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Abstract

In this work, we characterize two data piling phenomenon for a high-dimensional

binary classification problem with heterogeneous covariance models. The data

piling refers to the phenomenon where projections of the training data onto a

direction vector have exactly two distinct values, one for each class. This first

data piling phenomenon occurs for any data when the dimension p is larger

than the sample size n. We show that the second data piling phenomenon,

which refers to a data piling of independent test data, can occur in an asymp-

totic context where p grows while n is fixed. We further show that a second

maximal data piling direction, which gives an asymptotic maximal distance

between the two piles of independent test data, can be obtained by projecting

the first maximal data piling direction onto the nullspace of the common lead-

ing eigenspace. Based on the second data piling phenomenon, we propose novel

linear classification rules which ensure perfect classification of high-dimension

low-sample-size data under generalized heterogeneous spiked covariance mod-

els.

Keywords: High dimension low sample size, Classification, Maximal data

piling, Spiked covariance model, High-dimensional asymptotics
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Chapter 1

Introduction

High-Dimension Low-Sample-Size (HDLSS) data have often been found in

many of scientific fields, such as microarray gene expression analysis, chemo-

metrics, and image processing. Such HDLSS data are oftentimes best classi-

fied by linear classifiers since the dimension of data p is much larger than the

sample size n. For binary classification with p > n, Ahn and Marron [2010]

observed the data piling phenomenon, that is, projections of the training data

onto a direction vector w are identical for each class. Among such directions

exhibiting data piling, the maximal data piling direction uniquely gives the

largest distance between the two piles of training data. The maximal data

piling direction is defined as

wMDP = argmax
w:∥w∥=1

(
w⊤SBw

)
subject to w⊤SWw = 0,

where SW is the p×p within-class scatter matrix and SB is the p×p between-

class scatter matrix of training dataset X . Ahn and Marron [2010] observed

that a classification rule using wMDP as the normal vector to a discrimina-

1



tive hyperplane achieves better classification performance than classical linear

classifiers when there are significantly correlated variables.

However, the maximal data piling direction has not been considered as an

appropriate classifier since it depends too much on training data, resulting

in poor generalization performances [Marron et al., 2007, Lee et al., 2013].

In general, while the training data are piled on wMDP, independent test data

are not piled on wMDP. Recently, Chang et al. [2021] revealed the existence

of the second data piling direction, which gives a data piling of independent

test data, under the HDLSS asymptotic regime of Hall et al. [2005] where the

dimension of data p tends to grow while the sample size n is fixed. In addition,

they showed that a negatively ridged linear discriminant vector, projected onto

a low-dimensional subspace, can be a second maximal data piling direction,

which yields a maximal asymptotic distance between two piles of independent

test data.

A second data piling direction is defined asymptotically as p→ ∞, unlike

the first data piling of training dataset X for any fixed p > n. For a sequence

of directions {w} = (w(1), . . . , w(p−1), w(p), w(p+1), . . .), in which w(q) ∈ Rq for

q ∈ N, we write w ∈ Rp for the pth element of {w}. Let Y, Y ′ be independent

random vectors from the same population of X , and write π(Y ) = k if Y

belongs to class k. Chang et al. [2021] defined the collection of all sequences

of second data piling directions as

A =
{
{w} ∈ WX : ∀Y, Y ′ with π(Y ) = π(Y ′), p−1/2w⊤(Y − Y ′)

P−→ 0 as p→ ∞
}

whereWX = {{w} : w ∈ SX , ∥w∥ = 1 for all p}, and SX = span(SW )∪span(SB)

is the sample space. Furthermore, among the sequences of second data piling

directions in A, if {v} ∈ A satisfies

{v} ∈ argmax
{w}∈A

D(w),
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where D(w) is the probability limit of p−1/2|w⊤(Y1 − Y2)| for π(Yk) = k (k =

1, 2), then we call v a second maximal data piling direction. Note that a second

maximal data piling direction does not uniquely exist as opposed to wMDP:

For {v1} ∈ A satisfying D(w) ≤ D(v1) for any {w} ∈ A, if ∥v1 − v2∥
P−→ 0

as p → ∞ for some {v2} ∈ A, then {v2} also satisfies D(w) ≤ D(v2) for any

{w} ∈ A.

Chang et al. [2021] showed that the second maximal data piling direc-

tion exists and by using such a direction, asymptotic perfect classification of

independent test data is possible. They assumed that the population mean dif-

ference is as large as ∥µ(1) −µ(2)∥ = O(p1/2) and each of two populations has

a homogeneous spiked covariance matrix. The spiked covariance model, first

introduced by Johnstone [2001], refers to high-dimensional population covari-

ance matrix structures in which a few eigenvalues of the matrix are much

larger than the other nearly constant eigenvalues [Ahn et al., 2007, Jung and

Marron, 2009, Shen et al., 2016].

With such assumptions, Chang et al. [2021] showed that if Σ has m strong

spikes, that is, m eigenvalues increase at the order of p as p → ∞ while the

other eigenvalues are nearly constant, averaging to τ2 > 0, then projections of

independent test data tend to be respectively distributed along two parallel

affine subspaces in a low-dimensional subspace S = span(û1, . . . , ûm, wMDP) ⊂

SX , where ûi is the ith eigenvector of SW . See Figure 1.1 for an illustration.

Furthermore, they showed that vα, which is obtained by projecting a ridged lin-

ear discrimination vector onto S, is asymptotically orthogonal to these affine

subspaces when the negative ridge parameter α := −τ2 is used. Figure 1.1

displays that the projections of independent test data onto v−τ2 are asymp-

totically piled on two distinct points, one for each class.

While Chang et al. [2021] provided compelling insights on double data pil-
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Figure 1.1 Double data piling phenomenon for homogeneous covariance model

with one strong spike (m = 1). The projections of training dataset are piled

on two distinct points on wMDP. The projections of independent test dataset

are distributed along parallel lines in S = span(û1, wMDP), which appear to

be orthogonal to v−τ2 .
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ing phenomenon, their discussion was limited to the homogeneous covariance

models. Also, it is known that vα, the projected ridged linear discriminant vec-

tor, may not yield second data piling for any ridge parameter α ∈ R under het-

erogeneous covariance models. In this work, we show that, under generalized

heterogeneous spiked covariance models, the second data piling phenomenon

occurs when the dimension of data p grows while the sample size n is fixed, and

a second maximal data piling direction can be also obtained purely from the

training data. Moreover, we introduce novel algorithms which ensure perfect

classification of independent test data for heterogeneous covariance models, by

noting the fact that a second maximal data piling direction can be obtained

by projecting wMDP onto the nullspace of the common leading eigenspace.

The rest of this paper is organized as follows. In Chapter 2, we specifically

define the generalized heterogeneous spiked covariance models. In Chapter 3,

we characterize the second data piling phenomenon under the heterogeneous

covariance models. In Chapter 4, we propose Second Maximal Data Piling

(SMDP) algorithms to estimate a second maximal data piling direction. In

Chapter 5, we numerically confirm classification performances of SMDP algo-

rithms. In Chapter 6, we conclude the paper with a discussion. The proofs of

main lemmas and theorems are contained in Appendices A and B.
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Chapter 2

Heterogeneous Covariance Models

We assume that for k = 1, 2, X|π(X) = k follows an absolutely continu-

ous distribution on Rp with mean µ(k) and covariance matrix Σ(k). Also, we

assume P(π(X) = k) = πk, where πk > 0 and π1 + π2 = 1. Write the eigen-

decomposition ofΣ(k) byΣ(k) = U(k)Λ(k)U
⊤
(k), whereΛ(k) = Diag(λ(k),1, . . . , λ(k),p)

in which the eigenvalues are arranged in descending order, andU(k) = [u(k),1, . . . ,u(k),p]

for k = 1, 2.

Let the p×n data matrix X = [X1,X2] where Xk = [Xk1, . . . , Xknk
], n :=

n1+n2 and π(Xkj) = k for any k, j. We assume n1 and n2 are fixed and denote

ηk = nk/n for k = 1, 2. We assume n1 and n2 are fixed and denote ηk = nk/n

for k = 1, 2. We write class-wise sample mean vectors X̄k = nk
−1
∑nk

j=1Xkj ,

and total sample mean vector X̄ = η1X̄1+η2X̄2. Also, we write the within-class

scatter matrix SW = (X− X̄)(X− X̄)⊤ where X̄ = [X̄1 X̄2] and X̄k = X̄k1
⊤
nk

for k = 1, 2. We write an eigen-decomposition of SW by SW = ÛΛ̂Û⊤, where

Λ̂ = Diag(λ̂1, . . . , λ̂p) in which the eigenvalues are arranged in descending or-

der, and Û = [û1, . . . , ûp]. Since λ̂1 ≥ . . . ≥ λ̂n−2 ≥ λ̂n−1 = . . . = λ̂p = 0
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with probability 1, we can write SW = Û1Λ̂1Û
⊤
1 where Û1 = [û1, . . . , ûn−2]

and Λ̂1 = Diag(λ̂1, . . . , λ̂n−2). Also, we write Û2 = [ûn−1, . . . , ûp]. We de-

note the sample space as SX , which is the (n − 1)-dimensional subspace

spanned by Xkj − X̄ for k = 1, 2 and 1 ≤ j ≤ nk. Note that the sample

space SX can be equivalently expressed as span(û1, . . . , ûn−2, wMDP) [Ahn

and Marron, 2010, Chang et al., 2021]. We denote the sample mean differ-

ence vector as d = X̄1 − X̄2. Note that the sphered data matrix of Xk is

Z(k) = Λ
− 1

2

(k)U
⊤
(k)(Xk − µ(k)1

⊤
nk
) = [z(k),1, . . . , z(k),p]

⊤ ∈ Rp×nk for k = 1, 2.

Then the elements of Z(k) are uncorrelated with each other, and have mean

zero and unit variance. We make the following assumptions for generalized

heterogeneous spiked covariance models.

Assumption 1 For the population mean difference vector µ = µ(1) − µ(2),

there exists δ > 0 such that p−1/2 ∥µ∥2 → δ as p→ ∞.

Assumption 2 For a fixed integer mk ≥ 1, σ2(k),i, τ
2
(k),i > 0 (k = 1, 2), as-

sume that λ(k),i = σ2(k),ip + τ2(k),i for 1 ≤ i ≤ mk and λ(k),i = τ2(k),i for

mk + 1 ≤ i ≤ p. Also,
{
τ2(k),i : k = 1, 2, i = 1, 2, . . .

}
is uniformly bounded

and p−1
∑p

i=1 τ
2
(k),i → τ2k as p→ ∞ for some τ2k > 0.

Assumption 1 ensures that nearly all variables are meaningfully contribut-

ing to discrimination [Hall et al., 2005, Qiao et al., 2010, Jung, 2018]. Assump-

tion 2 allows heterogeneous covariance matrices for different classes, including

the homogeneous case, that is, Σ(1) = Σ(2). We assume for k = 1, 2, Σ(k)

has mk strong spikes, that is, mk eigenvalues increase at the order of p as

p→ ∞ while the other eigenvalues are nearly constant as τ2k . We call the first

mk eigenvalues and their corresponding eigenvectors leading eigenvalues and

eigenvectors of the kth class for k = 1, 2.
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Also, we regulate the dependency of the principal components by intro-

ducing the concept of ρ-mixing condition [Kolmogorov and Rozanov, 1960,

Bradley, 2005]. For any σ-field E , denote the class of square-integrable and

E-measurable random variables as L2(E). Suppose {Zi : −∞ ≤ i ≤ ∞} is a se-

quence of random variables. For −∞ ≤ J ≤ L ≤ ∞, denote FL
J as the σ-field

of events generated by the random variables {Zi : J ≤ i ≤ K}. Then, for the

ρ-mixing coefficient

ρ(k) := sup
j∈Z

ρ(F j
−∞,F∞

j+k)

= sup
j∈Z

sup
{
|Corr(f, g)| : f ∈ L2(F j

−∞), g ∈ L2(F∞
j+k)

}
,

the sequence {Zi : −∞ ≤ i ≤ ∞} is said to be ρ-mixing if ρ(k) → 0 as k → ∞.

We now give a following assumption on the true principal component scores

zkj = Λ
−1/2
(k) U⊤

(k)(Xkj −µ(k)) ∈ Rp for k = 1, 2 and 1 ≤ j ≤ nk. This allows us

to make use of the law of large numbers applied to p→ ∞ introduced in Hall

et al. [2005] and Jung and Marron [2009].

Assumption 3 The elements of the p-vector zkj have uniformly bounded fourth

moments, and for each p, zkj consists of the first p elements of an infinite ran-

dom sequence

(z(k),1, z(k),2, ...)j ,

which is ρ-mixing under some permutation.

We define Angle(w1, w2) := arccos{w⊤
1 w2/ (∥w1∥2∥w2∥2)} for w1, w2 ∈ Rp\

{0p}. For w ∈ Rp\{0p} and a subspace V of Rp, let PVw be the orthogonal pro-

jection of w onto V and define Angle(w,V) := arccos{w⊤PVw/ (∥w∥2∥PVw∥2)}.

Also, for subspaces H = span(h1, . . . , hk) and V of Rp, we define the projection

of H onto V as PVH = span(PVh1, . . . , PVhk). Assumption 4 specifies limiting

angles between leading eigenvectors of each class and the population mean
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difference vector µ. Without loss of generality, we assume u⊤
(k),iµ ≥ 0 for all

k = 1, 2 and 1 ≤ i ≤ mk.

Assumption 4 For θ(k),i ∈ [0, π/2], Angle(u(k),i,µ) → θ(k),i as p → ∞ for

1 ≤ i ≤ mk and k = 1, 2.

