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Abstract

Modified Cholesky Decomposition based

Precision Matrix Estimation via Scaled Lasso

Dahye Lee

Department of Statistics

The Graduate School

Seoul National University

In the thesis, we propose a method to estimate a high dimensional preci-

sion matrix Ω of a random vector Y = (Y1, Y2, . . . , Yp)
> when the variables

Y1, Y2, . . . , Yp are observed with time-orderings. The precision matrix can be

written in a form of modified cholesky decomposition (MCD), Ω = L>D−1L,

where L is a lower-diagonal matrix with ones on diagonals and D is a diagonal

matrix. We propose an estimator SLMCD by applying the scaled lasso regres-

sion method (Sun and Zhang, 2012) in MCD settings. Our proposed SLMCD

has several advantages. First, by applying the scaled lasso method, it allows us

to use a prefixed tuning parameter and it brings the computational efficiency

over the cross-validation method. Second, under certain regularity conditions,

we show that SLMCD reaches the optimal convergence rate of Op

(√
s log p/n

)
,

where s is the number of non-zero elements in L. Third, we numerically show

that SLMCD outperforms existing lasso-based estimators in various situations.

We apply SLMCD to perform real data analysis of electric safety data provided

by Kyorim Soft coorporation.
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Chapter 1

Introduction

In today’s modern society, complexity has significantly increased, which is

evident through the abundance of data resulting from the advancements in

statistical tools and computing machines. This complexity is best represented

by the relationships between variables, often captured in the form of covariance

matrix or precision matrix. Therefore, accurately estimating these matrices

becomes crucial as they serve as representatives of the underlying phenomena

in the present-day world.

In certain scenarios, many variables are interrelated and the needs of co-

variance or precision matrix increases as they can show those interrelated com-

plexity. Also, as the number of variables (p) increases, the instances where the

number of variables (p) exceeds the number of available datasets (n) need at-

tention. In such cases, the estimation of covariance matrices or precision ma-

trices becomes more challenging, since it becomes computationally expensive.

As a result, sparsity becomes a crucial feature in such cases.

The precision matrix Ω, also known as the inverse of the covariance matrix
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Σ−1, becomes a focal point of interest when considering likelihood functions,

such as in the Gaussian distribution, as the likelihood function solely relies on

the precision matrix rather than the covariance matrix itself.

In this thesis, we focus on estimating the precision matrix Ω under some

sparsity conditions. Also, we assume that the data are in time-ordered in order

to apply the modified cholesky decomposition (MCD) idea introduced by Gill

and Murray (1974) to proposals, which can contribute to sparsity.

The rest of the thesis is as follows. In Chapter 2, we first review some

theoretical reviews of methodologies directly applied to our proposal. One is

the MCD-based precision matrix estimation method, followed by introducing

the work of Huang et al. (2006) which proposed a precision matrix estimation

method using MCD. The other is the scaled lasso method with regression

method (Sun and Zhang, 2012) and proposal of precision matrix estimator

(Sun and Zhang, 2013).

In Chapter 3, we propose a precision matrix estimator named MCD-based

precision matrix estimator using the scaled lasso (SLMCD) and this estimator

comes from the idea combination of MCD and scaled lasso introduced in pre-

vious chapter. We introduce the detailed algorithm of proposal and prove the

convergence rate of proposed estimator under certain assumptions. In Chap-

ter 4, we numerically show our proposal has advantages compared to some

lasso-based precision matrix estimators under certain situations by using the

numerical settings of Huang et al. (2006) and Sun and Zhang (2013) and exe-

cute the real data analysis of electric-safety data in Chapter 5.
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Chapter 2

Review

2.1 MCD-based covariance matrix estimation

Assume Y = (Y1, ..., Yp)
> is a time-ordered random vector with zero mean and

covariance matrix Σ. Then for t = 1, ..., p,

Yt =
t−1∑
j=1

φtjYj + εt = φ>t Y1:(t−1) + εt, V ar(εt) = σ2
t (2.1)

where φt = (φt1, ..., φt(t−1))
> and Y1:(t−1) = (Y1, ..., Yt−1)>.

By rearranging (2.1), the model (2.1) can be written as

(I − Φ)y = Ly = ε =


ε1

· · ·

εp

 (2.2)
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where

Φ =



0 0 0 0 0

φ2,1 0 0 0 0

φ3,1 φ3,2 0 0 0

· · · 0

φp,1 φp,2 φp(p−1) 0


, L =



1 0 0 0 0

−φ2,1 1 0 0 0

−φ3,1 −φ3,2 1 0 0

· · · 0

−φp,1 −φp,2 −φp(p−1) 1


(2.3)

and Cov(ε) = D = diag(σ2
1, ..., , σ

2
p).

For a positive-definite covariance matrix Σ, MCD of Σ is expressed as (2.4).

LΣL> = D (2.4)

Therefore, Ω, the inverse of Σ, can be written as (2.5).

Ω = Σ−1 = L>D−1L (2.5)

MCD has some useful advantages in estimating Ω. First, by applying the

MCD to Ω, Ω can be estimated by estimating L and D, where L, D can be

estimated via regressing each Yt on its predecessors Y1:(t−1) for t = 2, ..., p since

we assumed time-orderings. MCD has insights that L and D both have its own

meanings where L explains the relationships between Yt and its predecessors

Y1:(t−1) and D explains the error variance of Yt for each t = 1, ..., p. Second, es-

timating Ω using MCD ensures that the number of parameters to be estimated

in regression equations matches the number of parameters in the precision ma-

trix. Last, the MCD method inherently guarantees the positive-definiteness of

the estimator of Σ and Ω.

4



There are several papers that explore MCD-based precision matrix esti-

mators with assumptions on both with and without time orderings in data

structures. For the cases of time-ordered variables, Huang et al. (2006), Levina

et al. (2008) and Jiang (2012) employ information from ordination to estimate

the precision matrix. For the unordered-variables, Rothman et al. (2010) and

Kang et al. (2020) predict the precision matrix without utilizing ordination

information.

In this section, we review the paper of Huang et al. (2006) in detail which

proposed precision estimation method combining MCD of time-ordered datasets

with penalized likelihood regression methods. Then, we introduce various meth-

ods estimating Σ and Ω briefly.

2.1.1 Huang et al. (2006)

Huang et al. (2006) proposed a precision matrix estimator by combining MCD

with penalized likelihood regression methods under `1 and `2− regularizatons

in time-ordered datasets.

Under the multivariate normal assumptions on n observations yi = (yi1, ..., yip)
>

for i = 1, ..., n of Y of (2.1) with only relevant variables, the loglikehood func-

tion l(Σ; yi) is as (2.6).

−2l(Σ; yi) = log |Σ|+ y>i Ωyi

= log |D|+ y>i L
>D−1Lyi = log |D|+ ε>i D

−1εi

=

p∑
j=1

log σ2
j +

p∑
j=1

ε2ij
σ2
j

(2.6)
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where ε1 = y1 and εk = yk −
∑p−1

j=1 yjφkj for k = 2, ..., p.

For n observations yi = (yi1, ..., yip)
>
i=1,...,n , the joint loglikehood function

with only relevant variables can be rewritten as (2.7).

− 2l(Σ; y1, ..., yn) =

p∑
j=1

(
n log σ2

j +
n∑
i=1

ε2ij
σ2
j

)
(2.7)

with εi1 = yi1 annd εik = yik −
∑p−1

j=1 yijφkj for k = 2, ..., p.

Let y = (y1, ..., yn)>, then using the penalized regression method with a

given penalty λ > 0, the penalized loglikelihood is as (2.8).

−2l(Σ;y) + λJ(Φ)

=

p∑
j=1

(
n log σ2

j +
n∑
i=1

ε2ij
σ2
j

)
+ λ

p∑
j=2

j−1∑
i=1

|φji|m

=
(
n log σ2

1 +
n∑
i=1

ε2i1
σ2

1

)
+

p∑
j=2

(
n log σ2

j +
n∑
i=1

ε2ij
σ2
j

+ λ

j−1∑
i=1

|φji|m
)

(2.8)

When λ is fixed, (2.8) can be solved via alternating minimization problem

over {φkj}j=1,...,p−1 and {σ2
k} for each k = 1, ..., p.

For penalized likelihood function, (i) the penalty term J(Φ) and (ii) tuning

parameter λ needs to be determined and there are several suggestions. For (i)

J(Φ), Huang et al. (2006) described penalty term as (2.9) for m = 1, 2 which

is either `1− regularization (lasso) when m = 1 or `2− regularization (ridge)

when m = 2.

J(Φ) = λ

p∑
j=2

j−1∑
i=1

|φji|m (2.9)
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Levina et al. (2008) suggested new nested lasso-based penalty as in (2.10)

which reduces the rest term φj,j−k to all 0 for k ≥ l if φj,j−l is 0.

J(Φ) = λ

p∑
j=1

(
|φj,j−1|+

|φj,j−2|
|φj,j−1|

+ ...+
|φj,1|
|φj,2|

)
or J(Φ) = λ

p∑
j=1

( |φj,j−1|
φ̂?j,j−1

+
|φj,j−2|
|φj,j−1|

+ ...+
|φj,1|
|φj,2|

) (2.10)

For the choice of (ii) λ, K-fold cross-validation (KCV) and generalized

cross-validation (GCV) method is the representatives.

