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ABSTRACT

Nonconvex penalized matrix completion

methods for causal inference in panel data

Bo Young Kim

The Department of Statistics

The Graduate School

Seoul National University

Low-rank matrix completion is a widely used approach for im-

puting missing entries of a matrix. The nuclear norm penalty,

which shrinks the singular values of a matrix, is often employed

due to its computational convenience. However, it introduces bias

in the estimation. To address this issue, nonconvex penalties such

as SCAD are utilized, which provide sparse and unbiased estima-

tors.

In this thesis, we study the nonconvex penalized matrix com-

pletion methods for estimating causal effects in panel data with

time-dependent treatment adoption. We first derive an upper

bound for the estimation error of our proposed estimator for the
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potential control outcomes, which improves upon existing meth-

ods that rely on the nuclear norm penalty. Remarkably, this upper

bound matches the one obtained by the oracle estimator, under

an additional condition on the magnitudes of true singular val-

ues. Furthermore, we establish the asymptotic normality of the

corresponding estimator for the treatment effect, which exhibits a

smaller asymptotic variance compared to an existing method. We

perform numerical studies to assess the recovery of the potential

control outcomes and the estimation of the average treatment ef-

fect. Simulations validate our theoretical results, and experiments

using real data further demonstrate the promising performance of

our proposed method.

Keywords: Time-dependent treatment adoption, Potential con-

trol outcomes, SCAD, Unbiased estimator, Upper bound, Oracle

estimator, Causal effect, Asymptotic normality

Student Number: 2013− 22898
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Chapter 1

Introduction

Causal inference has been studied in statistics aiming to uncover

the true cause-and-effect relationships between variables rather

than relying solely on correlations. It enables us to understand

how changes in one variable impact another, which is valuable

for policy evaluation [Abadie and Cattaneo, 2018]. Policy evalua-

tion involves the implementation of policies (or treatments, inter-

ventions, events) by governments, organizations, or natural fac-

tors. Causal inference provides insights into the effectiveness of

these policies, guiding future policy directions and resource al-

location. Typically, aggregated data collected over time [Abadie

et al., 2010] are analyzed. For example, one might examine annual

cigarette sales data across multiple states to assess the impact of

state government-initiated tobacco taxes. When studying causal

effects in panel data, a common approach is to compare outcomes

before and after policy implementation. The Synthetic Control

[Abadie et al., 2010] method is widely used and considers patterns
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across units to estimate treatment effects. Additionally, fixed ef-

fects models [Abadie, 2005; Arkhangelsky et al., 2021] and factor

models [Bai and Ng, 2017; Xu, 2017] have been introduced to cap-

ture both time-series and cross-sectional patterns. Recently, the

matrix completion (MC) methods using a nuclear norm penalty

[Athey et al., 2021] has been suggested. These assume a low-rank

structure in the true potential control matrix. Furthermore, Farias

et al. [2021] proposed a de-biased estimator that directly estimates

the treatment effect while accounting for low-rank, addressing the

bias issue associated with the nuclear norm penalty.

The MC methods aim to fill in missing entries in a partially

observed matrix using the available information. By assuming a

low-rank structure, where the matrix can be represented as a prod-

uct of two lower-dimensional matrices, we can model the matrix

with significantly fewer parameters compared to the original form.

This dimension reduction offers advantages in terms of storage and

interpretation, and the separation of the underlying structure (pat-

tern) from the noise. In the MC, the nuclear norm penalty [Cai

et al., 2010; Mazumder et al., 2010; Negahban and Wainwright,

2012] is commonly used, which shrinks the singular values of the

matrix. This penalty is computationally convenient for low-rank

modeling. However, the nuclear norm penalty can introduce bias

in the estimated values. To mitigate this issue, researchers have

proposed the use of nonconvex penalties [Gui et al., 2016; Lu et al.,

2014; Song et al., 2018].

The main goals of this thesis are: (1) to propose an estimator

2



for the potential control matrix having desirable properties, and

(2) to establish the asymptotic normality of the corresponding

estimator for the treatment effect.