We write a p × mk orthonormal matrix of leading eigenvectors of each

class as U(k),1 = [u(k),1, . . . ,u(k),mk
] for k = 1, 2. We call U(k) = span(U(k),1)

the leading eigenspace of the kth class. Furthermore, let U be the subspace

spanned by leading eigenvectors whose corresponding eigenvalues increase at

the order of p, that is, U = span(U(1)) ∪ span(U(2)). We call U the common

leading eigenspace of both classes. We assume that the dimension of U ,

m = dim (U),

is a fixed constant for all p. Note that max (m1,m2) ≤ m ≤ m1 +m2. Write

an orthogonal basis of U as U1 = [u1, . . . ,um], satisfying u⊤
i µ ≥ 0 for all

1 ≤ i ≤ m. Then there exist orthogonal matrices R
(p)
(k) ∈ Rm×mk satisfying

U(k),1 = U1R
(p)
(k) for k = 1, 2. Note that the matrix R

(p)
(k) catches the angles

between the mk leading eigenvectors in U(k),1 and the m basis in U1. We

assume the following.

Assumption 5 For θi ∈ [0, π/2], Angle(ui,µ) → θi as p→ ∞ for 1 ≤ i ≤ m

and for an orthogonal matrix R(k) ∈ Rm×mk , R
(p)
(k) → R(k) as p → ∞ for

k = 1, 2. Moreover, R = [R(1) R(2)] is of rank m.

Finally, let φ denote the limiting angle between µ and U . Then we have

cos2 φ =
∑m

i=1 cos
2 θi.
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Chapter 3

Data Piling of Independent Test
Data

In this chapter, we show that independent test data, projected onto a low-

dimensional signal subspace S of the sample space SX , tend to be respectively

distributed along two affine subspaces as p → ∞. Chang et al. [2021] showed

that there are two affine subspaces, each with dimension m = m1 = m2, such

that they are parallel to each other if each class has common covariance matrix,

that is, Σ(1) = Σ(2). We show that if Σ(1) ̸= Σ(2), these affine subspaces may

not be parallel to each other, but there exist parallel affine subspaces, of greater

dimension, containing each of these affine subspaces.

To illustrate this phenomenon, we first consider a simple one-component

covariance model for each covariance matrix, that is, m1 = 1 and m2 = 1 in

Assumption 2. In Chapter 3.1, this phenomenon is demonstrated under the

one-component covariance model with various conditions on covariance ma-

trices. In Chapter 3.2, we characterize the signal subspace S, which captures

important variability of independent test data, for each scenario of two covari-
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ance matrices. Then we provide the main theorem (Theorem 5) that generalizes

propositions in Chapter 3.1 to the cases where m1 ≥ 1 and m2 ≥ 1.

Let Yk be an independent test data of the kth class whose element Y ∈ Yk
satisfies π(Y ) = k for k = 1, 2 and is independent to training data X . Write

Y = Y1 ∪ Y2.

3.1 One-component Covariance Model

We investigate the data piling phenomenon of independent test data under

the one-component covariance model as follows:

Σ(1) = σ2(1),1pu(1),1u
⊤
(1),1 + τ21 Ip;

Σ(2) = σ2(2),1pu(2),1u
⊤
(2),1 + τ22 Ip.

(3.1)

We consider various settings where both covariance matrices have either equal

tail eigenvalues or unequal tail eigenvalues, and have either a common leading

eigenvector or uncommon leading eigenvectors. We provide an overview of our

settings in the following.

u(1),1 = u(2),1 u(1),1 ̸= u(2),1

τ21 = τ22 Example 1 Example 2

τ21 ̸= τ22 Example 3 Example 4

First, we assume that two covariance matrices have equal tail eigenvalues,

that is, τ21 = τ22 . For the sake of simplicity, denote τ2 := τ21 = τ22 .

Example 1 We first consider the case where both classes have the common

leading eigenvector, that is, u(1),1 = u(2),1 = u1. Note that if σ2(1),1 = σ2(2),1,

then this model is equivalent to the homogeneous covariance model Σ(1) = Σ(2),

studied in Chang et al. [2021].

It turns out that the angle between û1 and u1 converges to a random quan-

tity between 0 and π/2, while û2, . . . , ûn−2 are strongly inconsistent with u1 in

11



Figure 3.1 2-dimensional projections onto S1 = span(û1, wMDP) and S2 =

span(û2, wMDP) and 3-dimensional projections onto S = span({ûi}i∈D , wMDP)

with D = {1, 2} of training data X (class 1: blue circles, class 2: red circles)

and independent test data Y (class 1: blue crosses, class 2: red crosses) under

the model in Example 2.

the sense that Angle(ûi,u1)
P−→ π/2 as p→ ∞ for 2 ≤ i ≤ n−2. For this case,

let D = {1}. We can check that even if σ2(1),1 ̸= σ2(2),1, projections of indepen-

dent test data Y onto S = span({ûi}i∈D , wMDP) = span(û1, wMDP) tend to

be distributed along two parallel lines, while those of training data X are piled

on two distinct points along wMDP. This result is consistent with the findings

of Chang et al. [2021] where Σ(1) = Σ(2); see Figure 1.1. Also, the direction

of these lines are asymptotically parallel to PSu1, which is the projection of

common leading eigenvector u1 onto S; see Proposition 1.

Example 2 Two classes do not have a common leading eigenvector, that is,

u(1),1 ̸= u(2),1, such that the angle between u(1),1 and u(2),1 is π/4. Under this

model, the common leading eigenspace has the dimension m = 2 (In contrast,

m = 1 in the model of Example 1).

In this case, the angle between ûi and U = span(u(1),1,u(2),1) converges
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to a random quantity between 0 and π/2 for i = 1, 2, while the other sam-

ple eigenvectors are strongly inconsistent with U . Let D = {1, 2}. In Fig-

ure 3.1, independent test data Y projected onto S1 = span(û1, wMDP) and

S2 = span(û2, wMDP) are also concentrated along lines, but in both subspaces

these lines are not parallel to each other. However, within the 3-dimensional

subspace S = span({ûi}i∈D , wMDP) = span(û1, û2, wMDP), there are two par-

allel 2-dimensional planes including these lines, one for each line. In fact, Y1 is

distributed along the direction PSu(1),1, while Y2 is distributed along the direc-

tion PSu(2),1. Thus, these lines are asymptotically contained in 2-dimensional

affine subspaces, that are parallel to PSU = span(PSu(1),1, PSu(2),1).

We formally state the above results. Write the scaled training data piling

distance as

κMDP = p−1/2∥w⊤
MDP(X̄1 − X̄2)∥. (3.2)

For Y ∈ Y and a subspace S of Rp, let YS = p−1/2PSY , which is a scaled pro-

jection of Y onto S. Similarly, write X̄S = p−1/2PSX̄. Recall that u1, . . . ,um

are orthogonal basis of the common leading eigenspace U = span(u1, . . . ,um).

Let projections of ui onto S as ui,S = PSui and write U1,S = [u1,S , . . . ,um,S ].

The following proposition states that for m = 1, 2, projections of Y onto the

(m + 1)-dimensional subspace S = span(û1, . . . , ûm, wMDP) are distributed

along twom-dimensional affine subspaces, which become parallel to each other,

and also to PSU = span(u1,S , . . . ,um,S), as p increases.

Proposition 1 Suppose Assumptions 1—5 hold and assume τ21 = τ22 and

m1 = m2 = 1. Also,

(i) ifm = 1, let S = span(û1, wMDP) and Lk =
{
u1,St+ νkwMDP + X̄S : t ∈ R

}
,

(ii) ifm = 2, let S = span(û1, û2, wMDP) and Lk =
{
U1,St+ νkwMDP + X̄S : t ∈ R2

}

13



for k = 1, 2 where ν1 = κ−1
MDP

(
η2(1− cos2 φ)δ2

)
and ν2 = κ−1

MDP

(
−η1(1− cos2 φ)δ2

)
.

Then for any independent observation Y ∈ Y and for any ϵ > 0,

lim
p→∞

P
(

inf
a∈Lk

∥YS − a∥ > ϵ|π(Y ) = k

)
= 0

for k = 1, 2.

Note that if m = 1, then Yk is concentrated along the line Lk in S =

span(û1, wMDP), for k = 1, 2. If m = 2, then Yk is concentrated along a line

L′
k, which is parallel to PSu(k),1 in S = span(û1, û2, wMDP), for k = 1, 2. Then

each of the 2-dimensional subspaces L1 and L2 contains L
′
1 and L

′
2 respectively,

and these subspaces are parallel to each other.

We now assume that two covariance matrices have unequal tail eigenvalues,

that is, τ21 ̸= τ22 . Without loss of generality, we assume τ21 > τ22 . In this case,

asymptotic properties of sample eigenvectors of SW are quite different from

the case of τ21 = τ22 . See Remark 1.

Remark 1 Let Y = τ1Y1U + τ2Y2(1− U) = (y1, . . . , yp)
⊤ ∈ Rp, where Y1, Y2

are two independent Np(0p, Ip) random vectors, U = 0 with probability π2, U =

1 with probability π1 and U is independent of Y1, Y2. Note that the population

covariance matrix Σ(0) := Cov(Y ) = (π1τ
2
1 + π2τ

2
2 )Ip. Then, the ρ-mixing

condition for Z = (z1, . . . , zp)
⊤ = Σ

−1/2
(0) Y may or may not hold depending on

whether τ21 = τ22 or not. Specifically, Z satisfies

Cov(z2i , z
2
j ) =

1

(π1τ21 + π2τ22 )
2
Cov(y2i , y

2
j ) =

π1π2(τ
2
1 − τ22 )

2

(π1τ21 + π2τ22 )
2
.

Then in case of τ21 = τ22 , the sequence {z1, z2, . . .} is ρ-mixing since for all

i ̸= j, Cov(z2i , z
2
j ) = 0. However, in case of τ21 ̸= τ22 , the ρ-mixing condition

does not hold for any permuted sequence of {z1, z2, . . .} since Cov(z2i , z
2
j ) > 0

for all i ̸= j.
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This fact is relevant to different asymptotic behaviors of eigenvectors of SW

depending on whether τ21 = τ22 or not. Assume that for k = 1, 2, Xk1, . . . , Xknk

are independent Np(0p, τ
2
k Ip) random vectors. For the case where τ21 = τ22 =:

τ2, Hall et al. [2005] showed that data from both classes are asymptotically

located at the vertices of an n-simplex of edge length
√
2τ

√
p and data points

tend to be orthogonal to one another, when p is extremely large. Hence, the

sample eigenvectors û1, . . . , ûn−2 tend to be an arbitrary choice, since all data

points are indistinguishable whether they come from the first class or the second

class.

On the other hand, for the case where τ21 > τ22 , they showed that data from

the first class tend to lie deterministically at the vertices of an n1-simplex

of edge length
√
2τ1

√
p, while data from the second class tend to lie deter-

ministically at the vertices of an n2-simplex of edge length
√
2τ2

√
p and all

pairwise angles are asymptotically orthogonal. Hence, data from the first class

can asymptotically be explained only by the first (n1 − 1) sample eigenvectors

in S1 = {û1 . . . , ûn1−1}, while data from the second class can be explained

only by the rest of sample eigenvectors in S2 = {ûn1 , . . . , ûn−2}. Also, these

eigenvectors can be arbitrarily chosen in each set.

We will see that how assuming unequal tail eigenvalues affects data piling

of independent test data.

Example 3 We consider both classes have a common leading eigenvector,

that is, u(1),1 = u(2),1 = u1, but this time we assume τ21 > τ22 instead of

τ21 = τ22 in Example 1.

In this case, both of û1 and ûn1 are not strongly inconsistent with u1,

while û2, . . . , ûn1−1 and ûn1+1, . . . , ûn−2 are strongly inconsistent with u1. Let

D = {1, n1}. In Figure 3.2, independent test data Y projected onto Sn1 =

15



Figure 3.2 2-dimensional projections onto S1 = span(û1, wMDP) and

Sn1 = span(ûn1 , wMDP) and 3-dimensional projections onto S =

span({ûi}i∈D , wMDP) with D = {1, n1} of training data X (class 1: blue cir-

cles, class 2: red circles) and independent test data Y (class 1: blue crosses,

class 2: red crosses) under the model in Example 3.

span(ûn1 , wMDP) as well as those onto S1 = span(û1, wMDP) are also concen-

trated along parallel lines, one for each class. Thus, within the 3-dimensional

subspace S = span({ûi}i∈D , wMDP) = span(û1, ûn1 , wMDP), the lines are par-

allel to each other. Also, they are asymptotically parallel to PSu1, which is the

projection of the common leading eigenvector u1 onto S. It implies that the

variation of data along u1 is captured not only by û1 but also by ûn1.

To understand this phenomenon, we focus on the geometric representation

of HDLSS data. Jung et al. [2012] showed that in one class case, HDLSS data

from strongly spiked covariance model can asymptotically be decomposed into

random and deterministic parts; the random variation remains in span(u1),

while the deterministic structure (that is, the simplex described in Remark 1)

remains in the orthogonal complement of span(u1). For sufficiently large p,

û1 explains the most important variation along u1 in the data from both

16



classes, while û2, . . . , ûn1−1 account for the deterministic simplex with edge

length
√
2τ1

√
p for data only from the first class. Then ûn1 explains remain-

ing variation along u1 in the data from both classes, which is smaller than

the variance τ21 of the first class but larger than the variance τ22 of the second

class. Lastly, ûn1+1, . . . , ûn−2 account for the deterministic simplex with edge

length
√
2τ2

√
p for data only from the second class. We emphasize that this

result can be obtained with probability 1. Note that if τ21 = τ22 , then only û1

explains variation along u1 in the data, while the other sample eigenvectors

explain the deterministic simplex for data from both classes.

Example 4 Two classes do not have a common leading eigenvector, that is,

u(1),1 ̸= u(2),1 such that leading eigenvectors of each class form an angle of

π/4, but this time we assume τ21 > τ22 instead of τ21 = τ22 in Example 2.

