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ABSTRACT

Functional Classification for Semiconductor

Process Data

Geon Hee Han

The Department of Statistics

The Graduate School

Seoul National University

In the semiconductor industry, the exponential growth of data

necessitates the development of efficient analysis techniques. Opti-

cal Emission Spectroscopy (OES) dataset, originating from semi-

conductor process, is a complex dataset that can be considered as

functional data in both the time and wavelength domains. The the-

sis focuses on exploring various statistical methods to effectively

classify such functional data. Specifically, the thesis investigates

the utilization of Functional Principal Components (FPCs) and

Functional Logistic Regression as tools to address the classification

challenges. The main objective of this thesis is to employ different

functional classification models to classify the success of semicon-

ductor process using OES dataset. To achieve this objective, the
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thesis compares the performance of these functional classification

models by using Accuracy and other relevant evaluation metrics

such as Specificity and AUC. Through this comparative analy-

sis, the thesis aims to evaluate the effectiveness of the employed

functional classification models in accurately classifying the suc-

cess of semiconductor processes. Additionally, the thesis extends

its evaluation to another real dataset, providing a comprehensive

examination of the models’ performance. Finally, we discuss some

limitations of this research and the need for improved performance

of the models.

Keywords: Functional data analysis, Classification, Functional

principal component analysis, Functional classification trees, Func-

tional logistic regression, Fused Lasso.

Student Number: 2021-21150

ii



Contents

Abstract i

1 Introduction 1

2 Background 3

2.1 Functional Data Analysis (FDA) . . . . . . . . . . 3

2.1.1 Overview of FDA . . . . . . . . . . . . . . . 3

2.1.2 Functional Principal Component Analysis (FPCA) 4

2.2 Functional Classification Models . . . . . . . . . . 6

2.2.1 Supervised FPCA . . . . . . . . . . . . . . 6

2.2.2 Tree-based Methods using FPCs . . . . . . 8

2.2.3 Functional Classwise PCA . . . . . . . . . . 10

3 Methodology 12

3.1 Functional Logistic Regression . . . . . . . . . . . 12

3.2 Fused Lasso . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Functional Logistic Regression with Fused Lasso

Penalty . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Real Data Analysis 17

4.1 Optical Emission Spectroscopy (OES) dataset . . . 17

iii



4.1.1 Data preprocessing . . . . . . . . . . . . . . 17

4.1.2 Procedure . . . . . . . . . . . . . . . . . . . 18

4.1.3 Results . . . . . . . . . . . . . . . . . . . . 20

4.2 DIPD dataset . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Data description . . . . . . . . . . . . . . . 23

4.2.2 Procedure . . . . . . . . . . . . . . . . . . . 23

4.2.3 Results . . . . . . . . . . . . . . . . . . . . 24

5 Conclusion 28

Abstract (in Korean) 32

iv



List of Tables

4.1 Comparison of Models using Evaluation Metrics (OES

dataset) . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Confusion Matrix of FRF using OES dataset . . . 21

4.3 Confusion Matrix of FLR-FLP using OES dataset 22

4.4 Comparison of Models using Evaluation Metrics (DIPD

dataset) . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Confusion Matrix of FRF using DIPD dataset . . . 26

4.6 Confusion Matrix of FLR-FLP using DIPD dataset 27

v



List of Figures

4.1 Transformed data in wavelength domian by averag-

ing over time points . . . . . . . . . . . . . . . . . 19

4.2 Visualization of DIPD dataset . . . . . . . . . . . . 24

4.3 Discriminant interval [19,20] identified by FLR-FLP 26

vi



Chapter 1

Introduction

In recent years, there has been an increasing need for efficient

analysis methods to handle the large volumes of data collected

from various industries, such as semiconductor and financial com-

panies. A lot of data involve continuous observations in terms of

time, wavelength, and other parameters that can be considered

as functional data. Functional Data Analysis (FDA) is a powerful

statistical tool that is widely used to analyze such data. It has

demonstrated a lot of success in many fields that involve high-

dimensional data analysis, including finance, biology, and engi-

neering.

The primary focus of this paper is on the classification of Op-

tical Emission Spectroscopy (OES) dataset, a high-dimensional

dataset obtained from semiconductor etching process. This data

can be regarded as functional data with respect to time and wave-

length. Due to the large volume and high dimensionality of the

data, effective dimension reduction methods are crucial for im-

proving the analysis performance.
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To address this problem, this paper reviews recent methods

that utilize Functional Principal Component Analysis (FPCA)

for functional data classification. The first method is supervised

FPCA, as proposed by Nie (2018) ([12]), which uses leading FPC

scores to predict a binary response variable. The second method,

proposed by Maturo and Verde (2023) ([11]), offers a classifica-

tion method that combines FDA and tree-based models. Lastly,

Chatterjee et al. (2023) ([3]) suggests using FPCA for each class,

preserving class-specific information through projection onto func-

tional subspaces.

