), [fi, fi−1]q(αi−1,αi)−1

)
if j = i− 1

(ej+1, fj+1) if j = i, . . . , n− 2,

Case 2. If i = n, then

(e′j, f
′
j) 7−→

(ej, fj) if j ̸= 0(
[en−1, e0]q(αn−1,α0), [f0, fn−1]q(αn−1,α0)−1

)
if j = 0,

Case 3. If i = 1, then

(e′j, f
′
j) 7−→


(
[en−1, e0]q(αn−1,α0), [f0, fn−1]q(αn−1,α0)−1

)
if j = 0

(ej, fj) if j ̸= 0.

More generally, if ϵ′ = (ϵ′1, . . . , ϵ
′
n−r) is obtained from ϵ by removing ϵi1 , . . . , ϵir for some

i1 < · · · < ir, we define a k-algebra homomorphism ϕϵϵ′ : U(ϵ′) −→ U(ϵ) as a successive
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composition of the above algebra homomorphism4.
Now for V ∈ C(ϵ), let

trϵϵ′(V ) :=
⊕

(µ|δi1 )=···=(µ|δir )=0

Vµ.

Proposition 4.3.2 ([77, Proposition 4.4]). The following properties hold.

(1) The subspace trϵϵ′(V ) of V is closed under the U(ϵ′)-action induced by ϕϵϵ′, and hence
a U(ϵ′)-module contained in the category C(ϵ′).

(2) As a U(ϵ′)-module, we have trϵϵ′(V ⊗W ) ∼= trϵϵ′(V )⊗ trϵϵ′(W ).

For any U(ϵ)-linear map f : V −→ W for V, W ∈ C(ϵ), the restriction of f on the
subspaces

trϵϵ′(f) : tr
ϵ
ϵ′(V ) −→ trϵϵ′(W )

is a well-defined U(ϵ′)-module homomorphism. Therefore, we obtain a monoidal functor
trϵϵ′ , which can be easily seen to be exact as well.

Definition 4.3.3. The exact monoidal functor

trϵϵ′ : C(ϵ) −→ C(ϵ′)

is called a truncation.

We obtain a functor trϵϵ′ : C̊(ϵ) −→ C̊(ϵ′) in the same manner, also called a truncation.
Not only being exact and monoidal, truncations also preserve the ingredients we have
used for the study of C(ϵ).

Proposition 4.3.4 ([77, Propositions 4.5, 4.6]). For ϵ′ < ϵ, let M ′ and N ′ be the numbers
of 0’s and 1′s in ϵ′ respectively.

(1) For λ ∈PM |N ,

trϵϵ′(Vϵ(λ))
∼=

Vϵ′(λ) if λ ∈PM ′|N ′

0 otherwise.
4A different ordering of ϵi1 , . . . , ϵir affects ϕϵ

ϵ′ only by conjugations by Ti in Proposition 3.1.3.
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(2) For l ∈ Z≥0 and x ∈ k×,

trϵϵ′(Wl,ϵ(x)) ∼=

Wl,ϵ′(x) if (l) ∈PM ′|N ′

0 otherwise.

In particular, truncations are well-defined between subcategories CZ(ϵ) and CZ(ϵ′).

Lemma 4.3.5. For ϵ′ < ϵ, we have

trϵϵ′
(
Rnorm
l,m,ϵ (z)

)
= Rnorm

l,m,ϵ′(z).

Proof. Follows from the uniqueness of normalized R-matrices.

In particular, truncations preserve the specializations R(l,m),ϵ(x, y) = Rnorm
l,m,ϵ (x/y).

Putting it all together, we conclude that truncations respect the fusion construction.

Theorem 4.3.6. For ϵ′ < ϵ and (l, c) ∈ P+(ϵ), we have

trϵϵ′(Wϵ(l, c)) ∼=Wϵ′(l, c).

Moreover, since the bimodule V ⊗β
O in Section 4.2.4 is a scalar extension of a tensor

product of (W1,ϵ)aff , it is compatible with the truncation, and so is the duality functor Fϵ.

Lemma 4.3.7. For ϵ′ < ϵ, there exists a natural isomorphism trϵϵ′ ◦ Fϵ ∼= Fϵ′.

Those two compatibilities indicate that truncations correctly relates C(ϵ) and C(ϵ′),
which explain the uniformity of constructions in ϵ. In the next subsection, we will prove
that trϵϵ′ is indeed a (partial) equivalence, by establishing a similar claim for the duality
functor Fϵ.

To illustrate how truncation functors work, let us consider two applications. First,
we shall prove the stability in ϵ of the classical decomposition of an irreducible module
Wϵ(l, c). Let m(l,c)

λ (ϵ) denote the composition multiplicity of Vϵ(λ) in Wϵ(l, c) as a Ů(ϵ)-
module, for λ ∈PM |N .

Theorem 4.3.8. For (l, c) ∈ P+ and a partition λ, there exists m(l,c)
λ ∈ Z≥0 such that

(1) m(l,c)
λ = 0 =⇒ m

(l,c)
λ (ϵ) = 0 for all ϵ,

(2) m(l,c)
λ ̸= 0 =⇒ m

(l,c)
λ (ϵ) = m

(l,c)
λ whenever m(l,c)

λ (ϵ) ̸= 0.
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Proof. By Proposition 4.3.4(1), if there exists an ϵ ∈ E such that m(l,c)
λ (ϵ) ̸= 0, then

m
(l,c)
λ (ϵ) = m

(l,c)
λ (ϵ′) for any ϵ′ > ϵ. If there are ϵ, ϵ′ with m

(l,c)
λ (ϵ),m

(l,c)
λ (ϵ′) ̸= 0, then by

taking ϵ′′ > ϵ, ϵ′, again we get

m
(l,c)
λ (ϵ) = m

(l,c)
λ (ϵ′′) = m

(l,c)
λ (ϵ′).

Hence the composition multiplicity m(l,c)
λ (ϵ) stabilizes to a nonnegative integer m(l,c)

λ , as
ϵ≫ 0.

In particular, to compute the character ofWϵ(l, c) is equivalent to do the corresponding
irreducible representation of U ′

q(ŝln), for large enough n.
Next, a similar argument proves the spectral decomposition (4.2.4) of Rnorm

l,m (z), as we
now explain. We first clarify the normalization of the projection P l,mt . Fix ϵ ∈ E and
l,m ∈ Z≥0. Take ϵ′′ = (ϵ′′1, . . . , ϵ

′′
n′′) > ϵ such that for ϵ′ = ϵ0|N ′′ , we have

Wl,ϵ′′(x)⊗Wm,ϵ′′(y) ∼=
⊕

0≤t≤min{l,m}

Vϵ′′((l +m− t, t)),

Wl,ϵ′(x)⊗Wm,ϵ′(y) ∼=
⊕

0≤t≤min{l,m}

Vϵ′((l +m− t, t)),

over Ů(ϵ′′) and Ů(ϵ′), respectively. That is, we may choose ϵ′′ with many 1’s, so that
Hϵ′′(l,m) = {0, 1, . . . ,min{l,m}}.

Take a highest weight vector v′(l,m, t) of Vϵ′((l + m − t, t)) in Wl,ϵ′(x) ⊗ Wm,ϵ′(y)

uniquely determined by the condition

v′(l,m, t) ∈ Ll,ϵ′ ⊗ Lm,ϵ′ ,
v′(l,m, t) ≡ |e1 + · · ·+ et + em+1 + · · ·+ el+m−t⟩ ⊗ |e1 + · · ·+ em⟩ (mod q−1Ll,ϵ′ ⊗ Lm,ϵ′)

where Ll,ϵ′ is a lower crystal lattice of Wl,ϵ′ spanned by |m⟩ over A∞
5. Define similarly

v′(m, l, t).
Recall that by definition of truncation, we may regard

Vϵ′((l +m− t, t)) = trϵ
′′

ϵ′ Vϵ′′((l +m− t, t)) ⊂ Vϵ′′((l +m− t, t)),
5Here, A∞ denotes the subring of Q(q) consisting of rational functions regular at q =∞.
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and then we define a Ů(ϵ′′)-linear map

P l,mt :Wl,ϵ′′(x)⊗Wm,ϵ′′(y) −→Wm,ϵ′′(y)⊗Wl,ϵ′′(x)

to be the unique map that maps v′(l,m, t′) to δtt′v′(m, l, t). Again regarding

Vϵ((l +m− t, t)) ⊂ Vϵ′′((l +m− t, t)) (t ∈ Hϵ(l,m)),

Wl,ϵ(x)⊗Wm,ϵ(y) ⊂ Wl,ϵ′′(x)⊗Wm,ϵ′′(y),

we obtain the desired projection

P l,mt :Wl,ϵ(x)⊗Wm,ϵ(y) −→Wm,ϵ(y)⊗Wl,ϵ(x)

by restriction. Note that P l,mt does not depend on the choice of ϵ′′ and x, y ∈ k×.

Proof of Theorem 4.2.10. Given l,m ∈ Z≥0 and ϵ, we fix ϵ′ and ϵ′′ as above. Write

Rnorm
l,m,ϵ(z) =

∑
t∈Hϵ(l,m)

ρt,ϵ(z)P l,mt

for ϵ = ϵ, ϵ′ or ϵ′′, where P l,mt denotes the projection accordingly. Recall from (2.2.1) that
the spectral decomposition for ϵ′ = ϵ0|N ′′ is known to be

ρt,ϵ′(z) =

min{l,m}∏
i=t+1

z − ql+m−2i+2

1− ql+m−2i+2z
.

Since trϵ
′′

ϵ′ (Rnorm
l,m,ϵ′′) = Rnorm

l,m,ϵ′ and trϵ
′′

ϵ′ (P
l,m
t ) = P l,mt for all t = 0, . . . ,min{l,m} by our

choice of ϵ′′, we obtain
ρt,ϵ′′(z) = ρt,ϵ′(z).

Now that

trϵ
′′

ϵ (P
l,m
t ) =

P
l,m
t if t ∈ Hϵ(l,m)

0 otherwise,

we truncate to ϵ the spectral decomposition of Rnorm
l,m,ϵ′′ to conclude the proof.
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4.3.2 Equivalence of duality functors

The main result of this subsection is the following equivalence.

Theorem 4.3.9. For ℓ < n, we have an equivalence of categories

Fϵ,ℓ : RJ(ℓ)-mod0 −→ CℓZ(ϵ).

Together with Lemma 4.3.7, we understand that for given ℓ, the truncation

trϵϵ′ : CℓZ(ϵ) −→ CℓZ(ϵ′)

is an equivalence whenever the length of ϵ′ is larger than ℓ. Therefore, if ϵ′ is infinite, the
whole functor tr : CZ(ϵ) → CZ(ϵ′) should be an equivalence of monoidal categories. We
will deal with the infinite rank issue in the next subsection.

To prove the theorem, we first identify the quiver Hecke algebra R(ℓ) with the affine
Hecke algebra after completion. There is a well-known Schur–Weyl-type duality between
affine Hecke algebras and quantum affine algebras of type A, and we establish its super
analogues by adapting the approach of [17]. Then the desired equivalence is obtained by
lifting this duality to quiver Hecke side.

Let us first recall the definition of the affine Hecke algebra.

Definition 4.3.10. For ℓ ≥ 2, the affine Hecke algebra Haff
ℓ (q2) is the k-algebra generated

by X±1
k (1 ≤ k ≤ ℓ) and hm (1 ≤ m ≤ ℓ− 1) subject to the following relations:

hmhm+1hm = hm+1hmhm+1, hmhm′ = hm′hm (|m−m′| > 1),

(hm − q2)(hm + 1) = 0,

XkXk′ = Xk′Xk, XkX
−1
k = X−1

k Xk = 1,

hmXmhm = q2Xm+1, hmXk = Xkhm (k ̸= m,m+ 1).

We also put Haff
0 (q2) = k and Haff

1 (q2) = k[X±1].
The finite Hecke algebra Hℓ(q

2) is the subalgebra generated by hm (1 ≤ m ≤ ℓ− 1).

Since the braid relation holds between hm, it is well-known that one can define hw
for w ∈ Sℓ without ambiguity by choosing any reduced expression w = si1si2 · · · sin and
setting hw := hi1 · · ·hin . Moreover, {Xa1

1 · · ·X
aℓ
ℓ hw}ai∈Z≥0,w∈Sℓ

(resp. {hw}w∈Sℓ
) is a basis

of Haff
ℓ (q2) (resp. Hℓ(q

2)).
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Next, we consider completions of Haff
ℓ (q2). Set (see Section 4.2.4 for notations)

OHaff
ℓ (q2) = Oℓ ⊗k[X±1

1 ,...,X±1
ℓ ] H

aff
ℓ (q2) ∼= Oℓ ⊗k Hℓ(q

2),

KHaff
ℓ (q2) = Kℓ ⊗Oℓ

OHaff
ℓ (q2).

They are associative k-algebras by

hmfe(ν) = sm(f)e(sm(ν))hm +
(q2 − 1)Xm+1(fe(ν)− sm(f)e(sm(ν)))

Xm+1 −Xm

for fe(ν) ∈ Kℓ.
Introduce intertwining elements Φm ∈ KHaff

ℓ (q2) (m = 1, . . . , ℓ− 1) defined by

Φm = hm −
(q2 − 1)Xm+1

Xm+1 −Xm

.

As the name suggests, Φm satisfies the following properties which can be checked by
straightforward but cumbersome computations:

Φmf(Xm, Xm+1)e(ν) = f(Xm+1, Xm)e(sm(ν))Φm,

ΦmΦm′ = Φm′Φm (|m−m′| > 1),

ΦmΦm+1Φm = Φm+1ΦmΦm+1,

Φ2
me(ν) =

Xm+1 − q2Xm

Xm −Xm+1

· Xm − q2Xm+1

Xm+1 −Xm

e(ν),

for f(Xm, Xm+1) ∈ k(Xm, Xm+1). Let us normalize Φm to

Φ̃m =
Xm −Xm+1

Xm+1 − q2Xm

Φm

so that Φ̃2
m = 1.

Now let
R̂J(ℓ) = k Jx1, . . . xℓK⊗k[x1,...,xℓ] R

J(ℓ)

be a completion of RJ(ℓ), with the naturally extended multiplication.
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Theorem 4.3.11 ([11,88]). There is a k-algebra isomorphism

Ψ : R̂J(ℓ) −→ OHaff
ℓ (q2)

defined by

Ψ(e(ν)) = e(ν),

Ψ(e(ν)xk) = e(ν)X(νk)
−1(Xk −X(νk)),

Ψ(e(ν)τm) =


e(ν)(Φ̃m − 1) (XmX(νm)

−1 −Xm+1X(νm+1)
−1)

−1 if νm+1 = νm

e(ν)Φ̃m (XmX(νm)
−1 −Xm+1X(νm+1)

−1) if νm+1 = νm + 1

e(ν)Φ̃m otherwise.

Let Haff
ℓ (q2)-modJ denote the category of finite-dimensional Haff

ℓ (q2)-modules such
that the eigenvalues of Xk (1 ≤ k ≤ ℓ) lies in the set {X(j) = q−2j}j∈J = q2Z. Our choice
of a completion implies an equivalence

Haff
ℓ (q2)-modJ ≃ OHaff

ℓ (q2)-mod

where the right hand side denotes the category of finite-dimensional OHaff
ℓ (q2)-modules on

which e(ν) acts as the projection to the simultaneous generalized eigenspace corresponding
to ν.

Similarly, the categoryRJ(ℓ)-mod0 of (not necessarily graded) finite-dimensionalRJ(ℓ)-
modules on which xk acts nilpotently is equivalent to the category R̂J(ℓ)-mod of (not nec-
essarily graded) finite-dimensional R̂J(ℓ)-modules.

To sum up, the algebra isomorphism Ψ induces an equivalence

OHaff
ℓ (q2)-mod ≃ R̂J(ℓ)-mod

and hence we obtain
Ψ∗ : Haff

ℓ (q2)-modJ
≃−→ RJ(ℓ)-mod0.

We shall use this equivalence to identify Fϵ with another duality functor arising from
affine Hecke algebras, which we now explain.

Recall that the functor Fϵ,ℓ is given by the tensor product with the (U(ϵ), RJ(ℓ))-
bimodule V ⊗ℓ

O = Oℓ ⊗k[X±1
1 ,...,X±1

ℓ ] V
⊗ℓ, where V ⊗ℓ = W1,ϵ(X1) ⊗ · · ·W1,ϵ(Xℓ) for indeter-
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minates X1, . . . , Xℓ. The application of the normalized R-matrix on m-th and (m+ 1)-st
factors gives rise to the linear map

Rm : V ⊗ℓ −→ k(Xm, Xm+1)⊗k[X±1
m ,X±1

m+1]
V ⊗ℓ.

Then one can prove the following lemma by verifying the defining relations of Haff
ℓ (q2).

Lemma 4.3.12. The U(ϵ)-module V ⊗ℓ carries a right Haff
ℓ (q2)-module structure given by

(f ⊗ v)Xk = (Xkf)⊗ v,

(f ⊗ v)hm = (f ⊗ v)
(
Xm+1 − q2Xm

Xm −Xm+1

Rm +
(q2 − 1)Xm+1

Xm+1 −Xm

)
for f ⊗ v ∈ V ⊗ℓ, 1 ≤ k ≤ ℓ and 1 ≤ m ≤ ℓ− 1.

Consequently we obtain a (U(ϵ),OHaff
ℓ (q2))-bimodule V ⊗ℓ

O and the functor

F∗
ϵ,ℓ : H

aff
ℓ (q2)-modJ −→ CℓZ(ϵ)

M 7−→ V ⊗ℓ
O ⊗OHaff

ℓ (q2) M.

Comparing the above formulas, this OHaff
ℓ (q2)-action is compatible under Ψ with the

R̂J(ℓ)-module structure given in Section 4.2.4. Therefore, we arrive at a natural isomor-
phism

F∗
ϵ,ℓ
∼= Fϵ,ℓ ◦Ψ∗,

and then Theorem 4.3.9 follows immediately from the following super analogue of [17].
Since its proof is rather technical and irrelevant to our discussion, we put it in a separate
Section 6.1.2.

Theorem 4.3.13. For ℓ < n, the functor

F∗
ϵ,ℓ : H

aff
ℓ (q2)-modJ −→ CℓZ(ϵ)

M 7−→ V ⊗ℓ
O ⊗OHaff

ℓ (q2) M

is an equivalence of categories.

Corollary 4.3.14. Let ϵ = (ϵ1, . . . , ϵn) and its subsequence ϵ′ = (ϵ′1, . . . , ϵ
′
n′) be given. If
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n′ > ℓ, then the truncation induces an equivalence of categories

trϵϵ′ : CℓZ(ϵ) −→ CℓZ(ϵ′).

As an application, we obtain short exact sequences called T -system, for generalized
quantum groups. For r, s ∈ Z≥0 and c ∈ k×, define the Kirillov–Reshetikhin type module

Wr,s
ϵ (c) :=Wϵ(l, c) where l = (r, . . . , r) ∈ (Z≥0)

s, c = (cq−2(s−1), . . . , cq−2, c).

When ϵ is homogeneous,Wr,s
ϵ (c) recovers the usual Kirillov–Reshetikhin module for quan-

tum affine algebras of type A(1)
n−1 (see Remark 4.3.16 below). In particular, Wr,s

ϵ (c) ∼=
Vϵ((s

r)) as a Ů(ϵ)-module unless (sr) /∈PM |N , in which case Wr,s
ϵ (c) = 0.

Proposition 4.3.15. There exists a short exact sequence

0 Wr,s+1
ϵ (c)⊗Wr,s−1

ϵ (cq−2) Wr,s
ϵ (c)⊗Wr,s

ϵ (cq−2)
⊗

r′=r±1

Wr′,s
ϵ (cq−1) 0.

for any r, s ∈ Z≥0 and c ∈ k×.

Proof. Since the result for arbitrary c can be obtained by the shift of spectral parameter,
we may take c = qr−1 so that the whole sequence belongs to the subcategory C2rsZ (ϵ).