As in the previous examples, û1 estimates the largest variation within the

common leading eigenspace U from the data. However, in this example, the

remaining variation may be either larger or smaller than τ21 in contrast to the

other examples. If the remaining variation within U is smaller than τ21 , then

this variation is captured by ûn1, while û2 explains the deterministic simplex

of data from the first class. Otherwise, û2 captures the remaining variation,

while ûn1 explains the deterministic simplex of data from the first class. The

other remaining sample eigenvectors are strongly inconsistent with U .

In Figure 3.3, independent test data Y projected onto S1 = span(û1, wMDP)

and Sn1 = span(ûn1 , wMDP) are concentrated along lines, but in both sub-

spaces these lines are not parallel to each other. Also, independent test data

Y projected onto S2 = span(û2, wMDP) are concentrated along lines, which

is parallel to wMDP, but these lines can completely overlap. However, within

the 3-dimensional subspace S1,n1 = span(û1, ûn1 , wMDP), there are two par-

allel 2-dimensional planes respectively including those lines. Similar to Ex-
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ample 2, Y1 is distributed along the direction PS1,n1
u(1),1, while Y2 is dis-

tributed along the direction PS1,n1
u(2),1. Thus, these lines are asymptotically

contained in 2-dimensional affine subspaces, that are parallel to PS1,n1
U =

span(PS1,n1
u(1),1, PS1,n1

u(2),1).

Note that û2 instead of ûn1 can capture the remaining variability within

U depending on the true leading principal components scores of training data

X . Then 2-dimensional parallel affine subspaces can be observed in S1,2 =

span(û1, û2, wMDP) instead of S1,n1 = span(û1, ûn1 , wMDP). However, we can

always observe 2-dimensional parallel affine subspaces in S = span({ûi}i∈D , wMDP)

where D = {1, 2, n1}.

The following proposition states that even if τ21 > τ22 , projections of Y

onto S, which is a low-dimensional subspace of SX , are distributed along two

parallel affine subspaces as p increases. However, in this case, S is not the

subspace spanned by the first m eigenvectors of SW and wMDP.

Proposition 2 Suppose Assumptions 1—5 hold. Also, assume τ21 > τ22 and

m1 = m2 = 1.

(i) Ifm = 1, let S = span(û1, ûn1 , wMDP) and Lk =
{
u1,St+ νkwMDP + X̄S : t ∈ R

}
(ii) Ifm = 2, let S = span(û1, û2, ûn1 , wMDP) and Lk =

{
U1,St+ νkwMDP + X̄S : t ∈ R2

}
for k = 1, 2 where ν1 = κ−1

MDP(η2(1 − cos2 φ)δ2 − (τ21 − τ22 )/n) and ν2 =

κ−1
MDP(−η1(1−cos2 φ)δ2−(τ21 −τ22 )/n). Then, for any independent observation

Y ∈ Y and for any ϵ > 0,

lim
p→∞

P
(

inf
a∈Lk

∥YS − a∥ > ϵ|π(Y ) = k

)
= 0

for k = 1, 2.
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Figure 3.3 2-dimensional projections onto S1 = span(û1, wMDP), S2 =

span(û2, wMDP) and Sn1 = span(ûn1 , wMDP) and 3-dimensional projections

onto S1,n1 = span(û1, ûn1 , wMDP) of training data X (class 1: blue circles,

class 2: red circles) and independent test data Y (class 1: blue crosses, class 2:

red crosses) under the model in Example 4.

19



3.2 Main Theorem

In this chapter, we extend Propositions 1 and 2 to the general cases where

m1 ≥ 1 and m2 ≥ 1. We first characterize the signal subspace S for general

cases where m1 ≥ 1 and m2 ≥ 1. For this, we investigate the asymptotic

behavior of sample eigenvalues and eigenvectors of SW . For each k = 1, 2,

denote the nk ×mk matrix of the leading mk principal component scores of

the kth class as W(k) = [σ(k),1z(k),1, . . . , σ(k),mk
z(k),mk

]. Also, denote the scaled

covariance matrix of the leadingmk principal component scores of the kth class

as

Φk = W⊤
(k)(Ink

− 1

nk
Jnk

)W(k) (3.3)

where Jnk
is the matrix of size nk × nk whose all entries are 1. Note that

Φ1, Φ2 are symmetric positive definite matrices with probability 1. Let W =

[R(1)W
⊤
(1) R(2)W

⊤
(2)]

⊤ and

Φ = W⊤(In − J)W (3.4)

where J =

 1
n1
Jn1 On1×n2

On2×n1
1
n2
Jn2

. Finally, let

Φτ1,τ2 =

 Φ1 + τ21 Im1 Φ
1/2
1 R⊤

(1)R(2)Φ
1/2
2

Φ
1/2
2 R⊤

(2)R(1)Φ
1/2
1 Φ2 + τ22 Im2

 . (3.5)

Note thatΦ andΦτ1,τ2 are also symmetric positive definite matrices with prob-

ability 1. For any square matrixM ∈ Rl×l (l ∈ N), let ϕi(M) and vi(M) denote

the ith largest eigenvalue of M and its corresponding eigenvector, respectively.

The following lemma shows asymptotic behavior of sample eigenvalues of SW .

Throughout, we assume τ21 ≥ τ22 .

Lemma 3 Suppose Assumptions 1—5 hold. Then, the following hold as p→

∞.
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(i) If τ21 = τ22 =: τ2, then conditional to W(1) and W(2),

p−1λ̂i
P−→


ϕi(Φ) + τ2, 1 ≤ i ≤ m,

τ2, m+ 1 ≤ i ≤ n− 2.

(ii) If τ21 > τ22 , then conditional to W(1) and W(2),

p−1λ̂i
P−→



ϕi(Φτ1,τ2), 1 ≤ i ≤ k0,

τ21 , k0 + 1 ≤ i ≤ k0 + (n1 −m1 − 1),

ϕi−(n1−m1−1)(Φτ1,τ2), k0 + (n1 −m1) ≤ i ≤ n1 +m2 − 1,

τ22 , n1 +m2 ≤ i ≤ n− 2,

where k0 (m1 ≤ k0 ≤ m1+m2) is an integer which satisfies ϕk0(Φτ1,τ2) ≥

τ21 ≥ ϕk0+1(Φτ1,τ2) if we denote ϕm1+m2+1(Φτ1,τ2) = 0.

Remark 2 (i) If τ21 = τ22 =: τ2, then

ϕi(Φτ1,τ2) =


ϕi(Φ) + τ2, 1 ≤ i ≤ m,

τ2, m+ 1 ≤ i ≤ m1 +m2.

.

Thus, Lemma 3 (i) can be seen as a special case of Lemma 3 (ii).

(ii) If τ21 > τ22 and m = m1, then k0 in Lemma 3 (ii) is m1 with probability

1 by Weyl’s inequality.

Lemma 3 shows that the asymptotic behavior of sample eigenvalues of SW

is quite different depending on whether both covariance matrices have equal

tail eigenvalues or unequal tail eigenvalues. If τ21 = τ22 , then the first m sample

eigenvalues explain true leading principal component scores of both classes,

while the other sample eigenvalues do not. In contrast, if τ21 ̸= τ22 , we observe

a counter-intuitive phenomenon that some non-leading sample eigenvalues can
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explain true leading principal component scores instead of some leading sample

eigenvalues.

The following lemma gives the limiting angle between ûi and the common

leading eigenspace U .

Lemma 4 Suppose Assumptions 1—5 hold. Then, the following hold as p→

∞.

(i) If τ21 = τ22 =: τ2, then conditional to W(1) and W(2),

cos (Angle(ûi,U))
P−→


Ci, 1 ≤ i ≤ m,

0, m+ 1 ≤ i ≤ n− 2

where

Ci =

√
ϕi(Φ)

ϕi(Φ) + τ2
> 0. (3.6)

(ii) If τ21 > τ22 and m > m1, then conditional to W(1) and W(2),

cos (Angle(ûi,U))

P−→



Di, 1 ≤ i ≤ k0,

0, k0 + 1 ≤ i ≤ k0 + (n1 −m1 − 1),

Di−(n1−m1−1), k0 + (n1 −m1) ≤ i ≤ n1 +m2 − 1,

0, n1 +m2 ≤ i ≤ n− 2

where k0 is defined in Lemma 3 (ii) and

Di =

√√√√∥
∑2

k=1R(k)Φ
1/2
k ṽik(Φτ1,τ2)∥2

ϕi(Φτ1,τ2)
> 0. (3.7)

Here, vi(Φτ1,τ2) = (ṽi1(Φτ1,τ2)
⊤, ṽi2(Φτ1,τ2)

⊤)⊤ with ṽi1(Φτ1,τ2) ∈ Rm1

and ṽi2(Φτ1,τ2) ∈ Rm2.
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We define an index set D ⊂ {1, . . . , n− 2} for general cases where m1 ≥

1 and m2 ≥ 1. Let i ∈ D if and only if there exists ϵ > 0 such that

lim
p→∞

P(cos (Angle(ûi,U)) > ϵ) > 0. In contrast, i /∈ D if and only if ûi is

strongly inconsistent with the common leading eigenspace U in the sense that

Angle(ûi,U)
P−→ π/2 as p→ ∞. In other words, ûi with i /∈ D is a noisy direc-

tion which does not capture important variability within the common leading

eigenspace U , while ûi with i ∈ D may explain important variability.

Note that if we further assume m = m1 (that is, U = U(1)) in Lemma 4

(ii), then û1, . . . , ûm explain the most important variation within U , while

ûn1 , . . . , ûn1+m2−1 explain the remaining variation within U . The other sample

eigenvectors do not explain the variability. Hence, (m1+m2) sample eigenvec-

tors are needed to explain the variation within U (See Example 3).

If m > m1, then for given training data X , (m1+m2) sample eigenvectors,

which are û1, . . . , ûk0 and ûk0+(n1−m1), . . . , ûn1+m2−1, explain the variation

within U . However, k0 (m1 ≤ k0 ≤ m1 +m2) is a random number depending

on true leading principal component scores W(1) and W(2). This fact implies

that, in general, if P(k0 = i) > 0 for all m1 ≤ k0 ≤ m1 +m2, then (m1 +2m2)

sample eigenvectors, which are û1, . . . , ûm1+m2 and ûn1 , . . . , ûn1+m2−1, are all

needed to explain the variation within U (See Example 4).

From Lemma 4, we can characterize D for general cases where m1 ≥ 1 and

m2 ≥ 1. We summarize D in Table 3.1 for each case. In general, we define the

signal subspace S as

S = span({ûi}i∈D , wMDP), (3.8)

which is obtained by removing the noisy directions in the sample space SX .

We now confirm that projections of Y onto S in (3.8), which is a low-

dimensional subspace of the sample space SX , are distributed along parallel
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Condition D |D|

τ21 = τ22 {1, . . . ,m} m

τ21 > τ22 {1, . . . ,m1, n1, . . . , n1 +m2 − 1} m1 +m2
m = m1

τ21 > τ22 {1, . . . ,m1 +m2, n1, . . . , n1 +m2 − 1} m1 + 2m2
m > m1

Table 3.1 The index set D for each case.

affine subspaces, one for each class, and that those affine subspaces do not

coincide. Recall that κMDP is the training data piling distance defined in (3.2).

Theorem 5 Suppose Assumptions 1—5 hold. Let S = span({ûi}i∈D , wMDP)

with D be given in Table 3.1 for each case. Also, let

Lk =
{
U1,St+ νkwMDP + X̄S : t ∈ Rm

}
for k = 1, 2 where

ν1 = κ−1
MDP

(
η2(1− cos2 φ)δ2 − (τ21 − τ22 )/n

)
and

ν2 = κ−1
MDP

(
−η1(1− cos2 φ)δ2 − (τ21 − τ22 )/n

)
Then for any independent observation Y ∈ Y and for any ϵ > 0,

lim
p→∞

P
(

inf
a∈Lk

∥YS − a∥ > ϵ|π(Y ) = k

)
= 0

for k = 1, 2.

Remark 3 Write the projections of u(k),i (k = 1, 2) onto a subspace S of Rp

as u(k),i,S = PSu(k),i and U(k),1,S = [u(k),1,S , . . . ,u(k),mk,S ] for k = 1, 2. Then
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projections of Y1 are distributed along an m1-dimensional affine subspace L′
1,

which is parallel to span(U(1),1,S), while projections of Y2 are distributed along

an m2-dimensional affine subspace L′
2, which is parallel to span(U(2),1,S). For

each k = 1, 2, the m-dimensional affine subspace Lk contains L′
k.

Theorem 5 tells that independent test data are asymptotically distributed

along parallel m-dimensional affine subspaces L1 and L2 in S. It implies that

if we find a direction w ∈ S such that w is asymptotically orthogonal to L1

and L2, then PwY yields the second data piling and in turn achieves perfect

classification of independent test data. Since dimS − m ≥ 1, there always

exists a direction w ∈ S which yields second data piling. Among second data

piling directions, we will find a second maximal data piling direction, which

provides asymptotic maximal distance between the two piles of independent

test data among second data piling directions.
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Chapter 4

Estimation of Second Maximal
Data Piling Direction

In this chapter, we propose novel algorithms to estimate a second maximal

data piling direction. Let V = [û1, . . . , ûn−2, wMDP], which collects an or-

thonormal basis of the sample space SX . Also, in this chapter, we assume that

an independent test dataset Y is available to us (It is possible by splitting

the original training dataset X into the new training dataset X and the test

dataset Y). Denote the horizontally concatenated data matrix of the given

independent test dataset Y by

Y = [Y11, . . . , Y1n∗
1
, Y21, . . . , Y2n∗

2
].

The p×n∗ data matrixY consists of the n∗ := n∗1+n
∗
2 observations independent

to X and arranged so that π(Ykj) = k for any k, j. We assume that n∗k is

fixed and n∗k > mk for k = 1, 2. Write class-wise sample mean vectors Ȳk =

n∗−1
k

∑n∗
k
j=1 Ykj . We define the within-scatter matrix of Y as

S∗
W = (Y − Ȳ)(Y − Ȳ)⊤,
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where Ȳ = [Ȳ1 Ȳ2] and Ȳk = Ȳk1
⊤
n∗
k
for k = 1, 2.