Furthermore, this paper focuses on combining the fused lasso

penalty with the functional logistic model. Kim, H and Kim, H

(2018) ([7]) proposed this model for classifying functional data and

identifying significant interval, such as time or wavelength interval.

As a result, this model can be valuable for industries that utilize

substantial amounts of time series data or wavelength signal data.

In this thesis, we not only focus on the classification of OES

dataset but also apply the proposed methods to other dataset.

Chapter 2 provides a comprehensive review of Functional Data

Analysis and a brief overview of functional classification meth-

ods. Chapter 3 explains the methodology of the functional logistic

model with the fused lasso penalty. In Chapter 4, we apply the

proposed methods to real datasets, including OES dataset. Lastly,

in Chapter 5, we present concluding remarks.
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Chapter 2

Background

2.1 Functional Data Analysis (FDA)

2.1.1 Overview of FDA

Functional data analysis is a powerful methodology used to ana-

lyze complex datasets that vary over a continuum of values. This

approach enables researchers to represent data as smooth curves

or functions, uncovering patterns and relationships that may not

be clear when using traditional statistical techniques. As a result,

it has become an increasingly valuable tool across various research

fields.

To perform functional data analysis, the observations Zit are

transformed into a functional form Xi(t), where i = 1, ..., N and

t = 1, ..., T . This conversion assumes smoothness, and a basis func-

tion is used to achieve this representation. The choice of an appro-

priate basis function is crucial, as it can significantly impact the

accuracy and interpretability of the analysis. The functional form
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can be represented as:

Xi(t) ≈ µi(t) +
K∑
k=1

cikϕk(t) = µi(t) + cTi ϕ(t), i = 1, 2, ..., N

where ci = (ci1, ..., cip)
T is the vector of coefficients which defines

linear combination and ϕk(t) is the k-th basis function. It is possi-

ble to assume that µi(t) = 0 without loss of generality, so for the

rest of this paper we assume µi(t) = 0.

With this basis representation, functional data can be analyzed

using various statistical techniques, such as Principal Component

Analysis (PCA) or regression analysis, enabling researchers to gain

valuable insights and make important decisions based on the un-

derlying functional patterns.

2.1.2 Functional Principal Component Analysis (FPCA)

Among the many statistical methods used in FDA, Functional

Principal Component Analysis (FPCA) is one of the most com-

monly employed techniques. FPCA is used to effectively reduce the

dimensionality of functional data which inherently has an infinite

number of dimensions, into a finite-dimensional representation.

This is achieved by determining an orthogonal basis that captures

the maximum amount of variability present in the data.

In FPCA, the functional data X(t) can be represented using

the Karhunen-Loève expansion as follows:

X(t) =

p∑
j=1

αjξj(t) = αT ξ(t) (1)

where ξj(t), j = 1, . . . , p are referred to as Functional Princi-

pal Components (FPCs) that are mutually orthogonal, and αj
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is called jth FPC score. Additionally, α is defined as the vec-

tor (α1, . . . , αp)
T , while ξ(t) is the vector (ξ1(t), . . . , ξp(t))

T . In

practice, only the leading p FPCs are usually considered, making

FPCA a computationally efficient method with broad applicability

in various fields.

Through this process, we can obtain an approximation of the

observed curves, effectively representing the original functional

data using a reduced set of FPCs. This approach can be seen

as an extension of the original PCA, adapted to handle functional

data. The difference from original PCA is that FPCA assumes the

smoothness, which requires the definition of the L 2 inner prod-

uct as ⟨f, g⟩ =
∫
T f(t)g(t)dt. The norm ∥ξ∥ is then defined as

∥ξ∥ =
√

∥ξ∥2 =
√

⟨ξ, ξ⟩.

We summarize some formulas used in FPCA. Specifically, k-th

FPC score is given by

αk =

∫
T
X(t)ξk(t)dt

where the weight function ξk is an eigenfunction that satisfies the

following eigenequation:

Ĉ ξk =

∫
T
Ĉ(·, t)ξk(t)dt.

Here, the empirical covariance function is defined as Ĉ(s, t) =

1
n

∑n
i=1Xi(s)Xi(t), where Xi(t) represents the i-th independent

realization of X(t). Moreover, Ĉ is referred to as the empirical

covariance operator. The specific method of estimating ξk will be

covered in the next section.