For the K-fold cross-validation (KCV), we split the full dataset into K

subsets randomly and use one subset among K subsets as validation set and

the rest as the training set. We compute following criterion as (2.11) using the

information of each K choice of validation sets. Then choose λ that results in

the smallest value of CV (λ).

CV (λ) =
1

K

K∑
ν=1

(
sν log |Σ̂−ν |+

∑
i∈Iν

y>i Σ̂−1
−νyi

)
(2.11)

where Iν the index set of the data in Sν , sν the size of Iν and Σ̂−ν the variance-

covariance matrix under the training dataset S − Sν .

For the generalized cross-validation (GCV), the idea comes from the leave-

one-out crossvalidation method where K = n in KCV. The calculation of GCV

criterion is as (2.12).

GCV (λ) =
1

np

p∑
t=1

n∑
i=1

( yit − ŷit
1− tr(St)/n

)
(2.12)
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where St = Xt(Ht + λIt)
−1Xt with Ht = (

∑n
i=1 yi(t)y

>
i(t))/σ

2
t for t = 1, ..., p.

Approximately, we can compute the components of (2.12) as follows.


ŷ1t

· · ·

ŷnt

 = Xt(Ht + λL
(k)
t )−1X>t


y1t

· · ·

ynt


with

L
(k)
t = diag

( 1

2|φ(k)
t,1 |

,
1

2|φ(k)
t,2 |

, · · · , 1

2|φ(k)
t(t−1)|

)
and

Xt =
1

σt


y>1(t)

· · ·

y>n(t)

 =
1

σt


y11 y12 · · · y1(t−1)

· · ·

yn1 yn2 · · · yn(t−1)

 .

Huang et al. (2006) uses both KCV and GCV for the choice of tuning

parameter λ, but this idea results in computational burden as n, p increases.

The detailed algorithm of Huang et al. (2006) is described in Algorithm 1.

2.1.2 Other methods

In this subsection, we will briefly introduce some papers that have been dedi-

cated to estimate Σ or Ω using various methodologies.

Huang et al. (2006) used the penalized regression methods to estimate

MCD-based Σ and Ω. Also, Levina et al. (2008) extended Huang et al. (2006)

by utilizing various nested penalties to successfully estimate large covariance

8



Algorithm 1 Huang et al. (2006)

1: For t = 1, y1 = ε1,

σ̂2
1 =

n∑
i=1

ε2i1
n

=

n∑
i=1

y2
i1

n

2: For t = 2, ..., p, yt =
t−1∑
i=1
φtiyi + εt with some initial σ2

t and for m=1 or 2,

(2-1) Estimate φ.

(φ̂t1, φ̂t2, ..., φ̂t(t−1)) = argmin
φt1,...,φt(t−1)

{ n∑
i=1

(yit −∑t−1
j=1 φtiyij

σ2
t

)}
+ λ

( t−1∑
i=1

|φti|m
)

(2-2) Estimate σ.

(σ̂2
t ) =

n∑
i=1

ε2it
n

=
n∑
i=1

(yit −
∑t−1

j=1 φ̂tjyij)
2

n

3: Iterate (2-1) and (2-2) until convergence. �

matrices in sparse settings. Rothman et al. (2008) handled sparse situations

using a permutation-invariant estimation method for covariance matrices.

Some studies focus on estimating K-banded Σ and Ω by leveraging smooth-

ing techniques to regularize L. Wu and Pourahmadi (2003) employed a non-

parametric estimation method for large covariance matrices in longitudinal

settings. Rothman et al. (2010) introduced a novel Cholesky-based covariance

regularization approach tailored for high-dimensional data. Meanwhile, Jiang

(2012) adopted a group effect in the Cholesky factor to estimate the precision

matrix using cholesky decomposition.

To address order-related issues, certain papers explore permutating vari-

ables in MCD for estimating Σ and Ω. Kang et al. (2020) investigated per-

mutations of variable orders to optimize Ω prediction using the MCD-based

approach. Moreover, Kang and Deng (2020) developed variable ordination

9



of MCD for estimating time-varying covariance matrices and also proposed

Cholesky-based estimation for large-dimensional covariance matrices.

For nonparametric Ω estimation, Lee and Lee (2021) employed a nonpara-

metric K-banded Cholesky prior to estimate bandable MCD-based Ω.

2.2 Scaled Lasso

Scaled lasso method is proposed by Sun and Zhang (2012) that adds a `1−

regularization penalty term to the ordinary least squares (OLS) loss function

by combining a scaling factor. This method is proposed to deal with high-

dimensional data and to solve the multicollinearity. The objective of the scaled

lasso method is to perform variable selection and shrink less important coef-

ficients as in lasso in order to validate sparsity and to deal with situations

especially when variables have various scalings by using a scaling factor which

is pre-chosen by some suggestions which we will describe in details.

In this section, we will introduce regression method using scaled lasso (Sun

and Zhang, 2012) which we applied the idea to our proposals and then intro-

duce the precision estimation method using the idea of scaled lasso (Sun and

Zhang, 2013).

2.2.1 Regression method

Sun and Zhang (2012) proposed `1− penalized linear regression method using

a scaling factor. For a design matrix X ∈ Rn×p and a response vector y ∈ Rn

with a p-dimensional regression coefficients vector β, Sun and Zhang (2012)

assume that the regression has a form of y = Xβ + ε with V ar(ε) = σ2. Sun

10



and Zhang (2012) combined the l1− regularization and scaling factor to solve

the regression, where the penalty is scaled proportional to the error variance

σ̂ to jointly estimate σ2 and β. The objective loss function of this method is

in (2.13).

 Lλ0(β, σ) =
|y −Xβ|22

2nσ
+
σ

2
+ λ0|β|1 (2.13)

Then, (2.13) is jointly convex in (β, σ) and therefore it converges to (β̂, σ̂) =

argmin
β,σ

Lλ0(β, σ) by solving the alternatinng minimization algorithm as (2.14).

σ̂ ←− |y −Xβ̂old|2/
√
n

λ←− σ̂λ0, (λ = σλ0)

β̂ ←− β̂new, Lλ(β̂
new) ≤ Lλ(β̂

old)

(2.14)

Here, λ0 is a prefixed tuning parameter. There are several commonly used

choices of tuning parameter, such as universal tuning parameter λU0 , union

bound tuning parameter λub0 and probabilistic error bound tuning parameter

λpb0 as in (2.15). Among these parameters, a universal tuning parameter λU0 is

most commonly used.

λU0 =
√

2n−1 log(p− 1)

λub0 =
√

4n−1 log p

λpb0 =
√

2Ln(k/p)

(2.15)

For λpb0 , k is a real solution of k = L4
1(k/p)+2L2

1(k/p), Ln(t) = n−1/2Φ−1(1− t)

and it can be solved via bisection method.

Scaled lasso regression method has advantages that variables with various
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scalings can be handled easily by using scaling factor and it has computational

efficiency by using a prefixed tuning parameter λ0.

2.2.2 Precision matrix estimation

Sun and Zhang (2013) introduced the precision matrix estimation method

using the scaled lasso method reviewed in 2.2.1. The algorithm uses a neigh-

borhood selection method to estimate each column of the precision matrix.

By using neighborhood selection method, the resulting precision matrix is not

symmetric, which contradicts the inherent symmetry of precision matrices. To

solve this issue, Yuan (2010) proposed a method to restore the symmetry of

the calculated precision matrix.

The algorithm of proposed precision matrix estimator is as follows.

Algorithm 2 Scaled Lasso Matrix Inversion

Let X be n× p matrix, then for k = 1, ..., p,

1: Let X−j be X without jth column. Sum XT
−jX−j columnwise and divide by n,

and let Sj be square root of resulted value.

2: Let Yj be X−j divided by Sj columnwise. Apply scaled lasso method by Sun and
Zhang (2012) to Yj and Xj , where Xj is j-th column of X. Use tuning universal

parameter λ
(univ)
0 .

3: Let σ−2 be diagonals of D and β be coefficient matrix calculated in 2. Then, the
resulted precision matrix is Ω̂(nhd) = −β ×D.

4: Symmetrize the calculated Ω̂(nhd) by Yuan (2010).

ΩF = argmin
Ω̃=Ω̃T

‖Ω̂(nhd) − Ω̃‖1

The scaled lasso estimator β̂, σ̂ are consistent under certain conditions,

(i) the penalty level condition and (ii) the compatibility condition (Van de

12



Geer and Bühlmann, 2009). The penalty level condition bounds the tuning

parameter level as in (2.16).

λ0 > A
√

2n−1 log p, A > 1 (2.16)

The compatibility condition for Σ̂ requires for all β satisfy ‖βsc0‖1 ≤ 3‖βs0‖1,

where β is a p × 1 vector with a subset S ⊆ {1, · · · , p} and define βs by

βs,j := βj1{j ∈ S}. Then, the compatibility condition is (2.17).

∃φ0 > 0, s.t. ‖βs0‖2
1 ≤ s0β

T Σ̂β/φ2
0 (2.17)

where φ2
0 is the compatibility constant.