We will find a sequence of directions {w} ∈ WX which yields second data

piling for given independent test dataset Y. The condition that p−1/2w⊤(Y −

Y ′)
P−→ 0 as p → ∞ for any Y, Y ′ ∈ Y with π(Y ) = π(Y ′) is equivalent to the

condition that

1

p
w⊤S∗

Ww
P−→ 0

as p → ∞. Thus, we define the collection of sequences of second data piling

directions for Y as

Ā =

{
{w} ∈ WX :

1

p
w⊤S∗

Ww
P−→ 0 as p→ ∞

}
.

For any {w} ∈ WX , we can write w = Va for some a = (a1, . . . , an−2, aMDP)
⊤ ∈

Rn−1. Without loss of generality, we assume aMDP ≥ 0 for all p. For {w} ∈ Ā,

we can write

1

p
w⊤S∗

Ww =
1

p
a⊤V⊤S∗

WVa = a⊤
(
1

p
V⊤S∗

WV

)
a. (4.1)

Note that the (n− 1)× (n− 1) matrix p−1V⊤S∗
WV can be understood as the

scatter of the independent test data Y projected onto the sample space SX .

Theorem 6 shows that independent test data Y are asymptotically supported

on a m-dimensional subspace in SX .

Theorem 6 p−1V⊤S∗
WV converges to a rank m matrix in probability as p→

∞.

We write an eigen-decomposition of p−1V⊤S∗
WV = Q̂HQ̂⊤, where H =

Diag(h1, . . . , hn−1) arranged in descending order, and Q̂ = [Q̂1 Q̂2] with Q̂1 =

[q̂1, . . . , q̂m] and Q̂2 = [q̂m+1, . . . , q̂n−1]. Meanwhile, a can be written as a =

Q̂ι =
∑n−1

i=1 ιiq̂i for some sequence of ι = (ι1, . . . , ιn−1)
⊤. Since

1

p
w⊤S∗

Ww = a⊤
(
1

p
V⊤S∗

WV

)
a =

n−1∑
i=1

hiι
2
i =

m∑
i=1

hiι
2
i + op(1)
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by Theorem 6 and (4.1), {w} ∈ Ā if and only if ι1, . . . , ιm
P−→ 0 as p → ∞.

In other words, for any given {w} ∈ Ā, there exists a sequence of directions

{v} such that v ∈ span(VQ̂2) for all p and ∥w− v∥ P−→ 0 as p→ ∞. This fact

plays a crucial role in our next observation: {w} ∈ Ā is indeed asymptotically

orthogonal to the common leading eigenspace U .

Theorem 7 Suppose Assumptions 1—5 hold. For any given {w} ∈ Ā, w⊤uj
P−→

0 for 1 ≤ j ≤ m.

Furthermore, {w} ∈ Ā can also achieve perfect classification of any inde-

pendent observation Y , which is independent to both of X and Y. Theorem 8

confirms that we can achieve perfect classification if we choose a so that for

w = Va, {w} ∈ Ā and limp→∞ aMDP > 0.

Theorem 8 Suppose Assumptions 1—5 hold. For any given {w} ∈ Ā, write

w = Va =

n−2∑
k=1

akûk + aMDPwMDP

with a = (a1, . . . , an−2, aMDP)
⊤ and assume aMDP

P−→ ψMDP as p → ∞. Then

for any independent observation Y , which is independent to both of X and Y,

1
√
p
w⊤(Y − X̄)

P−→


ψMDP
κ (η2(1− cos2 φ)δ2 − (τ21 − τ22 )/n), π(Y ) = 1,

ψMDP
κ (−η1(1− cos2 φ)δ2 − (τ21 − τ22 )/n), π(Y ) = 2,

as p→ ∞, where κ is the probability limit of κMDP defined in (3.2).

Theorem 8 also shows that an asymptotic distance between the two piles

of independent test data, which are independent to both of X and Y, can be

maximized if {w} ∈ Ā with w = Va has a maximal limit of aMDP. Theorem 9

confirms that a projection of wMDP onto span(VQ̂2) is an estimate of a second

maximal data piling direction. Recall that VQ̂2 is obtainable by using X and
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Y, and the dimension of span(VQ̂2) is n − m − 1. It implies that a second

maximal data piling direction can be obtained by projecting wMDP onto the

nullspace of the common leading eigenspace U .

Theorem 9 Suppose Assumptions 1—5 hold. Write eMDP = (0⊤n−2, 1)⊤ so

that wMDP = VeMDP. Also, let {wSMDP} be a sequence of directions such that

wSMDP = VaSMDP where

aSMDP =
Pspan(Q̂2)

eMDP

∥Pspan(Q̂2)
eMDP∥

=
Q̂2Q̂

⊤
2 eMDP

∥Q̂2Q̂⊤
2 eMDP∥

∈ Rn−1.

Then {w} ∈ Ā is a sequence of second maximal data piling directions if and

only if ∥w − wSMDP∥
P−→ 0 as p→ ∞.

We have shown that a second maximal data piling direction in the sample

space SX can be obtained with a help of independent test data. As such, we

randomly split Xk, which is the original training dataset of the kth class, into

training dataset Xk,tr and test dataset Xk,te so that the sample size of test data

of kth class nk,te is larger than mk for k = 1, 2. Then we can find a second

maximal data piling direction in the sample space of Xtr = X1,tr ∪ X2,tr with

a help of Xte = X1,te ∪ X2,te.

The fact that the sample size of HDLSS data is very small implies that

classification using one data split may be unreliable (albeit theoretically true).

In order to resolve this concern, we repeat the above procedure several times

and set a final estimate of a second maximal data piling direction as the average

of estimates of a second maximal data piling direction obtained from each

repetition. A detailed algorithm is given in Algorithm 1. In practice, we should

estimate m1, m2 and m, which are the true numbers of leading eigenvalues

of Σ(1), Σ(2) and Σ(0) = π1Σ(1) + π2Σ(2) for Algorithm 1. Estimating those

numbers is feasible by Kritchman and Nadler [2008], Leek [2010], Passemier

and Yao [2014] and Jung et al. [2018].
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Algorithm 1 Second Maximal Data Piling (SMDP) algorithm (Type I)

Require: Original training data matrix of the kth class Xk for k = 1, 2.

Require: The number of repetitions K, estimated m1, m2 and m

1: for j = 1, . . . ,K do

2: Randomly split Xk into

Xk,tr = [Xk,1, . . . , Xk,nk,tr
]

Xk,te = [X∗
k,1, . . . , X

∗
k,nk,te

]

so that nk,te > mk

3: Set ntr = n1,tr + n2,tr, X̄k,tr = n−1
k Xk,tr1nk,tr

and X̄k,tr = X̄k,tr1
⊤
nk,tr

4: Set Str =
∑2

k=1(Xk,tr − X̄k,tr)(Xk,tr − X̄k,tr)
⊤ and dtr = X̄1,tr − X̄2,tr

5: Write an eigen-decomposition of Str by Str = ÛΛ̂Û⊤ = Û1Λ̂1Û
⊤
1 where

Λ̂ = Diag(λ̂1, . . . , λ̂ntr−2, 0, . . . , 0) arranged in descending order, and Û = [Û1 Û2]

with Û1 = [û1, . . . , ûntr−2], Û2 = [ûntr−1, . . . , ûp]

6: Set wMDP = ∥Û2Û
⊤
2 dtr∥−1Û2Û

⊤
2 dtr and κMDP = p−1/2∥Û2Û

⊤
2 dtr∥

7: Set V = [û1, . . . , ûntr−2, wMDP]

8: Set X̄k,te = n−1
k,teXk,te1nk,te

and X̄k,te = X̄k,te1
⊤
nk,te

9: Set Ste =
∑2

k=1(Xk,te − X̄k,te)(Xk,te − X̄k,te)
⊤

10: Write an eigen-decomposition of p−1V⊤SteV by p−1V⊤SteV = Q̂HQ̂⊤ where

H = Diag(h1, . . . , hntr−1) arranged in descending order, and Q̂ = [Q̂1 Q̂2] with

Q̂1 = [q̂1, . . . , q̂m] and Q̂2 = [q̂m+1, . . . , q̂ntr−1]

11: Set aj,SMDP = ∥Q̂2Q̂
⊤
2 eMDP∥−1Q̂2Q̂

⊤
2 eMDP where eMDP = (0⊤

n−2, 1)
⊤

12: Set wj,SMDP = Vaj,SMDP

13: Set X̄j,SMDP = n−1
tr (n1,trX̄1,tr + n2,trX̄2,tr)

14: Set α̂k = −p−1
∑nk,tr−1

k=mk+1 λ̂(k),l where λ̂(k),l is lth largest eigenvalue of

Sk,tr = (Xk,tr − X̄k,tr)(Xk,tr − X̄k,tr)
⊤

15: Set gj,SMDP = (ntrκMDP)
−1(e⊤MDPaj,SMDP)(α̂1 − α̂2)

16: end for

17: Set wSMDP = K−1
∑K

j=1 wj,SMDP

18: Set X̄SMDP = K−1
∑K

j=1 w
⊤
j,SMDPX̄j,SMDP and gSMDP = K−1

∑K
j=1 gj,SMDP

19: Use the following classification rule:

ϕSMDP-I(Y ;X ) =

1, p−1/2(w⊤
SMDPY − X̄SMDP)− gSMDP ≥ 0,

2, p−1/2(w⊤
SMDPY − X̄SMDP)− gSMDP < 0.

(4.2)
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Algorithm 2 Second Maximal Data Piling (SMDP) algorithm (Type II)

Require: Original training data matrix of the kth class Xk for k = 1, 2.

Require: The number of repetitions K, estimated m

1: for j = 1, . . . ,K do

2: Randomly split Xk into

Xk,tr = [Xk,1, . . . , Xk,nk,tr
]

Xk,te = [X∗
k,1, . . . , X

∗
k,nk,te

]

so that nk,te > mk

3: Set ntr = n1,tr + n2,tr, X̄k,tr = n−1
k Xk,tr1nk,tr

and X̄k,tr = X̄k,tr1
⊤
nk,tr

4: Set Str =
∑2

k=1(Xk,tr − X̄k,tr)(Xk,tr − X̄k,tr)
⊤ and dtr = X̄1,tr − X̄2,tr

5: Write an eigen-decomposition of Str by Str = ÛΛ̂Û⊤ = Û1Λ̂1Û
⊤
1 where

Λ̂ = Diag(λ̂1, . . . , λ̂ntr−2, 0, . . . , 0) arranged in descending order, and Û = [Û1 Û2]

with Û1 = [û1, . . . , ûntr−2], Û2 = [ûntr−1, . . . , ûp]

6: Set wMDP = ∥Û2Û
⊤
2 dtr∥−1Û2Û

⊤
2 dtr

7: Set V = [û1, . . . , ûntr−2, wMDP]

8: Set X̄k,te = n−1
k,teXk,te1nk,te

and X̄k,te = X̄k,te1
⊤
nk,te

9: Set Ste =
∑2

k=1(Xk,te − X̄k,te)(Xk,te − X̄k,te)
⊤

10: Write an eigen-decomposition of p−1V⊤SteV by p−1V⊤SteV = Q̂HQ̂⊤ where

H = Diag(h1, . . . , hntr−1) arranged in descending order, and Q̂ = [Q̂1 Q̂2] with

Q̂1 = [q̂1, . . . , q̂m] and Q̂2 = [q̂m+1, . . . , q̂ntr−1]

11: Set aj,SMDP = ∥Q̂2Q̂
⊤
2 eMDP∥−1Q̂2Q̂

⊤
2 eMDP where eMDP = (0⊤

n−2, 1)
⊤

12: Set wj,SMDP = Vaj,SMDP

13: Apply Linear Discriminant Analysis to p−1/2w⊤
j,SMDPXte where Xte =

[X1,te X2,te] and achieve a classification threshold bj .

14: end for

15: Set wSMDP = K−1
∑K

j=1 wj,SMDP

16: Set bSMDP = K−1
∑K

j=1 bj

17: Use the following classification rule:

ϕSMDP-II(Y ;X ) =

1, p−1/2w⊤
SMDPY ≥ bSMDP,

2, p−1/2w⊤
SMDPY < bSMDP.

(4.3)
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Algorithm 1 ensures perfect classification of independent test data under

the HDLSS asymptotic regime by Theorem 8. In Algorithm 1, we also estimate

a bias term as gj,SMDP for each repetition. In fact, we do not need to estimate

this term since projections of Xte onto wSMDP converges two distinct points for

each class, one for each class. In Algorithm 2, we simply achieve a threshold

for binary classification of this one-dimensional well-separated data by using

Linear Discriminant Analysis (LDA) by Fisher [1936]. Taking this approach

eliminates the need to estimate m1 and m2. A detailed algorithm is given in

Algorithm 2.
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Chapter 5

Simulation

In this chapter, we numerically show that ϕSMDP-I in (4.2) and ϕSMDP-II in

(4.3) can achieve asymptotic perfect classification under various heterogeneous

covariance models. We compare classification rates of SMDP algorithms with

several other classification rules, which are the maximal data piling classifica-

tion rule (MDP) by Ahn and Marron [2010], the projected ridge classification

rule (PRD) by Chang et al. [2021], Distance Weighted Discrimination (DWD)

by Marron et al. [2007], Transformed Distance-Based Discriminant Analy-

sis (T-DBDA) by Aoshima and Yata [2019] and Transformed Geometrical

Quadratic Discriminant Analysis (T-GQDA) by Ishii et al. [2022].

Our model, which assumed to be satisfying Assumptions 1—5, is that

Xkj ∼ Np(µ(k),Σ(k)) for k = 1, 2, j = 1, . . . , 20 and p = 10, 000. We set

µ(1) = p−1/2(
√
81⊤p/8,0

⊤
7p/8)

⊤, µ(2) = 0p. Note that in this case δ2 = 1. Σ(1)

and Σ(2) will be given differently for each setting.

