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Abstract

In this paper, we discuss a method for detecting structural change point in

autoregressive time series using transformer based deep learning model. De-

tecting structural changes can be achieved using the LSCUSUM test, which is

one of the most popular methods for change point detection. A crucial aspect

of constructing the LSCUSUM test is to adequately estimate the residuals, and

choosing an appropriate model is of paramount importance. Given that many

time series exhibit nonlinear characteristics, it becomes imperative to employ

deep learning methods for capturing and effectively modeling these nonlinear-

ities. Therefore, in this context, we utilize a transformer-based deep learning

model that leverages the powerful self-attention mechanism. In the process, we

compute empirical size and power about our method and apply to two real

datasets.

Keywords: Structural break, Deep learning, Tranformer, LSCUSUM, Autore-

gressive
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Chapter 1

Introduction

Change point detection is widely studied in the field of time series analysis

because ignoring change points can lead to significant errors in modeling the

underlying patterns of the data. Many domains that require time series anal-

ysis often involve situations where structural change can occur. For example,

changes in government policies or sudden social events can introduce change

points in economic time series data.

The cumulative sum (CUSUM) test, introduced by Page (1955), is widely

used as a convenient method for change point detection. However, the conven-

tional estimate-based CUSUM test proposed by Lee et al. (2003) can suffer from

size distortions and low power in certain cases. To address this issue, Oh and

Lee (2019) and Oh and Lee (2018) suggested a score vector-based CUSUM test

and a modified residual-based CUSUM test. Furthermore, Lee (2020) proposed

the location and scale-based CUSUM (LSCUSUM) test, which demonstrated

improved stability adn power compared to previous estimate-, residual-, and

score vector-based CUSUM tests through simulation studies. This test is ad-
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vantageous because it can detect changes in both the location and scale of the

data and only requires observations and residuals for analysis.

Accurate computation of residuals is crucial for the LSCUSUM test, as it

relies on test statistics based on residuals. This requires fitting an appropriate

model, especially for time series data with nonlinear autoregressive structures.

Therefore, utilizing machine learning and deep learning models becomes essen-

tial to capture such complexities. Lee et al. (2020) proposed a hybrid change

point detection method using SVR (Support Vector Regression) combined with

the CUSUM method. Similarly, Ri et al. (2023) introduced an NNR (Neural

Network Regression) approach for detecting structural change points in ARMA

models using LSCUSUM methods.

Various methods are being used in analyzing data with sequential struc-

tures, such as time series, using deep learning techniques. Initially, RNN-based

methodologies gained prominence as they were well-suited for capturing the re-

lationship between past and current data in time series analysis. However, RNNs

faced challenges such as the vanishing gradient problem. To partially address

this, models such as LSTM by Hochreiter and Schmidhuber (1997) and GRU

by Cho et al. (2014) were introduced, which consider long-term dependencies

in time series.

In tasks involving seq2seq models like machine translation, which shares

similarities with time series analysis, many issues are resolved using an encoder-

decoder structure. The input sentence to be translated is read, encoded into a

fixed-length vector, and then the decoder generates the output sentence recur-

rently.

However, the seq2seq models used in this approach store all input sequences

into a single vector, leading to inevitable loss of information. To mitigate this,

the Attention mechanism, introduced in Bahdanau et al. (2014), allows the
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Figure 1.1 Description of Attention Function

decoder to refer back to the relevant parts of the source during each step of

prediction. This enables the model to learn which parts of the encoding process

are most relevant for accurate predictions. In time series analysis, this mech-

anism can be helpful in predicting correlations within irregular past patterns.

To provide necessary explanation of Attention:

For a query (context) and key-value pairs (references), attention value is the

weighted average of values, where each weight is proportional to the relevance

between the query and the corresponding key. In time series structure, the

past time points are used as references to predict the current time point by

considering it as the query. Figure 2.1 illustrates the schematic representation

of how Attention values are computed. The similarity between the query and

the keys (1,2,3) is measured, and the weighted average of the values based on

these similarities is used as the attention value. This attention operation plays

a crucial role in the Transformer, which we introduce next.

