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ABSTRACT

Functional Classification for Semiconductor

Process Data

Geon Hee Han
The Department of Statistics
The Graduate School

Seoul National University

In the semiconductor industry, the exponential growth of data
necessitates the development of efficient analysis techniques. Opti-
cal Emission Spectroscopy (OES) dataset, originating from semi-
conductor process, is a complex dataset that can be considered as
functional data in both the time and wavelength domains. The the-
sis focuses on exploring various statistical methods to effectively
classify such functional data. Specifically, the thesis investigates
the utilization of Functional Principal Components (FPCs) and
Functional Logistic Regression as tools to address the classification
challenges. The main objective of this thesis is to employ different
functional classification models to classify the success of semicon-

ductor process using OES dataset. To achieve this objective, the



thesis compares the performance of these functional classification
models by using Accuracy and other relevant evaluation metrics
such as Specificity and AUC. Through this comparative analy-
sis, the thesis aims to evaluate the effectiveness of the employed
functional classification models in accurately classifying the suc-
cess of semiconductor processes. Additionally, the thesis extends
its evaluation to another real dataset, providing a comprehensive
examination of the models’ performance. Finally, we discuss some
limitations of this research and the need for improved performance
of the models.

Keywords: Functional data analysis, Classification, Functional
principal component analysis, Functional classification trees, Func-
tional logistic regression, Fused Lasso.
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Chapter 1

Introduction

In recent years, there has been an increasing need for efficient
analysis methods to handle the large volumes of data collected
from various industries, such as semiconductor and financial com-
panies. A lot of data involve continuous observations in terms of
time, wavelength, and other parameters that can be considered
as functional data. Functional Data Analysis (FDA) is a powerful
statistical tool that is widely used to analyze such data. It has
demonstrated a lot of success in many fields that involve high-
dimensional data analysis, including finance, biology, and engi-
neering.

The primary focus of this paper is on the classification of Op-
tical Emission Spectroscopy (OES) dataset, a high-dimensional
dataset obtained from semiconductor etching process. This data
can be regarded as functional data with respect to time and wave-
length. Due to the large volume and high dimensionality of the
data, effective dimension reduction methods are crucial for im-

proving the analysis performance.



To address this problem, this paper reviews recent methods
that utilize Functional Principal Component Analysis (FPCA)
for functional data classification. The first method is supervised
FPCA, as proposed by Nie (2018) ([12]), which uses leading FPC
scores to predict a binary response variable. The second method,
proposed by Maturo and Verde (2023) ([I1]), offers a classifica-
tion method that combines FDA and tree-based models. Lastly,
Chatterjee et al. (2023) ([3]) suggests using FPCA for each class,
preserving class-specific information through projection onto func-
tional subspaces.

Furthermore, this paper focuses on combining the fused lasso
penalty with the functional logistic model. Kim, H and Kim, H
(2018) ([7]) proposed this model for classifying functional data and
identifying significant interval, such as time or wavelength interval.
As a result, this model can be valuable for industries that utilize
substantial amounts of time series data or wavelength signal data.

In this thesis, we not only focus on the classification of OES
dataset but also apply the proposed methods to other dataset.
Chapter 2 provides a comprehensive review of Functional Data
Analysis and a brief overview of functional classification meth-
ods. Chapter 3 explains the methodology of the functional logistic
model with the fused lasso penalty. In Chapter 4, we apply the
proposed methods to real datasets, including OES dataset. Lastly,

in Chapter 5, we present concluding remarks.



Chapter 2

Background

2.1 Functional Data Analysis (FDA)

2.1.1 Overview of FDA

Functional data analysis is a powerful methodology used to ana-
lyze complex datasets that vary over a continuum of values. This
approach enables researchers to represent data as smooth curves
or functions, uncovering patterns and relationships that may not
be clear when using traditional statistical techniques. As a result,
it has become an increasingly valuable tool across various research
fields.