Under above conditions (2.16), (2.17), the scaled lasso precision matrix

estimator Ω̂ achieves a convergence rate of Op(d
√

log p/n) where d implies the

maximum sparsity factor among p rows of Ω.

d = max
1≤j≤p

#{k : Ωjk 6= 0} (2.18)

The scaled lasso precision matrix estimator effectively performs variable se-

lection by using scaled lasso property and is computationally efficient when

dealing with data where p is much larger than n.
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Chapter 3

Modified Cholesky

Decomposition based Precision

Matrix Estimation via Scaled

Lasso

Let y1,y2, . . . ,yn be the n copies of p−dimensional vector with mean zero and

covariance matrix Σ. We let the data matrix as

Y =


y>1

y>2
...

y>n

 =


Y11 Y12 · · · Y1p

Y11 Y12 · · · Y1p

...
...

...
...

Yn1 Yn2 · · · Ynp

 . (3.1)

In this thesis, we assume the p−variables are ordered in time or observed

in a sequence and, once the order of variables are given, the precision matrix

14



Ω has the unique decomposition in the form of L>D−1L, where L is a lower

triangular matrix and D is a diagonal matrix. We are interested in estimating

Ω from Y with the use of the order information among variables.

As we review in Section 2.1, the elements of L in (2.3) are related with the

regression coefficients of the sequential regression model (2.1) and L can be

estimated by solving a set of least square problems. Our proposal in the thesis

is the use of scaled lasso by Sun and Zhang (2012). To estimate L and D, we

suggest to minimize

L(Φ,σ) =

p∑
k=2

{
1

2nσk
‖Yk −

k−1∑
j=1

φkjYj‖2
2 +

1

2
σk + λ0k

k−1∑
j=1

|φkj|

}
(3.2)

where Yk =
(
Y1k, Y2k, . . . , Ynk

)>
and σ =

{
σk, k = 1, 2, . . . , p

}
, and λ0k is

set as λ0k =
√

2n−1 log(k − 1) following Sun and Zhang (2012). We let φk =(
φk1, φk2, . . . , φk(k−1)

)>
below.

To solve (3.2), we propose the following iterative algorithm, the iteration

between the estimation of σ and the estimation of Φ.
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Algorithm 3 SLMCD

For each k = 1, 2, · · · , p

1: Let {φ̂(0)
ki }i=1,...,k−1 be initial values of {φki}i=1,...,k−1.

For each iteration t = 0, 1, · · ·

2: Calculate σ̂
(t)
k = 1√

n
‖Yk −

∑k−1
j=1 φ̂

(t)
kj Yj‖2.

3: φ̂new
k = argmin

φk

{
1

2n‖Yk −
∑k−1

j=1 φkjYj‖22 + λ0kσk
∑k−1

j=1 |φkj |
}

φ̂old
k ←− φ̂new

k , L
(
φ̂new
k

)
≤ L

(
φ̂old
k

)
4: Iterate 2-3 until convergence. �
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3.1 Convergence of SLMCD

We next investigate the convergence rate of our SLMCD estimator. Our re-

sults on the rate mainly depends on the convergence rate of the scaled lasso

estimator given in Corollary 1 of Sun and Zhang (2012) and we start with the

recall of the corollary.

Three assumptions are made for the convergence rate of the scaled lasso

estimator. First, (A1) they assume the data yi are independently from the

normal distribution with mean zero and covariance matrix Σ. Second, (A2)

the tuning parameter is set as

λ0p ∼
√

log p/n,

which approaches 0 as n increases. Third, (A3) they make restricted eigenvalue

(RE) condition for the design matrix X and coefficient vector β - X and β are

the terms in the linear regression model and we do not define them specifically

- that is, if there exists c > 0 such that

κ = inf

{
‖Σ̂ · βS‖2

2

n‖βS‖2
2

: βS ∈ C(S) \ {0}

}
≥ c, (3.3)

where I(A) is the indicator function of the event A, βS is a vector of
{
βjI({j ∈

S}), j = 1, 2, . . . , p
}

, and

C(S) :=
{
β ∈ Rp |

∥∥βSc∥∥1
≤ 3
∥∥βS∥∥1

}
,

we call X and β satisfy the RE condition.

17



Theorem A [Corollary 1 of Sun and Zhang (2012)]

Under assumptions (A1)-(A3), suppose we set

λ0p = A

√
2 log p

n
with A > (ξ + 1)/(ξ − 1), for some ξ > 1

then ∥∥β̂ − β∥∥2

2
≤ C sλ2

0p

for appropriately defined C > 0 and s =
∑p

j=1 I
(
βj 6= 0

)
.

The following theorem shows the convergence rate of the proposed SLMCD.

Theorem 1. Under the assumption that each regression model in (2.1) satis-

fies the assumptions (A1)-(A3) with certain probabilties, we have

∥∥Ω̂− Ω
∥∥2

F
= Op

(s log p

n

)
, s =

p∑
k=2

k−1∑
`=1

I
(
φk` 6= 0

)
. (3.4)

Proof of Theorem 1. We will show the following property by using Corol-

lary 1 of Sun and Zhang (2012).

‖Ω̂− Ω‖2
F = ‖L̂T D̂−1L̂− LTD−1L‖2

F = Op

(s log p

n

)
Decompose the following equation ‖Ω̂− Ω‖F = ‖L̂T D̂L̂T − LTDL‖F , here
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we used D instead of D−1 for simplicity.

‖L̂T D̂L̂− LTDL‖F ≤ ‖(L̂− L)(D̂ −D)(L̂T − LT )‖F︸ ︷︷ ︸
(1)

+ ‖L̂D̂LT − L̂DL̂T + L̂DLT − LD̂LT + LD̂L̂T − LDL̂T‖F︸ ︷︷ ︸
(2)

Above inequality can be proved by using the decomposition of (1) and the

properties of the sum of absolute values.

(1) : (L̂− L)(D̂ −D)(L̂T − LT ) = (L̂D̂ − LD̂ − L̂D + LD)(L̂− LT )

= L̂D̂L̂T + L̂D̂LT − L̂DL̂T + L̂DLT − LD̂LT + LD̂L̂T − LDL̂T︸ ︷︷ ︸
(2)

−LDLT

We will decompose the (2) equation in followings.

(2) : ‖L̂D̂LT − L̂DL̂T + L̂DLT − LD̂LT + LD̂L̂T − LDL̂T‖F = ‖(2-1)− (2-2)‖F

≤ ‖(2-1) + ‖(2-2)‖F

(2-1) : (L̂− L)(D̂ −D)LT = L̂D̂LT −����
L̂DLT − LD̂LT +����LDLT

− (L̂− L)D(L̂T − L) = L̂DL̂T −����
L̂DLT −����

LDL̂T +����LDLT

+ L(D̂ −D)(L̂T − LT ) = LD̂L̂T − LD̂LT −����
LDL̂T + LDLT

= L̂D̂LT − L̂DL̂T + LD̂L̂T − 2LD̂LT + LDLT
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(2-2) : (L̂− L)DLT = L̂DLT − LDLT

+ L(D̂ −D)LT = LD̂LT −����LDLT

− LD(L̂T − LT ) = LDL̂T −����LDLT

= L̂DLT − LDLT + LD̂LT − LDL̂T

(2-1) + (2-2) =
(
L̂D̂LT − L̂DL̂T + LD̂L̂T − �2LD̂L

T +����LDLT
)

+
(
L̂DLT −����LDLT +����

LD̂LT − LDL̂T
)

= L̂D̂LT − L̂DL̂T + LD̂L̂T + L̂DLT − LD̂LT − LDL̂T = (2)

Also, since the property of the multiplication of matrix ‖AB‖F ≤ ‖A‖F‖B‖F
also can be applied to Frobenius norm, we can do the decompositions as fol-

lowings.

‖L̂T D̂L̂− LTDL‖F ≤ 2‖L̂− L‖F
(a)

‖D‖F + ‖D̂ −D‖F
(b)

‖L‖2
F︸ ︷︷ ︸

(?)

+ 2‖L̂− L‖F‖D̂ −D‖F‖L‖F + ‖L̂− L‖2
F‖D‖F

+ ‖L̂− L‖2
F‖D̂ −D‖F

For (a), we will prove the following.

‖L̂− L‖2
F =

∑
k

‖φ̂k − φk‖2
2 = Op

(
s

log p

n

)
(3.5)

‖L̂− L‖F =
(∑

k

‖φ̂k − φk‖2

)1/2

= Op

( p∑
k=1

sk log k

n

)1/2

= Op

(
log p

p∑
k=1

sk
n

)1/2

= Op

(
s

log p

n

)1/2
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Here,

sk =
k−1∑
i=1

I(φki 6= 0), s̄ =
∑
k

sk/p, s =

p∑
j=2

j−1∑
i=1

I(φji 6= 0)

which are sparsity parameters.

We can compute the above convergence rate in this following way. ‖φ̂k −

φk‖2
2 ≤ Ckkλ

2
0kσ

?2
k /(1− τ 2

k?)
2 has the convergence rate of λ2

0k = Op

( log k

n

)
. Ck

is a constant, σ?k = ‖Yk−Y T
[1:(k−1)]φk‖/

√
n and (1−τ 2

k?) are constants converge.

Also, k = |sk| implies the number of nonzero {φkj}j=1,...,(k−1). This factor has

to be appeared since p ≥ n ≥ ‖φ‖0 →∞.

