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Abstract

In an automatic oil spill monitoring system that utilizes SAR satellites, the
dark spot detection step, which is responsible for the segmentation of potential oil
spills, is undeniably significant. As the initial stage of automatic oil spill detection,
this process is typically the most time-consuming and substantially influences the
system performance. Considering the vast expanses of ocean that require thorough
surveillance, it is crucial to have an efficient method that accurately identifies oil
spill candidates at this critical early stage. In this study, a semi-empirical model
was carefully proposed, grounded in a comprehensive analysis of the physical
characteristics governing the interaction between electromagnetic waves and the
sea surface, as well as oil spill observation data from SAR. This model utilizes
wind speed, relative wind direction, and incidence angle as independent variables
to calculate the threshold radar backscatter coefficient, to differentiate oil spill
candidates from the ocean. To determine the parameters of the proposed model,
large oil spill observational data was collected from the Sentinel-1 satellite, and the
corresponding wind field data was derived from the ECMWEF ERAS5 reanalysis
data.

When compared to widely used dark spot detection methods such as the Otsu,
Bradley, and active contour methods, the proposed model demonstrated
outstanding performance. The model achieved an average F1 score of 0.7948 on
the evaluation dataset, while the aforementioned methods showed 0.3315, 0.6400,
and 0.5191, respectively. The proposed model exhibited distinguished accuracy



with a straightforward implementation process, balancing effectiveness with
simplicity, which makes it particularly suitable for real-time oil spill detection
where efficiency is paramount. A notable feature of the proposed model is its
ability to compute threshold at the pixel-level, unlike conventional patch-level
methods that require iterative processes to detect oil spill candidates of varying
sizes. This allows the model to identify oil spills in a single operation regardless of
their sizes. While the proposed model is flexible in using diverse wind input
sources such as buoys, scatterometers, or geophysical model functions, it is crucial
to note that its performance depends on the accuracy of the wind field information,
specifically, how well it reflects the wind conditions at the exact SAR acquisition
time.

In conclusion, this study has thoroughly investigated the behavior of the radar
backscatter coefficient under both slick-free and slick-covered sea surfaces, leading
to the development of a semi-empirical model that can enhance the efficiency of oil
spill monitoring systems. The practical implications of the model extend beyond
improving system performance; it can be used to create balanced deep-learning
datasets by selectively choosing patches with dark spots. Moreover, the physically-
grounded nature of the model enables advanced future research, such as

distinguishing types of oil or estimating slick thickness.

Keywords: SAR, Oil spill, Microwave backscattering, Semi-empirical model,
Segmentation

Student Number: 2021-22292
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Chapter 1. Introduction

1.1 Research Background

Marine oil pollution poses a significant threat to the environment, and it is
imperative to identify the precise discharge area through regular ocean surveillance
in order to minimize its effects. Synthetic Aperture Radar (SAR) is an active sensor
that transmits electromagnetic waves and measures the backscattered signal from
targets, making it capable of image acquisition regardless of sunlight and weather
conditions. Numerous studies have demonstrated the effectiveness of SAR in
observing oil spills (Gade and Alpers, 1999; Del Frate et al., 2000; Solberg et al.,
2007; Kim et al., 2010; Marghany, 2014; Xu et al., 2014; Singha et al., 2016). In
ocean radar imaging, the intensity values in SAR scenes represent the power of the
backscattered radar signal from the sea surface. When the sea surface is covered
with an oil slick, the slick attenuates the ocean surface wave, having a darker
brightness value than the slick-free surroundings.

However, dark areas do not always result from anthropogenic mineral oil
spills. Non-oil features that appear similar to oil spills in SAR imagery are referred
to as oil spill look-alikes and these can originate from various sources such as (i)
natural surface films formed by plankton or fish, (ii) areas with low winds that
smooth out the sea surface, (iii) cold upwelling water which changes the stability of

the air-sea interface, (iv) divergent flow regimes, (v) dry-fallen sands during ebb
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tide, (vi) turbulent waver as encountered in ship wakes, (vii) turbulence caused by
rain drops which dampen the short waves, (viii) grease or frozen sea ice, or (ix)
sewage plants from the land (Alpers et al., 2017). The most common causes are
natural surface films by marine organisms, typically referred to as biogenic slicks
and low wind areas. Considerable efforts have been made to develop automatic
systems that can effectively differentiate anthropogenic mineral oil spills from
various types of oil spill look-alikes.

The automatic oil spill detection method typically involves three steps: dark
spot detection, dark spot feature extraction, and dark spot classification (Brekke
and Solberg, 2005). The initial step involves the detection or segmentation process
of dark spots, which aims to distinguish oil spill candidates from the background.
In subsequent steps, feature extraction processes are employed to identify unique
characteristics or statistical parameters of the detected dark spots. These
characteristics can be used to classify dark spots as oil spills or oil spill look-alikes.
Following the feature extraction, a classifier is used to determine whether the
potential oil spills identified during the dark spot detection step are anthropogenic
mineral oil spills or look-alikes.

The accurate detection of dark spots is crucial as it impacts the overall
performance of the oil spill identification process. Failure to detect an oil slick
during the dark spot segmentation step can result in incorrect classification of the
oil spill (Brekke and Solberg, 2005). Furthermore, detecting dark spots has
historically been the most time-consuming step of the three (Shu et al., 2010).

Therefore, an optimal approach for dark-spot detection is imperative to the

2



successful development of automated oil-spill detection systems, as it enhances

their efficiency and effectiveness.
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1.2 Literature Review

A variety of advanced methods have been employed to detect dark spots,
including (i) region-based methods, (ii) histogram-based methods, (iii) adaptive
threshold methods, (iv) deformable model methods, (v) object-oriented
segmentation methods, and (vi) neural networks. In most cases, a combination of
multiple methods is utilized for better oil spill segmentation.

When dealing with SAR images, which inherently exhibit speckle noise,
region-based segmentation is often employed. This method is widely used due to
its effectiveness in distinguishing dark areas, even within noisy images. In this
method, adjacent pixels with similar intensities are grouped into unique regions.
Del Frate et al. (2000) used a combination of histogram-based analysis and region-
based segmentation, while Mihoub and Hassini (2014) employed a regio.n-merging
method iteratively to detect multiple sizes of oil spills.

The histogram-based method has been used for a long time since its
introduction by Otsu (1979). Liu et al. (2010) combined the Otsu and Max-entropy
methods, while Yu et al. (2017) proposed an adaptive mechanism based on the Otsu
method to extract possible oil spills. To increase the segmentation performance, a
spatial density threshold algorithm was proposed in (Shu et al., 2010). The Otsu
method was used initially for intensity segmentation, then spatial density
segmentation was applied to distinguish pixels with high threshold density.

The adaptive threshold algorithm calculates threshold values dynamically for

small window sizes under the assumption that local regions of the image will have
4



more uniform illumination. As the SAR has different brightness values depending
on the incidence angle, the adaptive threshold was effective in many approaches.
Solberg et al. (1999) determined the threshold as k dB below the mean value of the
moving window. Keramitsoglou et al. (2006) combined the adaptive threshold
method with a fixed window size of 41 by 41, and the k-distance metric to merge
smaller groups into bigger ones. Solberg et al. (2007) enhanced the adaptive
thresholding method by categorizing the roughness of the surrounding sea into six
bins to set threshold values more effectively. Zeng and Wang (2020) developed an
iterative adaptive thresholding algorithm to compensate for SAR image brightness
variation.

Deformable models such as Active Contour Model (ACM) and level-set
methods were widely used in medical image segmentation, demonstrating
promising results. By minimizing the energy functionals based on both image data
and characteristic features, it is possible to identify or segment objects (Padmasini
et al., 2018). As this approach generally performs well over weak boundaries, the
method was used to detect possible oil spills. Karantzalos and Argialas (2008)
employed the Mumford and Shah (MS) curve evolution algorithm. Xia et al. (2015)
exploited a multiscale active contour model based on the nonlocal processing
principle. The combination of the iterative Otsu method and the level-set method
was proposed in (Mdakane and Kleynhans, 2017), and (F. Chen et al., 2018)
formulated own energy functionals for segmentation.

Considerable work has been performed to detect dark spots of different sizes.

The object-oriented method is commonly used with an iterative process to detect
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dark patches of various sizes. In (Karathanassi et al., 2006) and (Topouzelis and
Psyllos, 2012) object-oriented methodology was used, which utilizes a bottom-up
region-merging segmentation algorithm based on two empirical formulas in two
different scales: detailed and broad. Konik and Bradtke (2016) utilized multilevel
hierarchical segmentation from the object-oriented methodology. The iterative
region-merging may start from the pixel level or an existing image object
distinguished as a lower level of hierarchy.

Dark spot detection using neural networks has been widely employed. Initially,
fully connected feedforward networks with simple structures were used to detect
dark spots, as done by Topouzelis et al. (2007) and Singha et al. (2013). Some of
the neural network methods proposed in (Krestenitis et al., 2019; Bianchi et al.,
2020; Shaban et al., 2021) combined dark spot detection with other steps that
enable the neural network model to learn features from the oil spill. Krestenitis et
al. (2019) used SAR intensity images containing segmentation masks with five
classes as training data: oil spills, look-alikes, ships, land, and sea surface. With the
training data, six different semantic segmentation models were compared, and
DeepLabv3+ demonstrated the best overall performance. Bianchi et al. (2020) used
a U-net based semantic segmentation model with training data classified into two
classes: oil and non-oil. Shaban et al. (2021) used two types of neural networks.
The SAR image patches with more than 1% oil spill instances were prescreened
with the CNN model, and the five-stage U-net architecture was used to segment the

oil spill area.



While each of the aforementioned methods has its own benefits, there are also
some limitations associated with them. First, the performance is highly dependent
on tuning parameters such as window size, sensitivity, and stopping criteria (i, iii,
iv, v, vi). Additionally, the model performance significantly drops when outlier
pixels are not properly removed, such as vessels or large ocean buoys, are present
on the ocean surface (i, ii, iii, v). Lastly, some methods are limited in their ability to
detect oil spills of different sizes (i, ii, iii), and iterative processes are typically used
to address this issue, which can be computationally inefficient (iv, v).

