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Abstract

In this thesis, we propose an infinite Kuramoto model for a countably

infinite set of Kuramoto oscillators and study its emergent dynamics for

certain classes of network topologies. We explore some network topologies

and identify a critical condition that determines whether phase diameter

analysis is effective or not. Then, we analyze the model with another class of

network where some classical approaches on finite Kuramoto models can be

applied.

We first prove that the phase diameter is nondecreasing. Then, we identify

a condition that allows for a non-example with constant diameter, which is a

novel feature compared to the finite Kuramoto model. Next we describe why

the gradient flow approach worked in finite model cannot be applied here.

Next, we suggest a framework that leads to weak synchronization for hetero-

geneous ensembles and exponential decay of phase diameter for homogeneous

ensembles.

We also analyze a subclass of network topology named the “sender net-

work.” For homogeneous ensembles, we classify the possible asymptotic states

for generic initial conditions. For heterogeneous ensembles, we prove that ex-

ponential frequency synchronization occurs for a certain initial configuration

confined to a quarter arc.

Key words:Asymptotic behavior, concentrate phenomena, Kuramoto model,

infinite particle system.

Student Number: 2016-20243
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Chapter 1

Introduction

Synchronization is one of collective behaviors in which weakly coupled oscil-

lators adjust their rhythms via mutual interactions, and it is often observed

in oscillatory systems such as the collection of fireflies, neurons and pace-

maker cells, etc [8, 16, 18, 34, 38]. However, despite its ubiquitous presence,

its rigorous mathematical studies were begun in only a half century ago by

two pioneers, Arthur Winfree [45, 46] in 1967 and Yoshiki Kuramoto [32] in

1975. Since then, synchronization has been extensively investigated in diverse

scientific disciplines such as an applied mathematics, neuroscience and statis-

tical physics, etc. We refer to survey articles and books [1, 2, 15, 21, 39, 38, 42]

for a brief introduction to the subject. To fix the idea, we restrict our dis-

cussion to Kuramoto oscillators whose dynamics is governed by the sum of

sinusoidal coupling of phase differences.

Consider a lattice Λ ⊂ Rd with N lattice points (or nodes), and we

assume that Kuramoto oscillators are stationed on each lattice point, and

interactions are all-to-all with a uniform strength κ
N
. To set up stage, let

θi = θi(t) be the phase of the Kuramoto oscillator at the i-th lattice point.

In this setting, the phase dynamics is governed by the Cauchy problem to

the (finite) Kuramoto model:
θ̇i = νi +

∑
j∈[N ]

κ

N
sin(θj − θi), t > 0,

θi(0) = θini , i ∈ [N ] := {1, . . . , N},
(1.0.1)
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CHAPTER 1. INTRODUCTION

where νi is the natural frequency of the i-th oscillator. Since the right-hand

side of (1.0.1) is uniformly bounded and Lipschitz continuous, the standard

Cauchy-Lipschitz theory guarantees a global well-posedness of smooth solu-

tions. Thus, what matters for (1.0.1) lies in the emergent dynamics. In fact,

the emergent dynamics of (1.0.1) has been extensively studied in literature,

to name a few [5, 6, 12, 14, 27, 29, 35, 43] from diverse scientific disciplines

in last decades. In this thesis, we are interested in the Kuramoto dynamics

on the infinitely extended lattice, i.e., the number of Kuramoto oscillators

is equivalent to the cardinality of the natural numbers. More specifically, we

address the following set of questions:

• (Q1): What is suitable system describing dynamics of an infinite num-

ber of Kuramoto oscillators?

• (Q2): If such a dynamical system exists, under what conditions on sys-

tem parameters and initial data, can we rigorously show the emergent

collective dynamics?

The main purpose of this thesis is to answer the above proposed questions. In

collective dynamics community, they often approximate infinite systems with

all-to-all couplings by corresponding Vlasov type equations (see [33]) which

arise from large N -oscillator limit. In this way, mean-field approach can give

approximate results for infinite system under consideration. Therefore, to get

the exact result on the dynamics of infinite set of Kuramoto oscillators, we

are forced to study the infinite set of ordinary differential equations as it is.

In this regard, we propose the following natural extension of the finite model

(1.0.1):

θ̇i = νi +
∑
j∈N

κij sin (θj − θi) , t > 0, ∀ i ∈ N, (1.0.2)

where κij is the coupling strength between the i-th and j-th oscillators sat-

isfying nonnegativity and row-summability:

K = (κij), κij ≥ 0, ∥K∥∞,1 := sup
i∈N

∑
j∈N

κij <∞. (1.0.3)

2



CHAPTER 1. INTRODUCTION

Note that without the coupling strength κij, the infinite sum in the right-

hand side of (1.0.2) will not be well-defined. So introduction of such weight is

needed. Moreover, unlike to the Kuramoto model, uniform coupling strength

κij = κ does not satisfy the condition (1.0.3)3. Of course, it is not com-

pletely new to study such an infinite set of ordinary differential equations.

For example, coagulation and fragmentation process for polymer can be de-

scribed by the infinite number of ODEs (see [3, 17, 41]). Recently, Wang

and Xue [44] studied the flocking behaviors of the infinite number of Cucker-

Smale particles, and they found that almost the same results for the original

Cucker-Smale model can be done [11, 26, 30]. As first observed by authors

in [23], the first-order Kuramoto model can be lifted to the Cucker-Smale

model by introducing auxiliary frequency variables. Thus, it is quite reason-

able to study analogous study for the Kuramoto model without resorting on

the corresponding mean-field equation. The global well-posedness of (1.0.2)

on the Banach space (ℓ∞, ∥ · ∥∞) can be followed from the abstract Cauchy-

Lipschitz theory together with the Lipschitz continuity of the right-hand side

of (1.0.2) (see Proposition 2.3.1 and Lemma A.0.1). For the special situation:

κij ≡ 0, and θi ≡ 0, where max{i, j} ≥ N + 1,

it is easy to see that the Kuramoto model (1.0.1) corresponds to the special

case of the proposed infinite model (1.0.2). Hence, whether the infinite system

(1.0.2) can exhibit the emergent dynamics as in the Kuramoto model (1.0.1)

or not will be a tempting question. Moreover, it would be very interesting to

analyze distinct features which cannot be seen in the Kuramoto model with

a finite system size.

In what follows, we briefly discuss our main results documented in the

following sections from Chapter 3 to 5. Let N = {1, 2, . . .} be the set of all

natural numbers. For the emergent dynamics of the infinite Kuramoto model

(1.0.2)–(1.0.3), we consider two types of coupling gain matrix K = (κij),

Row-summable network : κij > 0, i, j ∈ N, ∥K∥∞.1 <∞,

Sender network : κij = κj ≥ 0, i, j ∈ N, ∥K∥∞,1 <∞.
(1.0.4)

First, we consider positive and row-summability network topology (1.0.4)1.

For a homogeneous ensemble with the same natural frequency νi = ν, thanks

3



CHAPTER 1. INTRODUCTION

to translational invariance property of (1.0.2), we may assume that the com-

mon natural frequency ν is zero and (1.0.2) reduces to

θ̇i =
∑
j∈N

κij sin (θj − θi) , t > 0, ∀ i ∈ N. (1.0.5)

In this case, depending on suitable conditions for the network topology K =

(κij), the phase diameter can be constant (see Corollary 3.1.1 and Proposition

3.1.2, respectively). In particular, we can find an explicit example of non-

decreasing phase diameter for some class of coupling gain matrix K. This

is certainly a novel feature of the infinite model which cannot be seen in a

finite system (see also Remark 3.1.2 and Corollary 3.1.1). As can be seen in

Proposition 2.1.1, a gradient flow formulation for (1.0.1) plays a key role in

the rigorous verificaion of phase-locking for a generic initial data in a large

coupling regime [13, 22, 29]. Likewise, the infinite system (1.0.5) can also be

written as a gradient flow on a Banach space ℓ2 with the potential P (see

Proposition 3.2.1):

P (Θ) =
1

2

∑
i,j∈N

κij(1− cos(θi − θj)).

Although we cannot use the Lojasiewicz gradient inequality in [20] as it is, we

can still use P as a Lyapunov functional to derive complete synchronization

(see Theorem 3.1.1):

lim
t→∞

sup
i,j∈N
|θ̇i(t)− θ̇j(t)| = 0. (1.0.6)

On the other hand, for a heterogeneous ensemble with distinct natural fre-

quencies, we can obtain a practical synchronization under suitable conditions

on the coupling gain matrix K = (κij) (Theorem 4.1.1):

lim sup
t→∞

sup
i,j∈N
|θi(t)− θj(t)| ≤ sin−1

(
O(1) D (V)

∥K∥−∞,1

)
.

Unfortunately, the complete synchronization estimate (1.0.6) for a heteroge-

neous ensemble is not available yet.

4



CHAPTER 1. INTRODUCTION

Second, we consider a row-summable sender network topology (1.0.4)2.

In this case, the infinite Kuramoto model reads as

θ̇i = νi +
∑
j∈N

κj sin (θj − θi) , t > 0, i ∈ N. (1.0.7)

Compared to the aforementioned symmetric and summable network topol-

ogy, we have better controls on the emergent dynamics. For a homogeneous

ensemble, there might be two possible asymptotic states (one-point phase

synchrony or bi-cluster configuration). More precisely, let Θ be a solution to

(1.0.7) with asymptotic configuration Θ∞ = (θ∞1 , θ∞2 , . . .). Then, we have

θ∞i ∈ {θ0} ∪ {θ0 ± κiπ | i ∈ N} ∪ {θ0 ± (1− κi) π | i ∈ N} ,

where

θ0 :=
∑
i∈N

κiθ
in
i .

We refer to Theorem 5.1.1 and Corollary 5.1.2 for details. On the other hand,

for a heterogeneous ensemble, we can rewrite system (1.0.7) into the second-

order model with row-dimensional initial data:
θ̇i = ωi, t > 0, ∀ i ∈ N,
ω̇i =

∑
j∈N

κj cos (θi − θj) (ωj − ωi) ,

θi(0) = θini ∈ R, ωi(0) = νi +
∑
j∈N

κj sin
(
θinj − θini

)
,

where

Θin = (θin1 , θ
in
2 , . . .) ∈ ℓ∞, V = (ν1, ν2, . . .) ∈ ℓ∞.

We set

W := (ω1, ω2, . . .) and D(W) := sup
m,n
|ωm − ωn|.

In this case, under some restricted class of initial phase configuration con-

fined in a quarter arc, we can show that the frequency diameter D(W) decays

to zero exponentially fast (see Theorem 5.2.1).

5



CHAPTER 1. INTRODUCTION

The rest of this thesis is organized as follows. In Chapter 2, we briefly

review the emergent dynamics of the finite Kuramoto model and study basic

properties of the infinite Kuramoto model such as conservation law, transla-

tional invariance and several a priori estimates. In Chapter 3 and Chapter 4,

we study emergent dynamics of (1.0.2) with a symmetric and row-summable

network topologies. In Chapter 5, we investigate the complete synchroniza-

tion of the infinite Kuramoto model with a sender network topology. Finally,

Chapter 6 is devoted to a brief summary of main results and discussion on

some remaining issues for a future work. Prior to continuing, we acknowledge

that this thesis is a revised version of the collaborative work documented in

[24].

Notation: Throughout this thesis, we write the phase configuration vector

and natural frequency vector as

ΘN := (θ1, . . . , θN), Θ := (θ1, θ2, . . .),

VN := (ν1, . . . , νN), V := (ν1, ν2, . . .),

and we denote the set {1, . . . , N} by [N ] for simplicity. For A = (a1, a2, . . .) ∈
RN and p ∈ [1,∞], we set

∥A∥p :=


(∑

i∈N

|ai|p
) 1

p
, 1 ≤ p <∞,

sup
i∈N
|ai|, p =∞,

and denote ℓp = ℓp(N) the collection of all sequences with a finite p-th power

sum:

ℓp(N) :=
{
A ∈ RN : ∥A∥p <∞

}
, p ∈ [1,∞].

Similarly, for every infinite matrix K = (κij) ∈ RN×N and 1 ≤ p, q ≤ ∞, we

set

∥K∥p,q :=


∣∣∣∣∣∑
i∈N

∥(κij)j∥pq

∣∣∣∣∣
1
p

(1 ≤ p <∞),

sup
i∈N
∥(κij)j∥q (p =∞),

6



CHAPTER 1. INTRODUCTION

and denote

ℓp,q := {K = (κij) : ∥K∥p,q <∞} ,

which also becomes a normed vector space of infinite matrices. Finally, for

every real vectors XN and X given by

XN = (x1, . . . , xN) ∈ RN , X = (x1, x2, . . .) ∈ RN,

we denote the supremum of the difference between their elements by

D(XN) := max
i,j∈[N ]

|xi − xj|, D(X) := sup
i,j∈N
|xi − xj|,

and call the diameter of XN and X, respectively.

7



Chapter 2

Preliminaries

In this section, we study basic properties of the Kuramoto model on static

networks with finite and infinite nodes.

2.1 Kuramoto model for a finite ensemble

Consider the Cauchy problem to the Kuramoto model with a finite system

size [10, 13, 19, 25]:
θ̇i = νi +

∑
j∈[N ]

κij sin (θj − θi) , t > 0,

θi(0) = θini , i ∈ [N ],

(2.1.1)

where κij is a nonnegative symmetric constant which denotes the strength

between the i-th and j-th oscillators:

κij = κji ≥ 0, i, j ∈ [N ]. (2.1.2)

First, we recall some terminologies on emergent dynamics in the following

definition.

Definition 2.1.1. Let ΘN be a solution to (2.1.1)–(2.1.2).

1. The state Θ is phase-locked if the phase differences are constant in time:

θi(t)− θj(t) ≡ θij, t ≥ 0, i, j ∈ [N ].

8



CHAPTER 2. PRELIMINARIES

2. The state Θ achieves asymptotic phase-locking if and only if

∃ θ∞ij = lim
t→∞

(θi(t)− θj(t)), i, j ∈ [N ].

3. The state Θ achieves complete synchronization if and only if

lim
t→∞
D(Θ̇N(t)) = 0.

Next, we study basic preliminaries for (2.1.1) on conservation law and

emergent dynamics. For this, we set

C(t) :=
∑
i∈[N ]

θi − t
∑
i∈[N ]

νi, t ≥ 0. (2.1.3)

Proposition 2.1.1. [22, 25, 29] Let ΘN = (θ1, . . . , θN) be a solution to

(2.1.1)–(2.1.2). Then, the following assertions hold.

1. (Balanced law): The functional C in (2.1.3) is conserved along the flow

(2.1.1).

C(t) = C(0), t ≥ 0.