In case of ϵ = ϵ0|n, the existence of such a short sequence is well-known under the
name of T -system [37, 68, 82]. For general ϵ, take ϵ′ such that ϵ′ > ϵ and the number N ′

of 1’s in ϵ′ is larger than 2rs.

C2rsZ (ϵ′)

C2rsZ (ϵ) C2rsZ (ϵ0|N ′)

trϵ
′

ϵ
trϵ

′
ϵ0|N′

≃

The choice of ϵ′ together with Corollary 4.3.14 implies that trϵ
′
ϵ0|N′ is an equivalence, so

that we can lift the T -system in CrsZ (ϵ0|N ′) to CrsZ (ϵ′). Since trϵ
′
ϵ is exact, applying it to the

lifted sequence in CrsZ (ϵ′) gives us the desired exact sequence by Theorem 4.3.6.

Remark 4.3.16. The Kirillov–Reshetikhin module W (r)
s,a associated with r ∈ {1, . . . , n−

1} and s ∈ Z≥1 over the quantum affine algebra U ′
q(ŝln) is defined to be the finite-
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dimensional irreducible module whose Drinfeld polynomial (Pi(u))i=1,...,n−1 is given by

Pi(u) =


∏s

k=1(1− aq2k−2u) if i = r

q if i ̸= r.

Then for r < n, Wr,ϵ0|n(c) corresponds to W (r)
1,a [84, Remark 3.3] for a = −o(r)(−q)−nc̃,

where ˜: k → k is an automorphism induced from q̃ = −q−1 and o : I \ {0} → {±1} is
chosen such that o(i) = −o(j) whenever aij ̸= 0. Hence, Wr,s

ϵ (c) corresponds to W (r)

s,aq2−2s .

It is known that KR modules of quantum affine algebras possess a number of nice
properties, most notably the existence of crystal bases [86] and the T -system. The T -
system, a family of short exact sequences, is now understood as an exchange relation
in the theory of cluster algebras, and hence KR modules are a starting point towards
a monoidal categorification of cluster algebras [41, 60, 62]. We expect that KR modules
for quantum affine superalgebra play a similarly important role (e.g. see [75] for crystals
when ϵ = ϵM |N).

4.3.3 Inverse limit category

We interpret the infinite rank limit involved in super duality as the inverse limit of cate-
gories. In this section, we construct inverse limits of C(ϵ) and record general properties,
following the exposition of [31].

For the remaining of this chapter, we fix ϵ∞ = (ϵi)i≥1 = (ϵ1, ϵ2, . . . ), with infinitely
many 0’s and 1’s for convenience. Take an ascending chain (ϵ(k))k≥1 of subsequences of
ϵ∞ such that ϵ∞ = limk ϵ

(k) and ϵ(k) ∈ E for all k.

Definition 4.3.17. Define the inverse limit category

C(ϵ∞) = lim←−C(ϵ
(k))

to be the category whose

(1) objects are pairs V = ((Vk)k≥1, (fk)k≥1) such that

Vk ∈ C(ϵ(k)), fk : tr
k+1
k (Vk+1)

∼=−→ Vk (k ≥ 1)

where trk+1
k := trϵ

(k+1)

ϵ(k)
and fk is a U(ϵ(k))-module isomorphism;
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(2) morphisms from V = ((Vk), (fk)) to W = ((Wk), (gk)) are sequences ϕ = (ϕk)k≥1 of
ϕk ∈ HomU(ϵ(k))(Vk,Wk) which make the following diagram commute for all k

trk+1
k (Vk+1) Vk

trk+1
k (Wk+1) Wk.

fk

trk+1
k (ϕk+1) ϕk

gk

For each k ≥ 1, we associate a functor

trk : C(ϵ∞) −→ C(ϵ(k))

given by trk(V) = Vk and trk(ϕ) = ϕk, for an object V = ((Vk), (fk)) and a morphism
ϕ = (ϕk).

The inverse limit category is an abelian category with a monoidal structure given by

V⊗W = ((Vk ⊗Wk)k≥1, (fk ⊗ gk)k≥1)

where V = ((Vk), (fk)) and W = ((Wk), (gk)), and trk is exact. The following property
also follows from standard arguments.

Lemma 4.3.18. Given a category C with a family of functors (Fk : C −→ C(ϵ(k)))k≥1

such that trk+1
k ◦ Fk+1

∼= Fk for all k ≥ 1, there exists a functor

F = lim←−Fk : C −→ C(ϵ
∞)

such that trk ◦ F ∼= Fk for all k ≥ 1. Moreover, F is exact if every Fk is exact. If C is a
monoidal category and every Fk is monoidal, then so is F .

Remark 4.3.19. If we take another ascending chain (ϵ̃(k))k≥1 for ϵ∞ and construct the
inverse limit category C̃(ϵ∞) = lim←−C(ϵ̃

(k)), then we have an equivalence of categories
C(ϵ∞) ≃ C̃(ϵ∞). Indeed, given any finite subsequence ϵ′ of ϵ∞, we can find ϵ(k) > ϵ′ so that
we can define a truncation trϵ′ := trϵ

(k)

ϵ ◦ trk, which does not depend on the choice of k.
Then these truncations are assembled to a functor C(ϵ∞)→ C̃(ϵ∞) by Lemma 4.3.18, and
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vice versa. Therefore, the category C(ϵ∞) is independent of the choice of an ascending
chain (ϵ(k)) and the requirement ϵ(k) ∈ E does not affect C(ϵ∞) at all.

As observed in Section 4.3.1, fundamental representations, normalized R-matrices and
their specializations are compatible with truncations. Hence we may take an object

Wl,ϵ∞(x) =
(
(Wl,ϵ(k)(x))k≥1, (fk)k≥1

)
∈ C(ϵ∞)

for l ∈ Z≥0 and x ∈ k×, and a morphism

R(l1,l2),ϵ∞(c1, c2) =
(
R(l1,l2),ϵ(k)(c1, c2)

)
k≥1

:Wl1,ϵ∞(c1)⊗Wl2,ϵ∞(c2) −→Wl2,ϵ∞(c2)⊗Wl1,ϵ∞(c1)

for c1, c2 ∈ k× such that dl1,l2(c1/c2) ̸= 0.
For (l, c) ∈ P+, we also put

Wϵ∞(l, c) = imRl,ϵ∞(c) =
(
Wl,ϵ(k)(c)

)
k≥1
∈ C(ϵ∞),

where Rl,ϵ∞(c) is the composition of R(li,lj),ϵ∞(ci, cj) as in the finite rank cases. Observe
that Wϵ∞(l, c) is nonzero for any (l, c) ∈ P+. Indeed, if we take a large enough k so that
li < Nk for all i, then trϵ

(k)

ϵ0|Nk
Wϵ(k)(l, c)

∼= Wϵ0|Nk
(l, c) ̸= 0, and so Wϵ(k

′)(l, c) ̸= 0 for all
k′ > k. Then the simplicity of Wϵ∞(l, c) is immediate from the following easy lemma.

Lemma 4.3.20. An object V ∈ C(ϵ∞) is simple if it is nonzero and for all k, trkV is
simple or zero.

Proof. Let U be a nonzero subobject of V, with trkU regarded as a submodule of trkV for
all k. For minimal k0 such that trk0U ̸= 0, we have trkU = trkV for all k ≥ k0 due to the
irreducibility of trkV. But then

trkU = trk0k trk0U = trk0k trk0V = trkV

for all k ≤ k0 as well.

Proposition 4.3.21. For (l, c) ∈ P+, Wϵ∞(l, c) is a simple object in C(ϵ∞).

We can also define the inverse limit C̊(ϵ∞) of C̊(ϵ(k)), in which category the analogue
of Lemma 4.3.20 holds with the same proof. Namely, we have simple objects

Vϵ∞(λ) =
(
(Vϵ(k)(λ)), (f̊k)

)
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for λ ∈P, where Vϵ(k)(λ) is understood to be zero if λ /∈PMk|Nk
. Applying Lemma 4.3.18

to forgetful functors, we may regardWϵ∞(l, c) as an object in C̊(ϵ∞). Then we obtain the
following classical decomposition of simple objects in C(ϵ∞).

Proposition 4.3.22. For (l, c) ∈ P+, Wϵ∞(l, c) is a semisimple object in C̊(ϵ∞) and

Wϵ∞(l, c) =
⊕
λ∈P

Vϵ∞(λ)⊕m
(l,c)
λ

where m(l,c)
λ is the multiplicity in Theorem 4.3.8.

Remark 4.3.23. In the formalism of super duality for classical Lie superalgebras, the
inverse limit of module categories can be understood as a module category of infinite rank
Lie superalgebras. We expect that our limit C(ϵ∞) is also closely related to certain module
category of infinite rank quantum affine algebra Uq(ŝl∞) (e.g. [38]).

Definition 4.3.24. (1) CZ(ϵ∞) is the full subcategory of C(ϵ∞) consisting of V = (Vk)

such that Vk ∈ CZ(ϵ(k)) for all k and the composition length of Vk stabilizes for
sufficiently large k.

(2) For ℓ ∈ Z≥0, CℓZ(ϵ∞) is defined to be the full subcategory of CZ(ϵ∞) consisting of
V = (Vk) with Vk ∈ CℓZ(ϵ(k)) for all k.

Note that a finite length condition is imposed in the definition of CZ(ϵ∞), and so it is
not exactly the inverse limit of the categories CZ(ϵ(k)). Still, we have the following result.

Proposition 4.3.25. (1) We have CZ(ϵ∞) =
⊕

ℓ≥0 CℓZ(ϵ∞).

(2) For ℓ ∈ Z≥0, we have CℓZ(ϵ∞) = lim←−C
ℓ
Z(ϵ

(k)), the inverse limit category associated
with {CℓZ(ϵ(k))}k≥1 defined as in Definition 4.3.17.

Proof. (1) We prove that any V = (Vk) ∈ CZ(ϵ∞) is a direct sum of objects from CℓZ(ϵ∞)

for finitely many ℓ. Write Vk =
⊕

ℓ V
ℓ
k for V ℓ

k ∈ CℓZ(ϵ). If we set ℓk = max{ℓ |V ℓ
k ̸= 0}, then

the sequence (ℓk)k≥1 is bounded above. Otherwise, ℓ(Vk) grows indefinitely as trk
′

k V
ℓk
k′ =

V ℓk
k ̸= 0, which is impossible by definition of CZ(ϵ∞). Hence we have V =

⊕
ℓ≤ℓn V

ℓ for
sufficiently large n, where Vℓ = (V ℓ

k )k≥1 ∈ CℓZ(ϵ∞).
(2) The inverse limit A := lim←−C

ℓ
Z(ϵ

(k)), clearly contains CℓZ(ϵ∞) as a subcategory. Take
V = (Vk) ∈ A, and let us check that the composition length ℓ(Vk) of Vk is stabilized for
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large k. Recall from Theorem 4.2.22 that the simple objects in CℓZ(ϵ(k)) are of the form
Wϵ(k)(l, c) for (l, c) ∈ P+

Z (ϵ
(k)) with ℓ =

∑
li. Moreover, as a Ů(ϵ(k))-module, Wϵ(k)(l, c)

is a direct sum of Vϵ(k)(λ) for partitions λ of ℓ. But if the number of 0’s in ϵ(k) exceed
ℓ, then every partition λ of ℓ are in Pϵ(k) and Vϵ(k)(λ) is nonzero. Thus the composition
length of Vk as a Ů(ϵ(k))-module is stabilized once ϵ(k) has at least ℓ 0’s, and then so is
ℓ(Vk).

Remark 4.3.26. Recall that we know all the simple objects in the category CℓZ(ϵ(k))
(Theorem 4.2.22), from which it also follows that trk

′

k sends simples to simples or zero.
Using a criterion [31, Lemma 4.1.5] for simplicity of objects in inverse limit categories and
the parametrization [16, 58] (see Section 2.2.2) of finite-dimensional irreducible represen-
tations of U ′

q(ŝln) (see also [33] for U ′
q(ĝln)), we obtain a complete classification of simple

objects in CZ(ϵ∞). Namely, they are of the form Wϵ∞(l, c) for (l, c) ∈ P+
Z , and the pair

(l, c) is uniquely determined up to permutation.

4.3.4 Super duality

Finally, we are ready to establish the super duality. By Lemma 4.3.18, replacing C(ϵ∞)

with CℓZ(ϵ∞), the duality functors (Fϵ(k),ℓ)k≥1 now induce exact functors

Fϵ∞,ℓ : R(ℓ)-mod0 −→ CℓZ(ϵ∞),

Fϵ∞ =
⊕
ℓ≥0

Fϵ∞,ℓ : R-mod0 −→ CZ(ϵ∞),

where Fϵ∞ is monoidal in addition. The following result, which follows from a general
property of inverse limit categories, is the final step.

Proposition 4.3.27. The functor Fϵ∞,ℓ is an equivalence of categories, and so Fϵ∞ is a
monoidal equivalence.

Proof. Recall that for sufficiently large k, Fϵ(k),ℓ and trk+1
k : CℓZ(ϵ(k+1)) −→ CℓZ(ϵ(k)) are

equivalences by Theorem 4.3.9 and Corollary 4.3.14, respectively. The latter one also
implies that trk : CℓZ(ϵ(k+1)) −→ CℓZ(ϵ(k)) is an equivalence for large k, by [31, Lemma 3.1.3].
Since Fϵ(k),ℓ ∼= trk ◦ Fϵ∞,ℓ for any k ≥ 1, the result follows.

Put
ϵ∞ = (ϵi)i≥1 = (0, 0, 0, . . . ), ϵ∞ = (ϵi)i≥1 = (1, 1, 1, . . . ).
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Let CZ(ϵ∞) and CZ(ϵ∞) be defined as above, associated with ascending chains (ϵ(k) = ϵk|0)

and (ϵ(k) = ϵ0|k) respectively. Then we can find an increasing sequence {rk} and {sk} such
that ϵ(k) < ϵ(rk) and ϵ(k) < ϵ(sk) and we set

Sk|0 = trϵ
(rk)

ϵk|0
◦ trrk , S0|k = trϵ

(sk)

ϵ0|k
◦ trsk ,

which does not depend on rk, sk.

CℓZ(ϵ∞)

CℓZ(ϵk|0) CℓZ(ϵ0|k)

Sk|0 S0|k

Then they induce exact functors S∞|0 and S0|∞

CℓZ(ϵ∞)

CℓZ(ϵ∞) CℓZ(ϵ∞),

S∞|0 S0|∞

which sum up to exact monoidal functors

CZ(ϵ∞)

CZ(ϵ∞) CZ(ϵ∞),

S∞|0 S0|∞

Now we come to a climax of this chapter, which can be viewed as a quantum affine
analogue of the super duality introduced in Section 4.1.

Theorem 4.3.28. The functors S∞|0 and S0|∞ are equivalences of monoidal categories.

As an application, let us give a description of Grothendieck ring of the category CZ(ϵ)
for any ϵ. Recall that the Grothendieck ring of CZ(ϵ∞) is Z≥0-graded:

K(CZ(ϵ∞)) =
⊕
ℓ≥0

K(CℓZ(ϵ∞)).
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Let S = {(l, a) | l ∈ Z≥0, a ∈ l + 1 + 2Z} and

R = Z[tl,a](l,a)∈S

the polynomial ring generated by tl,a, graded by deg tl,a = l.

Proposition 4.3.29. There is an isomorphism of graded rings

K(CZ(ϵ∞)) −→ R

[Wl,ϵ∞(qa)] 7−→ tl,a.

Proof. For k ≥ 1, it is well-known [33] (see also [34, Corollary 2]) that K(CZ(ϵ0|k)) is
isomorphic to

Rk := Z[tl,a]1≤l≤k,(l,a)∈S ⊂ R

by matching
[
Wl,ϵ0|k(q

a)
]

with tl,a, which respects the grading. Since tr
ϵ0|k+1
ϵ0|k induces a

map Rk+1 −→ Rk given by tk+1,a = 0 for all a, we derive

K(CℓZ(ϵ∞)) = lim←−K(CℓZ(ϵ0|k)) ∼= lim←−R
ℓ
k = Rℓ

and so as a graded ring, K(CZ(ϵ∞)) ∼= R. Since K(CZ(ϵ∞)) ∼= K(CZ(ϵ∞)) by Theorem
4.3.28, we obtain the desired isomorphism.

In particular, it induces a surjective ring homomorphism

R −→ K(CZ(ϵ(k)))
tl,a 7−→

[
Wl,ϵ(k)(q

a)
]

by composing with truncation trk. Hence, if there is a relation that holds in sufficiently
large ranks in the Grothedieck ring of the category of finite-dimensional modules over
U ′
q(ĝln), then we can lift it to K(CZ(ϵ)) for any ϵ. The T -system in the previous subsection

is one such example.

Corollary 4.3.30. Let ϵ ∈ E and (l, c) ∈ P+
Z (ϵ) be given. If we have[

Wϵ0|k(l, c)
]
= χ

({[
Wl,ϵ0|k(q

a)
]})
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for some χ ∈ R and a sufficiently large k, then we obtain the same identity in K(CZ(ϵ)):

[Wϵ(l, c)] = χ ({[Wl,ϵ(q
a)]}) .

Remark 4.3.31. Recall that in the super duality in Section 4.1, we have g = g = gl∞ and
so super duality induces an autoequivalence on the category O = O which categorifies
the involution sλ 7→ sλt on the ring of symmetric functions.

In our case, there exists a Q-algebra isomorphism ·̃ : U(ϵ0|n) −→ U(ϵn|0) given by

q̃ = −q−1, ẽi = ei, f̃i = fi, k̃µ = kµ.

This induces an equivalence between CZ(ϵ∞) and CZ(ϵ∞). If we identify their Grothendieck
rings under this equivalence, then our equivalence S∞|0 ◦ S−1

0|∞ from super duality induces
an involution on K(CZ(ϵ∞)), which can be viewed as a quantum affine analogue of the
above involution on the ring of symmetric functions.
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Chapter 5

Oscillator representations of Uq(ĝln)

In this chapter, we initiate the study of q-oscillator representations of Uq(ĝln). They
are (level 0) infinite-dimensional representations, but still share similar tensor product
structures with finite-dimensional representations. On one hand, such a similarity stems
from the fact that the spectral decompositions of R-matrices for q-oscillators are very
close to the ones for finite-dimensional representations. On the other hand, they can be
viewed as another bosonic counterpart of finite-dimensional representations, and hence
should be intimately related to them under the super duality philosophy.

We define the category Ôosc of q-oscillator representations of Uq(ĝln) as affinizations of
the one Oosc of q-oscillator representations of Uq(gln) (cf. Definition 4.2.1). Namely, the
role of polynomial Ů(ϵ)-modules in Chapter 4 is now played by q-oscillator representations
of Uq(gln), which are q-analogues of oscillator representations of gln.

Hence, to study Ôosc, we first need to reproduce the results in Section 3.2 for q-
oscillators of Uq(gln). This is done in Section 5.2 whose main result is the decomposition
(5.2.2), from which we deduce the semisimplicity and the decomposition of tensor products
of two irreducible q-oscillator representations corresponding to single rows.

Then we may adopt the same approach as in Chapter 4. Fundamental q-oscillator rep-
resentations Wosc

l (x) and normalized R-matrices are defined. We compute the spectral
decomposition of normalized R-matrices, which allows us to construct irreducible objects
in Ôosc by fusion, as in Section 4.2.3. Consequently, we obtain a natural correspondence
between irreducible q-oscillator representations and irreducible finite-dimensional repre-
sentations obtained from the same data (l, c) by fusion constructions, which is more strik-
ing than the one in Chapter 4 in that q-oscillator representations are infinite-dimensional.
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As a first step toward a quantum affine super duality for this correspondence, we
introduce a analogous category Ôosc,ϵ for generalized quantum group U(ϵ), where ϵ =

(010 . . . 10) is an alternating (01)-sequence originated from classical super duality. We
can repeat the above constructions in the super case, and define truncation functors from
Ôosc,ϵ to Ôosc, and to a category of finite-dimensional representations of Uq(ĝln). However,
to establish a super-duality-type equivalence seems to be much harder, as is the same in
classical theory. Instead we shall give some evidences, including T -systems and a relation
to finite-dimensional representations of U(ϵM |N).

