
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학석사 학위논문

Ward’s and Mass-one equation
for Almost-Hermitian Random

Matrix

(유사-에르미트 랜덤행렬의 와드와 매스-원 공식)

2023년 8월

서울대학교 대학원

수리과학부

이용우



Ward’s and Mass-one equation
for Almost-Hermitian Random

Matrix
(유사-에르미트 랜덤행렬의 와드와 매스-원 공식)

지도교수 서 인 석

이 논문을 이학석사 학위논문으로 제출함

2023년 4월

서울대학교 대학원

수리과학부

이용우

이용우의 이학석사 학위논문을 인준함

2023년 6월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)



Ward’s and Mass-one equation
for Almost-Hermitian Random

Matrix

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Master of Science

to the faculty of the Graduate School of

Seoul National University

by

Yongwoo Lee

Dissertation Director : Professor Insuk Seo

Department of Mathematical Sciences

Seoul National University

August 2023



© 2023 Yongwoo Lee

All rights reserved.



Abstract

Ward’s and Mass-one equation for
Almost-Hermitian Random Matrix

Yongwoo Lee

Department of Mathematical Sciences
The Graduate School

Seoul National University

We consider the microscopic scaling limit of non-Hermitian random ma-
trix, especially, almost-Hermitian random matrix with unitary invariance.
The scaling limit for the edge regime has already been obtained in pioneer-
ing work of Bender in [8].

Ward’s equation has been used in proving the edge universality conjecture
for random normal matrix model, under additional assumption. Under the
same assumption, universality has been verified for the bulk scaling limit
of almost-Hermitian model using Ward’s equation. However, not many are
known for the edge scaling limit of almost-Hermitian matrix model. In this
thesis, we prove that the limiting kernel for the edge regime satisfies Ward’s
and mass-one equations.

Key words: Almost-Hermitian random matrix, Ward’s equation, Mass-one
equation
Student Number: 2021-26436
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Chapter 1

Introduction

Almost-Hermitian random matrix model (AGUE) is a random matrix model
that lies in between Hermitian and non-Hermitian matrix models. A study
of local statistics for AGUE was pioneered by Fyodorov, Khoruzhenko and
Sommers [12] for the bulk statistic, and pioneered by Bender [8] for the
edge statistics. AGUE exhibits new types of universality classes that was not
observed from Hermitian and non-Hermitian models.

Universality is one of the most important property studied in random
matrix theory. It means that a correlation function, which determines distri-
bution of eigenvalues, is independent of choice of exact probability measure
for matrix elements, but only dependent on a few universal parameters, such
as invariance properties or hermiticity, etc. Universality has been proved for
wide classes of random matrices, for example, Gaussian unitary ensemble
(GUE), and Ginibre unitary ensemble (GinUE), and many other more. How-
ever, it still remains open for more general type of random matrix models,
and thus it is often referred as universality conjecture.

One successful way to prove universality is using Ward’s equation. For
instance, in the bulk regime of random normal matrix model, universality
conjecture is recently proved in [4], especially using Ward’s equation. Sim-
ilarly, in [5], universality conjecture was partially proved in the soft edge
regime of random normal matrix model using Ward’s equation, but under
additional assumption. Without the assumption, the soft edge universality
is proved in [15] by developing advanced asymptotic theory for orthogonal
polynomials.

Ward’s and mass-one equations are fundamental equations which are ex-
pected to be true for limiting kernels, but it is non-trivial for limiting kernels
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CHAPTER 1. INTRODUCTION

to satisfy the equations. Especially, it was not verified in the literature that
the edge limiting kernels of AGUE satisfy Ward’s equation. These equations
are fundamental in following senses. Ward’s equation is derived from Ward
identities which is also known as loop equations. These identities are conse-
quences of reparametrization invariance property of normalization constants
related to joint intensity functions. Mass-one equation is also fundamental in
the sense that it follows from basic property of a correlation kernel.

Main results of this thesis is proofs for that the edge limiting kernels for
AGUE satisfies Ward’s and mass-one equations, and stated in Theorem 5.3.3
and Theorem 5.4.2. The organization of this thesis is as follows. In Chapter
2, we start with examples of random matrix model that are closely related to
AGUE, and collect theorems that can be applied for general random matrix
model. Chapter 3 is devoted to explain determinantal structure that underlies
unitary ensembles, and then introduce Ward’s and mass-one equation. In
Chapter 4, we survey universality of local scaling limits for certain classes
of random matrices, which covers GUE and GinUE but not AGUE. Finally,
in Chapter 5, we define AGUE and state the main results. Specifically, we
prove Ward’s and mass-one equation for the limiting kernels of AGUE in the
edge regime.
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Chapter 2

Random matrix models

Almost-Hermitian random matrix is closely related to Gaussian unitary en-
semble (GUE) and Ginibre unitary ensemble (GinUE), so we begin with
introducing these ensembles. In Section 2.1, we introduce GUE and Elliptic
GinUE which is a generalised model of GinUE. In Section 2.2, we introduce
Frostman’s type theorem which justify notion of limiting spectrum.

2.1 GUE and Elliptic GinUE

Consider a space of n by n non-Hermitian (resp. Hermitian) matrices with
complex entries. We can endow a probability measure on the space by as-
signing probability measure for each element, independently.