2. (A gradient flow formulation): If we define a potential PN = PN(ΘN):

PN(ΘN) := −
∑
l∈[N ]

νlθl +
1

2

∑
k,l∈[N ]

κkl(1− cos(θk − θl)),

system (2.1.1) to (2.1.2) can be rewritten as a gradient flow:

∂tΘN = −∇ΘN
PN(ΘN), t > 0.

3. Suppose that network topology, natural freqencies and initial data satisfy

κij =
κ

N
,

∑
i∈[N ]

νi = 0, R0 :=
∣∣∣ 1
N

∑
l∈[N ]

eiθ
in
i

∣∣∣ > 0, κ >
1.6

R2
0

D(VN).

Then, there exists an equilibrium state Θ∞
N = (θ∞1 , . . . , θ∞N ) such that

lim
t→∞
∥ΘN(t)−Θ∞

N ∥∞ = 0.

9



CHAPTER 2. PRELIMINARIES

Proof. (i) We take sum (2.1.1) over all i and use (2.1.2) to get

d

dt

∑
i∈[N ]

θi =
∑
i∈[N ]

νi +
∑

i,j∈[N ]

κij sin(θj − θi) =
∑
i∈[N ]

νi.

This yields the desired conservation law.

(ii) For a fixed i ∈ [N ], we rewrite the potential PN as

PN(ΘN) = −νiθi +
1

2

∑
l∈[N ]

κil(1− cos(θi − θl)) +
1

2

∑
l∈[N ]

κli(1− cos(θl − θi))

−
∑

l∈[N ]−{i}

νlθl +
1

2

∑
k,l∈[N ]−{i}

κkl(1− cos(θk − θl)).

Now, we differentiate the above relation with respect to θi to find

∂θiPN(ΘN) = −νi +
1

2

∑
l∈[N ]

κil sin(θi − θl)−
1

2

∑
l∈[N ]

κli sin(θl − θi)

= −νi −
∑
l∈[N ]

(κil + κli

2

)
sin(θl − θi)

= −νi −
∑
l∈[N ]

κil sin(θl − θi) using the symmetry of (κij)

= −θ̇i.
This yields

Θ̇N = −∇ΘN
PN(ΘN).

(iii) Detailed argument can be found in [29]. Thus, we just sketch the main

line of idea as follows. First, we show that the phase configuration is uniformly

bounded in the sense that there exists a positive constant θ∞ such that

sup
0≤t<∞

∥ΘN(t)∥∞ ≤ θ∞.

Then, motivated by gradient flow approach in [13], the authors in [22, 25, 29]

also used the gradient flow formulation (ii) and the analyticity of potential

to say that there exists an equilibrium Θ∞
N such that

lim
t→∞
∥ΘN(t)−Θ∞

N ∥∞ = 0.

10



CHAPTER 2. PRELIMINARIES

There are some analytical results on the finite Kuramoto model with

nontrivial network topology in literature. We chose the papers [13, 25].

The authors in [25] analyzed the model (2.1.1). They give on exponential

synchronization result with condition depends on the number of oscillators

N and underlying graph structure. The symmetricity condition aij = aji in

{aij}i,j∈[N ] is for exploiting gradient flow structure of the Kuramoto model.

Their result can be described as follows.

Theorem 2.1.1. [25] Let Din ∈ (0, π), and Θ be the smooth solution to

system (2.1.1) on a connected graph G with coupling strength and initial

data that satisfy

κ >

√
2σ (V)

L∗Nam sinDin
, E

(
θin
)
<

(Din)
2

2
.

Then we have

D (θ(t)) < Din, lim
t→∞

∣∣∣θ̇i(t)∣∣∣ = 0, i ∈ [N ].

Moreover, if D0 ∈
(
0, π

2

)
, then an exponential synchronization occurs

asymptotically and∣∣∣θ̇i(t)∣∣∣ ≤√E (ωin) exp
(
−2NκamL∗(cosDin)t

)
where

σ (V) =

∑
i∈[N ]

ν2
i

1/2

, E
(
θin
)
:=
∑
i∈[N ]

∣∣θini ∣∣2 , E (ωin
)
:=
∑
i∈[N ]

∣∣ωin
i

∣∣2 ,
am and L∗ be constants depending on network topology.

The authors in [13] proved that synchronization occurs for general initial

conditions in the model (2.1.1) by using gradient structure and Lojasiewicz

inequality. Furthermore they proved ACS on half-circle for directed coupling

topology in model (2.1.1). For homogeneous ensemble, they proved conver-

gence to phase-locked state.

11
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Theorem 2.1.2. [13] Let Θ = {θi}i∈[N ] be the solution of system (2.1.1)

with all initial phase differences satisfying
∣∣θini − θinj

∣∣ < 2π for 1 ≤ i, j ≤ N .

Then ωi(t) → 0 as t → ∞, i ∈ [N ]. Moreover, there exists θij such that

θi(t)− θj(t)→ θij as t→∞.

And the following is convergence result for nonidentical oscillators.

Theorem 2.1.3. Let Θ = {θi}i∈[N ] be the solution of system (2.1.1) satisfy-

ing

0 < D
(
Θin
)
< π, C > D (V)

sinD (Θin)
,

where

C = min
i ̸=j

aij + aji +
∑

k∈[N ]\{i,j}

min (aik, ajk)

 .

Then there exists T > 0 such that

D (ω(t)) ≤ D (ω(T )) e−C(cosD∞)(t−T ), t ≥ T,

where sinD (Θin) = sinD∞, D∞ ∈
(
0, π

2

)
.

2.2 The infinite Cucker-Smale model

In this section we review the paper [44], which is the first to prove clustering

in models of collective phenomena with a countable number of particles.

Authors in [44] studied the flocking behavior of the solutions to the infinite-

particle Cucker-Smale model, which has the form

X (t) = {xi}i∈N, V(t) = {vi}i∈N,
xi, vi ∈ Rd, i ∈ N,
ẋi = vi, t > 0, i ∈ N,
v̇i =

∑
j∈N

mjH(∥xj − xi∥)(vj − vi),

X in := {xin
i }i∈N ∈ ℓ∞, V in := {vini }i∈N ∈ ℓ∞,

(2.2.4)

12
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with ∑
j∈N

mj = 1, H(s) =
1

(1 + s2)β
, β ≥ 0.

The researchers in [44] first established the existence and uniqueness of the

solutions to the infinite-particle Cucker-Smale model by change the system

by letting Banach space

E = ℓ∞(Rd)× ℓ∞(Rd), ∥u∥E = ∥x∥∞ + ∥v∥∞

and changed system (2.2.4) by{
du
dt

= F (u), t > 0

u(0) = u0,

and used Cauchy-Lipschitz theory to prove existence of local unique solution.

Then they proved the local unique solution cannot blow-up in finite time.

Hence they can extend local solution to global solution.

Then they establish the boundedness of velocity by showing the non-

increase of the ℓ∞-norm of v(t) by dividing the cases according to whether

the supremum of the limit point of the particles is isolated or not.

Theorem 2.2.1. [44] Let {xi(t), vi(t)}i∈N be the solutions to system (2.2.4),

then ∥v(t)∥∞ = supi∈N ∥vi(t)∥ is non-decreasing in t.

Finally, they obtain the flocking behavior of the infinite-particle Cucker-

Smale model.

Theorem 2.2.2. [44] When β ∈
[
0, 1

2

]
, for any given initial data {xi0, vi0}i∈N,

the solutions to system (2.2.4) satisfy the following results:

1. There exists some constant R2 > 0 such that sup
i∈N
∥xi(t)− xc(t)∥ ≤ R2.

2. sup
i∈N
∥vi(t)− vc(t)∥ ≤ ∥v(0)∥∞ e−

1
2
H(2R2)t.

We will see the sketch of proof. They defined

RN
v (t) := max

i∈[N ]
∥vi(t)∥

13
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and for

f(t) :=
1

[1 + 4R2(1 + t)2]β
, R = max{∥v(0)∥∞, ∥x(0)∥∞},

they make an inequality

d

dt
RN

v (t)
2 ≤ −f(t)

(
RN

v (t)
)2

+ 4 ∥v(0)∥2∞
∞∑

j=n+1

mj.

by using invariance of center of mass∑
j∈N

mjvj = 0.

Using Gronwall’s inequality with taking the limit n→∞ the obtain

∥v(t)∥2∞ ≤ e
∫ t
0 −f(s)ds ∥v(0)∥2∞ ,

and bound the integral term
∫ t

0
−f(s)ds, while position differences between

particles will be uniformly bounded.

Our purpose for analyzing the countable Kuramoto model is to find a

similar counterpart to these previous results. We observed the diameter func-

tional plays a crucial role in the analysis of the emergent dynamics for (2.1.1).

Hence we set our objective as proving that the diameter decays to zero for

a homogeneous ensemble and finding the condition that guarantees the exis-

tence of a trapping region for a heterogeneous ensemble.

2.3 Kuramoto model for an infinite ensemble

In this section, we present several basic properties of the Kuramoto model

which concerns the dynamics of countably infinite number of oscillators, in

short, ‘infinite Kuramoto model’.

Note that for the following simple modification:∑
j∈[N ]

κij sin (θj − θi) =⇒
∑
j∈N

κij sin (θj − θi) ,

14
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the infinite sum in the right-hand side of (1.0.2) might not be well-defined,

unless we impose some restrictive asymptotic vanishing conditions on the

network topology K = (κij)i,j∈N. Once the infinite sum becomes well-defined,

we can consider the Cauchy problem to the infinite Kuramoto model:
θ̇i = νi +

∑
j∈N

κij sin (θj − θi) , t > 0,

θi(0) = θini , i ∈ N,
(2.3.5)

where Θin,V and K = (κij) satisfy

Θin ∈ ℓp, V ∈ ℓp, K ∈ ℓp,1, κij ≥ 0 ∀ i, j ∈ N (2.3.6)

for some p ∈ [1,∞]. Unlike in Section 2.1, we allow the asymmetric network

topology K to consider the most general case. Then, the following proposi-

tion guarantees the well-posedness of (2.3.5)–(2.3.6) by using the standard

Cauchy-Lipschitz theory.

Proposition 2.3.1. Suppose that initial configuration, natural frequencies

and network topology satisfy (2.3.6). Then, there exists a unique smooth so-

lution Θ = Θ(t) ∈ C1(R+; ℓ
p) to the infinite system (2.3.5).

Proof. First of all, we set

fi(Θ) := νi +
∑
j∈N

κij sin(θj − θi), i ∈ N, F(Θ) := (f1(Θ), f2(Θ), . . .).

In order to use the standard Cauchy-Lipschitz theory on the Banach space

ℓp, it suffices to show that for every two solutions Θ and Θ̃ to (2.3.5), we

have

∥F∥p ≤ ∥V∥p + ∥K∥p,1,
∥∥∥F(Θ)−F(Θ̃)

∥∥∥
p
≤ 2∥K∥p,1∥Θ− Θ̃∥p. (2.3.7)

• (Derivation of (2.3.7)1): For each i ∈ N, we have

|fi(Θ)| =

∣∣∣∣∣νi +∑
j∈N

κij sin(θj − θi)

∣∣∣∣∣ ≤ |νi|+∑
j∈N

κij. (2.3.8)

15
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Then by the Minkowski inequality and (2.3.8), we have

∥F∥p ≤ ∥V∥p + ∥K∥p,1 for 1 ≤ p ≤ ∞.

• (Derivation of (2.3.7)2): For 1 ≤ p <∞, every Θ, Θ̃ ∈ ℓp satisfy

∥F(Θ)−F(Θ̃)∥pp
=
∑
i∈N

|fi(Θ)− fi(Θ̃)|p

=
∑
i∈N

∣∣∣∣∣∑
j∈N

κij

(
sin (θj − θi)− sin(θ̃j − θ̃i)

)∣∣∣∣∣
p

≤
∑
i∈N

∣∣∣∣∣∑
j∈N

κij

∣∣∣(θj − θi)− (θ̃j − θ̃i)
∣∣∣∣∣∣∣∣
p

≤
∑
i∈N

∣∣∣∣∣∑
j∈N

κij|θj − θ̃j|+ |θi − θ̃i|
∞∑
j=1

κij

∣∣∣∣∣
p

≤ 2p−1
∑
i∈N

[(∑
j∈N

κij|θj − θ̃j|
)p

+
(
|θi − θ̃i|

∑
j∈N

κij

)p]

≤ 2p−1
∑
i∈N

[
∥(κij)j∥pq

(∑
k∈N

|θk − θ̃k|p
)

+ |θi − θ̃i|p
(∑

j∈N

κij

)p]
,

(2.3.9)

where we used the Hölder inequality for q = p
p−1

in the last inequality. If we

apply the following relations

∥X∥q ≤ ∥X∥1,
∑
i∈N

|yizi| ≤
(∑

i∈N

|yi|
)(∑

i∈N

|zi|
)
, ∀ X, Y, Z ∈ RN

to (2.3.9), then we have desired estimate:

∥F(Θ)−F(Θ̃)∥pp ≤ 2p−1
∑
i∈N

[
∥(κij)j∥pq

(∑
k∈N

|θk − θ̃k|p
)

+ |θi − θ̃i|p
(∑

j∈N

κij

)p]
≤ 2p−1

[
∥K∥pp,1∥Θ− Θ̃∥pp + ∥Θ− Θ̃∥pp∥K∥

p
p,1

]
= 2p∥K∥pp,1∥Θ− Θ̃∥pp.
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In addition, we can also obtain desired estimate for p =∞:∥∥∥F(Θ)−F(Θ̃)
∥∥∥
∞

= sup
i∈N
|fi(Θ)− fi(Θ̃)|

= sup
i∈N

∣∣∣∣∣∑
j∈N

κij

(
sin (θj − θi)− sin(θ̃j − θ̃i)

)∣∣∣∣∣
≤ sup

i∈N

∑
j∈N

κij

∣∣∣(θj − θi)− (θ̃j − θ̃i)
∣∣∣

≤ sup
i∈N

∑
j∈N

κij

(
|θj − θ̃j|+ |θi − θ̃i|

)
≤ 2
(
sup
i∈N

∑
j∈N

κij

)
∥Θ− Θ̃∥∞

= 2∥K∥∞,1∥Θ− Θ̃∥∞.

Now, once we have (2.3.7), the solution to (2.3.5)–(2.3.6) exists uniquely

in some nonempty finite time interval [0, T ], and the solution never blows up

in finite time due to the boundedness of the image of F so that the local

solution can be extended to the global solution Θ : [0,∞)→ ℓp.

In the following lemma, we can see the analogous properties of our infinite

model with the finite Kuramoto model. Lemma 2.3.1 (1) gives an invariant of

our model, and (2) gives the translation-invariant property of the Kuramoto

model. Then in Lemma 2.3.2, we discuss two basic sets of estimates to be used

in Chapter 3, 4 and 5, then establish Lipschitz continuity of some functionals.

Lemma 2.3.1. Let p, q ∈ [1,∞] with 1
p
+ 1

q
= 1, and let Θ be a global

ℓp-solution to (2.3.5)–(2.3.6). Then, the following assertions hold.

