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Abstract

Our research aims to identify density modes within the torus space 

where the circular data exhibits significant concentration. We employ 

persistent homology, primarily utilising the von Mises kernel density 

estimator and mixture model. To address the uncertainty inherent in 

the density estimator's persistent homology, we compare four 

methods, including a newly proposed approach in this article. 

Additionally, a scale-space approach is applied. Our comprehensive 

discussion centers around the implementation of persistent homology 

on the torus space, considering both theoretical foundations and 

practical applications. 

keywords : bootstrap, mode hunting, von Mises distribution, 

persistent homology, topological data analysis
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1 Introduction

Multivariate angular or circular data, recognised as a notable exemplification of non-

Euclidean data, have been widely employed in diverse research domains encompassing

medicine, biology, and physics (Mardia and Jupp, 2000; Ley and Verdebout, 2017; Marron

and Dryden, 2021). It is appropriate to consider this type of data lie on a multidimensional

torus. Assuming that the density function of the underlying distribution which the data

are sampled, is well-defined, our objective is to identify the modes or the bumps of the

data, which indicate where the data are predominantly concentrated. This problem is

often referred to as bump hunting (Good and Gaskins, 1980; Sommerfeld et al., 2017).

Topological Data Analysis (TDA, Carlsson (2009), Edelsbrunner and Harer (2010) and

Wagner et al. (2011)) provides a useful approach to address this task, with a particular

focus on persistent homology. Persistent homology involves calculating the homology of

the upper level sets of the data’s density function at different levels. Homology serves as a

mathematical framework that enables effective measurement of the structural properties

of a given level set. However, a comprehensive understanding of this concept requires a

solid grasp of various mathematical concepts and foundational knowledge. Heuristically,

homology calculations capture the essential topological features inherent in the dataset.

The entirety of the information encapsulated by persistent homology is often condensed

and represented in a two-dimensional diagram known as persistence diagram (Fasy et al.,

2014).

In practice, the true density function, denoted as f , is typically unknown, necessitating

the use of appropriate estimators. Considering the circular nature of the data, we use two

suitable density estimators for calculating persistent homology on a torus, namely the von

Mises kernel density estimator (KDE) and the von Mises mixture model (Mardia and Jupp,

2000; Taylor, 2008). Therefore, it is crucial to measure the uncertainty associated with

persistent homology computed using the estimators. While previous studies including Fasy

et al. (2014) and Chazal et al. (2018) have introduced bootstrap methods and concentration

inequalities for the uncertainty quantification on persistence diagram, but it is only for

the Euclidean case. In this paper, we extend these methods to the torus space.
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Furthermore, Sommerfeld et al. (2017) introduced a scale-space approach for perform-

ing statistical inference on persistent homology. This approach employs multiple scale

parameters instead of a single parameter thus providing a which are information on the

underlying true distribution. In our work, we adopt this approach, scale-space approach,

utilising the concentration parameter for the von Mises KDE and the number of compo-

nents in the von Mises mixture model as scale parameters. The results of bump hunting for

multi-scale density estimators are summarised and visualised via a plot called scale-lifetime

diagram.

Significance and Contribution of This Paper This article focuses on utilising den-

sity estimators for calculating and making inference on persistent homology in the context

of the torus sample space. Previous studies in this area have primarily used distance

functions or conventional kernel density estimators (Fasy et al., 2014; Chazal et al., 2018).

However, the use of distance functions for persistent homology is susceptible to noise and

outliers, while conventional kernels are unsuitable for angular data due to difficulties in

identifying boundaries inherent to circular properties. On the other hand, the von Mises

distribution is well-suited for circular data, and we use the von Mises distribution to define

KDE and mixture models, which are then used for persistent homology calculation.

We emphasise that the approach of using mixture model for persistent homology is

firstly proposed in this work. This approach comes with some additional advantages that

are not found in KDE-based or distance function-based methods for persistent homology.

In particular, this approach enables plotting dendrograms of components, facilitating a

direct visualisation of hierarchical structure of the topological features in the density es-

timate. Moreover, the locations of each mode can be identified only by using the mixture

model but not by the others. Such capabilities have potential applications in machine

learning tasks such as clustering.

Due to the usage of density estimators instead of the true density, the measurement

of uncertainty of the persistent homology is required. In this work, we establish the

theoretical applicability of bootstrap methods and introduce the use of Hoeffding’s and

Bernstein’s inequalities for inference on the significance of bumps in the torus sample
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space. In Section 4, the proposed methods are applied to SARS-CoV-2 spike glycoprotein

torsion angle data in T2 (Walls et al., 2020).
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2 Definitions and Backgrounds

2.1 Torus Space

We consider the d-dimensional torus Td = (S1)d, where S1 = [0, 2π) represents the unit

circle in R2, for d ∈ N. Any variable x = (x1, . . . , xd) ∈ Td possesses a modulo 2π algebraic

structure, that is for some ϵ > 0 and some n ∈ Z, x is closer to (x − 2πn) − ϵ than to

x+ 2ϵ. This characteristic, known as boundary identification, arises from the equivalence

of the two endpoints, zero and 2π. Consequently, any inferences made on the torus should

accurately account for this cyclical nature. One example of this cyclical subtraction is the

definition x⊖ y := arg(ei(x−y)) for all x, y ∈ Td.

We consider the probability measure space (Td,F ,P), and assume that a continuous

probability density function f : Td → R is defined corresponding to P. Additionally, we

have a set of random samples X1, . . . , Xn
iid∼ f .

2.2 Persistent Homology

Given a density function f : Td → R, We use (zero-dimensional) topological features

corresponding to level sets of f to capture persistent homology. In particular, given a

set U ⊂ Td, a zero-dimensional feature corresponds to a connected component of U .

For each t over a range [0,∞], all zero-dimensional features in the upper level set Ut :=

{x ∈ Td; f(x) ≥ t} are recorded. There exists a natural inclusion map from Ut1 to Ut2

when t1 > t2. As the level t decreases, new topological features are captured or cease

to be detected within the corresponding upper level set. These levels associated with a

particular feature are referred to as its birth and death times, respectively (Edelsbrunner

and Harer, 2010).