For (b),

(b) : ‖D̂ −D‖F =
( p∑
i=1

|σ̂i − σi|2
)1/2

=
( p∑
i=1

σ2
iOp

( log p

n

))1/2 ∼= Op

(√p log p

n

)
and

‖D‖2
F =

p∑
j=1

σ2
j = (constant)

‖L‖2
F =

∑
i,j

|φ2
ij| = (constant)

�
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Chapter 4

Numerical study

We numerically compare our method, SLMCD, with other methods in the

literature. The chapter is composed of two folds. In the first, we compare

SLMCD with the four methods by Huang et al. (2006), which is reviewed

in Section 2.1. In the second, we consider more settings of the sample size,

dimension, and true precision matrix, and two more estimators of the sparse

precision matrix.

4.1 The cases of Huang et al. (2006)

In this section, we numerically compare our proposal SLMCD to the four

methods by Huang et al. (2006), where the four methods are the combinations

of (i) `1 and `2− regularizations and (ii) 5CV and GCV for the selection of the

tuning parameter.

For the simulation we consider exactly the same settings as those in Huang

et al. (2006). We consider following four precision matrices as the true matrices,
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(i) The identity matrix: Ω1 = Ip.

(ii) The heterogenous diagonal matrix:

Ω2 = diag

(
1

p
,

1

p− 1
,

1

p− 2
, · · · , 1

)
.

(iii) The 1st order autoregressive AR(1):

Ω3 = L>D−1L,

where

L> =



1 −0.8 0 · · · · · · 0

0 1 −0.8 0 · · · 0

0 0 1
... · · · 0

...
...

...
. . .

...

0 0 0 0 1 −0.8

0 0 0 0 0 1


and D = 0.01 · Ip.

(iv) The compound symmetry for Σ:

Σ = Ip + ρ1p1
>

and

Ω4 = L>D−1L,
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where 1p is the p× 1 vector of ones, and

L =



1 0 0 · · · · · · 0

− ρ
1+ρ

1 0 · · · · · · 0

− ρ
1+2ρ

− ρ
1+2ρ

1 0 · · · 0
...

...
...

. . .
...

...

− ρ
1+(p−2)ρ

− ρ
1+(p−2)ρ

− ρ
1+(p−2)ρ

− ρ
1+(p−2)ρ

1 0

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

1


.

We set σ = 1 and ρ = 0.5.

We remark that the cases (i)-(iii) satisfies our sparsity assumption but (iv)

does not.

The data are generated from the normal distribution, and the sample size

and dimension are set as n = 100 and p = 30. In each data set, we compute

the four estimators by Huang et al. (2006) and our SLMCD. We replicate the

above 100 times and evaluate the empirical error of the estimation.

Again, following Huang et al. (2006), we consider two errors (loss functions)

of the estimation, the entropy loss (`E) and the quadratic loss (`Q) in (4.1).

`E(Σ, G) = tr(Σ−1G)− log |Σ−1G| − p

`Q(Σ, G) = tr(Σ−1G− I)2.
(4.1)

Both errors above are defined with the covariance matrix estimator G, not the

estimator of the precision matrix, and thus, to evaluate it, we need evaluate

the inverse of the estimator of the precision matrix. The empirical errors of

the estimation over 100 replications are reported in Table 4.1.
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Sample
Huang L1 Huang L2

SLMCD
GCV 5CV GCV 5CV

EL Ω1 Identity 5.231 0.761 (4) 0.248 (2) 0.850 (5) 0.728 (3) 0.269 (1)

(`E) Ω2 Heter. Diag. 5.258 1.490 (3) 0.462 (1) 1.780 (4) 1.887 (5) 0.466 (2)

Ω3 AR(1) 5.376 1.969 (2) 1.976 (3) 3.911 (4) 4.020 (5) 1.389 (1)

Ω4 CS 5.863 2.405 (4) 2.452 (5) 2.201 (3) 2.198 (2) 2.036 (1)

QL Ω1 Identity 8.824 1.296 (4) 0.489 (1) 1.483 (5) 1.284 (3) 0.521 (2)

(`Q) Ω2 Heter. Diag. 11.513 2.860 (3) 1.017 (1) 3.654 (4) 3.875 (5) 1.029 (2)

Ω3 AR(1) 9.672 3.629 (2) 3.644 (3) 6.864 (4) 7.058 (5) 2.392 (1)

Ω4 CS 9.789 6.681 (1) 11.072 (5) 7.513 (3) 7.036 (2) 8.036 (4)

Table 4.1: Losses and orders of losses are calculated for cases of Huang et al.
(2006) with covariance estimation method of Huang et al. (2006) with the
combinations of (i) `1 and `2− regularizations and (ii) 5CV and GCV for the
selection of the tuning parameter and our method SLMCD with n = 100, p =
30 and N = 100 replications.

Table 4.1 shows that our SLMCD outperforms over the methods by Huang

et al. (2006) when the true precision matrix satisfies the sparsity assumption

(the cases of Ω1, Ω2, and Ω3), while it does not for the dense precision matrix

(Ω3), However, even for the dense case, SLMCD performs well in view of `E

error. In addition, although we do not separately report them, SLMCD uses

a pre-determined value for the tuning parameter instead of searing it, and is

computationally much more efficient than Huang’s methods.
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4.2 Extended study

In this section, we numerically compare our proposal SLMCD to several lasso-

based precision matrix estimation methods. Those compared methods include

Huang et al. (2006), with `1 and `2− regularizations, scaled lasso precision ma-

trix estimation method by Sun and Zhang (2013), Graphical Lasso by Friedman

et al. (2008), CLIME by Cai et al. (2011).

To demonstrate the effectiveness of our method, we conducted an evalua-

tion using a set of example precision matrices labeled (i)-(viii).

(i) The identity matrix: Ω1 = Ip.

(ii) The heterogenous diagonal matrix:

Ω2 = diag

(
1

p
,

1

p− 1
,

1

p− 2
, · · · , 1

)
.

(iii), (iv) The 1st order autoregressive AR(1):

Ω3 = L>D−1
3 L

Ω4 = L>D−1
4 L
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where

L> =



1 −0.8 0 · · · · · · 0

0 1 −0.8 0 · · · 0

0 0 1
... · · · 0

...
...

...
. . .

...

0 0 0 0 1 −0.8

0 0 0 0 0 1


and D3 = Ip, D4 = diag (1, ..., 1, 0.01, ..., 0.01) with p/2 number of 1,

0.01, where p is even number.

(v) The compound symmetry for Σ:

Σ = Ip + ρ1p1
>

and

Ω5 = L>D−1L,
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where 1p is the p× 1 vector of ones, and

L =



1 0 0 · · · · · · 0

− ρ
1+ρ

1 0 · · · · · · 0

− ρ
1+2ρ

− ρ
1+2ρ

1 0 · · · 0

...
...

...
. . .

...
...

− ρ
1+(p−2)ρ

− ρ
1+(p−2)ρ

− ρ
1+(p−2)ρ

− ρ
1+(p−2)ρ

1 0

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

− ρ
1+(p−1)ρ

1



.

We set σ = 1 and ρ = 0.5.

Following (vi)-(viii) are dense models.

(vi) Ω6 = {Ωij} with Ωij = 0.6|i−j|

(vii) Ω7 = B + δIp

B = {Bij} with 2Bij ∼ Bin(1, 0.1) for i 6= j, Bij = 0 for i = j, with δ a

constant chosen s.t. the condition number (κ) of Ω7 is p.

Then, we rescaled resulted Ω to the unit in diagonal.

(viii) Ω8 = D1/2ΘD1/2

Θ = {Θij} with Θij = 0.6|i−j| and D = {Dii} is a diagonal with Dii =

(4i+ p− 5)/{5(p− 1)}.
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(i)-(v) are the settings sourced from Huang et al. (2006), where (iii), (iv)

include variations of diagonal elements in D of Ω = L>D−1L. This adjust-

ment was made to achieve similar levels of numbers compared to other cases

in Huang et al. (2006). (v)-(vii) are the exact same settings derived from Sun

and Zhang (2013). Among these settings, (i)-(iv) and (vi) were selected as they

represent sparse cases that align well with the assumptions of our proposed

method. However, (iv)-(vi) present dense cases that deviate from our assump-

tions. Additionally, cases (v)-(vii) do not consider the time-ordination of data

structures, further violating our underlying assumptions.

The data are generated from normal distributions and our numerical study

considered various n, p situations, including where the number of samples (n)

is less than, equal to, and greater than the number of variables (p). The study

involved n = 100 samples and three different scenarios for the number of

variables: p = 30, p = 100, and p = 150. We performed a total of N = 100

replications for each case.

Throughout the study, we sought to evaluate the performance of our method

and compare it to other relevant approaches under these diverse scenarios, en-

compassing both sparse and dense models with varying levels of variables. The

repetition of the experiments allowed us to assess the stability and consistency

of the results.

Our primary focus is on the estimation of precision matrices. To evaluate

the performance of various methods, we employed three errors (loss functions)

tailored to precision matrices. These loss functions include the matrix 1-norm

(`1), the matrix 2-norm (`2), and the Frobenius norm (`F ). In these errors, we

used Ω to represent the true precision matrix and F to represent the estimated
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precision matrix.