Therefore, in order to enhance the capability to distinguish oil spills from
look-alikes and to reduce the number of false alarms, the need to take into account
the local wind field was recognized. Since the local surface wind condition greatly
influences the surface capillary waves, several researchers have attempted to utilize
wind information in oil spill detection. For instance, Espedal and Wahl (1999)
detected oil spill patches by identifying areas that are 2dB darker than their
surroundings and if the wind speed at the time or within recent history is greater
than 7m/sec, the patch was classified as an oil spill. Solberg et al. (2007) proposed
variable threshold values for dark spot detection, which were dependent on wind
speed and categorized into six distinct levels. The wind field data was employed as
an additional input to the neural network as well. Salvatori et al. (2003) used wind
vectors estimated from SAR images as an additional input to a neural network
model to improve the performance of oil spill detection. Similarly, in (Chen and
Wang, 2022), wind vector data estimated from SAR images was also used as one of

the inputs of the designed Attention U-net model.
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While the introduction of wind field data to detect oil spills was effective in
the research above, only a specific range of wind has been used as a threshold for
oil slick detection, or the SAR-induced wind information was utilized which may
be inaccurate where objects exist on the surface. Also, only the interaction between
wind and sea surface was considered and the physical mechanisms between
microwave and sea surface, particularly in relation to oil slicks, are still not fully
considered. Therefore, it is essential to understand the relationship between radar
detection and various wind conditions, which lead to the development of more

reliable and accurate methods for detecting oil slicks.



1.3 Research Objective

Through the previous section, various approaches to identify oil spill
candidates and the limitations of those methods were outlined. The objective of this
research is to enhance an understanding of the radar backscattering coefficient
values for various ocean surfaces. Building upon this theoretical background, a
semi-empirical threshold model for dark spot detection is aimed to be developed,
incorporating actual observational data from oil spills to represent real-world
scenarios. Consequently, the proposed dark spot detection model could provide a
more efficient and effective method for oil spill detection. In summary, the main

contributions of this research are as follows:

e This study proposes a physically reasonable model by considering the SAR
ocean imaging process. The model provides interpretable results and has better
control over its behavior, potentially facilitating advanced oil spill detection

methods such as distinguishing oil types or estimating slick thickness.

» The proposed model helps in efficient oil spill detection by detecting dark spots
with a high possibility of oil spill. It effectively screens out low-wind areas,
which are commonly known to be the most frequent and problematic look-

alikes with biogenic slicks.

* The proposed model has a high level of accuracy as it remains insensitive to

outliers such as vessels or large ocean buoys.



e The model does not require any tuning parameters for oil spill detection. In this
regard, the proposed model can assist in oil spill training dataset construction

for deep-learning.

o Utilizing the semi-empirical model, it is possible to construct a
computationally efficient oil spill detection system. Given that the model
works on a pixel-by-pixel basis rather than using a window-based method, it
circumvents the need for iterative processes in detecting oil spills of any size.
The remainder of the thesis is organized as follows. Chapter 2 examines

microwave backscattering characteristics from both slick-free and slick-covered

surfaces. Chapter 3 details the development and validation of the semi-empirical
model, starting with the theoretical framework, progressing to data acquisition, and
culminating in parameter determination and validation. Chapter 4 provides an
evaluation of the semi-empirical model in comparison with other methods for
segmenting oil spills. Lastly, Chapter 5 demonstrates the application of the model

in oil spill detection.
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Chapter 2. Microwave Backscattering

Properties from the Sea Surface

Microwave backscattering from the sea surface is governed by complex
physical factors, and the characteristics of microwave backscattering are examined

for the slick-free and slick-covered surfaces in the following chapter.

2.1  Microwave backscattering from the Slick-Free Ocean

Surface

2.1.1 Radar Scattering Model

The radar backscatter coefficient can be explained differently depending on
the viewing geometry of SAR. At low incidence angles, the radar backscatter is
dominated by specular reflection, while at intermediate angles, Bragg scattering is
the dominant mechanism (Alpers et al., 2017). The Bragg scattering model
explains that the backscatter coefficients are determined by ocean waves with the
Bragg wavenumber of kg, which is in resonance condition with radar wavenumber
k. (Franceschetti et al., 2002). This resonance condition is called the Bragg

resonance condition,
kg = 2k,sinf (21)
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where 6 is the incidence angle of the SAR.

When SAR utilizes microwave wavelength, water waves with short gravity
capillary wavelength range that travel parallel to the line of sight make a significant
contribution to the radar backscatter coefficient (Valenzuela, 1978). In the first-
order approximation, when the capillary wave is not tilted with respect to a
horizontal reference plane, the radar backscatter coefficient (o) of the ocean is

given as below (Wright, 1968).

0o = 8ktcos*(6)|b,(0)| (¥ (ks) + W (—kp)] (22)
Here, the complex scattering coefficient b has a different value for polarization p.
The approximation value of the complex scattering coefficient for the VV
polarization can be written as

_ €?(1 +sin?0)

- (ecost + \/E)z @3

Vv

where € denotes the relative dielectric constant of seawater. The term ¥
represents the wave height spectrum, which of its integral is defined as the
expectation of the square of the surface elevation { (mean surface elevation)

(Romeiser et al., 1997)

fjkl!(k)d2 k=<0*> (24)
To obtain a more accurate representation of the actual sea surface, more

complex theories have been proposed that take into account the geometric

variations of surface slopes. These theories consider the impact of the tilt of
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capillary waves at the Bragg resonance condition due to longer waves and are
commonly referred to as the tilted Bragg scattering model, the composite-surface
scattering model, or the two-scale Bragg scattering model. When dealing with
slightly tilted Bragg scattering, the backscatter coefficient value for the VV

polarization can be represented as (Valenzuela, 1978)
Ooyy = 81k, [¥ (kp) + ¥ (—kg)] -

2
sin(0—sp)cos(sn) 2 sin(sp)\ 2
(W) byy (6.) + (m) by (6e)

(2.5)

where s, is slope parallel to the radar look direction and s, denotes slope normal

to the radar look direction. The effective local incidence angle 6, is as follows.

0, = cos™[cos(8 — s, )cos(sy)] (2.6)

The two-scale Bragg scattering theory describes the SAR backscatter coefficient of

a tilted facet with respect to a constant unit area in a horizontal reference plane.

2.1.2 Geophysical Model Function

With the use of a transmitting wave with a wavelength in the centimeter range,
the ocean surface waves of the capillary range are detected according to the Bragg
scattering theory. These waves are influenced by the local surface stress, which is
primarily determined by the local surface wind condition. The physical
mechanisms responsible for the generation of capillary waves by the local surface
stress and the interaction of electromagnetic waves with the sea surface have been

studied extensively over several decades. However, due to the limited range of
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applicability of theory-based models, empirical approaches have been proposed to
establish the relationship between wind and backscatter for practical applications
(Hersbach, 2003). Empirical model functions which are called Geophysical Model
Functions (GMFs) were presented through a large collocation study that observed
radar backscatter from aircraft and spaceborne platforms along with in situ ocean
buoy and Numerical Weather Prediction (NWP) model data (Hersbach, 2008).

A SAR-based sea surface wind retrieval algorithm was proposed across
different wavelengths such as X-band (Li and Lehner, 2013; Nirchio and Venafra,
2013) and L-band (Isoguchi and Shimada, 2009). The C-band model CMOD is
widely used, with various versions available including CMOD4 (Stoffelen and
Anderson, 1997), CMOD _IFR2 (Quilfen et al., 1998), CMODS5 (Hersbach, 2003),
CMODS.N (Hersbach, 2008). The general form of the CMOD model is expressed

as

00(0,u, ) = BO(cy,u,0)[1 + Bl(cqy,u,0)cos(¢p) +

2,
B2(cy,u, 0)cos(2¢)]P (27)

where ¢ is the angle between the wind direction and SAR azimuth look angle
(both measured from the north). The ¢;, 8, u, and p denote coefficients,
incidence angle, wind speed, and parameter, respectively. The Bi terms are
functions of the wind speed and incidence angle. The dominant term, BO, sets the
speed scale for a given measurement. The upwind-crosswind asymmetry, B2,

allows for the determination of wind direction, while B1 attributes resolve a

remaining 180-degree ambiguity in wind direction.
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The CMODS5.N model is an updated version of CMODS as it represents the
C-band backscatter value as a function of the equivalent neutral ocean wind vector
at a 10-meter height and incidence angle. The model takes the same form as Eq.
(2.7), and the coefficients which are listed in Table 2.1 are calibrated using data
from the ERS-2 satellite, ASCAT scatterometers, and European Centre for
Medium-Range Weather Forecasts (ECMWF) reanalysis data. The distribution of
the estimated SAR backscatter coefficient, determined using the CMODS5.N model,
is shown in Fig. 2.1. In general, the radar backscatter coefficients derived from
GMF algorithms are in agree with in-situ measurements and composite Bragg

scattering theory (Hwang et al., 2010).
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Table 2.1. The coefficients of the CMODS5.N model

Coefficients Value Coefficients Value
1 -0.6878 C1s 0.0066
Cy -0.7957 C16 0.3222
C3 0.3380 C17 0.0120
Cy -0.1728 Cig 22.700
Cs 0.0000 C19 2.0813
Ce 0.0040 C20 3.0000
cy 0.1103 Co1 8.3659
Cg 0.0159 Coo -3.3428
Coy 6.7329 C23 1.3236
C10 2.7713 Coy 6.2437
C11 -2.2885 Cs 2.3893
C12 0.4971 Co6 0.3249
C13 -0.7250 Coy 4.1590
Cia 0.0450 Cog 1.6930
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Fig. 2.1. SAR backscatter coefficient distribution as estimated by the CMODS5.N model.
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2.2  Microwave backscattering from the Slick-Covered

Ocean Surface

2.2.1 The Action Balance Equation

The presence of oil slicks on the ocean surface has a significant impact on
the formation of ocean waves, causing a reduction in ocean surface height. The
degree of attenuation varies depending on the type and amount of oil (Mitsuyasu
and Honda, 1986). As a consequence of the weakened ocean waves, the
electromagnetic return in the SAR system is also reduced, as stated in Eq. (2.2),
(2.4), and (2.5). Therefore, a detailed assessment of how oil slick affects the ocean
spectrum is essential for an accurate estimation of the SAR backscatter coefficient
value in slick-covered areas.

The typical way of describing the sea state is using the action density
spectrum denoted as N, which is also known as the spectral action density. This
parameter is proportionate to the ocean wave height spectrum, represented as ¥,

and the phase velocity c,.