To perform functional data analysis, the observations Z;; are
transformed into a functional form X;(t), where i = 1,..., N and
t =1,...,T. This conversion assumes smoothness, and a basis func-
tion is used to achieve this representation. The choice of an appro-
priate basis function is crucial, as it can significantly impact the

accuracy and interpretability of the analysis. The functional form



can be represented as:
K
Xi(t) ~ pi(t) + Y cadp(t) = mi(t) + el ¢(1), i=1,2,...N
k=1

where ¢; = (¢, ..., cip)T is the vector of coefficients which defines
linear combination and ¢g(t) is the k-th basis function. It is possi-
ble to assume that p;(¢) = 0 without loss of generality, so for the
rest of this paper we assume p;(t) = 0.

With this basis representation, functional data can be analyzed
using various statistical techniques, such as Principal Component
Analysis (PCA) or regression analysis, enabling researchers to gain
valuable insights and make important decisions based on the un-

derlying functional patterns.

2.1.2 Functional Principal Component Analysis (FPCA)

Among the many statistical methods used in FDA, Functional
Principal Component Analysis (FPCA) is one of the most com-
monly employed techniques. FPCA is used to effectively reduce the
dimensionality of functional data which inherently has an infinite
number of dimensions, into a finite-dimensional representation.
This is achieved by determining an orthogonal basis that captures
the maximum amount of variability present in the data.

In FPCA, the functional data X (¢) can be represented using

the Karhunen-Loéve expansion as follows:
P
X() = ajgi(t) = o) (1)
j=1

where &;(t),j = 1,...,p are referred to as Functional Princi-

pal Components (FPCs) that are mutually orthogonal, and «;

4
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is called jth FPC score. Additionally, « is defined as the vec-
tor (ag,...,a,)T, while £(¢) is the vector (£1(t),...,&(t)T. In
practice, only the leading p FPCs are usually considered, making
FPCA a computationally efficient method with broad applicability
in various fields.

Through this process, we can obtain an approximation of the
observed curves, effectively representing the original functional
data using a reduced set of FPCs. This approach can be seen
as an extension of the original PCA, adapted to handle functional
data. The difference from original PCA is that FPCA assumes the
smoothness, which requires the definition of the .#? inner prod-
uct as (f,g) = [, f(t)g(t)dt. The norm [|£|| is then defined as
€l = VIIEN? = V(€. €).

We summarize some formulas used in FPCA. Specifically, k-th

FPC score is given by

Q. = /g X(t)fk(t)dt

where the weight function & is an eigenfunction that satisfies the

following eigenequation:
v~ [ otna

Here, the empirical covariance function is defined as C(s,t) =
LS L Xi(s)Xi(t), where X;(t) represents the i-th independent
realization of X (t). Moreover, € is referred to as the empirical
covariance operator. The specific method of estimating & will be
covered in the next section.

Therefore, by utilizing the mentioned FPCA technique, we can

effectively capture the main modes of variation in the functional



data, resulting in a more concise representation of the complex
dataset. This dimensionality reduction can facilitate subsequent

analysis and enhance the interpretability of the results.

2.2 Functional Classification Models

2.2.1 Supervised FPCA

In this subsection, we provide a review of the supervised Func-
tional Principal Component Analysis (SFPCA) method proposed
by Nie(2018) ([I2]). This method is distinct in that it considers
the correlation between the functional predictor and the response
variable.

Our objective is to classify new unseen curves, so we employ
the Functional Linear Model based on the following FPCA-based

model:

E(YX(1) = g (ﬁo [ X(t)ﬁ(t)dt> 1 CE 30N ECEIOT
| 2. |

(2)

by using . This model can also be represented as:
E(Y|X(1) =g (Bo +a") (3)

P .
where 8(t) = > v;&(t) = 4T&(t). To estimate (), we maximize
j=1

the following objective function:

(¢, €€) + (1 — 0)cov?(Y, (X, €))
Q) = R

subject to [[£][x = 1, <£,£j> =0, for every j < k, and 0 < 6 < 1.