Therefore, by utilizing the mentioned FPCA technique, we can

effectively capture the main modes of variation in the functional
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data, resulting in a more concise representation of the complex

dataset. This dimensionality reduction can facilitate subsequent

analysis and enhance the interpretability of the results.

2.2 Functional Classification Models

2.2.1 Supervised FPCA

In this subsection, we provide a review of the supervised Func-

tional Principal Component Analysis (sFPCA) method proposed

by Nie(2018) ([12]). This method is distinct in that it considers

the correlation between the functional predictor and the response

variable.

Our objective is to classify new unseen curves, so we employ

the Functional Linear Model based on the following FPCA-based

model:

E(Y |X(t)) = g

(
β0 +

∫
T
X(t)β(t)dt

)
= g

β0 + p∑
j=1

αj

∫
T
β(t)ξj(t)dt


(2)

by using (1). This model can also be represented as:

E(Y |X(t)) = g
(
β0 + αTγ

)
(3)

where β(t) =
p∑

j=1
γjξj(t) = γT ξ(t). To estimate ξ̂k(t), we maximize

the following objective function:

Q(ξ) =
θ⟨ξ, Ĉ ξ⟩+ (1− θ)cov2(Y, ⟨X, ξ⟩)

∥ξ∥2λ

subject to ∥ξ∥λ = 1, ⟨ξ, ξ̂j⟩ = 0, for every j < k, and 0 ≤ θ ≤ 1.

Here, the regularized norm is defined as ∥ξ∥λ =
√
∥ξ∥2 + λ∥D2f∥2
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where D2f =
∫
T f ′′(t)dt to consider a higher degree of smooth-

ness. The weight parameter θ allows for adjusting the balance

between the first and second terms in the numerator. A value of

θ = 1 corresponds to the conventional FPCA introduced in sec-

tion 2.1.2, which does not consider the correlation. The level of

smoothness is controlled by the smoothing parameter λ.

The analysis in this paper is limited to the situation where Y

is binary, as the primary interest is in classification problems. In

this case, cov2(Y, ⟨X, ξ⟩) in Q(ξ) is replaced with R(ξ), given by:

R(ξ) =
1

n1

(
n∑

i=1

Yiαi

)2

+
1

n0

(
n∑

i=1

(1− Yi)αi

)2

where nj is the number of occurrences of Yi = j for j = 0, 1. By

using this term, we can estimate ξ̂k(t), k = 1, . . . , p.

Therefore, to classify new curves, we employ the functional

logistic linear model based on (3). The model is fitted as follows:

logit{P (Y = 1)} = β0 + αTγ (4)

We estimate the coefficient vector γ̂ by performing regression of

the response variable Y on the FPC scores α in (4). Then we can

obtain β̂(t) = γ̂T ξ̂(t) and finally we can classify another set of test

data by using (2).

By following these steps, we can effectively classify new un-

seen curves using the sFPCA method. It additionally considers the

correlation between the functional predictor and binary response

variable that is different from conventional FPCA. This additional

consideration can contribute to the improvement of accuracy.
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2.2.2 Tree-based Methods using FPCs

In a recent study by Maturo and Verde(2023) ([11]), a novel com-

bined approach of FDA and tree-based methods was proposed to

address functional classification problems. The functional data can

be represented as shown in (1), where each observation xi(t) can

be decomposed as a linear combination of the first p FPCs. It can

be represented as:

xi(t) =

p∑
k=1

vikξk(t), i = 1, 2, ..., n

To integrate the functional representation into tree-based models,

the FPC score matrix V is utilized, where each row corresponds

to the FPC scores of an individual curve. V is represented as:

V =


v11 v12 · · · v1p

v21 v22 · · · v2p
...

...
. . .

...

vn1 vn2 · · · vnp

 (5)

The matrix V can then be used as input to tree-based models, such

as classification trees, bagging, and boosting to develop a classi-

fication model for functional data. This process aims to improve

classification performance by leveraging the strengths of both FDA

and tree-based methods.

First, let’s explore Functional Classification Trees with Func-

tional Principal Components (FCT-FPCs). Similar to traditional

classification trees, FCT-FPCs recursively split the data into smaller

subsets based on the values of predictor variables, aiming to create

subsets that are more homogeneous in terms of their class labels.
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However, instead of using traditional predictor variables, FCT-

FPCs use the scores of the FPCs obtained from the decomposition

given in (5). This approach enables the use of functional data in

classification problems and provides a way to identify which FPCs

are more important in predicting class labels.