The results of this chapter is based on [73], with a more uniform account as in [74].

5.1 Howe duality and oscillator representations of gln
To motivate q-oscillator representations, let us briefly review a pair of Howe dualities, from
which a nice correspondence between oscillators and finite-dimensional representations of
gln is obtained.

The celebrated skew Howe duality of type A refers to the following (gln, GLℓ)-bimodule
decomposed as a direct sum of simples:

W⊗ℓ := Λ(Cn)⊗ℓ =
⊕
ℓ(λ)≤ℓ
ℓ(λt)≤n

Vgln(λ
t)⊗ VGLℓ

(λ) (5.1.1)

where VGLℓ
(λ) (resp. Vgln(λ

t)) is the finite-dimensional irreducible representation of GLℓ
(resp. gln) associated with λ ∈ P (resp. λt). The joint action of gln and GLℓ on the
tensor power of fermionic Fock space W has various nice properties, such as double cen-
tralizer property, semisimplicity and multiplicity-freeness. This gives rise to a method to
understand representations of gln occurring in the bimodule in terms of the representation
theory of GLℓ, and vice versa.

More precisely, let Fn be the (semisimple) category generated by Vgln(λ
t) for all

λ ∈ P with ℓ(λt) ≤ n, which is closed under tensor products. We denote by K(GLℓ)

the Grothendieck group of the category of polynomial representations of GLℓ, and then
K(GL) =

⊕
ℓ≥0K(GLℓ) has a coalgebra structure given by the branching rule. Then the

Grothendieck ring of Fn is a homomorphic image of the dual of the coalgebra K(GL),
hence the name duality.

On the other hand, if we replace Λ(Cn) with the symmetric algebra S(Cn), we obtain
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another duality called the Howe duality of type A,

S(Cn)⊗ℓ =
⊕

ℓ(λ)≤ℓ,n

Vgln(λ)⊗ VGLℓ
(λ).

Exactly the same argument applies to the category Fn generated by Vgln(λ) with ℓ(λ) ≤ n.
In fact, Fn = Fn and is the category of polynomial representations of gln. Thus we obtain
two ring surjections

K(GL)∗

K(Fn) K(Fn),

where [Vgln(λ
t)] and [Vgln(λ)] correspond to the same element in K(GL)∗ (cf. Section 4.1).

In general, suppose we have two dualities (g, Gℓ) on W⊗ℓ and (g, Gℓ) on W
⊗ℓ for Lie

(super)algebras g and g and a Lie group (or algebra) Gℓ for all ℓ ≥ 1. If the irreducible Gℓ-
modules occurring in both dualities are the same, then we can expect that the semisimple
monoidal categories generated by irreducible g- and g-modules in W and W have parallel
structures.

We shall recall another Howe duality [44] which is paired with the skew Howe duality
(5.1.1) in the above sense. Let us fix r ∈ {2, 3, . . . , n − 2}. A new bosonic Fock space is
the same as S(Cn) as a vector space, but with a twisted gln-action: Put

W osc := S(Cr∗ ⊕ Cn−r) = C[x∗1, . . . , x∗r, xr+1, . . . , xn].

It has a glr ⊕ gln−r-action induced from the natural gln−r-module Cn−r and the dual Cr∗

of the one of glr. To extend it to a gln-action, we only need to define the actions of er
and fr, and they are given by

er = −
∂

∂x∗r

∂

∂xr+1

, fr = x∗rxr+1.

To describe the irreducible gln-modules appearing in (W osc)⊗ℓ, let

P(GLℓ) = {λ = (λ1, . . . , λℓ) ∈ Zℓ |λ1 ≥ · · · ≥ λℓ}
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be the set of generalized partitions of length ℓ. It is well-known that P(GLℓ) parametrizes
the finite-dimensional irreducible representations of GLℓ (with integral weights), and we
denote by VGLℓ

(λ) the one associated with λ ∈ P(GLℓ). Let us also set P(GL0) = {∅}.
When λ ∈ P(GLℓ) can be written as

λ = (λ1 ≥ · · · ≥ λs > λs+1 = · · · = λt = 0 > λt+1 ≥ · · · ≥ λℓ)

for some s < t, we put

λ+ = (λ1 ≥ · · · ≥ λs), λ− = (−λℓ ≥ · · · ≥ −λt+1).

If instead λℓ > 0 (resp. λ1 < 0), then we put λ+ = λ, λ− = ∅ (resp. λ+ = ∅, λ− =

(−λℓ, . . . ,−λ1)). Clearly, λ± are partitions1. Set

P(GLℓ)(r,n−r) = {λ ∈ P(GLℓ) | ℓ(λ−) ≤ r, ℓ(λ+) ≤ n− r}.

For λ ∈ P(GLℓ)(r,n−r), we define a weight

ϖλ,r = −ℓϖr +
s∑
i=1

λiδr+i +
ℓ∑

j=t+1

λjδr−(j−ℓ) ∈ Pfin (5.1.2)

where ϖr = δ1 + · · ·+ δr is the r-th fundamental weight of gln.
We denote by V λ the irreducible highest weight gln-module of highest weight ϖλ,r.

By convention, we put V ∅ = C, the trivial representation. Since ϖλ,r is never dominant,
every V λ is infinite-dimensional. More precisely, it is contained in the parabolic BGG
category associated with the Levi subalgebra of gln generated by ei, fi (i ̸= r) and h. Now
we can state the desired duality.

Theorem 5.1.1 ([44]). There exists a GLℓ-action on (W osc)⊗ℓ which commutes with
the gln-action, and as a (gln, GLℓ)-module (W osc)⊗ℓ has the following multiplicity-free
decomposition

(W osc)⊗ℓ =
⊕

λ∈P(GLℓ)(r,n−r)

V λ ⊗ VGLℓ
(λ).

We call V λ an irreducible oscillator representation of gln. They were first studied in
1Partitions are distinguished from generalized partitions, in that they consist only of positive integers.
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connection with unitarizable representations of real Lie groups, in different names such
as Segal-Shale-Weil representations or metaplectic representations [63].

Let Oosc be the category of gln-modules V such that

(1) V =
⊕

µ∈Pfin
Vµ with dimVµ <∞ and wt(V ) is finitely dominated,

(2) V =
⊕

ℓ≥0 Vℓ where Vℓ is a direct sum of V λ’s for λ ∈ P(GLℓ)(r,n−r), and Vℓ = 0 for
all sufficiently large ℓ.

Thanks to the duality, Oosc is a semisimple monoidal category whose monoidal structure
is given by the branching rule of GLℓ. Namely, for given λ ∈ P(GLℓ)(r,n−r) and µ ∈
P(GLℓ′)(r,n−r), we have

V λ ⊗ V µ =
⊕

ν∈P(GLℓ+ℓ′ )(r,n−r)

(V ν)⊕c
ν
λµ

where cνλµ is the multiplicity of VGLℓ
(λ)⊗VGLℓ′

(µ) in the restriction of the GLℓ+ℓ′-module
VGLℓ+ℓ′

(ν) to GLℓ ×GLℓ′ .
On the other hand, we know from (5.1.1) that the branching multiplicity cνλµ is also

equal to the multiplicity of Vgln(ν) in Vgln(λ)⊗ Vgln(µ), if λ, µ, ν are partitions. Hence to
compute cνλµ in general, we have to take a tensor product with enough power of the deter-
minant representation and then compute the tensor product multiplicity. In turn, tensor
products of two irreducible oscillator representations are in general of infinite length, as
shown in the following example.

Example 5.1.2. For l,m ∈ Z, we have

V (l) ⊗ V (m) = V (l1,l2) ⊕ V (l1+1,l2−1) ⊕ · · · =
⊕
t∈Z≥0

V (l1+t,l2−t) (5.1.3)

where l1 = max{l,m} and l2 = min{l,m}.

Now recall that this pair of Howe dualities consists of an exterior power and a sym-
metric power, or a fermionic and a bosonic Fock space. This alludes to the possibility of
supersymmetric construction, with accompanied super duality explaining the correspon-
dence of V λ and Vgln(λ). Let us briefly explain how to construct the super duality, which
is actually more intricate than the one in Section 4.1.
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Introduce the following (01)-sequences:

ϵ = ϵ(a,b) := (ϵ(a), ϵ(b), 0), ϵ(a) = (0, 1, 0, 1, . . . , 0, 1︸ ︷︷ ︸
2a

) (5.1.4)

for a, b ≥ 1. We put rϵ = 2a, which plays the role of r in the above construction for gln.
Let us also take the following subsequences of ϵ:

ϵ = (0a, 0b+1), ϵ = (1a, 1b), ε = (0a, 1b) (5.1.5)

with rϵ = rϵ = rε = a.
For ϵ = ϵ, ϵ, ϵ, ε, let gleϵ be the central extension of glϵ at αrϵ (see Section 5.2.2 for a

precise definition). Let Oϵ be a (version of) parabolic BGG category of gleϵ , associated
with the Levi subalgebra lϵ generated by ei, fi (i ∈ I\{rϵ}) and h, defined as in Section 4.1.
The extra central extension is to define truncation functors, which constitute the following
diagram:

Oϵ

O(ϵ(a),1b) O(0a,ϵ(b),0)

Oϵ Oϵa|b Oϵ.

(5.1.6)

Here the categories in the middle row are defined in a similar manner.
The category Oosc is a full subcategory of Oϵ. Moreover, for each λ ∈ P(GLℓ)(r,n−r),

one can construct a super analogue V λ
ϵ ∈ Oϵ such that trϵϵ

(
V λ
ϵ

)
= V λ

ϵ , while trϵϵ
(
V λ
ϵ

)
is

the finite-dimensional irreducible gla+b-module that corresponds to the same GLℓ-module
as V λ

ϵ in the above pair of Howe dualities.
Taking limits a, b→∞ properly, we obtain equivalences of categories

Oϵ

Oϵ Oϵ∞|∞ Oϵ,

under which the (inverse limit of) category Oosc is equivalent to the (inverse limit of)
category of finite-dimensional representations.
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The goal of this chapter is to establish a quantum affine analogue of the above cor-
respondence of irreducible oscillators and irreducible finite-dimensional representations,
and give some ideas towards the corresponding quantum affine super duality.

Remark 5.1.3. The name oscillator representation is coined by Howe, as a partner of spin
representations (see the end of [44, Section 2]). Indeed, oscillator representations of sp2n
are constructed by replacing the Clifford algebra in a realization of spin representations
of so2n with the Weyl algebra. Moreover, the corresponding Howe duality for oscillator
representations is obtained by directly switching the exterior power in the skew Howe
duality of type D (for spin representations) to the symmetric power, without a twist.

Recently, a quantum affine analogue of this spin-oscillator correspondence is obtained
in [74], namely between finite-dimensional representations of U ′

q(X
(1)
n ) and q-oscillator

representations of U ′
q(Y

(1)
n ) for (X, Y ) = (C,D) or (D,C). This enables a computation

of spectral decompositions of normalized R-matrices for fundamental representations of
U ′
q(ŝp2n), which was unknown before.

5.2 Oscillator representations of Uq(gln)

We first introduce q-oscillator representations of Uq(gln). Since the constructions are
uniform, we may consider super cases at the same time.

For the remaining of this chapter, we assume the following notations, some of which
override the ones in Chapter 3:

• We will freely use the notations in Section 5.1.

• Each ϵ ∈ En is implicitly accompanied with a choice of r ∈ I \ {0, 1, n− 1}, and we
put

I− = {1, . . . , r}, I+ = {r + 1, . . . , n},
ϵ− = (ϵ1, . . . , ϵr), ϵ+ = (ϵr+1, . . . , ϵn).

• Pfin,ϵ = ZΛr,ϵ ⊕ Zδ1 ⊕ · · · ⊕ Zδn with a symmetric bilinear form ( · | · ) given by

(δi, δj) = (−1)ϵiδij, (Λr,ϵ|Λr,ϵ) = 0, (δi,Λr,ϵ) =

0 if i ∈ I−

1 if i ∈ I+.
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• P≥0,ϵ = ZΛr,ϵ −
∑

i∈I− Z≥0δi +
∑

j∈I+ Z≥0δj.

• q( · , · ), q̂( · , · ) : k×-valued symmetric biadditive forms on Pfin,ϵ defined by

q(λ, µ) =
∏

qcidii , q̂(λ, µ) = q
∑

i∈I+ (ℓ′ci+ℓdi)q(λ, µ)

for λ = ℓΛr,ϵ +
∑
ciδi, µ = ℓ′Λr,ϵ +

∑
diδi ∈ Pfin,ϵ.

• For ϵ′ = ϵ \ {ϵi}, we revise the algebra homomorphism ϕϵϵ′ : U(ϵ′)→ U(ϵ) to ϕ̃ϵϵ′ and
the truncation trϵϵ′(V ) of a U(ϵ)-module V , according to the change of the weight
lattice from Pfin to Pfin,ϵ. See Theorem 5.2.4 and (5.2.1) below.

• We redefine U(ϵ) to be the algebra generated by ei, fi (i ∈ I) and kµ (µ ∈ Pfin,ϵ) with
the same defining relations. The finite type subalgebra Ů(ϵ) is defined accordingly.

• Ů(ϵ−, ϵ+) : the subalgebra of U(ϵ) generated by ei, fi (i ̸= 0, r) and kµ (µ ∈ Pfin,ϵ).

• V(ϵ−,ϵ+)(λ, µ) = Vϵ−(−λ)⊗ Vϵ+(µ) : irreducible Ů(ϵ−, ϵ+)-module, where Vϵ−(−λ) is
the dual of a Ů(ϵ−)-module Vϵ−(λ).

The algebra U(ϵ) defined in Chapter 3 is a subalgebra of the redefined one, generated
by ei, fi (i ∈ I) and kδj (j ∈ I). See also Remark 5.2.10.

5.2.1 Fock space and fundamental q-oscillator representations

Consider again the supersymmetric Fock space

Wϵ =
⊕

m∈Zn
+(ϵ)

k |m⟩

but now with different decomposition

Wϵ =
⊕
l∈Z

Wosc
l,ϵ , Wosc

l,ϵ =
⊕
l(m)=l

k |m⟩

where we put

|m|− = m1 + · · ·+mr, |m|+ = mr+1 + · · ·+mn,

|m| = |m|+ + |m|− , l(m) = |m|+ − |m|− .
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Given x ∈ k×, let us assign the following action of generators of U(ϵ) on Wϵ:

kΛr,ϵ |m⟩ = q
∑

j∈I+ mj |m⟩ ,
kδi |m⟩ = q−mi

i |m⟩ (i ∈ I−),
kδj |m⟩ = q

mj

j q |m⟩ (j ∈ I+),

e0 |m⟩ = x |m+ e1 + en⟩ ,
f0 |m⟩ = −x−1[m1][mn] |m− e1 − en⟩ ,

ei |m⟩ = [mi] |m− ei + ei+1⟩
fi |m⟩ = [mi+1] |m+ ei − ei+1⟩

(i ∈ I−),

er |m⟩ = −[mr][mr+1] |m− er − er+1⟩ ,
fr |m⟩ = |m+ er + er+1⟩ ,

ej |m⟩ = [mj+1] |m+ ej − ej+1⟩
fj |m⟩ = [mj]

(j ∈ I+).

Proposition 5.2.1. For x ∈ k×, the above formula defines a U(ϵ)-action on Wϵ.
Moreover, for each l ∈ Z, the subspace Wosc

l,ϵ is closed under the U(ϵ)-action and
irreducible over U(ϵ).

We denote the resulting U(ϵ)-module by Wosc
ϵ (x) and Wosc

l,ϵ (x) respectively, and call
the latter the l-th fundamental q-oscillator representation. When we regard them as Ů(ϵ)-
modules, we simply omit x for being irrelevant.

Note that the weight of |m⟩ ∈ Wosc
ϵ is

wt |m⟩ = Λr,ϵ −
∑
i≤r

miδi +
∑
j>r

mjδj ∈ Pfin,ϵ.

As a Ů(ϵ)-module, Wosc
l,ϵ is an irreducible highest weight representation generated by

a highest weight vector

vl =

|ler+1⟩ if l ≥ 0

|−ler⟩ if l < 0.

Remark 5.2.2. Suppose ϵi = 1 for all i, in which case Wosc
l,ϵ (x) is finite-dimensional, and

even zero unless −r ≤ l ≤ n− r. If −r ≤ l ≤ n− r, then as a U ′
−q−1(ĝln)-module,Wosc

l,ϵ (x)

is the (l + r)-th fundamental representation V (ϖl+r)x. Here U ′
−q−1(ĝln) is identified with

the subalgebra of U(ϵ) generated by ei, fi, kδj (see Remark 5.2.10).
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On the other hand, when ϵi = 0 for all i, again we find U ′
q(ĝln) as a subalgebra of U(ϵ),

and then the Uq(gln)-module Wosc
ϵ can be seen as a q-analogue of the bosonic Fock space

W osc in the previous section.

Remark 5.2.3. In [67], more general q-oscillator representations of U ′
q(ŝln), which are

level one in the context of level-rank duality, are introduced. By general we mean that
the distribution of particles and holes can be arbitrary, while our definition is the case
with first r holes, and then n− r particles.

Suppose ϵ′ is obtained from ϵ by removing ϵi. We redefine truncation functors to make
it compatible with q-oscillator representations. First, let us consider a slight twist of the
algebra homomorphism ϕϵϵ′ from Theorem 4.3.1.

Theorem 5.2.4. There exists a k-algebra homomorphism ϕ̃ϵϵ′ : U(ϵ′) −→ U(ϵ) defined on
the generators e′j, f ′

j (j ∈ I ′) and kµ (µ ∈ Pfin,ϵ′) by

kΛr′,ϵ′
7−→ kΛr,ϵ , kδ′l 7−→

kδl if 1 ≤ l ≤ i− 1

kδl+1
if i ≤ l ≤ n− 1,

Case 1. If 2 ≤ i ≤ r, then

(ej, fj) 7−→


(ej, fj) if 0 ≤ j ≤ i− 2(
[ei, ei−1]q(αi−1,αi)−1 , [fi−1, fi]q(αi−1,αi)

)
if j = i− 1

(ej+1, fj+1) if i ≤ j ≤ n− 2,

Case 2. If r + 1 ≤ i ≤ n− 1,

(ej, fj) 7−→


(ej, fj) if 0 ≤ j ≤ i− 2(
[ei−1, ei]q(αi−1,αi), [fi, fi−1]q(αi−1,αi)−1

)
if j = i− 1

(ej+1, fj+1) if i ≤ j ≤ n− 2,

Case 3. If i = n, then

(ej, fj) 7−→

(ej, fj) if j ̸= 0(
[en−1, e0]q(αn−1,α0), [f0, fn−1]q(αn−1,α0)−1

)
if j = 0,

Case 4. If i = 1, then

(ej, fj) 7−→


(
[e1, e0]q(α0,α1)−1 , [f0, f1]q(α0,α1)

)
if j = 0

(ej+1, fj+1) if j ̸= 0.
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More generally, if ϵ′ = (ϵ′1, . . . , ϵ
′
n−r) is obtained from ϵ by removing ϵi1 , . . . , ϵir for some

i1 < · · · < ir, we define a k-algebra homomorphism ϕ̃ϵϵ′ : U(ϵ′) −→ U(ϵ) as a successive
composition of the above algebra homomorphism.

For a U(ϵ)-module V with wt(V ) ⊂ P≥0,ϵ, define

trϵϵ′(V ) =
⊕

µ∈wt(V )
(pr(µ)|δi1 )=···=(pr(µ)|δit )=0

Vµ (5.2.1)

where pr : P≥0 ⊂ ZΛr,ϵ⊕
⊕

Zδi −→
⊕

Zδi is the projection Λr,ϵ 7→ 0. In the same manner
as in Section 4.3.1, we obtain an exact monoidal functor trϵϵ′ defined on U(ϵ)-modules with
weights in P≥0,ϵ. Again, it is easy check the following lemmas.