Vaswani et al. (2017) proposed Transformer, an architecture that uses at-

tention mechanism in encoder-decoder structure, not for the correction of RNN
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Figure 1.2 The Transformer - model architecture in Vaswani et al. (2017)

based encoder-decoder structure. Figure 1.2 describes Transformer architecture

in Vaswani et al. (2017). The transformer architecture has shown remarkable

performance in predicting data with sequential structures, particularly in tasks

such as machine translation and computer vision. we aim to utilize the trans-

former to accurately compute the residuals to meet the requirements of the

LSCUSUM test.

The remaining parts of this paper are as follows: In Chapter 2, an expla-

nation of the transformer and LSCUSUM test is provided, along with a brief

overview of the attention mechanism underlying the transformer. Chapter 3 con-

ducts a simulation study, performing a grid search for tuning parameters and

calculating the empirical size of the two models and power of various changes

through Monte Carlo simulations. In Chapter 4, the methods are applied to

two real datasets for illustration. Lastly, Chapter 5 concludes the paper with
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final remarks.
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Chapter 2

Model Description

For time series {yt}, we use a sliding window method to construct a training

dataset. To align with the seq2seq model used in the transformer and to fix an

input length to the model, we put input variable as yt, yt−1, · · · , yt−iw+1 where

iw is a length of input window, out put variable as yow, · · · , yt+1 where ow is a

length of output window. The functional relationship learned by Transformer

model is below:

(yow, · · · , ŷt+1) = f(yt, yt−1, · · · , yt−iw+1)

where ŷt+k is prediction for time t + k. To capture autoregressive structure

for time series, we only use ŷt+1 in (yow, · · · , ŷt+1) to predict.The data were

normalized using the Min-Max normalization technique.

2.1 Transformer

The Figure 2.2 describes our Transformer based prediction structure. Mathe-

matically,
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Figure 2.1 Using a sliding window to construct a dataset

Figure 2.2 Description of the Transformer based prediction model
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dt = W2 max(W1xt + b1, 0) + b2

qt = dt + pt

ot = transformerEncodern(qt)

zt = W4 max(W3ot + b3, 0) + b4

y = W6 max(W5z + b5, 0) + b6

where xt ∈ R be input time series at time t. W1 ∈ Rd/2×1, W2 ∈ Rd×d/2, W3 ∈

Rd/2×d, W4 ∈ Rd×d/2, W5 ∈ R(ow+iw)/2×iw, W6 ∈ Row×(ow+iw)/2 are param-

eter matrices to learn, and b1 ∈ Rd/2, b2 ∈ Rd, b3 ∈ Rd/2, b4 ∈ Rd, b5 ∈

R(ow+iw)/2, b6 ∈ Row are bias vectors to learn. x ∈ Riw is an input vector

that cut out of time series using sliding window method. for time t, we em-

bedded univariate time series to Rd using feed-forward network, called dt. We

choose a dimension of embedding space as a hyperparameter. And, we added

positional encoding pt, as described in Vaswani et al. (2017), to inject some

information about the position in the sequence. TransformerEncoder is similar

to an Encoder part of the transformer in Figure 1.2. After that, we applied

another feed-forward network to tranform the enbedded time series back to its

univariate representation. Finally, we used a feed-forward network to decode

our input window-length time series into an output window-length time series.

2.2 Location and scale-based CUSUM test

In this section, we introduce a method of detecting change point in time series.

In Oh and Lee (2019), LSCUSUM test uses the mean-zero stationary location-

scale time series model as below:

yt = gt(µ0) +
√

ht(θ0)ηt, t ∈ Z
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where gt(µ) = g(yt−1, yt−2, · · · ;µ) and ht(θ) = h(yt−1, yt−2, · · · ; θ) denote au-

toregressive model with unknown parameter θ = (µ, θ)T . ηt are iid random

variables with mean zero and unit variance. In particular, we consider autore-

gressive homogeneous time series model, so we only consider ht = σ2. Thus, the

model discussed in this paper is

yt = gt(µ0) + σηt, t ∈ Z

To detecting change point based on observations y1, · · · , yn, we are interesting

in testing the null hypothesis:

H0 : θ remains the same for the whole series vs. H1 : not H0

To conduct a test, we consider a LSCUSUM test in Lee (2020). g̃t(µ̂n) is

our estimator of gt(µ0) via transformer and putting ϵ̃t = y− g̃t(µ̂n) as residual,

we can use

T̂LS
n = max

1≤k≤n

 1

nτ̂21,n

∣∣∣∣∣
k∑

t=1

(yt − ϵ̃t)ϵ̃t −
(
k

n

) n∑
t=1

(yt − ϵ̃t)ϵ̃t

∣∣∣∣∣
2

+
1

nτ̂22,n

∣∣∣∣∣
k∑

t=1

ϵ̃2t −
(
k

n

) n∑
t=1

ϵ̃2t

∣∣∣∣∣
2


T̂max
n = max

1≤k≤n
max

 1

nτ̂21,n

∣∣∣∣∣
k∑

t=1

(yt − ϵ̃t)ϵ̃t −
(
k

n

) n∑
t=1

(yt − ϵ̃t)ϵ̃t

∣∣∣∣∣
2

,
1

nτ̂22,n

∣∣∣∣∣
k∑

t=1

ϵ̃2t −
(
k

n

) n∑
t=1

ϵ̃2t

∣∣∣∣∣
}

where

τ̂21,n =
1

n

n∑
t=1

(yt − ϵ̃t)
2ϵ̃2t −

(
1

n

n∑
t=1

(yt − ϵ̃t)ϵ̃t

)2

,

τ̂22,n =
1

n

n∑
t=1

ϵ̃4t −

(
1

n

n∑
t=1

ϵ̃2t

)2

.
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In Lee (2020), T̂LS
n and T̂max

n converges to a function of Brownian bridges in

distribution. So, we obtain critical values of test statistics above through Monte

Carlo simulations. We rejected H0 if T̂LS
n > 2.4503 or T̂max

n > 1.4596 at the

level of 0.05.
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Chapter 3

Simulation Study

3.1 Selecting Optimal Tuning Parameters

In this section, we select optimal tuning parameters of transformer model via

grid search method. First, we generate length-1000 time series {yt}1000t=1 following

the AR(2) model. Among them, we selected different parameter values for the

first 500 observations and the last 500 observations, allowing for the selection of

transformer model tuning parameters that can fit adequately to a model with

a changing structure. We selected the tuning parameter with the smallest L1

loss, and the following tuning parameters became the candidates for selection.

• dmodel : the number of expected features in the input.

• nhead : the number of heads in the multi-head-attention models.

• nlayers : the number of sub-encoder-layers in the encoder.

• input window : a period of time that is used as input to predict the future

values.

11



• output window : a period of time for which the model generat predictions.

Tuning Parameter Transformer Chosen

dmodel (128, 256, 512) 512

nhead (4, 6, 8) 8

nlayers (2, 3, 4) 4

input window (2, 5, 10, 20) 10

output window (1, 2, 5, 10) 2

Table 3.1 Set of tuning parameter for grid search

Although not selected through grid search, the following tuning parameters

were used in the model.

• epoch : An epoch refers to an iteration that is completed once for the

entire data set. We choose the number of epochs to be 200, which is a

suitable value obtained by observing the train loss and test loss. This

choice helps prevent both overfitting and underfitting by monitoring the

loss.

• batch size : A size of the data sample assigned for each batch. We choose

64 in our model.

• scaler : A preprocessing step that aims to normalize the input data. We

choose min-Max scaling in our model.

• optimizer : A method that is utilized to adjust the parameters of a neural

network model during the training process. It aims to minimize the loss

by iteratively updating the weights and biases based on the computed

gradients of the loss function. We choose Adam optimizer in our model.

12



3.2 Monte Carlo Simulation

We conducted a Monte Carlo simulation to evaluate the performance of the

LSCUSUM test using a transformer on a time series with an autoregressive

structure. We measured the size of both the classical method and our proposed

method for a linear AR(2) model and linear ARMA(1,1) model. To measure

the size of two models, we generated time series from the model below;

(M1) yt = 0.6yt−1 + 0.3yt−2 + ϵt

(M2) yt = 0.6yt−1 + ϵt + 0.6ϵt−1

where ϵt are IID normal random variables with mean 0 and variance σ2. We

generated 1000 sample size time series data under no changes. With 1000 rep-

etitions, we counted the number of rejections of the null hypothesis. Table3.2

and Table 3.3 reports the empirical sizes for two model.