In this thesis, we investigate the application of nonconvex

penalties in the MC methods for estimating causal effects in panel

data with time-dependent treatment adoption patterns. Our study

offers several contributions. Firstly, we provide theoretical results

concerning the recovery of the potential control outcomes. We

demonstrate that our proposed estimator achieves faster conver-

gence rates compared to the previous method that utilized the

nuclear norm penalty [Athey et al., 2021]. We also show that the

oracle estimator becomes a local minimum of the nonconvex prob-

lem, and our upper bound aligns with the upper bound for the

oracle estimator under certain conditions. Secondly, we establish

the asymptotic normality of the estimator for the causal effect. We

additionally verify that this estimator exhibits a smaller asymp-

totic variance compared to the existing method. Furthermore,

we validate our theoretical findings through simulations. In the

analysis of real data, we compare the results obtained from our

nonconvex penalized estimator and the estimator for the causal

effect with those from other methods.

The thesis is organized as follows. Chapter 2 offers a compre-

hensive review of the low-rank MC, covering different penalties,

theoretical studies, and algorithms. In Chapter 3, we explain the

setup and notation and review existing MC approaches specifically

for the causal panel analysis. We introduce our proposed estima-
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tor and present our theoretical results. The chapter also includes

details on simulation studies and data analysis using real-world

datasets. Finally, we conclude the thesis in Chapter 4.
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Chapter 2

Review: low-rank matrix

completion

2.1 Introduction

Low-rank matrix modeling is commonly employed when the main

information in a data matrix is primarily represented by a few

dominant singular values, while the smaller singular values can be

considered negligible without losing major information. Matrix

completion (MC) is a promising technique that can recover an

intact matrix with a low-rank structure from undersampled, in-

complete, or corrupted data. The MC has found numerous appli-

cations in various domains [Li et al., 2019] including recommender

systems, gene expression data [Kapur et al., 2016; Mongia et al.,

2019] analysis, image processing [Aggarwal and Gupta, 2016; Bal-

achandrasekaran et al., 2016; Gu et al., 2014], network analysis

[Mahindre et al., 2019; Wang, 2017], and signal processing [Du
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et al., 2013; Yang et al., 2014].

The nuclear norm, also known as the trace norm, is a convex

surrogate for the rank of a matrix. It is equivalent to the ℓ-1 norm

(also known as Lasso) of its singular values vector. The nuclear

norm is widely used in MC applications, where the objective is

to recover a low-rank matrix [Athey et al., 2021; Mongia et al.,

2019; Zhou et al., 2014]. While the nuclear norm offers compu-

tational advantages and convexity [Cai et al., 2010; Mazumder

et al., 2010], it is known to introduce estimation bias for param-

eters with large absolute values. To address this issue, noncon-

vex penalties have been introduced, such as the smoothly clipped

absolute deviation (SCAD) penalty [Fan and Li, 2001] and the

minimax concave (MCP) penalty [Zhang, 2010]. These nonconvex

penalties have gained popularity due to their desirable statistical

properties, including continuity, sparsity, and unbiasedness [Kim

et al., 2008; Wang et al., 2014; Zhang and Zhang, 2012]. Lu et al.

[2014, 2015a,b]; Mazumder et al. [2020]; Wen et al. [2018]; Yao and

Kwok [2016] have empirically shown that the MC with nonconvex

penalties can yield favorable results. Furthermore, Gui et al. [2016]

derived tighter upper bounds for nonconvex penalties, and demon-

strated that the unique global optimal solution is equivalent to the

oracle estimator, despite the computational challenges associated

with solving the nonconvex problem.

The remainder of this Chapter is structured as follows. In

Section 2.2, we provide an overview of the setup and notation

for the low-rank MC and discuss low-rank matrix approximation,

6



which serves as the foundation of the MC approach, in Section 2.3.

Section 2.4 delves into the low-rank MC, including an examination

of the nuclear norm and nonconvex penalties. In Section 2.5, we

outline the necessary assumptions and review existing theoretical

studies. Finally, in Section 2.6, we outline the algorithms used for

solving the convex and nonconvex optimization problems.