N=c¢, - ¥ (2.8)

The phase velocity ¢, is defined as w/k. w represents the angular frequency of
the ocean surface wave. For gravity-capillary waves, where the wave behavior is
influenced by surface tension, the corresponding dispersion relation can be

described as
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w? = (gk + %k3) 2.9)

where g is the acceleration of gravity, k is the wavenumber of the ocean surface,
o is the water surface tension, and p is the density of water.
The spatial and temporal variations in wave spectral density N can be

described with the source terms of energy input and output as (Elfouhaily et al.,

1997)

dN
dt

=2 4 UN =5, =S, +5,— S, (2.10)
where ¢, represents group velocity, which is defined as dw/ dk. Using the deep-
water approximations for the dispersion relation, it can be approximated as ¢, =
g/2. Sy, Sy, Sp,and S, on the right-hand side are the source terms of the energy
input and loss by wind, viscous dissipation, nonlinear wave-wave interaction, and
wave breaking, respectively. Assuming a steady wind is blowing horizontally over
the water surface, the action spectral density stays constant over time. In the case of
short waves, such as gravity capillary waves, the gradient of N, which represents

wave advection, can be assumed to be zero. Therefore, for the spectrally balanced

case, Eq. (2.10) can be written as follows (Elfouhaily et al., 1997).

Sw—Sy+Sp—S,=0 .11)

Depending on whether the ocean surface is slick-free or slick-covered, each

source term has a different value. To examine the changes in source terms affected
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by oil spills, slick-free is represented by a superscript of (f) and click-covered by
a superscript of (c).
The source term for wind input can be expressed as (Plant, 1982; Mitsuyasu

and Honda, 1982).

2
S‘E}f) = BOND = [0_04(5‘05 ) (:—;) w] N (212

where BU) represents the wind growth rate, describing the transfer of energy
directly from wind to surface waves. The angle between the wind and wave
direction is denoted by ¢, and u, is wind friction velocity which quantifies the
transfer of momentum between the surface and the atmosphere. The friction
velocity can be estimated from the 10-meter wind velocity, and in this study, the

empirical formulas for the ocean (Yelland and Taylor, 1996) were used.

0.29u?; + 3.1uyg + 7.7
_ < (2.13)
u, \/ 1000 , (wp < 6m/s)
0.67.1,%0 + 0.07U10
u, = J 500 , (6<wuy<26m/s) (2.14)

To describe energy input by the wind when the slick covers the ocean surface,
a parameter m 1is introduced, which describes the reduction of the wind friction
velocity by a surface film. Therefore, the wind input source term for the slick-

covered area can be expressed as follows.
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2
m:- U,
S‘gvc) = BON© = [0_04 (cos (,0)( - ) wlN© (2.15)

p

For the value m, 0.8 was used from the experiment by (Alpers and Hihnerfuss,
1989).

The source term for viscous dissipation in slick-free areas can be expressed
as (Phillips, 1977)

4k’nw

N _ 6)) N
S 2A C N 2 C N
v g p(g + 3Tk2) g

(2.16)

where A0 s the damping coefficient of the gravity-capillary wave propagating
on clean surfaces. n and t are the dynamic viscosity of the water, and the ratio of
the water surface tension and density, respectively.

In the case of a slick-covered sea surface, the Marangoni effect explains the
attenuation by surface films made of surface-active materials (Alpers and
Huhnerfuss, 1989). When gravity-capillary waves propagate on a water surface
covered with a viscoelastic film, they give rise to local contractions and expansions
of the surface film which in turn cause surface tension gradients. Marangoni waves
can therefore be excited in this manner. Resonance occurs when the wavenumber
of the surface wave at a given frequency matches that of the Marangoni wave,
leading to maximum damping at this point. Therefore, the source term for viscous

dissipation in slick-covered area is represented as

5156) — ZA(C)cgN(C) =2-y(k)- A(f)cgN(C) (2.17)
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where A denotes the damping coefficients of the gravity-capillary wave
propagating on slick-covered surfaces and can be calculated using y(k), which is
the relative viscous damping coefficient defined as A() /A7, Assuming mineral
oil forms a monomolecular surface film over time, viscous damping by slicks can
be described by its physical and chemical properties as follows (Alpers and
Huhnerfuss, 1988).

1+ X(cosO — sinf) + XY — Ysinf

k) =
y (k) 1+ 2X(cosB — sinf) + 2X?
(2.18)
h X = |E|k? _|Elk
w T Qwinp)*s T e

Here, the complex dilational modulus E is defined as the surface tension
increment per unit fractional area change (dA/A) and can be expressed in the

complex frequency plane (Callaghan et al., 1983).

Ado
E = =T = —|E| exp(i®) = |E|cosO + i|E|sin@ (219

6 denotes the phase angle (viscous loss angle) between Ao and AA. The real
component is surface dilatation elasticity, and the imaginary component is surface
dilational viscosity. Table 2.2 presents the viscoelastic properties and kinematic
viscosity at 15°C for four different types of oils (Wismann et al., 1993; Callaghan
et al., 1983). The table also includes the maximum relative damping coefficient of
Marangoni waves yn,.., and the correcponding wavenumber at this maximum,
k. The relative viscous damping coefficient across all wave numbers is depicted

in Fig. 2.2. To calculate the relative damping coefficient, the following values were
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used: water dynamic viscosity n at 0.001 Pa s, water density p at 1025 kg/mS3,
and acceleration of gravity g at9.81 m/s.

In the presence of an oil slick on the sea surface, the effect of damping
caused by Marangoni waves is insufficient to fully account for the observed
variations in the sea surface spectrum. While the Marangoni theory suggests that
oil slicks only affect ocean waves with specific wavelengths, empirical evidence
suggests that the entire spectrum is impacted by the presence of oil (Franceschetti
et al., 2002). When winds transfer the energy to the ocean, the system reacts by
distributing the energy throughout its spectrum by nonlinear wave-wave
interactions. Thus, while the damping directly affects only short waves, longer
waves are also influenced by the presence of oil. The strength of the wave-wave
interaction mechanism is heavily influenced by wind intensity. The greater the
wind intensity, the greater the energy-spreading effect. Therefore, nonlinear wave-
wave interaction terms for slick-free are expressed as (Alpers and Hiihnerfuss,

1989)

S‘r(‘l,f) = odPIND) = —qB(f)N(f) (2.20)

where @) is the nonlinear energy transfer rate for a clean sea surface. g is a
dimensionless coefficient and is estimated as 1.15 by simulation (Franceschetti et
al., 2002). Similarly, the source terms for slick-covered areas can be expressed as

follows.
5L = qN© 2.21)
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The a(© is the nonlinear energy transfer rate for slick-covered sea surface and can

be represented below.

a© = o) + §a

ith s kY2
with 80 = o (—) ( )
kM Usc

2.22)

The a,, represents the Marangoni damping rate and is presented as Eq. (2.23).
u,. Is the critical frictional velocity which depends on the physicochemical

properties of the surface film.

oy = 2¢4 y(kn) AL (km) = 2¢q4 Ag(kepr) (223)
At the center of the Marangoni attenuation, where the k is equal to the ky,
Marangoni damping is compensated by the nonlinear energy transfer at the wind

stress of u, = u,.. Therefore, by assuming such a condition, Eq. (2.22) can be

expressed as follows.

24



Table 2.2. Viscoelastic properties and kinematic viscosity of the mineral oils

Substance Viscosity (cSt) |[E] (N/m) 0 (deg) ky; (rad/m) YVnax
Gas oil 5 0.0001 220 2663.1 1.259
IFO180 2000 0.00055 216 1089.3 2.011

North Sea 12.7 0.00165 -144 5293 3.22

crude oil
Middle East 16 0.00176 1158 565.7 3.689
crude oil
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Fig. 2.2. Relative viscous damping coefficient y(k) as a function of wavenumber.

The black vertical lines represent the wavenumber kj, corresponding to the

maximum value of y(k).
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2.2.2 The Damping Ratio

The action balance equation was reviewed in the previous chapter to
understand how oil spills affect the state of the sea. This chapter discusses how
changes in sea state affect radar backscatter coefficients. The changes in the radar
backscatter coefficient can be quantitatively assessed by employing the damping
ratio, defined as a ratio of the o, value for the presence and absence of a slick.
The Bragg coefficient, denoting the residual part in Eq. (2.2) apart from the wave
height spectrum, can be assumed to be the same for slick-free and slick-covered
areas because the thickness of the surface film is small compared with the
penetration depth of microwaves into the water (Gade et al., 1998). Additionally,
according to Eq. (2.8), the wave height spectrum ¥ is proportional to the action
density spectrum N. Hence, the damping ratio can be represented as follows.

aéf) _ w(kp) _ N
aéc) T wO(kg) NO

(2.25)

In the first order, the source terms on the right-hand side of Eq. (2.10) are
balanced for both slick-free and slick-covered cases (Alpers and Hiihnerfuss, 1989).

The sum of these source terms can be represented as follows.

(B =240 ¢, +aN)-ND = (B©@ —240Oc, + @) . N© (2.26)

NO (B = 24©¢, + a©)
© ~(gH %) y ) (227)
N (BP) = 24P ¢, + a)
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Therefore, by combining Eq. (2.25) and Eq. (2.27), the damping ratio, which
represents the ratio of the radar backscatter between the slick-free and slick-
covered areas, can be derived as below.

of ) WUy NO (PO —20€c, + o)

= = = 2.28
086) YO (kg) NGO (B(f)—ZA(f)cg+oc(f)) (2.28)

As the radar backscatter value for the slick-free cases can be determined
using the radar scattering model or the geophysical model function, the radar
backscatter value for the slick-covered area can be estimated by multiplying the
reciprocal of the damping ratio. In Fig. 2.3, the radar backscatter coefficient for
slick-free areas was calculated using the CMODS5.N model, and the coefficient for
slick-covered areas was then derived by applying the inverse of the damping ratio

to the slick-free results.

= Slick-free
= Slick-covered

0.06

0.05
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4 m/s
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5 m/s
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0 2 3 3 38 40 a2 4

Incidence angle [°]

Fig. 2.3. Radar backscatter coefficient for slick-free and slick-covered area by

incidence angle.

28



Chapter 3. Development and Validation of the
Semi-Empirical Model

Based on the principles of ocean radar imaging physics, the goal of this study
is to develop a model that effectively discriminates oil spill candidates from the
ocean surface. A semi-empirical model, which combines physical principles with
empirical observations, can provide a good balance between accuracy and
simplicity. This chapter is dedicated to the exposition of the process involved in the
formulation and subsequent validation of this semi-empirical model for oil spill

detection.