1. If the network topology K = (κij) is given by

κij = aijκj, ∀ i, j ∈ N, (2.3.10)

for some symmetric A = (aij) ∈ ℓp,p and (κ1, κ2, . . .) ∈ ℓq, we have

d

dt

(∑
i∈N

κiθi

)
=
∑
i∈N

κiνi.

17
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2. If we set

θ̂i(t) = θi(t)− νt, i ∈ N, t ≥ 0,

then Θ̂ := (θ̂1, θ̂2, . . .) satisfies
˙̂
θi = νi − ν +

∑
j∈N

κij sin(θ̂j − θ̂i), t > 0,

θ̂i(0) = θini ∈ R, ∀ i ∈ N.

Proof. (1) First, we multiply κi to (2.3.5)1 to obtain

d

dt

(
κiθi

)
= κiνi +

∑
j∈N

κiκij sin (θj − θi) . (2.3.11)

Then, we take a summation of (2.3.11) over all i and use the exchange sym-

metry i←→ j to get

d

dt

∑
i∈N

κiθi =
∑
i∈N

κiνi +
∑
j∈N

κiκij sin (θj − θi) =
∑
i∈N

κiνi −
∑
j∈N

κiκji sin (θj − θi) .

Therefore, we employ (2.3.10) to get the desired balanced law.

(2) Since the second assertion is obvious, we omit its proof.

Remark 2.3.1. (1) If we set p = 1 and κj ≡ 1, then the network topology

K satisfying (2.3.10) is a symmetric summable infinite matrix (see Chapter

3):

K = (κij) ∈ ℓ1,1, κij = κji, i, j ∈ N.

(2) If we set p = ∞ and aij ≡ 1, then the network topology K satisfying

(2.3.10) is a sender network (see Chapter 5):

(κ1, κ2, . . .) ∈ ℓ1, κij = κj, i, j ∈ N.

Lemma 2.3.2. Let Θ = Θ(t) be a global ℓ∞-solution to (2.3.5) – (2.3.6).

Then, the following assertions hold.
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1. Θ̇ and Θ̈ are uniformly bounded: for every i ∈ N,

sup
0≤t<∞

|θ̇i(t)| ≤ ∥V∥∞ + ∥K∥∞,1 ≤ ∥V∥p + ∥K∥p,1,

sup
0≤t<∞

|θ̈i(t)| ≤ 2∥K∥∞,1(∥V∥∞ + ∥K∥∞,1) ≤ 2∥K∥p,1(∥V∥p + ∥K∥p,1).

(2.3.12)

2. Extremals and phase-diameter functionals

D(Θ) := sup
i,j∈N
|θi − θj|, sup

i∈N
θi and inf

i∈N
θi

are Lipschitz continuous in time t.

Proof. (1) The first estimate follows from (2.3.8). Now, we differentiate (2.3.5)1
with respect to t and use (2.3.12)1 to obtain∣∣∣θ̈i∣∣∣ =

∣∣∣∣∣∑
j∈N

κij(θ̇i − θ̇j) cos (θi − θj)

∣∣∣∣∣
≤ 2 (∥V∥∞ + ∥K∥∞,1)

∑
j∈N

κij

≤ 2∥K∥∞,1 (∥V∥∞ + ∥K∥∞,1)

≤ 2∥K∥p,1(∥V∥p + ∥K∥p,1).

(2.3.13)

(2) We first consider the Lipschitz continuity of

t 7→ sup
i∈N

θi(t).

For every s < t, we use Lemma 2.3.2 (1) to get

θi(t) ≤ θi(s)+(∥V∥∞+∥K∥∞,1)(t−s) ≤ sup
i∈N

θi(s)+(∥V∥∞+∥K∥∞,1)(t−s).

Then, we take the supremum of the L.H.S. of the above relation to obtain

sup
i∈N

θi(t) ≤ sup
i∈N

θi(s) + (∥V∥∞ + ∥K∥∞,1)(t− s), (2.3.14)

and a similar argument also yields

sup
i∈N

θi(t) ≥ sup
i∈N

θi(s)− (∥V∥∞ + ∥K∥∞,1)(t− s). (2.3.15)
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Therefore, we combine (2.3.14) and (2.3.15) to obtain∣∣∣ sup
i∈N

θi(t)− sup
i∈N

θi(s)
∣∣∣ ≤ (∥V∥∞ + ∥K∥∞,1)|t− s|, ∀ t, s ≥ 0.

In addtion, the Lipschitz continuity of

t 7→ inf
i∈N

θi(t)

can be also shown in a similar manner. Finally, the phase-diameter D(Θ),

which can be given by the difference between these two extremals, is also

Lipschitz.

Remark 2.3.2. Note that the relation (2.3.13) yields

sup
0≤t<∞

∣∣∣θ̈i(t)∣∣∣ ≤ 2 (∥V∥∞ + ∥K∥∞,1)
∑
j∈N

κij, ∀ i ∈ N. (2.3.16)

Lemma 2.3.3. Let Θ = Θ(t) be a global solution to (2.3.5)–(2.3.6). Then

for every i, j ∈ N, we have∣∣∣∣ ddt (θi − θj)

∣∣∣∣ ≤ D(V)+2∥K∥∞,1,

∣∣∣∣ d2dt2 (θi − θj)

∣∣∣∣ ≤ 2∥K∥∞,1 (D (V) + 2∥K∥∞,1) .

Proof. For every i, j ∈ N, the first and the second derivatives of θi − θj are

given by

d

dt
(θi − θj) = νi − νj −

∑
k∈N

[κik sin(θi − θk) + κjk sin(θk − θj)] ,

d2

dt2
(θi − θj) = −

∑
k∈N

[
κik cos(θi − θk)

d

dt
(θi − θk) + κjk cos(θk − θj)

d

dt
(θk − θj)

]
.

(2.3.17)

Then, we have the boundedness of d
dt
(θi − θj) from the following inequalities:∣∣∣ d

dt
(θi − θj)

∣∣∣ ≤ D(V) +∑
k∈N

(κik + κjk) ≤ D(V) + 2∥K∥∞,1. (2.3.18)

20



CHAPTER 2. PRELIMINARIES

Finally, we combine (2.3.17) and (2.3.18) to obtain the boundedness of d2

dt2
(θi − θj):∣∣∣∣ d2dt2 (θi − θj)

∣∣∣∣ ≤∑
k∈N

[
κik

∣∣∣ d
dt

(θi − θk)
∣∣∣+ κjk

∣∣∣ d
dt

(θk − θj)
∣∣∣]

≤ 2∥K∥∞,1 (D (V) + 2∥K∥∞,1) .
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Chapter 3

Emergent dynamics of a

homogeneous ensemble

In this chapter, we prove the infinite Kuramoto model with a homogeneous

ensemble consisting of oscillators with identical natural frequencies can admit

a “quasi-stationary” state. More precisely,there is a condition that the config-

uration X (t) has a fixed diameter and can achieve complete synchronization.

Furthermore, we describe why the gradient flow approach is unsuitable for

the countable Kuramoto model.

From Lemma 2.3.1 (2), we may assume that νi ≡ 0 without loss of gen-

erality. In other words, we consider the phase configuration Θ satisfying
θ̇i =

∑
j∈N

κij sin (θj − θi) , t > 0,

θi(0) = θini ∈ R, ∀ i ∈ N,
Θin = (θin1 , θ

in
2 , . . .) ∈ ℓp, K = (κij) ∈ ℓp,1, p ∈ [1,∞].

(3.0.1)

Since ℓ1 ⊂ ℓ2 ⊂ · · · ⊂ ℓ∞ and ℓ1,1 ⊂ ℓ2,1 ⊂ · · · ⊂ ℓ∞,1, all results for ℓp-

solution Θ can also be applied to other ℓq-solutions with q < p. In the sequel,

we will study the dynamics of ℓ∞-solution and ℓp-solution (p <∞) to (3.0.1)

and provide some results corresponding to each part of Proposition 2.1.1.
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3.1 ℓ∞-solution: complete synchronization

In this section, we will study the complete synchronization of the homoege-

neous ensemble with ℓ∞ initial data. As aforementioned, all results in this

section can be applied to other ℓp-solutions.

3.1.1 Dynamics of phase diameter

At a heuristic level, it is natural to expect that D(Θ(t)) is ‘non-increasing’

in t whenever D(Θ(t)) < π, since the oscillators near the extremal phases

θ(t) := sup
i∈N

θi(t), θ(t) := inf
i∈N

θi(t),

are pulled inward the region in which the majority of the group is located.

In fact, for the finite Kuramoto ensemble, it is easy to check that θ and θ are

nonincreasing and nondecreasing, respectively, and their difference converges

to zero exponentially, so that Proposition 2.1.1 (3) holds. For the infinite Ku-

ramoto ensemble, however, a such argument has to be refined. The following

lemma shows that such a heuristic argument holds, when the interaction net-

work K = (κij) satisfies some structural condition uniformly in i.

Throughout this thesis, we refer to the following frameworks to guarantee

the synchronization behavior of the infinite Kuramoto model:

• (F1): The initial phase-diameter is smaller than π: the initial phase

configuration Θin satisfies

D(Θin) < π.

• (F2): There exists a sequence κ̃ := {κ̃j}j∈N ∈ ℓ1 such that

κij∑
k∈N κik

> κ̃j > 0,

for all i, j ∈ N.
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Lemma 3.1.1. Suppose that network topology K = (κij) and initial data Θin

satisfy (F1)–(F2), and let Θ be a solution to (3.0.1) with p = ∞. If initial

phase diameter D(Θin) is nonzero, there exist two positive constants δ and ε

such that

• For every index i ∈ N satisfying θini ≤ θ(0)− ε, one has

θi(t) < θ(0), ∀ t ∈ (0, δ).

• For every index i ∈ N satisfying θini > θ(0)− ε, one has

θ̇i(t) < 0, ∀ t ∈ (0, δ).

Proof. Since the proof is very lengthy and technical, we leave its proof in

Appendix B.

Note that the natural frequency V and initial phase diameter D(Θin
N)

satisfy the same condition in Proposition 2.1.1 (3), and only the positivity

condition κij > 0 has been modified to (F2).

Remark 3.1.1. Below, we provide several remarks on the framework (F1)–
(F2).

1. An interaction network (κij) satisfying (F2) can be easily constructed

from a sequence in ℓ1 whose components are all positive real numbers.

More precisely, for a positive sequence {ai}i∈N ∈ ℓ1, we set

κij := aiaj, ∀ i, j ∈ N.

Then, the framework (F2) holds true by the following relation:

κij∑
k∈N κik

=
aj∑
k∈N ak

>
aj∑

k∈N ak + 1
=: κ̃j.

2. The sequence κ̃ = {κ̃j}j∈N in (F2) is always contained in ℓ1. In fact,

its ℓ1-norm is always smaller than 1.
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3. For the trivial initial data with D(Θin) = 0, we have

θ̇i(t) = 0, ∀ i ∈ N, t > 0.

Thus, the solution Θ is a steady state solution where whole phases are

concentrated in a singleton.

As a consequence of Lemma 3.1.1, one can see that the phase diameter

D(Θ) is also nonincreasing in t as in Proposition 2.1.1, though we do not

have any estimate on the decay rate yet.

Corollary 3.1.1. Suppose that network topology K = (κij) and initial data

Θin satisfy (F1)–(F2), and let Θ = θ(t) be a solution to (3.0.1) with p =∞.

Then, the following assertions hold:

1. The phase-diameter D(Θ(t)) is non-increasing t:

D(Θ(t)) ≤ D(Θin) < π, ∀ t > 0.

2. Θ is a phase-locked state if and only if

D(Θ) ≡ 0.

Proof. (1) We split the proof into two cases:

D(Θin) = 0, 0 < D(Θin) < π.

⋄ Case A (D(Θin) = 0): In this case, as discussed in Remark 3.1.1(3), we

have

D(Θ(t)) = D(Θin) = 0, t > 0,

which yields the desired result.

⋄ Case B (0 < D(Θin) < π): From Lemma 2.3.2(2), the set{
t ≥ 0 : D(Θ(t)) ≤ D(Θin)

}
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is closed in [0,∞). On the other hand, Lemma 3.1.1 implies that it is also a

nonempty open subset of [0,∞). Therefore, we have{
t ≥ 0 : D(Θ(t)) ≤ D(Θin)

}
= [0,∞),

which is our desired result.

(2) It is sufficient to prove the ‘only if’ part. If D(Θ(t0)) > 0, then Lemma

3.1.1 can be applied, so that there exists a neighborhood of θ(t0) such that

every θi in the neighborhood decreases strictly. Similarly, there exists a neigh-

borhood of θ(t0) such that every θj in the neighborhood increases strictly.

This contradicts the phase-locked assumption, as it is necessary to satisfy

θ̇i − θ̇j =
d

dt
(θi − θj) = 0, i, j ∈ N,

for the phase-locked state Θ.

Note that Corollary 3.1.1 does not guarantee that the phase diameter is

strictly decreasing. If θ(t0) is not a limit point of {θi(t0)}i∈N, then there exists

a neighborhood U of θ(t0) which contains only finitely many θi’s, and the

supremum θ(t) is determined by those finitely many θi’s for all t sufficiently

close to t0. Therefore, Lemma 3.1.1 implies that the supremum θ decreases

strictly at time t = t0 if θ(t0) is not a limit point of {θi(t0)}i∈N. However,
if both θ(t0) and θ(t0) are the limit points of {θi(t0)}i∈N, Lemma 3.1.1 does

not imply that the phase diameter is strictly decreasing at t = t0. We can

construct a solution Θ in which phase-diameter is nondecreasing in time,

even if the framework (F1) - (F2) are satisfied.

Lemma 3.1.2. Suppose there are two increasing sequences {in}n∈N and {jn}n∈N
of N such that

lim
n→∞

∑
k∈N

κink = 0, lim
n→∞

∑
k∈N

κjnk = 0, lim
n→∞

θinin = sup
k∈N

θink , lim
n→∞

θinjn = inf
k∈N

θink ,

(3.1.2)

and let Θ = (θ1, θ2, . . .) be a solution to (3.0.1) with p = ∞. Then, the

phase-diameter D(Θ) is nondecreasing along (3.0.1).
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Proof. From Lemma 2.3.2, one has

sup
0≤t<∞

|θ̇i(t)| ≤
∑
k∈N

κik,
∣∣θi(t)− θini

∣∣ ≤ t
∑
k∈N

κik, ∀ i ∈ N.

Then, we use the triangle inequality and the above relations to obtain

|θi (t)− θj (t)| ≥
∣∣θini − θinj

∣∣− ∣∣θini − θi (t)
∣∣− ∣∣θinj − θj (t)

∣∣
≥
∣∣θini − θinj

∣∣−(∑
k∈N

κik +
∑
k∈N

κjk

)
t.