Definition 2.1.1. A random non-Hermitian (resp. Hermitian) complex ma-
trix M is said to be the Ginibre unitary ensemble (GinUE) (resp. Gaussian
unitary ensemble (GUE)) if

dPn,n(M) =
1

Zn

exp

{
−n

n∑
j,k=1

|mjk|2
}
, M =

[
mjk

]n
j,k=1

,

where Zn is a normalization constant

Zn =

∫
Cn2

exp

{
−n

n∑
j,k=1

|mjk|2
}

n∏
j,k=1

dmjk.

with dmjk denoting the Lebesgue measure on C.
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CHAPTER 2. RANDOM MATRIX MODELS

We remark that the given definitions are normalised version of GUE and
GinUE. The word “unitary” in the names comes from a fact that the prob-
ability measures are invariant under the map M 7→ UMU∗ for any complex
unitary matrix U . In case of GinUE, the measure is invariant under the map
M 7→ UMV ∗ for any complex unitary matrix U and V .

For each randomly picked M according to Pn,n, there is a random sample
of n-points, {ζj}nj=1, where ζj’s are the eigenvalues of M . If we consider Cn

as a space of n eigenvalues of M , then Pn,n induces a probability measure Pn

on Cn. Then, Pn can be represented in forms of Boltzmann-Gibbs law.

Proposition 2.1.2. Let Pn be the induced probability measure from GinUE
(resp. GUE) as mentioned above. Then, Pn is given by

dPn(ζ1, . . . , ζn) =
1

Zn

e−Hn(ζ1,...,ζn), (2.1)

where Zn is a normalization constant

Zn =

∫
Cn

e−Hn(ζ1,...,ζn)dζ1 · · · dζn,

and Hn, the Hamiltonian, is defined by

Hn(ζ1, . . . , ζn) =
∑
j ̸=k

log
1

|ζj − ζk|
+ n

n∑
j=1

Qn(ζi), (2.2)

where Qn : C → R, which is called external field, is given by Qn(ζ) = |ζ|2
(resp. Qn(ζ) = |ζ|2 if ζ ∈ R, and Qn(ζ) = ∞ otherwise).

Proof. We refer [9, 11] for the proof.

The eigenvalues are not independent, but repelling each other. This be-
havior can be observed in Figure 2.1, in comparison between random sam-
plings of eigenvalues from GinUE and the uniform distribution on the unit
disk.

The repulsion between eigenvalues of GinUE (and GUE) is due to log-
arithmic terms in (2.2). The logarithmic terms can be interpreted by 2-
dimensional electrostatics. An electrically charged 2-dimensional particle gen-
erates a potential which is proportional to logarithmic distance from the
particle. Thus, if we consider n-identically charged particle system where the
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CHAPTER 2. RANDOM MATRIX MODELS

Figure 2.1: Random samplings from GinUE (left) and the uniform distribu-
tion on the unit disk(right).

particles are located at {ζj}nj=1, then the electric potential between the parti-
cles are proportional to

∑
j ̸=k log 1/|ζj − ζk|. For this reason, the eigenvalues

of GinUE (and GUE) can be interpreted as identically charged 2-dimensional
electrical particles under external field Qn.

A natural generalization of GinUE is taking in account more generalized
external field Qn. However, (2.1) may not be well-defined if no restriction
on external field is given. A trivial example, e.g. Qn ≡ 0, shows that (2.1)
can be ill-defined for certain external field. We will further discuss about this
problem in the next section. Setting a side of this problem, we now define
Elliptic Ginibre unitary ensemble.

Definition 2.1.3. For τ ∈ [0, 1), a random complex n by n matrix Aτ is
said to be Elliptic Ginibre unitary ensemble or Elliptic GinUE if

Aτ =
√
1 + τH1 + i

√
1− τH2 (2.3)

where H1 and H2 are independent GUEs.

Proposition 2.1.4. The distribution of eigenvalue of Elliptic GinUE is rep-
resented by (2.1) with an external field Qn ≡ Qτ given by

Qτ (ζ) =
1

1 + τ
ξ2 +

1

1− τ
η2, ζ = ξ + iη ∈ C. (2.4)

Proof. We refer [2, 13] for the proof.

5



CHAPTER 2. RANDOM MATRIX MODELS

Almost-Hermitian matrix is a Elliptic GinUE model with varying τ . That
is, we consider a sequence of τn. By taking τn → 1, Elliptic GinUE becomes
more alike to GUE rather then GinUE. See Chapter 5 for more detail.

2.2 Limiting spectrum

In this section, we collect theorems related to limiting spectrum for general
matrix models. Limiting spectrum is not main of interest in this thesis, but
we included it for completeness. Many of these results are due to logarithmic
potential theory, and based on [14, 16, 18].

Let B(D) be a collection of positive unit Borel measure on a domain D.
We typically consider cases with D being R, C, or a compact set.

Definition 2.2.1. A weighted logarithmic energy of an external field Q :
D → R ∪ {∞} is a functional IQ : B(D) → R given by

IQ(σ) :=

∫∫
D2

log
1

|ζ1 − ζ2|
dσ(ζ1)dσ(ζ2) +

∫
D

Qdσ, σ ∈ B(D). (2.5)

Finding explicit “minimizer” of weighted logarithmic energy of an exter-
nal field is active research area in these days, and many are not known. The
existence of the minimizer is not trivial, and it is not true for general exter-
nal field. For example, if we set no restriction on Q, then infimum value of
weighted logarithmic energy can vary from −∞ to ∞ according to choice of
Q. Therefore, we restrict our attention to a collection Q(D) of external fields
where each external field Q : D → R∪{∞} satisfies the following conditions:

1. Q is lower semi-continuous;

2. inf{IQ(σ) : σ ∈ B(D)} <∞;

3. lim inf
ζ→∞

Q(ζ)/ log |ζ|2 > 1.