`1(Ω, F ) = max

p∑
i=1

|(Ωij − Fij)|

`2(Ω, F ) = max{λeigen(Ω− F )T (Ω− F )}
1
2

`F (Ω, F ) =

√∑
i,j

(Ωij − Fij)2

(4.2)

For ease of comparison, we have divided the results into two parts: one

for Huang et al. (2006) and the other for Sun and Zhang (2013). Interest-

ingly, the results remain consistent whether using `1, `2 or `F norms. For the

cases of Huang et al. (2006), in the case of Ω1, which represents the simplest

scenario using an identity matrix for the precision matrix, all methods yield

adequately small levels of losses, indicating their proficiency in handling this

straightforward case. For Ω2, Ω31 and Ω32, which best align with our underlying

assumptions, SLMCD consistently outperforms other methods by yielding the

smallest losses across all dimensions of p. This outcome strongly supports the

theoretical results we derived. Regarding Ω4, we observed that every method

performed similarly, with comparable levels of losses.

Overall, these findings provide valuable insights into the effectiveness of our

proposed SLMCD method in comparison to existing approaches, especially in

scenarios that best adhere to our assumptions.

Table 4.2 - 4.4 are cases of Huang et al. (2006) and Table 4.5 - 4.7 are cases

of Sun and Zhang (2013). Table 4.2, 4.3 shows the calculated losses of matrix

1-norm (`1) , Table 4.3, 4.6 shows the calculated losses of matrix 2-norm (`2)

and Table 4.4, 4.7 shows the calculated losses of frobenius norm (`F ).
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In Table 4.2 - 4.4, SLMCD performs small losses for all settings under

various n, p cases. Especially, for Ω31,Ω32, SLMCD results in much smaller

losses than other precision estimation methods and thoose gaps increase as p

increases.

In Table 4.5 - 4.7, specifically Ω5, Ω6, and Ω7, the scaled lasso method yields

the smallest losses for Ω6 and Ω7. On the other hand, our propoosed SLMCD

does not achieve the best results for these cases since they do not consider the

time-ordination of data structures. Furthermore, Ω5,Ω7 are dense cases, which

also contradict assumptions of SLMCD, SLMCD does not perform the smaller

losses compared to other methods.

These tables provide a comprehensive overview of the performance of differ-

ent methods under various norms and cases from Sun and Zhang (2013). The

comparison of these results contributes to a thorough understanding of how

different methods handle scenarios without time-ordination constraints and

helps in identifying their respective strengths and limitations in such contexts.
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(i) Matrix 1-norm (`1)

SLMCD
Huang L1 Huang L2 Scaled

GL CL
5CV 5CV Lasso

p = 30 Ω1 Identity 0.430 0.394 1.570 0.451 0.492 0.484

Ω2 Heter. Diag 0.139 0.162 0.928 0.587 0.492 0.479

Ω31 AR(1) 1.251 1.293 10.929 1.168 2.732 2.910

Ω32 AR(1) 109.241 291.722 283.609 292.753 323.492 322.643

Ω4 CS 6.598 6.989 6.583 6.480 7.537 6.803

p = 100 Ω1 Identity 0.514 0.474 0.486 0.521 0.492 0.598

Ω2 Heter. Diag 0.136 0.139 1.485 6.202 0.498 0.720

Ω31 AR(1) 1.451 1.456 3.318 1.448 2.732 2.533

Ω32 AR(1) 134.408 135.063 297.914 296.186 323.492 320.916

Ω4 CS 11.009 11.444 11.430 10.877 11.965 11.359

p = 150 Ω1 Identity 0.535 0.510 0.527 0.540 0.492 0.587

Ω2 Heter. Diag 0.120 0.121 0.364 0.096 0.502 0.762

Ω31 AR(1) 1.566 2.992 3.001 1.717 2.732 2.240

Ω32 AR(1) 143.238 139.531 297.065 297.015 323.492 319.829

Ω4 CS 12.603 13.022 13.005 12.477 13.528 12.947

Table 4.2: Matrix 1-norm (`1) are calculated for cases of Huang et al. (2006)
with some lasso-based precision matrix estimation methods and proposed
SLMCD for comparison with n = 100, p = 30, 100, 150 and N = 100 repli-
cations.
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(ii) Matrix 2-norm (`2)

SLMCD
Huang L1 Huang L2 Scaled

GL CL
5CV 5CV Lasso

p = 30 Ω1 Identity 0.398 0.386 0.670 0.408 0.492 0.388

Ω2 Heter. Diag 0.138 0.150 0.426 0.343 0.492 0.478

Ω31 AR(1) 0.991 0.875 5.464 0.833 2.723 2.200

Ω32 AR(1) 85.397 162.203 155.045 282.549 320.241 318.956

Ω4 CS 4.656 4.815 4.382 4.621 5.806 4.783

p = 100 Ω1 Identity 0.486 0.474 0.475 0.486 0.492 0.436

Ω2 Heter. Diag 0.136 0.138 0.846 2.993 0.498 0.720

Ω31 AR(1) 1.175 1.013 2.634 0.936 2.731 1.785

Ω32 AR(1) 107.063 99.569 286.409 289.255 323.183 319.986

Ω4 CS 6.803 6.928 6.911 6.791 8.054 7.034

p = 150 Ω1 Identity 0.519 0.510 0.513 0.519 0.492 0.433

Ω2 Heter. Diag 0.120 0.121 0.257 0.090 0.502 0.762

Ω31 AR(1) 1.291 2.918 2.912 1.020 2.731 1.728

Ω32 AR(1) 113.851 99.605 289.777 289.821 323.353 319.471

Ω4 CS 7.445 7.552 7.532 7.434 8.717 7.679

Table 4.3: Matrix 2-norm (`2) are calculated for cases of Huang et al. (2006)
with some lasso-based precision matrix estimation methods and proposed
SLMCD for comparison with n = 100, p = 30, 100, 150 and N = 100 repli-
cations.
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(iii) Frobenius norm (`F )

SLMCD
Huang L1 Huang L2 Scaled

GL CL
5CV 5CV Lasso

p = 30 Ω1 Identity 0.859 0.834 1.517 0.877 2.693 1.032

Ω2 Heter. Diag 0.173 0.183 0.530 0.462 2.302 0.519

Ω31 AR(1) 2.323 1.933 9.036 1.825 8.632 6.581

Ω32 AR(1) 147.154 243.610 254.398 602.561 750.651 746.583

Ω4 CS 4.971 5.139 5.015 4.925 8.594 5.156

p = 100 Ω1 Identity 1.530 1.478 1.481 1.539 4.918 2.000

Ω2 Heter. Diag 0.177 0.178 0.983 4.099 4.711 0.789

Ω31 AR(1) 4.769 4.151 14.697 3.385 15.930 9.116

Ω32 AR(1) 315.813 282.821 1169.440 1174.672 1395.386 1376.981

Ω4 CS 7.668 7.783 7.787 7.618 15.827 8.212

p = 150 Ω1 Identity 1.874 1.816 1.823 1.888 6.023 2.410

Ω2 Heter. Diag 0.158 0.159 0.308 13.523 5.891 0.840

Ω31 AR(1) 6.205 20.721 20.668 4.191 19.540 10.672

Ω32 AR(1) 405.027 332.325 1458.174 1449.986 1713.302 1685.990

Ω4 CS 8.622 8.720 8.744 8.571 19.245 9.318

Table 4.4: Frobenius norm (`F ) are calculated for cases of Huang et al. (2006)
with some lasso-based precision matrix estimation methods and proposed
SLMCD for comparison with n = 100, p = 30, 100, 150 and N = 100 repli-
cations.

34



(i) Matrix 1-norm (`1)

SLMCD
Huang L1 Huang L2 Scaled

GL CL
5CV 5CV Lasso

p = 30 Ω5 3.318 3.157 4.639 3.157 3.490 2.985

Ω6 1.488 1.510 2.131 1.355 2.140 1.393

Ω7 2.695 2.350 3.047 2.513 2.858 2.494

p = 100 Ω5 3.469 3.568 3.908 3.414 3.492 3.453

Ω6 3.095 3.316 3.363 2.938 3.231 2.984

Ω7 3.139 3.228 3.401 3.086 3.229 3.056

p = 150 Ω5 3.500 3.644 3.720 3.499 3.492 3.566

Ω6 3.719 3.801 3.868 3.447 3.773 3.585

Ω7 3.264 3.386 3.457 3.316 3.300 3.229

Table 4.5: Matrix 1-norm (`1) are calculated for cases of Sun and Zhang
(2013) with some lasso-based precision matrix estimation methods and pro-
posed SLMCD for comparison with n = 100, p = 30, 100, 150 and N = 100
replications.
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2) Matrix 2-norm (`2)

SLMCD
Huang L1 Huang L2 Scaled

GL CL
5CV 5CV Lasso

p = 30 Ω5 2.997 2.644 2.790 2.768 3.367 2.428

Ω6 0.945 0.831 0.981 0.796 1.550 0.836

Ω7 2.315 1.815 1.978 2.030 2.537 2.056

p = 100 Ω5 3.221 3.324 3.405 2.994 3.478 3.039

Ω6 1.857 1.898 1.821 1.667 2.162 1.722

Ω7 2.818 2.905 2.998 2.441 3.009 2.675

p = 150 Ω5 3.265 3.440 3.502 3.037 3.486 3.152

Ω6 2.270 2.354 2.349 2.094 2.507 2.206

Ω7 2.940 3.096 3.126 2.495 3.113 2.826

Table 4.6: Matrix 2-norm (`2) are calculated for cases of Sun and Zhang
(2013) with some lasso-based precision matrix estimation methods and pro-
posed SLMCD for comparison with n = 100, p = 30, 100, 150 and N = 100
replications.
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3) Frobenius norm (`F )