(3.1.3)

On the other hand, we use the first two conditions in (3.1.2) to see that for

every ε1 > 0, there exists a natural number N = N (ε1) ∈ N such that

n > N =⇒
∑
k∈N

κink < ε1 and
∑
k∈N

κjnk < ε1. (3.1.4)

For every ε2 > 0, one can also find M = M (ε2) ∈ N such that for n > M ,

θin > θ − ε2 and θjn < θ + ε2. (3.1.5)

Then, by using (3.1.4)–(3.1.5) to the relation (3.1.3) with the index pair

(in, jn) with n ≥ N,M , we have

D (Θ (t)) = sup
m,n∈N

|θm (t)− θn (t)| ≥
∣∣θinin − θinjn

∣∣−(∑
k∈N

κink +
∑
k∈N

κjnk

)
t

≥ D(Θin)− 2ε1t− 2ε2.

Since ε1 and ε2 can be arbitrary positive numbers, we can take ε1, ε2 → 0 for

each fixed t to obtain the desired result. Therefore, we have

D (Θ (t)) ≥ D(Θin), t ≥ 0.

Remark 3.1.2. Below, we provide network topology and initial data satisfy-

ing a set of relations in (F1)–(F2) and (3.1.2). More precisely, we set

κij = 3−(i+j) and θini = (−1)i π/3, i, j ∈ N.
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Then, one has

sup
0≤t<∞

∣∣∣θ̇i(t)∣∣∣ ≤∑
j∈N

κij =
1

2 · 3i−1

which yields ∣∣θini − θi(t)
∣∣ ≤ t

2 · 3i−1
, t ≥ 0.

Therefore, we have

|θi (t)− θj (t)| ≥
∣∣θini − θinj

∣∣− ∣∣θini − θi (t)
∣∣− ∣∣θinj − θj (t)

∣∣
≥
∣∣θini − θinj

∣∣− 3t

2

(
1

3i
+

1

3j

)
.

This gives

D (Θ(t)) ≥
∣∣θini − θinj

∣∣− 3t

2

(
1

3i
+

1

3j

)
, i, j ∈ N.

By letting i = 2k + 1 and j = 2k, we obtain

D (Θ(t)) ≥
∣∣θin2k+1 − θin2k

∣∣− 3t

2

(
1

32k+1
+

1

32k

)
=

2π

3
− 2t

32k
, k ∈ N.

Since D (Θin) = 2π
3
, we have D (Θ(t)) ≥ 2π

3
= D (Θin).

Combining the results we have obtained so far, we can characterize the

sufficient framework which makes the phase-diameter D(Θ(t)) constant with

respect to t.

Corollary 3.1.2. Suppose that network topology and initial data satisfy

(F1)–(F2) and (3.1.2), and let Θ be a solution to (3.0.1) with p =∞. Then,

the phase-diameter of the configuration Θ is constant along time:

D(Θ(t)) = D(Θin), t ≥ 0.

This counterintuitive example is the case when all particles are moving

away from the boundary, but other particles closer to the boundary than we

just observed continue to appear with a slower speeds. Macroscopically, it

will look as if there is a fixed boundary continuously emitting new particles
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which velocities are slower for particles emitted later.

This is a unique feature of the countable Kuramoto model compared to the

original Kuramoto model with finitely many particles. The sufficient frame-

work leading to the exponential convergence of phase for the homogeneous

ensemble as in Proposition 2.1.1(3) will be presented at the end of Chapter 4.

3.1.2 Lyapunov functional

Now, we will analyze the dynamics of (3.0.1) with the following symmetric

summable network topology, which is the first case of Remark 2.3.1:

K = (κij) ∈ ℓ1,1, κij = κji ≥ 0, i, j ∈ N. (3.1.6)

Since ℓ1,1 ⊂ ℓp,1 for all p ∈ [1,∞], one can construct an ℓp-solution by just

considering an ℓp initial data Θin under (3.1.6). In addition, under the con-

dition (3.1.6), every ℓ∞-solution Θ to (3.0.1) satisfy

Θ̇(t) ∈ ℓ1, t ≥ 0,

even when Θ itself is not contained in ℓ1. Note that the condition κij = κji

also makes the finite Kuramoto model a gradient flow (see Proposition 2.1.1).

Theorem 3.1.1. Suppose that the network topology (κij) satisfies (3.1.6),

and let Θ be a solution to (3.0.1) with p =∞. Then, we have

lim
t→∞
∥Θ̇(t)∥2 = 0.

Proof. We will apply a Lyapunov functional approach.

• Step A: First, we suggest the following function as the Lyapunov functional

to (3.0.1):

P (Θ) =
1

2

∑
i,j∈N

κij(1− cos(θi − θj)) ≥ 0. (3.1.7)
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Then, we claim:

d

dt
P (Θ) = −

∑
i∈N

|θ̇i|2 = −∥Θ̇∥22,

∣∣∣∣ ddtP (Θ(t))

∣∣∣∣ ≤∑
i∈N

(∑
j∈N

κij

)2

= ∥K∥22,1 ≤ ∥K∥21,1,∣∣∣∣ d2dt2P (Θ)

∣∣∣∣ ≤ 2∥K∥2∞,1∥K∥1,1 ≤ 2∥K∥31,1.

(3.1.8)

Below, we derive the above estimates in (3.1.8) one by one.

(i) We differentiate (3.1.7) with respect to t and use (3.0.1) to find

d

dt
P (Θ) =

1

2

∑
i,j∈N

κij sin (θi − θj)
(
θ̇i − θ̇j

)
=

1

2

∑
i,j,k∈N

κij sin (θi − θj)κik sin (θk − θi)

− 1

2

∑
i,j,k∈N

κij sin (θi − θj)κjk sin (θk − θj)

i↔j
= −

∑
i,j,k∈N

κij sin (θi − θj)κik sin (θi − θk)

= −
∑
i∈N

(∑
j∈N

κij sin (θi − θj)

)2

= −
∑
i∈N

|θ̇i|2 ≤ 0.

(3.1.9)

This also yields

∣∣∣ d
dt
P (Θ)

∣∣∣ = ∣∣∣∣∣∑
i∈N

(∑
j∈N

κij sin (θi − θj)

)2 ∣∣∣∣∣ ≤∑
i∈N

(∑
j∈N

κij

)2

= ∥K∥22,1.

In addition, we differentiate (3.1.9) and apply Lemma 2.3.2, Remark 2.3.2

and (3.1.6) to get∣∣∣ d2
dt2

P (Θ)
∣∣∣ ≤ 2

∑
i∈N

|θ̇i||θ̈i| ≤ ∥K∥∞,1

∑
i∈N

|θ̈i| ≤ 2∥K∥2∞,1

∑
i,j∈N

κij = 2∥K∥2∞,1∥K∥1,1.
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• Step B: Next, we will show that P satisfies all the conditions for Barbalat’s

lemma, i.e.,

∃ lim
t→∞

P (Θ(t)),
dP (Θ)

dt
is uniformly continuous.

The convergence of P (Θ) comes from the fact that P (Θ) is a nonincreasing

and bounded from below, which we have already verified in (3.19) and (3.20).

In addition, the uniform continuity of dP
dt

is a consequence of the boundedness

of d2P
dt2

, which we have already verified in (3.20). From (3.1.7) and (3.1.8)1,

P (Θ(t)) is a nonincreasing function bounded from below. Thus, P (Θ(t)) con-

verges as t→∞.

Finally, we apply the differential version of Barbalat’s lemma (see Lemma

A.0.2) to conclude

lim
t→∞

dP (Θ(t))

dt
= 0, i.e., lim

t→∞
∥Θ̇(t)∥2 = 0.

3.2 ℓp-solution: extra properties for p <∞
In this section, we will study some special properties for ℓp-solutions which

cannot be found from generic ℓ∞-solutions.

3.2.1 Strictly decreasing diameter

If Θ(t) ∈ ℓp for some 1 ≤ p < ∞, the only possible limit point for the

set {θi(t)}i∈N is θ = 0, so that either θ(t) or θ(t) is not a limit point for all

time t. Then, Lemma 3.1.1 implies that under the framework (F1)–(F2), the
diameter D(Θ(t)) is strictly decreasing for all t ≥ 0. However, if there are

symmetric matrix A = (aij) ∈ ℓp,p and (κ1, κ2, . . .) ∈ ℓq satisfying (2.3.10):

κij = aijκj, ∀ i, j ∈ N,

where q is the Holder conjugate of p. Lemma 2.3.1 implies that the weighted

average ∑
i∈N

κiθi
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is a constant of motion of the flow Θ ∈ C1(R+, ℓ
p). Therefore, if

∑
i∈N κiθ

in
i

is nonzero, ℓp-solution Θ can never converge to a point (0, 0, . . .) in ℓp-norm.

However, there exists a possibility for Θ to converge in ℓ∞-norm (see Chapter

4).

3.2.2 Gradient flow formulation

In the finite Kuramoto model, the gradient flow approach plays an essential

role in the proof of Proposition 2.1.1. Therefore, we reckoned whether this

approach would yield similar results when applied to an infinite-dimensional

model. To study the gradient flow structure of model (3.0.1), a suitable space

should be equipped with an inner product structure. We found the reason in

differential manifold theory.

For a differential Riemannian manifold (M, gij), let f : M → R be a

smooth function. Then, the gradient vector ∇f is obtained by identifying

differential df : TpM → TpR ∼= R by a covector ⟨∇f,−⟩Rn . Hence in this

subsection, we will consider the Cauchy problem for (3.0.1) in ℓ2-space. We

will begin with a Lemma from calculus.

Lemma 3.2.1. For θ, h ∈ R with |h| < 1, one has∣∣∣∣2 sin (θ + h) sin
h

2
− h sin θ

∣∣∣∣ ≤ 2h2.

Proof. We use elementary inequality:

x− x3

6
≤ sinx ≤ x, ∀ x ≥ 0,

and mean-value theorem to get∣∣∣∣2 sin (θ + h) sin
h

2
− h sin θ

∣∣∣∣
≤
∣∣∣∣2 sin (θ + h) sin

h

2
− h sin (θ + h)

∣∣∣∣+ |h sin (θ + h)− h sin θ|

≤ 2| sin(θ + h)|
∣∣∣ sin h

2
− h

2

∣∣∣+ |h|∣∣∣ sin (θ + h)− sin θ
∣∣∣
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≤ h3

24
+ h2 < 2h2.

Proposition 3.2.1. Suppose that the network topology K satisfies

K = (κij) ∈ ℓ1,1, κij = κji > 0, i, j ∈ N.

Then, every ℓ2-solution to (3.0.1) is a gradient flow with the potential

P (Θ) =
1

2

∑
i,j∈N

κij (1− cos (θi − θj)) .

Proof. Let h = {hk}k∈N ∈ ℓ2 with ∥h∥2 <
1√
2
and

Φ =

{
−
∑
j∈N

κkj sin (θj − θk)

}
k∈N

∈ ℓ2.

From direct calculation, we have

P (Θ + h)− P (Θ)− ⟨Φ,h⟩2

= −1

2

∑
i,j∈N

κij (cos (θi − θj + hi − hj))

+
1

2

∑
i,j∈N

κij (cos (θi − θj)) +
∑
i,j∈N

κijhi sin (θj − θi)

= −1

2

∑
i,j∈N

κij (cos (θi − θj + hi − hj)− cos (θi − θj)) +
∑
i,j∈N

κijhi sin (θj − θi)

i↔j
= −1

2

∑
i,j∈N

κij (cos (θi − θj + hi − hj)− cos (θi − θj) + (hi − hj) sin (θi − θj))

= −1

2

∑
i,j∈N

κij

(
−2 cos

(
θi − θj +

hi − hj

2

)
cos (hi − hj) + (hi − hj) sin (θi − θj)

)
.

Here, Lemma 3.2.1 implies

|P (Θ + h)− P (Θ)− ⟨Φ,h⟩2| ≤
∑
i,j∈N

κij |hi − hj|2 ,∑
i,j∈N

κij |hi − hj|2 ≤ 2
∑
i ̸=j

κij

(
h2
i + h2

j

)
≤ 2

∑
i,j∈N

κij ∥h∥22 .
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where we used

∥h∥ < 1√
2

=⇒ |hi − hj| ≤ 1,

to meet the assumption in Lemma 3.2.1. Therefore, we conclude dP (Θ) =

⟨Φ, ·⟩2, which is equivalent to say that Φ is the gradient of P .

Even if we have a gradient structure of (3.0.1), we cannot show the con-

vergence of phases as in Proposition 2.1.1, as the Lojaciewicz inequality in

Lemma A.0.4 is not applicable under the condition (3.1.6). To see this, we

first assume

κii = 0, i ∈ N,

without loss of generality. Then, for each i ∈ N, we have

∇θiP (Θ) = −
∑
k∈N

κik sin (θk − θi) ,

and the hessian matrix ∇2P (Θ) =: {hij}i,j∈N is given as

hij =
∂

∂θj

(∑
k∈N

κik sin(θk − θi)
)
=


κij cos (θj − θi) , i ̸= j

−
∑
k ̸=i

κik cos (θk − θi) , i = j.

In particular, the hessian matrix at Θ = 0 is

H := ∇2P (Θ)(0) =

{
κij i ̸= j,

−
∑

k ̸=i κik i = j.

Next, we determine the kernel of this Hessian matrix. Suppose we have two

vectors

v = {vi}i∈N , w = {wi}i∈N ∈ ℓ2.

By direct computation, one has

⟨w, Hv⟩2 =
∑
i∈N

wi

(∑
j∈N

κijvj −
∑
j∈N

κijvi

)
i↔j
= −1

2

∑
i,j∈N

κij (vi − vj) (wi − wj) .
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Therefore, we have

v = {vi}i∈N ∈ kerH ⇐⇒ ⟨v, Hv⟩2 = −
1

2

∑
i,j∈N

κij (vi − vj)
2 = 0

⇐⇒ vi = vj ∀ i, j ∈ N, i.e., v = (v, v, . . .) ∈ ℓ2

⇐⇒ v = 0.

Now, let ei be a infinite sequence such that all but ith element is zero, and

the only nonzero element is 1. Then, we have

(Hei)j =

{
κij j ̸= i

−
∑

k ̸=i κik j = i
.

Therefore, the ℓ2-norm of Hei can be written as

∥Hei∥22 =
∑
j∈N

(κij)
2 +

(∑
j∈N

κij

)2

.

However, since K ∈ ℓ1,1, we can have

lim
i→∞

∑
j∈N

κij = 0 =⇒ lim
n→∞

∥Hen∥2 = 0,

which violates the second condition of (A.0.2).
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Chapter 4

Emergent dynamics of a

heterogeneous ensemble

4.1 Practical synchronization

In this chapter, we study emergent dynamics of the infinite Kuramoto en-

semble which might have several heterogeneous oscillators with nonidentical

natural frequencies,
θ̇i = νi +

∑
j∈N

κij sin (θj − θi) , t > 0,

θi(0) = θini ∈ R, ∀ i ∈ N,
Θin ∈ ℓ∞, V ∈ ℓ∞, K = (κij) ∈ ℓ∞,1.

