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Abstract

The necessity of real-time flood monitoring has been increasing as the fre-

quency and intensity of water-related disasters increase. Synthetic Aperture

Radar(SAR) could be particularly useful for a inundation mapping because it

is able to penetrate clouds and provide images even during periods of darkness.

Therefore, water segmentation using SAR has been actively researched, espe-

cially the advent of Convolutional Neural Networks(CNN) contributing to high

overall accuracy. However, CNN is vulnerable to detecting precise boundaries

and narrow rivers, which pose challenges for practical applications. In this

study, we propose a boundary-driven adversarial learning approach of deep

neural networks to detect waterbodies with precise borders and small rivers. We

adopt the adversarial learning of Generative Adversarial Networks (GAN) to

make a generator focus on pixels that could be easily ignored. A discriminator

evaluates and distinguishes the segmented images with the ground truth labels

by consulting the SAR images and the boundary distance map. The boundary

distance map is designed to highlight the small area like the boundaries and

streams and suppressing false positive errors.Moreover, we propose a hybrid

loss function that guides the network to concentrate on both the overall and

the fine details by fusing Binary Cross Entropy loss, Hausdorff distance loss

and adversarial loss. Through adversarial training with the hybrid loss, the

water segmentation model using SAR can precisely detect waterbodies. We

demonstrate the effectiveness of the model using three evaluation metrics:

F1-score, Boundary IoU, and Matthews Correlation Coefficient, and we also

apply additional qualitative assessment. Our empirical evidence indicates that

the proposed model outperforms other segmentation models like U-Net and



DeepLabv3+, especially in terms of precise boundaries and narrow rivers. To

assess the practical monitoring use, we demonstrate that the proposed model

maintains precision with the large scene SAR images. Not only does it detect

precise boundaries and narrow objects,but it also reduces false positive errors

in large scene SAR images. The visual inspection further demonstrates that

our model can detect narrow rivers and small reservoirs that are missed by

other models, showcasing the potential of boundary-driven adversarial learning

of deep neural networks in practical monitoring use.

Keywords: Water Segmentation, SAR, Adversarial Learning, Flood Monitor-

ing

Student ID: 2021-29595
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1 Introduction

1.1 Research Background

As the climate change accelerates, the frequency and intensity of extreme

weather events including floods and inundations are likely to increase. As

the unpredictability of the weather increases, the significance of the response

and recovery in the disaster response system is accentuated compared to the

previous state. For the rapid response and recovery, the real-time and precise

inundation monitoring is in demand. As satellites periodically provides the

remote sensing data with large-scale coverage, flood monitoring based on the

remote sensing could help track changes in the frequency and intensity of floods

and inundations in different regions over time. Additionally, it can evaluate

the effectiveness of flood management measures. As part of the fundamental

research for flood monitoring, studies on waterbody detection are actively

progressing using multispectral sensor, Light Detection And Ranging(LiDAR),

and Synthetic Aperture Radar(SAR)(Dong et al. 2019; Höfle et al. 2009; White

et al. 2015; Yuan et al. 2021).

SAR is widely adopted for detecting waterbodies, such as lakes, coastlines

and rivers. SAR, an active microwave sensor, can penetrate clouds and does

not require sunlight, so SAR images can be obtained regardless of weather

and time. This advantage enables SAR as a fundamental data for water

1



monitoring(Pradhan et al. 2017). SAR emits the microwaves and records the

reflected microwaves from the surface, so the roughness of the surface has

a significant effect on the amplitude of SAR images. Specifically, the water

surface is usually smooth, causing the microwaves to specularly reflect away

with few back scatterings. On the other hand, the land, which is typically

rough, reflects the microwave back to the SAR sensor. This difference makes

the waterbodies easily distinguish in SAR images. As a result, research on

waterbody segmentation using SAR images has been rapidly expanding.

Traditional Machine Learning algorithms has been introduced in the field of

waterbody segmentation methods using SAR images. SAR water segmentation

studies based on Edge detection(Liu and Jezek 2004), Level Set method(Silveira

and Heleno 2008), Clustering(Liu et al. 2016), Random Forest(Xie et al. 2015),

and Support Vector Machine(Klemenjak et al. 2012) have obtained promising

performances. However, the distinctive imaging processing of SAR leads to the

presence of speckle noises. Moreover, the amplitude of pixels in one SAR image

varies with the incidence angle. Traditional Machine Learning algorithms aim

to define a formula for categorizing the pixels, which is easily disrupted by

the speckle noises and varying amplitudes. Furthermore, from the perspective

of the practical flood monitoring, Traditional Machine Learning algorithms

usually require large computing power and memory resources, leading to slow

analysis for real-time monitoring(Guo et al. 2022).

Fortunately, due to its powerful feature extraction capabilities, Deep Learning-

based Convolutional Neural Networks(CNN) have shown remarkable results in

SAR waterbody segmentation. As CNN extracts shared weights by iterating

through all pixels, it can construct a formula that fits all pixels in SAR

images regardless of speckle noises. As SAR images intrinsically contain a

2



large amount of speckle noises, segmentation with whole SAR images is not

easy(Guo et al. 2022). However, with the advent of GPUs and the Big Data,

Deep Learning methods have been able to overcome this limitation by learning

nonlinear relationships. CNN, which iterates the shared weights through multi-

layer structures, is able to find robust weights that are unaffected by speckle

noises. (Long et al. 2015) proposed Fully Convolutional Networks(FCN) by

replacing the full connection layer in the tail of the model with the fully

convolutional layer, enabling pixel-level segmentation while preserving the

resolution. (Kang et al. 2018) firstly introduced FCN in the water body

segmentation area, verifying that FCN is less sensitive to speckle noise of SAR

images. Subsequently, U-Net(Ronneberger et al. 2015), which is composed

of a U-shaped symmetrical structure with skip-connections, has become a

popular deep learning model in the SAR waterbody segmentation (Denbina

et al. 2020; Kim et al. 2021; Pai et al. 2019). U-Net extracts the deep and

specific details of the waterbody in the encoder and inclusive and semantic

characteristics in the decoder and connects this information through the skip-

connections, which enhances the accuracy while maintaining the resolution

of input images. In 2018, as the lastest version of Deeplab series, (Chen

et al. 2018) proposed the DeepLabv3+ model to address the limitations in

handling boundary details. Through implementing Atrous Spatial Pyramid

Pooling(ASPP) and depthwise separable convolution with encoder-decoder

structure, DeepLabv3+ can capture the multi-scale context and the sharper

object boundaries.

However, these conventional CNN models tend to aggregate information at

the expense of some object details, leading to inadequate segmentation of fine

and narrow waterbodies(Guo et al. 2022). There are two ways to address

3



this problem. Modifying the model architecture is applicable to universal

regions, but it is more complex and time-consuming in practical use. On the

other hand, adding auxiliary data directly to input data can indicate key

areas of focus with intuitively interpretable information. However, this method

struggles in constructing auxiliary data with consistent qualities in practical

use for universal areas. For practical use in flood monitoring, the convenient

construction of data with short prediction time is needed.

Meanwhile, (Goodfellow et al. 2020) proposed the concept of adversarial

training in image generation tasks. Generative Adversarial Networks(GANs)

have an additional network named the discriminator, which distinguishes whether

the generated image is within the real data distribution or not(Goodfellow et al.

2020). On the contrary, the generative network tries to fool the discriminative

network by generating real-like, exquisite images. As the two networks compete

with each other in an adversarial setting, the generator learns based on the loss

function derived from the discriminator’s output. As the training progresses, the

generator’s output becomes more indistinguishable from the real data. Instead

of inputting a random noise into regular GANs, the Conditional GANs(cGANs)

receives additional data that conditions the models(Mirza and Osindero 2014).

This condition can be a multi-modal, such as images, which (Isola et al. 2017)

presents the image-image translation based on the U-Net generator. Adding of

a reconstruction loss like L1 loss to the adversarial loss makes the generated

image realistic, as demonstrated by (Isola et al. 2017).