SLMCD
Huang L1 Huang L2 Scaled

GL CL
5CV 5CV Lasso

p = 30 Ω5 5.230 4.503 4.635 4.685 6.265 4.052

Ω6 2.059 1.849 2.142 1.834 3.625 1.835

Ω7 3.413 2.749 2.993 2.867 3.886 2.906

p = 100 Ω5 10.218 10.806 11.235 9.240 11.616 9.528

Ω6 5.385 5.533 4.996 4.933 6.900 5.044

Ω7 6.644 7.160 7.345 5.522 7.210 6.154

p = 150 Ω5 12.713 13.912 14.339 11.469 14.257 12.206

Ω6 6.972 7.260 7.154 6.469 8.508 6.898

Ω7 8.272 9.105 9.131 6.804 8.850 7.825

Table 4.7: Frobenius norm (`F ) are calculated for cases of Sun and Zhang
(2013) with some lasso-based precision matrix estimation methods and pro-
posed SLMCD for comparison with n = 100, p = 30, 100, 150 and N = 100
replications.
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Chapter 5

Data example

In this chapter, we applied our proposed SLMCD to real data analysis. We

forecast the intensity of average electric current with 8mA and above collected

by Kyolim soft coorporation. Kyolim soft coorpoartion collected electric-safety

data from general households, traffic or street lights and local markets etc.

which are electrically-vulnerable facilities in order to prevent accidential events

that can occur by electric accidents.

Data was collected from 20th Sep to 28th Nov in 2021 and total number

of date is 70 days, 10 weeks. For adequate data dimension, we transformed

data to 15 min basis from 1 min basis by averaging. Therefore, total number

of data per day is 24× 4 = 96. Figure 5.1 describes the structure of data used

for analysis.

Let the average electric current be Yt with a implying week, b the day of

the week (DOW) and k an order among 15-minute interval term within a day.

Here, k indicates time interval from 15(k − 1) min to 15k min. For example,

{k = 1} implies time from 00:00 am to 00:15 am and {k = 96} implies time
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Figure 5.1: Data preview including the intensity of average electric current
with 8mA and above collected by Kyolim soft coorporation used in real data
analysis.

from 11:45 pm to 12:00 am.

(Yt)1≤t≤96∗70 = (Y{(a)−week (b)−th day (k)−th interval})

= (Y{((a−1)∗7+(b−1))∗96+k})

(or simply) = (Y(a,b,k)), 1≤a≤10, 1≤b≤7, 1≤k≤96

(5.1)

To measure the performance of the forecast, we split total 70 days data

into training and testing sets and Table 5.1 describes notations used in data

analysis for training and testing sets. First 63 days were used as training set

and the rest 7 days (22rd to 28th of November 2021) were used as test set.

Also, µ(b,k) and Σ(b,k), Ω(b,k) of (Z
(test)
(b,k) ) = (Z

(b)(test)
[1:(k−1)], Z

(b)(test)
[k:k] ) are partitioned

along with b = 1, ..., 7, k = 2, ..., 96 as described in equation (5.1).
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Notations Meaning

Ytraining, Ytest Training and test set

Ntraining, Ntest Number of observation in training, test set

Y
(training)
t = Y

(training)
(a,b,k)

Y
(test)
t = Y

(test)
(b,k)

t−th 15-min interval data for

t ∈ {1, ..., Ntraining or Ntest}

{µ(b,k)} = {
∑9

a=1 Y
(training)

(a,b,k) /7} Mean values of Y
(training)
t for b , k

Z
(training)
t = {Y (training)

t − µ(b,k)} Centralized Y
(training)
t for DOW basis

Z
(test)
t = {Y (test)

t − µ(b,k)}
Centralized Y

(test)
t by training set

for DOW basis

Table 5.1: Notations used in data analysis for training and testing sets.

µ(b,k) =

µ
(b)
[1:k−1]

µ
(b)
[k:k]

 , Σ(b,k) =

Σ
(b)
[1:(k−1),1:(k−1)] Σ

(b)
[1:(k−1)],k

Σ
(b)
k,[1:(k−1)] Σ

(b)
k,k

 ,

Ω(b,k) =

Ω
(b)
[1:(k−1),1:(k−1)] Ω

(b)
[1:(k−1)],k

Ω
(b)
k,[1:(k−1)] Ω

(b)
k,k


(5.2)

Here, the best linear predictor of Z
(test)
(b,k) from Z

(b)(test)
[1:(k−1)] is described in equa-

tion (5.3).

BLP(Z
(test)
(b,k) ) = Σ

(b)
k,[1:(k−1)]Ω

(b)
[1:(k−1),1:(k−1)]Z

(b)(test)
[1:(k−1)] (5.3)

To remove the weekly periodicity, we measured the weekly basis mean

values {µ(b,k)}b=1,...,7, k=1,...,96 of Ytraining for each b, k and subtracted calculated
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Figure 5.2: Explaining how data analysis was done by using training and test
sets by best linear prediction method by using example of k = 2.

mean values from the original Y
(training)
t = Y

(training)
(a,b,k) , which is Z

(training)
t =

Z
(training)
(a,b,k) and also for test sets Y

(test)
t = Y

(test)
(b,k) , also subtracted mean values

{µ(b,k)} calculated by training sets to remove the estimated weekly periodicity.

For the estimation of Ω[1:(k−1),1:(k−1)], Σk,[1:(k−1)], following several lasso-

based methods were used for each estimator. For the estimation of Ω[1:(k−1),1:(k−1)],

we compared our proposed method SLMCD, SLMCD-all, Huang et al. (2006),

scaled lasso, GL, CL methods. Here, SLMCD-all estimates 96 × 96 precision

matrix Ω̂96 = L̂T96D̂
−1
96 L̂96 once and calculates {Ω̂k}k≤95 using the information

of Ω̂96. For the estimation of Σ̂k,[1:(k−1)], we compared SLMCD, SLMCD-all,

scaled lasso, Huang et al. (2006) and sample covariance. Here, sample covari-

ance estimator was used for the estimating Σ̂k,[1:(k−1)] in cases of GL and CL

in order to reduce the computational cost.
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We compared the performance by estimating average absolute forecast error

of the test set. For the performance measure, we assumed that each DOW is

independent to each other. So we calculated 7 different errors for each DOW,

E1 to E7 as in equation (5.4).

E1 =
1

96

96∑
k=1

∣∣∣Ŷ (test)
(1,k) − Y

(test)
(1,k)

∣∣∣ =
1

96

96∑
k=1

∣∣∣Ẑ(test)
(1,k) − Z

(test)
(1,k)

∣∣∣
E2 =

1

96

96∑
k=1

∣∣∣Ŷ (test)
(2,k) − Y

(test)
(2,k)

∣∣∣ =
1

96

96∑
k=1

∣∣∣Ẑ(test)
(2,k) − Z

(test)
(2,k)

∣∣∣
...

E7 =
1

96

96∑
k=1

∣∣∣Ŷ (test)
(7,k) − Y

(test)
(7,k)

∣∣∣ =
1

96

96∑
k=1

∣∣∣Ẑ(test)
(7,k) − Z

(test)
(7,k)

∣∣∣
(5.4)

For total average error Etotal, we averaged seven day error terms.

Etotal =
1

7

{
E1 + · · ·+ E7

}
=

1

96 ∗ 7

7∑
b=1

96∑
k=1

∣∣∣Ŷ (test)
(b,k) − Y

(test)
(b,k)

∣∣∣
=

1

96 ∗ 7

7∑
b=1

96∑
k=1

∣∣∣Ẑ(test)
(b,k) − Z

(test)
(b,k)

∣∣∣
(5.5)

Table 5.2 displays the results of comparing the performance of SLMCD

with other lasso-based estimators across seven different datasets (DOWs) in

terms of total average losses. Consistently, SLMCD, SLMCD-all, and Huang

et al. (2006) estimator with `1 regularization demonstrate the smallest losses

for the total average, showing their superiority over the other methods across

all DOWs.
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In Table 5.3, we present the standard deviations of losses calculated among

various methods. These standard deviations provide insight into the variability

of the estimation results for each method across the different datasets.

Additionally, Figure 5.3 illustrates the boxplots of losses calculated through

the seven DOWs, comparing various lasso-based precision matrix estimation

methods with SLMCD. The width of each boxplot represents the deviation,

and a boxplot closer to zero indicates better performance of the estimator.

As observed, SLMCD, SLMCD-all, and Huang et al. (2006) estimator with `1

regularization demonstrate the best performance based on these boxplots.