Here, the regularized norm is defined as [|¢][x = /[|€]]2 + || Z22f|2



where 2%f = [, f"(t)dt to consider a higher degree of smooth-
ness. The weight parameter 6 allows for adjusting the balance
between the first and second terms in the numerator. A value of
0 = 1 corresponds to the conventional FPCA introduced in sec-
tion 2.1.2, which does not consider the correlation. The level of
smoothness is controlled by the smoothing parameter .

The analysis in this paper is limited to the situation where Y
is binary, as the primary interest is in classification problems. In

this case, cov?(Y, (X, &)) in Q(€) is replaced with R(€), given by:

1/ S A 2
R(§) = - (Z Yz‘%’) t <Z(1 - Yz‘)%‘)

i=1 i=1
where n; is the number of occurrences of Y; = j for j = 0,1. By
using this term, we can estimate ék(t), k=1,...,p.
Therefore, to classify new curves, we employ the functional

logistic linear model based on (3)). The model is fitted as follows:
logit {P(Y = 1)} = o+ a” (4)

We estimate the coefficient vector 4 by performing regression of
the response variable Y on the FPC scores « in . Then we can
obtain 3(t) = 47(t) and finally we can classify another set of test
data by using .

By following these steps, we can effectively classify new un-
seen curves using the sSFPCA method. It additionally considers the
correlation between the functional predictor and binary response
variable that is different from conventional FPCA. This additional

consideration can contribute to the improvement of accuracy.



2.2.2 Tree-based Methods using FPCs

In a recent study by Maturo and Verde(2023) ([I1]), a novel com-
bined approach of FDA and tree-based methods was proposed to
address functional classification problems. The functional data can
be represented as shown in , where each observation x;(t) can
be decomposed as a linear combination of the first p FPCs. It can
be represented as:

P

:U’L(t) = Zvikgk(t)v 1= 1)2) e T

k=1
To integrate the functional representation into tree-based models,
the FPC score matrix V is utilized, where each row corresponds

to the FPC scores of an individual curve. V' is represented as:

Vi1 V12 e Vlp
U1 V22 v V2p

V=| . (5)
Unl Un2 - Unp

The matrix V' can then be used as input to tree-based models, such
as classification trees, bagging, and boosting to develop a classi-
fication model for functional data. This process aims to improve
classification performance by leveraging the strengths of both FDA
and tree-based methods.

First, let’s explore Functional Classification Trees with Func-

tional Principal Components (FCT-FPCs). Similar to traditional

classification trees, FCT-FPCs recursively split the data into smaller

subsets based on the values of predictor variables, aiming to create

subsets that are more homogeneous in terms of their class labels.

;ﬁ'! 2 1_..” .__;J!_ W



However, instead of using traditional predictor variables, FCT-
FPCs use the scores of the FPCs obtained from the decomposition
given in . This approach enables the use of functional data in
classification problems and provides a way to identify which FPCs
are more important in predicting class labels.

Second, Functional Bagging (FBAG) is a technique for improv-
ing the accuracy of FCTs by aggregating the results of multiple
FCTs. Multiple FCT's are constructed using bootstrap samples of
FPCs, and the results are combined by taking a majority vote
of the predicted classes. This approach can help reduce overfit-
ting and improve the generalizability of the model. Another tech-
nique for improving the performance of decision trees is Functional
Boosting (FBOOST), which involves iteratively constructing a se-
quence of FCTs. Each subsequent tree focuses on the observations
that were misclassified by the previous tree, resulting in a highly
accurate classification model. However, FBOOST can be more
computationally intensive and prone to overfitting than FBAG.

Finally, Functional Random Forest (FRF) is an advanced tech-
nique for classification that builds upon FBAG by constructing
multiple FCTs, each based on a random subset of m FPCs out of
the total p FPCs. This process helps reduce the variance when av-
eraging FPCs, thereby reducing correlation among FCTs. Notably,
when m equals k, FRF becomes equivalent to FBAG.