The usage of GAN is not only restricted to image generation but also

extends to the field of image segmentation. In the task of the segmentation,

the combination of GANs and CNN results in a synergy effect, generating

more realistic and detailed segmentation maps. This hybrid approach has been

4



actively researched in the field of the medical image segmentation, where input

images are challenging to analyze and the details of segmentation is critical.

(Lei et al. 2020) constructed a skin lesion segmentation model based on dual

discriminators with different perspectives to augment precise decision. (Park et

al. 2019) proposed an endometrium segmentation model trained with the key-

point discriminator, which surmounts the challenges of ambiguous boundaries

and heterogeneous textures in transvaginal ultrasound images. Based on the

ground truth endometrium key-point map and the intermediate product of the

generator, the key-point discriminator determines whether the segmentation

results coincide with the input ultrasound images.

The application of adversarial learning in SAR segmentation task is still in

its early stages, with only few studies. In 2020, (Ronci et al. 2020) introduced

the adversarial learning for oil spill detection using Radarsat-2 and Sentinel-

1 SAR images. They compared with standard U-Net and U-Net++(Zhou et

al. 2018), and the U-Net with adversarial training showed the best accuracy.

(Li et al. 2021) overcame the limitation of a small oil spill train dataset by

constructing a series of adversarial networks at multiple scales. The proposed

Multiscale Conditional Adversarial Network(MCAN) outperformed adaptive

thresholding, level set, CGAN, FCN, and U-Net. (Li et al. 2022) utilized the

cycle-consistent adversarial network(CycGAN)(Zhu et al. 2017) to generated

optical images from SAR images, and two images were stitched together to seg-

ment marine culture farms. With the attention module(Vaswani et al. 2017) in

segmentation, the model precisely extracts regularly shaped objects. (Fan and

Liu 2023) designed a MultiTask Generative Adversarial Networks(MTGANs)

to discriminate oil spills and look-alikes and extract oil spill areas. The first

GAN model is trained to generate SAR oil spill images, and the discriminator

5



of this model distinguishes real oil and look-alike images. Another GAN model

segments the oil spill area, and SAR images, generated segmentations and

segmentation labels are fed into the discriminator to distinguish real from

generated labels. MTGANs is superior compared to other state-of-the-arts

models, especially in maintaining details and reducing misclassification.

To the best of our knowledge, no previous study has proposed a method

of adversarial learning in SAR water segmentation. Adversarial learning using

SAR images is currently only adopted in the area of SAR-to-optical or optical-

to-SAR image translation. Therefore, we sought inspiration from the field

of medical image segmentation, where segmentation is based on non-optical

images and the boundary is critical information.
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1.2 Purpose of Research

As mentioned earlier, the performance of vanilla CNNs in precise details is

not satisfactory(Guo et al. 2022). There are two main challenges in accurate

Deep-Learning based SAR water segmentation: (1) The area of low intensity

is easily misjudged as water. As the SAR water segmentation is based on the

difference of brightness in SAR images, the other dark regions which are flat

surfaces(e.g. golf courses, road) or the radar shadow in complex topography

are also misclassified as water(Figure 1.1. (a)). (2) The narrow rivers are easily

ignored on the basis of the SAR resolution and the detailed structures of water

bodies are insufficient(Figure 1.1. (b)). This is because the receptive field of

the convolutional layers in CNN gradually increases with deeper layers, which

can result in a loss of fine spatial details and subtle boundaries.

To overcome the above discrepancy, we introduce boundary-driven adver-

sarial learning to the SAR water segmentation model. We propose a novel Deep

Learning framework that comprises a segmentation network and a boundary-

guided discriminator network. We adopt the U-Net architecture as the main

segmentation model and substitute pooling layers with strided convolutional

layers for a simpler but deeper learning. Additionally, we introduce a novel

hybrid loss that fuses Binary Cross Entropy loss, Hausdorff distance loss,

and adversarial loss to address the intrinsic weaknesses of region-based loss

functions. The proposed discriminator is guided by the SAR images and

the boundary distance map of ground truth images. The boundary-driven

discriminator determines whether the predicted segmentation results, based

on the ground truth boundary distance map, align with the actual boundaries.

The ground truth boundary map is the normalized Euclidean distance from

7



the thickened waterbody contour. By sequentially thickening and calculating

distance, contours of narrow rivers are merged and highlighted, while contours

of wider rivers do not intersect. Through adversarial learning, the proposed

model strives to predict the waterbody more accurately, especially along borders

and narrow rivers.

The main contributions of this article are given as follows: 1) A boundary-

aware adversarial learning method is proposed for SAR Water Segmentation.

We introduce the discriminator into the SAR Water Segmentation task, al-

lowing model to learn a detailed formula with ancillary data during training

without the need for inference. The adversarial learning approach mitigates the

difficulties of constructing consistent ancillary data for wide areas and reduces

the time-consuming data processing required for real-time monitoring. 2) The

proposed SAR water segmentation model, with the modified architecture and

hybrid loss, is guided by the waterbody boundary distance map. This enables

us to extract the waterbody with higher accuracy, especially along coincident

borders and in detecting narrow rivers.

The remainder of the dissertation introduces the boundary-driven adver-

sarial learning-based SAR water segmentation model. Chapter 2 provides the

procedure for constructing the training dataset, which includes Sentinel-1 SAR

image, Landcover Map and UNOSAT Disaster Flood Map. Chapter 3 presents

the details of our proposed model, including the SAR water segementation

model architecture, discriminator architecture and hybrid loss. The experiment

settings and evaluation metrics are discussed in Chapter 4. Furthermore,

Chapter 4 reports the qualitative and quantitative results of proposed boundary-

driven adversarial learning based SAR water segmentation model, comparing

it to other segmentation models. To identify how different parts of the model

8



interact and contribute, the results of ablation studies are also presented

in Chapter 4. Chapter 5 is dedicated to the discussion of the results, and

the final chapter concludes the dissertation, summarizing the key points and

contributions of the studies.
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Figure 1.1 Sample results of our proposed method compared to U-Net and DeepLabV3+. (a)the region of small reservoir

(b)the region of small stream surrounded by moundtain. From left to right, SAR images, and the result of U-Net, DeepLabV3+

and the proposed model are displayed.
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2 Data Acquisition

As the purpose of this research is to create a high-quality water segmentation

Deep Learning model using SAR images, it is necessary to construct the training

and test datasets. In this study, Sentinel-1 SAR images and water ground truth

data, using Landcover Map and Flood Map, were adopted to generate the

dataset. This chapter explains the series of procedures to construct the dataset.

Figure 2.1. describes the whole procedure of the constructing dataset.

Sentinel-1 satellite was selected for SAR data due to its high accessibility.

Utilizing remote sensing data for flood monitoring can incur high costs, making

it one of the biggest obstacles. In this regard, Sentinel-1, which is freely offered

by European Space Agency(ESA), is the optimal SAR satellite. Sentinel-1

carries a C-band SAR instrument and usually operates in Interferometric Wide

swath(IW) mode over land and coastal areas. We acquired the SAR images

in IW mode Level-1 High Resolution Ground Range Detected(GRD-H) which

has a resolution of 20m x 22m.

The dataset is composed of input SAR images and corresponding water-

labeled images. The difficulty in constructing the dataset lies in preparing a

high-quality water surface map. To overcome this difficulty, we utilized the

Landcover Map from the Ministry of Environment of South Korea and the

Disaster Flood Map from the United Nations Satellite Centre(UNOSAT). As

11



the formation of two data is different, the procedure to obtain the corresponding

Sentinel-1 was also different.

For the Landcover Map, we select the subdivision Landcover Map, which

has a 1m resolution and is categorized into 41 landcover types. The Ministry of

Environment produces the Landcover Map based on aerial orthogonal images

along with other ancillary data such as Digital Topographic Map, Cadastral

Map, and Forest Cover Map. The Landcover Map is constructed by on-screen

digitizing by visual inspection. Therefore, the Sentinel-1 images that coincide

with the date and region of the referred aerial orthogonal images can be utilized

as the corresponding SAR images for groundtruth data from the Landcover

Map. Taking inspiration from this idea, we accumulated the shooting date of

aerial images for each map grid through visual examination and data crawling.