3.1 Formulation of the Theoretical Framework for the

Semi-Empirical Model

Considering the action balance equation and radar scattering model, the radar
backscatter coefficient is dependent on many variables such as incidence angle,
polarization, frequency of the radar, a relative dielectric constant of the surface, and
surface roughness which is also dependent on wind speed, direction, ocean waves,
and currents. Here, certain variables, including polarization and frequency of the
radar are fixed as VV and C-band, respectively. Other variables, such as the relative
dielectric constant, which has a small impact are not considered dependent

variables in the semi-empirical model. Therefore, considering practical use and
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maintaining the simplicity of the model, incidence angle, wind speed, and relative
wind direction were chosen as dependent variables of the threshold model which is
consistent with the dependent variables of GMFs.

To determine the boundary of the radar backscatter between the slick-free and
slick-covered ocean with respect to wind speed, the wind growth rate 8, in Eq.
(2.12) and (2.15) from the action balance equation were reviewed. According to
these equations, wind speed has a quadratic relationship with wave growth,
expressed as u?. As the presence of slicks on the ocean surface affects the energy
input by wind, coefficient m is incorporated into Eq. (2.15) to represent the
reduction of wind friction velocity. Thus, the impact of wind speed on the threshold
was theoretically determined as, Eq. (3.1) where d represents the coefficient that

can be determined empirically.

(d - u)? (3.1)

To establish the theoretical relationship between wind direction and the
threshold radar backscatter coefficient values, it is necessary to reflect the
characteristics of the SAR satellite. In Eq. (2.12), the ¢ term represents the angle
between wind and wave direction. It indicates how wind-induced waves spread out
horizontally, with the range of angle from —m/2 to m/2 as depicted in Fig. 3.1
(a). When taking into account the heading direction of the SAR relative to the wind
direction, as depicted in Fig. 3.1 (b), the wave components that the SAR identifies
are those dispersed in the direction of the SAR heading angle from the original

wind direction. In addition, assuming a simple Bragg scattering condition as
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expressed in Eq. (2.2), the radar backscatter values for the directions ¢ and ¢ +
n are equivalent. Consequently, the wind direction dependence of the threshold

value for the ocean slick is determined as

r - |cos(o)| (32

where the coefficient r is derived from observational data.

In simple terms, the dependence of the radar backscatter on the incidence
angle can be modeled as an inversion relationship, where the higher the incidence
angle, the lower the corresponding o, value. However, the relationship between
incidence angle and radar backscatter coefficient is far more intricate. According to
Eq. (2.1) and (2.2), o, is a function of the incidence angle and multiple functions

that are also dependent on the incidence angle as represented below.

0p = 16nk§cos4(9)|bp(9)|2'P(2kesin9) (3.3)

In this study, to maintain the simplicity of the model, the relationship between

0, and the incidence angle shown in Fig. 2.3 was adopted. Specifically, we set the
threshold value to be the negative exponential of the incidence angle, as described
in Eq. (3.4). The sensitivity of the exponential function is determined using

observational data.

g-a (3.4)

Therefore, to summarize, the complete theoretical framework of the semi-

empirical threshold model was constructed by integrating Eq. (3.1), (3.2), and (3.4).

31



Threshold oy = (d-u)? +71 -|cos(p)| + 7% + ¢
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Fig. 3.1. (a) Visualization of the wind energy-driven dispersion of oceanic waves across the sea surface. (b) Illustration of the wave component

discernible by the satellite.
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3.2  Data Acquisition

3.21 Acquisition of SAR Image Data

In order to gather oil spill SAR imageries from worldwide, the Sentinel-1
SAR satellites from the European Space Agency (ESA) were utilized in this study.
Since the shorter temporal resolution is more important in oil spill detection
problems than higher spatial resolution, the Sentinel-1 SAR data which provides
temporally dense data by making constellations with two satellites Sentinel-1A and
Sentinel-1B could be useful. To get a wide swath and coverage with proper
resolution the interferometric wide (IW) mode which has around 250 km of swath
width and about 20 m by 23 m of spatial resolution (range and azimuth respectively)
was used. Sentinel-1 Level 1 data are distributed under two product types which
are Ground Range Detected (GRD) and Single Look Complex (SLC). Since the
phase value is not used in this study, GRD data representing only the detected
amplitude which is composed of square pixels with reduced speckle, due to the
multi-look processing was used for this study. Details of Sentinel-1 IW GRD data
were summarized in Table 3.1.

Basic information such as the time and location of oil pollution was obtained
from publicly available data from the National Oceanic and Atmospheric
Administration  (NOAA)  (https://incidentnews.noaa.gov/browse/date/)  and
International Tanker Owners Pollution Federation (ITOPF) (https://www.itopf.org/).

Based on the obtained basic information, we collected 88 Sentinel-1 SAR images
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from May 2015 to September 2022. The spatial distribution of the collected SAR
images is depicted in Fig. 3.2. Before analysis, as shown in the flowchart of Fig.
3.3, SAR pre-processing is conducted in the following order: apply orbit file,
radiometric calibration, speckle filtering, terrain correction, and land masking.
Accurate satellite position and velocity information was obtained by updating the
precise orbit of the satellite during the apply orbit file step, and radiometric
calibration was performed to obtain a radar backscatter value, o, from the digital
numbers (DNs) of the SAR scenes. The Lee Sigma filter with a 7 X 7 window
size was used for speckle filtering to reduce speckle noise, and the 3-second Shuttle
Radar Topography Mission (STRM) Digital Elevation Model (DEM) was used for
terrain correction and land masking. From the 88 pre-processed full SAR images, a
total of 189 oil pollution patches each containing oil spilled area as a region of
interest were produced from the SAR images as in Fig. 3.4. The Normalized Radar
Cross Section (NRCS), incidence angle, and radar heading angle from the north for
each pixel from the pre-processed SAR image were extracted. A visual
interpretation was conducted to determine the true threshold o, value for each
patch and the values obtained were subsequently incorporated to calibrate the

model.
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Table 3.1. Product characteristics of Sentinel-1 IW GRD mode

Parameter

Sentinel-1 IW GRD

Center frequency

Polarization

Look direction

Insidence angle range

Pixel value

Coordinate system

Bits per pixel

Number of Looks
(range x azimuth)

Ground range coverage

Spatial resolution
(range x azimuth)

5.405 GHz

VH, VV

Right

20°-46°

Magnitude detected

Ground range

16

5x1

251.8 km

IW1:204mx22.5m
IW2:20.3 mx22.6 m
IW3:20.5m x22.6 m
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Fig. 3.2. The spatial distribution of the collected Sentinel-1 SAR images containing oil spills from May 2015 to September 2022.
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Fig. 3.3. Flowchart of the data processing methodology.

38



32.50°N

32.00°N

31.50°N

31.00°N

32.00°E 3250°E 33.00°E 3350°E 34.00°E 3450°E

Fig. 3.4. (Left) A full Sentinel-1 SAR image containing oil slicks acquired on October 4, 2014. (Right) The oil pollution patch
subtracted from the full SAR image.
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3.2.2 Acquisition of Wind Field Data

A variety of methods exist for gathering information about ocean surface
winds; these include the use of marine meteorological buoys, satellite
scatterometers, SAR images, and reanalysis data. As each method has its unique
strengths and weaknesses, selecting the most suitable one for global oil spill
detection is crucial. While marine meteorological buoys provide in situ
measurements, their coverage is limited to specific points and they cannot provide
global coverage. On the other hand, while satellite scatterometer data allows for the
regular monitoring of wind speed and direction across large areas, it is limited by
its low spatial resolution and long revisit times. Wind data can also be derived from
high-resolution SAR images using a GMF; however, SAR-extracted wind field
data are subject to potential contamination from objects on the ocean surface.
Reanalysis data, produced by integrating both observational data and numerical
weather prediction models using data assimilation techniques, provides an accurate
depiction of wind conditions.

Therefore, in this research, reanalysis data was employed to estimate the wind
data around the oil spills, owing to its global completeness, temporal consistency,
and quality-controlled nature. The ECMWF reanalysis data was selected as an
external input for wind speed and direction. Specifically, the ERAS model was
chosen due to its higher resolution compared to other reanalysis models. The data
was structured in regular latitude-longitude grids with a resolution of 0.28° x 0.28°

(31 km) and hourly temporal resolution and further details on ERA5 can be found
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in Table 3.2. In this study, the hourly meridional and zonal 10 m wind components
from the ERA-5 model, as illustrated in Fig. 3.5, were utilized to calculate the wind
speed and direction over the oil spill area.

In order to align the resolution of the ERAS data with that of the Sentinel-1
image, temporal and spatial interpolations were employed. Initially, two adjacent
hourly reanalysis data were linearly interpolated to synchronize with the Sentinel-1
overpass time. Subsequently, the wind field was cropped to correspond to the same
region as the SAR image and cubic spatial interpolation was applied to the region
of interest. This procedure yielded wind speed and direction data that was
consistent with the resolution of Sentinel-1.

By analyzing the SAR data, the values for o, incidence angle and SAR
heading angle were obtained, and ECMWF reanalysis data were utilized to
determine wind speed and direction. Subsequently, the relative wind direction,
which is the wind direction relative to the satellite's flight direction, can be
calculated from the SAR heading angle and the actual wind direction from the
north. Thus, through the processing flow described in the flowchart, four output
values were yielded: NRCS, incidence angle, relative wind direction, and wind

speed, for each pixel.
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Table 3.2. Product characteristics of ECMWF ERAS reanalysis data

Parameter

ECMWF ERAS

Period available

Horizontal resolution

Vertical resolution

Temporal resolution

Assimilation system

Uncertainty estimates

From a 10-member EDA** at 63 km

1950 onwards

0.28°x 0.28° (31 km)

137 levels

Hourly

IFS* Cycle 4112

resolution

* Integrated Forecasting System (IFS)

** Ensemble of Data Assimilations (EDA)
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Fig. 3.5. ECMWF ERAS reanalysis of wind speed at 10 meters on October 4, 2014.
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3.3 Parameter Determination of the Semi-Empirical

Model

Out of a total of 189 patches, each with pre-determined true threshold values,
151 patches (80% of the data) were randomly selected for parameter estimation,
while the remaining 38 patches (20%) were reserved for validation. The model
parameters in Eq. (3.5), specifically d,r,a and ¢ were optimized by minimizing
the sum of squared residuals. The calibrated parameters, along with their
corresponding standard errors, are presented in Table 3.3. Specifically, the
coefficient b was determined to be 9.4885 x 103 with a standard errror of
9.6604 x 10~*, the coefficient r was found to be 4.5919 x 10™* with the
standard error of 6.6402 x 10™4, the coefficient a was determined to be 9.7717
with a standard error of 2.3393 X 1072, and the parameter ¢ was found to be
—2.3041 x 10™2 with a standard error of 2.5765 x 1073,

In evaluating the performance of the proposed model for estimating a
threshold radar backscatter coefficient, a root mean square error (RMSE) of 0.0023
was achieved. This loss RMSE indicates a minor discrepancy between the model’s
estimation and the true radar backscatter coefficient values, signifying a reliable
level of estimation accuracy. Additionally, an R-squared value of 0.6558 was
obtained, suggesting the model’s efficacy in capturing the underlying pattern

within the data.
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The model estimation results for the radar backscatter coefficient threshold are
visualized in Fig. 3.6, compared with observational data. Estimated values are
overlaid with the threshold values obtained from observations, and the figure

depicts a close alignment between these two data sets.