In Setting I, we assume two population have the common covariance ma-
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trix, that is,

Σ(1) = Σ(2) =
2∑
i=1

σ2i uiu
⊤
i + τ2Ip

where (σ21, σ
2
2) = (20p, 10p),

(u1,u2) =
1
√
p



√
21p/4 0p/4

√
21p/4 0p/4

0p/4
√
21p/4

0p/4
√
21p/4


and τ2 = 30. In Setting II, we assume heterogeneous covariance models with

equal tail eigenvalues, that is, τ21 = τ22 =: τ2. To be specific, we assume

Σ(1) =
3∑
i=1

σ2(1),iu(1),iu
⊤
(1),i + τ21 Ip (5.1)

and

Σ(2) =
3∑
i=1

σ2(2),iu(2),iu
⊤
(2),i + τ22 Ip (5.2)

where (σ2(1),1, σ
2
(1),2, σ

2
(1),3) = (σ2(2),1, σ

2
(2),2, σ

2
(2),3) = (20p, 10p, 5p),

(u(1),1,u(1),2,u(1),3) =
1
√
p



√
21p/4 0p/4 1p/4

√
21p/4 0p/4 −1p/4

0p/4
√
21p/4 1p/4

0p/4
√
21p/4 −1p/4

 ,

(u(2),1,u(2),2,u(2),3) =
1
√
p


1p/4

√
21p/4 0p/4

1p/4 0p/4
√
21p/4

1p/4 −
√
21p/4 0p/4

1p/4 0p/4 −
√
21p/4
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and τ21 = τ22 =: τ2 = 30. In Setting III, we assume heterogeneous covariance

models with unequal tail eigenvalues, that is, τ21 > τ22 . We continue to assume

Σ(1) in (5.1) and Σ(2) in (5.2), but τ21 = 30 and τ22 = 15 for Setting III. Note

that in Settings II and III, m > max (m1,m2) in contrast to Setting I where

m = m1 = m2.

To clearly check classification performances of each classification rule, we

use the true numbers of m1, m2 and m for ϕSMDP-I and ϕSMDP-II. Also, we use

the true number of strongly spiked eigenvalues for T-DBDA and T-GQDA.

For ϕSMDP-I and ϕSMDP-II, we set n1,te = n2,te = 6 so that Xte consists of

30% of original training data X . Also, we set K = 10 in Algorithms 1 and 2.

The classification rates are obtained using 1, 000 independent observations

(500 independent observations for each class). We repeat this procedure 100

times and average classification rates to estimate classification accuracy of

each classification rule.

Table 5.1 shows all simulation results from Setting I to Setting III. We

remark that PRD by Chang et al. [2021] yields nearly perfect classification

not only in case of Σ(1) = Σ(2) but also in case of Σ(1) ̸= Σ(2) and τ21 =

τ22 . However, this classification rule achieves poor classification performances

when τ21 ̸= τ22 . In contrast, we can check that ϕSMDP-I and ϕSMDP-II achieve

nearly perfect classification in all of the settings. These results confirm that

our approach, projecting wMDP onto the nullspace of the common leading

eigenspace, successfully works under various heterogeneous covariance models.
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Setting ϕSMDP-I ϕSMDP-II MDP PRD DWD T-DBDA T-GQDA

I
0.999 0.999 0.859 0.999 0.701 0.784 0.678

(0.001) (0.001) (0.102) (0.001) (0.097) (0.101) (0.083)

II
0.975 0.974 0.728 0.982 0.622 0.654 0.870

(0.014) (0.014) (0.076) (0.008) (0.055) (0.055) (0.042)

III
0.993 0.993 0.669 0.576 0.620 0.654 0.991

(0.005) (0.006) (0.004) (0.004) (0.056) (0.060) (0.012)

Table 5.1 Estimates of the classification accuracy of Setting I to Setting III are

given in the first row of each cell, and standard errors are given in the second

row of each cell.
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Chapter 6

Discussion

In this work, we proposed Second Maximal Data Piling (SMDP) algorithms,

which estimate a second maximal data piling direction by projecting wMDP

onto the nullspace of the common leading eigenspace, based on a data-splitting

approach, and compute discrimination rules based on the estimated directions.

The resulting classifiers can achieve asymptotic perfect classification for gen-

eralized heterogeneous spiked covariance models.

There has been relatively scarce works on a binary classification problem

for cases where Σ(1) or Σ(2) has strong spikes, which reflects much more re-

alistic and interesting situations for HDLSS data. Aoshima and Yata [2019]

proposed a distance-based classifier, while Ishii et al. [2022] proposed geomet-

rical quadratic discriminant analysis for this problem. Both assumed not only

the dimension of data p but also training sample sizes of each class n1 and

n2 tend to infinity to achieve perfect classification. Ishii [2020] proposed an-

other distance-based classifier which achieves perfect classification even when

n1 and n2 are fixed, but limited to the one-component covariance model (with
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m1 = m2 = 1). All of these works were based on a data transformation

technique, which essentially projecting the independent test data onto the

nullspace of the leading eigenspace. Our results were also based on a similar

idea of removing the leading eigenspace, but we further suggested the con-

cept of double data piling phenomenon and revealed the relationship between

the maximal data piling direction of training data and the second maximal

data piling direction of independent test data under generalized heterogeneous

spiked covariance models.

38



Bibliography

J. Ahn and J. S. Marron. The maximal data piling direction for discrimination.

Biometrika, 97(1):254–259, 2010.

J. Ahn, J. S. Marron, K. M. Muller, and Y.-Y. Chi. The high-dimension,

low-sample-size geometric representation holds under mild conditions.

Biometrika, 94(3):760–766, 2007.

M. Aoshima and K. Yata. Distance-based classifier by data transformation for

high-dimension, strongly spiked eigenvalue models. Annals of the Institute

of Statistical Mathematics, 71(3):473–503, 2019.

R. C. Bradley. Basic properties of strong mixing conditions. A survey and

some open questions. Probability Surveys, 2:107–144, 2005.

W. Chang, J. Ahn, and S. Jung. Double data piling leads to perfect classifi-

cation. Electronic Journal of Statistics, 15(2):6382–6428, 2021.

R. A. Fisher. The use of multiple measurements in taxonomic problems. An-

nals of Eugenics, 7(2):179–188, 1936.

P. Hall, J. S. Marron, and A. Neeman. Geometric representation of high

dimension, low sample size data. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 67(3):427–444, 2005.

39



A. Ishii. A classifier under the strongly spiked eigenvalue model in high-

dimension, low-sample-size context. Communications in Statistics - Theory

and Methods, 49(7):1561–1577, 2020.

A. Ishii, K. Yata, and M. Aoshima. Geometric classifiers for high-dimensional

noisy data. Journal of Multivariate Analysis, 188:104850, 2022.

I. M. Johnstone. On the distribution of the largest eigenvalue in principal

components analysis. The Annals of Statistics, 29(2):295–327, 2001.

S. Jung. Continuum directions for supervised dimension reduction. Compu-

tational Statistics & Data Analysis, 125:27–43, 2018.

S. Jung and J. S. Marron. PCA consistency in high dimension, low sample

size context. The Annals of Statistics, 37(6B):4104–4130, 2009.

S. Jung, A. Sen, and J. Marron. Boundary behavior in high dimension, low

sample size asymptotics of PCA. Journal of Multivariate Analysis, 109:

190–203, 2012.

S. Jung, M. H. Lee, and J. Ahn. On the number of principal components in

high dimensions. Biometrika, 105(2):389–402, 2018.

A. N. Kolmogorov and Y. A. Rozanov. On strong mixing conditions for sta-

tionary gaussian processes. Theory of Probability & Its Applications, 5(2):

204–208, 1960.

S. Kritchman and B. Nadler. Determining the number of components in a fac-

tor model from limited noisy data. Chemometrics and Intelligent Laboratory

Systems, 94(1):19–32, 2008.

M. H. Lee, J. Ahn, and Y. Jeon. HDLSS discrimination with adaptive data

40



piling. Journal of Computational and Graphical Statistics, 22(2):433–451,

2013.

J. T. Leek. Asymptotic conditional singular value decomposition for high-

dimensional genomic data. Biometrics, 67(2):344–352, 2010.

J. S. Marron, M. J. Todd, and J. Ahn. Distance-weighted discrimination.

Journal of the American Statistical Association, 102(480):1267–1271, 2007.

D. Passemier and J. Yao. Estimation of the number of spikes, possibly equal,

in the high-dimensional case. Journal of Multivariate Analysis, 127:173–183,

2014.

X. Qiao, H. H. Zhang, Y. Liu, M. J. Todd, and J. S. Marron. Weighted

distance weighted discrimination and its asymptotic properties. Journal of

the American Statistical Association, 105(489):401–414, 2010.

D. Shen, H. Shen, and J. S. Marron. A general framework for consistency of

principal component analysis. Journal of Machine Learning Research, 17

(150):1–34, 2016.

41



Appendix A

Asymptotic Properties of
High-dimensional Sample
Within-scatter Matrix

For any vector v ∈ Rl (l ∈ N), let [v]i denote the ith element of v. For any

matrix M ∈ Rl×l′ (l, l′ ∈ N), let [M]i and [M]j denote the ith row and the

jth column of M, respectively. Also, let [M]i,j denote the (i, j)-coordinate of

M. Let 1l ∈ Rl (and 0l ∈ Rl) denote a vector whose all entries are 1 (and

0, respectively). Write an (l × l) identity matrix as Il, and an (l × l′) matrix

whose entries are all zero as Ol×l′ .

Recall that the matrix of true principal component scores of Xk is Z(k) =

Λ
− 1

2

(k)U
⊤
(k)(Xk−µ(k)1

⊤
nk
) = [z(k),1, . . . , z(k),p]

⊤ ∈ Rp×nk where z(k),j is a vector of

jth principal component scores of the kth class. We write z̄(k),i = n−1
k z⊤(k),i1nk

.

Also, denote a vector of true principal component scores of independent ob-

servation Y by ζ = (ζ1, . . . , ζp)
⊤. Note that each element of Z(k) and ζ is

uncorrelated, and has mean zero and unit variance.

The following lemma follows directly from Lemma C.1. of Chang et al.
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[2021].

Lemma 10 Suppose Assumptions 1—5 hold. For k = 1, 2, the following hold

as p→ ∞.

(i) p−1µ⊤U(k)Λ
1/2
(k) ζ

P−→
∑mk

i=1 σ(k),i cos θ(k),iδζi

(ii) p−1µ⊤U(k)Λ
1/2
(k)Z(k)

P−→
∑mk

i=1 σ(k),i cos θ(k),iδz
⊤
(k),i

(iii) p−1Z⊤
(k)Λ(k)ζ

P−→
∑mk

i=1 σ
2
(k),iz(k),iζi

(iv) p−1Z⊤
(k)Λ(k)Z(k)

P−→
∑mk

i=1 σ
2
(k),iz(k),iz

⊤
(k),i + τ2k Ink

From now on, we examine asymptotic properties of the sample within-

scatter matrix SW = (X− X̄)(X− X̄)⊤ =
∑n−2

i=1 λ̂iûiû
⊤
i . Since the dimension

of SW grows as p → ∞, we instead use the n × n dual matrix, SD = (X −

X̄)⊤(X − X̄), which shares its nonzero eigenvalues with SW . We write the

singular-value-decomposition of X − X̄ = Û1D1V̂
⊤
1 =

∑n−2
i=1 diûiv̂

⊤
i , where

ûi is the ith eigenvector of SW , di is the ith largest nonzero singular value,

and v̂i is the vector of normalized sample principal component scores. Write

v̂i = (v̂⊤
i,1, v̂

⊤
i,2)

⊤ where v̂i,1 ∈ Rn1 and v̂i,2 ∈ Rn2 . Then for 1 ≤ i ≤ n− 2, we

can write

ûi = d−1
i (X− X̄)v̂i = λ̂

−1/2
i

2∑
k=1

U(k)Λ
1/2
(k)Z(k)(Ink

− 1

nk
Jnk

)v̂i,k. (A.1)

Recall that W(k) = [σ(k),1z(k),1, . . . , σ(k),mk
z(k),mk

] is a nk ×mk matrix of

the leading mk principal component scores of the kth class for each k = 1, 2.

Lemma 11 Suppose Assumptions 1—5 hold. Then,

p−1SD
P−→ S0 =

S0,11 S0,12

S0,21 S0,22
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as p→ ∞ where

S0,ii = (Ini −
1

ni
Jni)(W(i)W

⊤
(i) + τ2i Ini)(Ini −

1

ni
Jni)

for i = 1, 2 and

S0,ij = (Ini −
1

ni
Jni)(W(i)R

⊤
(i)R(j)W

⊤
(j))(Inj −

1

nj
Jnj )

for 1 ≤ i ̸= j ≤ 2.

Proof Observe thatX−X̄ = X(In−J) = [U(1)Λ
1/2
(1) Z(1) U(2)Λ

1/2
(2) Z(2)](In−J).

Then we can write

SD
p

= (In − J)

 p−1Z⊤
(1)Λ(1)Z(1) p−1Z⊤

(1)Λ
1/2
(1) U

⊤
(1)U(2)Λ

1/2
(2) Z(2)

p−1Z⊤
(2)Λ

1/2
(2) U

⊤
(2)U(1)Λ

1/2
(1) Z(1) p−1Z⊤

(2)Λ(2)Z(2)

 (In − J).

By Lemma 10 (d), we have p−1Z⊤
(i)Λ(i)Z(i)

P−→ W(i)W
⊤
(i) + τ2i Ini as p → ∞.

Thus, it suffices to show that p−1Z⊤
(1)Λ

1/2
(1) U

⊤
(1)U(2)Λ

1/2
(2) Z(2)

P−→ W(1)R
⊤
(1)R(2)W

⊤
(2)

as p→ ∞. Write U(k),2 = [u(k),mk+1, . . . ,u(k),p] so that U(k) = [U(k),1 U(k),2].