Second, Functional Bagging (FBAG) is a technique for improv-

ing the accuracy of FCTs by aggregating the results of multiple

FCTs. Multiple FCTs are constructed using bootstrap samples of

FPCs, and the results are combined by taking a majority vote

of the predicted classes. This approach can help reduce overfit-

ting and improve the generalizability of the model. Another tech-

nique for improving the performance of decision trees is Functional

Boosting (FBOOST), which involves iteratively constructing a se-

quence of FCTs. Each subsequent tree focuses on the observations

that were misclassified by the previous tree, resulting in a highly

accurate classification model. However, FBOOST can be more

computationally intensive and prone to overfitting than FBAG.

Finally, Functional Random Forest (FRF) is an advanced tech-

nique for classification that builds upon FBAG by constructing

multiple FCTs, each based on a random subset of m FPCs out of

the total p FPCs. This process helps reduce the variance when av-

eraging FPCs, thereby reducing correlation among FCTs. Notably,

when m equals k, FRF becomes equivalent to FBAG.

In summary, the proposed combined approach of FDA and

tree-based methods offers a powerful framework for functional

classification problems, utilizing the strengths of both method-

ologies to achieve accurate and interpretable classification models

9



for functional data.

2.2.3 Functional Classwise PCA

Functional Classwise PCA (FCPCA), proposed by Chatterjee et al.

(2023) ([3]), is a recent method for performing classification on

functional data while preserving class-specific information. The

approach utilizes class-wise FPCA to eliminate non-informative

subspaces of the data by mapping it to a lower-dimensional space.

This approach helps identify and eliminate the non-informative

subspaces of the data while retaining the most informative sub-

spaces for classification. Consequently, it reduces the dimension-

ality of the data while maintaining its discriminatory power.

This method consists of two main parts: functional feature

extraction and classification. In the first step, functional features

are extracted using Gram-Schmidt orthonormalization. For each

class ωi, we calculate the sample mean µ̂i from a set of functional

observationsX1,i, . . . , Xni,i, where ni is the number of observations

of class ωi. Then, we form a set Fi = {f1i, . . . , fqii} of empirical

functional principal components of the class ωi, and augment it

with a set G = {µ̂(t) − µ̂1(t), µ̂(t) − µ̂2(t), ..., µ̂(t) − µ̂c−1(t)} of

differences between the grand mean and the class means, where c

is the number of classes. The set {Fi, G} is then orthonormalized

using the Gram-Schmidt orthonormalization process to maintain

the directions of the projections. The resulting orthonormal set

contains qi + c− 1 functions, which generate a subspace Si. Thus,

given a test curveX∗, we can project it onto each of the c subspaces

10



S1, . . . , Sc using the following mappings:

X∗
(i) =

qi+c−1∑
k=1

⟨X∗ − µ̂i, fki⟩fki, i = 1, . . . , c,

where ⟨·, ·⟩ denotes the inner product.

In the second step, an unknown curve observation X∗ is classi-

fied into one of c classes. The coefficient vector in the ith subspace

is calculated as (⟨X∗− µ̂i, f1i⟩, . . . , ⟨X∗− µ̂i, fqi+c−1,i⟩)T , which we

represent as vi. The estimated posterior probabilities P̂ (ωℓ|vi) are

then obtained using Linear Discriminant Analysis (LDA). At this

stage, the mean and covariance matrix of each class are estimated

using the coefficient matrix of training sample curves. Finally, the

class of X∗ is assigned by finding the index j that maximizes p(i),

where p(i) = max
1≤ℓ≤c

P̂ (ωℓ|vi), i = 1, . . . , c.
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Chapter 3

Methodology

3.1 Functional Logistic Regression

The functional logistic model is a useful approach that effectively

handles classification problems involving functional predictors. It

is a powerful statistical framework that extends the traditional

logistic regression model. The functional logistic model allows us

to accommodate time-varying or wave-specific effects of continu-

ous predictors, offering a flexible approach for modeling a binary

response variable.

We consider a binary response variable, denoted as yi ∈ {0, 1},

and the functional predictor, represented as xi(t), i = 1, 2, . . . , N .

Assuming yi follows a Bernoulli distribution with a success proba-

bility πi, the functional logistic regression model can be expressed

as:

πi = P (Yi = 1|xi(t)) =
exp

{
α+

∫
T xi(t)β(t) dt

}
1 + exp

{
α+

∫
T xi(t)β(t) dt

}
where α is the intercept term, β(t) represents the time-varying or

12



wave-specific effect parameter of the functional predictor. Alter-

natively, we can express the model using the logit transformation:

log

(
πi

1− πi

)
= α+

∫
T
xi(t)β(t) dt (6)

This formulation allows us to interpret the model in terms of log-

odds, where the left-hand side represents the logit of the success

probability.