The difference between the death and birth times of each feature is termed persistence

(or lifetime). We define the persistent homology of f as the multiset of birth-death pairs of

the topological features of f (Fasy et al., 2014). To provide a summary and visualisation,

we record the death-birth pairs for each level on a two-dimensional coordinate plane,

where the x-axis represents the death level and the y-axis represents the birth level. This

representation is known as a persistence diagram, denoted as dgm(f) for a given density
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Figure 1: Illustration of persistent homology.

function f .

Given the utilisation of the density function in the calculation of persistent homology,

each topological feature represents a local mode of the density function. Moreover, the

birth of a feature corresponds to the peak height of the associated mode, while the death

signifies the threshold at which the mode merges with another. Figure 1 provides an

illustration of the concept of persistent homology. The left plot depicts a (Gaussian) kernel

density estimate, while the right plot showcases the corresponding persistence diagram.

The blue circles and dashed lines indicate the birth, while the reds represent the death.

The diagram and plot demonstrate that this estimated density exhibits three local modes,

although two of them may be spurious, either resulting from randomness or genuinely

originating from the true density.

Since the true density function f is typically unknown, we rely on the estimator f̂ .

Consequently, we perform statistical inference on dgm(f) while considering the uncertainty

of dgm(f̂). This enables us to evaluate whether a local peak in f̂ represents a genuine

peak in f .

Hence, it becomes essential to define an appropriate metric for diagrams. When com-

paring two diagrams, the commonly used Bottleneck distance denoted asW∞(dgm(f),dgm(g))

is employed. This distance is determined by the maximum L∞ distance between points

of dgm(f) and dgm(g), with the points optimally matched in a one-to-one manner, for

non-diagonal points, or one-to-diagonal (y = x) if non-diagonal matches are not possible.

It is noteworthy that since all persistence diagrams consist of 2-dimensional points in R2,
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Figure 2: (Left and Middle) Two diagrams to be compared. (Right) Illustration of bottleneck
matching.

the L∞ distance corresponds to the larger value among the birth time difference and death

time difference. A toy data example in Figure 2 demonstrates the definition of bottleneck

matching and distance. Since the blue diagram comprises only three points, the additional

two points in the red diagram are matched with the diagonal. For two density functions

f and g, if W∞(dgm(f),dgm(g)) = δ holds for some δ > 0, it indicates that each point in

dgm(f) is at most δ away from a corresponding point in dgm(g).

2.3 Confidence Sets for Persistent Homology

To assess whether the bumps in the estimated density f̂ are coincidental or truly represen-

tative of f , statistical inferences for the persistence diagram are conducted by constructing

a confidence set. Let us fix α ∈ (0, 1) to establish a confidence level of 1−α. The confidence

set for dgm(f) is defined as follows:

Cn := {dgm(f);W∞(dgm(f), dgm(f̂)) ≤ δn}

Here, δn ≡ δn(α,X1, . . . , Xn) represents the critical value dependent on the dataset and

α, as used in Fasy et al. (2014) and Chazal et al. (2018). This value δn must satisfy the

following inequality:

P (dgm(f) ̸∈ Cn) = P (W∞(dgm(f),dgm(f̂)) > δn) ≤ α. (1)

Alternatively, we allow δn to represent an asymptotic critical value:
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lim sup
n→∞

P (dgm(f) ̸∈ Cn) = lim sup
n→∞

P (W∞(dgm(f),dgm(f̂)) > δn) ≤ α. (2)

Thus, finding the appropriate value of δn that tightens the inequalities (1) and (2)

allows us to determine the significance of the bumps in f̂ . In other words, if p is a point in

dgm(f̂), the corresponding local mode would be considered noise if the radius δn-L
∞-ball

centered at p, {q ∈ R2; d∞(p, q) ≤ δn}, contains any subset of the diagonal (Fasy et al.,

2014). Alternatively, a confidence band with the Euclidean width of
√
2δn is plotted on the

diagram, and any features corresponding to points within the band are considered noise.

In other words, any topological features with a persistence longer than 2δn are deemed

significant.

We note that once the value of δn is obtained for a given α, the remaining processes can

be automated. Therefore, finding δn becomes one of the main objectives of this research.

Meanwhile, the stability theorem facilitates the estimation of δn in equations (1) and

(2), providing computational convenience and efficiency. Recall that a smooth manofild

M is called triangulable if there exists a finite simplicial complex that is homeomorphic

to M (Cohen-Steiner et al., 2007), and a smooth function f : M → R is Morse if the

Hessian matrix of f is nonsingular at every critical point (Do Carmo, 2016). Additionally,

for a functions f : M → R, ∥f∥∞ denotes the L∞ norm of the function f .

Theorem 1 (Stability theorem (Cohen-Steiner et al., 2007)). Let M be a compact man-

ifold that is also triangulable. If functions f, f̂ : M → R be Morse, then the persistence

diagrams satisfy W∞(dgm(f), dgm(f̂)) ≤ ∥f − f̂∥∞.

Hence, the left-hand side of the concentration inequality (1) (and similarly for (2)) has

the following upper bound:

P (W∞(dgm(f),dgm(f̂)) > δn) ≤ P (∥f − f̂∥∞) > δn) ≤ α. (3)

It is worth noting that every compact surface is triangulable (Munkres, 2014). As Td is

a compact manifold, it is also triangulable. Furthermore, it is important to emphasise that

in this paper, we make the assumption that the true function f is Morse, and we utilise a
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Morse density estimator f̂ . Therefore our discourse shall proceed under the premise that

the conditions of the stability theorem are satisfied.
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3 Calculating Persistent Homology

In section 3.1, we will present two density estimation methods for calculating persistent

homology, one of which is a novel approach of using mixture models, enabling the in-

vestigation of merging relationships and locations of density components by dendrogram.

Moreover in section 3.2, we will discuss four approaches for uncertainty measurement

of the persistence diagram. Finally, we will apply a scale-space approach to summarise

multi-scale persistence diagrams and confidence sets for visualisation.

3.1 Density Estimation on the Torus

Two density estimators, the von Mises kernel density estimator (KDE) and the von Mises

mixture model, for density estimation on the torus are introduced in this section.