(4.1.1)

In addition to the framework (F1)–(F2), we also consider the following

framework in this chapter:

• (F3): The network topology K = (κij) satisfies

inf
i∈N

∑
j∈N

κij =: ∥K∥−∞,1 > 0.

In the sequel, we first prove the existence of a trapping set for infinite

heterogeneous ensembles, and then we apply the same argument to prove the

convergence of diameter to zero in a homogeneous ensemble as corollary.
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Lemma 4.1.1. Let a, b and c be positive constants satisfying the relations

0 ≤ c− a ≤ π − ε1, a− ε2 ≤ b ≤ c+ ε2, 0 ≤ ε2 ≤ ε1.

Then, one has

sin (c− a) + sin (a− b) + sin (b− c) ≤ 4 sin
ε2
2
.

Proof. We use the additive law for trigonometric function to obtain

sin (c− a) + sin (a− b) + sin (b− c)

= sin (c− a) + 2 sin

(
a− c

2

)
cos

(
a− 2b+ c

2

)
= 2 sin

(
c− a

2

)(
cos

(
a− c

2

)
− cos

(
a− 2b+ c

2

))
= −4 sin

(
c− a

2

)
sin

(
c− b

2

)
sin

(
b− a

2

)
=: f(a, b, c).

If a ≤ b ≤ c, then c−a
2
, b−a

2
, c−b

2
∈ [0, π−ε1

2
] and therefore f(a, b, c) ≤ 0. On the

other hand, if a− ε2 ≤ b ≤ a or c ≤ b ≤ c+ ε2, then
c−a
2
∈ [0, π−ε1

2
], and one

of b−a
2
, c−b

2
is contained in [0, π−ε1+ε2

2
], and the other is contained in [− ε2

2
, 0].

Therefore, we have f(a, b, c) ≤ 4 sin ε2
2
in both cases.

Lemma 4.1.2. Let Θ be a solution to (4.1.1). For every t ≥ 0 and ε2 > 0,

consider the following partition of the index set N:

J1(ε2, t) :=
{
k : θk (t) > θ(t)− ε2

}
,

J2(ε2, t) := {k : θk (t) < θ(t) + ε2} ,
J3(ε2, t) :=

{
k : θ(t) + ε2 ≤ θk (t) ≤ θ(t)− ε2

}
.

Then, if D(Θ(t0)) = θ(t0)− θ(t0) = π − ε1 for some ε1 > 0, we have

θ̇i(t0)− θ̇j(t0) ≤ νi − νj −
∑
k∈N

[
min(κik, κjk)

[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2

]
,

(4.1.2)
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for every (i, j) ∈ J1(ε2, t0)× J2(ε2, t0) and sufficiently small ε2 satisfying

ε2 ≤ ε1, ε1+2ε2 ≤ π, sin ε1 ≥ 4 sin
ε2
2
, sin(ε1+2ε2) ≥ 4 sin

ε2
2
. (4.1.3)

Proof. One can apply Lemma 4.1.1 to

a = θj(t0), b = θk(t0), c = θi(t0),

for all i ∈ J1(ε2, t0), j ∈ J2(ε2, t0) and k ∈ N whenever ε2 ≤ ε1. Since

θ̇i(t0)− θ̇j(t0) can be written as

θ̇i(t0)−θ̇j(t0) = νi−νj−
∑
k∈N

(κik sin (θi (t0)− θk (t0))− κjk sin (θk (t0)− θj (t0))) ,

it is sufficient to verify that

κik sin (θi (t0)− θk (t0)) + κjk sin (θk (t0)− θj (t0))

≥ min(κik, κjk)
[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2

for all k ∈ N. Note that for sufficiently small ε2 satisfying (4.1.3), we have

0 ≤ D(Θ(t0))− 2ε2 ≤ θi(t0)− θj(t0) ≤ D(Θ(t0)) ≤ π,

sinD(Θ(t0)) ≥ 4 sin
ε2
2
, sin(D(Θ(t0))− 2ε2) ≥ 4 sin

ε2
2
.

This implies

sin(θi(t0)− θj(t0))− 4 sin
ε2
2
≥ 0

from the concavity of the sine function on the domain [0, π]. Below, we show

the above inequality for k ∈ J1(ε2, t0), k ∈ J2(ε2, t0) and k ∈ J3(ε2, t0) one

by one.

• Case A (k ∈ J1(ε2, t0)): In this case, we use Lemma 4.1.1 to get

κik sin (θi (t0)− θk (t0)) + κjk sin (θk (t0)− θj (t0))

= κjk [sin (θi (t0)− θk (t0)) + sin (θk (t0)− θj (t0))]

+ (κik − κjk) sin (θi (t0)− θk (t0))

≥ κjk

[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2
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≥ min(κik, κjk)
[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2.

• Case B (k ∈ J2(ε2, t0)): Similar to the first case, we use Lemma 4.1.1 to

get

κik sin (θi (t0)− θk (t0)) + κjk sin (θk (t0)− θj (t0))

= κik [sin (θi (t0)− θk (t0)) + sin (θk (t0)− θj (t0))]

+ (κjk − κik) sin (θk (t0)− θj (t0))

≥ κik

[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2

≥ min(κik, κjk)
[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2.

• Case C (k ∈ J3(ε2, t0)): Again, in this case, we use Lemma 4.1.1 to get

κik sin (θi (t0)− θk (t0)) + κjk sin (θk (t0)− θj (t0))

≥ min(κik, κjk) [sin (θi (t0)− θk (t0)) + sin (θk (t0)− θj (t0))]

≥ min(κik, κjk) sin(θi(t0)− θj(t0))

≥ min(κik, κjk)
[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2.

Finally, we combine estimates in Case A ∼ Case C to obtain

θ̇i(t0)− θ̇j(t0) = νi − νj −
∑
k∈N

(κik sin (θi (t0)− θk (t0))− κjk sin (θk (t0)− θj (t0)))

≤ νi − νj −
∑
k∈N

[
min(κik, κjk)

[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2

]
for every ε2 ≤ ε1 and (i, j) ∈ J1(ε2, t0) × J2(ε2, t0), which is our desired

result.

If Θ is a solution to (4.1.1) under the framework (F1)–(F3), one can

further estimate the right-hand side of (4.1.2) to obtain the following result,

so-called ‘practical synchronization’.
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Theorem 4.1.1. Assume that the initial data Θin and network topology (κij)

satisfy (F1)–(F3). Assume further that

0 < D(V) < ∥κ̃∥1∥K∥−∞,1, D(Θin) ∈ (γ, π−γ), γ = sin−1

(
D(V)

∥κ̃∥1∥K∥−∞,1

)
<

π

2
.

Then, if Θ is an ℓ∞-solution to (4.1.1), the phase diameter D(Θ(t)) has the

following asymptotic upper bound:

lim sup
t→∞

D(Θ(t)) ≤ γ.

Proof. Fix a sufficiently small ε0 > 0 satisfying

sin−1

(
D(V) + ∥K∥∞,1ε0
∥κ̃∥1∥K∥−∞,1

)
+
ε0
3
≤ D(Θin) ≤ π−sin−1

(
D(V) + ∥K∥∞,1ε0
∥κ̃∥1∥K∥−∞,1

)
,

and define a positive number ε2 as

ε2 = min

(
sin γ

2
,
ε0
6

)
.

Then, we claim that the following:

Whenever the phase diameter D(Θ) at time t = t0 satisfy

sin−1

(
D(V) + ∥K∥∞,1ε0
∥κ̃∥1∥K∥−∞,1

)
+
ε0
3
≤ D(Θ(t0)) ≤ π−sin−1

(
D(V) + ∥K∥∞,1ε0
∥κ̃∥1∥K∥−∞,1

)
,

we have

D(Θ(t)) ≤ D(Θ(t0))−∥K∥∞,1ε2(t−t0), ∀ t0 ≤ t ≤ t0+
ε2

2(D(V) + 2∥K∥∞,1)
.

To see this, we first verify that ε2 satisfies the condition (4.1.3) for given

ε1 = π −D(Θ(t0)). If ε2 is a positive number satisfying

2ε2 ≤ sin ε1, 2ε2 ≤ π − ε1, (4.1.4)

one can easily see that ε2 satisfies (4.1.3). However, (4.1.4) follows from the

fact that

2ε2 ≤ sin γ ≤ sinD(Θ(t0)) = sin ε1,

2ε2 ≤
ε0
3
≤ sin−1

(
D(V) + ∥K∥∞,1ε0
∥κ̃∥1∥K∥−∞,1

)
+

ε0
3
≤ D(Θ(t0)) = π − ε1.
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Now, consider any index pair (i, j) ∈ J1(ε2, t0) × J2(ε2, t0). Then, Lemma

4.1.2 yields

θ̇i(t0)− θ̇j(t0)

≤ νi − νj −
∑
k∈N

[
min(κik, κjk)

[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
− |κik − κjk| sin ε2

]
≤ D(V)−

(∑
k∈N

κ̃k

)
min

(∑
l∈N

κil,
∑
l∈N

κjl

)[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
+
∑
k∈N

|κik − κjk| sin ε2

≤ D(V)− ∥κ̃∥1∥K∥−∞,1

[
sin(θi(t0)− θj(t0))− 4 sin

ε2
2

]
+ 2∥K∥∞,1 sin ε2

≤ (D(V) + 8∥K∥∞,1 sin
ε2
2
)− ∥κ̃∥1∥K∥−∞,1 sin(θi(t0)− θj(t0)),

where we used

∥κ̃∥1 ≤ 1, ∥K∥−∞,1 ≤ ∥K∥∞,1

in the last inequality. Then, by using Lemma 2.3.3, we have

θ̇i(t)− θ̇j(t) ≤ (D(V) + 8∥K∥∞,1 sin
ε2
2
)− ∥κ̃∥1∥K∥−∞,1 sin(θi(t0)− θj(t0))

+ 2(t− t0)∥K∥∞,1(D(V) + 2∥K∥∞,1)

for all t ∈ R+. In particular, we have

θ̇i(t)− θ̇j(t) ≤ (D(V) + 5∥K∥∞,1ε2)− ∥κ̃∥1∥K∥−∞,1 sin(θi(t0)− θj(t0))

≤ 5∥K∥∞,1ε2 − ∥K∥∞,1ε0

≤ −∥K∥∞,1ε2,

for all |t− t0| ≤ ε2
2(D(V)+2∥K∥∞,1)

. On the other hand, if (i′, j′) is not contained

in J1(ε2, t0)× J2(ε2, t0) or J2(ε2, t0)× J1(ε2, t0), we have

|θi′(t0)− θj′(t0)| ≤ D(Θ(t0))− ε2.
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Therefore, by using Lemma 2.3.3, we have

|θi′(t)− θj′(t)| ≤ |θi′(t0)− θj′(t0)|+ (D(V) + 2∥K∥∞,1)|t− t0|

≤ D(Θ(t0))−
ε2
2
,

for all |t−t0| ≤ ε2
2(D(V)+2∥K∥∞,1)

. To sum up, the phase diameter D(Θ) satisfies

D(Θ(t)) ≤ max
(
D(Θ(t0))− ∥K∥∞,1ε2(t− t0),D(Θ(t0))−

ε2
2

)
= D(Θ(t0))− ∥K∥∞,1ε2(t− t0),

(4.1.5)

for all t ∈ [t0, t0 +
ε2

2(D(V)+2∥K∥∞,1)
], where we used

∥K∥∞,1ε2 ·
ε2

2(D(V) + 2∥K∥∞,1)
≤ ε22

4
<

ε2
2

to find a bigger one in (4.1.5).

Once we prove the aforementioned claim, we can conclude that D(Θ(t))

reaches the lower bound

sin−1

(
D(V) + ∥K∥∞,1ε0
∥κ̃∥1∥K∥−∞,1

)
+

ε0
3

in a finite time. Since ε0 can be chosen arbitrary small, we have

lim sup
t→∞

D(Θ(t)) ≤ inf
ε0>0

[
sin−1

(
D(V) + ∥K∥∞,1ε0
∥κ̃∥1∥K∥−∞,1

)
+

ε0
3

]
= γ,

which is our desired result.

Remark 4.1.1. Note that the quantity ∥K∥−∞,1 measures the degree of cou-

pling strengths. Therefore, Theorem 4.1.1 yields that the phase-diameter can

be made as small as we want by increasing the quantity ∥K∥−∞,1. This is

in fact called “practical synchronization” as discussed in [28, 31, 36, 37] for

synchronization models with finite system size.

Corollary 4.1.1. Suppose that the initial data Θin and network topology (κij)

satisfy (F1)–(F3), and we assume that all natural frequencies are identical:

D(V) = 0.

If Θ is an ℓ∞-solution to (4.1.1), the phase diameter D(Θ(t)) converges to

zero exponentially.
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Proof. In this case, we do not fix a constant ε0, but instead define

ε2 :=
∥κ̃∥1∥K∥−∞,1

(10∥K∥∞,1 + 4∥κ̃∥1∥K∥−∞,1)
sinD(Θ(t0))

and verify (4.1.4) immediately:

2ε2 ≤ sinD(Θ(t0)) = sin(π − ε1) = sin ε1, sin(π − ε1) ≤ π − ε1.

Then, for every (i, j) ∈ J1(ε2, t0)×J2(ε2, t0), one can apply Lemma 4.1.2 as

in Theorem 4.1.1 to obtain

θ̇i(t)− θ̇j(t) ≤ 5∥K∥∞,1ε2 − ∥κ̃∥1∥K∥−∞,1 sin(θi(t0)− θj(t0))

≤ 5∥K∥∞,1ε2 − ∥κ̃∥1∥K∥−∞,1min (sin(D(Θ(t0))− 2ε2), sinD(Θ(t0)))

≤ 5∥K∥∞,1ε2 − ∥κ̃∥1∥K∥−∞,1(sin(D(Θ(t0)))− 2ε2)

= (5∥K∥∞,1 + 2∥κ̃∥1∥K∥−∞,1)ε2 − ∥κ̃∥1∥K∥−∞,1 sin(D(Θ(t0)))

= −1

2
∥κ̃∥1∥K∥−∞,1 sin(D(Θ(t0))),

for all |t− t0| ≤ ε2
4∥K∥∞,1

.

Now, define t0 := 0 and set t1, t2, . . . iteratively by using the relation

tn+1 = tn +
1

56∥K∥∞,1

sinD(Θ(tn)).

Then, we have the following series of inequalities:

D(Θ(tn+1)) ≤ D(Θ(tn))−
1

112
sin2D(Θ(tn)) ≤ D(Θ(tn))−

sin2D(Θin)

112D(Θin)2
D(Θ(tn))

2.