Since the recycle date of Sentinel-1 is 12 days, obtaining exact matching images

is challenging. Hence, we lowered the criteria to plus or minus three days from

the aerial shooting date.

For the Flood Map, UNOSAT’s Emergency Mapping service provides satellite-

based disaster analysis of floods, landslides, earthquakes, volcanoes and other

disasters. Satellite data is not only restricted to Sentinel-1, but also includes

other SAR and optical satellites such as VIIRS, RADARSAT Constellation

Mission, and Gaofen-3. However, we only collected the Flood Map that analyzed

the Sentinel-1 satellite images. Yet, the reliability of the Flood Map is unproven,

so we could not utilize those maps directly. Therefore, we sorted out the high-

quality Flood Map through visual inspection. By obtaining the the date and

extent of the region from the Flood Map, we could identify the specific Sentinel-

1 image that was analyzed.
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Table 2.1 shows the list of Sentinel-1 images utilized for constructing

the training dataset, and Figure 2.2 describes the corresponding regions for

each Sentinel-1 image. Once the list of Sentinel-1 images was prepared, we

downloaded them from Alaska Satellite Facility(ASF) Vertex. The IW mode

of Sentinel-1 supports both single polarization(HH or VV) and dual polar-

ization(HH+HV, VV+VH), but we select dual polarization for pretest and

training. By previous empirical data, VV polarization was found to be the best

for detecting water.

For preprocessing of Sentinel-1 GRDH images, we utilized Sentinel Appli-

cations Platform(SNAP) program, which is offered by ESA. We sequentially

remove GRD-border noise and then apply radiometric calibration. Radiometric

calibration is a necessary step that allows the measurement of radar backscatter

to be converted into meaningful physical units, such as power or amplitude.

Lastly, we apply terrain correction into a 10m resolution using SRTM 1sec

HGT DEM based on EPSG 4326 projection.

We matched the preprocessed Sentinel-1 images and ground truth label

shapefiles by date and regions. We cropped the preprocessed Sentinel-1 images

that overlapped with label shapefiles. For the ground truth shapefiles, we raster-

ized them into the same projection and resolution as the corresponding Sentinel-

1 images. After matching, the dataset contains few meaningless training sets

where SAR images were at the border of the whole Sentinel-1 images. We

eliminated them and also excluded pairs that did not cincide with each other

through visual examination. The final dataset was cropped into 256 * 256

pixels. After the whole process was completed, the final dataset consisted of

28,569 pairs of the water ground truth images and SAR images. Figure 2.3
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shows the 50 examples of the final dataset for landcover-based and flood-based

dataset, respectively.
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Figure 2.1 The procedure of constructing training dataset from Landcover Map.
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Table 2.1 List of Sentinel-1 SAR satellite images for training data procure-

ment

SAT Mode, Type
Acquisition

Time(UTC)

Orbit

Dir
SAT Mode, Type

Acquisition

Time(UTC)

Orbit

Dir

S1A1 IW, GRDH
25 Apr 2017

9:30:54 - 9:31:23
ASC2 S1A IW, GRDH

30 Jul 2017

11:04:20 - 11:04:45
ASC

S1A IW, GRDH
2 May 2017

9:22:51 - 9:23:21
ASC S1A IW, GRDH

15 Jun 2018

23:47:18 - 23:47:43
DESC3

S1A IW, GRDH
7 May 2017

9:30:54 - 9:31:24
ASC S1A IW, GRDH

25 Jul 2018

11:04:26 - 11:04:51
ASC

S1A IW, GRDH
14 May 2017

9:22:51 - 9:23:20
ASC S1A IW, GRDH

11 Jul 2015

11:54:34 - 11:54:59
ASC

S1A IW, GRDH
19 May 2017

9:30:55 - 9:31:24
ASC S1A IW, GRDH

6 Aug 2015

11:37:30 - 11:37:55
ASC

S1A IW, GRDH
7 Jun 2017

9:22:53 - 9:23:22
ASC S1A IW, GRDH

6 Aug 2015

11:37:55 - 11:38:20
ASC

S1A IW, GRDH
12 Jun 2017

9:30:56 - 9:31:25
ASC S1A IW, GRDH

11 Aug 2015

11:47:21 - 11:47:46
ASC

S1A IW, GRDH
19 Jun 2017

9:22:53 - 9:23:23
ASC S1A IW, GRDH

30 Jun 2016

23:55:28 - 23:55:53
DESC

S1A IW, GRDH
30 Aug 2017

9:22:57 - 9:23:27
ASC S1A IW, GRDH

24 Jul 2016

23:55:29 - 23:55:54
DESC

S1A IW, GRDH
4 Sep 2017

9:31:01 - 9:31:30
ASC S1A IW, GRDH

7 Nov 2017

22:45:31 - 22:45:56
DESC

S1A IW, GRDH
16 Sep 2017

9:31:01 - 9:31:30
ASC S1A IW, GRDH

18 Jul 2015

11:47:20 - 11:47:45
ASC

S1A IW, GRDH
29 Oct 2017

9:22:59 - 9:23:28
ASC S1B4 IW, GRDH

19 Apr 2017

21:31:10 - 21:31:35
DESC

S1A IW, GRDH
14 Jun 2018

9:23:29 - 9:23:57
ASC S1B IW, GRDH

26 Apr 2017

21:23:14 - 21:23:39
DESC

S1A IW, GRDH
19 Jun 2018

9:31:32 - 9:31:57
ASC S1B IW, GRDH

26 Apr 2017

21:23:39 - 21:24:12
DESC

S1A IW, GRDH
1 Jul 2018

9:31:33 - 9:31:58
ASC S1B IW, GRDH

1 May 2017

21:31:11 - 21:31:36
DESC

S1A IW, GRDH
25 Jul 2018

9:31:34 - 9:31:59
ASC S1B IW, GRDH

1 May 2017

21:31:36 - 21:32:01
DESC

S1A IW, GRDH
6 Aug 2018

9:31:06 - 9:31:35
ASC S1B IW, GRDH

1 May 2017

21:32:01 - 21:32:26
DESC

S1A IW, GRDH
6 Aug 2018

9:31:35 - 9:32:00
ASC S1B IW, GRDH

20 May 2017

21:23:15 - 21:23:40
DESC

1Sentinel-1A
2Ascending orbit direction
3Descending orbit direction
4Sentinel-1B
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S1A IW, GRDH
18 Aug 2018