2.2 Setup and notation

We first introduce the notations used throughout this thesis. We

use lowercase letters for scalars, bold lowercase letters for vectors,

and bold uppercase letters for matrices. Let L∗ ∈ RN×T be the

true low-rank matrix. We assume that L∗ is a matrix of rank r

with a compact singular value decomposition (SVD) given by:

L∗ = U∗Ξ∗V∗⊤,

where U∗ ∈ RN×r,V∗ ∈ RT×r and Ξ∗ = diag(ξ∗1 , · · · , ξ∗r ) ∈ Rr×r.

Here, columns of U∗ and V∗ represent the left and the right singu-

lar vectors, respectively, and diagonal entries of Ξ∗ are the singular

values of L∗. In this Chapter, let Y ∈ RN×T be the matrix with

completely observed entries. O is the set of index pairs (i, t) corre-

sponding to the observed entries in Y and let n = |O|. We define

the projection operator for any matrix A, given the set O:

PO(A)it =

 Ait if (i, t) ∈ O,

0 if (i, t) /∈ O

P⊥
O (Y) is the complementary projection that satisfies P⊥

O (Y) +

PO(Y) = Y. Note that
∑

(i,t)∈O(Yit−Lit)2 can be easily rewritten

7



as ∥PO(Y − L)∥2F .

We also employ various matrix norms. These include the nu-

clear norm, denoted as ∥A∥tr, which is the sum of the singular

values of A: ∥A∥tr = trace(
√
A⊤A) =

∑min(N,T )
i=1 ξi(A) where

ξi(A) represents i-th singular value of A. Another norm is the

operator (spectral) norm, denoted as ∥A∥op, which is defined as

the maximum singular value of A: ∥A∥op = ξ1(A). The Frobe-

nius norm denoted as ∥A∥F , is the square root of the sum of the

squares of all the singular values of A: ∥A∥F =
√

trace(A⊤A) =√∑min(N,T )
i=1 ξ2i (A). Lastly, we consider the max norm, denoted as

∥A∥max, which is the maximum absolute value of the entries of A:

∥A∥max = max1≤j≤N,1≤k≤T |Ajk|. It is worth noting that the trace

norm, the Frobenius norm, and the operator norm correspond to

ℓ1, ℓ2, and ℓ∞ norms of singular values, respectively. Addition-

ally, we define the trace inner product as ⟨A,B⟩ = trace(ATB).

We employ the symbols a ∨ b = max (a, b) and a ∧ b = min (a, b),

representing the maximum and minimum values between a and b,

respectively. We define a standard basis vector ei(a) as a vector

of dimension a, where only the i-th element is 1 and all other ele-

ments are 0. The notation 1a represents an a-dimensional vector

consisting of all ones. The function I(·) is used as an indicator

function, and Ia represents an a-dimensional identity matrix. Fi-

nally, we use [N ] to denote the set {1, 2, · · · , N}, representing a

sequence of numbers from 1 to N .
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Figure 2.1: Examples of (Left) an incomplete observed matrix

and (Right) a result of MC.

2.3 Low-rank matrix approximation

Before delving into the MC problem, we review a low-rank ap-

proximation problem when all elements of a matrix are observed.

Matrix approximation using SVD forms the basis for algorithms

for low-rank MC problems.

Let Y = UTΞTV
T
T be the SVD of a fully observed Y. As-

suming N ≥ T , UT is an N × T dimensional orthogonal matrix

(U⊤
TUT = IT ), and VT is an T × T dimensional orthogonal ma-

trix (V⊤
TVT = IT ). The columns of UT and VT are the left and

right singular vectors, respectively. ΞT is a diagonal matrix of

T × T dimensions and the diagonal elements ξ1, ξ2, · · · , ξT , the

singular values, of ΞT satisfy ξ1 ≥ ξ2 ≥ · · · ≥ ξT ≥ 0. First, for

r ≤ rank(Y), the optimization problem to find the approximate

matrix closest to Y and with rank r is

min
L
∥Y − L∥F s.t. rank(L) = r. (2.1)

Its closed form solution is UT diag(ξ1, · · · , ξr, 0, · · · , 0)V⊤
T [Hastie

et al., 2015]. We denote this approximation matrix as DHr (Y).
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This is called rank-r SVD (or reduced-rank SVD). The diagonal

matrix, diag(ξ1, · · · , ξr, 0, · · · , 0), denotes a matrix in which the

remainder is 0 except for the first r diagonal elements of Y.