In summary, the proposed combined approach of FDA and
tree-based methods offers a powerful framework for functional
classification problems, utilizing the strengths of both method-

ologies to achieve accurate and interpretable classification models



for functional data.

2.2.3 Functional Classwise PCA

Functional Classwise PCA (FCPCA), proposed by Chatterjee et al.

(2023) ([3]), is a recent method for performing classification on
functional data while preserving class-specific information. The
approach utilizes class-wise FPCA to eliminate non-informative
subspaces of the data by mapping it to a lower-dimensional space.
This approach helps identify and eliminate the non-informative
subspaces of the data while retaining the most informative sub-
spaces for classification. Consequently, it reduces the dimension-
ality of the data while maintaining its discriminatory power.
This method consists of two main parts: functional feature
extraction and classification. In the first step, functional features
are extracted using Gram-Schmidt orthonormalization. For each
class w;, we calculate the sample mean fi; from a set of functional
observations X1 ;, ..., Xy, ;, where n; is the number of observations
of class w;. Then, we form a set F; = {fu;,..., fg} of empirical
functional principal components of the class w;, and augment it
with a set G = {(t) — fu(t), 4(t) — fi2(t), .., (1(t) — fre-1(2)} of
differences between the grand mean and the class means, where ¢
is the number of classes. The set {F;, G} is then orthonormalized
using the Gram-Schmidt orthonormalization process to maintain
the directions of the projections. The resulting orthonormal set
contains ¢g; + ¢ — 1 functions, which generate a subspace S;. Thus,

given a test curve X*, we can project it onto each of the ¢ subspaces

10



S1,...,Sc using the following mappings:

gi+c—1

X(*i): Z (X — fis, foi) froi, i=1,...,¢,

k=1
where (-,-) denotes the inner product.

In the second step, an unknown curve observation X* is classi-
fied into one of ¢ classes. The coefficient vector in the 7th subspace
is calculated as ((X* — fi, f1i)y - -, (X* = fii, fgte—1,4)) T, which we
represent as v;. The estimated posterior probabilities p (wg|v;) are
then obtained using Linear Discriminant Analysis (LDA). At this
stage, the mean and covariance matrix of each class are estimated
using the coefficient matrix of training sample curves. Finally, the
class of X* is assigned by finding the index j that maximizes p(®),

where p() = lrg?éccﬁ(wﬂvi),i =1,...,c

11



Chapter 3

Methodology

3.1 Functional Logistic Regression

The functional logistic model is a useful approach that effectively
handles classification problems involving functional predictors. It
is a powerful statistical framework that extends the traditional
logistic regression model. The functional logistic model allows us
to accommodate time-varying or wave-specific effects of continu-
ous predictors, offering a flexible approach for modeling a binary
response variable.

We consider a binary response variable, denoted as y; € {0,1},
and the functional predictor, represented as x;(t),i = 1,2,..., N.
Assuming y; follows a Bernoulli distribution with a success proba-
bility 7;, the functional logistic regression model can be expressed

as:

oy exp{a+ [ mi(t)B() dt)
m = P(Y; = 1|z(t)) = 1+ exp {a —i—gfy z;(t)B(t) dt}

where « is the intercept term, §(t) represents the time-varying or

12



wave-specific effect parameter of the functional predictor. Alter-

natively, we can express the model using the logit transformation:

log (1 fﬂ) —a+ /9 2i(£)B(t) dt (6)

This formulation allows us to interpret the model in terms of log-

odds, where the left-hand side represents the logit of the success
probability.

This model becomes particularly valuable when dealing with
predictors that vary over time or wavelengths, such as semicon-
ductor data or time series data. This advantage allows researchers
to find complex patterns and make more accurate predictions
when working with such data. Consequently, the functional logis-
tic model becomes a powerful tool for classifying functional data

in various fields.