This model becomes particularly valuable when dealing with

predictors that vary over time or wavelengths, such as semicon-

ductor data or time series data. This advantage allows researchers

to find complex patterns and make more accurate predictions

when working with such data. Consequently, the functional logis-

tic model becomes a powerful tool for classifying functional data

in various fields.

3.2 Fused Lasso

The fused lasso method was first introduced by Tibshirani et al.

(2005) ([14]). It is a regularization method particularly useful when

dealing with situations where important variables exhibit a con-

tinuous occurrence centered around peaks, necessitating the con-

sideration of adjacent variables simultaneously. The fused lasso

method is a variant of the lasso regularization designed to pro-

mote sparsity while encouraging grouping of adjacent variables.

As a result, the fused lasso effectively accounts for the smoothness

and continuity of the variables.

To estimate the coefficient vector β, the fused lasso method

13



uses the following optimization problem:

β̂FL = argmin
β


p∑

j=1

(yi − xTi β)
2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=2

|βj − βj−1|


The objective function aims to minimize the squared distance be-

tween the response variable yi and the linear combination of the

predictors xTi β, while also considering the L1 penalty term includ-

ing λ1 for sparsity in the coefficients and λ2 for sparsity in their

differences. By solving this optimization problem, we can obtain

the estimated coefficient vector β̂FL.

3.3 Functional Logistic Regression with Fused

Lasso Penalty

Kim, H, and Kim, H (2018) ([7]) proposed a novel approach for

classifying functional data. This method integrates the functional

logistic regression model as a classifier with the fused lasso penalty

to identify discriminant segments and this is called FLR-FLP.

FLR-FLP can be viewed as an interval-based classification ap-

proach that considers the inherent characteristics of functional

data, including smoothness and continuity.

The functional predictor variable xi(t) is decomposed using

cubic B-spline basis function ϕj(t). The decomposition can be ex-

pressed as:

xi(t) =

3+m+1∑
j=1

cijϕj(t) = ϕ
T ci

where cij is the coefficient of these basis functions, and m is the

number of interior knots. Additionally, the parameter function β(t)

14



is decomposed using the unit step function ψk(t). The unit step

function is defined as ψk(t) = I(uk ≤ t < uk+1), where uk denotes

the ordered knot point. The function β(t) can be expressed as the

sum of these step functions:

β(t) =
K∑
k=1

γkψk(t) = ψ
Tγ

where K is the number of time points minus one, and γk is the

coefficient associated with the k-th step function. As a result, the

integral term in the logistic regression model can be expressed as:∫
T
β(t)xi(t) dt =

∫
T
γTψϕT ci dt = γ

T (

∫
T
ψϕT dt)ci = γ

TBci

where B = (bkj) and bkj =
∫
T ψk(t)ϕj(t) dt. Finally, (6) is equiv-

alently expressed as:

li = α+ γTBci (7)

We only need to estimate α and γ in (7). To achieve this, the

model uses the conditional log-likelihood function:

L(α,γ) =
N∑
i=1

[yili − log(1 + exp(li))]

Then, the model estimates α and γ by minimizing the penalized

likelihood functions:

min
α,γ

(
− L(α,γ) + λ1

K∑
k=1

|γk|+ λ2

K∑
k=2

|γk − γk−1|
)

(8)

where λ1 and λ2 are hyperparameters that can be selected through

cross-validation. Equation (8) can be solved by convex optimiza-

tion technique since both the negative log-likelihood function and

absolute function are convex. To perform the optimization, this

15



paper uses CVXR, an R package specifically designed for con-

vex optimization ([1]). The resulting non-zero coefficients obtained

through this process represent significant intervals that are crucial

in classifying the curves.
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Chapter 4

Real Data Analysis

4.1 Optical Emission Spectroscopy (OES)

dataset

4.1.1 Data preprocessing

OES dataset used in this study consists of high-dimensional data

obtained from Etching process, which is an important step in semi-

conductor manufacturing. A total of 307 wafers were observed and

the response variable, denoted as zi, is bounded within the inter-

val [0, 1]. Also, there are OES values that were measured by three-

dimensional covariate X composed of j substeps, Tj time points,

and m wavelength points.

For this reason, the OES dataset can be considered as func-

tional data with respect to time, wavelength, and substep. Specifi-

cally, each observation can be expressed as zi = f(Xi,j(tj,l, λj,m))+

εi where i represents the wafer index, j denotes the substep index,

l represents the time index, and m corresponds to the wavelength
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index. The presence of an error term εi represents the noise in the

measurements.