Lemma 5.2.5. For l ∈ Z and x ∈ k×, we have as a U(ϵ′)-module,

trϵϵ′(Wosc
l,ϵ (x))

∼=

Wosc
l,ϵ′ (x) if (l) ∈ P(GL1)(ϵ′−,ϵ′+)

0 otherwise.

Lemma 5.2.6. For µ ∈PM−|N− and ν ∈PM+|N+, we have as a Ů(ϵ′−, ϵ′+)-module

trϵϵ′
(
V(ϵ−,ϵ+)(µ, ν)

) ∼=
V(ϵ′−,ϵ′+)(µ, ν) if µ ∈PM ′

−|N ′
−

and ν ∈PM ′
+|N ′

+

0 otherwise.

Proof. By Proposition 4.3.4, for λ± ∈PM±|N± , we have

tr
ϵ±
ϵ′±

(
Vϵ±(λ±)

) ∼=
Vϵ′±(λ±) if λ ∈PM ′

±|N ′
±

0 otherwise.

5.2.2 Oscillator representations of Uq(gln)

The main result of this section is Theorem 5.2.14 and (5.2.2), which are reproductions
of Proposition 4.3.4 and (3.2.1) for ϵ = ϵ, ϵ or ϵ (see (5.1.4), (5.1.5) for notation). Since
q-oscillator representations in the case ϵ = ϵ will turn out to be finite-dimensional, we
only need to prove them for ϵ = ϵ, ϵ.
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Unlike polynomial representations, where quantum Schur–Weyl duality (Theorem 3.2.5)
was available, we do not have a quantum version of the Howe duality. Instead, we make
use of the classical limit to prove the case ϵ = ϵ, and then truncations to lift it to the
remaining one ϵ = ϵ.

Proposition 5.2.7. For ℓ ≥ 1, Wosc
ϵ (x)⊗ℓ is semisimple as a Ů(ϵ)-module.

Proof. Introduce a nondegenerate symmetric bilinear form on Wosc
ϵ (x)

(|m⟩ , |m′⟩) = δm,m′q−
∑n

i=1
mi(mi−1)

2

n∏
i=1

[mi]!

for m,m′ ∈ Zn+(ϵ), and an anti-involution η on Ů(ϵ)

η(kµ) = kµ,

η(ei) =


(−q2)ϵi−ϵi+1qifik

−1
αi

if i < r

(−q2)ϵr−1qrfrk
−1
αr

if i = r

qifik
−1
αi

if i > r,

η(fi) =


(−q2)ϵi+1−ϵiq−1

i kαi
ei if i < r

(−q2)1−ϵrq−1
r kαrer if i = r

q−1
i kαi

ei if i > r

for µ ∈ Pfin,ϵ and i ∈ I \ {0}. Then one can check that

(1) (η ⊗ η) ◦∆ = ∆ ◦ η,

(2) (xv, w) = (v, η(x)w) for x ∈ Ů(ϵ) and v, w ∈ Wosc
ϵ (x),

(3) For the A∞-lattice
L∞ =

⊕
m∈Zn

+(ϵ)

A∞ |m⟩ ⊂ Wosc
ϵ ,

we have (L∞,L∞) ⊂ A∞, and the induced form on L∞/q
−1L∞ is positive-definite.

Now the semisimplicity can be shown along the argument of [7, Theorem 2.12].

Let us introduce q-analogues of irreducible oscillator representations of gln. For λ ∈
P(GLℓ), define Λλ,ϵ ∈ P≥0,ϵ as follows:
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(1) If ϵr+1 = 0 (resp. ϵr+1 = 1), then fill the first row (resp. column) of λ+ with r + 1.
After filling a subdiagram µ ⊂ λ+ with r + 1, . . . , r + k, fill the first row (resp.
column) of λ+/µ with r + k + 1 if ϵr+k+1 = 0 (resp. ϵr+k+1 = 1).

(2) Fill λ− in the same way with r, r − 1, r − 2, . . . .

(3) Let mi be the number of occurrences of i’s in λ±, and define

Λλ,ϵ = ℓΛr,ϵ −
∑
i∈I−

miδi +
∑
j∈I+

mjδj.

In other words, (mr+1,mr+2, . . . ) (resp. (mr,mr−1, . . . )) is the content of the tableau
Hλ+,ϵ+ (resp. Hλ−,ϵ−). Hence the weight Λλ,ϵ is well-defined if and only if λ± ∈PM±|N± ,
and we put

P(GLℓ)(ϵ−,ϵ+) = {λ ∈ P(GLℓ) |λ± ∈PM±|N±}.

For example, we have

P(GLℓ)(ϵ−,ϵ+) =

P(GLℓ)(r,n−r) if ϵ = ϵn|0

{λ ∈ P(GLℓ) |n− r ≥ λ1, λℓ ≥ −r} if ϵ = ϵ0|n.

Definition 5.2.8. For λ ∈ P(GLℓ)(ϵ−,ϵ+), we denote by Vλϵ the irreducible highest weight
Ů(ϵ)-module with highest weight Λλ,ϵ.

Example 5.2.9. The l-th fundamental q-oscillator representation Wosc
l,ϵ (x) is isomorphic

to V(l)
ϵ as a Ů(ϵ)-module.

Next, we consider classical limits. Let β be a 2-cocycle on glϵ defined by β(X, Y ) =

str([J,X]Y ) for J =
∑

j∈I+ Ejj. Define a central extension gleϵ = glϵ
⊕

Cc with respect to
β, that is c is central in gleϵ and

[X, Y ] = XY − (−1)p(X)p(Y )Y X + β(X, Y )c

for homogeneous X, Y ∈ glϵ. In particular, we have

[Ei,i+1, Ei+1,i] = Ei,i − (−1)ϵi+ϵi+1Ei+1,i+1 − (−1)ϵrδirc =: hi (i ∈ I \ {0}).
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The dual weight lattice P∨
fin,ϵ = Zc⊕

⊕
ZEii of gleϵ is indeed in a perfect pairing with

Pfin,ϵ given by

⟨δi, Ejj⟩ = δij, ⟨δi, c⟩ = ⟨Λr,ϵ, Eii⟩ = 0, ⟨Λr,ϵ, c⟩ = 1,

from which we obtain an isomorphism of abelian groups ϕ : Pfin,ϵ −→ P∨
fin,ϵ given by

ϕ(δi) = (−1)ϵiEii + δ(i ∈ I+)c, ϕ(Λr,ϵ) =
∑
j∈I+

Ejj

such that (λ|µ) = ⟨λ, ϕ(µ)⟩ for λ, µ ∈ Pfin,ϵ. Note that ϕ(αi) = (−1)ϵihi.
We identify glϵ with the subalgebra of gleϵ generated by Ei,i+1, Ei+1,i (i = 1, . . . , n− 1)

and ϕ(δj) (j = 1, . . . , n). When we restrict to this subalgebra, the weight lattice Pfin,ϵ for
gleϵ degenerates to Pfin through Λr,ϵ ≡ (−1)ϵr+1δr+1 + · · ·+ (−1)ϵnδn..

Remark 5.2.10. When ϵ = ϵ, U(ϵ) = U(ϵ) can be identified under the isomorphism ϕ

with U ′
q(ĝl

e

a+b+1), the quantum group associated with a Cartan datum (see Section 2.2.1)

(A
(1)
a+b, Pfin,ϵ, {αi}, P∨

fin,ϵ, {hi = ϕ(αi)}).

Since the classical limit is not well-defined for Ů(ϵ), we first have to regard Vλϵ as a
module over the quantum superalgebra Ů(ϵ) using the algebra isomorphism τ . Here Ů(ϵ)
is also redefined as the algebra generated by Ei, Fi (i ∈ I \ {0}) and Kµ (µ ∈ Pfin,ϵ) with
the same relations as in Definition 3.1.4, and the algebra isomorphism τ in Theorem 3.1.6
restricts to

τ : Ů(ϵ)[σ] −→ Ů(ϵ)[σ].

Suppose V is a highest weight Ů(ϵ)-module with highest weight Λλ,ϵ for some λ ∈
P(GLℓ)(ϵ−,ϵ+). Pulling V back through τ , we obtain a Ů(ϵ)-module V τ and let V τ

A be the
A-span of {Fi1 · · ·Fisv | i1, . . . , is ∈ I \ {0}, s ≥ 0} for a highest weight vector v. Define
the classical limit V τ = V τ

A ⊗A C, where C is an A-algebra by q = 1. Then we obtain an
algebra homomorphism U(gleϵ) −→ End(V τ ) given by the induced action of Ů(ϵ), namely

Ei,i+1 7−→ Ei, Ei+1,i 7−→ Fi,

ϕ(δi) 7−→
Kδi −K−1

δi

q − q−1
, ϕ(Λr,ϵ) 7−→

KΛr,ϵ −K−1
Λr,ϵ

q − q−1
.
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Now one can easily verify the following lemma.

Lemma 5.2.11. As a gleϵ-module, V τ is a highest weight module of highest weight Λλ,ϵ.

In the proofs below, we shall use another truncations, associated with a sequence
ϵ(a+k,b+k) for k ≥ 1 that contains ϵ(a,b) as a subsequence obtained by removing the first
and the last 2k entries in ϵ(a+k) and (ϵ(b+k), 0) respectively. We will use the notation
ϵ̃ := ϵ(a+k,b+k) to emphasize this truncation. Note that if λ ∈ P(GLℓ)(ϵ−,ϵ+), then λ ∈
P(GLℓ)(ϵ̃−,ϵ̃+) as well and Λλ,ϵ = Λλ,ϵ̃.

Proposition 5.2.12. For ϵ = ϵ, ϵ, ϵ, any highest weight Ů(ϵ)-submodule of (Wosc
ϵ )⊗ℓ is

isomorphic to Vλϵ for some λ ∈ P(GLℓ)(ϵ−,ϵ+).

Proof. Let V be a highest weight Ů(ϵ)-submodule of (Wosc
ϵ )⊗ℓ, which is irreducible by the

semisimplicity of (Wosc
ϵ )⊗ℓ (Proposition 5.2.7).

When ϵ = ϵ, ϵ, it can be shown using Lemma 5.2.11 that the classical limit of (Wosc
ϵ )⊗ℓ

is isomorphic to (Wosc)⊗ℓ, W⊗ℓ, respectively. Then the classical limit of V is a highest
weight submodule, and hence isomorphic to V λ for some λ ∈ P(GLℓ)(ϵ−,ϵ+) by dualities
Theorem 5.1.1, (5.1.1) respectively.

Finally assume ϵ = ϵ, and let v be a highest weight vector of V . Note that if v is in the
component V(ϵ−,ϵ+)(µ, ν), then |µ| and |ν| are minimal among other Ů(ϵ−, ϵ+)-components
of V . We may further assume that a and b are large enough, so that V(ϵ−,ϵ+)(µ, ν) ̸= 0.
Indeed, take ϵ̃ = ϵ(a+k,b+k) for k > 0, and identify v ∈ (Wosc

ϵ )⊗ℓ ⊂ (Wosc
ϵ̃ )⊗ℓ. Then it is

easy to check that v is also a Ů(ϵ̃)-highest weight vector, and we may choose V to be the
Ů(ϵ̃)-submodule generated by v from the beginning.

Now we have trϵϵ(V(ϵ−,ϵ+)(µ, ν)) = V(ϵ−,ϵ+)(µ, ν) ̸= 0. If we let w be a Ů(ϵ−, ϵ+)-highest
weight vector of V(ϵ−,ϵ+)(µ, ν), then by the minimality of |µ| and |ν|, w is also a Ů(ϵ)-
highest weight vector of trϵϵ(V ). Since (Wosc

ϵ )⊗ℓ is finite-dimensional, the weight of w is
of the form Λλ,ϵ for some λ ∈ P(GLℓ)ϵ. This implies that the weight of v is Λλ,ϵ, as
desired.

In particular, we understand that the classical limit of Vλϵ is, as a gla+b+1-module,
isomorphic to the tensor product of the irreducible oscillator representation V λ and the
trivial representation C with I = 1.

Lemma 5.2.13. Let ϵ̃ = ϵ(a+k,b+k) for k ≥ 1.

(1) For λ ∈ P(GLℓ)(ϵ−,ϵ+) such that Vλϵ ⊂ (Wosc
ϵ )⊗ℓ, we have Vλϵ̃ ⊂ (Wosc

ϵ̃ )⊗ℓ.
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(2) For λ ∈ P(GLℓ)(ϵ̃−,ϵ̃+) such that Vλϵ̃ ⊂ (Wosc
ϵ̃ )⊗ℓ, we have

trϵ̃ϵ(Vλϵ̃ ) ∼=

Vλϵ if λ ∈ P(GLℓ)(ϵ−,ϵ+)

0 otherwise.

Proof. (1) Let v be a Ů(ϵ)-highest weight vector of Vλϵ ⊂ (Wosc
ϵ )⊗ℓ ⊂ (Wosc

ϵ̃ )⊗ℓ. As in the
proof of Proposition 5.2.12, v is also a Ů(ϵ̃)-highest weight vector. Since v has weight
Λλ,ϵ = Λλ,ϵ̃, we have Vλϵ̃ ⊂ (Wosc

ϵ̃ )⊗ℓ.
(2) First assume λ ∈ P(GLℓ)(ϵ−,ϵ+). Then a highest weight vector v of Vλϵ̃ belongs to

trϵ̃ϵ(Vλϵ̃ ) and is a Ů(ϵ)-highest weight vector as well, which implies Vλϵ ⊂ trϵ̃ϵ(Vλϵ̃ ). If this
containment is proper, we can find another Ů(ϵ)-highest weight vector w ∈ trϵ̃ϵ(Vλϵ̃ ) \ kv
by semisimplicity of trϵ̃ϵ(Vλϵ̃ ) ⊂ (Wosc

ϵ )⊗ℓ. But again as above, w is also a Ů(ϵ̃)-highest
weight vector in Vλϵ̃ of weight less than Λλ,ϵ, which is absurd.

Now suppose λ /∈ P(GLℓ)(ϵ−,ϵ+). Then there exists i ∈ Iϵ̃\Iϵ such that (prIϵ̃(Λλ,ϵ̃)|δi) ̸=
0, where Iϵ̃ = {1, 2, . . . , 2a+ 2b+ 4k + 1} is the index set for ϵ̃. Since Λλ,ϵ̃ is the highest
weight of Vλϵ̃ , for each µ ∈ wt(Vλϵ̃ ) one can easily find j ∈ Iϵ̃ \ Iϵ such that (prIϵ̃(µ)|δj) ̸= 0.
Hence trϵ̃ϵ(Vλϵ̃ ) = 0.

Now we arrive at the main result of this subsection.

Theorem 5.2.14. For λ ∈ P(GLℓ)(ϵ−,ϵ+), we have

trϵϵ′(Vλϵ ) ∼=

Vλϵ′ if λ ∈ P(GLℓ)(ϵ′−,ϵ′+)

0 otherwise,

for ϵ′ = ϵ or ϵ.

Proof. First note that for ϵ′ = ϵ, ϵ,

(Wosc
ϵ′ )⊗ℓ ∼=

⊕
λ∈P(GLℓ)(ϵ′−,ϵ′+)

(Vλϵ′)⊕d
λ

by the semisimplicity, classical limits and classical dualities. We also have from Proposi-
tion 5.2.12,

(Wosc
ϵ )⊗ℓ ∼=

⊕
λ∈S

(Vλϵ )⊕d
λ
ϵ
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for some S ⊂ P(GLℓ)(ϵ−,ϵ+) and dλϵ ∈ Z≥0.
Step 1. We first prove the assertion for λ ∈ S, when ϵ′ = ϵ. Let V = Vλϵ with a highest

weight vector v.
Suppose λ ∈ P(GLℓ)(ϵ−,ϵ+). Then the argument in the proof of Proposition 5.2.12

tells us that trϵϵ(V ) contains a Ů(ϵ)-highest weight vector of highest weight Λλ,ϵ, and so
Vλϵ ⊂ trϵϵ(V ). To prove the equality, we consider the classical limit V τ , which is a highest
weight U(gleϵ)-module with highest weight Λλ,ϵ. The truncation trϵϵ(V

τ ) is defined in the
same way as in (5.2.1), and using the argument of [20, Lemma 3.5], it can be proved
that trϵϵ(V

τ ) is also a highest weight module with highest weight Λλ,ϵ. Since trϵϵ(V
τ ) is a

finite-dimensional glea+b-module, this implies that it is irreducible and so the character of
trϵϵ(V

τ ) coincides with that of Vλϵ . This gives the desired equality.
Next, suppose that λ /∈ P(GLℓ)(ϵ−,ϵ+). Taking ϵ̃ = ϵ(a+k,b+k) with λ ∈ P(GLℓ)(ϵ̃−,ϵ̃+),

we have Vλϵ̃ ⊂ (Wosc
ϵ̃ )⊗ℓ and trϵ̃ϵ(Vλϵ̃ ) = V by Lemma 5.2.13. On the other hand, we just

have proved that trϵ̃
ϵ̃
(Vλϵ̃ ) ∼= Vλϵ̃ , and it can be easily seen that trϵ̃ϵ(Vλϵ̃ ) = 0. Now

trϵϵ(V ) = trϵϵ ◦ trϵ̃ϵ(Vλϵ̃ ) = trϵ̃ϵ ◦ trϵ̃ϵ̃(V
λ
ϵ̃ ) = trϵ̃ϵ(Vλϵ̃ ) = 0

as expected.
Step 2. We claim S = P(GLℓ)(ϵ−,ϵ+) and dλϵ = dλ. Indeed, given λ ∈ P(GLℓ)(ϵ−,ϵ+),

we again take ϵ̃ as above and then Vλϵ̃ ⊂ (Wosc
ϵ̃ )⊗ℓ by Step 1. Applying trϵ̃ϵ, we get

Vλϵ = trϵ̃ϵ
(
Vλϵ̃
)
⊂ (Wosc

ϵ )⊗ℓ and hence λ ∈ S.
Step 3. Finally, suppose ϵ′ = ϵ and let λ ∈ P(GLℓ)(ϵ−,ϵ+) be given. Since P(GLℓ)(ϵ−,ϵ+)

is contained in P(GLℓ)(ϵ−,ϵ+), Vλϵ ⊂ (Wosc
ϵ )⊗ℓ and its highest weight vector v is in the

component V(ϵ−,ϵ+)(λ
−, λ+). Once again, a highest weight vector w ∈ V(ϵ−,ϵ+)(λ

−, λ+) ⊂
trϵϵ(Vλϵ ) is also a Ů(ϵ)-highest weight vector by the minimality of |λ−| + |λ+|. Hence w
generates Vλϵ ⊂ trϵϵ(Vλϵ ). Now it remains to compare both ends of the following identity

⊕
λ∈P(GLℓ)(ϵ−,ϵ+)

(Vλϵ )⊕d
λ

= (Wosc
ϵ )⊗ℓ = trϵϵ

(
(Wosc

ϵ )⊗ℓ
)
=

⊕
λ∈P(GLℓ)(ϵ−,ϵ+)

trϵϵ
(
Vλϵ
)⊕dλ

,

keeping in mind that Vλϵ ⊂ trϵϵ(Vλϵ ) and P(GLℓ)(ϵ−,ϵ+) ⊂ P(GLℓ)(ϵ−,ϵ+).

Corollary 5.2.15. For ϵ = ϵ, ϵ or ϵ, we have the following Ů(ϵ)-module decomposition

(Wosc
ϵ )⊗ℓ ∼=

⊕
λ∈P(GLℓ)(ϵ−,ϵ+)

(Vλϵ )⊕d
λ

(5.2.2)
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where dλ = dimVGLℓ
(λ).

In particular, we obtain from (5.1.3)

Wosc
l,ϵ ⊗Wosc

m,ϵ =
⊕
t≥0

V(l1+t,l2−t)
ϵ (5.2.3)

as a Ů(ϵ)-module, for ϵ = ϵ, ϵ.