Even with these conditions, we can still cover wide range of external fields
on C. Especially, Condition 2 and 3 are necessary for weighted logarithmic
energy to have a meaningful infimum value. Condition 3 can be weaken to
Q(ζ)− log |ζ|2 → ∞ as |ζ| → ∞, but we will satisfy with the condition given
above.
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CHAPTER 2. RANDOM MATRIX MODELS

It is known from logarithmic potential theory that there exists a unique
equilibrium measure which minimize weighted logarithmic energy for an ex-
ternal field in Q(D).

Theorem 2.2.2. For Q ∈ Q(D), there exists a unique measure σ̂ ∈ B(D)
which is called equilibrium measure such that

IQ(σ̂) = inf
σ∈B(D)

IQ(σ),

and σ̂ is compactly supported and its support is called droplet. Furthermore,
if Q is a C2-function and D = C, then σ̂ equals to

dσ̂ = ∆Q · 1S · dA,

where ∆ is a quarter of the Laplacian, S is the droplet of σ̂, and dA is a
1/π-normalized Lebesgue measure on C.
Proof. We refer [18] for the proof.

Example 2.2.3. A droplet of elliptic GinUE is

Sτ =
{
ζ ∈ C :

1

(1 + τ)2
ξ2 +

1

(1− τ)2
η2 ≤ 1, where ξ = Re ζ, η = Im ζ

}
,

(2.6)
where we can see the origin of “elliptic” in the name of the ensemble. We
refer [13, 19] for the proof.

As an analogue to (2.5), we define discrete version of weighted logarithmic
energy for an averaged empirical measure by

σn,ζ :=
1

n

n∑
j=1

δζj ∈ B(D),

where ζ = (ζ1, . . . , ζn) ∈ Dn. Note that IQ(σn,ζ) = ∞, so instead (2.5), we
define discrete weighted logarithmic energy by

JQ(σn) :=
2

n(n− 1)

∑
1≤j<k≤n

log
1

|ζj − ζk|
+

2

n(n− 1)

n∑
j=1

Q(ζj). (2.7)

We call σ̂n a weighted Fekete points if it minimize (2.7). Note that (2.7) does
not have a unique minimizer in general. For example, given a rotation sym-

7



CHAPTER 2. RANDOM MATRIX MODELS

metric external field, rotating a Fekete point configuration with respect to
the origin gives another Fekete point configurations for any n > 1. Further-
more, calculation of Fekete points is quite difficult problem. However, Fekete
points are related to equilibrium measure in the following sense.

Theorem 2.2.4. For a Fekete points σ̂n and the equilibrium measure σ̂,

σ̂n → σ̂ as n→ ∞,

in the weak-star convergence.

Proof. We refer [18] for the proof.

Recall (2.1) for the precise definition of Pn. For any k = 1, . . . , n, we
define a marginal probability measure P(k)

n by

P(k)
n (ζ) = Pn(ζ ×Dn−k),

where ζ ∈ Dk. In [16], the author proved a convergence of the marginal
measure to a product of the equilibrium measures for D ⊂ R , and extended
to D ⊂ C in [14].

Theorem 2.2.5. For a marginal probability measure P(k)
n and the equilibrium

measure σ̂,
P(k)
n → ⊗k

j=1σ̂ as n→ ∞,

in the weak-star convergence, where ⊗ denote product of measures.

Proof. We refer [14] and [16] for the proof.

8



Chapter 3

Determinantal structure

It is extremely hard to analyze the Boltzmann-Gibbs measure given as (2.1)
by its own. However, with a help from determinantal structure that lies be-
hind the measure, it is possible to adapt theory of orthogonal polynomials.

In this chapter, we discuss about determinantal structure that underlies
GinUE and GUE. In Section 3.1 and 3.2, we introduce correlation kernel
which determines determinantal structure behind (2.1). In Section 3.3, we
introduce n-level Ward’s and the mass-one equation which are the main topic
of this thesis.

3.1 Determinantal point process

Given a suitable function f on Cn, we define a canonical average of f with
respect to Pn by ∫

Cn

f(λ1, . . . , λn)Pn(dλ1, . . . , dλn).

A function class in which we are interested is a class of generalized functions

fζ(λ) =
n∑

j=1

δ(ζ − λj),

where ζ ∈ C and λ = (λ1, . . . , λn) ∈ Cn and δ is the Dirac-delta function.
Even though fλ is a generalized function, a canonical average of fλ is well-
defined, because probability density function of Pn is Schwartz function.

A canonical average of fλ is called a one-point intensity function Rn,1 :

9



CHAPTER 3. DETERMINANTAL STRUCTURE

C → R. Explicitly, it is given by

Rn,1(ζ) :=

∫
Cn

fζ(λ1, . . . , λn)Pn(dλ1, . . . , dλn) = n

∫
Cn−1

Pn(ζ, dλ2, . . . , dλn),

where the last equality follows from Pn being invariant under permutation
of coordinates. Generalizing the notion of one-point intensity function, we
define the following.

Definition 3.1.1. A k-point intensity function Rn,k : Ck → R is defined by

Rn,k(ζ1, . . . , ζk) :=
n!

(n− k)!