Table 3.3. The optimized parameters and their corresponding standard errors

Parameter Value Standard error
d 9.4885 x 1073 9.6604 x 10~*
r 45919 x 10™* 6.6402 x 10~*
a 9.7717 2.3393 x 1072
c —2.3041 x 1072 2.5765 % 1073
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Fig. 3.6. The scatter plot represents the observational data, and the line plot shows the model results with the optimized coefficient.
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Chapter 4. Performance Evaluation of the

Semi-Empirical Model

4.1  Experimental Design

As outlined in Chapter 1.2, various segmentation techniques were reviewed
for detecting dark spots in oil spill images. Among the most commonly utilized
approaches, several standout techniques were selected for an in-depth comparison
with the proposed semi-empirical model. This includes the Otsu method, Bradley
adaptive threshold method, and active contour model (ACM).

The global Otsu method (Otsu, 1979), distinguished by its simple and
nonparametric characteristics, has been a prevalent selection for the automatic
segmentation of dark spots within grayscale images, notably in the analysis of oil
spill detection. It determines an optimal threshold value for a grayscale image
separating it into foreground and background bu maximizing the between-class
variance and minimizing the within-class variance between the designated classes.

While the Otsu method demonstrates efficacy, it exhibits limitations in its
application to large SAR imagery. These limitations primarily originate from the
suboptimal performance of the Otsu method in handling non-uniform illumination
in images, a characteristic resulting from incidence angle variance in SAR imagery.
Furthermore, the Otsu method operates under the inherent assumption that both the
background and foreground are present within the image. Consequently, even when
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oil might not be present in an image, the Otsu method persists in segmentation,
relying on differences in brightness values, which may result in the erroneous
detection of oil spill candidates.

In response to the challenges posed by non-uniform illumination, the Bradley
adaptive threshold method (Bradley and Roth, 2007) has been widely employed as
a dark spot segmentation technique as well. Distinct from global threshold methods,
the Bradley method computes a local threshold for each pixel, utilizing the mean
intensity of the surrounding neighborhood pixels. As a result, this method
demonstrates robustness against local variations in intensity, including the
brightness value differences arising from variations in SAR incidence angles.
Unlike the Otsu method, the Bradley method requires specific tuning parameters,
specifically window size, and sensitivity. The window size defines a local region
around each pixel, and sensitivity serves as a controlling parameter for the
thresholding level within the local window. The careful selection of these
parameters is vital because they significantly impact the performance of the
algorithm.

In this research, the window size is adaptively adjusted to half the width and
height of the SAR image patch size, considering that the patch is properly cropped
to encompass the oil spill area. Additionally, the sensitivity parameter, responsible
for striking the balance between foreground and background pixels, was
meticulously set to 0.3 through a tuning process.

While the Bradley adaptive threshold method is proficient in handling images

with non-uniform illumination, it also operates under the assumption that both
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background and foreground are present within a defined window. Deformable
models such as the ACM are able to segment the foreground area from a noisy
background and avoid arbitrary segmentation when no discernible contrast is
present. The ACM method, also known as “snakes”, functions as an energy-
minimizing spline. It is typically guided by internal forces related to the
smoothness of the curve and external forces derived from salient image features
such as lines and edges. The goal is to place the initial contour near the desired
local minimum, allowing the snakes to iteratively evolve within the image to fit the
object boundaries (Kass et al., 1988). The ACM method offers distinct advantages,
including the capability to handle images with complex backgrounds and
inconsistent illumination. However, it also brings certain challenges to bear, such
as sensitivity to the initial positioning of contours, a need for careful adjustment of
parameters, and the possibility of incurring high computational costs for processing
large or complicated images.

In order to detect dark spot areas from the SAR image patch using the ACM
method, several parameters need to be determined. Firstly, the initial contour
should be defined. Given that the SAR image patch has been cropped to confine
the oil spill area, the initial contour was established along the patch edges, with a
thickness of 25 pixels. From this initial contour, the shape is gradually deformed in
a manner that minimizes the total energy. In this study, the Chen-Vese active
contour method (Chan and Vese, 2001) was utilized, chosen for its efficacy in
detecting contours with smooth boundaries, a feature particularly effective for

segmenting emulsified oil spills. Through careful parameter tuning, a positive

49



contraction bias parameter of 0.5 was set, thereby encouraging the inward
movement of the contour. The active contour algorithm was configured to
terminate when the contour remained unchanged for five consecutive iterations.
However, to ensure computational efficiency, a maximum iteration limit of 1500
was imposed.

To summarize, Table 4.1 enumerates all the necessary parameters for different
models. Notably, the Otsu method and the semi-empirical model do not require any

parameter inputs for execution.

Table 4.1. Parameters required to tune the different methods of detecting dark spots

Method Required tuning parameters

Otsu Method (No parameters required)

1. Window size
Bradley Method 2. Sensitivity to determine background and
foreground

1. Window size (optional)
2. Initial mask

ACM Method 3. [Iteration number
4. Smooth Factor
5. Contraction Bias

Semi-Empirical Method (No parameters required)
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4.2 Performance Evaluation with Other Methods

To assess the performance of the oil spill candidate segmentation model,
appropriate evaluation metrics must be established. The confusion matrix offers a
comprehensive overview of the relationship between the true condition and the
model output. In binary segmentation tasks, four possible outcomes exist: true
positive (TP), false positive (FP), true negative (TN), and false negative (FN). TP
represents the accurate identification of oil spill candidates by the model. FP
pertains to situations where the model incorrectly identifies an oil spill candidate,
estimating non-candidate pixels as a false positive prediction. The TN classification
occurs when the model correctly recognizes a non-candidate for an oil spill and FN
denotes cases where the model mistakenly classifies an oil spill candidate as a non-
candidate. Collectively, examining the ratios of these classes offers a
comprehensive framework for evaluating the effectiveness and accuracy of the
model. In this study, seven metrics are employed, including False Positive Rate
(FPR), True Negative Rate (TNR), True Positive Rate (TPR), False Negative Rate
(FNR), Precision, Accuracy, and F1 score.

FPR, Eq. (4.1), measures the fraction of background pixels incorrectly
identified as foreground pixels. TNR, Eq. (4.2), calculates the proportion of
background pixels correctly classified as background pixels. TPR, Eq. (4.3), also
known as Recall, quantifies the fraction of foreground pixels correctly identified as

foreground pixels. FNR, Eq. (4.4), estimates the proportion of foreground pixels
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mistakenly identified as background pixels. Precision, Eq. (4.5) calculates the
proportion of true foreground pixels among all identified foreground pixels.

The accuracy, defined as Eq. (4.6), represents the proportion of correctly
classified pixels, encompassing both positive and negative instances, out of the
total number of pixels in the image. In other words, it quantifies how well the
segmentation algorithm has identified both the foreground and background pixels.
Serving as a unified metric, it reflects the model's overall ability in the
classification. A higher accuracy level indicates the proficient performance of the
model in identifying both types of pixels. Nevertheless, accuracy can sometimes be
misleading, especially in cases with an imbalanced class distribution, such as when
background pixels significantly outnumber or are outnumbered by foreground
pixels. In such situations, a high accuracy may merely reflect the successful
identification of the majority class, overlooking the potentially inadequate
performance of the minority class. Therefore, in the specific context of oil spill
detection, where the precise recognition of the minority class (oil) is important,
accuracy is not sufficient.

The F1 score, defined as Eq. (4.7), provides a balanced assessment of the
model's performance as it represents the harmonic mean of precision and recall. A
high F1 score suggests that the segmentation algorithm is proficient in identifying

foreground pixels with both high precision and recall.

FP
FPR = ———— 4.1)
FP+TN
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TN
TNR = — 42)

FP+TN
TPR (Recall) = TPZ% 4.3)
FNR = % (44)
Precision = % (4.5)
Accuracy = TP+ TN (4.6)

TP+TN+FP+FN

F1 _ 2 - Precision - Recall @7)
score = Precision + Recall '

In Table 4.2, the results for seven distinct metrics are presented for each oil
spill candidate detection method. The best-performing result for each metric is
highlighted in red, while the second-best result is indicated in blue. For the metrics
TPR and FNR, the Otsu method outperformed the others, achieving values of
0.9978 and 0.0022, respectively. In the case of FPR, TNR, and precision, the
semi-empirical model yielded the highest values with 0.0464, 0.9536, and 0.8077,
respectively. The semi-empirical model also exhibited the best performance in the
overall evaluation indicators, specifically accuracy and F1 score, with
corresponding values of 0.9487 and 0.7948.

To develop an understanding of the overall performance of each method, the
distribution of the F1 scores was visualized using a violin plot, as shown in Fig. 4.1.

Within this figure, the red bars on the violins represents the mean F1 score and
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revealed that the semi-empirical model achieved the highest performance at
approximately 0.7948, followed by the Bradley model at 0.6400, the ACM at
0.5191, and the Otsu model at 0.3315. The median values, with corresponding
figures of 0.7027, 0.5662, 0.1801, and 0.1054, also confirm this trend, aligning
with the performance pattern observed in the mean.