Definition 5.2.16. For ϵ = ϵ, ϵ, ϵ, let Oosc,ϵ be the category of Ů(ϵ)-modules V such that

(1) V =
⊕

µ∈P Vµ with dimVµ <∞ and wt(V ) is finitely dominated,

(2) V =
⊕

ℓ≥0 Vℓ where Vℓ is a direct sum of Vλϵ ’s for λ ∈ P(GLℓ)(ϵ−,ϵ+), and Vℓ = 0 for
all sufficiently large ℓ.

Again we put V∅
ϵ = k. Here we do not require that V itself is of finite length. Indeed,

already V(l)
ϵ ⊗ V(m)

ϵ has infinitely many irreducible components. On the other hand, the
multiplicity of each Vλϵ in V ∈ Oosc,ϵ is finite, due to the finite-dimensionality of weight
spaces of V .

Proposition 5.2.17. The category Oosc,ϵ is a semisimple monoidal category.

5.3 Oscillator representations of Uq(ĝln)

We proceed to affine types. In the remaining of this chapter, ϵ stands for either ϵ, ϵ, or ϵ,
unless otherwise stated.

5.3.1 Category Ôosc,ϵ

Definition 5.3.1. The category Ôosc,ϵ of q-oscillator representations of U(ϵ) is defined to
be the category of U(ϵ)-modules V such that V belongs to Oosc,ϵ as a Ů(ϵ)-module.

The category Ôosc,ϵ is closed under taking submodules, quotients and tensor products
(Proposition 5.2.17). Moreover, since wt(V ) ⊂ P≥0,ϵ for V ∈ Ôosc,ϵ, the truncation (5.2.1)
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is well-defined on Ôosc,ϵ, and then we obtain exact monoidal functors

Ôosc,ϵ

Ôosc,ϵ Ôosc,ϵ

trϵϵ trϵϵ

by Theorem 5.2.14.
In the context of super duality, the category Ôosc,ϵ serves as a module category of

intermediating superalgebra. In the following subsections, we will see that irreducible
representations of U ′

q(ĝln) in category Ôosc,ϵ′ for ϵ′ = ϵ, ϵ are indeed interpolated by
irreducible objects in Ôosc,ϵ.

Note that since P(GLℓ)(ϵ−,ϵ+) is a finite set for all ℓ ≥ 0, the U(ϵ)-modules in Ôosc,ϵ are
finite-dimensional. Moreover, Ôosc,ϵ contains all finite-dimensional fundamental represen-
tationsWosc

l,ϵ (x)
∼= V (ϖl+r)x. Hence it is a category of finite-dimensional representations of

U ′
q̃(ĝl

e

a+b), whose image under the forgetful functor (with respect to U ′
q̃(ĝla+b) ⊂ U ′

q̃(ĝl
e

a+b))
is exactly the category of finite-dimensional representations of Uq̃(ĝla+b).

On the other hand, Ôosc,ϵ (or its image under the forgetful functor) is by definition
the category of q-oscillator representations of U ′

q(ĝla+b+1). A conjectural super duality
asserts that this category has a parallel structure with a category of finite-dimensional
representations, although almost every object in Ôosc,ϵ is infinite-dimensional.

Restricted to the subalgebra U ′
q(ŝla+b+1), the category Ôosc,ϵ is a full subcategory of the

affinization Ô [36] of the BGG category O for the quantum group Uq(sla+b+1). Mukhin
and Young [80] generalized to Ô several basic results on finite-dimensional representations
of U ′

q(ĝ): they introduced the notion of ℓ-highest weight modules and q-characters in Ô,
classified the irreducibles by their ℓ-highest weights, and so on.

It should be interesting to understand our q-oscillator representations in this context.
Here we present the ℓ-highest weight of the fundamental q-oscillator representations of
U ′
q(ŝln), whose proof can be found in Section 6.2.1.

Proposition 5.3.2. As a U ′
q(ŝln)-module, the l-th fundamental q-oscillator representation
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Wosc
l (1) is an ℓ-highest weight module with ℓ-highest weight Ψ = (Ψi(z))i∈I\{0} given by

Ψi(z) =
∑
k≥0

Ψi,kz
k =


(q−l + u)(1 + q−lu)−1 if l < 0 and i = r − 1

(u+ q−|l|−1)(1 + q−|l|−1u)−1 if i = r

(ql + u)(1 + qlu)−1 if l ≥ 0 and i = r + 1

1 otherwise,

where u = (−q−1)nz.

Remark 5.3.3. Observe that the component Ψi(z) of the ℓ-highest weight ofWosc
0 (−(−q)n)

is trivial for all i, except

Ψr(z) = q−1 1− qz
1− q−1z

.

This is the reciprocal of the ℓ-highest weight of the r-th finite-dimensional fundamental
representation V (ϖr) of U ′

q(ŝln) (up to a spectral parameter shift).
Recall that the ℓ-highest weight of the KR module W (r)

s,q1−s (Remark 4.3.16) is

Ψr(z) = qs
∏s

k=1(1− q2k−2q−1q1−sz)∏s
k=1(1− q2k−2qq1−sz)

= qs
1− q−sz
1− qsz

.

Hence, the ℓ-highest weight of Wosc
0 (x) can be seen as the one of the KR module with

s = −1, which is of course not defined.
Recently, Zhang constructed a generic asymptotic limit of KR modules, say W (r)

x;c for
c ̸= 0 [100]. It is an infinite-dimensional U ′

q(ĝ)-module2 contained in the category Ô, and
our Wosc

0 (x) is indeed one example of such a limit, W (r)

x;q−1 . On one hand, it is a module-
theoretic realization of the analytic continuation considered in [80]. On the other hand, it
is a generalization of the asymptotic limit construction of prefundamental representations
over the Borel subalgebra Uq(b) of Uq(ĝ) [40], which recovers them by the non-generic
limit c = 0.

5.3.2 R-matrix and spectral decomposition

The construction of universal R-matrices in Section 4.2.2 also works for q-oscillator rep-
resentations. Namely, one can define the affinization Vaff = V ⊗C[z±1] of V ∈ Ôosc,ϵ, and

2In [100], the construction is originally for g = glM |N , and the one for simple Lie algebras g is treated
in its appendix.

104



CHAPTER 5. OSCILLATOR REPRESENTATIONS OF Uq(ĝln)

then the universal R-matrix

Runiv
V,W : Vaff ⊗Waff −→ Waff⊗̃Vaff

for V,W ∈ Ôosc,ϵ.
Let us focus on fundamental q-oscillator representations: let Runiv

l,m,ϵ := Runiv
Wosc

l,ϵ ,Wosc
m,ϵ

. We
have

Runiv
l,m,ϵ(vl ⊗ vm) = a(z1/z2)(vm ⊗ vl)

for some a(z) ∈ k JzK×. Put

c(z) =


∏min{|l|,|m|}

i=1
1−q|l−m|+2iz
z−q|l−m|+2i if lm > 0

1 if lm ≤ 0,

and define the normalized R-matrix

Rnorm
l,m,ϵ = c(z)a(z)−1Runiv

l,m,ϵ.

We remark that Rnorm
l,m,ϵ (vl ⊗ vm) = c(z)(vm ⊗ vl), that is Rnorm

l,m,ϵ is not the identity on the
tensor product vl ⊗ vm of ℓ-highest weight vectors if lm > 0.

For t ∈ Z≥0, let us define a Ů(ϵ)-linear map P l,mt : Wosc
l,ϵ ⊗Wosc

m,ϵ −→ Wosc
m,ϵ ⊗Wosc

l,ϵ as
in Section 4.3.1. Namely, put ϵ̃ = ϵ(a+k,b+k) for k > 0 such that V(l1+t,l2−t)

ϵ̃
̸= 0. Take a

Ů(ϵ̃)-highest weight vector v0(l,m, t) of V(l1+t,l2−t)
ϵ̃

inWosc
l,ϵ̃
⊗Wosc

m,ϵ̃
(and so inWosc

l,ϵ̃ ⊗Wosc
m,ϵ̃,

identifying Wosc
l,ϵ̃

= trϵ̃
ϵ̃
(Wosc

l,ϵ̃ ) ⊂ Wosc
l,ϵ̃ ) that corresponds to the one in its crystal base at

q =∞. Then we choose a projection P l,mt for ϵ = ϵ̃ normalized by

P l,mt (v0(l,m, t
′)) = δt,t′v0(m, l, t),

and the one for ϵ = ϵ, ϵ is obtained by truncation from ϵ̃.
Now we ask for the spectral decomposition

Rnorm
l,m,ϵ (z) =

∑
t≥0

ρt(z)P l,mt

for ρt(z) ∈ k(z). The strategy is similar with the case of polynomial representations:
we prove the irreducibility of generic tensor products of two fundamental q-oscillator
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representations, which implies that the truncation preserves the normalized R-matrix.
Then we lift the known spectral decomposition of the normalized R-matrix Rnorm

l,m,ϵ, i.e. for
finite-dimensional fundamental representations.

Let us first prove the irreducibility of Wosc
l,ϵ (x) ⊗Wosc

m,ϵ(y) for generic x, y ∈ k× in the
case of ϵ = ϵ. From here to the proof of Theorem 5.3.7, we put n = a + b + 1 and r = a

as in Section 5.1.
Let l,m ∈ Z be given. We shall find all Ů(ϵ)-highest weight vectors ui of Wosc

l (x) ⊗
Wosc

m (y), and then establish a connection between them under the action of U(ϵ).
Set l1 = max{l,m}, l2 = min{l,m} and

L = max{−l1, l2, 0} =


l2 if l2 ≥ 0

−l1 if l1 ≤ 0

0 if l1 ≥ 0 ≥ l2.

Equivalently, L is the smallest nonnegative integer such that l1 + L ≥ 0 ≥ l2 − L. Then
the tensor product decomposition (5.2.3) becomes

Wosc
l (x)⊗Wosc

m (y) = V(l) ⊗ V(m) ∼=
∞⊕

i=−L

V(l1+L+i,l2−L−i). (5.3.1)

Let us write vl = |m⟩, vm = |m′⟩ for m,m′ ∈ (Z≥0)
n. Put

v+a,b = |m+ a(er + er+1)⟩ ⊗ |m′ + b(er + er+1)⟩

for a, b ≥ 0 and

v−a,b =

|m+ a(−er+1 + er+2)⟩ ⊗ |m′ + b(−er+1 + er+2)⟩ if l2 ≥ 0

|m+ a(er−1 − er)⟩ ⊗ |m′ + b(er−1 − er)⟩ if l1 ≤ 0

for a, b ≥ 0 with a+ b ≤ L. Note that v±0,0 = vl ⊗ vm.

Lemma 5.3.4. The Ů(ϵ)-highest weight vector ui of V(l1+L+i,l2−L−i) in Wosc
l (x)⊗Wosc

m (y)

is given by
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(1) for i ≥ 0,

ui =
i∑

j=0

[
(−1)j

j∏
k=1

(
q−(|m|+2i−2k+1) [|m|+ i+ 1− k][i+ 1− k]

[|l|+ k][k]

)]
v+j,i−j,

(2) for −L ≤ i ≤ −1,

ui =
−i∑
j=0

[
(−1)j

j∏
k=1

(
q|m|+2i+2k [−i+ 1− k]

[k]

)]
v−j,−i−j.

Proof. It is straightforward to verify erui = er+1ui = 0, while ekui = 0 for k ̸= 0, r, r + 1

is clear.

Next, we describe how the Ů(ϵ)-highest weight vectors are related under the U(ϵ)-
action. Put

F+ = (er+1 · · · en−2en−1)(er−1 · · · e2e1)e0,
E+ = f0(f1 · · · fr−2fr−1)(fn−1 · · · fr+2fr+1),

F− =

er(er+2 · · · en−2en−1)(er−1 · · · e2e1)e0 if l2 ≥ 0

er(er+1 · · · en−2en−1)(er−2 · · · e2e1)e0 if l1 ≤ 0,

E− =

f0(f1 · · · fr−2fr−1)(fn−1 · · · fr+3fr+2)fr if l2 ≥ 0

f0(f1 · · · fr−3fr−2)(fn−1 · · · fr+2fr+1)fr if l1 ≤ 0.

The following lemma can be proved by a direct computation as well.

Lemma 5.3.5. In Wosc
l (x)⊗Wosc

m (y), we have the following identities.

(1) For a, b ≥ 0,

F+v+a,b = yv+a,b+1 + xq−|m|−2b−1v+a+1,b,

E+v+a,b = −x
−1[a+ |l|][a]v+a−1,b − y

−1q2a+|l|+1[b+ |m|][b]v+a,b−1.

(2) For a, b ≥ 0 with a+ b ≤ L,

F−v−a,b = −y[|m| − b]v
−
a,b+1 − xq

|m|−2b[|l| − a]v−a+1,b,
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E−v−a,b = −x
−1[a]v−a−1,b − y

−1q−|l|+2a[b]v−a,b−1.

Using the identities, we show that all the Ů(ϵ)-highest weight vectors are generated
from u0, for generic x, y.

Lemma 5.3.6. For generic x, y ∈ k×, we have

(1) for i ≥ 0, F+ui ∈ k×ui+1 + kfrui + δ(i ̸= 0)kf (2)
r ui−1,

(2) for −L ≤ i ≤ 0, when l2 ≥ 0, F−ui ∈ k×ui−1 + kfr+1ui + δ(i ̸= 0)kf (2)
r+1ui+1,

(3) for −L ≤ i ≤ 0, when l1 ≤ 0, F−ui ∈ k×ui−1 + kfr−1ui + δ(i ̸= 0)kf (2)
r−1ui+1.

More precisely, if we regard x and y as indeterminates, then the coefficient of ui±1 in
F±ui is a nonzero polynomial in x and y.

Proof. We only prove (1), leaving the other two to the reader. Considering the classical
decomposition (5.3.1) and weights, we can write

F+ui =
∑
k≥0

Ck
i f

(k)
r ui+1−k

for some Ck
i ∈ k. First, one can verify by a direct computation that

e2rF
+ui = [2][|m|+ i][i](yq|m|−2i+1 − xq|l|+1)ui−1,

which implies Ck
i = 0 whenever k > 2, and also the identity

C2
i =

[2][|m|+ i][i]

[|l|+ |m|+ 2i+ 1][|l|+ |m|+ 2i]
(yq|m|−2i+1 − xq|l|+1).

Next, by comparing the coefficients of v+i,0 of both sides of

erF
+ui = −C1

i [|l|+ |m|+ 2i]ui − C2
i [|l|+ |m|+ 2i+ 1]frui−1,

we obtain a formula for C1
i . Then we substitute C1

i , C
2
i in

F+ui = C0
i ui+1 + C1

i frui + C2
i f

(2)
r ui−1
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with the obtained formulas, and then compare the coefficients of v+i+1,0, to conclude that
C0
i is a nonzero polynomial in x, y (regarded as indeterminates).

Theorem 5.3.7. For generic x, y ∈ k×, the tensor product Wosc
l (x) ⊗ Wosc

m (y) is an
irreducible U(ϵ)-module.

Proof. Taking a nonzero Ů(ϵ)-submodule K of Wosc
l (x)⊗Wosc

m (y), we claim

(1) K contains u0 = vl ⊗ vm,

(2) u0 generates Wosc
l (x)⊗Wosc

m (y) for generic x, y.

We first prove (1). Since Wosc
l (x)⊗Wosc

m (y) is semisimple over Ů(ϵ), K contains a Ů(ϵ)-
highest weight vector, say ui.

Suppose −L ≤ i ≤ −1. We first observe that E−ui is a nonzero scalar multiple of ui+1.
Indeed, that E−ui ̸= 0 can be verified by computing the coefficient of v−0,−i−1 in E−ui,
using Lemma 5.3.5. Since E−ui has the same weight as ui+1 and Wosc

l (x) ⊗ Wosc
m (y)

is multiplicity-free over Ů(ϵ), to conclude it remains to check that ejE−ui = 0 for all
j ∈ I \ {0}. Actually, it is enough to do it for j = r, r+1 if l2 ≥ 0 or j = r, r− 1 if l1 ≤ 0

by a weight comparison. If l2 ≥ 0, then

erE
−ui = f0(f1 · · · fr−2fr−1)(fn−1 · · · fr+3fr+2)

kr − k−1
r

q − q−1
ui

= −[l +m+ i+ 2]f0(f1 · · · fr−2fr−1)(fn−1 · · · fr+3fr+2)ui = 0,

er+1E
−ui = er+1f0(f1 · · · fr−2fr−1)(fn−1 · · · fr+3fr+2)frui = E−er+1ui = 0.

The case l1 ≤ 0 is similar. Consequently, ui+1 ∈ k×E−ui ⊂ K, and so u0 ∈ K. One can
do analogously in the case i > 0, arguing with E+ui.

Provided u0 ∈ K, an easy induction proves that ui ∈ K for i > 0 (resp. −L ≤ i ≤ −1),
thanks to Lemma 5.3.6 (1) (resp. (2)). This completes the proof of the irreducibility.

Theorem 5.3.8. For ϵ = ϵ, ϵ, ϵ, the tensor product Wosc
l,ϵ (x) ⊗Wosc

m,ϵ(y) is an irreducible
U(ϵ)-module for generic x, y ∈ k×.

Proof. Since Wosc
l,ϵ (x)

∼= V (ϖr+l)x if 0 ≤ r + l ≤ N and zero otherwise, the irreducibility
in the case ϵ = ϵ is well-known [58].

For the remaining case ϵ = ϵ, first identify

Wosc
l,ϵ (x)⊗Wosc

m,ϵ(y) ⊂ Wosc
l,ϵ (x)⊗Wosc

m,ϵ(y)
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as a vector space. Given a nonzero v ∈ Wosc
l,ϵ (x) ⊗ Wosc

m,ϵ(y), we can find a nonzero
v′ ∈ Wosc

l,ϵ (x) ⊗ Wosc
m,ϵ(y) by applying finitely many Ei, Fi−1 (for i ≤ r) or Ei−1, Fi (for

i > r) for some i’s with ϵi = 1. Since Wosc
l,ϵ (x) ⊗ Wosc

m,ϵ(y) is irreducible, v′ generates
Wosc

l,ϵ (x)⊗Wosc
m,ϵ(y) and in particular, all the classical components V(l1+t,l2−t)

ϵ (t ≥ 0). Again
by the irreducibility of V(l1+t,l2−t)

ϵ , the submodule generated by v contains all V(l1+t,l2−t)
ϵ ,

namely Wosc
l,ϵ (x)⊗Wosc

m,ϵ(y).

Therefore, the normalized R-matrix

Rnorm
l,m,ϵ :Wosc

l,ϵ (z1)⊗Wosc
m,ϵ(z2) −→ k(z1, z2)⊗k[z±1

1 ,z±1
2 ]W

osc
m,ϵ(z2)⊗Wosc

l,ϵ (z1)

is uniquely characterized as the k[z±1
1 , z±1

2 ]⊗U(ϵ)-linear map satisfying Rnorm
l,m,ϵ (vl⊗ vm) =

c(z)(vm ⊗ vl).

Lemma 5.3.9. For ϵ′ = ϵ or ϵ, we have

trϵϵ′
(
Rnorm
l,m,ϵ

)
= Rnorm

l,m,ϵ′ .

Now the spectral decomposition follows from the argument in Section 4.2.2.

Theorem 5.3.10. For ϵ = ϵ or ϵ, we have

Rnorm
l,m,ϵ =

∑
t≥0

t∏
i=1

1− q|l−m|+2iz

z − q|l−m|+2i
P l,mt (5.3.2)

up to a scalar multiple. Here the coefficient of P l,m0 is understood to be 1.

Remark 5.3.11. In the proof of Theorem 5.3.7, we have seen that E±ui is again an
highest weight vector ui∓1, up to a nonzero scalar multiple. Hence it is possible to directly
compute the spectral decomposition of Rnorm

l,m,ϵ, see [74, Theorem 7.12] for example.