3.1.1 Kernel Density Estimator

Previous studies on persistent homology (Fasy et al., 2014; Chazal et al., 2018) have

utilised the conventional kernel density estimator f̂h(x) := 1
nhd

∑n
i=1K

(
∥x−Xi∥2

h

)
with

the bandwidth parameter h. However, this estimator is not suitable for the torus due

to the boundary identification problem. Instead, we propose using the von Mises kernel

(Mardia and Jupp, 2000), which takes the following form:

Kκ(x) :=
d∏

i=1

1

2πI0(κ)
eκ cosxi ,

where x = (x1, x2, . . . , xd) ∈ Td, and Iν(κ) represents the modified Bessel function of the

first kind with the order parameter ν, serving as the normalising constant for the density.

It is important to note that the concentration parameter κ in the von Mises kernel plays a

similar role to the bandwidth h in the conventional kernel, but it is inversely proportional to

it. Therefore, as κ decreases, the shape of the kernel density estimator becomes smoother,

while a larger κ leads to a more jagged shape. The von Mises kernel density estimator

with concentration parameter κ is defined as

f̂κ(x) :=
1

n

n∑
i=1

Kκ(x⊖Xi). (4)
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Figure 3: (Left) Illustration of kernel density estimation of 2-dimension space and (Right) Illus-
tration of Ût.

Furthermore, we define the mollified density function fκ : Td → R as fκ(x) = E
(
f̂κ(x)

)
,

which is the convolution of the true density f with the kernel. In our statistical inferences

for bump hunting using the scale-space approach, we focus on inferences related to the

smoothed true density fκ, disregarding the bias between f and fκ.

Implementations of persistent homology calculation, using a KDE, a grid approxima-

tion is typically employed. This primary approach involves the use of a cubical complex,

and there are efficient implementations available for computing persistent homology us-

ing the cubical complex; See Edelsbrunner and Harer (2010) and Wagner et al. (2011).

Notably, the R packages TDA and rgudhi provide various functions that encompass these

efficient algorithms for computing persistent homology with a kernel density estimator.

Recently, rgudhi begins to offer the option for boundary identification, and we use this

package for computation of cubical complex for the torus. In Figure 3, we use the SARS-

CoV-2 data on T2 to demonstrate the von Mises KDE, f̂κ with κ = 25, and the upper level

set of f̂κ using cubical complex at level 0.1. The blue area in the right plot of Figure 3

depicts the approximated upper level set, computed using rgudhi. We observe that there

are two connected components in the level set.

The birth and death of connected components given by varying levels, and the resulting

persistent homology, are then summarised into the persistence diagram.

In many implementations utilising cubical complexes, the precise location of each local

mode is not provided. Therefore, visual comparison between each point on the diagram

and the corresponding density has been the primary means of identification of bumps.
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3.1.2 Elliptical Mixture Model

In this section, we utilise a parametric model that enables us to calculate the birth, death,

and location of the local modes. In particular we use a mixture model of the von Mises

distributions, previously used in Hong and Jung (2022); Jung et al. (2021).

We denote the von Mises mixture model as fJ , where J represents the number of

components or local modes. The multivariate von Mises distribution has the following

density form:

f∗(y;µ,Λ, κ) = {T (κ,Λ)}−1 exp

{
κ⊤c(y, µ)− 1

2
s(y, µ)⊤Λs(y, µ)

}
(5)

where y, µ ∈ Td, κ ≥ 0, (Λ)ij = λij(i ̸= j, λii = 0) is a symmetric matrix with λij ∈

R, c(θ, µ) = (cos (θi − µi))i=1,...,d, s(θ, µ) = (sin (θi − µi))i=1,...,d, and {T (κ,Λ)}−1 is the

normalising constant (Mardia et al., 2008, 2012). We define a von Mises mixture model

(vMM):

fJ(y) =
J∑

j=1

πjf
∗
j (y;µj ,Λj , κj) (6)

where each f∗
j is the multivariate von Mises denisty (5), and πj is the mixing proportion

for jth group (Mardia et al., 2012).

Locally, the density of the von Mises distribution resembles that of a Gaussian density.

Exploiting the fact that any level set of the Gaussian density is an ellipse, we aim to

demonstrate that the upper level set of the von Mises density can also be approximated

by a union of ellipses.

We define the approximated upper level set of the jth component of von Mises mixture

model as follows:

Ût,j :=
{
y ∈ Td; (y ⊖ µj)Σ

−1
j (y ⊖ µj) ≤ 2 log πj − d log(2π)− log |Σj | − 2 log t

}
.

This implies that the upper level sets of the von Mises mixture model can be obtained

as an approximate representation of the union of elliptical shapes. Because one can easily

determine when two ellipses intersect, we can determine not only the birth and death times

of each feature but also the merging dependencies among them. These are elaborated in
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Appendix.

When it comes to calculating the persistent homology using the aforementioned ap-

proximated upper level sets, various technical challenges arise. Firstly, the task of fitting

a mixture model often entails the utilisation of the EM (Expectation-Maximisation) al-

gorithm. However, it is widely acknowledged that this algorithm is associated with a

high computational cost. As a viable alternative, we have embraced the max-mixture ap-

proximation and complemented it with the generalised Lloyd’s algorithm, as proposed in

Shin et al. (2019). This approach effectively alleviates the computational burden typically

encountered with the EM algorithm. Furthermore, in order to ensure consistent results

across multiple trials, we have employed the kmeans++ initialisation technique (Arthur

and Vassilvitskii, 2012). These implementations enhance the robustness and stability of

the outcomes obtained from the process of fitting the mixture model. Lastly, the de-

termination of the level at which ellipses intersect necessitates the solution of a convex

optimisation problem. Through the transformation of the problem of ellipse overlapping

into this particular form, we are able to derive an optimal solution. A comprehensive

step-by-step procedure for this conversion can be found in Proposition 1 and Remark 1 of

Gilitschenski and Hanebeck (2012).

Below, Algorithm 1 summarises the computational procedures for persistent homology

using the von Mises mixture model.

This methodology provides the advantage of accurately determining the location and

merging relationships of each local mode. Consequently, we can visualise the hierarchical

structure using dendrograms in addition to persistence diagrams. These visualisations

facilitate intuitive understanding, and have practical applications in clustering.