Therefore, we have

D(Θ(tn)) ≤
1

1
D(Θin)

+ n · 112D(Θin)2

sin2 D(Θin)

, tn ≲
sin2D(Θin)

112D(Θin)2
· 1

56∥K∥∞,1

· log n,

which shows the exponential convergence of D(Θ(t)) with respect to t.
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Chapter 5

Kuramoto ensemble on a

sender network

In this chapter, we consider a network topology in which capacity at the i-th

node depends only on neighboring nodes:

κij = κj > 0, i, j ∈ N, (5.0.1)

which represents the second case of Remark 2.3.1. For this network topol-

ogy, we can derive synchronization estimates for an infinite homogeneous

Kuramoto ensemble without any restriction on the size of the initial config-

uration. Furthermore, we can also derive an exponential synchronization for

a heterogeneous ensemble.

Consider the Cauchy problem for an infinite Kuramoto model over sender

network (5.0.1): 
θ̇i = νi +

∑
j∈N

κj sin (θj − θi) , t > 0,

θi(0) = θini , ∀ i ∈ N.
(5.0.2)

In the following two sections, we study the emergent dynamics of (5.0.2) for

homogeneous and heterogeneous ensembles, respectively.
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5.1 Homogeneous ensemble

In this section, we consider the homogeneous ensemble with the same natural

frequencies and normalized coupling:

νi = ν, i ∈ N,
∑
i∈N

κi = 1.

Then, as discussed in Chapter 2, we may assume that ν = 0 without loss of

generality. 
θ̇i =

∑
j∈N

κj sin (θj − θi) , t > 0,

θi(0) = θini , ∀ i ∈ N.
(5.1.3)

5.1.1 Order parameters

This part introduces the order parameters associated with (5.1.3). A polar

representation of the weighted sum of zi gives the order parameters (r, ϕ) for

the phase configuration Θ:

reiϕ :=
∑
k∈N

κke
iθk . (5.1.4)

This is equivalent to

rei(ϕ−θi) =
∑
k∈N

κke
i(θk−θi). (5.1.5)

We now compare the imaginary part of (5.1.5) to obtain

r sin (ϕ− θi) =
∑
k∈N

κk sin (θk − θi) .

Then, we use the above relation and (5.1.3)1 to rewrite infinite Kuramoto

model using order parameters:

θ̇i = r sin(ϕ− θi). (5.1.6)

In the following lemma, we study the governing system for (r, ϕ).
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Lemma 5.1.1. Let Θ be a solution to (5.1.3). Then, the order parameters

(r, ϕ) satisfy 
ṙ = r

∑
k∈N

κk sin
2 (θk − ϕ) , t > 0,

ϕ̇ =
∑
k∈N

κk cos (θk − ϕ) sin (θk − ϕ) .

Proof. We differentiate (5.1.4) to find

ṙeiϕ + ireiϕϕ̇ = i
∑
k∈N

κke
iθk · θ̇k.

Now, we divide the above relation by eiϕ to see

ṙ + irϕ̇ = i
∑
k∈N

κke
i(θk−ϕ) · θ̇k = −

∑
k∈N

κkθ̇k sin(θk − ϕ) + i
∑
k∈N

κkθ̇k cos(θk − ϕ).

We compare the real and imaginary parts of the above relation and use

(5.1.6). More precisely,

• (Real part): From direct calculation, we have

ṙ =
∑
k∈N

κkθ̇k sin(ϕ− θk) = r
∑
k∈N

κk sin
2(ϕ− θk).

• (Imaginary part): Similarly, one has

rϕ̇ =
∑
k∈N

κkθ̇k cos(θk − ϕ) = r
∑
k∈N

κk sin(ϕ− θk) cos(ϕ− θk).

Therefore, we have the desired dynamics for ϕ as long as r > 0.

From the asymptotic behavior of the order parameter or related functional

in sender network, we can describe a different kind of collective behavior than

in Chapter 3 or Chapter 4. For now, we present a converging functional.

Proposition 5.1.1. Let Θ be a solution to (5.1.3). Then, the following di-

chotomy holds:

Either r(t) ≡ 0 or lim
t→∞

∑
k∈N

κk sin
2 (θk(t)− ϕ(t)) = 0.
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Proof. Below, we consider two cases:

r(0) = 0, r(0) > 0.

• Case A (r(0) = 0): In this case, we employ the uniqueness of ODEs to

(5.1.6) and obtain

θi(t) = θini , i ∈ N, i.e., r(t) = r(0) = 0.

• Case B (r(0) > 0): In this case, r is uniformly bounded by one and mono-

tonically increasing in time t (Lemma 5.1.1) :

r(t) ≤
∑
k∈N

κk = 1, ṙ(t) ≥ 0, t > 0.

Therefore, there exists a positive real number r∞ ∈ [r(0), 1] such that

lim
t→∞

r(t) = r∞.

Now, we claim that∫ ∞

0

∑
k∈N

κk sin
2 (θk(t)− ϕ(t)) dt <∞ and

∣∣∣∣∣ ddt
(∑

k

κk sin
2 (θk − ϕ)

)∣∣∣∣∣ ≤ 4.

(5.1.7)

⋄ (Derivation of the first relation in (5.1.7)): By using Lemma 5.1.1, we have

ṙ

r
=
∑
k

κk sin
2 (θk − ϕ)

=⇒ ln (r (t))− ln (r (0)) =

∫ t

0

∑
k∈N

κk sin
2 (θk (s)− ϕ (s)) ds.

Therefore, we take a limit t→∞ to obtain (5.1.7)1.

⋄ (Derivation of the second relation in (5.1.7)): By direct calculation, we have∣∣∣∣∣ ddt
(∑

k∈N

κk sin
2 (θk − ϕ)

)∣∣∣∣∣
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=

∣∣∣∣∣2∑
k∈N

κk

(
θ̇k − ϕ̇

)
sin (θk − ϕ) cos (θk − ϕ)

∣∣∣∣∣ ≤ 2
∑
k∈N

κk

(∣∣∣θ̇k∣∣∣+ ∣∣∣ϕ̇∣∣∣)
= 2

∑
k∈N

κk

(∣∣∣∣∣
∞∑

m=1

κm sin(θm − θk)

∣∣∣∣∣+
∣∣∣∣∣

∞∑
m=1

κm cos (θm − ϕ) sin (θm − ϕ)

∣∣∣∣∣
)

≤ 4
(∑

k∈N

κk

)2
= 4.

Finally, we apply the integral version of Barbalat’s lemma for∑
k∈N

κk sin
2 (θk(t)− ϕ(t))

to get the zero convergence.

As a direct application of Proposition 5.1.1, we have the complete syn-

chronization of (5.1.3).

Theorem 5.1.1. Let Θ be a solution to (5.1.3). Then, the following asser-

tions hold.

1. Complete synchronization emerges asymptotically:

lim
t→∞
|θ̇i(t)− θ̇j(t)| = 0, i, j ∈ N.

2. If r(0) > 0, then for each pair (i, j), there exists an integer nij such

that

lim
t→∞

(θi(t)− θj(t)) = nijπ.

Proof. (i) For the case in which r(0) = 0, we have

θ̇i(t) = 0, t > 0,

which is indeed a steady-state solution. Now, we consider a generic case in

which r(0) > 0. In this case, the dichotomy in Proposition 5.1.1 yields

lim
t→∞

∑
k∈N

κk sin
2 (θk(t)− ϕ(t)) = 0. (5.1.8)
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On the other hand, it follows from Lemma 5.1.1 and (5.1.6) that

sin(ϕ− θi) =
θ̇i
r
. (5.1.9)

Finally, we combine (5.1.8) and (5.1.9) to obtain

lim
t→∞

∑
k∈N κk|θ̇i(t)|2

r2(t)
= 0.

This implies

lim
t→∞
|θ̇i(t)| = 0, ∀ i ∈ N,

so that complete synchronization emerges:

lim
t→∞
|θ̇i(t)− θ̇j(t)| = 0, i, j ∈ N.

(ii) From (5.1.8), we have

r(t) > 0 and lim
t→∞

sin (θk(t)− ϕ(t)) = sin
(
lim
t→∞

(θk(t)−ϕ(t))
)
= 0, ∀ k ∈ N.

Hence, we have

lim
t→∞

(θk(t)− ϕ(t)) = nijπ, for some nij ∈ Z.

5.1.2 Constant of motion

In this part, we provide two time-invariants for the dynamical system (5.1.3)

that allow us to identify synchronized states.

• (Constant of motion I): Let Θ be a phase configuration whose dynamics is

governed by (5.1.3). Then, the weighted sum S(Θ, A) is given as follows:

S(Θ, A) :=
∑
k∈N

κkθk, κ = (κk).
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Then, it is easy to see that S(Θ, A) is time-invariant:

d

dt
S(Θ, A) =

∑
k∈N

κkθ̇k =
∞∑

j,k=1

κjκk sin (θj − θk) = 0. (5.1.10)

In the following proposition, we are ready to verify the convergence of θi for

each i ∈ N. First we present the collision avoidance between oscillators.

Lemma 5.1.2. Let Θ be a solution to (5.1.3). Then for each i, j ∈ N,

θinj < θini =⇒ θj(t) ≤ θi(t) ≤ θj(t) + 2π for t > 0.

Proof. Suppose that there exists a first collision time t0 > 0 between θi and

θj, i.e.,

θj(t0) < θi(t0), t < t0, θj(t0) = θi(t0). (5.1.11)

Then, it follows from (5.1.3) that

θ̇i(t0)− θ̇j(t0) = r
(
sin (ϕ(t0)− θi(t0))− sin (ϕ(t0)− θj(t0))

)
= 0.

Inductively, one can see that

dnθi
dtn

∣∣∣
t=t0

=
dnθj
dtn

∣∣∣
t=t0

, n ≥ 2.

Since θi−θj is analytic at t = t0 by Proposition 2.3.1, there exists δ > 0 such

that

θi(t) = θj(t), t ∈ (t0 − δ, t0 + δ),

which is contradictory to (5.1.11)1.

The result of Lemma 5.1.2 implies that if oscillators’ phases are differ-

ent initially, they can not cross each other in any finite time. On the other

hand, Theorem 5.1.1 does not imply the convergence of each phase itself.

By combining the conservation of the weighted sum, one can show that each

oscillator is converging.

Proposition 5.1.2. Let Θ be a solution to (5.1.3) with initial data satisfying

the following conditions:

0 < θini < 2π, i ∈ N.
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Then, there exists a constant state Θ∞ = {θ∞i } such that

lim
t→∞

θi(t) = θ∞i , i ∈ N.

Proof. By Theorem 5.1.1 and Lemma 5.1.2, one has

|θi(t)− θj(t)| ≤ 2π, ∀ i, j ∈ N and

∃ θ∞ij ∈ (−2π, 2π) such that lim
t→∞

(θi(t)− θj(t)) = θ∞ij .

On the other hand, note that∑
i∈N

κiθ
in
i − θj (t) =

∑
i∈N

κiθi (t)− θj (t) =
∑
i∈N

κi (θi (t)− θj (t)) . (5.1.12)

Next, we show that the R.H.S. of (5.1.12) converges as t→∞. More precisely,

we claim

lim
t→∞

∑
i∈N

κi (θi (t)− θj (t)) =
∑
i∈N

κiθ
∞
ij . (5.1.13)

Proof of (5.1.13): Since
∑∞

n=1 an = 1, for any ε > 0, there exists a nε ∈ N
such that ∑

i≥nε

κi <
ε

4π
. (5.1.14)

For i < nε, we can choose tε such that

t > tε =⇒
∣∣θi (t)− θj (t)− θ∞ij

∣∣ < ε

2
. (5.1.15)

Now, we use (5.1.14) and (5.1.15) to obtain∣∣∣∣∣∣
∑
i∈N

κi (θi (t)− θj (t))−
∑
i∈[N ]

κiθ
∞
ij

∣∣∣∣∣∣
≤
∑
i<nε

∣∣κi (θi (t)− θj (t))− κiθ
∞
ij

∣∣+∑
i≥nε

∣∣κi (θi (t)− θj (t))− κiθ
∞
ij

∣∣
≤
∑
i<nε

κi
ε

2
+
∑
i≥nε

κi · 2π ≤
ε

2
+

ε

2
= ε

for t > tε. Hence we verified (5.1.13). Finally, it follows from (5.1.12) and

(5.1.13) that

lim
t→∞

θj(t) =
∑
i∈N

κiθ
in
i −

∑
i∈N

κiθ
∞
ij =: θ∞j , j ∈ N.
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• (Constant of motion II): As a second choice for the constant of motion, we

consider a cross-ratio-like quantity for four distinct points on the unit circle.

Before we discuss the second constant of motion, we recall the complex lifting

of the Kuramoto model in (5.1.16). For this, we set a point on the unit circle

associated with the phase θi:

zi = eiθi , i ∈ N.

Then, it is easy to check that the Kuramoto model (5.0.2)1 can cast as follows.

żi = iνizi +
κ

2

∑
j∈N

κj (zj − ⟨zj, zi⟩ zi) , where ⟨zj, zi⟩ = z̄jzi. (5.1.16)

We set

ω(t) =
∞∑
n=1

κnzn(t).

Lemma 5.1.3. Let {zi} be a solution to (5.1.16) such that

zi ̸= zj, ∀ i ̸= j, νi ≡ 0, i ∈ N.

Then, we have the following relations: for any i ̸= j ∈ N,

d

dt
(zi − zj) = −

1

2
ω
(
z2i − z2j

)
,

d

dt

(
1

zi − zj

)
=

ω̄

2

(
z2i − z2j

)
(zi − zj)

2 .

Proof. Note that (5.1.16) can be rewritten as

żi =
1

2

(
ω − ω̄z2i

)
.

This yields the desired estimates:

żi−żj = −
ω̄

2
(z2i−z2j ),

d

dt

(
1

zi − zj

)
= − 1

(zi − zj)2
d

dt
(żi−żj) =

ω̄

2

z2i − z2j
(zi − zj)2

.

For {zi := eiθi}i∈N, we define a cross ratio-like functional Cijkl as

Cijkl :=
zi − zk
zi − zj

· zj − zl
zk − zl

.
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Proposition 5.1.3. Let Θ be a solution to (5.1.3) with non-collisional initial

data:

θini ̸= θinj for i ̸= j.

Then, for any four-tuple (i, j, k, l) ∈ N4, Cijkl is well-defined for all t > 0 and

constant:

Cijkl(t) = Cijkl(0), t > 0.

Proof. Since all points {eiθi} are distinct, Cijkl is well-defined at t = 0. More-

over, by the continuity of solution, there exists η > 0 such that for i ̸= j,

θi(t) ̸= θj(t) t ∈ (0, η).