SLMCD
SLMCD

all

Huang

L1 GCV

Huang

L1 5CV

Huang

L2 GCV

Huang

L2 5CV
GL CL

E1 0.103 0.104 0.146 0.149 0.111 0.104 0.159 0.121

E2 0.088 0.090 0.096 0.097 0.083 0.079 0.107 0.085

E3 0.099 0.099 0.129 0.130 0.109 0.106 0.142 0.121

E4 0.109 0.109 0.105 0.106 0.126 0.127 0.130 0.138

E5 0.127 0.150 0.151 0.152 0.126 0.127 0.144 0.191

E6 0.108 0.106 0.162 0.167 0.115 0.108 0.188 0.129

E7 0.100 0.101 0.147 0.146 0.113 0.107 0.165 0.134

Etotal 0.105 0.109 0.134 0.135 0.112 0.108 0.148 0.132

Table 5.2: Mean values of absolute errors calculated through 7 DOWs compared
with various lasso-based precision matrix estimation method and SLMCD.
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SLMCD
SLMCD

all

Huang

L1 GCV

Huang

L1 5CV

Huang

L2 GCV

Huang

L2 5CV
GL CL

E1 0.107 0.105 0.145 0.146 0.145 0.146 0.148 0.106

E2 0.083 0.081 0.113 0.113 0.092 0.089 0.110 0.091

E3 0.096 0.094 0.137 0.138 0.109 0.104 0.134 0.107

E4 0.246 0.245 0.247 0.247 0.246 0.247 0.246 0.258

E5 0.137 0.264 0.140 0.140 0.105 0.113 0.118 0.146

E6 0.098 0.096 0.149 0.150 0.117 0.108 0.146 0.108

E7 0.091 0.090 0.137 0.138 0.108 0.103 0.131 0.129

Etotal 0.132 0.157 0.156 0.157 0.133 0.132 0.152 0.146

Table 5.3: Standard deviations of absolute errors calculated through 7 DOWs
compared with various lasso-based precision matrix estimation method and
SLMCD.

Figure 5.3: Boxplot of losses calculated through 7 DOWs compared with vari-
ous lasso-based precision matrix estimation method and SLMCD.
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Chapter 6

Conclusion

In this thesis, we developed a precision matrix estimation method in situations

where the data is time-ordered and precision matrix achieved a certain sparsity.

In our proposed estimator, the methods and advantages of MCD and scaled

lasso by Sun and Zhang (2012) were combined and applied.

We demonstrated that our proposed SLMCD achieves a certain convergence

rate of Op(
√
s log p/n), which is optimal convergence rate. Also, our proposed

method has a computational efficiency by using a pre-fixed tuning parameter

by applying the algorithm of Sun and Zhang (2012).

In numerical studies with various n, p situations and precision matrix set-

tings, we successfully demonstrated that SLMCD provides a reasonable loss

in estimating the true precision matrix, within the lowest computational costs

compared to other lasso-based methods. Also, we proved the utility of SLMCD

by the real data analsis analyzing the electric-safety data.
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6.1 Discussion

In the thesis, we focused on estimating the precision matrix using MCD method,

which decomposes Ω as Ω = L>D−1L. Among the components L, D of Ω, our

algorithm estimates L by utilinzing scaled lasso method and computes D,

which is composed of error variances by sample error variance calculations. In

this discussion, we will mention the importance of estimating the error vari-

ances that compose diagonals of D.

Methods for estimating the error variance such as RCV (Friedman et al.,

2008), MM (Dicker, 2014), MLE (Dicker and Erdogdu, 2016), EigenPrism (Jan-

son et al., 2017), and RidgeVar (Liu et al., 2020) will be introduced briefly in

Appendix B. Each of these methods offers a unique approach to estimate the

error variance and plays a crucial role in robust covariance or precision matrix

estimation. By briefly introducing these methods, we aim to provide insights

into the various approaches available for handling this important aspect of

MCD-based estimation.
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Appendix A

Appendix

A.1 Running time of R codes

Table A.1: Running time of R codes are calculated for cases of Huang et
al. (2006) and Sun and Zhang (2013) with some lasso-based precision matrix
estimation methods and our method SLMCD in comparison with n = 100, p =
30, 100, 150 and N = 100 replications.

(i) p=30

Ω1 Ω2 Ω31 Ω32 Ω4 Ω5 Ω6 Ω7

SLMCD 0.11 0.09 0.09 0.12 0.10 0.11 0.08 0.10

Huang L1 142.11 86.72 264.95 269.71 176.58 268.92 131.73 282.53

Huang L2 199.07 152.09 191.40 187.31 165.05 261.11 134.50 279.28

Scaled Lasso 0.09 0.10 0.11 0.09 0.09 0.11 0.10 0.12

GL 0.14 0.14 0.12 0.11 0.12 0.12 0.12 0.12

CL 34.71 31.77 28.22 26.70 30.26 31.78 29.02 31.92
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(ii) p=100

Ω1 Ω2 Ω31 Ω32 Ω4 Ω5 Ω6 Ω7

SLMCD 0.41 0.40 0.49 0.50 0.42 0.52 0.54 0.52

Huang L1 383.57 400.60 4623.90 204.59 392.82 386.48 387.33 381.88

Huang L2 598.50 803.99 597.38 556.73 417.65 486.55 483.54 558.02

Scaled Lasso 1.28 1.50 1.51 1.58 1.27 1.54 1.53 1.58

GL 15.32 15.23 15.24 15.35 15.23 15.10 14.88 14.71

CL 1620.00 1385.65 1068.91 711.79 1549.46 1510.90 1316.73 1379.98

(iii) p=150

Ω1 Ω2 Ω31 Ω32 Ω4 Ω5 Ω6 Ω7

SLMCD 1.43 1.32 1.47 1.42 1.34 1.48 1.58 1.47

Huang L1 297.10 327.54 2983.27 3260.04 639.94 614.65 598.17 613.18

Huang L2 1035.76 1976.27 1826.34 1688.03 14870.45 1166.95 1152.45 1321.95

Scaled Lasso 3.91 5.26 4.50 4.62 4.04 4.41 4.29 4.59

GL 18.65 18.58 18.66 18.65 17.76 18.52 18.49 18.40

CL 7929.57 7119.63 4882.25 2835.36 7794.85 8154.80 6302.52 6998.25

Throughout p = 30, 100, 150, SLMCD performs the shortest running time

of R codes. As p increases, SLMCD performs with the shorter running time

compared to other methods, which is the strong point of SLMCD.
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A.2 Ratio of zeros/non-zeros identified among

zeros/non-zeros of Ω

A.2.1 p=30

Sparse cases

(i) Identifying zeros / zeros of Ω (0-0)

Ω1 Ω2 Ω31 Ω32 Ω6

SLMCD 0.97 0.97 0.93 0.94 0.98

Huang L1 1.00 1.00 0.78 0.72 1.00

Huang L2 1.00 1.00 1.00 1.00 1.00

Scaled Lasso 0.98 0.14 0.83 0.97 0.98

GL 1.00 1.00 1.00 1.00 1.00

CL 0.00 0.00 0.00 0.00 0.00

Table A.2: Ratios of identifying zeros of true zeros in Ω with SLMCD to some
lasso-based precision matrix estimation methods for comparison with n =
100, p = 30 and N = 100 replications.

(ii) Identifying non-zeros / zeros of Ω (1-0)

Ω1 Ω2 Ω31 Ω32 Ω6

SLMCD 0.03 0.03 0.07 0.06 0.02

Huang L1 0.00 0.00 0.22 0.28 0.00

Huang L2 0.00 0.00 0.00 0.00 0.00

Scaled Lasso 0.02 0.86 0.17 0.03 0.02

GL 0.00 0.00 0.00 0.00 0.00

CL 1.00 1.00 1.00 1.00 1.00

Table A.3: Ratios of identifying non-zeros of true zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 30 and N = 100 replications.
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Dense cases

(i) Identifying non-zeros / non-zeros of Ω (1-1)

Ω4 Ω5 Ω7

SLMCD 0.06 0.15 0.14

Huang L1 0.04 0.44 0.71

Huang L2 0.03 0.03 0.03

Scaled Lasso 0.04 0.31 0.66

GL 0.03 0.03 0.03

CL 1.00 1.00 1.00

Table A.4: Ratios of identifying non-zeros of true non-zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 30 and N = 100 replications.

(ii) Identifying zeros / non-zeros of Ω (0-1)

Ω4 Ω5 Ω7

SLMCD 0.94 0.85 0.86

Huang L1 0.96 0.56 0.29

Huang L2 0.97 0.97 0.97

Scaled Lasso 0.96 0.69 0.34

GL 0.97 0.97 0.97

CL 0.00 0.00 0.00

Table A.5: Ratios of identifying zeros of true non-zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 30 and N = 100 replications.
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A.2.2 p=100

Sparse cases

(i) Identifying zeros / zeros of Ω (0-0)

Ω1 Ω2 Ω31 Ω32 Ω6

SLMCD 0.99 0.99 0.99 0.99 0.95

Huang L1 1.00 1.00 0.94 0.97 0.95

Huang L2 1.00 1.00 1.00 1.00 1.00

Scaled Lasso 0.99 0.05 0.86 0.97 0.82

GL 1.00 1.00 1.00 1.00 1.00

CL 0.00 0.00 0.00 0.00 0.00

Table A.6: Ratios of identifying zeros of true zeros in Ω with SLMCD to some
lasso-based precision matrix estimation methods for comparison with n =
100, p = 100 and N = 100 replications.