3.2 Fused Lasso

The fused lasso method was first introduced by Tibshirani et al.
(2005) ([14]). It is a regularization method particularly useful when
dealing with situations where important variables exhibit a con-
tinuous occurrence centered around peaks, necessitating the con-
sideration of adjacent variables simultaneously. The fused lasso
method is a variant of the lasso regularization designed to pro-
mote sparsity while encouraging grouping of adjacent variables.
As a result, the fused lasso effectively accounts for the smoothness
and continuity of the variables.

To estimate the coefficient vector (3, the fused lasso method

13



uses the following optimization problem:

p

P P
BFL — arg min Z(yi — 2B + A\ Z 18] + A2 Z 1B; — Bj—1l

B j=1 j=1 =2

The objective function aims to minimize the squared distance be-
tween the response variable y; and the linear combination of the
predictors xiTB , while also considering the L1 penalty term includ-
ing A for sparsity in the coefficients and Ay for sparsity in their
differences. By solving this optimization problem, we can obtain

the estimated coefficient vector BF L

3.3 Functional Logistic Regression with Fused

Lasso Penalty

Kim, H, and Kim, H (2018) ([7]) proposed a novel approach for
classifying functional data. This method integrates the functional
logistic regression model as a classifier with the fused lasso penalty
to identify discriminant segments and this is called FLR-FLP.
FLR-FLP can be viewed as an interval-based classification ap-
proach that considers the inherent characteristics of functional
data, including smoothness and continuity.

The functional predictor variable z;(t) is decomposed using
cubic B-spline basis function ¢;(t). The decomposition can be ex-

pressed as:
3+m+1

zi(t) = Z cijdi(t) = ' c;

j=1
where ¢;; is the coefficient of these basis functions, and m is the

number of interior knots. Additionally, the parameter function £(t)

14



is decomposed using the unit step function ¢ (¢). The unit step
function is defined as ¥ (t) = I(ug < t < ug41), where uy denotes
the ordered knot point. The function 3(t) can be expressed as the

sum of these step functions:

K
B(t) = mk(t) =Ty
k=1

where K is the number of time points minus one, and -~y is the
coefficient associated with the k-th step function. As a result, the

integral term in the logistic regression model can be expressed as:
[ syt = [ TyaTeidt=7([ bo" dtje="Be,
T T T

where B = (by;) and by; = [, 1x(t)¢;(t) dt. Finally, @ is equiv-
alently expressed as:

li=a+ ’)’TBCz’ (7)

We only need to estimate o and = in . To achieve this, the
model uses the conditional log-likelihood function:

N

L(a,7) = Y _[yili — log(1 + exp(l;))]
i=1

Then, the model estimates a and ~ by minimizing the penalized

likelihood functions:

K K
min < — L(a,y) 4+ M\ Z |7k + A2 Z |k — ’Ykﬂ) (8)

o k=1 k=2
where A1 and Ay are hyperparameters that can be selected through
cross-validation. Equation can be solved by convex optimiza-
tion technique since both the negative log-likelihood function and

absolute function are convex. To perform the optimization, this

15



paper uses CVXR, an R package specifically designed for con-
vex optimization ([I]). The resulting non-zero coefficients obtained
through this process represent significant intervals that are crucial

in classifying the curves.

16



Chapter 4

Real Data Analysis

4.1 Optical Emission Spectroscopy (OES)

dataset

4.1.1 Data preprocessing

OES dataset used in this study consists of high-dimensional data
obtained from Etching process, which is an important step in semi-
conductor manufacturing. A total of 307 wafers were observed and
the response variable, denoted as z;, is bounded within the inter-
val [0, 1]. Also, there are OES values that were measured by three-
dimensional covariate X composed of j substeps, T} time points,
and m wavelength points.

For this reason, the OES dataset can be considered as func-
tional data with respect to time, wavelength, and substep. Specifi-
cally, each observation can be expressed as z; = f(X; j(tj1, A\jm))+
g; where 7 represents the wafer index, j denotes the substep index,

[ represents the time index, and m corresponds to the wavelength

17



index. The presence of an error term &; represents the noise in the
measurements.