Thus, the cross-ratio like functional Cijkl is well-defined in the time interval

(0, η). Now we introduce a temporal set T and its supremum τ ∗ :

T := {τ ∈ (0,∞) : Cijkl is well-defined in the time interval (0, τ)}, τ ∗ := supT .

Then, the set T is not empty and τ ∗ ∈ (0,∞]. In what follows, we show that

τ ∗ =∞ and Cijkl(t) = Cijkl(0), t > 0.

Suppose that the contrary holds, not, i.e.,

τ ∗ <∞.

First, we show that the functional Cijkl is constant in the interval (0, τ ∗). For

this, we use Lemma 5.1.3 to get

d

dt
Cijkl(t) = −

(
1

2
ω(t) (zi(t) + zk(t)) +

1

2
ω(t) (zj(t) + zl(t))

)
Cijkl(t)

+

(
1

2
ω(t) (zi(t) + zj(t)) +

1

2
ω(t) (zk(t) + zl(t))

)
Cijkl(t)

= 0, t ∈ (0, τ ∗).

Thus, as long as Cijkl is well-defined, it is constant. Certainly, it is continuous
with respect its arguments. Therefore,

∃ Cijkl(τ ∗) = lim
t→τ∗−

Cijkl(t).
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By continuity, there exists a δ > 0 such that

Cijkl(·) is well-defined in the time-interval [0, τ ∗ + δ)

which is contradictory to the choice of τ ∗. Therefore we have

τ ∗ =∞,

i.e., Cijkl(·) is well-defined on the whole time interval [0,∞) and

Cijkl(t) = Cijkl(0). t ∈ (0,∞).

As a direct corollary of Proposition 5.1.3, we have the following results

on the asymptotic configurations of the set {eiθi} and {θi}. First, we will

see that asymptotic configuration of {eiθi} is either a singleton or bi-polar

configuration.

Corollary 5.1.1. Let {zi} be a solution to (5.1.16) with asymptotic config-

uration {z∞i }. Then, the following dichotomy holds.

1. There exists a k ∈ N such that z∞i = −z∞k for i ∈ N \ {k}.

2. z∞i = z∞j for all i, j ∈ N.

Proof. Suppose that there exists a 1 ̸= k ∈ N such that

z∞1 ̸= z∞k .

By Corollary 5.1.1 and Proposition 5.1.2, θ∞i − θ∞k is an integer multiple of

π, which implies z∞1 = −z∞k . Then we set a partition I1 ∪ I2 of N by

I1 := {i ∈ N | zi → z∞1 as t→∞} , I2 := {i ∈ N | zi → −z∞1 as t→∞} .

Suppose that

|I1| ≥ 2 and |I2| ≥ 2.

Then, we can choose

i ̸= j ∈ I1 and k ̸= l ∈ I2.
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For such pairs (i, j) and (k, l),

lim
t→∞
|Cijkl(t)| = lim

t→∞

∣∣∣zi(t)− zk(t)

zi(t)− zj(t)
· zj(t)− zl(t)

zk(t)− zl(t)

∣∣∣ =∞,

which is contradictory to the constancy of Cijkl:

Cijkl(t) = Cijkl(0), t > 0.

Therefore, we have

|I1| ≤ 1 and |I2| ≤ 1.

Without loss of generality, we may assume I1 ≤ 1. Then there are two cases:

If |I1| = 0, then asymptotic state is in complete phase synchrony:

lim
t→∞

zi(t) = z∞1 , i ≥ 2.

If |I1| = 1, then we have bi-polar asymptotic state:

lim
t→∞

zi(t) = −z∞1 , i ≥ 2.

Now we are ready to study the asymptotic configuration of (5.1.3) that

emerges from the given initial configuration {θini }. For a given initial config-

uration {θini }, we set

θ0 :=
∑
i∈N

κiθ
in
i . (5.1.17)

Then, it follows from (5.1.10) that

θ0 =
∑
i∈N

κiθi(t), t > 0. (5.1.18)

Corollary 5.1.2. Let Θ be a solution to (5.1.3) with asymptotic configuration

{θ∞i }:
lim
t→∞

θi(t) = θ∞i , i ∈ N.

Then, for each i ∈ N,

θ∞i ∈ {θ0} ∪ {θ0 ± κiπ | i ∈ N} ∪ {θ0 ± (1− κi)π | i ∈ N} .
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Proof. It follows from Corollary 5.1.2 that we have two possible asymptotic

configurations:

Complete phase synchrony and bi-polar configuration.

• Case A: Suppose that

lim
t→∞

θi(t) = θ∞, ∀ i ∈ N.

In this case, we use the above relation, (5.1.17) and (5.1.18) to get

θ0 =
∑
i∈N

κiθi(t) = lim
t→∞

∑
i∈N

κiθi(t) =
∑
i∈N

κiθ
∞
i =

∑
i∈N

κiθ∞ = θ∞.

• Case B: Suppose that

lim
t→∞

θj(t) = θ∞ ± π for some j and lim
t→∞

θi(t) = θ∞ for all i ̸= j.

(5.1.19)

Then, we use the above relations and the same idea as Case A to find

θ0 =
∑
i∈N

κiθi(t) =
∑
i∈N

κiθ
∞
i =

∑
k∈N

κkθ∞ ± κjπ = θ∞ ± κjπ. (5.1.20)

Then (5.1.19) and (5.1.20) imply

θi → θ∞ = θ0 ∓ κjπ, θj → θ0 ± (1− κj) π.

Finally, we combine all the results in Case A and Case B to obtain the desired

estimate.

5.2 Heterogeneous ensemble

In this section, we study the frequency synchronization of the heterogeneous

ensemble for a restricted class of initial configurations confined in a half circle.
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Note that the Cauchy problem (5.0.2) is equivalent to the following Cauchy

problem:
θ̇i = ωi, t > 0, ∀ i ∈ N,
ω̇i =

∑
j∈N

κj cos (θi − θj) (ωj − ωi) ,

θi(0) = θini ∈ R, ωi(0) = νi +
∑
j∈N

κj sin
(
θinj − θini

)
,

(5.2.21)

where

Θin = (θin1 , θ
in
2 , . . .) ∈ ℓ∞, V = (ν1, ν2, . . .) ∈ ℓ∞.

We set

W := (ω1, ω2, . . .) and D(W) := sup
m,n
|ωm − ωn|.

Note that for our sender network,

∥K∥∞,1 = ∥K∥−∞,1 =
∑
j∈N

κj.

Here the Theorem 4.1.1 can be applied to trap Θ(t) into a quarter arc.

Proposition 5.2.1. Suppose that the initial condition D(Θin) and network

topology (κij) satisfy

0 < D(V) < ∥κ̃ϵ∥1∥K∥∞,1, D(Θin) ∈ (γ, π−γ), γ = sin−1

(
D(V)

∥κ̃ϵ∥1∥K∥∞,1

)
<

π

2

for

ε≪ 1, κ̃ε,i =
κi

∥K∥∞,1 + ε
, κ̃ε = {κ̃ε,i}i∈N .

Then there exists a t0 > 0 and 0 < δ < 1 such that

D (Θ(t)) <
π

2
− sin−1 δ, t ≥ t0.

Proof. The conclusion is straightforward from Theorem 4.1.1.

Next, we state our last main results on the complete synchronization of

(5.2.21).
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Theorem 5.2.1. Let (Θ,W) be a solution to (5.2.21) with conditions in

Proposition 5.2.1. Then, there exists t0 ≥ 0 such that

D(Θ(t0)) <
π

2
, D(W(t)) ≤ D(W(t0)) · exp

[
−3∥K∥∞,1 log 2

32
(t− t0) + 1

]
holds for t ≥ t0.

Proof. Since the proof is very lengthy, we leave its proof in Appendix C.
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Conclusion

In this thesis, we propose a generalized synchronization model for the infinite

set of Kuramoto oscillators and studied its emergent asymptotic dynamics.

The original Kuramoto model describes the synchronous dynamics of a finite

set of Kuramoto oscillators, and it has been extensively studied in the last

decade.

However, as far as the authors know, the dynamics of an infinite number

of Kuramoto oscillators have not been addressed in literature as it is. For the

dynamics of an infinite ensemble, the Kuramoto-Sakaguchi equation derived

by a mean-field approximation is often used to describe the temporal-phase

space dynamics of a one-particle distribution function. However, this is only

an approximation for the dynamics of the infinite set of Kuramoto oscillators.

The significance of our work is that we have observed emergent dynamics

of the infinite-dimensional Kuramoto model without suppressing the informa-

tion of each oscillator. For our model to be well-posed, we gave the coupling

weights from an infinite matrix whose row sums are uniformly finite. In such

a system, some methods that work well in finite-dimensional models can be

applied well, but some fundamental differences exist.

For example, we cannot use the Dini derivative of phase diameter because

we cannot estimate how many crossings occur at the end-point of phase

space. Similarly, the gradient flow structure of the Kuramoto model cannot

be applied even for a symmetric network. We show that there exists a network

topology that leads to the constancy of phase diameter (see Corollary 3.1.1).
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For a symmetric network topology and homogeneous ensemble, we show

that complete synchronization occurs asymptotically (see Theorem 3.1.1).

Meanwhile, for a heterogeneous ensemble, we cannot show complete synchro-

nization. Instead, we obtain a practical synchronization, i.e., we can make the

size of phase diameter as small as we want by increasing the size of coupling

strength (see Theorem 4.1.1).

On the other hand, for a sender network topology in which coupling

strength depends on neighboring oscillators, a homogeneous ensemble either

evolves toward complete phase synchrony or a specific type of bi-cluster con-

figuration (see Theorem 5.1.1). In contrast, for a heterogeneous ensemble, we

show that complete synchronization emerges asymptotically (see Theorem

5.1.1).

There are several interesting remaining questions. For example, the rela-

tion between finite collisions and phase-locking is not clear. For the Kuramoto

model for a finite ensemble, the aforementioned relations are equivalent. In

addition, we did not show the emergence of complete synchronization for a

heterogeneous ensemble in a large coupling regime. We leave these interesting

questions as future work.
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Appendix A

Some useful lemmas

In appendix A, we collect some useful results which are used explicitly and

implicitly in the main body of the thesis without detailed explanation and

proofs. Detailed proofs can be found in quoted references and any reasonable

book on mathematical analysis, e.g., [40].

First, we begin with the abstract Cauchy problem on a Banach space

(E, ∥ · ∥): {
du
dt

= F (u (t)) , t > 0,

u(0) = uin.
(A.0.1)

Lemma A.0.1. (Global well-posedness [7, 9]) The following assertions hold.

1. (Existence): Let F : E → E be a Lipschitz map, i.e. there is a nonneg-

ative constant L such that

||Fu− Fv|| ≤ L ||u− v|| ∀ u, v ∈ E.

Then, for any given uin ∈ E, there exists a global solution u ∈ C1([[0,∞);E)

to (A.0.1).

2. (Uniqueness): For U ⊂ E, let F : U → E be a locally Lipschitz map;

let I be an interval contained in R not necessarily compact. If there are

two exact local solutions φ1 and φ2 : I → E to (A.0.1). Then, they are

identical in the entire interval I.
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Remark A.0.1. This lemma has been used to guarantee the global well-

posedness of the infinite Kuramoto model on the Banach space (ℓ∞, ∥ · ∥∞)

in Proposition 2.3.1.

Next, we present a differential version of Barbalat’s lemma which has

been used in the proof of Proposition 5.1.1.

Lemma A.0.2. (Barbalat [4]) Let F : [0,∞)→ R be a continuously differ-

entiable function satisfying the following two properties:

∃ lim
t→∞

F (t) and F ′ is uniformly continuous.

Then, F ′ tends to zero, as t→∞.

Lemma A.0.3. [40] Let Fn be a sequence of real-valued differentiable func-

tions on [a, b] with the following two properties:

1. (Pointwise convergence at one-point): For some x0 ∈ [a, b],

∃ lim
n→∞

Fn(x0).

2. (Uniform convergence of derivatives): the sequence {F ′
n} converges uni-

formly on [a, b].

Then, {Fn}converges uniformly on [a, b] to a function F and

F ′(x) = lim
n→∞

F ′
n(x) (a ≤ x ≤ b) .

Remark A.0.2. The proof can be found in Theorem 7.17 of [40].

Finally, we state the Lojasiewicz gradient inequality on a Hilbert space

(H, ⟨·, ·⟩): We set

∥u∥ :=
√
⟨u, u⟩, u ∈ H.

Lemma A.0.4. (Lojasiewicz gradient inequality [20]) For an open neigh-

borhood U ⊂ H of 0 ∈ H, let F : U → R be an analytic function such

that

F (0) = 0, DF (0) = 0.

Suppose F satisfies the following two conditions:

62



APPENDIX A. SOME USEFUL LEMMAS

1. N := ker(D2F (0)) is finite-dimensional.

2. There is ρ > 0 such that

∥D2F (0)u∥ ≥ ρ∥u∥, ∀ u ∈ V ∩N⊥, (A.0.2)

where N⊥stands for the orthogonal complement of N .

Then there exist θ ∈ (0, 1/2), a neighborhood W of 0 and c > 0 such that

∥DF (u)∥ ≥ c
∣∣∣F (u)

∣∣∣1−θ

, ∀ u ∈ W.

Remark A.0.3. See the discussions right after the proof of Theorem 3.1.1.
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Proof of Lemma 3.1.1

In appendix B, we provide a lengthy proof of Lemma 3.1.1. Since θ(0) =

sup
i∈N

θini , the following dichotomy holds:

(1) θ(0) is an isolated point of the set {θini }i∈N,
(2) θ(0) is a limit point of the set {θini }i∈N.

In the sequel, we show that the desired assertions hold for each case.

(1) First of all, suppose that

θ(0) is not a limit point of the set {θini }i∈N.

In this case, the index set

Iθ(0) :=
{
i ∈ N : θini = θ(0)

}
is nonempty (possibly infinite) subset of N, and there exists ε > 0 such that

D(Θin) + ε < π and I(θ(0)−ε,θ(0)) :=
{
i ∈ N : θini ∈ (θ(0)− ε, θ(0))

}
= ∅.

⋄ Case A.1: Let i ∈ N be an index such that

θini ≤ θ(0)− ε.
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We set

δ1 :=
ε

∥K∥∞,1

> 0.

For t ∈ (0, δ1), we use the above relation and Lemma 2.3.2 to obtain

θi(t) ≤ θini + ∥K∥∞,1t < θ(0)− ε+ ∥K∥∞,1 ·
ε

∥K∥∞,1

= θ(0). (B.0.1)

⋄ Case A.2: Let i ∈ N be an index such that

θini > θ(0)− ε.