Figure 4 illustrates the results of calculating persistent homology using a mixture

model with J = 10 components for the SARS-CoV-2 data. The lower left panel displays

the persistence diagram obtained from the fitted mixture model. The pink band represents

the confidence band, indicating that only two significant bumps, coloured in green and

black, are observed in this case (see section 3.2 for the confidence band). The upper

right panel shows the locations of each component, and the first and third components

are determined to be significant. The upper left dendrogram depicts the hierarchical

12



Algorithm 1 Algorithm for persistent homology of von Mises mixture

input: data X1, . . . , Xn ∈ Td, number of components J
(Estimate θ := (θ1, . . . , θJ), where θj = (πj , µj ,Σj))
for doj in 1 : J

Get the initial value θ̂(0) using k-means++.

Approximate f̂J(y; θ̂
(l−1)) ≈ maxj=1,...,J [π̂j f̂

∗
j (y; θ̂

(l−1)
j )] for l = 1, 2, . . ..

Implement Generalised Lloyd’s Algorithm and get θ̂(l) until it converges.
get f̂J(y; θ̂) and also acquire ĝJ(y; θ̂) := log f̂J(y; θ̂).

end for
(Calculate births)
for doj in 1 : J

(birth)j = f̂J(µ̂j ; µ̂j , Σ̂j)
end for
(Calculate deaths)
for doi in 1 : J

for doj in 1 : J
define a matrix M ∈ RJ×J such that Mi,j =

max {t; Ût,i and Ût,j meet each other at one point }
(death)j = maxi;1≤i≤J {Mi,j ; (birth)i > (birth)j}

we say that jth component is merged into ith component.
end for

end for
(Calculate persistence)
Calculate (persistence)j = (birth)j − (death)j .

return {(persistence)j)}j=1,...,J , {(birth)j}j=1,...,J , {(death)j}j=1,...,J , {M}i,j=1,...,J

13



Figure 4: (Top Left) Dendrogram showing the persistence of local modes. (Top Right) Data and
estimated locations of local modes. Colored ones are classified as significant, others as noise.
(Bottom Left) Persistence diagram and confidence band. (Bottom Right) Contour plot of von
Mises kernel density estimator.

merging relationships among the local modes in the fitted density. Each leaf corresponds

to a component of the mixture model, representing a local mode. The vertical length of

each branch segment indicates the lifetime∗ of the corresponding mode, with the upper

and lower endpoints denoting the birth and death, respectively. Following the approach

in Kim et al. (2017), we applied a hierarchical structure to represent the components,

where horizontal lines indicate the merging of one component into another, with different

colors representing different merging events. The x-axis represents the indices for the

components, while the y-axis represents the empirical quantiles of the fitted density.

3.2 Uncertainty Measurement of Persistence Diagram

In this section, we present a methodology for quantifying the uncertainty associated with

the estimated persistent homology. The primary objective is to determine the critical

value δn in equations (1) and (2). To facilitate this analysis, we will employ the von Mises

∗Note that the empirical quantile of the log density, denoted α ∈ [0, 1], is utilised instead of the density
height, due to the practical computational challenges.
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kernel density estimator and von Mises mixture model as density estimators for f .

3.2.1 Bootstrap Method

The inequality (3) given by stability theorem implies that the estimation of δn in (1) or (2)

can be achieved by only using f̂κ (but not involving computationally heavy construction of

dgm(f̂κ)) for constructing the confidence set. One of the simplest methods for estimating

δn is through bootstrap.

Recall that we have a random sample X1, . . . , Xn
iid∼ f with its corresponding proba-

bility measure P, and f̂κ represents the von Mises KDE (4) with a given κ ∈ (0,∞). Note

that fκ(x) := E(f̂κ(x)) for all x ∈ Td so that fκ is a smoothed representation of the true

density function f . In other words, we can represent that f̂κ(x) =
∫
Kκ(u ⊖ x)Pn(dx)

and fκ(x) =
∫
Kκ(u ⊖ x)P(dx), where Pn is the empirical measure corresponding to the

data X1, . . . , Xn. Initially, we generate bootstrap samples X∗
1 , . . . , X

∗
n, and compute the

corresponding estimated f̂∗
κ along with its L∞ norm, denoted as ∥f̂∗

κ − f̂κ∥∞. We repeat

this process a sufficiently large number of times, denoted as B, to obtain the empirical

bootstrap distribution of ∥f̂∗
κ − f̂κ∥∞. Finally, we define δ̂n as the 1−α upper quantile of

this empirical bootstrap distribution.

Theorem 2. For a given κ ∈ (0,∞), let G denote the family of all functions Kκ(u ⊖ x)

mapping from x ∈ Td to Kκ(u ⊖ x) ∈ R, indexed by all possible u ∈ Td. Additionally,

let δ̂n to be the bootstrap quantile defined above. Then G is indeed a P-Donsker class.

Consequently, as n → ∞, we have

P
(
∥f̂κ − fκ∥∞ > δ̂n

)
= α+O

(√
1

n

)
. (7)

Proof. We utilise Theorem 2.3 in Kosorok (2008) and Theorem 19.5 in van der Vaart

(1998) to establish that in order to demonstrate the P-Donsker property of G, it suffices

to prove that its bracketing integral, denoted as

J[](1,G, L2(P)) =
∫ 1

0

√
logN[] (ε,G, L2(P))dε
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is finite. Firstly, we show that Kκ(·⊖x) is a Lipschitz function for any given x ∈ Td. Fix x

in Td, then for every u, v ∈ Td, it holds that |Kκ(u⊖ x)−Kκ(v ⊖ x)| ≤ ∥K ′
κ(w ⊖ x)∥ ∥u⊖

v∥ for some w lying between u and v. However, the lth element of K ′
κ(u) :=

∂
∂uKκ(u) is

1
(2πI0(κ))d

κ(− sinul)
∏d

j=1 e
κ cosuj , where ul is the lth element of u. Consequently, irrespec-

tive of the specific values of w, x ∈ Td, the quantity ∥K ′
κ(w ⊖ ·)∥ is upper-bounded by a

constant denoted as M . Thus, for all x, u, v ∈ Td,

|Kκ(u⊖ x)−Kκ(v ⊖ x)| ≤ M∥u⊖ v∥. (8)

We now demonstrate that the bracketing number of G is bounded above by the covering

number of Td. Let an ϵ ∈
(
0, 1

M

)
be fixed. Since Td is a compact set, we can choose N

such that {c1, c2, . . . , cN} ⊆ Td and ∪N
i=1Bϵ/2(ci) ⊇ Td, where Bϵ/2(ci) represents the ball

of radius ϵ/2 centered at ci. For i = 1, 2, . . . , N , define functions ai, bi from Td to R, given

by ai(x) := Kκ(ci ⊖ x) − Mϵ/2 and bi(x) := Kκ(ci ⊖ x) + Mϵ/2, respectively. We will

demonstrate that the set [ai, bi]i=1,...,N covers G. In other words, for each u ∈ Td, there

exists an index i ∈ {1, . . . , N} such that ai(x) ≤ Kκ(u ⊖ x) ≤ bi(x) for all x ∈ Td. This

can be easily established by (8) and observing that there exists an i such that ci is within

a distance of ϵ/2 from u. Consequently, it holds that N ≥ N[](ϵM,G, L2(P)). Moreover,

if we define A := max{2, ϵ
2πM } + 1, then the ϵ/2-covering number of Td can be bounded

from above by the ϵ/A-covering number of Td, which, in turn, is bounded by
(

2π
ϵ/A

)d
.