In this study, we examine the OES dataset from a classification
perspective. To analyze the classification task, the continuous vari-
able z; is replaced with a categorical variable y;, representing the
quality of the semiconductor process. Specifically, we define two
classes: class 0 and class 1. Class 0 corresponds to the situations
where z; < 0.4 or z; > 0.6, indicating a poor quality of semicon-
ductor process. On the other hand, class 1 represents the cases
where 0.4 < z; < 0.6, indicating a good quality of semiconductor

process.

4.1.2 Procedure

We observed that the dataset consists of 307 wafers, with 86 wafers
belonging to class 0 and 221 wafers belonging to class 1. This im-
plies that the proportion of wafers representing a good semicon-
ductor process is approximately 72.0%, indicating that the dataset
used for the classification analysis is imbalanced.

When visualizing the 307 curves over time at a fixed wave-
length for each substep, we can see that the two classes are chal-
lenging to distinguish each other. Similarly, when illustrating the
307 curves over wavelength at a specific time for each substep,
distinguishing the two classes is also difficult.

Furthermore, the wavelength curves show high similarity across
almost all fixed time points. To address this similarity, we adopt an
approach that involves calculating the mean value of the 7} time

points within each wavelength point for every substep. By calcu-

18



lating these mean values, we can capture the overall trend of the
wavelength variable while simultaneously reducing the dimension-
ality of the dataset. This technique allows us to summarize the
wavelength domain effectively and analyze its common patterns
and variations.

In Figure [4.1] we present the curve in the wavelength domain
obtained by averaging over the time points for Substep 2. This
illustration represents the transformed data with 221 curves of

class 1 (shown in green) and 86 curves of class 0 (shown in red).

Figure 4.1: Transformed data in wavelength domian by averaging

over time points

The main objective of this study is to apply various functional
classification models to predict the quality of new semiconductor
process based on the covariate X. We apply the classification mod-
els described in Chapter 2 and 3. To compare the performance of
these models, we use traditional performance measures like Accu-
racy, which is commonly used for balanced dataset. Additionally,
due to the imbalanced nature of the dataset with a majority of
good semiconductor process, we also consider Specificity and AUC

(Area Under the Curve) as evaluation metrics.

19
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4.1.3 Results

In this study, the total of 307 wafer sets are divided into 230
training sets and 77 test sets. The focus is on Substep 2 curves, as
shown in Figure When conducting the analysis, the original
data is used, not the transformed data. The evaluation of various
functional classification models using three metrics is presented
in Table It is apparent that most models achieve reasonable
accuracy, but their specificity and AUC are relatively low. This
indicates that the proportion of bad process correctly identified as
bad is much lower than the proportion of good process correctly

identified as good.

Model Accuracy AUC Specificity

sFPCA 0.77 0.58 0.21
FCTs 0.75 0.57 0.21
FBAG 0.78 0.61 0.26
FBOOST 0.74 0.54 0.11
FRF 0.77 0.55 0.10
FCPCA 0.77 0.58 0.22
FLR-LP 0.80 0.67 0.42
FLR-FLP 0.82 0.69 0.42

Table 4.1: Comparison of Models using Evaluation Metrics (OES
dataset)

The sFPCA model, with tuning parameters § = 0.1 and A = 10
and 4 FPCs, achieves an accuracy of 77%. However, it shows rel-

atively low AUC and specificity scores. This can be attributed to

20



Prediction
Reference 0 1
0 2 1
1 17 57

Table 4.2: Confusion Matrix of FRF using OES dataset

the data imbalance, where there is a large proportion of good pro-
cess. The same issue is encountered by tree-based models such as
FCTs, FBAG, FBOOST and FRF when classifying the data us-
ing 20 FPC scores. Also, similar results are obtained using FCPCA
with LDA assumptions, where 6 FPCs are used.