9:31:07 - 9:31:36
ASC S1B IW, GRDH

20 May 2017

21:23:40 - 21:24:13
DESC

S1A IW, GRDH
11 Sep 2018

9:31:08 - 9:31:37
ASC S1B IW, GRDH

25 May 2017

21:31:37 - 21:32:02
DESC

S1A IW, GRDH
23 Sep 2018

9:31:08 - 9:31:37
ASC S1B IW, GRDH

25 May 2017

21:32:02 - 21:32:27
DESC

S1A IW, GRDH
23 Sep 2018

9:31:37 - 9:32:02
ASC S1B IW, GRDH

1 Jun 2017

21:23:16 - 21:23:41
DESC

S1A IW, GRDH
3 Apr 2019

9:31:06 - 9:31:35
ASC S1B IW, GRDH

6 Jun 2017

21:31:38 - 21:32:03
DESC

S1A IW, GRDH
10 Apr 2019

9:23:02 - 9:23:31
ASC S1B IW, GRDH

13 Jun 2017

21:23:16 - 21:23:41
DESC

S1A IW, GRDH
15 Apr 2019

9:31:06 - 9:31:35
ASC S1B IW, GRDH

18 Jun 2017

21:31:13 - 21:31:38
DESC

S1A IW, GRDH
27 Apr 2019

9:31:07 - 9:31:36
ASC S1B IW, GRDH

18 Jun 2017

21:31:38 - 21:32:03
DESC

S1A IW, GRDH
4 May 2019

9:23:03 - 9:23:32
ASC S1B IW, GRDH

5 Aug 2017

21:31:41 - 21:32:06
DESC

S1A IW, GRDH
9 May 2019

9:31:07 - 9:31:36
ASC S1B IW, GRDH

24 Aug 2017

21:23:20 - 21:23:45
DESC

S1A IW, GRDH
16 May 2019

9:23:04 - 9:23:33
ASC S1B IW, GRDH

29 Aug 2017

21:31:42 - 21:32:07
DESC

S1A IW, GRDH
21 May 2019

9:31:08 - 9:31:37
ASC S1B IW, GRDH

22 Sep 2017

21:31:43 - 21:32:08
DESC

S1A IW, GRDH
21 May 2019

9:31:37 - 9:32:02
ASC S1B IW, GRDH

29 Sep 2017

21:23:22 - 21:23:47
DESC

S1A IW, GRDH
28 May 2019

9:23:04 - 9:23:33
ASC S1B IW, GRDH

11 Oct 2017

21:23:47 - 21:24:20
DESC

S1A IW, GRDH
28 May 2019

9:23:33 - 9:23:45
ASC S1B IW, GRDH

16 Oct 2017

21:31:44 - 21:32:09
DESC

S1A IW, GRDH
2 Jun 2019

9:31:08 - 9:31:37
ASC S1B IW, GRDH

23 Oct 2017

21:23:47 - 21:24:20
DESC

S1A IW, GRDH
2 Jun 2019

9:31:37 - 9:32:02
ASC S1B IW, GRDH

15 Dec 2017

21:32:08 - 21:32:33
DESC

S1A IW, GRDH
14 Jun 2019

9:31:09 - 9:31:38
ASC S1B IW, GRDH

14 Apr 2018

21:31:16 - 21:31:41
DESC

S1A IW, GRDH
8 Jul 2019

9:31:10 - 9:31:39
ASC S1B IW, GRDH

14 Apr 2018

21:31:41 - 21:32:06
DESC

S1A IW, GRDH
1 Aug 2019

9:31:12 - 9:31:41
ASC S1B IW, GRDH

26 Apr 2018

21:31:17 - 21:31:42
DESC

S1A IW, GRDH
20 Aug 2019

9:23:10 - 9:23:39
ASC S1B IW, GRDH

26 Apr 2018

21:31:42 - 21:32:07
DESC

S1A IW, GRDH
1 Sep 2019

9:23:20 - 9:23:45
ASC S1B IW, GRDH

26 Apr 2018

21:32:07 - 21:32:32
DESC

S1A IW, GRDH
13 Sep 2019

9:22:56 - 9:23:21
ASC S1B IW, GRDH

8 May 2018

21:31:42 - 21:32:07
DESC

S1A IW, GRDH
18 Sep 2019

9:31:14 - 9:31:43
ASC S1B IW, GRDH

20 May 2018

21:31:43 - 21:32:08
DESC
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S1A IW, GRDH
25 Sep 2019

9:23:40 - 9:24:05
ASC S1B IW, GRDH

20 May 2018

21:32:08 - 21:32:33
DESC

S1A IW, GRDH
7 Oct 2019

9:23:11 - 9:23:40
ASC S1B IW, GRDH

1 Jun 2018

21:31:19 - 21:31:44
DESC

S1A IW, GRDH
7 Oct 2019

9:23:40 - 9:24:05
ASC S1B IW, GRDH

1 Jun 2018

21:31:44 - 21:32:09
DESC

S1A IW, GRDH
12 Oct 2019

9:31:15 - 9:31:44
ASC S1B IW, GRDH

1 Jun 2018

21:32:09 - 21:32:34
DESC

S1A IW, GRDH
24 Oct 2019

9:31:15 - 9:31:44
ASC S1B IW, GRDH

14 Aug 2019

21:23:58 - 21:24:31
DESC

S1A IW, GRDH
5 Nov 2019

9:31:15 - 9:31:44
ASC S1B IW, GRDH

13 Oct 2019

21:24:00 - 21:24:33
DESC

S1A IW, GRDH
5 Nov 2019

9:32:09 - 9:32:34
ASC S1B IW, GRDH

25 Oct 2019

21:23:35 - 21:24:00
DESC

S1A IW, GRDH
17 Nov 2019

9:32:09 - 9:32:34
ASC S1B IW, GRDH

6 Nov 2019

21:23:10 - 21:23:35
DESC

S1B IW, GRDH
6 Nov 2019

21:23:35 - 21:24:00
DESC
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Figure 2.2 Study area and data coverage near Korea and Southeast Asia.

Red boxes describe the spatial coverage of Sentinel-1 images including both

ascending and descending paths.
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Figure 2.3 The examples of the final dataset (a) Lnadcover map based

dataset (b) UNOSAT flood map based dataset.
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3 Boundary-driven Adversarial Learning of Deep

Neural Networks

The boundary-driven adversarial learning water segmentation network consists

of a generator, a boundary distance map construction module, and a discrimi-

nator. The generator is a U-Net-based network that receives SAR images and

segments water and non-water pixels. The boundary distance map construction

module extracts the waterbody boundaries, and calculates the nearest distance

from the boundaries. The discriminator is a modified simple classification

network.
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Figure 3.1 The full flowchart of the SAR water segmentation with adversarial learning.
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3.1 Generator architecture

We designed our generative model of the SAR water segmentation network

based on the U-Net architecture. The detailed structure of the generator

is shown in Figure 3.2. The fundamental structure of U-Net is composed

of the encoder and the decoder. Each encoder and decoder comprises four

convolutional blocks, and in the middle of the encoder and the decoder, there is a

bottleneck convolutional block with the deepest feature map. The convolutional

block has two convolutional layers followed by Batch Normalization and ReLU

activation with a strided convolutional layer. L1 kernel regularizer is added to

convolutional layers to prevent overfitting. In contrast to the vanilla U-Net, we

substituted max-pooling layers with strided convolutional layers with ReLU

activation, and upsampling layers of the decoder with strided transpose con-

volutional layers with ReLU activation. With this replacements, non-trainable

parameters of pooling layers change to trainable parameters, which improves

and stabilizes the performance compared to the base model(Springenberg et al.

2014). Additionally, the strided convolutional layer has wider receptive fields

even though the filter size is the same as pooling layers. This allows the model

to increase its expressiveness and capture a larger context. The last convolution

layer is for the segmentation, which is composed of the convolution layer with

L1 regularizer, followed by sigmoid activation.

23



Figure 3.2 The detailed architecture of the SAR water segmentation generator. The number on the top of blocks means

the kernel size of the 2D convolution window. The number on the bottom of blocks means the number of filters. The output

of the second convolution layer for each encoder convolutional blocks is concatenate with the transpose convolution outputs.
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3.2 Discriminator architecture

Figure 3.3 shows the discriminator architecture of the proposed model, guided

by the boundary distance map of the groundtruth waterbody. The discriminator

is composed of four convolutional blocks and one block for distinguishing the

generated segmentation from the real groundtruth data. Each convolutional

block consists of three convolutional layers. Every last convolutional layer is

substituted with a strided convolutional layer to act as max-pooling layer

but with trainable weights for stable performance(Springenberg et al. 2014).

To prevent unstable training, we added a dropout layer for each convolutional

block and employed Leaky ReLU as the activation function for every layer. The

last block of the discriminator consists of a convolutional layer, global average

pooling and a fully connected layer with a sigmoid activation function. This

block discriminates the input image as either real groundtruth images or fake

generated images. As the last activation function is sigmoid, the discriminator

presents a probability score that indicates the likelihood that the input is real

or generated.

The proposed discriminator is guided by one constraint: the boundary dis-

tance map based on the groundtruth label data. As the groundtruth label data

is a binary image, high-performance edge detection algorithm like Canny edge

detection are excessive and complex. Additionally, the extraction algorithm is

activated every time the model learns. Therefore, a highly efficient boundary

distance map is required.