Also, writeΛ(k),1 = Diag(λ(k),1, . . . , λ(k),mk
) andΛ(k),2 = Diag(λ(k),mk+1, . . . , λ(k),p).

Finally, write Z(k),1 = [z(k),1, . . . , z(k),mk
]⊤ and Z(k),2 = [z(k),mk+1, . . . , z(k),p]

⊤

so that Z(k) =

Z(k),1

Z(k),2

. Then, we can decompose Z⊤
(1)Λ

1/2
(1) U

⊤
(1)U(2)Λ

1/2
(2) Z(2) =∑2

i,j=1Aij where Aij = Z⊤
(1),iΛ

1/2
(1),iU

⊤
(1),iU(2),jΛ

1/2
(2),jZ(2),j for i, j = 1, 2. We

claim that (a) p−1A12, p
−1A21, p

−1A22
P−→ On1×n2 and (b) p−1A11

P−→ W(1)R
⊤
(1)R(2)W

⊤
(2)

as p→ ∞. We first prove the claim (a). By Assumption 2, there existsMk <∞

such that τ(k),i ≤Mk for all i. Thus,

p−2E ∥A12∥2F = p−2n1n2trace(U
⊤
(2),2U(1),1Λ(1),1U

⊤
(1),1U(2),2Λ(2),2)

= p−2n1n2

m1∑
l=1

p∑
l′=m2+1

(pσ2(1),l + τ2(1),l)τ
2
(2),l′(u

⊤
(1),lu(2),l′)

2
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≤ p−2n1n2m1(pσ
2
(1),1 +M2

1 )M
2
2 → 0

as p → ∞ where ∥ · ∥F denotes the Frobenius norm of a matrix. Thus,

p−1A12
P−→ On1×n2 as p → ∞, and p−1A21

P−→ On1×n2 can be shown in a

similar manner. Similarly, we can show that p−2E ∥A22∥2F → 0 and p−1A22
P−→

On1×n2 as p→ ∞ and we complete the proof of the claim (a). The claim (b) is

easily proved by the fact that p−1A11 = p−1Z⊤
(1),1Λ

1/2
(1),1R

(p)⊤
(1) R

(p)
(2)Λ

1/2
(2),1Z(2),1

P−→

W(1)R
⊤
(1)R(2)W

⊤
(2) as p→ ∞.

For the proof of Lemma 3 and Lemma 4, we will use the fact that di
P−→√

ϕi(S0), v̂i
P−→ vi(S0) for 1 ≤ i ≤ n− 2 as p→ ∞. Recall that for any square

matrix M, ϕi(M) and vi(M) denote the ith largest eigenvalue of M and its

corresponding eigenvector, respectively. Also, let vij(M) be the jth coefficient

of vi(M). We write vi(S0) = (ṽi1(S0)
⊤, ṽi2(S0)

⊤)⊤ where ṽi1(S0) ∈ Rn1 and

ṽi2(S0) ∈ Rn2 . Also, write vi(Φτ1,τ2) = (ṽi1(Φτ1,τ2)
⊤, ṽi2(Φτ1,τ2)

⊤)⊤ where

ṽi1(Φτ1,τ2) ∈ Rm1 and ṽi2(Φτ1,τ2) ∈ Rm2 .

A.1 Proof of Lemma 3

Proof Recall that SW shares its nonzero eigenvalues with SD, and since ϕi is a

continuous function of elements of a symmetric matrix, we have ϕi(p
−1SW )

P−→

ϕi(S0) as p → ∞ for 1 ≤ i ≤ n − 2. First, assume τ21 = τ22 =: τ2. Then,

S0 = (In−J)(WW⊤+ τ2In)(In−J). In a similar way to the proof of Lemma

C.2. of Chang et al. [2021], we have ϕi(S0) = ϕi(Φ) + τ2 for 1 ≤ i ≤ m and

ϕi(S0) = τ2 for m+ 1 ≤ i ≤ n− 2 and Lemma 3 (i) is proved.

Next, assume τ21 > τ22 . Then,

S0 = (In − J)

W(1)W
⊤
(1) + τ21 In1 W(1)R

⊤
(1)R(2)W

⊤
(2)

W(2)R
⊤
(2)R(1)W

⊤
(1) W(2)W

⊤
(2) + τ22 In2

 (In − J).
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First, let u = (u⊤1 ,0
⊤
n2
)⊤ ∈ Rn be an unit vector satisfying W⊤

(1)(In1 −
1
n1
Jn1)u1 = 0m1 and 1⊤n1

u1 = 0. Then,

S0u =

(In1 − 1
n1
Jn1)(W(1)W

⊤
(1) + τ21 In1)(In1 − 1

n1
Jn1)u1

(In2 − 1
n2
Jn2)W(2)R

⊤
(2)R(1)W

⊤
(1)(In1 − 1

n1
Jn1)u1

 = τ21

 u1

0n2

 = τ21u.

(A.2)

It implies that S0 has an eigenvalue τ21 of multiplicity (n1−m1−1). Likewise, we

can show that S0 has an eigenvalue τ22 of multiplicity (n2−m2−1). Lastly, let

ui = (u⊤i1, u
⊤
i2)

⊤ ∈ Rn (1 ≤ i ≤ m1 +m2) be an unit vector with ui1 = (In1 −
1
n1
Jn1)W(1)Φ

−1/2
1 ṽi1(Φτ1,τ2) and ui2 = (In2 − 1

n2
Jn2)W(2)Φ

−1/2
2 ṽi2(Φτ1,τ2).

Then,

S0ui =

(In1 − 1
n1
Jn1)W(1)Φ

−1/2
1 ((Φ1 + τ21 Im1)ṽi1(Φτ1,τ2) +Φ

1/2
1 R⊤

(1)R(2)Φ
1/2
2 ṽi2(Φτ1,τ2))

(In2 − 1
n2
Jn2)W(2)Φ

−1/2
2 (Φ

1/2
2 R⊤

(2)R(1)Φ
1/2
1 ṽi1(Φτ1,τ2) + (Φ2 + τ22 Im2)ṽi2(Φτ1,τ2))


= ϕi(Φτ1,τ2)

(In1 − 1
n1
Jn1)W(1)Φ

−1/2
1 ṽi1(Φτ1,τ2)

(In2 − 1
n2
Jn2)W(2)Φ

−1/2
2 ṽi2(Φτ1,τ2)

 = ϕi(Φτ1,τ2)ui

(A.3)

for all 1 ≤ i ≤ m1 + m2. Thus, S0 has eigenvalues ϕi(Φτ1,τ2) for 1 ≤ i ≤

m1 +m2. In summary, S0 has eigenvalues τ21 of multiplicity (n1 −m1 − 1), τ22

of multiplicity (n2 −m2 − 1) and ϕi(Φτ1,τ2) for 1 ≤ i ≤ m1 +m2. Note that

Φτ1,τ2 can be decomposed as follows:

Φτ1,τ2 =

 Φ1 Φ
1/2
1 R⊤

(1)R(2)Φ
1/2
2

Φ
1/2
2 R⊤

(2)R(1)Φ
1/2
1 Φ2

+

 τ21 Im1 Om1×m2

Om2×m1 τ22 Im2


:= ΦD +N.

Since

ΦD =

 Φ
1/2
1 Om1×m2

Om2×m1 Φ
1/2
2

R⊤
(1)

R⊤
(2)

(R(1) R(2)

) Φ
1/2
1 Om1×m2

Om2×m1 Φ
1/2
2

 ,
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ΦD is of rank m and shares its nonzero eigenvalues with Φ. By Weyl’s inequal-

ity, we have ϕm1(Φτ1,τ2) ≥ ϕm1+m2(ΦD)+ϕm1(N) ≥ τ21 and ϕm1+m2(Φτ1,τ2) ≥

ϕm1+m2(ΦD) + ϕm1+m2(N) ≥ τ22 . Hence, if we denote ϕm1+m2+1(Φτ1,τ2) = 0,

then there exists k0 (m1 ≤ k0 ≤ m1 + m2) such that ϕk0(Φτ1,τ2) ≥ τ21 ≥

ϕk0+1(Φτ1,τ2) and we have Lemma 3 (ii).

A.2 Proof of Lemma 4

Proof From (A.1), we can write

u⊤
j ûi =

(
λ̂i
p

)−1/2 2∑
k=1

1
√
p
u⊤
j U(k)Λ

1/2
(k)Z(k)(Ink

− 1

nk
Jnk

)v̂i,k.

Note that p−1/2u⊤
j U(k)Λ

1/2
(k)Z(k) can be decomposed into two terms:

1
√
p
u⊤
j U(k)Λ

1/2
(k)Z(k) =

mk∑
i=1

1
√
p
u⊤
j u(k),iλ

1/2
(k),iz

⊤
(k),i +

p∑
i=mk+1

1
√
p
u⊤
j u(k),iλ

1/2
(k),iz

⊤
(k),i

for 1 ≤ j ≤ m. The first term converges as p→ ∞:

mk∑
i=1

1
√
p
u⊤
j u(k),iλ

1/2
(k),iz

⊤
(k),i

P−→ [R(k)]jW
⊤
(k) (A.4)

The second term converges to zero in probability since for any ϵ > 0, by

Chebyshev’s inequality,

P

∥∥∥∥∥∥
p∑

i=mk+1

1
√
p
u⊤
j u(k),iλ

1/2
(k),iz(k),i

∥∥∥∥∥∥ > ϵ

 ≤ 1

pϵ2
E

∥∥∥∥∥∥
p∑

i=mk+1

u⊤
j u(k),iτ(k),iz(k),i

∥∥∥∥∥∥
2

=
1

pϵ2
E

 p∑
i=mk+1

(u⊤
j u(k),i)

2τ2(k),iz
⊤
(k),iz(k),i +

∑
mk+1≤i ̸=l≤p

(u⊤
j u(k),i)(u

⊤
j u(k),l)τ(k),iτ(k),lz

⊤
(k),iz(k),l


=

1

pϵ2
E

 p∑
i=mk+1

(u⊤
j u(k),i)

2τ2(k),iz
⊤
(k),iz(k),i

 ≤
nkM

2
k

pϵ2
→ 0

(A.5)
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as p→ ∞. By combining (A.4) and (A.5), we have

1
√
p
u⊤
j U(k)Λ

1/2
(k)Z(k)

P−→ [R(k)]jW
⊤
(k)

as p→ ∞ for k = 1, 2. Hence,

u⊤
j ûi

P−→ ϕi(S0)
−1/2e⊤j W

⊤(In − J)vi(S0) (A.6)

as p→ ∞ for 1 ≤ j ≤ m where ej ∈ Rm is a vector whose jth coordinate is 1

and other coordinates are zero. Hence, if τ21 = τ22 =: τ2, then

û⊤
i uj

P−→


Ci,j , 1 ≤ i ≤ m,

0, m+ 1 ≤ i ≤ n− 2

(A.7)

where

Ci,j :=

√
ϕi(Φ)

ϕi(Φ) + τ2
vij(Φ)

for 1 ≤ i, j ≤ m. If τ21 > τ22 , then

û⊤
i uj

P−→



Di,j , 1 ≤ i ≤ k0,

0, k0 + 1 ≤ i ≤ k0 + (n1 −m1 − 1),

Di−(n1−m1−1),j , k0 + (n1 −m1) ≤ i ≤ n1 +m2 − 1,

0, n1 +m2 ≤ i ≤ n− 2

(A.8)

where k0 (m1 ≤ k0 ≤ m1 +m2) is defined in Lemma 3 (ii) and

Di,j :=
1√

ϕi(Φτ1,τ2)

2∑
k=1

[R(k)]jΦ
1/2
k ṽik(Φτ1,τ2) (A.9)

for 1 ≤ i ≤ m1 +m2 and 1 ≤ j ≤ m. Note that

cos (Angle(ûi,U)) =
û⊤
i PU ûi

∥ûi∥∥PU ûi∥
=

√√√√ m∑
j=1

(û⊤
i uj)

2.

Then the limit of cos (Angle(ûi,U)) can be obtained from (A.7) and (A.8).
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Note that Lemma 4 can also be used to investigate the asymptotic behavior

of û⊤
i d, where d is the sample mean difference vector. Lemma 12 will be used

frequently in the proof of main lemmas and theorems.

Lemma 12 Suppose Assumptions 1—5 hold. Then conditional to W(1) and

W(2), the following hold as p→ ∞.

(i) If τ21 = τ22 =: τ2, then

p−1/2d⊤ûi
P−→


∑m

j=1 rjCi,j , 1 ≤ i ≤ m,

0, m+ 1 ≤ i ≤ n− 2

for 1 ≤ j ≤ m where rj := cos θjδ+
∑m1

k=1[R(1)]j,kσ(1),kz̄(1),k−
∑m2

k=1[R(2)]j,kσ(2),kz̄(2),k

and Ci,j is defined in (A.7).

(ii) If τ21 > τ22 , then

p−1/2d⊤ûi
P−→



∑m
j=1 rjDi,j , 1 ≤ i ≤ k0,

0, k0 + 1 ≤ i ≤ k0 + (n1 −m1 − 1),∑m
j=1 rjDi−(n1−m1−1),j , k0 + (n1 −m1) ≤ i ≤ n1 +m2 − 1,

0, n1 +m2 ≤ i ≤ n− 2

for 1 ≤ j ≤ m where k0 is defined in Lemma 3 (ii), rj is defined in

Lemma 12 (i) and Di,j is defined in (A.9).

Proof Observe that d = X̄1−X̄2 = µ+
1
n1
U(1)Λ

1/2
(1) Z(1)1n1− 1

n2
U(2)Λ

1/2
(2) Z(2)1n2

and

1
√
p
d⊤ûi =

1
√
p
µ⊤ûi +

1

n1
√
p
1⊤n1

Z⊤
(1)Λ

1/2
(1) U

⊤
(1)ûi −

1

n2
√
p
1⊤n2

Z⊤
(2)Λ

1/2
(2) U(2)ûi.
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First, by (A.1), we can write

1
√
p
µ⊤ûi =

(
λ̂i
p

)−1/2
µ⊤U(1)Λ

1/2
(1) Z(1)

p

µ⊤U(2)Λ
1/2
(2) Z(2)

p

 (In − J)v̂i.