Table 4.3 presents the statistical metrics of standard deviation and skewness
for four different segmentation methods. In the table, the smallest value of standard
deviation, representing the most concentrated distribution, is marked in red, and the
next smallest value is marked in blue. The proposed semi-empirical model
demonstrated the lowest standard deviation at 0.1572, followed by the Bradley
method at 0.1972, the Otsu method at 0.2600, and the ACM method, with the
highest value of 0.3470. These results indicate that the semi-empirical model
performs more consistently across various oil spill instances, whereas the ACM
method’s effectiveness appears to vary significantly depending on the oil spill
cases. The skewness values were also analyzed to assess the asymmetry in the F1
score distribution, where a negative skewness value implies a rightward skew,
signifying a direction associated with a higher F1 score. The smallest values were
marked in red and the second smallest in blue, similar to the standard deviation. In
this regard, the proposed model showed superiority as well, presenting the lowest
skewness value of -1.1293. Following this, the Bradley method exhibited a value of
-0.7004. The Otsu method displayed a positive skewness value of 0.7307,

indicating a leftward skew.
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The trends observed in standard deviation and skewness are clearly illustrated
in the corresponding violin plots. The ACM method, characterized by the highest
standard deviation value, exhibits a bimodal distribution concentrated at both
extremes. The Otsu method displays a mild bimodality, whereas the Bradley and
semi-empirical methods demonstrate a unimodal distribution that is rightward
skewed, emphasizing their consistency in achieving high performance.

For a detailed and qualitative understanding of the performance of each model,
Fig. 4.2 presents the segmentation result images for the cases in which each model
performed best, while Fig. 4.3 displays the cases where each method showed the
worst performance.

The conditions in which the Otsu method achieves the highest performance
are when the histogram distribution of oil and background is similar, resulting in a
distinct bimodal histogram, as illustrated by item (A2) in Fig. 4.2. However, the
presence of exceptional values, such as the strong backscattered signal from ships,
can disrupt the bimodality of the histogram. Due to this disruption, most of the
region might be incorrectly identified as oil, as consistently demonstrated in the
second column of the four images in Fig. 4.3. This effectively explains why the
Otsu method has good TPR and FNR values, but suboptimal FPR, TNR, and
precision values. When the majority of areas are classified as oil, there is little
chance of missing actual oil, yet performance in discriminating non-oil areas
accurately tends to be diminished.

The Bradley method showed the best performance when the window size is

properly set according to oil spill area size, and when there are no anomalous
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pixels present, such as vessels. As well illustrated in Fig. 4.2, item (C3), when the
expanse of the oil spill is sufficiently large to encompass the entire window, the
moving window fails to discriminate between the oil spill and the background area,
as the window is situated within the oil spill region. Additionally, when
exceptionally bright pixels appear, the moving window does not correctly
distinguish oil spill pixels from the background ocean. Instead, it distinguishes the
open ocean from the bright vessel pixels, resulting in a misidentification of vessels
as background, and the open ocean as oil spills, as illustrated in Fig. 4.3, item (B3).

The ACM demonstrated the highest performance under conditions where the
shape of the oil spill is relatively simple, and the oil spill is densely concentrated
rather than dispersed into several sections, as clearly illustrated in Fig. 4.2, item
(B4). According to Fig. 4.3, it is apparent that performance is suboptimal when the
shape of the oil spill is complex or when the background undergoes abrupt pattern
changes. Such conditions may cause the initial contour to either terminate
prematurely or converge to an inappropriate area.

Contrary to the previous models, the semi-empirical model appears to be less
influenced by factors such as the shape or size of the oil spill, or the presence of
vessels. Despite the variety of oil spill cases that exhibit diverse performances in
other models, no distinctive dependency was observed with the semi-empirical
model. Nevertheless, given the semi-empirical model's potential sensitivity to input
variables such as wind speed, a more thorough examination of these aspects needs

to be conducted and is to be presented in the following chapter.
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Table 4.2. Detailed evaluation of the dark spot detection methods

Metric\Method Otsu Method llfqre"‘t‘l'll(‘:dy hﬁfﬁg 4 Enslf)lllll':cal

Method
FPR* 0.6186 0.1114 0.3734 0.0464
TNR 0.3814 0.8886 0.6266 0.9536
TPR (Recall) 0.9978 0.9488 0.8305 0.8674
FNR* 0.0022 0.0512 0.1695 0.1326
Precision 0.2349 0.5243 0.5578 0.8077
Accuracy 0.4521 0.8913 0.6591 0.9487
F1 score 0.3315 0.6400 0.5191 0.7948

* The lower values of FPR and FNR indicate better segmentation performance
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Fig. 4.1.Violin plot illustrating the distribution of the F1 score. Red bars indicate

Table 4.3. Standard deviation and skewness for each dark spot detection method

the mean F1 score.

Semi-
Metric\Method Otsu Method Bradley ACM Empirical
Method Method
Method
Standard 0.2600 0.1972 0.3470 0.1572
deviation
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Fig. 4.2. Comparative visualization of the optimal results for various segmentation

methods. Each row represents the best-performing case for a given method.
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Fig. 4.3. Comparative visualization of the optimal results for various segmentation

methods. Each row represents the worst-performing case for a given method.
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4.3 Performance Evaluation for Different Wind

Conditions and Regions

As the wind wave growth rate elucidates the relationship between the growth
of short gravity-capillary waves and wind forcing, ocean wind speed significantly
influences the sea state. Consequently, the detectability of oil spills, which is
dependent on this sea state, varies with wind levels. In a calm sea state with low
wind speeds, microwave backscatter from the surrounding sea surface is too low to
distinguish oil from seawater. In contrast, in rough sea conditions, caused by high
wind speeds, sufficient microwaves are scattered from the sea surface, yet detection
remains difficult due to oil spills being obscured within the wave troughs. In
general, a minimum wind speed of 1.5 m/s and a maximum wind speed of 6-10 m/s
is recommended for accurate oil spill detection (Hiihnerfuss et al., 1996; Akar et al.,
2011; Fingas and Brown, 2014). Therefore, this chapter will assess the model's
performance in relation to wind speed and delineate the conditions under which the
model achieves its best performance.

Fig. 4.4 represents the dependency of each model’s performance on wind
speed. In models such as Otsu and Bradley, previous qualitative assessments have
demonstrated that performance is substantially influenced by factors such as the
histogram distribution of the image, the size of oil spills, and the presence of
nearby vessels. Contrary to that tendency, a discernible trend correlating
performance with wind speed was not observed. Similarly, in the case of the ACM

method, which is sensitive to factors like the shape of the oil spill, there is no clear
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relationship between wind speed and performance. For the semi-empirical model,
as the threshold is determined by wind speed, wind speed exerts a substantial
influence on the performance. To identify the impact of wind speed on model
performance, the performance of the semi-empirical model was categorized into
three bins according to wind speed. The performance within each bin was
visualized using violin plots as depicted in Fig. 4.5.

The three bins were categorized as follows: (i) wind speed lower than 2 m/s,
(i) wind speed ranging from 2 to 5 m/s, and (iii) wind speed higher than 5m/s.
Within these categories, the model demonstrated the highest performance, with an
average F1 score of roughly 0.86, in the 2 to 5 m/sec range. This performance is
higher compared to when the wind speed exceeds 5 m/s (average F1 score of about
0.69) or falls below 2 m/s (average F1 score of about 0.65). This outcome can be
attributed to the moderate wind speeds which enable sufficient microwave

backscattering from the ocean surface.
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In previous stages, it was established that the performance of the semi-
empirical model is dependent on wind speed, particularly excelling within the
range of 2 to 5 m/s. The objective of the current phase is to investigate whether the
performance of the proposed model exhibits regional dependency. An examination
has been conducted under the assumption that regions with frequent fluctuations in
sea state may yield different model performance compared to areas maintaining a
stable state. This analysis facilitates a deeper understanding of the regional
conditions under which the model demonstrates superior performance. This
understanding can contribute to improving model reliability and optimization.

The surface sea state is directly influenced by wind speed, allowing the
standard deviation of wind speed to represent the temporal fluctuation of the
surface sea state. By utilizing hourly ECMWF ERAS reanalysis data spanning
January to December 2022, the global standard deviation of wind speed was
quantified at each grid point. In Fig. 4.6 and Fig. 4.7, the relationship between sea
state variability and the F1 score is illustrated in scatter plots. Additionally, the
global wind speed standard deviation map is displayed in those figures as well,
where Fig. 4.6 shows the points where the model achieved an F1 score higher than
0.9, while Fig. 4.7 emphasizes regions with an F1 score of less than 0.7. An
examination of these regions revealed that areas with high temporal ocean surface
fluctuation (highlighted in red) tended to demonstrate inconsistent model
performance, whereas areas characterized by stable sea states (colored in blue)

were associated with more consistent model behavior.
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To facilitate a direct comparison, regions where the dark spot segmentation
result has F1 score above 0.9 and those below 0.7 were designated with star and
triangle-shaped points, respectively. These points were overlaid on the wind speed
standard deviation map as depicted in Fig. 4.8 (left). For a more precise analysis,
two representative regions were selected: Region A, where the model performance
was high, and Region B, where the model performance was lower. A time series
analysis of the wind speed for both regions during the year 2022 was undertaken,
as shown in Fig. 4.8 (right). In the time series analysis, Region A experienced a
relatively stable wind speed throughout the year, corresponding with favorable
model performance. Conversely, Region B faced substantial and frequent wind
speed fluctuations, which was reflected in the less satisfactory model performance.
Therefore, along with the earlier examination of wind speed, this analysis

elucidates the specific regional conditions that enhance the model's effectiveness.
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Chapter 5. Application of the Semi-Empirical
Model

As the proposed semi-empirical model require the wind field information, the
reanalysis data were used for model parameter estimation. However, other sources
of wind information such as buoy, scatterometers, and GMF, may also be utilized
during the model application stage. Therefore, the proposed model was evaluated
using different wind input sources and the two recent oil spill instances in the Gulf
of Mexico on January 1, 2023 and March 7, 2023 were used for this evaluation.

To utilize the wind data from buoys, the two-dimensional wind field data,
which accordance with the SAR image resolution, need to be extracted. Data were
sourced from the National Data Buoy Center (NDBC). Since the precise buoy data
corresponding to the exact time and location of the oil spill incidents were
unavailable, the two nearest buoys to the spill area, specifically stations 42002 and
42020, were selected. Considering the data recording time interval of the buoy is
10 minutes, two temporally consecutive data points for each oil spill case were
selected at the exact times represented in Fig. 5.1, and linear temporal interpolation
was first conducted. Subsequently, spatial interpolation based on Euclidean
distance was conducted using the data from the two buoys.

The scatterometer data, while more spatially continuous than buoys, exhibit
significant temporal gapsln this study, the advanced scatterometer (ASCAT) data

corresponding to the times represented in Fig. 5.1 were utilized. To align with the
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resolution of the Sentinel-1 SAR satellite, both linear temporal and spatial
interpolation were conducted as well.