This leads us to deduce that N[](ϵM,G, L2(P)) ≤
(
2Aπ
ϵ

)d
. Upon substituting ϵ/M for ϵ,

consequently, for all ϵ ∈ (0, 1), we obtain

N[](ϵ,G, L2(P)) ≤
(
2πAM

ϵ

)d

.

Therefore,

J[](1,G, L2(P)) ≤
∫ 1

0

√
d log(

2πAM

ϵ
)dϵ =

∫ d log 2πAM

∞

√
w2πAM

(
−1

d

)
e−

1
d
wdw

≤
∫ ∞

0

√
w
2πAM

d
e−

1
d
wdw = π3/2A

√
d < ∞

where the variable transformation w = d log(2πAM/ϵ) is employed.

16



Theorem 2 and the stability inequality (3) together imply that the value of δ̂n satisfies

the following inequality:

lim sup
n→∞

P
(
W∞

(
dgm(f̂κ), dgm(fκ)

)
> δ̂n

)
≤ α.

We emphasise that δ̂n used in Theorem 2 obviates the need for calculating the persis-

tence diagrams and bottleneck distances. Furthermore, the computation of ∥f̂∗
κ − f̂κ∥∞ is

conducted using the grid method, which significantly reduces the overall calculation time.

However, it is important to note that this method may not yield a tight bound due to

potentially loose stability inequality (3). In this case, the resulting confidence set can be

conservative, potentially leading to the misclassification of significant modes as noise. To

overcome this limitation and to achieve more accurate inferences about the persistent ho-

mology, the bootstrap method utilising the Bottleneck distance can be employed, provided

that certain conditions are met.

Let X∗
1 , . . . , X

∗
n denote the bootstrap samples, f̂∗

κ represent the kernel density estima-

tor based on the bootstrap samples, and dgm(f̂∗
κ) indicate the corresponding persistence

diagram. By employing the percentile bootstrap method, we obtain the empirical boot-

strap distribution of W∞(dgm(f̂∗
κ),dgm(f̂κ)) through B iterations. We define δ̂′n as the

1 − α quantile of this empirical bootstrap distribution. The following lemma provides

conditions for validity of this bootstrap procedure.

Lemma 1. Let f̂ : Td → R be a density estimator, E(f̂) represent its expectation, and δ̂′n

be the 1− α quantile of the empirical bootstrap distribution mentioned above. We assume

the following conditions:

(i) E(f̂) is Morse.

(ii) The first and second derivatives of E(f̂) are each uniformly bounded and continuous.

(iii) E(f̂) has finitely many critical points.

(iv) lim infn→∞ P
(
supx

∥∥∥f̂ (i)(x)− E(f̂)(i)(x)
∥∥∥ < ϵ for i = 0, 1, 2

)
= 1.
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Then, we have

P
(
W∞

(
dgm(f̂), dgm(E(f̂))

)
> δ̂′n

)
≤ α+OP

(
log n√

n

)
. (9)

Lemma 1 can be verified by the same argument used for showing a similar result for

the standard KDE in section 6 of Chazal et al. (2018).

We note that whether the conditions (i) and (iii) of Lemma 1 satisfy critically depends

on the true density f . Below we show that conditions (ii) and (iv) of Lemma 1 are satisfied

by the von Mises KDE.

Theorem 3. The von Mises kernel density estimator f̂κ satisfies the conditions (ii) and

(iv) of Lemma 1. Moreover, if the true density f is such that the conditions (i) and (iii)

of Lemma 1 are satisfied, then the Bottleneck bootstrap method using the von Mises kernel

density estimator is valid.

Proof. (ii) In order to establish the condition (ii), namely EX(f̂κ(u)) = EX

(
1
n

∑n
i=1Kκ(u⊖X)

)
has two uniformly bounded continuous derivatives, note that the lth element of K ′

κ(u) :=

∂
∂uKκ(u) is 1

(2πI0(κ))d
κ(− sinul)

∏d
j=1 e

κ cosuj , where ul is the lth element of u. Conse-

quently, it becomes evident that EX(f̂κ′(u)) is bounded both above and below for all

values of u ∈ Td (as seen in the proof of Theorem 2). The same holds for the second

derivatives due to the presence of trigonometric terms in K ′κ(u).

(iv) Our proof for f̂κ satisfying condition (iv) closely follows the proofs of Theorems

3.1.6 and 3.1.7 of Rao (1983), in which the domain of the density estimator was Rd.

Let M := supu∈Td ∥K ′
κ(u)∥. Given the earlier observation that each element of K ′

κ(u)

is uniformly bounded, it follows that M can be identified as an absolute constant of finite

value. Fix ϵ > 0. Since Td is compact, we can choose Ñ such that {c1, . . . , cÑ} ⊆ Td and

∪Ñ
j=1Bϵ/4M (cj) ⊇ Td. Now,
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P ( sup
u∈Td

|f̂κ(u)− fκ(u)| ≥ ϵ) ≤
Ñ∑
j=1

P

(
sup

u∈Bϵ/4M (cj)
|f̂κ(u)− fκ(u)| ≥ ϵ

)

≤ Ñ max
j=1...,Ñ

P

(
sup

u∈Bϵ/4M (cj)
|f̂κ(u)− fκ(u)| ≥ ϵ

)