Write c = (cos θ1, . . . , cos θm)
⊤ ∈ Rm and ck = (cos θ(k),1, . . . , cos θ(k),mk

)⊤ ∈

Rmk . Then we have

1

p
µ⊤U(k)Λ

1/2
(k)Z(k)

P−→ c⊤kW
⊤
(k)δ

as p→ ∞ from Lemma 10 (ii). Thus,

1
√
p
µ⊤ûi

P−→ ϕi(S0)
−1/2δc⊤W⊤(In − J)vi(S0) (A.10)

as p→ ∞. Also, by (A.1), we can write

1

n1p
1⊤n1

Z⊤
(1)Λ

1/2
(1) U

⊤
(1)ûi

=
1

n1

(
λ̂i
p

)−1/2

1⊤n1

Z⊤
(1)Λ(1)Z(1)

p

Z⊤
(1)Λ

1/2
(1) U

⊤
(1)U(2)Λ

1/2
(2) Z(2)

p

 (In − J)v̂i.

From Lemma 10 (iv) and Theorem 11, we have

Z⊤
(1)Λ(1)Z(1)

p

P−→ W(1)W
⊤
(1) + τ21 In1

(A.11)

and
Z⊤
(1)Λ

1/2
(1) U

⊤
(1)U(2)Λ

1/2
(2) Z(2)

p

P−→ W(1)R
⊤
(1)R(2)W

⊤
(2)

(A.12)

as p→ ∞ for each k = 1, 2. Combining (A.11) and (A.12) gives

1

n1p
1⊤n1

Z⊤
(1)Λ

1/2
(1) U

⊤
(1)ûi

P−→ ϕi(S0)
−1/2n−1

1 1⊤n1
W(1)R

⊤
(1)W

⊤(In − J)vi(S0)

(A.13)

as p→ ∞. Similarly, we have

1

n2p
1⊤n2

Z⊤
(2)Λ

1/2
(2) U

⊤
(2)ûi

P−→ ϕi(S0)
−1/2n−1

2 1⊤n2
W(2)R

⊤
(2)W

⊤(In − J)vi(S0)

(A.14)
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as p→ ∞. Hence, by combining (A.10), (A.13) and (A.14), we have

1
√
p
d⊤ûi

P−→ ϕi(S0)
−1/2(δc⊤ + n−1

1 1⊤n1
W(1)R

⊤
(1) − n−1

2 1⊤n2
W(2)R

⊤
(2))W

⊤(In − J)vi(S0)

as p→ ∞ and this completes the proof.
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Appendix B

Technical Details of Main Results

In this section, we give the proofs of main theorems. Unless otherwise stated,

we only give the proofs for the case of τ21 > τ22 and m > m1. The proofs for the

other cases are quite similar to, but much simpler than, those for this case.

B.1 Proof of Theorem 5

Proof For Y ∈ Y, assume π(Y ) = 1. Recall that in this case,

D = {1, . . . ,m1 +m2, n1, . . . , n1 +m2 − 1}

and S = span({ûi}i∈D , wMDP). Also, for given training dataset X , let

D′ = {i : 1 ≤ i ≤ k0, k0 + (n1 −m1) ≤ i ≤ n1 +m2 − 1} (B.1)

where k0 is defined in Lemma 3 (ii). That is, cos(Angle(ûi,U))
P−→ Di > 0

for i ∈ D′ and cos(Angle(ûi,U))
P−→ 0 for i /∈ D as p → ∞. For notational

simplicity, we write D′ = {i1, . . . , im1+m2} so that il < il′ if l < l′. Let t0 =

(t1, . . . , tm)
⊤ ∈ Rm with tj = η2 cos θjδ +

∑m1
k=1[R(1)]jkσ(1),k(ζk − η1z̄(1),k) −
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η2
∑m2

k=1[R(2)]jkσ(2),kz̄(2),k for 1 ≤ j ≤ m and ν0 = U1,St
0 + ν1wMDP + X̄S .

Note that ν0 ∈ L1. We claim that ∥YS −ν0∥
P−→ 0 as p→ ∞. For this, we need

to show that (a) û⊤
i (YS − ν0) P−→ 0 for i ∈ D and (b) w⊤

MDP(YS − ν0) P−→ 0 as

p→ ∞.

First, we show that (a) û⊤
i (YS − ν0) = p−1/2û⊤

i (Y − X̄)− û⊤
i U1,St

0 P−→ 0

for 1 ≤ i ≤ m as p→ ∞. Note that

1
√
p
û⊤
i (Y − X̄) =

1
√
p
û⊤
i (η2µ+U(1)Λ

1/2
(1) (ζ −

1

n
Z(1)1n1)−

1

n
U(2)Λ

1/2
(2) Z(2)1n2)

=
η2√
p
û⊤
i µ+

m1∑
k=1

û⊤
i u(1),kσ(1),k(ζk − η1z̄(1),k)− η2

m2∑
k=1

û⊤
i u(2),kσ(2),kz̄(2),k + op(1).

(B.2)

From (A.10) and Lemma 4, we have

1
√
p
û⊤
il
(Y − X̄)

P−→ 1√
ϕl(Φτ1,τ2)

m∑
j=1

tjΦlj (B.3)

as p → ∞ where Φlj =
∑2

k=1[R(k)]jΦ
1/2
k ṽlk(Φτ1,τ2) for 1 ≤ l ≤ m1 +m2 and

1 ≤ j ≤ m. Also, from Lemma 4, we have

û⊤
il
U1,St

0 P−→ 1√
ϕl(Φτ1,τ2)

m∑
j=1

tjΦlj

as p→ ∞. Hence, û⊤
il
(YS −ν0) = p−1/2û⊤

il
(Y −X̄)− û⊤

il
U1,St

0 P−→ 0 as p→ ∞

for 1 ≤ l ≤ m1 +m2. Similarly we can show that û⊤
i (YS − ν0) P−→ 0 as p→ ∞

for i ∈ D \ D′.

Next, we show that (b) w⊤
MDP(YS−ν0) = p−1/2w⊤

MDP(Y−X̄)−w⊤
MDPU1,St

0−

ν1
P−→ 0 as p→ ∞. We decompose p−1/2w⊤

MDP(Y − X̄) into the two terms:

1
√
p
w⊤
MDP(Y − X̄) =

√
p

∥Û2Û⊤
2 d∥

(
d⊤(Y − X̄)

p
− (Û1Û

⊤
1 d)

⊤(Y − X̄)

p

)
=

1

κMDP
(K1 −K2)
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where K1 = d⊤(Y − X̄)/p and K2 = (Û1Û
⊤
1 d)

⊤(Y − X̄)/p. By Lemma 10

and Lemma 11, we have

K1 =
1

p

(
µ+

1

n1
U(1)Λ

1/2
(1) Z(1)1n1 −

1

n2
U(2)Λ

1/2
(2) Z(2)1n2

)⊤

(
η2µ+U(1)Λ

1/2
(1) (ζ −

1

n
Z(1)1n1)−

1

n
U(2)Λ

1/2
(2) Z(2)1n2

)
P−→ η2(1− cos2 φ)δ2 − τ21 − τ22

n
+

m∑
j=1

tjrj

(B.4)

as p→ ∞ where rj is defined in Lemma 12. Also, from Lemma 12,

K2 =
(Û1Û

⊤
1 d)

⊤(Y − X̄)

p
=

m∑
i=1

(
1
√
p
û⊤
i d

)(
1
√
p
û⊤
i (Y − X̄)

)
+ op(1)

P−→
m1+m2∑
l=1

m∑
j=1

m∑
j′=1

1

ϕl(Φτ1,τ2)
tjrj′ΦljΦlj′ .

(B.5)

as p → ∞. Note that the limit of κ2MDP can be obtained from the limit of

p−1∥d∥2 and p−1∥Û1Û
⊤
1 d∥2. Then we have

κ2MDP =
1

p
∥d∥2 − 1

p
∥Û1Û

⊤
1 d∥2

P−→ (1− cos2 φ)δ2 +
τ21
n1

+
τ22
n2

+
m∑
j=1

m∑
j′=1

rjrj′

(
δjj′ −

m1+m2∑
l=1

1

ϕl(Φτ1τ2)
ΦljΦlj′

)

= (1− cos2 φ)δ2 +
τ21
n1

+
τ22
n2

+ r⊤

Im −
(
R(1)Φ

1/2
1 R(2)Φ

1/2
2

)
Φ−1
τ1,τ2

Φ
1/2
1 R⊤

(1)

Φ
1/2
2 R⊤

(2)

 r

=: κ2

(B.6)

as p → ∞ where r = (r1, . . . , rm)
⊤. Note that κ2 ≥ (1 − cos2 φ)δ2 + τ21 /n1 +

54



τ22 /n2 > 0. Combining (B.4), (B.5) and (B.6) gives

1
√
p
w⊤
MDP(Y − X̄) =

1

κMDP
(K1 −K2)

P−→ 1

κ

η2(1− cos2 φ)δ2 − τ21 − τ22
n

+
m∑
j=1

m∑
j′=1

tjrj′

(
δjj′ −

m1+m2∑
l=1

1

ϕl(Φτ1,τ2)
ΦljΦlj′

)
(B.7)

as p→ ∞ where δjj′ stands for the Kronecker delta. Similarly, we have

w⊤
MDPU1,St

0 =

m∑
j=1

tjw
⊤
MDPuj =

1

κMDP

m∑
j=1

tj

{
1
√
p
u⊤
j d− u⊤

j Û1

(
1
√
p
Û⊤

1 d

)}
P−→ 1

κ

m∑
j=1

m∑
j′=1

tjrj′

(
δjj′ −

m1+m2∑
l=1

1

ϕl(Φτ1,τ2)
ΦljΦlj′

)
(B.8)

as p → ∞. From (B.7) and (B.8), we have w⊤
MDP(YS − ν0) P−→ 0 as p → ∞.

Hence, from (a) and (b), we have ∥YS − ν0∥ P−→ 0 as p → ∞ for Y ∈ Y with

π(Y ) = 1. Using similar arguments, we can show for Y ∈ Y with π(Y ) = 2.

B.2 Proof of Theorem 6

Write an eigen-decomposition of S∗
W = (Y − Ȳ)(Y − Ȳ)⊤ by Û∗

1Λ̂
∗
1Û

∗⊤
1 ,

where Λ̂
∗
1 = Diag(λ̂∗1, . . . , λ̂

∗
n∗−2) in which the eigenvalues are arranged in

descending order and Û∗
1 = [û∗

1, . . . , û
∗
n∗−2]. Also, write the singular-value-

decomposition of Y − Ȳ = Û∗
1D

∗
1V̂

∗⊤
1 =

∑n∗−2
i=1 d∗i û

∗
i v̂

∗⊤
i where û∗

i is the ith

eigenvector of S∗
W , d∗i is the ith nonzero largest singular value, and v∗

i is the

vector of normalized sample principal component scores. Denote true principal

components scores matrix of Yk = [Yk1, . . . , Ykn∗
k
] by Z∗

(k) = Λ
−1/2
(k) U⊤

(k)(Yk −

EYk) = [z∗(k),1, . . . , z
∗
(k),p]

⊤ ∈ Rp×n∗
k and similar to (A.1), we can write

û∗
i = λ̂

∗−1/2
i

2∑
k=1

U(k)Λ
1/2
(k)Z

∗
(k)(In∗

k
− 1

n∗k
Jn∗

k
)v̂∗
i,k.
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We writeW∗
(k) = [σ(k),1z

∗
(k),1, . . . , σ(k),mk

z∗(k),mk
],W∗⊤ = [R(1)W

∗⊤
(1) R(2)W

∗⊤
(2)],

Φ∗
(k) = W∗⊤

(k)(In∗
k
− 1

n∗
k
J∗
nk
)W∗

(k), Φ
∗ = W∗⊤(In∗ − J∗)W∗ and

Φ∗
τ1,τ2 =

 Φ∗
1 + τ21 Im1 Φ

∗1/2
1 R⊤

(1)R(2)Φ
∗1/2
2

Φ
∗1/2
2 R⊤

(2)R(1)Φ
∗1/2
1 Φ∗

2 + τ22 Im2



where J∗ =

 1
n∗
1
Jn∗

1
On∗

1×n∗
2

On∗
2×n∗

1

1
n∗
2
Jn∗

2

.

Recall that for given training dataset X , we define D′ in (B.1) and write

D′ = {i1, . . . , im1+m2} so that il < il′ if l < l′. Similarly, for given indepen-

dent test dataset Y, let D∗ be an index set such that j ∈ D′∗ if and only

if the probability limit of cos(Angle(û∗
j ,U)) does not degenerate. Note that

the cardinality of D′∗ is (m1 + m2), and for notational simplicity, we write

D′∗ = {j1, . . . , jm1+m2} so that jl < jl′ if l < l′.