In this case, it is easy to see that θini = θ(0) and

d+

dt

∣∣∣
t=0+

θi =
∑
j∈N

κij sin(θ
in
j − θini ) =

∑
j∈N

κij sin(θ
in
j − θ(0))

=
∑

j∈Iθ(0)

κij sin(θ
in
j − θ(0)︸ ︷︷ ︸

=0

) +
∑

j /∈Iθ(0)

κij sin(θ
in
j − θ(0))

=
∑

j /∈Iθ(0)

κij sin(θ
in
j − θ(0)) ≤ −

 ∑
j /∈Iθ(0)

κij

 sin ε,

(B.0.2)

where d+

dt
is the Dini derivative, and we used (3.0.1), (B.0.2) and the relation:

j /∈ Iθ(0) =⇒ −π + ε < θinj − θ(0) ≤ −ε.

On the other hand, for i ∈ Iθ(0) and sufficiently small t satisfying

t < δ2 :=

 ∑
j /∈Iθ(0)

κ̃j

 · sin ε

2∥K∥∞,1

, (B.0.3)

we apply (2.3.16) and (B.0.2) to obtain

θ̇i(t) ≤ θ̇i(0) +
(
2∥K∥∞,1

∑
j∈N

κij

)
t

<

[
−
∑

j /∈Iθ(0)

κij +
(∑

j∈N

κij

)( ∑
j /∈Iθ(0)

κ̃j

)]
︸ ︷︷ ︸

< 0 from (F1)

sin ε < 0. (B.0.4)
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Note that
∑

j /∈Iθ(0)

κ̃j is always strictly positive except the trivial case Iθ(0) = N,

which we have already excluded by using the condition D(Θin) > 0. This

guarantees the positivity of the constant δ2 in (B.0.3). Finally, we set

δ := min{δ1, δ2} > 0,

and combine (B.0.1) and (B.0.4) to conclude the desired result.

(2) Suppose that

θ(0) is a limit point of the set {θini }i∈N.

In this case, we can exclude the singleton case with {θini }i∈N =
{
θ(0)

}
, since

every neighborhood of the limit point θ(0) must contain a point of {θini }i∈N
other than θ(0) itself. Therefore, there exists a natural number i0 such that

θ(0)− θini0 =: ε0 ∈ (0, π),

so that the index set

I[θ(0),θ(0)−ε0]
:=
{
i : θ(0) ≤ θini ≤ θ(0)− ε0

}
is nonempty. Now, we define an auxiliary function f : (0, ε0)→ R which will

appear in (B.0.6):

f(x) ≡

 ∑
j∈I[θ(0),θ(0)−ε0]

κ̃j

 sin(ε0 − x)

sinx
, ∀ x ∈ (0, ε0).

Then, it is easy to see that f is a monotone decreasing continuous function

such that

f ′(x) < 0, x ∈ (0, ε0), lim
x→0+

f(x) = +∞, lim
x→ε0−

f(x) = 0.

Therefore, there exists a unique ε ∈ (0, ε0) such that

f(ε) = 2, i.e.,

 ∑
j∈I[θ(0),θ(0)−ε0]

κ̃j

 sin(ε0 − ε) = 2 sin ε. (B.0.5)
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⋄ Case B.1: Let i ∈ N be an index such that

θini ≤ θ(0)− ε.

Then, for every positive t < δ1 =
ε

∥K∥∞,1
, we use Lemma 2.3.2 to see

θi(t) ≤ θini + ∥K∥∞,1t < θ(0)− ε+ ∥K∥∞,1δ1 = θ(0).

⋄ Case B.2: Let i ∈ N be an index such that

θini > θ(0)− ε.

Note that the whole index set N can be rewritten as

N = {i : θ(0) ≤ θini ≤ θ(0)− ε0}
⋃
{i : θ(0)− ε0 < θini ≤ θ(0)− ε}⋃

{i : θ(0)− ε < θini ≤ θ(0)}

=: I[θ(0),θ(0)−ε0]

⋃
I(θ(0)−ε0,θ(0)−ε]

⋃
I(θ(0)−ε,θ(0)].

Then, we have

d+θi
dt

∣∣∣
t=0+

=
∑

j∈I[θ(0),θ(0)−ε0]

κij sin(θ
in
j − θini ) +

∑
j∈I(θ(0)−ε0,θ(0)−ε]

κij sin(θ
in
j − θini )︸ ︷︷ ︸
≤0

+
∑

j∈I(θ(0)−ε,θ(0)]

κij sin(θ
in
j − θini )

≤
∑

j∈I[θ(0),θ(0)−ε0]

κij sin(θ
in
j − θini ) +

∑
j∈I(θ(0)−ε,θ(0)]

κij sin(θ
in
j − θini )

≤ −
∑

j∈I[θ(0),θ(0)−ε0]

κij sin(ε0 − ε) +
∑

j∈I(θ(0)−ε,θ(0)]

κij sin ε

≤ −
∑

j∈I[θ(0),θ(0)−ε0]

κij sin(ε0 − ε) +
∑
j∈N

κij sin ε

≤
∑
j∈N

κij

sin ε−
∑

j∈I[θ(0),θ(0)−ε0]

κ̃j sin(ε0 − ε)

 from (F1) and (B.0.5)

= −

(∑
j∈N

κij

)
sin ε,

(B.0.6)
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where we used (B.0.5) in the last equality. Now, we set

δ̃2 :=
sin ε

2∥K∥∞,1

.

Then, for t < δ̃2, we apply Lemma 2.3.2 as in Case A.2 to (B.0.6) to obtain

θ̇i(t) ≤ θ̇i(0) +
(
2∥K∥∞,1

∑
j∈N

κij

)
t < θ̇i(0) +

(∑
j∈N

κij

)
sin ε ≤ 0.

Finally, we define δ = min{δ1, δ̃2} to get the desired result when θ(0) is a

limit point.
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Proof of Theorem 5.2.1

In appendix C, we provide a lengthy proof of Theorem 5.2.1. By Proposition

5.2.1, we may assume that there exists an entrance time t0 such that

D(Θ(t)) ≤ π

2
− sin−1 δ, t ≥ t0

for some 0 < δ < 1. For the derivation of desired exponential decay, we split

its proof into four steps.

• Step A (A differential inequality for some ωi): We set

ω(t) := sup
n∈N

ωn(t).

Let i ∈ N be an index such that

ωi(t0) >
3

4
ω(t0). (C.0.1)

Since ∑
j∈N

κjωj(t0) = 0 with {ωi}i∈N ̸≡ 0, (C.0.2)

such i exists. We set

J(t0) := {j ∈ N : ωj(t0) ≥ ωi(t0)} . (C.0.3)
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Note that

ω̇i(t0) =
∑
j∈N

κj cos (θi(t0)− θj(t0)) (ωj(t0)− ωi(t0))

=
∑

j∈J(t0)

κj cos (θi(t0)− θj(t0)) (ωj(t0)− ωi(t0))

+
∑

j∈N\J(t0)

κj cos (θi(t0)− θj(t0)) (ωj(t0)− ωi(t0))

:= I21 + I22.

(C.0.4)

Below, we estimate the term I2i with i = 1, 2.

⋄ (Estimate of I21): We use (C.0.2) and (C.0.3) to get

I21 =
∑

j∈J(t0)

κj cos (θi(t0)− θj(t0)) (ωj(t0)− ωi(t0))

≤
∑

j∈J(t0)

κj (ωj(t0)− ωi(t0)) = −
∑

j∈N\J(t0)

κjωj(t0)−
∑

j∈J(t0)

κjωi(t0).

(C.0.5)

⋄ (Estimate of I22): Again we use (C.0.2) to obtain

I22 =
∑

j∈N\J(t0)

κj cos (θi(t0)− θj(t0)) (ωj(t0)− ωi(t0))

≤ δ
∑

j∈N\J(t0)

κj (ωj(t0)− ωi(t0)) = −δ
∑

j∈J(t0)

κjωj(t0)− δ
∑

j∈N\J(t0)

κjωi(t0),

(C.0.6)

the equality in (C.0.6) holds by (C.0.2). In (C.0.4), we combine all the esti-

mates (C.0.5) and (C.0.6) to get

ω̇i(t0) ≤ −
∑

j∈J(t0)

κjωi(t0)−
∑

j∈N\J(t0)

κjωj(t0)− δ
∑

j∈J(t0)

κjωj(t0)− δ
∑

j∈N\J(t0)

κjωi(t0)

= −
∑

j∈J(t0)

κjωi(t0)− δ
∑

j∈N\J(t0)

κjωi(t0)− (1− δ)
∑

j∈N\J(t0)

κjωj(t0)

= −δ∥K∥∞,1ωi(t0) + (1− δ)
∑

j∈J(t0)

κj (ωj(t0)− ωi(t0)) < −δ∥K∥∞,1ωi(t0).
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• Step B (Estimate ωi(t) for t ≪ 1): For i ∈ N satisfying the relation

(C.0.1), we set

C1 :=
δ

16 (∥V∥∞ + 2∥K∥∞,1)
min

{
1,

1

∥K∥∞,1

}
. (C.0.7)

In the sequel, we estimate ωi in the time interval [t0, t0 + C1ω(t0)].

First, we use Lemma 2.3.2 and (C.0.1) to find

ω̇i(t) ≤ ω̇i(t0) + 2∥K∥∞,1 (∥V∥∞ + ∥K∥∞,1) (t− t0)

≤ −3δ

4
∥K∥∞,1ω(t0) + 2∥K∥∞,1 (∥V∥∞ + ∥K∥∞,1) (t− t0)

≤ −3δ

8
∥K∥∞,1ω(t0),

where we used (C.0.7). This yields

ωi(t) ≤ ω(t0)−
3δ

8
∥K∥∞,1ω(t0) (t− t0) .

Next, we consider an index i ∈ N such that

ωi(t0) ≤
3

4
ω(t0).

In this case, we use (C.0.7) to get

ωi(t) ≤ ωi(t0) + 2∥K∥∞,1 (∥V∥∞ + 2∥K∥∞,1) (t− t0)

≤ 3

4
ω(t0) +

1

8
ω(t0).

Hence we obtain

ω(t) ≤ max

{
7

8
,

(
1− 3δ

8
∥K∥∞,1(t− t0)

)}
ω(t0) (C.0.8)

for t0 ≤ t < t0 + C1ω(t0).
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• Step C (ω(t) is nonincreasing for t ≥ t0): Let t1 > t0 and

I = {t : ω(t) ≤ ω(t1)}

in [t1,∞). By Lemma 2.3.2, Θ̈ = Ẇ is uniformly bounded and ωi(t) is glob-

ally Lipschitz. Applying similar process with Lemma 2.3.2 gives ω is also

Lipschitz. Hence I is nonempty closed subset of [t1,∞), and Step B proves

that I is open in [t1,∞). Hence ω(t) is globally decreasing.

• Final step: ω is exponentially decreasing for t ≥ t0.

Let

tn = tn−1 + C1ω(tn−1), n ∈ N.

Then, (
1− 3δ

8
∥K∥∞,1C1ω(tn−1)

)
<

7

8
⇐⇒ 1

3δ∥K∥∞,1C1

< ω(tn−1)

gives

ω(tn) <
7

8
ω(tn−1) ⇐⇒

1

3δ∥K∥∞,1C1

< ω(tn−1)

in (C.0.8). Combined with

tn+1 − tn < tn − tn−1 ⇐⇒ ω(tn) < ω(tn−1),

we can conclude that

ω(t+ n(t1 − t0)) < ω(tn) <

(
7

8

)n

ω(t0)

for

n ∈
{
m ∈ N :

1

3δ∥K∥∞,1C1

< ω(tm)

}
.

Now it is enough to show the conclusion with assuming 1
3δ∥K∥∞,1C1

≥ ω(t0).

We choose k ∈ N such that

1

2k−1
≥ ω (t0) >

1

2k
.

Suppose that

ω (t) >
1

2k
for t > t0.
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By induction on n, we can show that

ω(t) ≤ ω(t̃0,n)−
3

32
∥K∥∞,1 ·

1

2k
·
(
t− t̃0,n

)
, t̃0,n ≤ t ≤ t̃0,n+1,

where t̃0,n := t0 + n · C1

2k
.

This implies

ω(t) ≤ ω(t0)−
3

32
∥K∥∞,1 ·

1

2k
· n, ∀ n ∈ N,

which is contradictory to ω (t) > 1
2k
.

Furthermore, we have

ω(t) ≤ ω(t0)−
3

32
∥K∥∞,1 ·

1

2k
· n ≤ 1

2k−1
− 3

32
∥K∥∞,1 ·

1

2k
· n ≤ 1

2k
,

for n ≥ ⌊ 32
3A
⌋+ 1.

This implies

inf

{
t : ω(t) ≤ 1

2k

}
≤ t0 +

⌊ 32

3∥K∥∞,1

⌋
+ 1.

Inductively, we can derive

0 < ω(t) ≤ 1

2n
ω(t0), t ≥ t0 + n

(⌊ 32

3∥K∥∞,1

⌋
+ 1

)
. (C.0.9)

Similarly, we set

ω(t0) := inf
n∈N

ωn(t0).

This yields

0 > ω(t) ≥ 1

2n
ω(t0), for t ≥ t0 + n

(⌊ 32

3∥K∥∞,1

⌋
+ 1

)
. (C.0.10)

Finally, we combine (C.0.9) and (C.0.10) to find

D (W(t)) = ω(t)− ω(t) ≤ 1

2n
(ω(t0)− ω(t0)) =

1

2n
D (W(t0)) ,
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for t ≥ t0 + n
(
⌊ 32
3∥K∥∞,1

⌋+ 1
)
. In this case, we have exponential synchro-

nization:

D (W(t)) ≤ D (W(t0)) · exp
[
−3∥K∥∞,1 log 2

32
(t− t0) + 1

]
, t ≥ t0.
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국문초록

이논문에서는가산개의진동자를갖는쿠라모토모델을제안하고,두종류의

네트워크 토폴로지에 대한 집단현상을 설명한다. 일반적인 네트워크 토폴로

지에서는 동질 앙상블의 완전 동기화를 구배 흐름으로 설명할 수 있고, 이질

앙상블에서는 실제 동기화를 얻을 수 있음을 보인다. 그리고 유한 쿠라모토

모델과의 중요한 차이점으로 무한 모델에서의 특정한 네트워크 토폴로지에서

위상 직경이 변하지 않는 경우를 관찰할 수 있다. 또한 결합 강도가 주변 진

동자에만 의존하는 두 번째 종류의 네트워크(발신자 네트워크) 를 고려한다.

이네트워크토폴로지에서는집단현상을더잘제어할수있는데,균질앙상블

에서는 일반적인 초기조건에 대대한 가능한 점근 상태는 완전한 위상 동기화

또는이중클러스터뿐임을보인다.그리고이질앙상블에서는초기위상이한

사분원에 포함되는 경우, 지수적인 완전 동기화 현상을 관찰한다.

주요어휘: 점근적 행동, 군집 현상, 쿠라모토 모델, 무한 입자 시스템

학번: 2016-20243
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