≤ Ñ max
j=1...,Ñ

{
P

(
sup

u∈Bϵ/4M (cj)
|f̂κ(u)− f̂κ(cj)| ≥ ϵ/3

)
+

P

(
sup

u∈Bϵ/4M (cj)
|fκ(u)− fκ(cj)| ≥ ϵ/3

)
+

P
(
|f̂κ(cj)− fκ(cj)| ≥ ϵ/3

)}
=: Ñ max

j=1...,Ñ

{
P1
j + P2

j + P3
j

}

To bound the three probabilities in the last part of above inequality, we start with the

first one, P1
j . It is evident that supu∈Bϵ/4M (cj) |f̂κ(u) − f̂κ(cj)| ≤ supM∥u − cj∥ ≤ M ·

ϵ/4M = ϵ/4 < ϵ/3 for all j = 1, . . . , Ñ almost surely. Likewise, we have supu∈Bϵ/4M (cj) |fκ(u)−

fκ(cj)| = sup |Ef̂κ(u) − Ef̂κ(cj)| ≤ E sup |f̂κ(u) − f̂κ(cj)| ≤ ϵ/4 < ϵ/3 almost surely.

Therefore, P1
j = P2

j = 0 for all j = 1, . . . , Ñ .

Lastly, the representation of f̂κ is given by f̂κ(x) =
∑n

i=1 Yi, where

Yi =
1

n

1

(2πI0(κ))d

d∏
j=1

eκ cos (xj⊖Xij)

for i = 1, 2, . . . , n. Note each Yi’s are independent random variables, and are bounded

between (n(2πI0(κ))
d)−1e−dκ and (n(2πI0(κ))

d)−1edκ almost surely. To further bound

P3
j , we employ Hoeffding’s inequality (Theorem 2.2.6 in Vershynin (2018)).

P3
j = P

(
|f̂κ(cj)− fκ(cj)| ≥ ϵ/3

)
≤ 2 exp

[
−2nϵ2

C

]

where C is an absolute constant which does not depend on any j. Therefore, considering

all the above,

P ( sup
u∈Td

|f̂κ(u)− fκ(u)| ≥ ϵ) ≤ 2Ñ exp

[
−2nϵ2

C

]
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Hence lim supn→∞ P (supu∈Td |f̂κ(u)− fκ(u)| ≥ ϵ) = 0.

The first and second derivatives of the von Mises kernel density estimator share a

similar structure, as they are comprised solely of constants, trigonometric functions, and

exponentials of trigonometric functions. Consequently, these derivatives are also bounded

both from below and above. Thus, we can employ the same arguments and procedures

outlined above to establish the conclusion of this proof.

In Theorem 3, we require the mollified density fκ = E(f̂κ) to satisfy the conditions

(i) and (iii) of Lemma 1, which is less stringent than for f to satisfy these conditions. If

f satisfies these conditions, then for sufficiently large κ, the difference between fκ and f

becomes almost negligible (Taylor, 2008), in which case fκ also satisfies the conditions.

When the mixture model in Section 3.1.2 is used to compute persistent homology, we

also use the two bootstrap procedures discussed earlier (9) and (7). However, it has been

challenging to guarantee the success of bootstrap procedures for the estimators from the

von Mises mixture model, as similarly done in Theorems 2 and 3 for the von Mises KDE.

3.2.2 Finite Sample Method

While the bootstrap method is straightforward to implement, it suffers from a notable

drawback of being computationally intensive, especially when it involves computing the

bottleneck distance. In this section, we propose to use concentration inequalities along with

linear density approximations of density functions to approximate the critical value δn.

This approach effectively mitigates the computational burden such as those encountered

in the bootstrap method.

Theorem 4. Consider N as the number of grid points used for evaluating the von Mises

kernel density estimator (4), wherein N takes the form N := md for some integer value

m ∈ Z. For each l = 1, . . . , N let gl = (gl1, . . . , gld) be the middle point of the grid of Td,

let f̂κ for a given κ be a von Mises kernel density estimate computed from X1, . . . , Xn
iid∼ f .

we have n random samples. Also, let f̂ †
κ and f †

κ be each piecewise linear approximation

of the von Mises kde and its expectation, respectively. Then, for any δ > 0, the following

holds.
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(1) (Hoeffding’s inequality)

P (W∞(dgm(f̂ †
κ), dgm(f †

κ)) > δ) ≤ 2N exp

[
−2nδ2(2πI0(κ)

2d)

(edκ − e−dκ)2

]
(10)

In particular, for given α ∈ (0, 1), by letting δ = δ̂n such that

δ̂n =

[
log

(
2N

α

)
(edκ − e−dκ)2

2n(2πI0(κ))2d

]1/2
, (11)

the inequality (1) holds.

(2) (Bernstein’s inequality)

P (W∞(dgm(f̂ †
κ), dgm(f †

κ)) > δ) ≤ 2

N∑
l=1

exp

[
− δ2/2

nσ2
l +Mδ/3

]
(12)

where M := 2(n(2πI0(κ))
d)−1edκ and σ2

l = nVar( 1n
1

(2πI0(κ))d

∏d
j=1 e

κ cos (glj⊖X1j)) for

l = 1, . . . , N .

Proof of Theorem 4. The argument in this proof follows the proof of Lemma 9 in Fasy

et al. (2014), in which a result similar to part 1 of Theorem 4 for usual Euclidean data is

given.

We use the fact that f̂κ(gl) is represented by f̂κ(gl) =
∑n

i=1 Yil, where

Yil =
1

n

1

(2πI0(κ))d

d∏
j=1

eκ cos (glj⊖Xij)

for i = 1, 2, . . . , n and l = 1, . . . , N . Note that each Yi’s are independent random variables,

and are bounded between (n(2πI0(κ))
d)−1e−dκ and (n(2πI0(κ))

d)−1edκ almost surely.

Hence, use Hoeffding’s inequality,

21



P (W∞(dgm(f̂ †
κ),dgm(f †

κ)) > δ) ≤ P (∥f̂ †
κ − f †

κ∥∞) > δ)

≤ P ( max
x∈{g1,...,gN}

|f̂ †
κ(x)− f †

κ(x)| > δ)

≤
N∑
l=1

P(|f̂ †
κ(gl)− f †

κ(gl)| > δ)

≤ 2

N∑
l=1

exp

− 2δ2∑n
i=1

[
1

n(2πI0(κ))d
(edκ − e−dκ)

]2


= 2N exp

[
−2nδ2(2πI0(κ))

2d

(edκ − e−dκ)2

]
,

thus verifying (10). Equation (11) is given by the unique solution of the equation

2N exp

[
−2nδ2(2πI0(κ))

2d

(edκ − e−dκ)2

]
= α.