∫
Cn−k

Pn(ζ1, . . . , ζk, dλk+1, . . . , dλn). (3.1)

In particular, if k = 1, then we write Rn in place of Rn,1.

Note that

Rn,k+1(ζ1, . . . , ζk+1)

Rn,k(ζ1, . . . , ζk)
= (n− k)P(λk+1 = ζk+1|λ1 = ζ1, . . . , λk = ζk),

so Rn,k+1(ζ1, . . . , ζk+1)/Rn,k(ζ1, . . . , ζk) can be regarded as density at ζk+1

provided that there are particles at ζ1, . . . , ζk.

Theorem 3.1.2. There exist a correlation kernel Kn : C2 → C such that

Rn,k(ζ1, . . . , ζk) = det
[
Kn(ζi, ζj)

]n
i,j=1

,

for all 1 ≤ k ≤ n.

In fact, the correlation kernel can be explicitly written as

Kn(ζ1, ζ2) =
n∑

j=1

qj(ζ1)q̄j(ζ2)e
−nQ(ζ1)/2−nQ(ζ2)/2,

where qj is the j-th orthogonal polynomial with respect to a measure e−nQ(ζ)dζ.
These are far from being trivial, and we refer [18] for details.

We remark that Kn is not uniquely determined by Rn,k’s. For example,

Kn(ζ1, ζ2) and e
i(ζ1+ζ̄2) ·Kn(ζ1, ζ2) give the same Rn,k for all k. In general, a

Hermitian function c : C2 → C is called a cocylce if c(ζ1, ζ2) = g(ζ1) ¯g(ζ2) for
some continuous unimodular function g. Then, Kn and c ·Kn yield the same
Rn,k’s by the determinantal structure.

10



CHAPTER 3. DETERMINANTAL STRUCTURE

3.2 Rescaled correlation kernel

Consider an eigenvalue configuration {ζj}nj=1 with respect to Pn. We are inter-
ested in a microscopic behavior of the eigenvalues configuration. Therefore,
we rescale the eigenvalues near an n-dependent zooming point pn ∈ C by

zj = e−iθn
√
n∆Qn(pn) · (ζj − pn), (3.2)

where eiθn is set to be the outer normal to the boundary of the droplet if
pn is in the boundary of the droplet, or θn = 0 otherwise. Here and after,
whenever we consider rescaled system, we will always assume that ∆Qn(pn) >
const. > 0, so that (3.2) does make sense. In this chapter and Chapter 4,
we only consider pn = p∗ being independent of n. However, in Chapter 5,
especially for the “edge regime”, we have to consider pn being n-dependent.

The zooming scale
√
n∆Qn(pn) is natural scaling to obtain universality

in the following sense. Recall that the limiting spectrum of Pn is a compactly
supported measure with density ∆Qn. Roughly speaking, on the support
of limiting spectrum, expected number of particles in a unit circle is ap-
proximately n∆Qn. Thus, the zooming scale,

√
n∆Qn(pn), is chosen so that

average intensity becomes independent of n and Qn in the rescaled system
{zj}nj=1.

Rescaling in (3.2) results rescalings of intensity functions and a correlation
kernel. By change of variable, we get rescaled intensity functions Rn,k by

Rn,k(z1, . . . , zk) =
1

(n∆Qn(pn))k
Rn,k(ζ1, . . . , ζk),

and a rescaled correlation kernel Kn by

Kn(z1, z2) =
1

n∆Qn(pn)
Kn(ζ1, ζ2), (3.3)

where zi =
√
n∆Qn(pn)(ζi − pn) for i = 1, . . . , k. Note that determinantal

structure
Rn,k(z1, . . . , zk) = det

[
Kn(zj, zl)

]k
j,l=1

,

remains unchanged via rescaling.

11



CHAPTER 3. DETERMINANTAL STRUCTURE

3.3 Ward’s and mass-one equation

In this section, we state Ward’s equation and mass-one equations for n-level
correlation kernel. Materials in this section heavily relies on [5].

Since Ward’s and mass-one equation is the main object of this thesis, we
cover them in full detail. We first illustrate mass-one equation.

Proposition 3.3.1. A correlation kernel Kn satisfies mass-one equation:∫
C
|Kn(z, w)|2dA(w) = Kn(z, z).

Proof. From the determinantal relation between Rn and Kn,

Kn(z, z) = Rn(z) > 0,

for all z ∈ C. The positiveness is direct consequence of (2.1) and (3.1). Then,∫
C

|Kn(z, w)|2

Kn(z, z)
dA(w) =

∫
C

Rn(z)Rn(w)−Rn,2(z, w)

Rn(z)
dA(w) = 1,

where the first equality follows from the determinantal structure, and the
second follows from the remark below (3.1.1). Then, the conclusion follows.

We now introduce n-level Ward’s identities. We denote a collection of
compactly supported smooth functions by C∞

c (C). The following proof is
based on a proof given in [7].

Proposition 3.3.2. Let ψ ∈ C∞
c (C) be a test-function. Then, Ward’s iden-

tity:
En[W

+
n [ψ]] := EnIn[ψ]− EnIIn[ψ] + EnIIIn[ψ] = 0,

holds where

In[ψ] =
1

2

∑
j̸=k

ψ(ζj)− ψ(ζk)

ζj − ζk
, IIn[ψ] = n

n∑
j=1

∂Qn(ζj) · ψ(ζj),

IIIn[ψ] =
n∑

j=1

∂ψ(ζj). (3.4)

12



CHAPTER 3. DETERMINANTAL STRUCTURE

Proof. For any j = 1, . . . , n, by integration by parts

En[∂ψ(ζj)] =
1

Zn

∫
Cn

∂ψ(ζj) e
−Hn(ζ1,...,ζn) dζ1 · · · dζn

=
1

Zn

∫
Cn

∂jHn(ζ1, . . . , ζn)ψ(ζj) e
−Hn(ζ1,...,ζn) dζ1 · · · dζn

= En[∂jHn · ψ(ζj)].