We selected the boundary extraction algorithm based on morphology trans-

formations, employing two morphological operations: erosion and dilation.

Erosion shrinks from the boundaries of water bodies, whereas dilation expands
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to the boundaries of water bodies. The boundary is defined as the pixels

that are removed or added with morphological operations. This morphological

operation-based algorithm saves times by utilizing GPUs. Moreover, (Chen

et al. 2002) verified that the morphological residue edge detector shows high

performance with binary step edges. As the size of the structuring element

determines the thickness of the boundary, and a thinner boundary is suitable

for detailed performance, we set the size of the structuring element to three.

The boundary distance map represents the distance from each pixel to

the nearest non-water pixel in a binary boundary image., calculated using the

Euclidean distance. The procedure of calculating the boundary distance map

is shown in Figure 3.4. As the values of distance fluctuate between images,

we rescale it to a range of 0 to 1 to constrain it equally for every image

in the discriminator. As shown in Figure 3.5, the border of the waterbody

is emphasized in the boundary distance map, and the border of the shallow

river is equally highlighted. As the segmentation task of the inner part is

uncomplicated, this map could help the discriminator to concentrate on the

boundary and small rivers for the distinguishing task. If the patch is fully

composed of water or non-water, the boundary distance map is 1 for every pixel.

Considering the variety of data that could be a constraint for the discriminator,

we examined the contribution of the boundary distance map compared to the

SAR image, the groundtruth boundary in Chapter 4.
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Figure 3.3 The detailed architecture of the SAR water segmentation discriminator. The number on the top of blocks means

the kernel size of the 2D convolution window. The number on the bottom of blocks means the number of filters. The input of

the discriminator is the output of SAR water segmentation generator or the groundtruth label data with boundary distance

map extracted from the groundtruth label.
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Figure 3.4 The procedure of constructing the boundary distance map.
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Figure 3.5 The examples of the boundary distance map with groundtruth

label images.
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3.3 Hybrid Loss

To attain high quality SAR water segmentation with precise boundaries, we

propose our training loss as a weighted sum of three losses: Reconstruction

loss, Bound loss, and adversarial loss.

Lseg = λ · LRecon + α · LBound + β · Ladv (3.1)

where, the λ, α, β are used for rescaling and balancing term between the

reconstruction loss, bound loss and adversarial loss, respectively. The optimal

value for the hyperparameters are compared in Table 4.4.

The reconstruction loss is a Binary Cross Entropy, which is widely used

distribution-based loss for segmentation and pixel-level classification. Binary

Cross Entropy(BCE) loss(Jadon no date) is the most commonly used distribution-

based loss in binary classification and segmentation. It is defined as:

LBCE(y, ŷ) = − 1

n

n∑
i=1

[ylog(ŷ) + (1 − y)log(1 − ŷ)] (3.2)

where n is the number of the pixels of the predicted probability map, y is the

ground truth label of each pixel, and ŷ is the predicted probability of water.

The second loss function is the Hausdorff Distance loss(Karimi and Salcud-

ean 2019). Hausdorff Distance(Crum et al. 2006) is defined as the maximum

distance between a point in one of the two sets to its closest point in the other

set. The Hausdorff Distance is a useful metric for evaluating the performance

of segmentation, as it indicates the areas where the segmentation error is most

significant. The bidirectional Hausdorff Distance between two pointsets X and

Y is defined as:

HD(X,Y ) = max(max
y∈Y

min
x∈X

∥ x− y ∥2, max
x∈X

min
y∈Y

∥ x− y ∥2) (3.3)
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However, since the Hausdorff Distance is fixed solely by the maximum error,

directly application to the loss function leads to poor and unstable overall

segmentation performance. Moreover, the sensitivity of the Hausdorff Distance

to outliers and noise is well-known in computer vision. Nevertheless, (Karimi

and Salcudean 2019) proposed the Hausdorff Distance loss as a method for

training CNN-based segmentation based on distance transforms.

LBound(y, ŷ) =
1

|Ω| + smooth

∑
Ω

((y − ŷ)2 ◦ (dαy + dαŷ )) (3.4)

Here, Ω denotes the grid on which the image is defined, where the maximum

of Ω is in accordance with all pixels. dy and dŷ denotes the normalized

Euclidean distance transformation map of the predicted segmentation boundary

and the ground truth segmentation boundary. respectively. As the value of

the Euclidean distance transformation could vary across images, we rescaled

the values to a range of 0 to 1. ◦ denotes the Hadamard product, and the

hyperparameter α indicates how strongly we penalize large errors. As (Karimi

and Salcudean 2019) verified, we fixed α to 1. Since the dataset may have

images of full water or non-water, the value of Ω could be zero. To prevent a

zero division error, we added the smooth term(1e-6) to the denominator.

The last loss function for the generator is the adversarial loss derived from

the discriminator. The adversarial loss is defined by the Binary Cross Entropy

loss. The goal of the generator is to generate images that are indistinguishable

from the ground truth images. The adversarial loss optimizes the generator

to fool the discriminator by setting up the discriminator with the generated

image is correct(1) as follows:

Ladv =
∑

LBCE(D(G(x)|BDM(y)), 1) (3.5)
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where D(X|Z) denotes the discriminator with the input X and the constraint

Z, and G(•) denotes the generator. BDM(y) denotes the boundary distance

map based on the input y.

For the discriminator, the loss function is written as:

Ldisc =
∑

LBCE(D(y|BDM(y)), 1) +
∑

LBCE(D(G(x)|BDM(y)), 0) (3.6)

The goal of the discriminator is to distinguish between the real and predicted

images. The discriminator loss measures how well the discriminator is able

to differentiate the generated images(0) from the ground truth(1). As the

adversarial loss has the value of 1 for the same input(the generated images),

the generator and discriminator are trained simultaneously using a two-player

minmax game.
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4 Experiments

4.1 Experiment Settings

The training dataset of 28,569 sets is used without data augmentation. During

training and testing, the input and output size of images is fixed into 256 *

256. Resizing by interpolation is not used for precise training and results. To

prevent mixing of the dataset for training and testing, the dataset is segregated

in a ratio of 80%:20%.

We utilized the Adam optimizer with an initial learning rate of 1e-6 for

the generator and 1e-4 for the discriminator, with betas=(0.9, 0.999) for both.

We added gradient clipping of 1.0 to converge faster than gradient descent

with a fixed step size(Zhang et al. 2019). We set up the training for 30 epochs

for ablation studies, but if there was no apparent disparity until 30 epochs,

we continued training until 100 epochs. For comparison with other models,

we trained the models for both 30 epochs and 100 epochs. If there were no

improvements in validation generator loss for 10 epochs, the model saved the

model with the minimum validation generator loss and finished the training.

The batch size for each GPU is 16. The global batch size is determined by

the multiplying the batchsize with the number of GPUs. The iterations for

training and testing are 714, 178, respectively, when the number of GPUs is

two and the global batch size is 32.
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We implemented our model using Python 3.9. A ten-core PC with 40

Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz CPU and four GTX 3090

GPUs is used for both training and testing.

To verify the effectiveness of the proposed boundary-driven adversarial

learning of deep neural networks, we used the same implementation settings

and the dataset.
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Table 4.1 Implementation details of experiments

Generator optimizer Adam(1e-6, beta=0.9, beta2=0.999,
clip norm=1.0)

Discriminator
optimizer

Adam(1e-4, beta=0.9, beta2=0.999,
clip norm=1.0)

Max Epoch 100
(30 for ablation studies)

Early Stopping No improvements of validation generator loss
for 10 epochs

Input data size 256 * 256

Global Batchsize 32

Train:test 8:2

Iterations 714: 178
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4.2 Evaluation Metrics

We employ three measures to evaluate our method: F1-score(Sasaki 2007),

Matthews correlation coefficient(Matthews 1975) and Boundary Intersection-

over-Union(Boundary IOU)(Cheng et al. 2021).