Secondly we use the Bernstein’s inequality, stated in Theorem 2.8.4 in Vershynin

(2018). Let X1, . . . , Xn be independent, mean zero random variables, such that |Xi| ≤ K

for some K > 0 for all i. Then, for every t ≥ 0, we have

P

{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
,

where σ2 =
∑n

i=1 EX2
i =

∑n
i=1VarXi (since they are mean zero). Again we use the fact

each Yil − E(Yil)(i = 1, . . . , n) are independent, and mean zero, and its absolute value is

bounded above by M := 2(n(2πI0(κ))
d)−1edk almost surely. Then

P (W∞(dgm(f̂ †), dgm(f †)) > δ) ≤ P (∥f̂ † − f †∥∞) > δ)

≤ P ( max
x∈{g1,...,gN}

|f̂ †(x)− f †(x)| > δ)

≤
N∑
l=1

P(|f̂ †(gl)− f †(gl)| > δ)

≤ 2
N∑
l=1

exp

[
− δ2/2∑n

i=1 σ
2
l +Mδ/3

]
.

In practice each σ2
l appeared in 12 is unknown. We propose to replace σ2

l by its

22



consistent estimator σ̂2
l for each l = 1, . . . , N , where

σ̂2
l :=

n

n− 1

n∑
i=1

 1

n

1

(2πI0(κ))d

d∏
j=1

eκ cos (glj⊖Xij) − 1

n

n∑
i=1

1

n

1

(2πI0(κ))d

d∏
j=1

eκ cos (glj⊖Xij)

2

.

To derive the cutoff value δ corresponding to a given α ∈ (0, 1), we solve the equation

2
∑N

j=1 exp

[
− δ2/2

nσ2
j+Mδ/3

]
= α. The solution of this equation, denoted by δ̂′n, must be

obtained by a numerical method. We used a bisection method. This choice of δ̂′n satisfies

(1) for any sample size n.

Note that the bootstrap method provides relatively tight confidence set, but instead

it takes a long time to calculate. On the contrary, the Hoeffding method provides a

conservative confidence set but with the shortest computational time among the four

methods introduced in this article. The Bernstein method strikes a balance. This is

empirically confirmed in Section 4.

3.2.3 A Scale Space Approach

The parameters κ and J play a crucial role in determining the shape of the von Mises

kernel density and mixture, respectively. These parameters are now referred to as scale

parameters.

For the concentration parameter, κ, in the von Mises KDE, a larger value indicates a

more spiky shape for the density. Similarly, in the von Mises mixture model, increasing

the value of J results in a higher number of peaks in the density function fJ . In general,

as the scale parameter increases, the convoluted density (fκ or fJ) exhibits reduced bias

but higher variance. The challenge then becomes selecting the optimal scale parameters

that best represent the true density f . Instead of identifying a single optimal parameter,

we focus on observing the overall trend within a certain range of the scale parameter

space. To understand how the significance of each mode changes with respect to the

scale parameters, we plot the dynamic scale-life diagram, first introduced in Sommerfeld

et al. (2017). This visual representation allows us to examine the variation of modes over

different scales. This entire process is commonly referred to as a scale-space approach.

The movie in Movie 5 is provided for intuitive understanding. Each frame of the movie
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Movie 5: Significant density bumps of SARS-CoV-2 data. (Left) 3D plots of von Mises KDE for
varying values of κ. (Middle) Cumulative persistence diagram. (Right) Scale-space diagram.

corresponds to different values of κ ranged in (0, 50). The left panel shows the fitted KDE

with various κ’s, based on the SARS-CoV-2 dataset of size n = 972. As κ increases, the

resulting KDE becomes more jagged, which in turn leads to a gradual increase in the

persistence of each mode shown in the middle and right panels.

To provide a scale space view of the persistent homology, the right panel of Movie 5

displays the scale-space diagram. The y-axis represents the value of the scale parameter,

while the x-axis represents the persistence of each feature calculated using the correspond-

ing scale parameter. The height of the confidence band, 2δ̂n computed for each κ using

(7) is shown as the purple curve in the right panel of Movie 5. This diagram enables us

to observe how each feature evolves with respect to the scale parameter and how their

significance varies.
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Figure 6: Scale-space diagrams by von Mises KDE for SARS-CoV-2 data. Confidence bands are
given by bottleneck bootstrap (top left), functional bootstrap (top right), Bernstein’s inequality
(bottom left) and Hoeffding’s inequaility (bottom right).

4 Experiments

We demonstrate our approaches using two primary torsion angles of the B chain in the

SARS-CoV-2 spike glycoprotein, comprising a total of 972 samples in T2. This dataset

was first appeared in Walls et al. (2020) and is accessible in ClusTorus R package (Hong

and Jung, 2022).

Initially, we examine the variations in the von Mises KDE with the concentration pa-

rameter κ ranging from 0 to 50. The construction of confidence sets, which determine the

significance of each mode, is accomplished using the four methods introduced in Section

3.2, namely functional bootstrap, Bottleneck bootstrap, Hoeffding’s inequality, and Bern-

stein’s inequality. In the implementation, we used a grid of size 502, and the number of

bootstrap iterations is set to B = 50. The results obtained from each method are recorded

in the scale-space diagram, shown in Figure 6.

25



Figure 7: Scale-space diagrams by von Mises mixture models for SARS-CoV-2 data. Confidence
bands are given by bottleneck bootstrap (left) and functional bootstrap (right).

In Figure 6, we observed that the bootstrap methods (shown in the top panels) provides

shorter confidence bands compared to the finite sample methods (shown in the bottom

panels). Moreover, the bottleneck bootstrap provides the tightest confidence band and is

most preferable. On the other hand, due to repeated computations of both persistence

diagrams and bottleneck distances, it takes the longest time. Overall, the confidence band

given by Bernstein’s inequality performs good enough and takes moderate computation

times. Based on this analysis, we may conclude that SARS-CoV-2 dataset has two signif-

icant modes.