From (2.1), we have

∂jHn(ζ1, . . . , ζn) =
∑
k ̸=j

1

ζj − ζk
+ ∂Qn(ζj).

Then, summation of En[∂ψ(ζj)] over j gives the desired result.

Ward’s identity is equivalent to a normalization constant remaining un-
changed under coordinate perturbation. We refer [4, 5] for the further detail
of this explanation. In the literature, Ward’s identity is also referred as loop
equation.

Before we state Ward’s equation, we first need to introduce the Berezin
kernel of Kn by

Bn(z, w) =
|Kn(z, w)|2

Kn(z, z)
, (3.5)

and Cauchy transform of the Berezin kernel by

Cn(z) =

∫
C

Bn(z, w)

z − w
dA(w). (3.6)

As explained in the proof of Proposition 3.3.1,Kn(z, z) is positive everywhere,
so Berezin kernel is well-defined.

n-level Ward’s equation is formulated as the following.

Proposition 3.3.3. Ward’s Identity in proposition 3.3.2 implies,

∂̄Cn(z) = Rn(z)− 1−∆ logRn(z) + o(1)

in the sense of distribution, where o(1) → 0 as n→ ∞.

Proof. For a test function ψ, consider a sequence of test functions {ψn} given
by ψn(rnz + pn) = ψ(z). From (3.1) and (3.4), by the symmetry of Pn for

13
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each coordinate,

EnIn[ψn] =

∫
Cn

∑
j ̸=k

ψn(ζj)

ζj − ζk
· dPn(ζ1, . . . , ζn)

=

∫∫
C2

ψn(ζ)

ζ − ζ ′
Rn,2(ζ, ζ

′) · dA(ζ) · dA(ζ ′)

=

∫∫
C2

ψn(rnz + pn)

(rnz + pn)− (rnw + pn)
r−4
n Rn,2(z, w) · r2ndA(z) · r2ndA(w)

=

∫
C
ψ(z) · r−1

n

∫
C

Rn,2(z, w)

z − w
· dA(w) · dA(z).

Similarly,

EnIIn[ψn] =

∫
Cn

n
n∑

j=1

∂Qn(ζj) · ψn(ζj) · dPn(ζ1, . . . , ζn)

=

∫
C
n∂Qn(ζ) · ψn(ζ)Rn(ζ) · dA(ζ)

=

∫
C
n∂Qn(rnz + pn) · ψn(rnz + pn)r

−2
n Rn(z) · r2ndA(z)

=

∫
C
ψ(z) · n∂Qn(rnz + pn) ·Rn(z) · dA(z).

Finally, note that ∂ψn(ζ) ·
∂ζ

∂z
= ∂ψ(z), so we have

EnIIIn[ψn] =

∫
Cn

n∑
j=1

∂ψn(ζj) · dPn(ζ1, . . . , ζn)

=

∫
C
∂ψn(ζ)Rn(ζ) · dA(ζ)

=

∫
C
r−1
n ∂ψ(z)r−2

n Rn(z) · r2ndA(z)

=

∫
C
∂ψ(z) · r−1

n Rn(z) · dA(z)

= −
∫
C
ψ(z) · r−1

n ∂Rn(z) · dA(z).

14



CHAPTER 3. DETERMINANTAL STRUCTURE

Putting together, Ward’s identity is equivalent to

r−1
n

∫
C

Rn,2(z, w)

z − w
dA(w)− n∂Qn(rn + pn)Rn(z)− r−1

n ∂Rn(z) = 0,

in the sense of distribution. Furthermore, since Rn,2(z, w) = Rn(z)(Rn(w)−
Bn(z, w)), we have

r−1
n Rn(z)

∫
C

Bn(z, w)

z − w
dA(w)

= r−1
n Rn(z)

∫
C

Rn(w)

z − w
dA(w)− n∂Qn(rn + pn)Rn(z)− r−1

n ∂Rn(z),

and dividing both side by r−1
n Rn(z), and then differentiating by ∂̄ with respect

to z, we have,

∂̄Cn(z) = Rn(z)− nr2n∆Qn(rnz + pn)−∆ logRn(z).

Finally, substituting rn = (n∆Qn(pn))
− 1

2 gives the conclusion.

This proof is based on a proof introduced in [7].
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Chapter 4

Universality of scaling limit

In this chapter, we mainly discuss about correlation kernels when number
of eigenvalues goes to infinity. Existence of limiting kernel is far from being
trivial, and this may not be true in general. Universality of limiting kernels
has been proved for large classes of random matrices, but it is still unknown
for wide range of classes. The main purpose of this chapter is collecting known
results about various universality classes that are related to almost-Hermitian
random matrices.

Section 4.1 is devoted to cover universality classes that arise in non-
Hermitian random matrix theory, especially random normal matrices. In Sec-
tion 4.2, we will briefly introduce universality classes for Wigner ensembles.