When the rank of Y is r, we denote the compact SVD of Y

as Y = UΞVT where columns of U ∈ RN×r and V ∈ RT×r rep-

resent the first r left and right singular vectors, respectively, and

Ξ = diag(ξ1, · · · , ξr) represents a diagonal matrix whose entries

are non-zero singular values of Y. Consider now the problem of

adopting the nuclear norm, instead of restricting rank as in (2.1):

min
L

1

2
∥Y − L∥2F + λ∥L∥tr (2.2)

where ∥L∥tr is the nuclear norm for matrix L, and see Section

2.4.2 for details. The closed-form solution of (2.2) for λ ≥ 0

is DSλ (Y) = U diag (max(ξ1 − λ, 0), · · · ,max(ξr − λ, 0))VT [Cai

et al., 2010]. We call it the singular value shrinkage operator.

Note that this operator is equivalent to the proximal operator for

the nuclear norm [Hastie et al., 2015, Exercise 5.8], which applies

the soft-thresholding rule to the singular values of the matrix.

2.4 Low-rank matrix completion

2.4.1 Rank constraint

Now suppose that some elements of Y are missing. The MC prob-

lem requires additional assumptions about Y. We assume the low

rank of the matrix. First, the objective function with the rank

10



constraint can be written as

min
L

rank(L) s.t. Yit = Lit for all (i, t) ∈ O. (2.3)

However, it is well known that the problem (2.3) is NP-hard.

Moreover, estimating L accurately to the observations of Y causes

overfitting. Allowing some errors of L on Y have empirically had

better performance results:

min
L

rank(L) s.t. ∥PO(Y − L)∥2F ≤ δ. (2.4)

We note that (2.4) and (2.5) below

min
rank(L)≤r

∥PO(Y − L)∥2F (2.5)

are equivalent. This is because the solution family for a certain

δ ≥ 0 in (2.4) is the same as that for a certain r in (2.5). However,

finding an exact solution (global minimum) of equations (2.4) and

(2.5) is not guaranteed, although finding the local minima is pos-

sible since they are nonconvex problems. The convex relaxation of

rank constraint for getting a global solution is to adopt the nuclear

norm penalty.

2.4.2 Nuclear norm penalty

The nuclear norm penalty is defined by ∥L∥tr = tr(
√
L⊤L). Let

ξi(L) (or ξi for convenience) be the ith largest singular value of L,

and ξ be the vector (ξ1, . . . , ξr)
⊤. It can be expressed in the form

below [Lee et al., 2010]:

∥L∥tr = inf{∥ξ∥1 : L =
∑
j

ξjujv
′
j where ∥uj∥2 = 1 and ∥vj∥2 = 1}

(2.6)
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where uj and vj are jth left and right singular vectors of L, re-

spectively. The nuclear norm is also known as the trace norm, the

Schatten 1-norm, or the Ky-Fan norm. Since rank(L) = ∥ξ∥0 =

|supp(ξ)| holds, the nuclear norm is used as a surrogate for the

rank constraint and it promotes the sparsity of singular values.

Furthermore, the unit-ball of the nuclear norm is the convex hull

of a set of matrices that are unit-norm and rank-one [Srebro and

Shraibman, 2005]:

{L ∈ RN×T :∥L∥tr ≤ 1}

=conv{uvT : u ∈ RN ,v ∈ RT , ∥u∥2 = ∥v∥2 = 1}.
(2.7)

Therefore, the convex relaxation of equation (2.3) is:

min
L
∥L∥tr s.t. Yit = Lit for all (i, t) ∈ O. (2.8)

The figure in Hastie et al. [2015, Figure 7.3] shows the level set

of the nuclear norm unit-ball of a 2 × 2 symmetric matrix of the

convex problem (2.8). The equation (2.9) below allows noise in

(2.8):

min
L

1

2
∥PO(Y − L)∥2F + λ∥L∥tr. (2.9)

The objective function of (2.9) is a convex function, so the local

solution becomes a global solution. Since the nuclear norm is

non-differentiable, solving the problem using convex optimization

algorithms is common.
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2.4.3 Nonconvex penalty

Even though solving (2.9) offers computational advantages, it yields

a biased estimator. The rank of a matrix, which represents the

number of nonzero singular values, can be effectively reduced by

setting only a few singular values to zero. However, the nuclear

norm penalty applies a constant shrinkage to all singular values

regardless of their magnitudes. Nonconvex penalty methods have

been introduced as alternatives to address this issue. These meth-

ods have demonstrated improved performance compared to convex

penalties in various applications [Lu et al., 2014, 2015b; Song et al.,

2018].