Proof First, we obtain the probability limit of û⊤
i û

∗
j . From Lemma 11 and

Lemma 3 (ii), the inner product û⊤
i û

∗
j becomes

û⊤
i û

∗
j =

(
λ̂i
p

)−1/2(
1
√
p
U(1)Λ

1/2
(1) Z(1)(In1 −

1

n1
Jn1)v̂i,1 +

1
√
p
U(2)Λ

1/2
(2) Z(2)(In2 −

1

n2
Jn1)v̂i,2

)⊤

(
λ̂∗j
p

)−1/2(
1
√
p
U(1)Λ

1/2
(1) Z

∗
(1)(In∗

1
− 1

n∗1
Jn∗

1
)v̂∗
j,1 +

1
√
p
U(2)Λ

1/2
(2) Z

∗
(2)(In∗

2
− 1

n∗2
Jn∗

2
)v̂∗
j,2

)
P−→ 1√

ϕi(S0)ϕj(S∗
0)
(W⊤(In − J)vi(S0))

⊤(W∗⊤(In∗ − J∗)vj(S
∗
0))

as p → ∞ where S∗
0 is the probability limit of p−1(Y − Ȳ)⊤(Y − Ȳ). Hence,

from the proof of Lemma 4, û⊤
i û

∗
j
P−→ 0 as p → ∞ if i /∈ D′ or j /∈ D′∗. Also,

for il ∈ D′ and jl′ ∈ D′∗, we have

û⊤
il
û∗
jl′

P−→ 1√
ϕl(Φτ1,τ2)ϕl′(Φ

∗
τ1,τ2)

m∑
k=1

ΦlkΦ
∗
l′k (B.9)

as p→ ∞ whereΦlk =
∑2

i=1[R(i)]kΦ
1/2
(i) ṽli(Φτ1,τ2) andΦ∗

l′k =
∑2

i=1[R(i)]kΦ
1/2∗
(i) ṽl′i(Φ

∗
τ1,τ2).
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Next, to obtain the probability limit of w⊤
MDPû

∗
j , note that

w⊤
MDPû

∗
j = û∗⊤

j

Û2Û
⊤
2 d

∥Û2Û⊤
2 d∥

=
1

κMDP

(
1
√
p
û∗⊤
j d− 1

√
p
û∗⊤
j Û1Û

⊤
1 d

)
.

Using similar arguments to the proof of Lemma 12, for jl′ ∈ D′∗, we can show

that
1
√
p
û∗⊤
jl′

d
P−→ 1√

ϕl′(Φ
∗
τ1,τ2)

m∑
k=1

rkΦ
∗
l′k (B.10)

and

1
√
p
û∗⊤
jl′

Û1Û
⊤
1 d =

∑
i∈D′

(û∗⊤
jl′

ûi)

(
1
√
p
û⊤
i d

)
+ op(1)

P−→ 1√
ϕl′(Φ

∗
τ1,τ2)

m1+m2∑
i=1

m∑
k=1

m∑
k′=1

1

ϕi(Φτ1,τ2)
rk′ΦikΦik′Φ

∗
l′k

(B.11)

as p → ∞ where rk is defined in Lemma 12. Combining (B.10) and (B.11)

gives

w⊤
MDPû

∗
jl′

P−→ 1

κ
√
ϕl′(Φ

∗
τ1,τ2)

m∑
k=1

m∑
k′=1

(
δkk′ −

m1+m2∑
i=1

1

ϕi(Φτ1,τ2)
ΦikΦik′

)
rk′Φ

∗
l′k

(B.12)

as p → ∞. In contrast, for j /∈ D′∗, p−1/2û∗⊤
j d

P−→ 0, p−1/2û∗⊤
j Û1Û

⊤
1 d

P−→ 0

and thus w⊤
MDPû

∗
j
P−→ 0 as p→ ∞.

Let ξi,j be the probability limit of û⊤
i û

∗
j and ξMDP,j be the probability

limit of w⊤
MDPû

∗
j , and write ξj = (ξ1,j , . . . , ξn−2,j , ξMDP,j)

⊤ for 1 ≤ j ≤ m.

Also, let V = [û1, . . . , ûn−2, wMDP] and denote the probability limit of the

(n−1)×(n−1) matrix p−1V⊤S∗
WV by L. Since û⊤

i û
∗
j
P−→ 0 and w⊤

MDPû
∗
j
P−→ 0

as p→ ∞ for j /∈ D′∗, we have ξj = 0n−1 for j /∈ D′∗ and

L =

m1+m2∑
l′=1

ϕl′(Φ
∗
τ1,τ2)ξjl′ξ

⊤
jl′
.
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Meanwhile, we define the (n− 2)×m matrix Ω1 such that

[Ω1]il,j = [Ω̃1]l,j (B.13)

for 1 ≤ l ≤ m1 +m2 and 1 ≤ j ≤ m where

[Ω̃1]l,j =
1√

ϕl(Φτ1,τ2)
Φlj (B.14)

and [Ω1]i,j = 0 for i /∈ D′ and 1 ≤ j ≤ m. Also, we define the (n − 1) ×m

matrix Ω = [Ω⊤
1 ω1]

⊤ where

ω1 =
1

κ
(Im − Ω̃

⊤
1 Ω̃1)r. (B.15)

Lastly, we define the (m1 +m2)×m matrix Ω̃
∗
1 such that

[Ω̃
∗
1]i,j =

1√
ϕi(Φ

∗
τ1,τ2)

Φ∗
ij (B.16)

for 1 ≤ i ≤ m1 +m2 and 1 ≤ j ≤ m. Then from (B.9) and (B.12),

Ξ = [ξj1 , . . . , ξjm1+m2
] = ΩΩ̃

∗⊤
1 . (B.17)

Since both of Ω and Ω̃
∗
1 are of rank m, by Sylvester’s rank inequality, we have

rank(L) = rank(Ξ) = span(Ω) = m.

B.3 Proof of Theorem 7

Proof For any given {w} ∈ Ā, there exists {v} such that v ∈ span(VQ̂2)

and ∥w − v∥ P−→ 0 as p → ∞. Thus it suffices to show that v⊤uj
P−→ 0 as

p → ∞. Let v = Vb such that b ∈ span(Q̂2). Note that for all 1 ≤ i ≤ m, q̂i

converges to vi(L) in the m-dimensional subspace span(Ξ) = span(Ω). Hence,
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for b ∈ span(Q̂2), b is asymptotically orthogonal to span(Ω). From Lemma 4

and (B.8), we have

v⊤uj = b⊤V⊤uj = b⊤[Ω]j + op(1)
P−→ 0 (B.18)

as p→ ∞.

B.4 Proof of Theorem 8

Proof For any given {w} ∈ Ā, we assume w = Va where a = (a1, . . . , an−2, aMDP)
⊤

satisfies aMDP
P−→ ψMDP as p → ∞. Recall that there exists {v} such that

v ∈ span(VQ̂2) and ∥w − v∥ P−→ 0 as p → ∞. Write v = Vb with b =

(b1, . . . , bn−2, bMDP)
⊤. Then ∥w − v∥ = ∥a − b∥ P−→ 0 and bMDP

P−→ ψMDP as

p→ ∞. Thus, by (B.3) and (B.7),

1
√
p
w⊤(Y − X̄) =

1
√
p
v⊤(Y − X̄) + op(1)

and it suffices to obtain the probability limit of p−1/2v⊤(Y − X̄). For any

observation Y , which is independent to both of X and Y, assume that π(Y ) =

1. Combining (B.3), (B.7) and (B.18) gives

1
√
p
v⊤(Y − X̄) =

1
√
p
b⊤V⊤(Y − X̄)

=
m∑
j=1

tjb
⊤[Ω]j +

ψMDP

κ

(
η2(1− cos2 φ)δ2 − τ21 − τ22

n

)
+ op(1)

P−→ ψMDP

κ

(
η2(1− cos2 φ)δ2 − τ21 − τ22

n

)
as p → ∞ where tj is defined in the proof of Theorem 5. Similarly, we can

show that

1
√
p
w⊤(Y − X̄)

P−→ ψMDP

κ

(
−η1(1− cos2 φ)δ2 − τ21 − τ22

n

)
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as p → ∞ for any observation Y , independent to both of X and Y, with

π(Y ) = 2.

B.5 Proof of Theorem 9

Proof From Theorem 8, for {w} ∈ Ā with w = Va and aMDP
P−→ ψMDP

as p → ∞, we can check that an asymptotic distance between the two piles

of independent test data is D(w) = κ−1ψMDP(1 − cos2 φ)δ2. Let wSMDP =

VaSMDP = ∥Q̂2Q̂
⊤
2 eMDP∥−1VQ̂2Q̂

⊤
2 eMDP where eMDP = (0⊤n−2, 1)

⊤. Note

that

e⊤MDP

Q̂2Q̂
⊤
2 eMDP

∥Q̂2Q̂⊤
2 eMDP∥

= ∥Q̂⊤
2 eMDP∥. (B.19)

To derive the probability limit of ∥Q̂⊤
2 eMDP∥, we characterize an orthonor-

mal basis of span(Ω)⊥, which is the orthogonal complement of the (n−m−1)-

dimensional subspace of span(Ω). Note that span(Ω1)
⊥, which is the orthog-

onal complement of span(Ω1), is (n − m − 2)-dimensional subspace and let{
ψ1,1, . . . ,ψn−m−2,1

}
be an orthonormal basis of span(Ω1). Also, let ψi =

(ψ⊤
i,1, 0)

⊤ ∈ Rn−1 for all 1 ≤ i ≤ n−m− 2. Then ψ1, . . . ,ψn−m−2 are orthog-

onal to each other and ψi ∈ span(Ω)⊥ for all 1 ≤ i ≤ n−m− 2.

Now, let ψ0 = (ψ⊤
0,1, ψ0,MDP)

⊤ ∈ Rn−1 such that

[ψ0,1]il =

[
ψ0,MDP

κ
Ω̃1(Im − (Ω̃

⊤
1 Ω̃1)

−1)r

]
l

and [ψ0,1]i = 0 for i /∈ D′ and

ψ0,MDP =
κ√

κ2 + r⊤(Im − (Ω̃
⊤
1 Ω̃1)−1)Ω̃

⊤
1 Ω̃1(Im − (Ω̃

⊤
1 Ω̃1)−1)r

. (B.20)
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Note that ψ0 is a unit vector. Then since

Ω⊤ψ0 = Ω⊤
1 ψ0,1 + ψ0,MDPω1

=
ψ0,MDP

κ
Ω̃

⊤
1 Ω̃1(Im − (Ω̃

⊤
1 Ω̃1)

−1)r+
ψ0,MDP

κ
(Im − Ω̃

⊤
1 Ω̃1)r = 0m,

we have ψ0 ∈ span(Ω)⊥. It is obvious that ψ0 is orthogonal to ψi for all

1 ≤ i ≤ n −m − 2, and thus
{
ψ0,ψ1, . . . ,ψn−m−2

}
is an orthonormal basis

of span(Ω)⊥. Hence,

∥Q̂⊤
2 eMDP∥

P−→

√√√√[ψ0]
2
n−1 +

n−m−2∑
i=1

[ψi]
2
n−1 = ψ0,MDP

as p→ ∞ and

D(wSMDP) =
ψ0,MDP

κ
(1− cos2 φ)δ2 =: υ(1− cos2 φ)δ2 > 0

where

υ =
(
κ2 + r⊤(Im − Ω̃

⊤
1 Ω̃

−1
1 )Ω̃

⊤
1 Ω̃1(Im − (Ω̃

⊤
1 Ω̃1)

−1)r
)−1/2

(B.21)

with probability 1. For each p, let {wSMDP, f1, . . . , fn−m−2} be an orthonormal

basis of span(VQ̂2) and {wSMDP, f1, . . . , fn−m−2, g1, . . . , gm} be an orthonor-

mal basis of SX . For 1 ≤ i ≤ n −m − 2, write fi = ∥Q̂2Q̂
⊤
2 ai∥−1VQ̂2Q̂

⊤
2 ai.

To obtain D(fi), we need to derive the probability limit of

e⊤MDP

Q̂2Q̂
⊤
2 ai

∥Q̂2Q̂⊤
2 ai∥

=
e⊤MDPQ̂2Q̂

⊤
2 ai

∥Q̂⊤
2 ai∥

. (B.22)

Since wSMDP is orthogonal to fi, we have

w⊤
SMDPfi =

e⊤MDPQ̂2Q̂
⊤
2 ai

∥Q̂⊤
2 eMDP∥∥Q̂⊤

2 ai∥
= 0

for all p. Note that ∥Q̂⊤
2 eMDP∥ converges to a strictly positive random variable,

thus the probability limit of (B.22) is zero and D(fi) = 0 for 1 ≤ i ≤ n−m−2.
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We now show that wSMDP is a second maximal data piling direction. For

any given {w} ∈ Ā, write w = a0wSMDP +
∑n−m−2

i=1 aifi +
∑m

i=1 bigi. Recall

that for {w} ∈ Ā, there exists {v} such that v ∈ span(VQ̂2) and ∥w−v∥ P−→ 0

as p → ∞. Hence, bi = op(1) for 1 ≤ i ≤ m and since D(fi) = 0 for

1 ≤ i ≤ n − m − 2, using similar arguments in the proof of Theorem 3.3

of Chang et al. [2021], we can show that D(w) ≤ D(wSMDP) for any {w} ∈ Ā

and the equality holds when ∥w − wSMDP∥
P−→ 0 as p→ ∞.
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국문초록

본 연구에서는 이질적인 공분산 모형을 가정하는 고차원 이항 분류 문제에 대한

두 가지 데이터 파일링 현상을 구체화한다. 데이터 파일링 현상은 훈련 데이터를

방향 벡터에 사영하였을 때 각 범주마다 정확히 두 개의 다른 값을 갖는 현상을

말한다. 첫 번째 데이터 파일링 현상은 데이터의 차원 p가 표본 크기 n보다 큰

경우 항상 발생한다. 이 연구에서는 새로운 테스트 데이터의 파일링을 의미하는

두 번째 데이터 파일링 현상이 표본 크기 n은 고정되어 있을 때 데이터의 차원 p

가증가하는점근적상황에서발생할수있음을보인다.또한테스트데이터의두

더미사이의최대점근거리를만드는두번째최대데이터파일링방향은첫번째

최대 데이터 파일링 방향을 공통의 선행 고유벡터로 구성되는 공간의 직교여공

간에 투영하여 얻을 수 있음을 보인다. 두 번째 데이터 파일링 현상을 바탕으로,

일반화된이질적스파이크공분산모형하에서고차원저표본데이터를완벽하게

분류할 수 있는 새로운 선형 분류 방법을 제안한다.

주요어: 고차원 저표본, 분류, 최대 데이터 파일링, 스파이크 공분산 모형, 고차원

점근 이론

학번: 2021-29052
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