Next, we perform the same analysis using the von Mises mixture model. The scale-

space diagrams corresponding to the number J of components ranging from 1 to 30 are

shown in Figure 7. Note that the mixture model fits are not ”continuous” with respect

to the changes of J . Nevertheless, one can apply the bootstrap methods to build the

confidence bands. Utilising the bottleneck bootstrap (see the left panel), we observed that

two modes are identified as significant overall. These modes correspond to the first and

third components shown in Figure 4. On the other hand, the functional bootstrap method

shown in the right panel does not yield any significant modes. We conjecture that the

hypothesis of the stability theorem, which requires f̂J and its expectation to be Morse,

may not hold for this case.

In addition, we repeat the same implementation using one more dataset, which is

intentionally simulated data on T2, with the sample size n = 1100. One can see its
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Figure 8: The scatterplot for the simulated data on T2. Each axis of x and y circulates between 0
and 2π.

scatterplot on Figure 8. This dataset is originally simulated on Euclidean space, which is

accessible in factoextra R package. We preprocessed this data to be embedded well over

a two-dimensional torus space circulating between 0 and 2π for each dimension.

Figure 9 and Figure 10 depict the outcomes of the simulated data experiment. The ex-

periment employed identical grid parameters, bootstrap iteration counts, and methodolo-

gies for assessing uncertainty in persistent homology relative to the SARS-CoV-2 dataset.

In Figure 9, each data point within a circular arrangement signifies its corresponding

zero-dimensional topological characteristic, a connected component. Conversely, each tri-

angular data point designates its corresponding one-dimensional topological aspect, de-

noting a ring-shaped structure. As we observe in Figure 8, it is reasonable and intuitive

a ring-shaped topological feature should be captured to be significant. The bootstrap

methodologies effectively identified the aforementioned ring-like feature as well as sev-

eral other connected components of significance. In contrast, Bernstein’s and Hoeffding’s

methods failed to achieve analogous outcomes. This trend persists in Figure 10, where

the von Mises mixture model was applied to the simulated data. However, due to the

inherent assumptions of the mixture model framework, the detected significant compo-

nents deviated from capturing an entire ring-like feature to identifying several pronounced

connected components resembling a ring-like configuration. Notably, the functional boot-
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Figure 9: Scale-space diagrams by von Mises KDE for the simulated data. Confidence bands are
given by bottleneck bootstrap (top left), functional bootstrap (top right), Bernstein’s inequality
(middle left) and Hoeffding’s inequaility (middle right).

strap approach yielded no significant components apart from the scenario where J = 1.

This outcome aligns with the observations in the SARS-CoV-2 data case, likely due to

analogous underlying factors.
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Figure 10: Scale-space diagrams by von Mises mixture models for the simulated data. Confidence
bands are given by bottleneck bootstrap (left) and functional bootstrap (right).

5 Conclusion and Discussions

We summarise the findings of our study and identify topics for future research.

Firstly, we have explored the use of von Mises KDE and mixture model. The ker-

nel method and the confidence band corresponding to it are proven to be valuable and

theoretically supported. Mixture models offer useful advantages over the KDE, but fur-

ther theoretical development is required. In particular, theoretical results for bootstrap

confidence band and the detection of one or higher dimensional homology can be studies

further.

Secondly, the bootstrap method provides tight confidence intervals, allowing for the

detection of more significant features. However, its computation time poses a major

challenge. In this regard, the Bernstein method has shown moderate computation time

and power, making it a viable alternative when using the KDE for persistent homology.

Thirdly, our study demonstrates that under certain theoretical conditions, with an

appropriate density estimator, Topological data analysis can be applied to more general

sample spaces, such as directional data on a sphere.
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Appendix

The assertion regarding the approximation of the upper level set of the von Mises distribu-

tion as a union of ellipses relies on the approximating technique that involves the Gaussian

density (Hong and Jung, 2022). By employing Taylor approximation for cos y ≈ 1− 1
2y

T y

and sin y ≈ y, (5) can be simplified as:

f∗(y;µ,Λ, κ) ≈ (2π)−d/2|Σ|−1/2 exp

{
−1

2

[
κT(2− 2c(y, µ)) + s(y, µ)TΛs(y, µ)

]}
,

where Σ contains the elements of κ. Again, by using the large concentration of cos y ≈

1− 1
2y

T y and sin y ≈ y, we further approximate the density as:

f∗(y;µ,Λ, κ) ≈ (2π)−d/2|Σ|−1/2 exp

{
−1

2

[
(y ⊖ µ)Σ−1(y ⊖ µ)

]}
.

Consequently, the approximated jth component of fJ(y) takes the following form:

{
y ∈ Td;πjf

∗
j (y) ≥ t

}
=
{
y ∈ Td; 2 log πj + 2 log f∗

j (y) ≥ 2 log t
}

≈
{
y ∈ Td; (y ⊖ µj)Σ

−1
j (y ⊖ µj) ≤ 2 log πj − d log(2π)− log |Σj | − 2 log t

}
.
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국문초록

본 연구는 각도 데이터 등 순환하는 자료들이 토러스 공간 위에 있다고 가정하고 그들을

통해 밀도함수의 최빈값(mode)들을 찾음으로써 자료들이 집중적으로 분포된 곳을 탐색함

을 목표로 한다. 이를 위해 밀도함수를 폰 미시스(von Mises) 커널 밀도함수 추정량과 혼합

모형을 이용하여 추정하고 이들을 통해 지속 호몰로지(persistent homology) 방법을 사용할

것이다. 밀도함수 대신 추정량을 사용함으로 파생된 지속 호몰로지의 불확실성을 계량하기

위해 우리는 네 가지 방법을 비교할 것인데, 그 중 셋은 선행연구에서 제시된 것이고, 하나는

우리가이연구를통해새롭게제시하는방법이다.또한기존위상학적자료분석선행연구에

서제시된측도모수공간방법(scale-space approach)을적극적으로활용하여여러측도모수에

의한 밀도함수 추정량 최빈값들, 지속 호몰로지와 그 유의성의 변화를 살펴볼 것이다. 이러

한 연구는 이론적인 내용뿐만 아니라 현존하는 데이터들을 이용한 실험을 통해 그 유용성을

검증하는 절차도 포함하고 있다.

주요어 : 범프 헌팅, 붓스트랩, 위상학적 자료 분석, 지속 호몰로지, 폰 미시스 분포

학 번 : 2021-26565
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