5.3.3 Fusion construction of irreducible q-oscillator representa-
tions

We apply the fusion construction to fundamental q-oscillator representations to obtain a
family of irreducible representations in the category Ôosc,ϵ.
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Given l1, l2 ∈ Z, suppose c1, c2 ∈ k× are such that c1/c2 /∈ q|l1−l2|+2Z>0 . According to
the spectral decomposition (5.3.2), we can specialize the normalized R-matrix to obtain
a U(ϵ)-linear map

R(l1,l2),ϵ(c1, c2) = Rnorm
l1,l2,ϵ

(c1/c2) :Wosc
l1,ϵ

(c1)⊗Wosc
l2,ϵ

(c2) −→Wosc
l2,ϵ

(c2)⊗Wosc
l1,ϵ

(c1).

Let P+,osc be the set of pairs (l, c) such that

(1) l = (l1, . . . , lℓ) ∈ Zℓ and c = (c1, . . . , cℓ) ∈ (k×)ℓ for some ℓ ≥ 1,

(2) ci/cj /∈ q|li−lj |+2Z>0 for all i < j.

For (l, c) ∈ P+,osc with ℓ ≥ 2, we define a U(ϵ)-linear map

Rl,ϵ(c) :Wosc
l1,ϵ

(c1)⊗ · · · ⊗Wosc
lℓ,ϵ

(cℓ) −→Wosc
lℓ,ϵ

(cℓ)⊗ · · · ⊗Wosc
l1,ϵ

(c1)

by taking the composition of R(li,lj),ϵ(ci, cj) associated with a reduced expression of the
longest element of Sℓ.

Note from (5.3.2) that R(l,l),ϵ(c, c) is a nonzero scalar multiple of the identity map on
(Wosc

l,ϵ (c))
⊗2. Although Rnorm

l,m,ϵ is not rationally renormalizable, we may argue as in the
proof of Theorem 4.2.13 to prove an analogue for q-oscillator representations.

Theorem 5.3.12. For (l, c) ∈ P+,osc, the image of Rl,ϵ(c) is an irreducible representation
in Ôosc,ϵ unless it is zero.

We put
Wϵ(l, c) = imRl,ϵ(c)

and when ℓ = 1, Wϵ((l1), (c1)) := Wosc
l1,ϵ

(c1). Again, it is not easy to determine exactly
when Wϵ(l, c) is nonzero in general, but we have the following criterion as in the case of
polynomial representations.

Proposition 5.3.13. Let ϵ = ϵ, ϵ or ϵ. For (l, c) ∈ P+,osc, Wϵ(l, c) is nonzero if l+ ∈
P(GLℓ)(ϵ−,ϵ+), where l+ denotes the rearrangement of l into a weakly decreasing sequence.
In particular, Wϵ(l, c) is nonzero for all sufficiently large a, b.

Proof. First suppose ϵ = ϵ. The assumption l+ ∈ P(GLℓ)(ϵ−,ϵ+) ensures that 0 ≤ li+ a ≤
a+ b for all i, so that Wosc

li,ϵ
(ci) ∼= V (ϖli+a)ci . If we let wi be a dominant extremal weight
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vector of V (ϖli+a)ci , then Rnorm
li,lj ,ϵ

is normalized so that it maps wi ⊗ wj to wj ⊗ wi. In
particular, Rl,ϵ(c) maps w1 ⊗ · · · ⊗ wℓ to wℓ ⊗ · · · ⊗ w1 and so Wϵ(l, c) ̸= 0.

For the cases ϵ = ϵ or ϵ, we take ϵ̃ = ϵ(a+k,b+k) for k > 0 such that l+ ∈ P(GLℓ)ϵ̃.
The above argument tells us that Wϵ̃(l, c) contains a classical component V l+

ϵ̃
generated

by wℓ⊗· · ·⊗w1. By Theorem 5.2.14, V l+

ϵ̃ ⊂ Wϵ̃(l, c) as well. One can directly check that
V l+

ϵ ⊂ trϵ̃ϵ(V l+

ϵ̃ ) so that Wϵ(l, c) ̸= 0, and again by Theorem 5.2.14 we have Wϵ(l, c) ̸=
0.

5.3.4 Correspondence of irreducibles and super duality

Since truncations to ϵ, ϵ preserve fundamental q-oscillator representations and normalized
R-matrices, we finally obtain the following correspondence.

Theorem 5.3.14. For ϵ′ = ϵ or ϵ, we have

trϵϵ′(Wϵ(l, c)) =Wϵ′(l, c).

Therefore,Wϵ(l, c) interpolates the finite-dimensional irreducible U ′
−q−1(ĝla+b)-module

Wϵ(l, c)
3 and the irreducible q-oscillator Uq(ĝla+b+1)-modulesWϵ(l, c) if they are nonzero.

To sum up, we have the following diagram

Ôosc,ϵ

Ôosc,ϵ Ôosc,ϵ

trϵϵ trϵϵ

in which irreducible q-oscillator representations and irreducible finite-dimensional repre-
sentations correspond naturally. In the spirit of super duality, we expect that the trun-
cations trϵϵ, tr

ϵ
ϵ between the categories Ôosc,ϵ and Ôosc,ϵ′ for ϵ′ = ϵ, ϵ become equivalences

of categories, after taking a suitable limit of ϵ and ϵ′.
As an evidence, we propose an exact sequence which should be viewed as a T -system

for q-oscillator representations. For l ∈ Z, s ∈ Z≥0 and c ∈ k×, we introduce KR-type
3Although the condition of P+,osc on spectral parameters is stronger than the one of P+, every finite-

dimensional irreducible module can still be obtained as Wϵ(l, c) for some (l, c) ∈ P+,osc.
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modules in Ôosc,ϵ,

W l,s
osc(c) =Wϵ(l, c), l = (l, . . . , l), c = (cq2−2s, . . . , cq−2, c).

Note that the corresponding irreducible representation in Ôosc,ϵ is indeed the KR module
W(l+r)

s,c , which implies the following classical irreducibility via truncation.

Proposition 5.3.15. As a Ů(ϵ)-module,

W l,s
osc(c)

∼=

V(ls) if (ls) ∈ P(GLs)(r,n−r)
0 otherwise.

Clearly, W l,s
osc(c) is nonzero if and only if (ls) ∈ P(GLs)(r,n−r), as can be seen from

Proposition 5.3.13 as well. In particular, W0,s
osc(c) ̸= 0 for any s ≥ 1.

Conjecture 5.3.16. There exists a short exact sequence in Ôosc:

0 W l,s+1
osc (1)⊗W l,s−1

osc (q−2) W l,s
osc(1)⊗W l,s

osc(q
−2)

⊗
l′=l±1

W l′,s
osc (q

−1) 0.

The corresponding exact sequence in Ôosc,ϵ is the usual T -system of quantum affine al-
gebras (Proposition 4.3.15). We will give the proof for the base case s = 1 in Section 6.2.2,
and we expect that the general case can be proved by an induction in s.

Indeed, the known T -system for quantum affine algebras tells us via truncation that
the classical decompositions of the tensor products in the sequence match. Moreover,
from the known denominator formula for tensor products of KR modules (see e.g. [85]),
one can prove using Theorem 5.3.12 that the tensor productsW l,s+1

osc (1)⊗W l,s−1
osc (q−2) and⊗

l′=l±1

W l′,s
osc (q

−1) are irreducible. Hence, it remains to construct nonzero U(ϵ)-linear maps

whose composition vanishes, for which induction is expected to work.
Finally, we conclude this chapter with asremark on the corresponding category of

U(ε)-modules, for ε = ϵa|b. Recall from Section 5.1 that in the classical picture, the equiv-
alence between the category of oscillator representations and the one of finite-dimensional
representations is obtained by two super dualities, and a module category of glε = gla|b is
at the middle of them (see (5.1.6)).

Observe from definition that besides ϵ = ϵ,Wosc
l,ε is finite-dimensional as well, and zero

if l > b. Moreover, the proofs in Section 5.2.2 can be repeated with ϵ = ε (ϵ′ = ε in
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Theorem 5.2.14), thanks to the following classical duality.

Theorem 5.3.17 ([23, Theorem 3.3]). There exists a (gla|b, GLℓ)-bimodule structure on
(W osc

ε )⊗ℓ with the following multiplicity-free decomposition into simple bimodules decom-
position

(W osc
ε )⊗ℓ =

⊕
λ∈P(GLℓ)(ε−,ε+)

V λ
ε ⊗ VGLℓ

(λ).

Consequently, we obtain the category Ôosc,ε of q-oscillator representations of U(ε),
which are in fact finite-dimensional due to the finite dominance condition on weights.
More specifically, if one restricts to the subalgebra corresponding to glε (rather than gleε),
then the irreducible q-oscillator representations Vλε are exactly the duals of the irreducible
polynomial representations, namely those of nonpositive integral weights.

Therefore, our study of q-oscillator representations is somehow dual or complemen-
tary to the one of polynomial representations in Chapter 4. At this stage, it is hard to
investigate the structure of tensor products of a polynomial representation and a dual of
one, for instance as it is not semisimple even over the finite type subalgebra (cf. [99]).
Nevertheless, it should be an interesting problem to understand this unique structure of
tensor products of representations of quantum affine superalgebras, under the philosophy
of super duality.
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Chapter 6

Proofs

6.1 Chapter 4

6.1.1 Proof of Lemma 4.2.6

In this section we prove Lemma 4.2.6. The proof consists of direct calculations as indicated
in [1, Lemma B.1], but we give details for the reader’s convenience as it is little more
involved.

We claim that there exists an exact sequence of the following form for each ℓ ≥ 2:

0 Wℓ,ϵ(1) W1,ϵ(q
1−ℓ)⊗Wℓ−1,ϵ(q) Wℓ−1,ϵ(q)⊗W1,ϵ(q

1−ℓ) Wℓ,ϵ(1) 0,
ψ1 R ψ2

(6.1.1)
for some U(ϵ)-linear maps ψ1 and ψ2 and R = Rnorm

1,ℓ−1(q
−ℓ). Recall from Theorem 4.2.10

that

Rnorm
1,ℓ−1(z) = P1 +

1− zqℓ

z − qℓ
P0, (6.1.2)

which is equal to P1 when z = q−ℓ.
We may assume that ϵ1 = 0. Indeed, the result for arbitrary ϵ follows by choosing

ϵ′ > ϵ with ϵ′1 = 0 and truncating the exact sequence (6.1.1) for ϵ′ to ϵ, keeping Proposi-
tion 4.3.2, 4.3.4 and Lemma 4.3.5 in mind.

Recall that when ϵ1 = 0, the Ů(ϵ)-highest weight vectors of Vϵ((ℓ)) and Vϵ((ℓ − 1, 1))

in the decomposition W1,ϵ(x)⊗Wℓ−1,ϵ(y) = Vϵ((ℓ))⊕ Vϵ((ℓ− 1, 1)) are given by

|e1⟩ ⊗ |(ℓ− 1)e1⟩ , |e1⟩ ⊗ |(ℓ− 2)e1 + e2⟩ − qℓ−1 |e2⟩ ⊗ |(ℓ− 1)e1⟩ (6.1.3)
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respectively. On the other hand, when ϵ1 = 1 the highest weight vectors become more
complicated, which is the reason why we assume ϵ1 = 0.

Let us define ψ1 and ψ2 by

ψ1(|m⟩) =
∑

1≤k≤n

|ek⟩ ⊗ |m− ek⟩

(
[mk]

∏
k<j≤n

qmj

)
ψ2 (|m⟩ ⊗ |ek⟩) = |m+ ek⟩

∏
k<j≤n

q−mj

for |m⟩ and 1 ≤ k ≤ n. Here we also understand |m⟩ = 0 whenever m /∈ Zn+(ϵ) . Note
that when ϵ = (1N), ψ1 and ψ2 coincide with the maps in [1, Lemma B.1] up to a constant
multiple.

Lemma 6.1.1. The maps ψ1 and ψ2 are U(ϵ)-linear.

Proof. Since the proof is rather straightforward, let us show that ψ1 commutes with ei

(i ∈ I), and leave the other details to the reader.

Case 1. Suppose that i ∈ I \ {0}. First we have

eiψ1 |m⟩ =
∑

[mk]
∏
j>k

qmjei (|ek⟩ ⊗ |m− ek⟩)

=
∑

k ̸=i,i+1

[mk]
∏
j>k

qmj [mi+1] |ek⟩ ⊗ |m− ek + ei − ei+1⟩

+ [mi+1]
∏
j>i+1

qmj [mi+1 − 1] |ei+1⟩ ⊗ |m+ ei − 2ei+1⟩

+ [mi+1]
∏
j>i+1

qmj · q−mi
i q

mi+1−1
i+1 |ei⟩ ⊗ |m− ei+1⟩

+ [mi]
∏
j>i

qmj [mi+1] |ei⟩ ⊗ |m− ei+1⟩ .

(6.1.4)

Let (⋆) denote the sum of last two terms, that is,

(⋆) = [mi+1]
∏
j>i+1

qmj · q−mi
i q

mi+1−1
i+1 |ei⟩⊗ |m− ei+1⟩+[mi]

∏
j>i

qmj [mi+1] |ei⟩⊗ |m− ei+1⟩ .

Suppose first that ei |m⟩ = 0. Note that ei |m⟩ = 0 if and only if mi+1 = 0 or mi+1 ̸= 0,
mi = 1 = ϵi. If mi+1 = 0, then eiψ1 |m⟩ = 0. In the other case, |m− ek + ei − ei+1⟩ is
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nonzero if and only if k = i. So (6.1.4) is equal to

(⋆) = [mi+1]
∏
j>i+1

qmj

(
[mi] q

mi+1 + q−mi
i q

mi+1−1
i+1

)
|ei⟩ ⊗ |m− ei+1⟩ .

Since

[mi] q
mi+1 + q−mi

i q
mi+1−1
i+1 = [1] qmi+1 + (−q)qmi+1−1

i+1

=

qmi+1 + (−q)qmi+1−1 if ϵi+1 = 0,

q + (−q)(−q−1)0 if ϵi+1 = 1 = mi+1,

= 0,

we have eiψ1 |m⟩ = 0 = ψ1ei |m⟩ whenever ei |m⟩ = 0.
Next suppose that ei |m⟩ ≠ 0 (necessarily mi+1 ̸= 0). We have

ψ1ei |m⟩ = [mi+1]ψ1 |m+ ei − ei+1⟩

= [mi+1]
∑

k ̸=i,i+1

[mk]
∏
j>k

qmj |ek⟩ ⊗ |m− ek + ei − ei+1⟩

+ [mi+1] [mi+1 − 1]
∏
j>i+1

qmj |ei+1⟩ ⊗ |m− 2ei+1 + ei⟩

+ [mi+1] [mi + 1] q−1
∏
j>i

qmj |ei⟩ ⊗ |m− ei+1⟩ .

It is equal to (6.1.4) if

(⋆) = [mi+1] [mi + 1] q−1
∏
j>i

qmj |ei⟩ ⊗ |m− ei+1⟩ . (6.1.5)

Indeed, we have two possibilities: either mi = 0 or mi ̸= 0 with ϵi = 0. In the first case,
we have

(⋆) = [mi+1]
∏
j>i+1

qmj · qmi+1−1
i+1 |ei⟩ ⊗ |m− ei+1⟩ ,
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and the product can be written as

∏
j>i+1

qmj · qmi+1−1
i+1 =


∏

j>i q
mj · q−1 if ϵi+1 = 0∏

j>i+1 q
mj if ϵi+1 = 1 = mi+1.

=
∏
j>i

qmj · q−1,

which implies (6.1.5). In the other case, as
∏

j>i+1 q
mj · qmi+1−1

i+1 =
∏

j>i q
mj · q−1 by the

same reason, we have

(⋆) =
∏
j>i

qmj · q−1 |ei⟩ ⊗ |m− ei+1⟩ [mi+1]
(
[mi] q + q−mi

)
=
∏
j>i

qmj · q−1 |ei⟩ ⊗ |m− ei+1⟩ [mi+1] [mi + 1] .

Hence (6.1.5) holds.
Case 2. Suppose that i = 0. The proof is similar except that we should consider

spectral parameters. First, we have

e0ψ1 |m⟩ =
∑

[mk]
∏
j>k

qmje0 (|ek⟩ ⊗ |m− ek⟩)

=
∑
k ̸=1,n

[mk]
∏
j>k

qmj [m1] |ek⟩ ⊗ |m− ek + en − e1⟩ · q

+ [m1]
∏
j>1

qmj [m1 − 1] |e1⟩ ⊗ |m− 2e1 + en⟩ · q

+ [m1]
∏
j>1

qmj · q−mn
n qm1−1

1 |en⟩ ⊗ |m− e1⟩ · q1−ℓ

+ [mn] [m1] |en⟩ ⊗ |m− e1⟩ · q.

Note that since ℓ =
∑
mj, we have in the third term above∏
j>1

qmj · q−mn
n qm1−1

1 q1−ℓ = q−m1q−mn
n qm1−1

1 q.

Similarly we have

ψ1e0 |m⟩ = [m1]ψ1 |m+ en − e1⟩ · 1
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= [m1]
∑
k ̸=1,n

[mk]
∏
j>k

qmj · q |ek⟩ ⊗ |m− ek + en − e1⟩

+ [m1] [m1 − 1]
∏
j>1

qmj · q |e1⟩ ⊗ |m− 2e1 + en⟩

+ [m1] [mn + 1] |en⟩ ⊗ |m− e1⟩ .

Now the same argument applies as in Case 1. If e0 |m⟩ = 0, then either m1 = 0 or m1 ̸= 0

with mn = 1 = ϵn. In the first case, we clearly have ψ1e0 |m⟩ = e0ψ1 |m⟩ = 0. In the
latter case, we have

e0ψ1 |m⟩ = [m1]
(
[1] q + q−m1(−q−1)−1qm1−1

1 q
)
|en⟩ ⊗ |m− e1⟩ = 0

as q − qq1−m1qm1−1
1 vanishes regardless of ϵ1.

Next, if e0 |m⟩ ≠ 0 and m1 ̸= 0, then again we have ψ1e0 |m⟩ = e0ψ1 |m⟩ since

[m1]
(
[mn] q + q−m1q−mn

n qm1−1
1 q

)
=

[m1]
(
0 + q−m1qm1−1

1 q
)

if mn = 0

[m1]
(
[mn] q + q−mnq−m1qm1−1

1 q
)

if mn ̸= 0, ϵn = 0

= [m1] [mn + 1] .

This completes the proof.

Lemma 6.1.2. (1) ψ1 is injective and R ◦ ψ1 = 0.

(2) ψ2 is surjective and ψ2 ◦ R = 0.

Proof. (1) It is clear that ψ1 is injective since ψ1 is nonzero and Wℓ,ϵ(1) is irreducible.
By definition, we have ψ1(|ℓe1⟩) = C |e1⟩ ⊗ |(ℓ− 1)e1⟩ = Cv1 for a nonzero constant

C (6.1.3). The Ů(ϵ)-highest weight vector v1 is sent to zero by R since R = P1 by (6.1.2).
This implies that R ◦ ψ1 = 0.

(2) Since ψ2 is nonzero and Wℓ,ϵ(1) is irreducible, it is surjective. Note that v2 =

|(ℓ− 1)e1⟩⊗ |e2⟩− q |(ℓ− 2)e1 + e2⟩⊗ |e1⟩ generates ImR, which is isomorphic to V ((ℓ−
1, 1)). Since ψ2(v2) = 0, we have ψ2 ◦ R = 0.

Lemma 6.1.3. The sequence (6.1.1) is exact.

Proof. By the previous lemmas and the universal mapping properties of Ker and Coker,
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we have the following commutative diagram of U(ϵ)-modules:

Wℓ,ϵ(1) 0

0 KerR W1,ϵ(x)⊗Wℓ−1,ϵ(y) Wℓ−1,ϵ(y)⊗W1,ϵ(x) CokerR 0

0 Wℓ,ϵ(1)

R

ψ2

ψ1

Hence two vertical arrows are isomorphisms. This implies that (6.1.1) is exact.