The reanalysis data from the ECMWF was applied in a manner consistent
with the methodology described in Chapter 3.2.2. Although the reanalysis data
provides comprehensive global wind data and relatively dense temporal intervals, it
is not good at precisely replicating the state at the exact moment the SAR image
was taken. Despite the wind direction ambiguity in the CMOD, it contains precise
wind speed at the time point of image capture, making it useful for extracting wind
data from the SAR image. Therefore, as a preprocessing step, SAR pixels outside
of the interquartile range were smoothed using nearby pixels, and wind data were
extracted using CMODS.N, as described by Eq. 2.7. Fig. 5.1 illustrates the results
of applying the semi-empirical model using each of these wind input data sources.
Since both the buoy and scatterometer data may not represent the wind state at the
exact location and time, the results were less accurate in instances of abrupt wind
changes. In this regard, reanalysis data provided better results, and the

segmentation result derived from the CMOD demonstrated superior performance.
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Fig. 5.1. Comparison of results between model input wind dataset.
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Chapter 6. Conclusion

In automated oil spill surveillance systems, the dark spot detection step
typically demands considerable time and critically influences the overall
performance. In this research, a semi-empirical threshold model has been proposed
based on the scattering mechanism of the signal on the slick-free and covered sea
surface. Utilizing wind speed, relative direction, and incidence angle as inputs, the
model was designed to calculate the threshold radar backscatter coefficient value,
effectively differentiating potential oil spills.

In the evaluation of the segmentation results by the proposed model, it
achieved a superior mean F1 score of 0.7948, in comparison to prevalent methods
in dark spot detection such as the Otsu method, Bradley method, and ACM method,
with mean F1 scores of 0.3315, 0.6400, and 0.5191, respectively. A more detailed
analysis of the F1 score distribution for the evaluation dataset was undertaken to
analyze the performance of the proposed model. The bias towards higher F1 scores,
indicative of consistently high performance, was visually confirmed through a
violin plot. This was further corroborated by quantitative metrics, with the
proposed model showing the lowest standard deviation among the four methods, at
0.1572, and the lowest skewness value as well, at -1.1293.

The proposed model distinguishes itself by guaranteeing a notable level of
accuracy while employing a straightforward implementation process. This balance

between accuracy and simplicity is particularly advantageous in dark spot detection,
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where rapid and efficient identification of potential oil spills from the vast ocean is
required. By incorporating wind as an input variable and applying SAR ocean
imaging physics, the model refines the identification of oil spill candidates,
effectively eliminating low wind areas and common false positives in oil spill
detection. Furthermore, a distinguishing feature of the proposed model is its
capacity to compute the threshold radar backscatter coefficient at a pixel level.
Contrasting with conventional approaches that function on a patch level,
necessitating various window sizes and iterative operations to detect oil spills of
different sizes, this model detects oil spill candidates in a SAR image in a single
step. This characteristic not only streamlines the detection process but also
enhances the model's adaptability and efficiency, making it a robust tool for
handling a wide range of oil spill conditions.

While the proposed model demonstrates significant advantages in detecting
oil spill candidates, it is important to recognize the underlying dependencies that
characterize its performance. The model's performance was found to be dependent
on wind speed and regional characteristics. Optimal results can be achieved within
a moderate wind speed range of 2 to 5 m/sec, especially in regions that exhibit
minimal temporal wind speed variance. Specifically, the accuracy of the model was
significantly influenced by how precisely the wind field information mirrored the
actual wind state at the exact time the SAR image was captured.

In conclusion, the application of this model to oil spill monitoring systems
could enhance operational efficiency, enabling more targeted analysis of vast ocean

data. As demonstrated in previous work (Shaban et al., 2021), this model offers
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practical applications, such as aiding in the construction of balanced deep-learning
datasets by selectively choosing patches containing dark spots. Moreover, the
physically-grounded nature of this model creates opportunities for future research

in advanced oil spill detection, including distinguishing oil types or estimating slick

thickness.

74



Bibliography

Akar, S., Siizen, M. L., and Kaymakci, N. (2011). Detection and object-based
classification of offshore oil slicks using ENVISAT-ASAR images.
Environmental Monitoring and Assessment, 183, 409-423,

Alpers, W., Holt, B., and Zeng, K. (2017). Oil spill detection by imaging radars:
Challenges and pitfalls. Remote Sensing of Environment, 201, 133—-147.

Alpers, W., and Hiihnerfuss, H. (1988). Radar signatures of oil films floating on the
sea surface and the Marangoni effect. Journal of Geophysical Research:
Oceans, 93(C4), 3642-3648.

Alpers, W., and Hiihnerfuss, H. (1989). The damping of ocean waves by surface
films: A new look at an old problem. Journal of Geophysical Research:
Oceans, 94(C5), 6251-6265.

Bianchi, F. M., Espeseth, M. M., and Borch, N. (2020). Large-scale detection and
categorization of oil spills from SAR images with deep learning. Remote
Sensing, 12(14), 2260.

Bradley, D., and Roth, G. (2007). Adaptive thresholding using the integral image.
Journal of Graphics Tools, 13(21).

Brekke, C., and Solberg, A. H. S. (2005). Oil spill detection by satellite remote
sensing. Remote Sensing of Environment, 95(1), 1-13.

Callaghan, I. C., Gould, C. M., Hamilton, R. J., and Neustadter, E. L. (1983). The
relationship between the dilatational rheology and crude oil foam stability. 1.
Preliminary studies. Colloids and Surfaces, 8(1), 17-28.

Chan, T. F., and Vese, L. A. (2001). Active contours without edges. /EEE
Transactions on Image Processing, 10(2), 266-2717.

Chen, F., Zhou, H., Grecos, C., and Ren, P. (2018). Segmenting oil spills from
blurry images based on alternating direction method of multipliers. [EEE

Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 11(6), 1858—1873.

Chen, Y., and Wang, Z. (2022). Marine oil spill detection from SAR images based
on attention U-Net model using polarimetric and wind speed information.
75



International Journal of Environmental Research and Public Health, 19(19),
12325.

Del Frate, F., Petrocchi, A., Lichtenegger, J., and Calabresi, G. (2000). Neural
networks for oil spill detection using ERS-SAR data. /[EEE Transactions on
Geoscience and Remote Sensing, 38(5), 2282-2287.

Elfouhaily, T., Chapron, B., Katsaros, K., and Vandemark, D. (1997). A unified
directional spectrum for long and short wind-driven waves. Journal of
Geophysical Research: Oceans, 102(C7), 15781-15796.

Espedal, H. A., and Wahl, T. (1999). Satellite SAR oil spill detection using wind
history information. International Journal of Remote Sensing, 20(1), 49—65.

Fingas, M., and Brown, C. (2014). Review of oil spill remote sensing. Marine
Pollution Bulletin, 83(1), 9-23.

Franceschetti, G., Fellow, L., Iodice, A., Riccio, D., Member, S., Ruello, G.,
Member, S., and Siviero, R. (2002). SAR raw signal simulation of oil slicks in
ocean environments. /[EEE Transactions on Geoscience and Remote Sensing,
40(9), 1935-1949.

Gade, M., and Alpers, W. (1999). Using ERS-2 SAR images for routine
observation of marine pollution in European coastal waters. The Science of
the Total Environment, 237(238), 441-448.

Gade, M., Alpers, W., Hiihnerfuss, H., Wismann, V. R., and Lange, P. A. (1998). On
the reduction of the radar backscatter by oceanic surface films: Scatterometer
measurements and their theoretical interpretation. Remote Sensing of
Environment, 66(1), 52-70.

Hersbach, H. (2003). CMODS5 An improved geophysical model function for ERS C-
band scatterometry. ECMWE. http://www.ecmwf.int/publications/

Hersbach, H. (2008). CMODS5. N: A C-band geophysical model function for
equivalent neutral wind. ECMWE. http://www.ecmwf.int/publications/

Huang, B., Li, H., and Huang, X. (2005). A level set method for oil slick
segmentation in SAR images. International Journal of Remote Sensing, 26(6),
1145-1156.

76



Hiihnerfuss, H., Alpers, W., Dannhauer, H., Gade, M., Lange, P. A., Neumann, V.,
and Wismann, V. (1996). Natural and man-made sea slicks in the North Sea
investigated by a helicopter-borne 5-frequency radar scatterometer.
International Journal of Remote Sensing, 17(8), 1567-1582.

Hwang, P. A., Zhang, B., Toporkov, J. V, and Perrie, W. (2010). Comparison of
composite Bragg theory and quad-polarization radar backscatter from
RADARSAT-2: With applications to wave breaking and high wind retrieval.
Journal of Geophysical Research: Oceans, 115(C8).

Isoguchi, O., and Shimada, M. (2009). An L-band ocean geophysical model
function derived from PALSAR. [EEE Transactions on Geoscience and
Remote Sensing, 47(7), 1925-1936.

Karantzalos, K., and Argialas, D. (2008). Automatic detection and tracking of oil
spills in SAR imagery with level set segmentation. International Journal of
Remote Sensing, 29(21), 6281-6296.

Karathanassi, V., Topouzelis, K., Pavlakis, P., and Rokos, D. (2006). An object-
oriented methodology to detect oil spills. International Journal of Remote
Sensing, 27(23), 5235-5251.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International Journal of Computer Vision, 1(4),321-331.

Keramitsoglou, 1., Cartalis, C., and Kiranoudis, C. T. (2006). Automatic
identification of oil spills on satellite images. Environmental Modelling and
Software, 21(5), 640-652.

Konik, M., and Bradtke, K. (2016). Object-oriented approach to oil spill detection
using ENVISAT ASAR images. ISPRS Journal of Photogrammetry and
Remote Sensing, 118, 37-52.

Krestenitis, M., Orfanidis, G., loannidis, K., Avgerinakis, K., Vrochidis, S., and
Kompatsiaris, 1. (2019). Oil spill identification from satellite images using
deep neural networks. Remote Sensing, 11(15), 1762.

Liu, P., Zhao, C., Li, X., He, M., and Pichel, W. (2010). Identification of ocean oil
spills in SAR imagery based on fuzzy logic algorithm. International Journal
of Remote Sensing, 31(17), 4819-4833.

7



Li, X. M., and Lehner, S. (2013). Algorithm for sea surface wind retrieval from
TerraSAR-X and TanDEM-X data. IEEE Transactions on Geoscience and
Remote Sensing, 52(5), 2928-2939.