(ii) Identifying non-zeros / zeros of Ω (1-0)

Ω1 Ω2 Ω31 Ω32 Ω6

SLMCD 0.01 0.01 0.01 0.01 0.05

Huang L1 0.00 0.00 0.06 0.03 0.05

Huang L2 0.00 0.00 0.00 0.00 0.00

Scaled Lasso 0.01 0.95 0.14 0.03 0.18

GL 0.00 0.00 0.00 0.00 0.00

CL 1.00 1.00 1.00 1.00 1.00

Table A.7: Ratios of identifying non-zeros of true zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 100 and N = 100 replications.
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Dense cases

(i) Identifying non-zeros / non-zeros of Ω (1-1)

Ω4 Ω5 Ω7

SLMCD 0.02 0.04 0.04

Huang L1 0.01 0.03 0.02

Huang L2 0.01 0.01 0.01

Scaled Lasso 0.01 0.17 0.54

GL 0.01 0.01 0.01

CL 1.00 1.00 1.00

Table A.8: Ratios of identifying non-zeros of true non-zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 100 and N = 100 replications.

(ii) Identifying zeros / non-zeros of Ω (0-1)

Ω4 Ω5 Ω7

SLMCD 0.98 0.96 0.96

Huang L1 0.99 0.97 0.98

Huang L2 0.99 0.99 0.99

Scaled Lasso 0.99 0.83 0.46

GL 0.99 0.99 0.99

CL 0.00 0.00 0.00

Table A.9: Ratios of identifying zeros of true non-zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 100 and N = 100 replications.
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A.2.3 p=150

Sparse cases

(i) Identifying zeros / zeros of Ω (0-0)

Ω1 Ω2 Ω31 Ω32 Ω6

SLMCD 0.997 0.996 0.988 0.990 0.976

Huang L1 1.000 1.000 1.000 0.969 0.997

Huang L2 1.000 1.000 1.000 1.000 1.000

Scaled Lasso 0.996 0.030 0.861 0.979 0.886

GL 1.000 1.000 1.000 1.000 1.000

CL 0.000 0.000 0.000 0.000 0.000

Table A.10: Ratios of identifying zeros of true zeros in Ω with SLMCD to
some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 150 and N = 100 replications.

(ii) Identifying non-zeros / zeros of Ω (1-0)

Ω1 Ω2 Ω31 Ω32 Ω6

SLMCD 0.003 0.004 0.012 0.010 0.024

Huang L1 0.000 0.000 0.000 0.031 0.003

Huang L2 0.000 0.000 0.000 0.000 0.000

Scaled Lasso 0.004 0.970 0.139 0.021 0.114

GL 0.000 0.000 0.000 0.000 0.000

CL 1.000 1.000 1.000 1.000 1.000

Table A.11: Ratios of identifying non-zeros of true zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 150 and N = 100 replications.

53



Dense cases

(i) Identifying non-zeros / non-zeros of Ω (1-1)

Ω4 Ω5 Ω7

SLMCD 0.011 0.024 0.027

Huang L1 0.007 0.014 0.009

Huang L2 0.007 0.007 0.007

Scaled Lasso 0.008 0.130 0.559

GL 0.007 0.007 0.007

CL 1.000 1.000 1.000

Table A.12: Ratios of identifying non-zeros of true non-zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 150 and N = 100 replications.

(ii) Identifying zeros / non-zeros of Ω (0-1)

Ω4 Ω5 Ω7

SLMCD 0.989 0.976 0.973

Huang L1 0.993 0.986 0.991

Huang L2 0.993 0.993 0.993

Scaled Lasso 0.992 0.870 0.441

GL 0.993 0.993 0.993

CL 0.000 0.000 0.000

Table A.13: Ratios of identifying zeros of true non-zeros in Ω with SLMCD
to some lasso-based precision matrix estimation methods for comparison with
n = 100, p = 150 and N = 100 replications.
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Appendix B

Appendix

B.1 Refitted cross-validation method (RCV)

Fan et al. (2012) proposed a two-stage refitted cross-validation (RCV) method

for ultrahigh dimensional models. The method initially identifies the appropri-

ate model using a specific fitting method and then calculates the error variance

using ordinary least squares (OLS) only on the variables selected in the model.

When the number of variables (p) is small, even if some irrelevant variables

are selected, the error variance may not be significantly biased. However, in

high-dimensional cases where p is large, the likelihood of including many irrel-

evant variables in the model increases. As a result, the error variance estimate

(σ̂2) can be substantially biased.

σ̂2 = (1− γ2
n)

1

n− 1

n∑
i=1

(Yi − Ȳ )2,

where γ2
n represents the sample correlation between the spurious variable and
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the response variable. As more irrelevant variables are included, the term γ2
n

tends to decrease, leading to a downward bias in the estimated error variance.

B.2 Method of moments method (MM)

Dicker (2014) proposed the method of moments (MM) estimator for error

variance. By leveraging the method of moments properties, Dicker derived non-

degenerate linear-combination forms of certain statistics that provide estimates

for the quantities of interest, such as σ2 and τ 2 = βTΣβ = |Σ1/2β|2, which

represents the measure of l2-signal strength. In cases where the number of

variables (p) is less than the number of observations (n), estimating σ2 and τ 2

via the MM method is straightforward. The estimates are as follows:

σ̂2
0 =

1

n− p
‖y −Xβ̂‖2 =

1

n− p
‖y‖2 − 1

n− p
yTX(XTX)−1XTy

τ̂ 2
0 =

1

n
‖y‖2 − σ̂2

0 =
1

n− p
yTX(XTX)−1XTy − p

n(n− p)
‖y‖2

where σ̂2
0, τ̂ 2

0 are unbiased estimators.

However, in cases where the number of variables (p) exceeds the number of

observations (n), the inverse of XTX does not exist, presenting challenges for

estimation. In such situations, Dicker (2014) suggested a different MM method

that is applicable in p > n cases, without relying on any sparsity assumptions

on β. This approach utilizes properties of the moments of the normal and

Wishart distribution to derive feasible estimators for σ2 and τ 2 under high-

dimensional settings.
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B.3 Maximum likelihood method (MLE)

Dicker and Erdogdu (2016) introduced an error variance estimator via maxi-

mum likelihood (ML) under the fixed-effects model, expanding on the ML esti-

mator that was already suggested for the random-effects model. The proposed

ML estimator for error variance was initially designed for the random-effects

model, but Dicker and Erdogdu (2016) extended its application to the fixed-

effects model as well. They accomplished this by utilizing coupling arguments

to connect the random-effects model to the fixed-effects model when p and n

are large.

B.4 EigenPrism

Janson et al. (2017) proposed the EigenPrism method to estimate confidence

intervals for the error variance of |Σ1/2β|22 (or θ). This method helps answer

the question of how close the estimated coefficient vector β̂ is to the true

coefficient vector β. Additionally, EigenPrism addresses the estimation of the

noise level σ2 in a linear model, which is crucial for prediction accuracy and

model selection.

B.5 RidgeVar

Liu et al. (2020) proposed an error variance estimator based on ridge regression

and random matrix theory.
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B.6 The natural lasso estimator

Yu and Bien (2019) proposed the natural lasso estimator for the error variance,

with maximizing the penalized likelihood function by using the natural param-

eters of the Gaussian multi-parameter exponential family, φ =
1

σ2
, θ =

β

σ2
.

Also, the organic lasso estimator was proposed which uses the modified penalty

from the natural lasso estimator. Especially, the proposed method does not re-

quire any assumptions on design matrix X or regression coefficients β, which

is a strong-point among the estimation methods of error variance.

B.7 The adpative method

Verzelen and Gassiat (2018) proposed the adaptive method for estimating the

error variance, with the impact of not knowing the sparsity of the regression

parameter or the distribution of the design matrix. This method suggested the

adaption to unknown sparsity when Σ is known by suggesting η̂(Σ̂−1) as U -

type estimator with
√
p/n-consistent. The idea is that if the real regressionn

parameter is sparse, then the suggested method and the previously known

k-sparse estimator will be close enough, and if dense then two will be quite

different.
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국문초록

수정 촐레스키 분해 기반의

스케일드 라쏘 기법을 활용한 역공분산 행렬 추정

본 논문은 시간 순서를 가진 고차원 다변량 자료의 역공분산 행렬 Ω 추정의

새로운 방법론을 제시한다. 역공분산 행렬은 수정된 촐레스키 분해법을 활용하

면 Ω = LTD−1L로 분해가 가능하다. 본 논문에서는 Sun and Zhang (2012)

의 스케일드 라쏘방법을 활용한 MCD 기반의 역공분산행렬 추정량 SLMCD

를 제안한다. 추정량 SLMCD는 몇 가지 이점을 가지고 있다. 먼저, 스케일드

라쏘 방법론을 적용시킴으로써 사전에 결정된 조절변수를 사용하게 되어 조절

변수의 계산비용에 큰 이점이 있다. 두번째로, 적절한 조건 하에서 SLMCD

추정량이 Op

(√
s log p/n

)
의 최적 수렴 속도를 달성한다. 여기서 s는 L의 0이

아닌 원소의 개수를 의미한다. 마지막으로, 다양한 상황에서 SLMCD 추정량

이 다른 라쏘 기반의 추정량들과 비교하여 훌륭한 추정 결과를 가져오는 것을

수치적으로 보여준다. 또한, 교림소프트 사에서 제공한 전기 안전 데이터를

활용하여 실제 데이터 분석을 수행한다.

주요어: 역공분산 행렬, 고차원, 수정 촐레스키 기법, 스케일드 라쏘, 전기 안전

데이터

학번: 2016-20271
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