Among the models tested, the FLR-FLP model shows better
performance compared to the others. Through cross-validation,
the optimal values for the hyperparameters are determined as
A1 = 0.05 and A2 = 0.07. The FLR-LP model, which only im-
poses general Lasso constraints by setting Ay = 0, shows similar
(slightly worse) performance compared to the FLR-FLP model.

Also in the FLR-FLP model, the wavelength range [712nm,
717nm)] is identified as having the most significant impact on the
classification task. This finding is valuable as it provides useful in-
sights into the semiconductor process. In this context, developing
the FLR-FLP model with a focus on this important wavelength
interval holds great promise for enhancing semiconductor produc-
tion. It is anticipated to produce the superior-quality semicon-
ductors more effectively, thereby leading to a substantial improve-
ment in overall efficiency within the semiconductor manufacturing

industry.
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Prediction
Reference 0 1
0 8 3
1 11 55

Table 4.3: Confusion Matrix of FLR-FLP using OES dataset

Also, Table [4.2] and [4.3] show the confusion matrix of the FRF
and FLR-FLP models, respectively. Overall, both models exhibit
low classification performance, especially in terms of Specificity (0
to 0 classification). In Table the FRF model correctly classifies
2 out of 19 instances as class 0, and 57 out of 58 instances as class 1.
As a result, it shows very low performance in classifying instances
as 0 to 0, leading to a very low Specificity and AUC.

In contrast, Table demonstrates the improved performance
of the FLR-FLP model compared to the FRF model. The FLR-
FLP model correctly classifies 8 out of 19 instances as class 0
and 55 out of 58 instances as class 1. Its performance in terms of
classifying instances as 0 to 0 is significantly better than that of
the FRF model.

In conclusion, the FLR-FLP model shows improvement over
other models, particularly in classifying instances as 0 to 0. How-
ever, it is evident that this model also still has room for enhance-
ment in achieving higher classification performance. Further de-
velopment of these models could potentially lead to better overall

performance and higher AUC value.

22



4.2 DIPD dataset

4.2.1 Data description

The Daily Italy Power Demand (DIPD) dataset used in this study
is collected from [6]. The dataset consists of one year of Italian
Power Demand, represented as a time series. Similar to the clas-
sification process used for OES dataset, we consider these data as
functional data with respect to time. The objective of the task is
to classify two classes, distinguishing days from October to March
and from April to September.The dataset was standardized for

analysis.

4.2.2 Procedure

The dataset used in this study consists of a total of 67 training
sets and 1029 test sets. In this dataset, class 0 represents the time
period from October to March, while class 1 represents the time
period from April to September. Figure shows that the visual
representation of the training sets and test sets that the red line
corresponds to Class 0, and the green line corresponds to Class 1.

It is important to note that this dataset is balanced unlike OES
dataset, with almost equal number of samples for both classes in
the training sets. Specifically, there are 33 samples for class 1 and
34 samples for class 0 in the training sets. Similarly, in the test sets,
there are 516 samples for class 1 and 513 samples for class 0. This
balance between the two classes allows us to focus on accuracy
rather than the specific metrics such as specificity.

This time series data is transformed into functional data with
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(a) training sets (b) test sets

Figure 4.2: Visualization of DIPD dataset

respect to time t for analysis. Using this perspective, we apply
the same functional classification methods that are used for the
OES dataset. The evaluation of the various functional classifica-
tion models is done using two performance metrics, accuracy and
AUC. The tuning parameters for the models are determined in the

same manner as we do for the OES dataset.

4.2.3 Results

Table [4.4] presents the classification performance of various classi-
fication models. It is evident that both accuracy and AUC exhibit
higher values compared to the OES dataset, mainly due to the
clear distinction between the two classes. Consequently, all the
models demonstrate great overall model performance. The anal-
ysis procedure is consistent across all models, as is the case with

analyzing OES dataset.
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Model Accuracy AUC

sFPCA 0.7794 0.80
FCTs 0.9038 0.90
FBAG 0.9582 0.95
FRF 0.9271 0.92
FBOOST 0.9592 0.96
FCPCA 0.9495 0.95

FLR-LP 0.9312 0.93
FLR-FLP 0.9757 0.98

Table 4.4: Comparison of Models using Evaluation Metrics (DIPD
dataset)