Marghany, M. (2014). Utilization of a genetic algorithm for the automatic detection
of oil spill from RADARSAT-2 SAR satellite data. Marine Pollution Bulletin,
89(1-2), 20-29.

Mdakane, L. W., and Kleynhans, W. (2017). An image-segmentation-based
framework to detect oil slicks from moving vessels in the Southern African
oceans using SAR imagery. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 10(6), 2810-2818.

Mihoub, Z., and Hassini, A. (2014). Monitoring and identification of marine oil
spills using advanced synthetic aperture radar images. Optica Applicata,
44(3), 433-449.

Mitsuyasu, H., and Honda, T. (1982). Wind-induced growth of water waves.
Journal of Fluid Mechanics, 123, 425-442.

Mitsuyasu, H., and Honda, T. (1986). The Effects of Surfactant on Certain Air—
Sea Interaction Phenomena. Wave Dynamics and Radio Probing of the Ocean
Surface, 95-115.

Nirchio, F., and Venafra, S. (2013). XMOD2—An improved geophysical model
function to retrieve sea surface wind fields from cosmo-sky med X-band data.
European Journal of Remote Sensing, 46(1), 583-595.

Otsu, N. (1979). A threshold selection method from gray-level histograms. /EEE
Transactions on Systems, Man, and Cybernetics, 9(1), 62—66.

Padmasini, N., Umamaheswari, R., and Sikkandar, M. Y. (2018). State-of-the-Art
of Level-Set Methods in Segmentation and Registration of Spectral Domain
Optical Coherence Tomographic Retinal Images. Soft Computing Based
Medical Image Analysis, 163—181.

Phillips, O. M. (1977). The dynamics of the upper ocean. Cambridge University
Press.

Plant, W. J. (1982). A relationship between wind stress and wave slope. Journal of
Geophysical Research: Oceans, 87(C3), 1961-1967.

78



Quilfen, Y., Chapron, B., Elfouhaily, T., Katsaros, K., and Tournadre, J. (1998).
Observation of tropical cyclones by high-resolution scatterometry. Journal of
Geophysical Research: Oceans, 103(C4), 7767-7786.

Romeiser, R., Alpers, W., and Wismann, V. (1997). An improved composite surface
model for the radar backscattering cross section of the ocean surface 1.
Theory of the model and optimization/validation by scatterometer data.
Journal of Geophysical Research: Oceans, 102(C11), 25237-25250.

Salvatori, L., Bouchaib, S., Frate, F. Del, Lichtenneger, J., and Smara, Y. (2003).
Estimating the wind vector from radar SAR images when applied to the
detection of oil spill pollution. International Symposium on GIS and
Computer Cartography for Coastal Zone Management.

Shaban, M., Salim, R., Khalifeh, H. A., Khelifi, A., Shalaby, A., El-Mashad, S.,
Mahmoud, A., Ghazal, M., and El-Baz, A. (2021). A deep-learning framework
for the detection of oil spills from SAR data. Sensors, 21(7).

Shu, Y., Li, J., Yousif, H., and Gomes, G. (2010). Dark-spot detection from SAR
intensity imagery with spatial density thresholding for oil-spill monitoring.
Remote Sensing of Environment, 114(9), 2026-2035.

Singha, S., Bellerby, T. J., and Trieschmann, O. (2013). Satellite oil spill detection
using artificial neural networks. /IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 6(6), 2355-2363.

Singha, S., Ressel, R., Velotto, D., and Lehner, S. (2016). A Combination of
Traditional and Polarimetric Features for Oil Spill Detection Using
TerraSAR-X. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 9(11), 4979—4990.

Solberg, A. H. S., Brekke, C., and Husey, P. O. (2007). Oil spill detection in
Radarsat and Envisat SAR images. IEEE Transactions on Geoscience and
Remote Sensing, 45(3), 746-754.

Solberg, A. H. S., Storvik, G., Solberg, R., and Volden, E. (1999). Automatic
detection of oil spills in ERS SAR images. [EEE Transactions on Geoscience
and Remote Sensing, 37(4), 1916—1924.

79



Stoffelen, A., and Anderson, D. (1997). Scatterometer data interpretation:
Estimation and validation of the transfer function CMOD4. Journal of
Geophysical Research: Oceans, 102(C3), 5767-5780.

Topouzelis, K., Karathanassi, V., Pavlakis, P., and Rokos, D. (2007). Detection and
discrimination between oil spills and look-alike phenomena through neural
networks. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4),
264-270.

Topouzelis, K., and Psyllos, A. (2012). Oil spill feature selection and classification
using decision tree forest on SAR image data. ISPRS Journal of
Photogrammetry and Remote Sensing, 68(1), 135-143.

Valenzuela, G. R. (1978). Theories for the interaction of electromagnetic and
oceanic waves—A review. Boundary-Layer Meteorology, 13(1-4), 61-85.

Wismann, V., Gade, M., Alpers, W., and Hiithnerfuss, H. (1993). Radar signatures
of mineral oil spills measured by an airborne multi-frequency multi-

polarization microwave scatterometer. Proceedings of the Conference on
Oceans ’93, 348-353.

Wright, J. W. (1968). A new model for sea clutter. [EEE Transactions on Antennas
and Propagation, 16(2), 217-223.

Xia, G.-S., Liu, G., Yang, W., and Zhang, L. (2015). Meaningful object
segmentation from SAR images via a multiscale nonlocal active contour
model. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1860—
1873.

Xu, L., Li, J., and Brenning, A. (2014). A comparative study of different
classification techniques for marine oil spill identification using
RADARSAT-1 imagery. Remote Sensing of Environment, 141, 14-23.

Yelland, M., and Taylor, P. K. (1996). Wind stress measurements from the open
ocean. Journal of Physical Oceanography, 26(4), 541-558.

Yu, F., Sun, W., Li, J., Zhao, Y., Zhang, Y., and Chen, G. (2017). An improved Otsu
method for oil spill detection from SAR images. Oceanologia, 59(3), 311-
317.

80



Zeng, K., and Wang, Y. (2020). A deep convolutional neural network for oil spill
detection from spaceborne SAR images. Remote Sensing, 12(6).

81



Abstract in Korean

it

A 2 A

Lk

A

A 25 2]

L
]

dark spot detection WA

oy
700

dwtH oz b we A

A ol A

22

=]
1o

o

i

!
oF
G

o

ol o
.

1
a =

A}k

Pt

o

A A]

"
=
;&

iy

R ]
FRred FH

e <}

7}

al

7

A4 Fl
Ql

Hol Otsu, Bradley,
0.5191

F7y A,

Foict.

98ll, Sentinel—1 ¢4 olA
[e)

4%
0.6400,

5}7]

°©

tod ARE-

o

FoAar, ol

[e)
Zkzt 0.3315,

segmentation

o]

1

WAReE 23
[}

o

A]

w5 HolHE A4
e

A
Ak

RN
A -0l A

.

ECMWF ERAS A4 Ho|HZEEH &
=R

A4E 0.7948 2 yEgow, 7]&9

active contour model?]

o

B

ofy

segmentation

NN
3L

7}

Njn

e

o)
=

—_—

0
X
EW

—

NI

JJ

A=

+o, ©& patch

T =]
& ©°

7F

AAgL Aol

hus

o7 A7)

94l
82

171

©

HA



oJuju}

=

o HhE eE

k!

=

5] SAR olv]A] HF

E
-

st

To] AA o=

ol A o]

22

3 gl

B
B

)

EUEE

e
o

she,

RN

o] =]
43

oA %k

1
i

o
TR

oF
N
ol
ﬁo
N

)

—

0

<

ol

O

el

0

;on_
)

TR

<

oj

patch

R

1

o}y 2}, dark spot®] Sl

T

o
ful

BH

RLN

ol

del= &84

s

il

2l

4r
;oT

ol

N

V2e]

X
@

.

9
pal

DR RE
D AATACI, AR, NERE, oA

A
Fg0 :

7}

0

g
&

)
o)

jay

a3

83



	Chapter 1. Introduction
	1.1 Research Background
	1.2 Literature Review
	1.3 Research Objective

	Chapter 2. Microwave Backscattering Properties from the Sea Surface
	2.1 Microwave backscattering from the Slick-Free Ocean Surface
	2.1.1 Radar Scattering Model
	2.1.2 Geophysical Model Function

	2.2 Microwave backscattering from the Slick-Covered Ocean Surface
	2.2.1 The Action Balance Equation
	2.2.2 The Damping Ratio


	Chapter 3. Development and Validation of the Semi-Empirical Model
	3.1 Formulation of the Theoretical Framework for the Semi-Empirical Model
	3.2 Data Acquisition
	3.2.1 Acquisition of SAR Image Data
	3.2.2 Acquisition of Wind Field Data

	3.3 Parameter Determination of the Semi-Empirical Model

	Chapter 4. Performance Evaluation of the Semi-Empirical Model
	4.1 Experimental Design
	4.2 Performance Evaluation with Other Methods
	4.3 Performance Evaluation for Different Wind Conditions and Regions

	Chapter 5. Application of the Semi-Empirical Model
	Chapter 6. Conclusion
	Bibliography  
	Abstract in Korean


<startpage>11
Chapter 1. Introduction 1
 1.1 Research Background 1
 1.2 Literature Review 4
 1.3 Research Objective 9
Chapter 2. Microwave Backscattering Properties from the Sea Surface 11
 2.1 Microwave backscattering from the Slick-Free Ocean Surface 11
  2.1.1 Radar Scattering Model 11
  2.1.2 Geophysical Model Function 13
 2.2 Microwave backscattering from the Slick-Covered Ocean Surface 18
  2.2.1 The Action Balance Equation 18
  2.2.2 The Damping Ratio 27
Chapter 3. Development and Validation of the Semi-Empirical Model 29
 3.1 Formulation of the Theoretical Framework for the Semi-Empirical Model 29
 3.2 Data Acquisition 34
  3.2.1 Acquisition of SAR Image Data 34
  3.2.2 Acquisition of Wind Field Data 40
 3.3 Parameter Determination of the Semi-Empirical Model 44
Chapter 4. Performance Evaluation of the Semi-Empirical Model 47
 4.1 Experimental Design 47
 4.2 Performance Evaluation with Other Methods 51
 4.3 Performance Evaluation for Different Wind Conditions and Regions 60
Chapter 5. Application of the Semi-Empirical Model 69
Chapter 6. Conclusion 72
Bibliography   75
Abstract in Korean 82
</body>