4.1 Random Normal Matrix:

non-Hermitian case

We recall that Kn is a rescaled correlation kernel as in (3.3) via microscale
as in (3.2). Throughout this chapter, we will assume that the zooming point
pn = p∗ is independent of n. Otherwise stated, we refer notation given in
Section 3.2. Then, the following is known.

Theorem 4.1.1. For a sequence of correlation kernels Kn, every subsequence
of (Kn) has a further subsequence that converges locally uniformly, up to
cocycles.

Proof. This is a consequence of Montel’s theorem. See [5] for details.
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CHAPTER 4. UNIVERSALITY OF SCALING LIMIT

Let K be the subsequential limit in Theorem 4.1.1. Then, we can extend
n-level Ward’s equation for K. As an analogue to (3.5) and (3.6), we can
define Berezin kernel for K by

B(z, w) =
|K(z, w)|2

K(z, z)
(4.1)

and its Cauchy transform

C(z) =

∫
C

B(z, w)

z − w
dA(w), (4.2)

if provided that R(z) := K(z, z) > 0.

Theorem 4.1.2. Let K be a subsequential limit in Theorem 4.1.1. Then,
either R = 0 or R > 0 everywhere. Furthermore, if R > 0, then Ward’s
equation:

∂̄C = R− 1−∆ logR,

holds in the sense of distribution.

Proof. For the proof of dichotomy theorem of R, see [5]. Proofs for Ward’s
equation is similar to it of Theorem 5.4.2.

We can not directly extend mass-one equality for the subsequential limits,
but we still have inequality :

Theorem 4.1.3. Let K be a subsequential limit in Theorem 4.1.1. Then,
mass-one inequality ∫

C
|K(z, w)|2dA(w) ≤ K(z, z),

holds.

Proof. It is a consequence of Proposition 3.3.1 using Fatou’s lemma.

Now we introduce universality related to the limiting correlation kernel.
We first state universality theorems for random normal matrices, and gives
reference for the theorems.

17
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Theorem 4.1.4. Let p∗ be a interior point of a droplet. Then, Kn converges
locally uniformly to

G(z, w) = ezw̄− |z|2+|w|2
2 , (4.3)

up to cocycles.

Proof. We refer [3] for the proof.

The limiting kernel G is called Ginibre kernel which is named after Jean
Ginibre. The next is often referred as (soft) edge universality.

Theorem 4.1.5. Let p∗ be a regular boundary point of a droplet. Then, Kn

converges locally uniformly to

G(z, w) erfc(
z + w̄√

2
), (4.4)

up to cocycles, where erfc is a complementary error function

erfc(z) :=
1√
2π

∫ ∞

z

e−
t2

2 dt.

Proof. We refer [5] for the proof using Ward’s equation under additional
assumption. See also [15].

Theorem 4.1.4 has been proved using Ward’s equation in [4], and The-
orem 4.1.5 has been proved under additional assumption, called translation
invariance, using Ward’s equation in [5]. Without translation invariance, the
edge universality has been proved in [15]. We remark here that different uni-
versality class can arise at singular boundary points, such as cusps or double
points. See [6] and references therein.

4.2 Unitary Invariant Matrix:

Hermitian case

Universality has been proved for wide classes of Hermitian random matrix.
In this section, we will fulfill with results proved for unitary invariant matrix
models. We state results proved in [10, 17]. We also refer [1, Chapter 6].
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Theorem 4.2.1. Let p∗ be a interior point of a droplet where the density is
positive. Then, Kn converges to

Ksine(x, y) =
sin(π(x− y))

π(x− y)
, (4.5)

up to cocycles

Proof. We refer [17] for the proof.

Next, we state (soft) edge universality for unitary invariant matrix model.

Theorem 4.2.2. Let p∗ be a regular right-edge point of a droplet. Then, there
is a constant c > 0 such that

1

(cn2/3)
Kn(p∗ +

x

(cn)2/3
, p∗ +

y

(cn)2/3
) (4.6)

converges to

KAiry(x, y) =
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x− y
,

up to cocycles, where Ai is the Airy function.

Proof. We refer [10] for the proof.
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Chapter 5

Scaling limits for
almost-Hermitian random
matrix

In this chapter, we introduce almost-hermitian randommatrix model (AGUE)
and prove main results which are stated in Theorem 5.3.3 and Theorem 5.4.2.
The main results show that limiting kernel at the edge of AGUE satisfies the
mass-one and Ward’s equation. Universality of the limiting kernel is open for
AGUE.

In (2.3), elliptic GinUE is interpreted as a sum of two independent GUEs
via parameter τ ∈ [0, 1). It can be seen as “interpolation” between GUE and
GinUE by allowing τ ∈ [0, 1] with abusing notation. Especially, we see that
τ = 0 corresponds to GinUE, while τ = 1 case corresponds to GUE.

For fixed τ ∈ [0, 1], theorems introduced in Chapter 4 are valid, so we
cannot observe new type of universality class. In other words, for τ ∈ [0, 1),
the associated limiting kernels are either (4.3) or (4.4). However, for τ = 1,
they are neither of them, but either (4.5) or (4.6).

In Section 5.1, we define almost-Hermitian random matrix (AGUE), and
relate its eigenvalue distribution to Boltzmann-Gibbs law. In Section 5.2, we
collect results about limiting kernels that arise in AGUE. Finally, in Section
5.3 and 5.4, we prove main results.
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5.1 Almost-Hermitian random matrix model

In this section, we define almost-Hermitian random matrix model and relate
its measure to Boltzmann-Gibbs measure. We follow [2].