6.1.2 Proof of Theorem 4.3.13

We assume that ℓ < n. Put F = F∗
ϵ,ℓ. We first show that

F∗
ϵ,ℓ : H

aff
ℓ (q2)-mod // Cℓ(ϵ)
M � // V⊗ℓ ⊗Hℓ(q2) M

(6.1.6)

is an equivalence of categories, almost following the arguments in [16, Section 4.3–4.6].
The exception is a part of Lemma 6.1.5 that uses the even Serre relation, which is replaced
here with a more direct computation not involving Serre relations.

The following easy lemma is essential for the later argument.

Lemma 6.1.4 (cf. [16, Lemma 4.3]).

(1) Let M be a finite-dimensional Hℓ(q
2)-module. If v ∈ V⊗ℓ has nonzero components

in each isotypical component of Jℓ(M), then the k-linear map

M // V⊗ℓ ⊗Hℓ(q2) M = Jℓ(M)

m � // v ⊗m
,

is injective.

(2) Let { vi := |ei⟩ | i = 1, . . . , n } be the standard basis of V. If i1, . . . , iℓ ∈ {1, . . . , n}
are distinct, then the Ů(ϵ)-module V⊗ℓ is generated by a single vector vi1 ⊗ · · · ⊗ viℓ.
In particular, the vector satisfies the condition in (1).
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We first prove that F is essentially surjective. Suppose that W ∈ Cℓ(ϵ) is given.
By Theorem 3.2.5, there exists a Hℓ(q

2)-module M for which W ∼= Jℓ(M) = V⊗ℓ ⊗M
as a Ů(ϵ)-module. We shall extend the Hℓ(q

2)-action on M to Haff
ℓ (q2) so that W ∼=

V⊗ℓ ⊗Hℓ(q2) M
∼= V ⊗ℓ

O ⊗OHaff
ℓ (q2) M as a U(ϵ)-module.

For 1 ≤ j ≤ ℓ, set v(j) = v2 ⊗ · · · ⊗ vj ⊗ vn ⊗ vj+1 ⊗ · · · ⊗ vℓ. Regarding V⊗ℓ ⊗Hℓ(q2)M

as a U(ϵ)-module, the weight of f0
(
v(j) ⊗m

)
is δ1 + · · ·+ δℓ ∈ P . As

{vi1 ⊗ · · · ⊗ viℓ | 1 ≤ i1, . . . , iℓ ≤ ℓ are distinct} (6.1.7)

is a basis of
(
V⊗ℓ)

δ1+···+δℓ
, we can write as

f0
(
v(j) ⊗m

)
=
∑
i

(vi1 ⊗ · · · ⊗ viℓ)⊗mi, (6.1.8)

where the sum is over i = (i1, . . . , iℓ) such that vi1⊗· · ·⊗viℓ belongs to (6.1.7), andmi ∈M .
In fact, considering the Hℓ(q

2)-action by R in Theorem 3.2.5, for each i = (i1, . . . , iℓ) in
(6.1.8), there exists hi ∈ Hℓ(q

2) such that

vi1 ⊗ · · · ⊗ viℓ = (v2 ⊗ · · · ⊗ vj ⊗ v1 ⊗ vj+1 ⊗ · · · ⊗ vℓ)hi.

Hence (6.1.8) is reduced to

f0(v
(j) ⊗m) = (v2 ⊗ · · · ⊗ vj ⊗ v1 ⊗ vj+1 ⊗ · · · ⊗ vℓ)⊗m′, (6.1.9)

for some m′ ∈ M . By Lemma 6.1.4, such m′ is unique. Therefore we obtain a k-linear
endomorphism α−

j ∈ End(Hℓ(q
2)) sending m to m′. Considering e0-action instead yields

α+
j . So we have

e0
(
v(j) ⊗m

)
=
(
∆j(e0)v

(j)
)
⊗ α+

j (m) =
∑
1≤i≤ℓ

(
∆i(e0)v

(j)
)
⊗ α+

i (m),

f0
(
v(j) ⊗m

)
=
(
∆j(f0)v

(j)
)
⊗ α−

j (m) =
∑
1≤i≤ℓ

(
∆i(f0)v

(j)
)
⊗ α−

i (m),
(6.1.10)

where ∆i(e0) and ∆i(f0) are given by

∆i(e0) = 1⊗i−1 ⊗ e0 ⊗
(
k−1
0

)⊗ℓ−i
,
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∆i(f0) = k⊗i−1
0 ⊗ f0 ⊗ 1⊗ℓ−i,

acting on V⊗ℓ. Note that ∆i(e0)v
(j) = 0 unless i = j. Indeed, v(j) in (6.1.10) can be

replaced by arbitrary v ∈ V⊗ℓ.

Lemma 6.1.5. For v ∈ V⊗ℓ and m ∈M , we have

e0(v ⊗m) =
∑
1≤j≤ℓ

(∆j(e0)v)⊗ α+
j (m),

f0(v ⊗m) =
∑
1≤j≤ℓ

(∆j(f0)v)⊗ α−
j (m).

Proof. We only prove the case for f0 since the other case is similar. Take v = vi1⊗· · ·⊗viℓ .
If none of ij is equal to n, then ∆j(f0)v = 0 for any j. On the other hand, we have
f0(v ⊗m) = 0 since δi1 + · · · + δiℓ − δn + δ1 is not a weight of V⊗ℓ. Hence the identity
holds.

For each pair of sequences

j = (j1 < j2 < · · · < jr), j′ = (j′1 < j′2 < · · · < j′s)

in {1, . . . , ℓ}, which are disjoint, let V(j,j′) be the subspace of V⊗ℓ spanned by vectors of
the form vi1 ⊗ · · · ⊗ viℓ , where ijt = 1 (1 ≤ t ≤ r), ij′t = n (1 ≤ t ≤ s) and ij ̸= 1, n for
others. Clearly V⊗ℓ =

⊕
V(j,j′), so that we may prove the identity for v in each V(j,j′).

In addition, it is enough to check the identity for v = vi1 ⊗ · · · ⊗ viℓ ∈ V(j,j′) with
no v2, . . . , vn−1 appearing more than once, due to Lemma 6.1.4(2) (with respect to the
subalgebra of Ů(ϵ) generated by ei, fi and k±1

i for i = 2, . . . , n− 1). There is always such
a vector since ℓ < n.

We shall prove the identity by induction on s. We start with s = 1, and use induction
on r. The case when r = 0 and s = 1 has already been done when we define α±

j with
v = v(j).

Suppose that it is true for r − 1. Choose v = vi1 ⊗ · · · ⊗ viℓ ∈ V(j,j′) such that only
v3, . . . , vn−1 appear as a factor of v without repetition (which is possible as s, r ≥ 1). Let
v′ be the vector obtained from v by replacing the last v1 (that is, vjr) by v2 so that v′ has
one less v1 than v. By our choice of v, e1v′ = v. Then we compute as

f0(v ⊗m) = f0e1(v
′ ⊗m) = e1f0(v

′ ⊗m) = e1
∑
j

(∆j(f0)v
′)⊗ α−

j (m)
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= e1

(
q
−|{t | t<r, jt<j′1}|
1 v′′

)
⊗ α−

j′1
(m)

= q
−|{t | t<r, jt<j′1}|
1 (e1v

′′)⊗ α−
j′1
(m)

= q
−|{t | t<r, jt<j′1}|
1 q

−δ(jr<j′1)
1

[
(1⊗jr−1 ⊗ e1 ⊗ 1⊗ℓ−jr)v′′

]
⊗ α−

j′1
(m)

= q
−|{t | t≤r, jt<j′1}|
1

[
(1⊗jr−1 ⊗ e1 ⊗ 1⊗ℓ−jr)v′′

]
⊗ α−

j′1
(m)

=
(
∆j′1

(f0)v
)
⊗ α−

j′1
(m) =

∑
j

(∆j(f0)v)⊗ α−
j (m).

Here the third equality follows from induction hypothesis on r, v′′ is the resulting vector
of replacing (the unique) vn factor of v′ by v1, the last equality holds since v has exactly
one vn factor, and δ(P ) is 1 if the statement P is true and 0 otherwise.

Now assume the result for s−1 and let us prove it for s ≥ 2. Choose v = vi1⊗· · ·⊗viℓ ∈
V(j,j′) such that vn−1 does not appear as a factor of v and for each i = 2, . . . , n − 2, vi
occurs at most once (which is possible as s ≥ 2). We shall compute [en−1, fn−1] f0(v⊗m)

in two different ways.
We first have

[en−1, fn−1] f0(v ⊗m) =
q1−sn − qs−1

n

q − q−1
f0(v ⊗m), (6.1.11)

since [en−1, fn−1] =
kn−1−k−1

n−1

q−q−1 and the weight of f0(v ⊗m) is∑
ik ̸=n−1,n

δik + sδn + δ1 − δn.

Next, by similar arguments for (6.1.9), f0 (v ⊗m) can be written as a sum of vk⊗mk

for some mk ∈ M and vk = vk1 ⊗ · · · ⊗ vkℓ with none of vki is equal to vn−1. Hence
fn−1f0 (v ⊗m) = 0 and so

[en−1, fn−1] f0(v ⊗m) = −fn−1en−1f0(v ⊗m) = −fn−1f0en−1(v ⊗m). (6.1.12)

We first compute

en−1(v ⊗m) = (en−1v)⊗m =
(
qs−1
n v′,1 + qs−2

n v′,2 + · · ·+ v′,s
)
⊗m,

where v′,p is obtained from v by replacing j′p-th factor (which is vn) by vn−1. The vector
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v′,p has one less vn’s than v, so that the induction hypothesis deduces

f0en−1 (v ⊗m) =
s∑

p=1

qs−pn f0(v
′,p ⊗m) =

s∑
p=1

qs−pn

∑
t

(∆t(f0)v
′,p)⊗ α−

t (m).

By definition of ∆t(f0),

∆t(f0)v
′,p =

q
u−1−δ(u>p)
n q

−|{k|jk<t}|
1 v′′,p,u if t = j′u for some u ̸= p,

0 otherwise.

where v′′,p,u is obtained from v′,p by replacing j′u-th factor (which is vn) by v1. Since any
nonzero v′′,p,u has exactly one vn−1,

fn−1f0en−1 (v ⊗m) = fn−1

s∑
p=1

qs−pn

∑
t

(∆t(f0)v
′,p)⊗ α−

t (m)

=
s∑

p=1

qs−pn

[∑
u̸=p

qu−1−δ(u>p)
n q

−|{k|jk<j′u}|
1 (fn−1v

′′,p,u)⊗ α−
j′u
(m)

]

=
s∑

p=1

qs−pn

[∑
u̸=p

qu−1−δ(u>p)
n q

−|{k|jk<j′u}|
1 q1+δ(u<p)−pn vu ⊗ α−

j′u
(m)

]

where vu is obtained from v by replacing j′u-th factor (which is vn) by v1. Now for
1 ≤ u ≤ s, the coefficient of vu ⊗ α−

j′u
(m) is∑

p<u

qs−pn qu−2
n q

−|{k|jk<j′u}|
1 q1−pn +

∑
p>u

qs−pn qu−1
n q

−|{k|jk<j′u}|
1 q2−pn

=q
−|{k|jk<j′u}|
1

[
u−1∑
p=1

qs−pn qu−2
n q1−pn +

s−1∑
p=u

qs−p−1
n qu−1

n q1−pn

]

=q
−|{k|jk<j′u}|
1

s−1∑
p=1

qs+u−1−2p
n = qu−1

n q
−|{k|jk<j′u}|
1

qs−1
n − q1−sn

qn − q−1
n

.

Finally, combining the computation of (6.1.11) and (6.1.12) we obtain

f0 (v ⊗m) =
q − q−1

qs−1
n − q1−sn

[fn−1, en−1] f0 (v ⊗m) =
q − q−1

qs−1
n − q1−sn

fn−1f0en−1 (v ⊗m)
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=
s∑

u=1

(
∆j′u(f0)v

)
⊗ α−

j′u
(m) =

ℓ∑
t=1

(∆t(f0)v)⊗ α−
t (m).

since ∆j′u(f0)v = qu−1
n q

−|{k|jk<j′u}|
1 vu and ∆t(f0)v = 0 for t ̸= j′u. This completes the

induction.

Now, we define
X±1
j m = α±

j (m) (m ∈M, 1 ≤ j ≤ ℓ). (6.1.13)

Lemma 6.1.6. M is an Haff
ℓ (q2)-module with respect to (6.1.13), and W is isomorphic

to V ⊗ℓ ⊗Haff
ℓ (q2) M as a U(ϵ)-module.

Proof. The proof is almost identical to the one in [16], and we leave it to the reader.

This completes the proof for essential surjectivity of F .

Lemma 6.1.7. The functor F is fully faithful.

Proof. First, F is faithful since Jℓ is faithful. So it suffices to show that Fℓ is surjective
on morphisms.

Suppose that F : Fℓ(M) → Fℓ(M ′) is a U(ϵ)-linear map for M, M ′ ∈ Haff
ℓ (q2)-mod.

Since Jℓ is an equivalence, there is a Hℓ(q
2)-linear map f :M →M ′ such that Jℓ(f) = F .

Since F is U(ϵ)-linear, e0F (v ⊗m) = F (e0 (v ⊗m)). The left hand side is equal to

e0F (v ⊗m) = e0 (v ⊗ f(m)) =
∑
j

∆j(e0)v ⊗Xjf(m),

while the right hand side is

F (e0 (v ⊗m)) = F

(∑
j

∆j(e0)v ⊗Xjm

)
=
∑
j

∆j(e0)v ⊗ f(Xjm).

Now for each i, we can choose a vector v(i) so that ∆j(e0)v = 0 unless j = i, and at the
same time ∆i(e0)v is of the form vi1 ⊗ · · · ⊗ viℓ , whose factors are all distinct vk’s. For
example, we may take v(1) = v1 ⊗ v2 ⊗ · · · ⊗ vℓ. Putting v = v(i) in the above identities,
we obtain Xif(m) = f(Xim) by Lemma 6.1.4. Hence f is Haff

ℓ (q2)-linear as well.

Therefore, F in (6.1.6) is an equivalence of categories. Since every simple object in
Haff
ℓ (q2)-mod is a quotient of L(a1) ◦ · · · ◦ L(aℓ) for some a1, . . . , aℓ ∈ k, where ◦ is a
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convolution product, and F(L(a1) ◦ · · · ◦ L(aℓ)) =W1(a1)⊗ · · · ⊗W1(aℓ), F induces the
equivalence

F∗
ϵ,ℓ : H

aff
ℓ (q2)-modZ // CℓZ(ϵ).

This completes the proof of Theorem 4.3.13.

6.2 Chapter 5

6.2.1 Proof of Proposition 5.3.2

Let us first recall the notion of ℓ-weights of representations of quantum affine algebras. The
quantum affine algebra U ′

q(ŝln) has another set of generators x±i,t, k
±1
i , h±i,s (i ∈ I \ {0}, t ∈

Z, s ∈ Z \ {0}) (see [5] for defining relations).
Let ψi,k (i ∈ I \ {0}, k ≥ 0) be the element determined by the following identity of

formal power series in z:

∞∑
k=0

ψi,kz
k = ki exp

(
(q − q−1)

∞∑
s=1

hi,sz
s

)
.

A U ′
q(ŝln)-module V is called an ℓ-highest weight module if it is generated by an ℓ-highest

weight vector v, that is, x+i,kv = 0 and ψi,kv = Ψi,kv for all i ∈ I \ {0}, k ≥ 0 and
some scalars Ψi,k. Collecting those scalars in power series Ψi(z) =

∑
Ψi,kz

k, the tuple
Ψ = (Ψi(z))i∈I\{0} is called the ℓ-highest weight of V .

Every (type 1) finite-dimensional irreducible U ′
q(ŝln)-module is an ℓ-highest weight

module. Conversely, an ℓ-highest weight module is finite-dimensional if its ℓ-highest weight
Ψ = (Ψi(z))i∈I\{0} is of the form

Ψi(z) = qdegPi
Pi(q

−2z)

Pi(z)
,

for uniquely determined polynomials Pi(z) ∈ k[z] with constant term 1 [16, Theorem 3.3].
Now let us regardWosc

l (1) as a U ′
q(ŝln)-module by restriction. We shall prove that vl ∈

Wosc
l (1) is an ℓ-highest weight vector with the ℓ-highest weight given in Proposition 5.3.2.

Since x+i,tvl = 0 for all i ∈ I \ {0} and t ∈ Z by a weight consideration, the problem is to
compute the action of ψi,k on vl. To do this, we recall the following lemmas expressing
ψi,k in terms of root vectors Ekδ−αi

. We refer the reader to [5] for unexplained notations
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and definitions below.
Fix a map o : I \ {0} → {±1} such that o(i+ 1) = −o(i) for all i ∈ I \ {0}.

Lemma 6.2.1 ([5, Lemma 1.5]). For i ∈ I \ {0} and k > 0, we have

ψi,k = o(i)k(q − q−1)ki
(
Ekδ−αi

ei − q−2eiEkδ−αi

)
.

Lemma 6.2.2 ([46, Lemma 4.3]). For i ∈ I \ {0} and k > 0, we have

E(k+1)δ−αi
= − 1

q + q−1

(
Eδ−αi

eiEkδ−αi
− q−2eiEδ−αi

Ekδ−αi

−Ekδ−αi
Eδ−αi

ei + q−2Ekδ−αi
eiEδ−αi

)
.

Lemma 6.2.3 ([46, Lemma 4.7]). For i ∈ I \ {0}, we have

Eδ−αi
= (−q−1)n−2(ei+1 . . . en−1)(ei−1 . . . e2e1)e0 +

∑
j1,...,jn−1

Cj1,...,jn−1(q)ej1 . . . ejn−1 ,

where the sum is over the sequences (j1, . . . , jn−1) ∈ In−1 such that
∑n−1

k=1 αjk =
∑

j∈I\{i} αj

with jn−1 ̸= 0 and Cj1,...,jn−1(q) ∈ ±qZ≤0.

Proof of Proposition 5.3.2. We claim that vl is an ℓ-highest weight vector with the given
ℓ-highest weight. By weight consideration, x+i,tvl = 0 for all i ∈ I \ {0} , t ∈ Z. Let us
show that that vl is a simultaneous eigenvector of ψi,k with the eigenvalues Ψi,k above.

First assume l ≥ 0. Since ejvl = 0 for all j ∈ I \ {0}, we have by Lemma 6.2.3,

Eδ−αrvl = (−q−1)n−2(er+1 · · · en−1)(er−1 · · · e1)e0vl
= (−q−1)n−2 |er + (l + 1)er+1⟩ ,

and then

E2δ−αrvl = −
1

q + q−1

(
Eδ−αrerEδ−αr − q−2erE

2
δ−αr

+ q−2Eδ−αrerEδ−αr

)
vl

=− 1

[2]

(
−(−q−1)2n−4[l + 1](1 + q−2) + q−2(−q−1)2n−4[2][l + 2]

)
|er + (l + 1)er+1⟩

=(−q−1)2n−4(q−1[l + 1]− q−2[l + 2]) |er + (l + 1)er+1⟩
=− (−q−1)2n−4q−l−3 |er + (l + 1)er+1⟩ .
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Repeating similar computation and using Lemma 6.2.2, we have

Ekδ−αrvl = (−1)k−1(−q−1)(n−2)k(q−l−3)k−1 |er + (l + 1)er+1⟩ ,

and by Lemma 6.2.1

ψr,kvl = o(r)k(q − q−1)kr
(
Ekδ−αrer − q−2erEkδ−αr

)
vl

= o(r)k(q − q−1)q−l−1q−2[l + 1](−1)k−1(−q−1)(n−2)k(q−l−3)k−1vl

= o(r)k(q−l−1 − ql+1)(−q−1)nk(−q−l−1)kvl.