F1-score is computed based on the confusion matrix, which contains true

positive(TP), false positive(FP), true negative(TN), false negative(FN). F1-

score is the harmonic mean of precision and recall and the result value varies

in the interval [0, 1]. F1-score is calculated as follows:

precision =
TP

TP + FP
(4.1)

recall =
TP

TP + FN
(4.2)

F1 − score = 2 × precision× recall

precision + recall
(4.3)

F1-score is a popular and reliable metric, however, it could mislead if the

dataset is balanced but with high FP or positively imbalanced(Chicco and

Jurman 2020). In the field of the flood monitoring, false positive errors could

misreport the inundation area and waste limited disaster response support. To

complement this, we adopt another widely used metric, Matthews Correlation

Coefficient(MCC). MCC is the discrete Pearson correlation coefficient based

on the confusion matrix. MCC takes the value between [-1, 1]. 1 means

the complete predictions, -1 means the complete opposite predictions and

0 represents the random predictions. Contrary to non-use of TN in F1-score,

MCC weights all four elements of the confusion matrix equally. Therefore,

MCC has high score only if the most positive and negative predictions are

correctly predicted. MCC is written as:
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.4)

The accuracy for region pixels and contour pixels does not always have

strong positive correlation. The different growth rates when scaling up objects

demonstrate that the precise metric for boundaries is additionally needed.

Therefore, we adopt another boundary-based segmentation metric to precisely

measure the segmentation quality with regard to boundaries. Boundary IoU(BIoU)

(Cheng et al. 2021) denotes the Intersection-over-Union(IoU) between the

boundary regions of the predicted segmentation image(ŷ) and its ground truth

mask(y). Given two images, BIoU extract the boundary mask that is within a

distance d from each contour, and then computes the IoU of these two regions.

BIoU is written as:

BIoU(Y, Ŷ ) =
|(Yd ∩ Y ) ∩ (Ŷd ∩ Ŷ )|
|(Yd ∩ Y ) ∪ (Ŷd ∩ Ŷ )|

(4.5)

where the boundary mask Yd and Ŷd are the pixel sets within d pixels from

the groundtruth and predicted image contours respectively. BIoU overcome

the problem of penalizing inner mask errors in Trimap IoU and also has

a complementary relationship with mask-based F1-score. The parameter of

distance from contour d controls the sensitivity of the measurement. We set d

equals 2%, seven pixels distance for our dataset, as (Cheng et al. 2021) suggests.
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4.3 Comparison to other segmentation models

For the quantitative evaluation, we compared our proposed model with two con-

ventional deep learning segmentation models, namely U-Net and Deeplabv3+.

All models were trained under the same implementation conditions, including

the dataset, optimizer, and loss function. Table 4.2 shows the overall comparison

results for both the maximum epochs of 30 and 100. Since the dataset for

SAR water segmentation is substantial, all models also exhibit satisfactory

performance. However, the quantitative results demonstrate that our proposed

model consistently outperforms the other segmentation models in terms of

every evaluation metric and at both epochs of training. Our proposed model

achieves superior performance at the maximum epoch of 30 compared to the

other models at the maximum of epoch of 100, indicating the efficiency of

our proposed model during training. The gap between F1-score and MCC of

our proposed model is 3.86% and 3.43% at the maximum epoch of 30 and

100, respectively, which is smaller than both U-Net at 5.44% and 4.26%, and

Deeplabv3+ at 4.96% and 4.33%. As MCC also considers negative predictions,

the proposed model also focuses on reducing the false errors than other models.

Furthermore, the disparity in BIoU at 4.71% and 3.32%, which is larger than

in other evaluation metrics, with MCC at 3.24% and 1.73% and the F1-score

at 1.65% and 0.92%. This demonstrates that Boundary-aware Adversarial

Learning is indeed competent in detecting accurate boundaries.

Figure 4.2 displays the visualization comparison of the three models. (a) and

(b) represents the area of narrow rivers. The proposed model more elaborately

segments the narrow rivers and boundaries than the other models. (c) and (d)

depicts mountainous regions, where the false positives easily occur by radar
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shadow. In (d), all three model predict correctly into non-water; however, the

U-Net model misjudges the radar shadow as water. In (e), the proposed model

yields the closest prediction to the ground truth for a small reservoir, while

the other models underestimate its area. Additionally, the proposed model

demonstrates effectiveness in detecting small and fine regions, as evident in (f)

to (h), where small objects are present amidst other classes.
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Figure 4.1 Illustration of F1-score and MCC on three models: U-Net,

Deeplabv3+ and the proposed model. The brighter color represents the result

of max epoch 30, and vivid color represents the result of max epoch 100.
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Table 4.2 Performance comparison of SAR Water Segmentation. Best results are shown in bold

Model
Max Epoch 30 Max Epoch 100

BIoU MCC F1-score BIoU MCC F1-score

U-Net 74.48 89.28 94.72 78.17 91.71 95.98

DeepLabV3+ 74.81 90.25 95.21 76.89 91.52 95.85

Proposed Model 79.19 92.52 96.37 80.21 93.35 96.77
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Figure 4.2 Qualitive performance evaluation of the SAR Water Segmenta-

tion. From left to right, the SAR image, the ground truth label, the output of

the proposed model, vanilla U-Net, DeepLabv3+ is shown.
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4.4 Ablation Studies

We conduct a series of ablation studies to analyze the impact of alterations

on model and loss functions of the proposed boundary-driven adversarial

learning of deep neural networks. There are three ablation studies: ablation

on adversarial learning and constraints, ablation on hybrid loss and weight

parameters, and ablation on constitution with strided convolutional layer.

Ablation on Adversarial Learning and Constraints

To prove the effectiveness of adversarial learning on the SAR water segmenta-

tion task, we compared the stand-alone U-Net model (without discriminator)

and with the one using the discriminator along with other constraints. Table 4.3

reports that incorporating the discriminator into the SAR water segmentation

increases BIoU by 3.9%, MCC by 3.76% and F1-score by 1.81% on average.

We replaced our ground truth boundary distance map with SAR images and

ground truth boundary, which resulted in slight improvements of MCC and

F1-score with a decrease in BIoU. Direct input of the ground truth boundary

shows the highest BIoU but with lower MCC and F1-score. It indicates that

explicit use of the border information biased the model towards boundaries

and leads to the model failing to see the overall context.
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Table 4.3 Ablation study on discriminator and constraints

Discriminator Constraint BIoU MCC F1-Score

without discriminator 74.28 88.22 94.29

with discriminator

SAR 78.21 91.97 96.10

GT Boundary 78.46 91.92 96.08

GT Boundary Distance Map 77.87 92.05 96.12
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Ablation on Loss Function and Rescaling Parameters

Loss function was examined from three points of view: the optimum recon-

struction loss function, rescaling parameters of bound loss and the addition of

Hausdorff Distance loss. The candidates for the reconstruction loss are Binary

Cross Entropy loss, Focal Cross Entropy loss and Dice loss. To match the scale,

λ is fixed to 0.0001 for Cross Entropy losses and 1 for Dice loss, which converges

the range into [0,1]. Table4.4 demonstrates that the Binary Cross Entropy loss

outperforms other loss functions by at least 6.04% in terms of BIoU, 3.25% in

terms of MCC and 1.92% in terms of F1-score.

To validate the effectiveness of Hausdorff Distance loss, the optimum α

needed to be analyzed in advance. The rescaling parameters of the losses are λ,

α and β for the reconstruction loss, bound loss and adversarial loss. To rescale,

we scrutinized the ranges for each loss function and determined the values. In

the Figure 4.3 (a), as the value of the Binary Cross Entropy loss mostly ranges

from [1e+3, 1e+4] for our model, we set λ and β to 0.0001 to rescale it to [1e-1,

1]. The value of the Hausdorff Distance loss for our model mostly ranges in [0,

10] in Figure 4.3 (b), so the default value of α is set to 0.01 to rescale it to [0.01,

0.1]. As the Hausdorff Distance loss has fluctuating values and outliers, the

range of the bound loss is smaller than that of the reconstruction loss for stable

training. The beta is fixed at 0.0001 as it has same loss function(Binary Cross

Entropy) as the Reconstruction loss. To fine-tune the rescaling parameters, we

experimented with different values of alpha, such as 0.1 and 0.001. As a result,

α = 0.001 is determined to be the optimal value because the BIoU and MCC

have lower values, but the improvement of F1-score is much larger.