Definition 5.1.1. A one parameter family of random complex n by n matrix
Ac is said to be almost-Hermitian Gaussian Unitary Ensemble or AGUE
with parameter c > 0 (resp. modified almost-Hermitian Gaussian Unitary
Ensemble or modified AGUE) if

Ac =
√
1 + τnH1 + i

√
1− τnH2

where τn = 1−2c2/n (resp. τn = 1−2c2/n1/3) and H1 and H2 are independent
GUEs.

As in the Elliptic GinUE case, the law of eigenvalues of AGUE models
can be represented by Boltzmann-Gibbs measure.

Proposition 5.1.2. Let Ac be AGUE (or modified AGUE) and {ζj}nj=1 be
corresponding eigenvalues of Ac. Then, the law of {ζj}nj=1 is given by (2.1)
with an external field Qn given by

Qn(ζ) =
1

1 + τn
ξ2 +

1

1− τn
η2, ξ := Re ζ, η := Im ζ. (5.1)

Proof. This is a consequence of Proposition 2.1.4.

From (2.6), we observe that the right-most endpoint is given by 1 + τn.
Furthermore, the limiting spectrum of AGUE is a real interval [-2,2].

5.2 Limiting kernels for AGUE

In this section, we state scaling limits for AGUE. The bulk scaling limits was
derived in [12], and the edge scaling limit was derived in [8].

Theorem 5.2.1. For AUGE with pn = p∗ ∈ (−2, 2) in (3.2) be independent
of n. Then, Kn converges locally uniformly to

Kbulk
(c) (z, w) = G(z, w) · 1√

2π

∫ 2ac

−2ac

e
1
2
(z−w̄−it)2dt, (5.2)
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up to cocycles, where G(z, w) is the Ginibre kernel in (4.3), and

ac = ac(p∗) =
c

2

√
4− p2∗ · 1[−2,2](p∗).

Proof. We refer [2, 12] for the proof.

It was proved that universality conjecture is valid for (5.2) under addi-
tional assumption, called translation invariance. It was also showed that the
limit satisfies Ward’s and mass-one equations. For more details, see [2] and
reference therein.

Theorem 5.2.2. For modified AGUE with pn = 2(1− c2n−1/3) in (3.2), Kn

converges locally uniformly to

Kedge
(c) (z, w) = 4

√
2πc2

∫ ∞

0

fc(z, t)fc(w̄, t)dt, (5.3)

up to cocycles where

fc(z, t) := e2c
3(t+z)−(Im z)2 Ai(2c(z + t) + c4)

and Ai is the Airy function.

Proof. We refer [2, 8] for the proof.

5.3 The mass-one equation for AGUE

In this section, we prove that the limiting kernel (5.3) satisfies the mass-one
equation. We start with lemmata that is related to elementary properties of
Airy function. We will not cover proofs for the lemmata, but briefly comment
that these follows from integral representation of Airy function via complex
analysis.

Lemma 5.3.1. For z, w ∈ C, the following holds:

Ai(z)Ai(w) =
1

21/3π

∫
R
Ai

[
22/3(α2 +

z + w

2
)

]
ei(z−w)α dα. (5.4)

Proof. See [20] and references therein.
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Lemma 5.3.2. For x ∈ R,∫
R
exαAi(α) dα = ex

3/3. (5.5)

Proof. See [20] and references therein.

Theorem 5.3.3. The limiting kernel Kedge
(c) in (5.3) satisfies the mass-one

equation. i.e. ∫
C
|Kedge

(c) (z, w)|2 dA(w) = Kedge
(c) (z, z).

Proof. Let x = Re z, y = Im z, u = Rew and v = Imw. From (5.3),∫
C
|Kedge

(c) (z, w)|2 dA(w)

= 32c4
∫
R

∫
R

∫ ∞

0

∫ ∞

0

fc(z, t)fc(z̄, s)fc(w̄, t)fc(w, s) dt ds du dv. (5.6)

By (5.4), we have

fc(z, t)fc(z̄, s) =
e2c

3(t+s+2x)−2y2

21/3π

∫
R
e−4cyα+2c(t−s)αig(α, 2x+ t+ s) dα,

fc(w̄, t)fc(w, s) =
e2c

3(t+s+2u)−2v2

21/3π

∫
R
e−4cvβ−2c(t−s)βig(β, 2u+ t+ s) dβ,

where
g(γ, r) := Ai(22/3(γ2 + cr + c4)).

Using these equations, (5.6) equals to

32c4

22/3π2

∫ ∞

0

∫ ∞

0

∫
R

∫
R

∫
R

∫
R
e4c

3(t+s+u+v)−2(y2+v2)e−4c(yα+vβ)e2c(t−s)(α−β)i

× g(α, 2x+ t+ s)g(β, 2u+ t+ s) du dv dα dβ dt ds. (5.7)

We apply (5.5) to the integration with respect to u in (5.7), and deduce

8c3

21/3π2

∫ ∞

0

∫ ∞

0

∫
R

∫
R

∫
R
e2c

3(t+s)−2(y2+v2)e−4c(yα+vβ)e2c(t−s)(α−β)ie−2c2β2

× g(α, 2x+ t+ s) dv dβ dα dt ds, (5.8)
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and integration with respect to v is elementary calculation, so (5.8) is equal
to

4
√
2πc3

21/3π2

∫ ∞

0

∫ ∞

0

∫
R

∫
R
e2c

3(t+s)−2y2e−4cyαe2c(t−s)(α−β)ig(α, 2x+ t+ s)

× dβ dα dt ds. (5.9)

Note that the integration with respect to β is in form of integral representa-
tion of Dirac-delta function, so we express (5.9) by

4
√
2πc2

∫ ∞

0

∫
R
e4c

3t−2y2e−4cyαg(α, 2x+ t+ s) dα dt,

and then again by equation (5.4),

4
√
2πc2

∫ ∞

0

e4c
3t−2y2fc(z, t)fc(z̄, t) dt,

which equals to Kedge
(c) (z, z).