In this study, we examine the OES dataset from a classification

perspective. To analyze the classification task, the continuous vari-

able zi is replaced with a categorical variable yi, representing the

quality of the semiconductor process. Specifically, we define two

classes: class 0 and class 1. Class 0 corresponds to the situations

where zi < 0.4 or zi > 0.6, indicating a poor quality of semicon-

ductor process. On the other hand, class 1 represents the cases

where 0.4 ≤ zi ≤ 0.6, indicating a good quality of semiconductor

process.

4.1.2 Procedure

We observed that the dataset consists of 307 wafers, with 86 wafers

belonging to class 0 and 221 wafers belonging to class 1. This im-

plies that the proportion of wafers representing a good semicon-

ductor process is approximately 72.0%, indicating that the dataset

used for the classification analysis is imbalanced.

When visualizing the 307 curves over time at a fixed wave-

length for each substep, we can see that the two classes are chal-

lenging to distinguish each other. Similarly, when illustrating the

307 curves over wavelength at a specific time for each substep,

distinguishing the two classes is also difficult.

Furthermore, the wavelength curves show high similarity across

almost all fixed time points. To address this similarity, we adopt an

approach that involves calculating the mean value of the Tj time

points within each wavelength point for every substep. By calcu-
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lating these mean values, we can capture the overall trend of the

wavelength variable while simultaneously reducing the dimension-

ality of the dataset. This technique allows us to summarize the

wavelength domain effectively and analyze its common patterns

and variations.

In Figure 4.1, we present the curve in the wavelength domain

obtained by averaging over the time points for Substep 2. This

illustration represents the transformed data with 221 curves of

class 1 (shown in green) and 86 curves of class 0 (shown in red).
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Figure 4.1: Transformed data in wavelength domian by averaging

over time points

The main objective of this study is to apply various functional

classification models to predict the quality of new semiconductor

process based on the covariate X. We apply the classification mod-

els described in Chapter 2 and 3. To compare the performance of

these models, we use traditional performance measures like Accu-

racy, which is commonly used for balanced dataset. Additionally,

due to the imbalanced nature of the dataset with a majority of

good semiconductor process, we also consider Specificity and AUC

(Area Under the Curve) as evaluation metrics.

19



4.1.3 Results

In this study, the total of 307 wafer sets are divided into 230

training sets and 77 test sets. The focus is on Substep 2 curves, as

shown in Figure 4.1. When conducting the analysis, the original

data is used, not the transformed data. The evaluation of various

functional classification models using three metrics is presented

in Table 4.1. It is apparent that most models achieve reasonable

accuracy, but their specificity and AUC are relatively low. This

indicates that the proportion of bad process correctly identified as

bad is much lower than the proportion of good process correctly

identified as good.

Model Accuracy AUC Specificity

sFPCA 0.77 0.58 0.21

FCTs 0.75 0.57 0.21

FBAG 0.78 0.61 0.26

FBOOST 0.74 0.54 0.11

FRF 0.77 0.55 0.10

FCPCA 0.77 0.58 0.22

FLR-LP 0.80 0.67 0.42

FLR-FLP 0.82 0.69 0.42

Table 4.1: Comparison of Models using Evaluation Metrics (OES

dataset)

The sFPCA model, with tuning parameters θ = 0.1 and λ = 10

and 4 FPCs, achieves an accuracy of 77%. However, it shows rel-

atively low AUC and specificity scores. This can be attributed to
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Prediction

Reference 0 1

0 2 1

1 17 57

Table 4.2: Confusion Matrix of FRF using OES dataset

the data imbalance, where there is a large proportion of good pro-

cess. The same issue is encountered by tree-based models such as

FCTs, FBAG, FBOOST and FRF when classifying the data us-

ing 20 FPC scores. Also, similar results are obtained using FCPCA

with LDA assumptions, where 6 FPCs are used.

Among the models tested, the FLR-FLP model shows better

performance compared to the others. Through cross-validation,

the optimal values for the hyperparameters are determined as

λ1 = 0.05 and λ2 = 0.07. The FLR-LP model, which only im-

poses general Lasso constraints by setting λ2 = 0, shows similar

(slightly worse) performance compared to the FLR-FLP model.