M1 Transformer Classical

TLS
n 0.100 0.047

Tmax
n 0.178 0.049

Table 3.2 Empirical size of AR(2) Model

M2 Transformer Classical

TLS
n 0.122 0.048

Tmax
n 0.166 0.049

Table 3.3 Empirical size of ARMA(1,1) Model

Additionally, we assessed the power of the test for a linear AR(1) model

under two scenarios: one with varying autoregressive coefficients and another

13



with varying error term variance. Under the alternative, we generate 1000 sam-

ple size time series changing coefficient in the middle. we counted the number of

rejections of the null hypothesis. Table 3.3 and Table 3.4 reports the empirical

power for AR(1) model with ϕ = 0.3 and σ2 = 1 under alternatives.

ϕ = 0.7 Transformer Classical

TLS
n 0.878 0.872

Tmax
n 0.906 0.888

Table 3.4 Empirical power of AR(1) Model with varying autoregressive coeffi-

cient

σ2 = 2 Transformer Classical

TLS
n 0.980 0.916

Tmax
n 0.981 0.934

Table 3.5 Empirical power of AR(1) Model with varying error term variance

14



Chapter 4

Empirical Applications

In this chapter, we applied our Transformer based LSCUSUM test to two sets

of real data: stock price index SnP500 from 2017 to 2019 and exchange rate

dollar to won from 2018.6.25 to 2023.6.23. The models were trained using 70

percent of the data, and predictions were made for the entire dataset. We used

log-returns of the SnP500 data for stationarity. The exchange rate data was

fitted after applying first-order difference.

First, the Figure 4.1 shows the fitting results for the SnP data. We obtained

TLS
n = 13.57(> 2.45), Tmax

n = 8.66(> 1.46), both indicated rejection of the null

hypothesis. Both statistics point to a change point around mid-January 2018

for the exchange rate data, which is figured as solid and dashed line.

Second, the Figure 4.2 shows the fitting results of the differenced exchange

rate data. We obtained TLS
n = 19.88(> 2.45), Tmax

n = 16.57(> 1.46), both

indicated rejection of the null hypothesis. Both statistics point to a change

point around mid-Fabuary 2022 for the exchange rate data, which is figured as

solid and dashed line.
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Figure 4.1 SnP index, 2017-2019

Figure 4.2 USD/KRW, 2018.6.25-2023.6.23
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Chapter 5

Conclusion and Discussion

We developed a prediction model for time series forecasting based on Transform-

ers. Using this model, we obtained residuals and applied them to the LSCUSUM

test. By performing a grid search, we determined the optimal tuning parameter

and calculated the size and power of the Transformer-based LSCUSUM test.

We then applied our method to both SnP500 data and exchange rate data, and

in both cases, it identified suitable change points.

The size obtained through Monte Carlo simulation exhibited a certain level

of distortion, which appears to be attributed to autocorrelation among the resid-

uals. During the simulation, we were able to observe plots showing autocorre-

lation among the residuals, indicating a lack of independence and potentially

leading to inflated values of the test statistics. To address this issue, it is nec-

essary to either apply an autoregressive process to the residuals or adjust the

values of both test statistics, hatτ1, n
2l, hatτ2, n

2l, which are used. In Lee et al.

(2021), an approach considering long run variance incorporating autocovariance

was attempt to as a means to address this issue.
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In Shi et al. (2022), The Transformer model has shown better results in mod-

eling long-term irregular patterns compared to traditional time series modeling

approaches. As a result, it is expected to be able to detect more complex and

irregular patterns of change, surpassing the capabilities of simulations.
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국문초록

본 논문에서는 트랜스포머 기반 딥러닝 모델을 이용하여 자기회귀 시계열에서 구

조적 변화 지점을 탐지하는 방법에 대해 논의한다. 변화 지점 감지를 위한 방법 중

하나인 LSCUSUM검정을사용하여구조적변화를감지할수있는데, LSCUSUM

검정의 가장 중요한 측면은 잔차를 정확하게 추정하는 것이므로, 적절한 모델을

선택하는 것이 가장 중요하다. 많은 시계열이 비선형 특성을 나타내므로 이러한

비선형성을 포착하고 효과적으로 모형화하기 위해 딥 러닝 방법을 사용하는 것이

필수적이다. 따라서 우리는 self-attention 메커니즘을 활용하는 transformer 기반

딥러닝모델을활용한다.또한,본연구에서는 transformer기반의변화점탐지방

법에대한크기와검정력을Monte Carlo simulation으로계산하고,두실제데이터

세트에 적용한다.

주요어: Structural break, Deep learning, Tranformer, LSCUSUM

학번: 2021-26067
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