5.4 Ward’s equation for AGUE

In this section, we prove that the limiting kernel in (5.3) satisfies Ward’s
equation. We follow basic ideas provided in [5].

The following lemma is a consequence of n-level mass-one equation, and
mass-one inequality for the limiting kernel. We recall definitions of Bn and
Cn from (3.5), (3.6). Throughout this section, we denote Berezin kernel of
(5.3) and its Cauchy transform by B and C as in (4.1), and (4.2).

Lemma 5.4.1. Cn converges boundedly and locally uniformly to C.

Proof. Choose any ϵ > 0. From (5.3) or Theorem 4.1.1, we observe that
Kedge

(c) (z, z) > 0 for all z ∈ C. Furthermore, convergence of Kn to Kedge
(c) is

locally uniform by Theorem 5.2.2. Thus, there exists N > 0 such that if
n > N , then we have

|Bn(z, w)−B(z, w)| < ϵ2,

for any |z| < 1/ϵ and |w| < 2/ϵ.
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Then,

|Cn(z)− C(z)| ≤
∫
C

∣∣∣∣Bn(z, w)−B(z, w)

z − w

∣∣∣∣ dA(w)
=

(∫
|z−w|> 1

ϵ

+

∫
|z−w|< 1

ϵ

)∣∣∣∣Bn(z, w)−B(z, w)

z − w

∣∣∣∣ dA(w)
≤ ϵ

∫
|z−w|> 1

ϵ

|Bn(z, w)−B(z, w)|dA(w)

+ϵ2
∫
|z−w|< 1

ϵ

1

|z − w|
dA(w)

≤ ϵ

∫
|z−w|> 1

ϵ

|Bn(z, w)|+ |B(z, w)| dA(w) + 2ϵ.

Finally, note that Bn(z, w) and B(z, w) are positive for any z, w ∈ C,
thus by Theorem 3.3.1 and Theorem 4.1.3,∫

C
Bn(z, w)dA(w) = 1,

∫
C
B(z, w)dA(w) ≤ 1,

so we deduce
|Cn(z)− C(z)| ≤ 4ϵ,

which is the desired conclusion.

Theorem 5.4.2. The correlation kernel Kedge
(c) in (5.3) satisfies Ward’s equa-

tion
∂̄C = R− 1−∆ logR,

pointwisely.

Proof. By Theorem 3.3.3, the n-level Ward’s equation

∂̄Cn(z) = Rn(z)− 1−∆ logRn(z) + o(1), (5.10)

holds for AGUE. We first show that ∂̄Cn (resp. Rn and ∆ logR) converges
to ∂̄C (resp. R and ∆ logR) in the sense of distribution.

The convergence of Rn to R is already shown in Theorem 5.2.2. By The-
orem 5.4.1, Cn converges to C boundedly and locally uniformly. Thus, for
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any test function ψ, integration by parts gives∫
C
∂̄Cn(z)ψ(z)dz −

∫
C
∂̄C(z)ψ(z)dz =

∫
C

(
Cn(z)− C(z)

)
∂̄ψdz → 0,

as n→ ∞, so ∂̄Cn converges to ∂̄C in the sense of distribution.
We have shown convergence of ∂̄Cn to ∂̄C, and it of Rn to R in the sense

of distribution. Thus, by (5.10), ∆ logRn have to converges to R − 1 − ∂̄C
in the sense of distribution. Furthermore, since Rn converges to R locally
uniformly, it follows that ∆ logRn must converge to ∆ logR in the sense of
distribution. Hence, Ward’s equation holds in the sense of distribution.

Finally, by (5.3), R is smooth, so ∆ logR is smooth. Moreover, by (4.2),
C and ∂̄C are smooth. Then, by Weyl’s lemma, Ward’s equation holds at
every point on C.
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국문초록

이 학위논문에서는 비에르미트 랜덤 행렬, 특히 유니터리 불변성을 가지고
있는 유사-에르미트 랜덤 행렬의 국소 척도 극한을 다룬다. 유사-에르미트 랜
덤행렬의척도극한은 Bender의논문 [8]에서이미계산되어알려져있다.와드
등식은척도극한의보편성을보일때사용된등식으로,적절한가정을추가하
면, 랜덤 정규 행렬의 경계 척도 극한의 보편성이 유도된다. 동일한 가정하에,
유사-에르미트 행렬의 내부점에 대한 국소 척도 극한의 보편성은 이미 밝혀졌
지만, 경계 척도 극한에 대해서는 알려진 바가 거의 없다. 이 학위논문에서는
유사-에르미트 행렬의 경계 척도 극한이 와드 등식과 매스-원 등식을 만족시
킴을 증명한다.

주요어휘: 유사-에르미트 랜덤 행렬, 와드 공식, 매스-원 공식
학번: 2021-26436
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