The nonconvex penalty is typically formulated in the following

manner:

Gλ(L) =

min(N,T )∑
i=1

gλ(ξi(L)), (2.10)

where gλ(·) is a nonconvex penalty such as SCAD and MCP. Then

the problem (2.9) becomes

min
L

1

2
∥PO(Y − L)∥2F +Gλ(L) := Fλ(L) (2.11)

where we denote the empirical loss function 1
n ∥PO(Y − L)∥2F as

fn(L). It is important to note that the function in (2.11) is non-

convex, which makes finding the global minimum challenging. Fur-

thermore, there exist multiple local minima.

The smoothly clipped absolute deviation (SCAD) penalty [Fan

and Li, 2001] and the minimax concave (MCP) penalty [Zhang,

2010] have gained wide acceptance due to their desirable statistical
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properties, such as continuity, sparsity, and unbiasedness [Kim

et al., 2008; Wang et al., 2014; Zhang and Zhang, 2012]. The

penalty function of SCAD [Fan and Li, 2001] is defined as follows:

gλ (|x|) =λ |x| I (|x| < λ)

+

(
− |x|2 + 2γλ |x| − λ2

2(γ − 1)

)
I (λ ≤ |x| ≤ γλ)

+
λ2(γ + 1)

2
I (|x| > γλ)

where γ > 2 is a constant. The penalty function of MCP [Zhang,

2010] is defined as follows:

gλ (|x|) =

(
λ |x| − |x|

2

2γ

)
I (|x| ≤ γλ) +

γλ2

2
I (|x| > γλ)

where γ > 0 is a constant. Figure 2.2 shows the graph of some

penalty functions. We see that the LASSO is convex and the MCP

and the SCAD are nonconvex.

In addition to SCAD and MCP penalties, other penalty meth-

ods have been introduced and shown to be effective in various

applications. These include the Truncated nuclear norm penalty

[Hu et al., 2012], the Weighted nuclear norm penalties [Gu et al.,

2014, 2017], and the Schatten capped p-norm penalty [Li et al.,

2020].
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Figure 2.2: The graph of some penalty functions: lasso, MCP, and

SCAD.

2.5 Theoretical studies for low-rank matrix

completion

2.5.1 Assumption 1: Coherence

The canonical assumption for the MC is referred to as ”coherence”

[Candès and Recht, 2009; Hastie et al., 2015] and is particularly

applicable in the ”Exact” case as described in (2.3) and (2.8).

Assumption 2.5.1 (Coherence). L∗ is µ-incoherent:

N

r
max
1≤i≤N

∥U∗⊤ei(N)∥22 ≤ µ and
T

r
max
1≤i≤T

∥V∗⊤ei(T )∥22 ≤ µ

where ∥ · ∥2 denotes l2-norm of a vector.

This refers to the extent to which any singular vector of L∗
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matches a standard basis vector. The coherence parameter µ is

expected to be small, with 1 ≤ µ ≤ (N ∨ T )/r. Let us illustrate

the necessity of the incoherence constraint with two examples.

Consider the following matrices:

A =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 and B =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 (2.12)

Both matrices have dimensions N = T = 4 and rank r = 1.

However, the coherence of these matrices differs significantly.

In the case of matrix A, the coherence is maximal, with a value

of µ = N/r ∗1 = 4. The singular vector corresponding to the non-

zero singular value is (1, 0, 0, 0)T . In this scenario, it is more likely

to observe zero entries rather than non-zero entries. Consequently,

the matrix becomes challenging to recover. In contrast, matrix

B has minimal coherence, with a value of µ = N/r ∗ 0.25 = 1.