Finally, the addition of the Hausdorff Distance loss with optimal rescaling

is compared without bound loss. We found that MCC is 0.14% lower in using
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the bound loss, but the improvements of BIoU and F1-score with 0.09% and

1.48% are judged to be more meaningful values.

These ablation studies indicate that when the stable reconstruction loss is

supported, the bound loss can accomplish the task with complete attention.

If the fluctuating bound loss takes on a significant position(α = 0.1), the

accuracy of the boundary is rather declined. Even though the Dice loss is also

a popular metric and has strength on imbalanced datasets, the gradient for

backpropagation is more unstable than that of the Binary Cross Entropy in

our task. As training GANs is intrinsically unstable, even little alternating

variation of the reconstruction loss may have a critical influence. The Focal

Cross Entropy is originally designed for handling class imbalance, but as our

data has a variety of water ratios, the Focal Cross Entropy shows the worst

evaluation metrics.
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Table 4.4 Ablation study on different reconstruction loss functions and the loss rescaling parameters

LRecon LBound Ladv
BIoU MCC F1-score

Loss λ α β

BCE 0.0001 - BCE 0.0001 77.87 92.05 96.12

BCE

0.0001

HD

0.001

BCE 0.0001

77.96 91.91 97.60

0.0001 0.1 77.58 91.82 96.00

0.0001 0.01 78.03 91.92 96.06

FCE 0.0001 0.01 67.11 86.28 92.53

Dice 1 0.01 71.99 88.67 94.14
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Figure 4.3 Illustration of different reconstruction loss functions(LRecon) and corresponding bound loss(LBound) and total

segmentation loss(LSeg) for each training epoch.
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Ablation on strided Convolutional Layers

The effect of substituting pooling layers with strided convolutional layers is

shown in Table 4.5. We compared the architectures under two conditions: Max

epoch of 30 and 100, while changing the bound loss scaling parameter α. When

α is set to 0.01 and the max epoch is 30, U-Net with strided convolutional

layers outperforms the original U-Net. However, when it comes to the max

epoch of 100, U-Net with strided convolutional layers performs lower than the

original U-Net. This indicates that the replacement with strided convolutional

layers seems to accelerate training, but as training progresses, the model suffers

from overfitting. As the replacement of pooling layers increases the complexity

of the model, the model fails to generalize. Therefore, we also experimented

with a different α value of 0.001. In this case, except for the F1-score in Max

epoch 30, the vanilla U-Net demonstrates the competence than the model with

strided convolutional layers.
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Table 4.5 Ablation study of the Model Architecture on different bound loss rescaling parameter α

α Architecture
Max epoch 30 Max epoch 100

BIoU MCC F1-score BIoU MCC F1-score

0.01
U-Net 74.86 89.41 94.83 79.89 93.25 96.70

U-Net with strided conv 78.26 92.04 96.13 78.76 92.42 96.32

0.001
U-Net 79.19 92.52 96.37 80.21 93.35 96.77

U-Net with strided conv 77.96 91.91 97.60 79.02 92.55 96.37

50



5 Discussion

To assess its applicability in practical scenarios, we conducted experiments

to evaluate the performance of the proposed model with entirely new images.

Since the model is trained on patches with 256 * 256 pixels, it is not directly

applicable to large scene SAR images in practical monitoring, which typically

have dimensions of approximately 20000 * 30000 pixels. To prevent memory

errors, we divide the large scene SAR images into patches of the same size as

the training dataset. To maintain continuity and precision in the predicted

images, we split the large scene SAR images into overlapping patches and then

reassemble them into large scene SAR images by averaging the probabilities

obtained from the individual patches. This approach ensures that the proposed

model can be effectively applied to large-scale SAR images used in real-world

flood monitoring applications.

Using the overlapping prediction, we segmented water in six large scene SAR

images of Korea Peninsula. The detailed list of SAR images is shown in Table

5.1. Since there are no ground truth label for these images, we compare the

proposed model with that of the SAR images, Vanilla U-net and DeepLabv3+.

The visualization comparisons of the three models are displayed in Figure 5.1. It

can be observed that the proposed model outperforms than other models. First,

False Positive(FP) errors easily arise in areas where the surface is flat enough

to exhibit specular reflection properties, such as golf courses. In (a) and (g),
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U-Net shows plenty of False Positive errors in the golf course areas. In contrast,

DeepLabv3+ successfully avoids detecting the golf courses as water, but it fails

to detect the real river. On the other hand, the proposed model shows few false

positives and accurately predicts the presence of the real river. Second, false

positives also occur in area where the radar signal does not reach the ground

due to obstructions, resulting in radar shadow appearing as dark regions in

the SAR images. In the mountainous regions, (b) and (h), U-Net significantly

detects the radar shadow as water. Similarly, DeepLabv3+ shows few false

positives but considerable false negatives. The proposed model achieves a better

balance with some false positives but highly accurate true positives. Lastly, we

also inspected that our proposed model consistently outperforms other models

regardless of the river width. In (c) and (d), large rivers with widths of 0.5-1km

are shown, and as large rivers usually exhibit simple boundaries with apparent

signals, all models correctly detect them. In (j), a river with a width of 150m is

displayed, and the waterbody is well detected except for the border area. For

different cases of meandering rivers with widths of 60-70m in (d), (e), and (k),

DeepLabv3+ performs the least accurately when it comes to smaller rivers. On

the other hand, U-Net shows better results for smaller rivers. In the case of

small reservoirs like (f) and (j), the other two models underperform in capturing

the details of the reservoirs or fail to detect the small-scale reservoirs. These

results indicate the potential of the proposed model for practical application

in real-world flood monitoring scenarios, especially considering the accurate

segmentation of narrow and intricate waterbodies and little false positives.

The continuity of precision regardless of the incidence angle is also verified.

Figure 5.2 displays the results at two different incidence angles. We can obtain

SAR images with different incidence angles at the same location due to the
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overlapping swaths of adjacent orbits of Sentinel-1. AS two SAR images has a

7-day interval with same orbit direction, the overlapping area is the optimal test

site to assess the effects of the incidence angle. As observed in Figure 5.2 (b) and

(c), the results of the vanilla U-Net and the DeepLabv3+ are influenced by the

incidence angles, particularly in the radar shadow zone. At a mean incidence

angle of 36◦, which is relatively small (Figure 5.2 (b)), all models accurately

predict water. In contrast, when the incidence angle increases to 45◦ (Figure 5.2

(c)), false positive errors are more likely to occur due to the decrease in signal

strength. The vanilla U-Net and DeepLabv3+ have many false positives in the

radar shadow zone. However, the proposed model is relatively immune from

incidence angle differences. This experiment also indicates that the proposed

model is suitable for practical flood monitoring applications.

However, the model still has limitations in detecting water in urban areas.