Thus we obtain

Ψr(z)vl =
∑
k≥0

ψr,kz
kvl =

(
q−l−1 − (ql+1 − q−l−1)

∑
k≥1

{
o(r)(−q−1)n(−q−l−1)z

}k)
vl

=

(
q−l−1 − (ql+1 − q−l−1)

−q−l−1u

1 + q−l−1u

)
vl =

u+ q−l−1

1 + q−l−1u
vl,

where u = o(r)(−q−1)nz. The computation of Ψr+1(z) is similar, where we begin from

Eδ−αr+1vl = (−q−1)n−2(er+2 . . . en−1)(er . . . e2e1)e0vl

= −(−q−1)n−2[l] |(l − 1)er+1 + er+2⟩ .

For i ̸= r, r + 1, it is obvious since Eδ−αi
vl = 0. The case when l < 0 can be dealt with

by the same computation.

6.2.2 Proof of Conjecture 5.3.16 for s = 1

Recall the sequence to be proved (5.3.16) (with s = 1):

0 W l,2
osc(1) Wosc

l (1)⊗Wosc
l (q−2) Wosc

l+1(q
−1)⊗Wosc

l−1(q
−1) 0.

ψ

Let ψ be a linear map defined by

ψ : |m⟩ ⊗ |m′⟩ 7−→−
∑
i≤r

[mi]
∏
k≤i

qm
′
k−mk |m− ei⟩ ⊗ |m+ ei⟩
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+
∑
j>r

[m′
j]
∏
j<k

qm
′
k−mk |m+ ej⟩ ⊗ |m′ − ej⟩ ,

which will be shown below to be a U(ϵ)-module homomorphism. Then ψ is automatically
surjective as its codomain Wosc

l+1(q
−1)⊗Wosc

l−1(q
−1) is irreducible by Theorem 5.3.12.

The remaining map is a canonical inclusion, as W l,2
osc(1) is constructed as the image of

Rl,l(q
−2, 1) :Wosc

l (q−2)⊗Wosc
l (1) −→Wosc

l (1)⊗Wosc
l (q−2).

Once we show thatW l,2
osc(1) is in the kernel of ψ (as a submodule ofWosc

l (1)⊗Wosc
l (q−2)),

the conclusion follows by comparing the classical decompositions of the modules appearing
in the sequence (see (5.3.1), Proposition 5.3.15). To sum up, the proof now reduces to
showing the following two lemmas.

Lemma 6.2.4. The map ψ is U(ϵ)-linear.

Proof. Since the proof consists of straightforward computations, let us check only the
following three cases and leave the others to the reader.

Case 1. [ψ, ea] = 0 for 1 ≤ a < r: We compute

ψ(ea(|m⟩ ⊗ |m′⟩)) = ψ

(
qm

′
a−m′

a+1 [ma] |m− ea + ea+1⟩ ⊗ |m′⟩
+[m′

a] |m⟩ ⊗ |m′ − ea + ea+1⟩

)
=qm

′
a−m′

a+1 [ma]

·

(
−
∑

i≤r[(m− ea + ea+1)i]
∏

k≤i q
m′

k−(m−ea+ea+1)k |m− ea + ea+1 − ei⟩ ⊗ |m′ + ei⟩
+
∑

j>r[m
′
j]
∏

j<k q
m′

k−mk |m− ea + ea+1 + ej⟩ ⊗ |m′ − ej⟩

)

+ [m′
a]

(
−
∑

i≤r[mi]
∏

k≤i q
(m′−ea+ea+1)k−mk |m− ei⟩ ⊗ |m′ − ea + ea+1 + ei⟩

+
∑

j>r[m
′
j]
∏

j<k q
m′

k−mk |m+ ej⟩ ⊗ |m′ − ea + ea+1 − ej⟩

)

and

ea(ψ(|m⟩ ⊗ |m′⟩)) = ea

(
−
∑

i≤r[mi]
∏

k≤i q
m′

k−mk |m− ei⟩ ⊗ |m+ ei⟩
+
∑

j>r[m
′
j]
∏

j<k q
m′

k−mk |m+ ej⟩ ⊗ |m′ − ej⟩

)

=−
∑
i≤r

[mi]
∏
k≤i

qm
′
k−mk

(
q−(m′+ei)a−(m′+ei)a+1 [(m− ei)a] |m− ea + ea+1 − ei⟩ ⊗ |m′ + ei⟩

+[(m′ + ei)a] |m− ei⟩ ⊗ |m′ − ea + ea+1 + ei⟩

)

+
∑
j>r

[m′
j]
∏
j<k

qm
′
k−mk

(
qm

′
a−m′

a+1 [ma] |m− ea + ea+1 + ej⟩ ⊗ |m′ − ej⟩
+[m′

a] |m+ ej⟩ ⊗ |m′ − ea + ea+1 − ej⟩

)
.
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Let us compare the coefficients of |m− ea⟩ ⊗ |m′ + ea+1⟩. In the first one, it is

−qm′
a−m′

a+1 [ma][ma+1 + 1]
∏

k≤a+1

qm
′
k−mk − [m′

a][ma]
∏
k≤a

qm
′
k−mk

=
[ma]

q − q−1

∏
k≤a

qm
′
k−mk

(
−qm′

a+1 + qm
′
a−2ma+1−1 − qm′

a−1 + q−m
′
a−1
)
,

and in the other,

−[ma+1]
∏

k≤a+1

qm
′
k−mkqm

′
a−m′

a+1−1[ma]− [ma]
∏
k≤a

qm
′
k−mk [m′

a + 1]

=
[ma]

q − q−1

∏
k≤a

qm
′
k−mk

(
−qm′

a−1 + qm
′
a−2ma+1−1 − qm′

a+1 + q−m
′
a−1
)

and so they are the same. Other coefficients are easier to check, so we omit them.
Case 2. [ψ, er] = 0: Let us compare

ψ(er(|m⟩ ⊗ |m′⟩)) = ψ

(
−qm′

r+m
′
r+1+1[mr][mr+1] |m− er − er+1⟩ ⊗ |m′⟩

−[m′
r][m

′
r+1] |m⟩ ⊗ |m′ − er − er+1⟩

)
=− qm′

r+m
′
r+1+1[mr][mr+1]

·

−
∑
i≤r

[(m− er − er+1)i]
∏
k≤i
qm

′
k−(m−er−er+1)k |m− er − er+1 − ei⟩ ⊗ |m′ + ei⟩

+
∑
j>r

[m′
j]
∏
j<k

qm
′
k−(m−er−er+1)k |m− er − er+1 + ej⟩ ⊗ |m′ − ej⟩


− [m′

r][m
′
r+1]

·

 −
∑
i≤r

[mi]
∏
k≤i
q(m

′−er−er+1)k−mk |m− ei⟩ ⊗ |m′ − er − er+1 + ei⟩

+
∑
j>r

[(m′ − er − er+1)j]
∏
j<k

q(m
′−er−er+1)k−mk |m+ ej⟩ ⊗ |m′ − er − er+1 − ej⟩


and

er(ψ(|m⟩ ⊗ |m′⟩)) = er

(
−
∑

i≤r[mi]
∏

k≤i q
m′

k−mk |m− ei⟩ ⊗ |m+ ei⟩
+
∑

j>r[m
′
j]
∏

j<k q
m′

k−mk |m+ ej⟩ ⊗ |m′ − ej⟩

)
=
∑
i≤r

[mi]
∏
k≤i

qm
′
k−mk
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·

(
q(m

′+ei)r+m
′
r+1+1[(m− ei)r][mr+1] |m− er − er+1 − ei⟩ ⊗ |m′ + ei⟩

+[(m′ + ei)r][m
′
r+1] |m− ei⟩ ⊗ |m′ − er − er+1 + ei⟩

)
−
∑
j>r

[m′
j]
∏
j<k

qm
′
k−mk

·

(
qm

′
r+(m′−ej)r+1+1[mr][(m+ ej)r+1] |m− er − er+1 + ej⟩ ⊗ |m′ − ej⟩

+[m′
r][(m

′ − ej)r+1] |m+ ej⟩ ⊗ |m′ + e1 + en − ej⟩

)
.

First, the coefficient of |m− er⟩ ⊗ |m′ − er+1⟩ in the former is

−qm′
r+m

′
r+1+1[mr][mr+1][m

′
r+1]

∏
r+1<k

qm
′
k−mk + [m′

r][m
′
r+1][mr]

∏
k≤r

qm
′
k−mkq−1

Since |m⟩ ⊗ |m′⟩ ∈ (Wosc
l )⊗2, we have

∑
k≤r(m

′
k −mk) =

∑
k>r(m

′
k −mk) so that∏

r+1<k

qm
′
k−mk = qmr+1−m′

r+1

∏
k≤r

qm
′
k−mk .

Hence the above coefficient can be rewritten as

[mr][m
′
r+1]

q − q−1

∏
k≤r

qm
′
k−mk

(
−qm′

r+2mr+1+1 + qm
′
r+1 + qm

′
r−1 − q−m′

r−1
)

and similary the one in the latter is

[mr]
∏
k≤r

qm
′
k−mk [m′

r + 1][m′
r+1]− [m′

r+1]
∏
r+1<k

qm
′
k−mkqm

′
r+m

′
r+1 [mr][mr+1 + 1]

=
[mr][m

′
r+1]

q − q−1

∏
k≤r

qm
′
k−mk

(
qm

′
r+1 − q−m′

r−1 − qm′
r+2mr+1+1 + qm

′
r−1
)

respectively, which are equal. The other coefficients are done as follows:

• |m− 2er − er+1⟩ ⊗ |m′ + er⟩ :

qm
′
r+m

′
r+1+1[mr − 1][mr][mr+1]

∏
k≤r

qm
′
k−mkq

= [mr]
∏
k≤r

qm
′
k−mkqm

′
r+m

′
r+1+2[mr − 1][mr+1],
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• |m− er − er+1 − ei⟩ ⊗ |m′ + ei⟩ (i ̸= r) :

qm
′
r+m

′
r+1+1[mr][mr+1][mi]

∏
k≤i

qm
′
k−mk = [mi][mr][mr+1]q

m′
r+m

′
r+1+1

∏
k≤i

qm
′
k−mk ,

• |m+ er+1⟩ ⊗ |m′ − er − 2er+1⟩ :

[m′
r][m

′
r+1][m

′
r+1 − 1]

∏
r+1<k

qm
′
k−mk = [m′

r+1][m
′
r][m

′
r+1 − 1]

∏
r+1<k

qm
′
k−mk ,

• |m+ ej⟩ ⊗ |m′ − er − er+1 − ej⟩ (j ̸= r + 1) :

[m′
r][m

′
r+1][m

′
j]
∏
j<k

qm
′
k−mk = [m′

j][m
′
r][m

′
r+1]

∏
j<k

qm
′
k−mk ,

• |m− er − er+1 + ej⟩ ⊗ |m′ − ej⟩ (j ̸= r + 1) :

qm
′
r+m

′
r+1+1[mr][mr+1][m

′
j]
∏
j<k

qm
′
k−mk = [m′

j]
∏
j<k

qm
′
k−mk [mr][mr+1],

• |m− ei⟩ ⊗ |m− er − er+1 + ei⟩ (i ̸= r) :

[m′
r][m

′
r+1][mi]

∏
k≤i

qm
′
k−mk = [mi]

∏
k≤i

qm
′
k−mk [m′

r][m
′
r+1].

Case 3. [ψ, e0] = 0: Taking care of spectral parameters, we obtain

ψ(e0(|m⟩ ⊗ |m′⟩)) = ψ

(
q−m

′
1−m′

n−1 |m+ e1 + en⟩ ⊗ |m′⟩
+q−2 |m⟩ ⊗ |m′ + e1 + en⟩

)

=q−m
′
1−m′

n−1

−
∑
i≤r

[(m+ e1 + en)i]
∏
k≤i
qm

′
k−(m+e1+en)k |m+ e1 + en − ei⟩ ⊗ |m′ + ei⟩

+
∑
j>r

[m′
j]
∏
j<k

qm
′
k−(m+e1+en)k |m+ e1 + en + ej⟩ ⊗ |m′ − ej⟩


+ q−2

 −
∑
i≤r

[mi]
∏
k≤i
q(m

′+e1+en)k−mk |m− ei⟩ ⊗ |m′ + e1 + en + ei⟩

+
∑
j>r

[(m′ + e1 + en)j]
∏
j<k

q(m
′+e1+en)k−mk |m+ ej⟩ ⊗ |m′ + e1 + en − ej⟩
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and

e0(ψ(|m⟩ ⊗ |m′⟩)) = e0

(
−
∑

i≤r[mi]
∏

k≤i q
m′

k−mk |m− ei⟩ ⊗ |m+ ei⟩
+
∑

j>r[m
′
j]
∏

j<k q
m′

k−mk |m+ ej⟩ ⊗ |m′ − ej⟩

)

=−
∑
i≤r

[mi]
∏
k≤i

qm
′
k−mk

(
q−(m′+ei)1−m′

n−1q−1 |m+ e1 + en − ei⟩ ⊗ |m′ + ei⟩
+q−1 |m− ei⟩ ⊗ |m′ + e1 + en + ei⟩

)

+
∑
j>r

[m′
j]
∏
j<k

qm
′
k−mk

(
q−m

′
1−(m′−ej)n−1q−1 |m+ e1 + en + ej⟩ ⊗ |m′ − ej⟩

+q−1 |m+ ej⟩ ⊗ |m′ + e1 + en − ej⟩

)
.

The coefficient of |m+ en⟩ ⊗ |m′ + e1⟩ in the former is

−q−m′
1−m′

n−1[m1 + 1]qm
′
1−m1−1 + q−2[m′

n + 1] =
−q−m′

n−1 + q−2m1−m′
n−3 + qm

′
n−1 − q−m′

n−3

q − q−1

while the one in the latter is

−[m1]q
m′

1−m1q−m
′
1−m′

n−2q−1 + q−1[m′
n] =

−q−m′
n−3 + q−2m1−m′

n−3 + qm
′
n−1 − q−m′

n−1

q − q−1
,

which coincide. The other coefficients are easier:

• |m+ e1 + 2en⟩ ⊗ |m′ − en⟩ : q−m′
1−m′

n−1[m′
n] = [m′

n]q
−m′

1−m′
n+1q−2,

• |m+ e1 + en + ej⟩ ⊗ |m′ − ej⟩ (j ̸= n) :

q−m
′
1−m′

n−1[m′
j]
∏
j<k

qm
′
k−mkq−1 = [m′

j]
∏
j<k

qm
′
k−mkq−m

′
1−m′

n−2,

• |m− e1⟩ ⊗ |m′ + 2e1 + en⟩ : q−2[m1]q
m′

1−m1q = [m1]q
m′

1−m1q−1,

• |m− ei⟩ ⊗ |m′ + e1 + en + ei⟩ (i ̸= 1) :

q−2[mi]
∏
k≤i

qm
′
k−mkq = [mi]

∏
k≤i

qm
′
k−mkq−1,

• |m+ e1 + en − ei⟩ ⊗ |m′ + ei⟩ (i ̸= 1) :

q−m
′
1−m′

n−1[mi]
∏
k≤i

qm
′
k−mkq−1 = [mi]

∏
k≤i

qm
′
k−mkq−m

′
1−m′

n−2,
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• |m+ ej⟩ ⊗ |m′ + e1 + en − ej⟩ (j ̸= n) :

q−2[m′
j]
∏
j<k

qm
′
k−mkq = [m′

j]
∏
j<k

qm
′
k−mkq−1.

Recall the notations from Section 5.3.2. SinceW l,2
osc(1) is isomorphic to V(l,l) as a Ů(ϵ)-

module, it is generated by the Ů(ϵ)-highest weight vector u−L ∈ Wosc
l (1)⊗Wosc

l (q−2) as
a submodule. Thus it is enough to prove the following statement.

Lemma 6.2.5. ψ(u−L) = 0.

Proof. Let us check it when l > 0 (so that L = l), leaving the other case l < 0 to the
reader. Recall from Lemma 5.3.4 that u−l =

∑l
p=0Apv

−
p,l−p where

v−p,l−p = |(l − p)er+1 + per+2⟩ ⊗ |per+1 + (l − p)er+2⟩ ,

Ap = (−1)p
p∏

k=1

(
q−l+2k [l + 1− k]

[k]

)
.

By definition of ψ, we have

ψ(v−p,l−p) =[p]ql−2p |(l − p+ 1)er+1 + per+2⟩ ⊗ |(p− 1)er+1 + (l − p)er+2⟩
+ [l − p] |(l − p)er+1 + (p+ 1)er+2⟩ ⊗ |per+1 + (l − p− 1)er+2⟩

and then

ψ(u−l) =
l∑

p=0

Apψ(v
−
p,l−p)

=
l∑

p=0

(
Ap+1[p+ 1]ql−2p−2

+Ap[l − p]

)
|(l − p)er+1 + (p+ 1)er+2⟩ ⊗ |per+1 + (l − p− 1)er+2⟩

=0

as desired.
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[38] D. Hernandez, The algebra Uq(ŝl∞) and applications, J. Algebra 329 (2011) 147–162.

[39] D. Hernandez, Advances relating to R-matrices and their applications [following Maulik-
Okounkov, Kang-Kashiwara-Kim-Oh,. . . ], Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–
1135. Astérisque 2019, no. 407, Exp. No. 1129, 297–331.

[40] D. Hernandez, M. Jimbo, Asymptotic representations and Drinfeld rational fractions, Compositio
Math. 148 (2012) 1593–1623.

[41] D. Hernandez, B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010)
265–341.

[42] D. Hernandez, B. Leclerc, Cluster algebras and category O for representations of Borel subalgebras
of quantum affine algebras, Algebra Number Theory 10 (2016) 2015–2052.

[43] J. Hong, S.-J. Kang, Introduction to quantum groups and crystal bases, Graduate Studies in Math-
ematics, 42, American Mathematical Society, Providence, RI, (2002) xviii+307 pp.

[44] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989) 539–570.

[45] R. Howe, E.-C. Tan, J. Willenbring, Stable branching rules for classical symmetric pairs, Trans.
Amer. Math. Soc. 357 (2004) 1601–1626.

[46] I.-S. Jang, J.-H. Kwon, E. Park, Unipotent quantum coordinate ring and prefundamental represen-
tations for types A

(1)
n and D

(1)
n , Int. Math. Res. Not. IMRN 2023, no. 2, 1119–1172.

137



BIBLIOGRAPHY
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국문초록

본 학위논문은 양자 아핀 (초)대수의 표현론에 관한 초 쌍대성에 기반을 둔 새로운 접근을
제시한다. 구체적으로는, 주어진 범주를 분석하기 위하여 우선 보손 혹은 페르미온 짝을
찾고, 그 초대칭 유사체를 구성하여 보손 측과 페르미온 측을 이어주는 함자를 찾는 방법이
다. 이때 주요한 역할을 하는 것이 R-행렬과 그 스펙트럴 분해로, 이를 통해 각각의 경우를
기존의 잘 알려진 유한차원 표현론과 유사한 방식으로 분석할 수 있다.
본 학위논문에서는 A형 양자 아핀 (초)대수의 두 가지 모듈 범주를 고려하고자 한다.

첫째로다루어지는것은다항식표현들의범주로,이경우에는유용한슈어–바일류의쌍대
성을 이용하여 특히 통일적인 분석이 가능하였다. 양자 아핀 초대수에 대한 범주와 기존의
양자아핀대수에대한범주를직접적으로연결하는함자를건설하였고,이로부터범주들의
역극한 사이의 범주 동치를 얻게 된다.
둘째로, q-진동자 표현이라 불리는 무한차원 표현들의 범주를 도입하였고, 유한차원

기약 표현들과 자연스럽게 대응되는 기약 q-진동자 표현들을 찾았다. q-진동자 표현들은
유한차원 표현들의 보손 짝으로 볼 수 있기 때문에 양자 아핀 초대수에 대한 유사한 모듈

범주를 도입함으로써 이 대응을 설명할 수 있었으며, 이러한 초대칭 유사체를 통한 q-진
동자와 유한차원 표현들 사이의 연결은 초 쌍대성의 철학에 의해 범주들의 동치로 이어질

것으로 예상된다.

주요어휘: 초 쌍대성, 양자 아핀 대수, 일반 선형 리 초대수, R-행렬, 슈어–바일 쌍대성,
진동자 표현

학번: 2017-22587
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