Also in the FLR-FLP model, the wavelength range [712nm,

717nm] is identified as having the most significant impact on the

classification task. This finding is valuable as it provides useful in-

sights into the semiconductor process. In this context, developing

the FLR-FLP model with a focus on this important wavelength

interval holds great promise for enhancing semiconductor produc-

tion. It is anticipated to produce the superior-quality semicon-

ductors more effectively, thereby leading to a substantial improve-

ment in overall efficiency within the semiconductor manufacturing

industry.
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Prediction

Reference 0 1

0 8 3

1 11 55

Table 4.3: Confusion Matrix of FLR-FLP using OES dataset

Also, Table 4.2 and 4.3 show the confusion matrix of the FRF

and FLR-FLP models, respectively. Overall, both models exhibit

low classification performance, especially in terms of Specificity (0

to 0 classification). In Table 4.2, the FRF model correctly classifies

2 out of 19 instances as class 0, and 57 out of 58 instances as class 1.

As a result, it shows very low performance in classifying instances

as 0 to 0, leading to a very low Specificity and AUC.

In contrast, Table 4.3 demonstrates the improved performance

of the FLR-FLP model compared to the FRF model. The FLR-

FLP model correctly classifies 8 out of 19 instances as class 0

and 55 out of 58 instances as class 1. Its performance in terms of

classifying instances as 0 to 0 is significantly better than that of

the FRF model.

In conclusion, the FLR-FLP model shows improvement over

other models, particularly in classifying instances as 0 to 0. How-

ever, it is evident that this model also still has room for enhance-

ment in achieving higher classification performance. Further de-

velopment of these models could potentially lead to better overall

performance and higher AUC value.
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4.2 DIPD dataset

4.2.1 Data description

The Daily Italy Power Demand (DIPD) dataset used in this study

is collected from [6]. The dataset consists of one year of Italian

Power Demand, represented as a time series. Similar to the clas-

sification process used for OES dataset, we consider these data as

functional data with respect to time. The objective of the task is

to classify two classes, distinguishing days from October to March

and from April to September.The dataset was standardized for

analysis.

4.2.2 Procedure

The dataset used in this study consists of a total of 67 training

sets and 1029 test sets. In this dataset, class 0 represents the time

period from October to March, while class 1 represents the time

period from April to September. Figure 4.2 shows that the visual

representation of the training sets and test sets that the red line

corresponds to Class 0, and the green line corresponds to Class 1.

It is important to note that this dataset is balanced unlike OES

dataset, with almost equal number of samples for both classes in

the training sets. Specifically, there are 33 samples for class 1 and

34 samples for class 0 in the training sets. Similarly, in the test sets,

there are 516 samples for class 1 and 513 samples for class 0. This

balance between the two classes allows us to focus on accuracy

rather than the specific metrics such as specificity.

This time series data is transformed into functional data with
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Figure 4.2: Visualization of DIPD dataset

respect to time t for analysis. Using this perspective, we apply

the same functional classification methods that are used for the

OES dataset. The evaluation of the various functional classifica-

tion models is done using two performance metrics, accuracy and

AUC. The tuning parameters for the models are determined in the

same manner as we do for the OES dataset.

4.2.3 Results

Table 4.4 presents the classification performance of various classi-

fication models. It is evident that both accuracy and AUC exhibit

higher values compared to the OES dataset, mainly due to the

clear distinction between the two classes. Consequently, all the

models demonstrate great overall model performance. The anal-

ysis procedure is consistent across all models, as is the case with

analyzing OES dataset.
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Model Accuracy AUC

sFPCA 0.7794 0.80

FCTs 0.9038 0.90

FBAG 0.9582 0.95

FRF 0.9271 0.92

FBOOST 0.9592 0.96

FCPCA 0.9495 0.95

FLR-LP 0.9312 0.93

FLR-FLP 0.9757 0.98

Table 4.4: Comparison of Models using Evaluation Metrics (DIPD

dataset)

Among the models, FLR-FLP outperforms the others, showing

the best performance with an accuracy of 97.57% and an AUC

of 0.98. For this classification, we select the tuning parameters

λ1 = 0.05 and λ2 = 0.04. The interval [19 to 20] is identified as

the discriminative range between class 0 and class 1. Figure 4.3

visually presents the two classes of curves within the interval [19

∼ 20]. It is evident that the two classes are distinctly separated in

this interval. Based on these results, we can infer that this specific

time interval plays a crucial role in distinguishing between the

summer and winter seasons.

The classification process involves comparing the estimated

probability π̂i to a threshold of 0.5. Observations with probability

greater than 0.5 is classified as class 1, while those with probabil-

ity less than or equal to 0.5 is classified as class 0. Specifically, we

can examine confusion matrix of the above models to gain further

25



−2

0

2

19.00 19.25 19.50 19.75 20.00
time

va
lu

e

class

0

1

Plot DIPD

Figure 4.3: Discriminant interval [19,20] identified by FLR-FLP

Prediction

Reference 0 1

0 448 10

1 65 506

Table 4.5: Confusion Matrix of FRF using DIPD dataset

insights into their performance. Table 4.5 and Table 4.6 present

the confusion matrix for the FRF and FLR-FLP models, respec-

tively. In Table 4.5, the FRF model correctly classifies 448 out of

513 instances as class 0, and 506 out of 516 instances as class 1.