In the middle of the city, plenty of high reflectance signals are intertwined with

the area of the water, resulting in higher reflectance values for urban river

pixels compared to typical waterbody pixels. Therefore, all of the models have

difficulty in detecting urban rivers, including large rivers. This challenge can

potentially be overcome by applying geospatial layers with SAR images, but

auxiliary data construction is additionally required for training and practical

implementation. As urban rivers are visually apparent, future research using

contrast and shape information could potentially overcome this problem.
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Table 5.1 The detailed information of Sentinel-1 SAR images for application test in Korean Peninsula

Satellites Beam Mode, Processing Level Acquisition Date(UTC) Orbit Direction

Sentinel-1A IW, GRDH 2022-08-16T09:24:22 - 09:24:47 ASCENDING

Sentinel-1A IW, GRDH 2022-08-16T09:23:57 - 09:24:22 ASCENDING

Sentinel-1A IW, GRDH 2022-08-16T09:23:28 - 09:23:57 ASCENDING

Sentinel-1A IW, GRDH 2022-08-09T09:32:25 - 09:32:50 ASCENDING

Sentinel-1A IW, GRDH 2022-08-09T09:32:00 - 09:32:25 ASCENDING

Sentinel-1A IW, GRDH 2022-08-09T09:31:30 - 09:32:00 ASCENDING
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Figure 5.1 Application results in Korea Peninsula of the waterbodies

monitoring. The green, blue, yellow color represents the result of U-Net,

Deeplabv3+, and the proposed model, respectively.
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Figure 5.2 The results of the three models by the incidence angle difference. (a) shows the incidence angle

of two large scene SAR images: S1A IW GRDH 1SDV 20220809T093200 20220809T093225 044474 054EA8 532F(mint) and

S1A IW GRDH 1SDV 20220816T092357 20220816T092422 044576 0551FC 3E42(pink). The yellow box is the region of interest

where two images overlap with different incidence angles. (b) and (c) show the area of the yellow box in the pink-colored SAR

image and mint-colored SAR image, respectively. The green, blue, yellow color represents the result of U-Net, Deeplabv3+,

and the proposed model, respectively.

56



6 Conclusion

Inundation monitoring is crucial for mitigating the impacts of flooding on

human life, infrastructure, and the environment. For accurate flood monitoring,

preciseness in water segmentation needs to be supported. As SAR is all-

weather and available day and night, water segmentation using SAR is actively

progressing. Although the application of CNN in SAR water segmentation has

advanced the accuracy and efficiency, there are still deficiencies when utilizing

it in practice. Waterbodies lookalike areas, such as golf courses or dark regions

due to radar shadows, cause challenges. Moreover, since the number of pixels

for narrow rivers and boundaries is fewer than the number of waterbodies’

pixels, the vanilla CNN models inevitably penalize the small rivers and river

boundaries. These difficulties may be particularly exacerbated when training

data is scarce.

To address this, we construct the sufficient training dataset using UNOSAT

flood map and the landuse map of Korea. In addition, we firstly propose the use

of adversarial training from GAN in SAR water segmentation to improve the

accuracy even in fine details. Adversarial training involves two neural networks,

a generator and a discriminator. The generator generates fake samples that

are indistinguishable from real samples, while the discriminator attempts to

correctly distinguish between real and fake samples. Through learning from
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each other, both models improve over time, which is why this process is called

adversarial training.

We construct the Boundary-aware SAR water segmentation model with

adversarial training, and modify the architecture and loss functions to em-

phasize boundaries and narrow rivers. Specifically, adversarial training with

the boundary distance map enforces boundary detection and reduces False

Positives. The Hausdorff Distance loss helps our model to detect detailed

waterbodies regardless of scale.

As a result, our proposed model outperforms other segmentation models in

all evaluation metrics such as Boundary IoU, MCC, F1-score. Ablation studies

demonstrate the potential of adversarial learning and the constraint for the

discriminator, and also verify the optimality of the parameters and model

architecture. The hybrid loss of Binary Cross Entropy loss, Hausdorff Distance

loss and adversarial loss with optimal rescaling weights keeps training stable

and efficient. The experiment with completely new SAR images of Korean

Peninsula also proves the possibility of applying our model to practical flood

monitoring. This experiment demonstrates that the model properly detects the

water regardless of differences in the size of images and acquisition conditions.

We demonstrates that the Boundary-aware SAR water segmentation model

with adversarial training learned the optimal formula for precisely and practi-

cally detecting water, including borders and narrow rivers, but without false

positives. Our proposed model can be efficiently applied to near-real-time

flood monitoring, where the construction of auxiliary data is not necessary.

Furthermore, the precisely detected water boundaries can serve as fundamental

data for water level estimation using SAR.
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초 록

기후변화가 가속화로 인해 수재해의 빈도와 강도 예측이 어려워짐에 따라

실시간 홍수 모니터링에 대한 수요가 증가하고 있다. 합성개구레이다는 광원과

날씨에 무관하게 지속적으로 촬영이 가능한 레이다로, 수재해가 발생하였을 때

에도 영상을 제공할 수 있다. 이에 합성개구레이다를 활용한 수체 탐지 알고리즘

개발이 활발히 연구되어 왔다. 특히 딥러닝의 발달로 CNN을 활용한 수체 탐지

알고리즘이연구됨에따라,높은정확도로수체탐지가기능해졌다.하지만, CNN

기반 수체 탐지 모델은 훈련 시 높은 정량적 정확성 지표를 달성하여도 추론 후

정성적 평가 시 경계와 소하천에 대한 정확성이 떨어진다. 홍수 모니터링에서

특히 중요한 정보인 경계와 좁은 하천에 대해서 탐지의 정확성이 떨어짐에 따

라 실생활 적용이 어렵다. 이에 우리는 경계를 강화한 적대적 학습 기반의 수체

탐지 모델을 개발하여 쉽게 탐지되지 않았던 부분까지 탐지하고자 한다. 적대적

학습은 생성적 적대 신경망(GAN)의 두 개의 모델인 생성자와 판별자가 서로

관여하며 더 높은 정확도를 달성할 수 있도록 학습하는 과정을 의미한다. 판별

자는 생성자의 추론 결과와 실제 라벨 데이터를 구분하기 위해 학습하는 반면,

생성자는 판별자를 속이기 위해 더 실제 데이터 같은 가짜 데이터를 생성하고

자 노력한다. 이러한 적대적 학습 개념을 수체 탐지 모델에 처음으로 도입하여,

생성자는 실제 라벨 데이터와 유사하게 수체 경계와 소하천까지 탐지하고자 학

습한다. 반면 판별자는 경계 거리 변환 맵과 합성개구레이다 영상을 기반으로

라벨데이터와수체탐지결과를구분한다. 이때경계거리변환맵은작은하천과

경계에 가중치를 준 이미지로, 판별자로 하여금 판별시 작은 영역까지 고려할 수
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있도록 강조하는 동시에 오탐지에 대해 억제할 수 있는 역할을 위해 제안하였다.

경계가 강조된 방향으로 적대적 학습 과정이 진행될 수 있도록, Binary Cross

Entropy 손실 함수, Hausdorff distance 기반 손실 함수 그리고 적대적 손실 함

수를 융합한 하이브리드 손실 함수를 새롭게 구성하였다. 제안 모델이 경계와

소하천을 정확히 탐지하는지 판단하기 위해, 정량적 지표로 F1-score, Boundary

IoU, Matthews Correlation Coefficient를 사용하였으며, 육안 판독을 통해 정성

적 평가도 진행하였다. 이를 통해 제안한 모델이 경계 및 소하천까지 정확하게

탐지해냄을 증명하였다. 실제 홍수 탐지에 사용하기 위해선 패치 단위 이미지가

아닌 전체 SAR 영상에서도 높은 정확도를 유지하는지 확인이 필요하다. 이를 위

해 패치 단위로 학습된 모델이 전체 SAR 영상을 탐지할 수 있도록 추가 코드를

개발하여, 학습자료에 전혀 사용되지 않은 한반도를 촬영한 6개의 SAR 영상을

활용하여탐지결과를비교하였다. 평가결과제안한경계강화적대적수체탐지

모델이 기존 모델 대비 경계와 위양성 오류에 대해 올바르게 탐지하는 것을 증명

하였다. 또한 다양한 스케일의 수체에 대해서도 꾸준히 높은 정확성을 유지하여

실제 홍수탐지를 위한 기반 모델로의 가능성을 보여주었다.

주요어: 수체 탐지, 합성개구레이다, 원격탐사, 적대적 학습, 홍수 모니터링, 딥러

닝
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