Among the models, FLR-FLP outperforms the others, showing
the best performance with an accuracy of 97.57% and an AUC
of 0.98. For this classification, we select the tuning parameters
A1 = 0.05 and A2 = 0.04. The interval [19 to 20] is identified as
the discriminative range between class 0 and class 1. Figure 4.3
visually presents the two classes of curves within the interval [19
~ 20]. It is evident that the two classes are distinctly separated in
this interval. Based on these results, we can infer that this specific
time interval plays a crucial role in distinguishing between the
summer and winter seasons.

The classification process involves comparing the estimated
probability 7; to a threshold of 0.5. Observations with probability
greater than 0.5 is classified as class 1, while those with probabil-
ity less than or equal to 0.5 is classified as class 0. Specifically, we

can examine confusion matrix of the above models to gain further
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Figure 4.3: Discriminant interval [19,20] identified by FLR-FLP

Prediction
Reference 0 1
0 448 10
1 65 506

Table 4.5: Confusion Matrix of FRF using DIPD dataset

insights into their performance. Table and Table present
the confusion matrix for the FRF and FLR-FLP models, respec-
tively. In Table [£.5] the FRF model correctly classifies 448 out of
513 instances as class 0, and 506 out of 516 instances as class 1.
It misclassifies 65 instances of class 1 as class 0 and 10 instances
of class 0 as class 1. In Table [4.6] the FLR-FLP model shows
improved performance compared to the FRF model. It correctly
classifies 499 out of 513 instances as class 0, and 505 out of 516 in-
stances as class 1. It has fewer misclassifications, with 14 instances
of class 1 classified as class 0 and 11 instances of class 0 classified
as class 1.

Overall, these findings indicate that the FLR-FLP model, along

with the identified discriminative range and confusion matrix, is
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Prediction

Reference 0 1
0 499 11
1 14 505

Table 4.6: Confusion Matrix of FLR-FLP using DIPD dataset

a more reliable and powerful classification model for the DIPD

dataset. It achieves better accuracy in distinguishing between the

two classes and exhibits a less number of misclassifications by us-

ing specific time interval compared to other models.
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Chapter 5

Conclusion

In this paper, we have explored various functional classification
models for effectively classifying binary response variable. We have
applied recent methods that use Functional Principal Components
(FPCs) and the Functional Logistic Model to address classification
challenges. Through our analysis of two real datasets, we have
found that the model incorporating a fused lasso penalty demon-
strates better performance and provides valuable insights, such
as identifying significant wavelength interval in OES dataset and
time interval in DIPD dataset.

There are several important avenues for further research in the
field of functional classification using OES dataset. One important
aspect to consider is the development of classification models that
can enhance the performance of classification, particularly in terms
of Specificity. It is often crucial to accurately classify abnormal in-
stances as abnormal, and future models should focus on achieving
this goal.

Additionally, it is essential to explore the classification of mul-
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tivariate functional data itself. In our study, we transform mul-
tivariate data into univariate data by averaging with respect to
time. While this approach has its advantages such as dimension
reduction, it also imposes limitations. Future research should con-
centrate on developing methods that can effectively handle and
classify multivariate functional data directly, enabling a more com-
prehensive analysis.

Furthermore, extending the classification models to address
multiclass problem is another valuable direction for future re-
search. While our focus is on binary classification, many real-world
cases require the classification of data into multiple classes. De-
veloping efficient multiclass functional classification models would
provide valuable tools for a wide range of applications.

In conclusion, we should try to address these challenges and
advance traditional methods in functional classification, not only
for OES dataset but also for other dataset. This will lead to the
development of more accurate classification methods for complex
and substantial amounts of dataset across various domains. These
improved methods will enable us to effectively analyze and classify
functional data, leading to enhanced decision-making process and

improved outcomes in diverse fields and industries.
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