It misclassifies 65 instances of class 1 as class 0 and 10 instances

of class 0 as class 1. In Table 4.6, the FLR-FLP model shows

improved performance compared to the FRF model. It correctly

classifies 499 out of 513 instances as class 0, and 505 out of 516 in-

stances as class 1. It has fewer misclassifications, with 14 instances

of class 1 classified as class 0 and 11 instances of class 0 classified

as class 1.

Overall, these findings indicate that the FLR-FLP model, along

with the identified discriminative range and confusion matrix, is
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Prediction

Reference 0 1

0 499 11

1 14 505

Table 4.6: Confusion Matrix of FLR-FLP using DIPD dataset

a more reliable and powerful classification model for the DIPD

dataset. It achieves better accuracy in distinguishing between the

two classes and exhibits a less number of misclassifications by us-

ing specific time interval compared to other models.
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Chapter 5

Conclusion

In this paper, we have explored various functional classification

models for effectively classifying binary response variable. We have

applied recent methods that use Functional Principal Components

(FPCs) and the Functional Logistic Model to address classification

challenges. Through our analysis of two real datasets, we have

found that the model incorporating a fused lasso penalty demon-

strates better performance and provides valuable insights, such

as identifying significant wavelength interval in OES dataset and

time interval in DIPD dataset.

There are several important avenues for further research in the

field of functional classification using OES dataset. One important

aspect to consider is the development of classification models that

can enhance the performance of classification, particularly in terms

of Specificity. It is often crucial to accurately classify abnormal in-

stances as abnormal, and future models should focus on achieving

this goal.

Additionally, it is essential to explore the classification of mul-
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tivariate functional data itself. In our study, we transform mul-

tivariate data into univariate data by averaging with respect to

time. While this approach has its advantages such as dimension

reduction, it also imposes limitations. Future research should con-

centrate on developing methods that can effectively handle and

classify multivariate functional data directly, enabling a more com-

prehensive analysis.

Furthermore, extending the classification models to address

multiclass problem is another valuable direction for future re-

search. While our focus is on binary classification, many real-world

cases require the classification of data into multiple classes. De-

veloping efficient multiclass functional classification models would

provide valuable tools for a wide range of applications.

In conclusion, we should try to address these challenges and

advance traditional methods in functional classification, not only

for OES dataset but also for other dataset. This will lead to the

development of more accurate classification methods for complex

and substantial amounts of dataset across various domains. These

improved methods will enable us to effectively analyze and classify

functional data, leading to enhanced decision-making process and

improved outcomes in diverse fields and industries.
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국문초록

반도체 산업에서 데이터의 폭발적인 증가로 인해 효율적인 분석 기

술은 필수 요소가 되었다. 반도체 공정 과정으로부터 나오는 Optical

Emission Spectroscopy(OES) 데이터는 시간 및 파장 영역에서 함

수형 데이터로 간주할 수 있는 복잡한 데이터이다. 이를 고려하여 이

논문은 함수형 데이터 분류에 효과적인 다양한 통계적 방법을 탐구

하고 있다. 구체적으로, 이 논문은 함수형 주성분(FPCs)과 함수형

로지스틱 회귀를 이용하여 분류 문제를 해결하는 데 초점을 맞추고

있다. 이 논문의 주요 목적은 다양한 함수형 분류 모델들을 사용하여

OES 데이터를 기반으로 반도체 공정의 성공 여부를 분류하는 것이

다. 이를 위해, 이러한 함수형 분류 모델들의 성능을 정확도, 특이도,

AUC 등과 같은 평가 지표를 사용하여 비교하였다. 이러한 비교 분

석을 통해 위의 함수형 분류 모델들이 반도체 공정의 성공 여부를

정확하게 분류하는 데 얼마나 효과적인지를 평가하고자 한다. 추가

적으로 다른 실제 데이터에 대해서도 평가를 확장하여 함수형 분류

모델들의 성능을 종합적으로 조사하였다. 마지막으로, 이 연구의 한

계점과 성능이 개선된 모델의 필요성에 대해 논의하였다.

주요어 : 함수형 데이터 분석, 분류, 함수형 주성분 분석, 함수형

분류 트리, 함수형 로지스틱 회귀, fused 라쏘
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