The singular vector corresponding to the non-zero singular value

is (0.5, 0.5, 0.5, 0.5)T . In this case, the missing entries can be suc-

cessfully recovered because the matrix has a uniform pattern with

all its elements having the same value. By limiting the coherence,

we ensure that the missing entries can be accurately estimated,

leading to a more reliable recovery of the original matrix.

2.5.2 Assumption 2: Spikiness

In the ”noise” setting (2.9), the incoherence condition is not ro-

bust, even for small perturbations [Hastie et al., 2015; Negahban
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and Wainwright, 2012]. Instead, a less stringent assumption called

”spikiness” is often considered.

Definition 1 (Spikiness ratio). For any nonzero matrix L, the

spikiness ratio of the matrix is defined as

αsp(L) =
√
NT
∥L∥max
∥L∥F

.

The spikiness ratio measures the uniformity in the spread of

matrix elements. It satisfies 1 ≤ αsp(L) ≤
√
NT , and smaller

values indicate better performance. For example, the spikiness

ratios of the left and right matrices in (2.12) are equal to
√
NT

and 1, respectively.

Let’s consider an example [Hastie et al., 2015; Negahban and

Wainwright, 2012] to illustrate that the coherence condition can be

violated even with small perturbations. We start with a matrix D

of dimensions N = T = 4, rank 1, and Frobenius norm one given

as:

D =


0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

 (2.13)

The coherence of D, denoted as µ(D), is equal to 1, which repre-

sents minimal coherence, and the spikiness ratio αsp(D) is equal

to
√
4 ∗ 4 ∗ 0.25/1 = 1, indicating minimal spikiness.

We now consider the matrix L∗ = D + δ ∗A for some δ > 0,

where A is a matrix given in (2.12). L∗ can have a high coherence

even for sufficiently small values of δ. For example, when δ = 1/16,
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the coherence µ(L∗) is approximately 1.4509, and when δ = 1/160,

the coherence µ(L∗) is approximately 1.4953. On the other hand,

the spikiness ratio αsp(L
∗) decreases when δ is sufficiently small.

For instance, when δ = 1/16, αsp(L
∗) is approximately 1.2286,

and when δ = 1/160, αsp(L
∗) is approximately 1.0234. It is worth

noting that the maximum coherence for L∗ is equal to 4/2 = 2,

while the maximum spikiness ratio is equal to 4. This example

highlights that the spikiness ratio is a useful measure for assessing

the models with noise.

Recent works [Athey et al., 2021; Davenport et al., 2014; Gui

et al., 2016; Klopp, 2014] assume spikiness condition, without loss

of generality, to demonstrate theoretical results in the presence of

noise.

Assumption 2.5.2 (spikiness condition). There exists a known

α∗ > 0, such that

∥L∗∥max =
αsp(L

∗)∥L∗∥F√
NT

≤ α∗.

As we see in Section 2.5.3, the upper bound is expressed using

the spikiness constants α∗ or αsp(L
∗).

2.5.3 Review of existing studies

In this section, we will review the theoretical results of existing

studies for the MC problems with noise. Gunasekar et al. [2014];

Koltchinskii et al. [2011]; Negahban and Wainwright [2012] ob-

tained minimax-optimal upper bounds (up to logarithmic factor)
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for the problem (2.9) when assuming the spikiness conditions (As-

sumption 2.5.2):

∥L̂− L∗∥F√
NT

= O

(
(α∗ ∨ σ)

√
rM log(M)

n

)
(2.14)

where M = (N ∨T ). It is worth noting that this upper bound can

also be expressed in terms of αsp(L
∗) [Hastie et al., 2015] using

the following expression:

∥L̂− L∗∥F
∥L∗∥F

= O

(
(αsp(L

∗) ∨ σ′)

√
rM log(M)

n

)
where σ′ is properly scaled variance proxy of noise.

Chen et al. [2020] derived upper bounds for the MC with the

nuclear norm penalty in the max norm, spectral norm, and Frobe-

nius norm. Among these, the upper bound obtained in the Frobe-

nius norm is near-optimal. However, their analysis assumes the

incoherence condition.

Gui et al. [2016] derived a upper bound for the nonconvex

penalized estimator (2.11). They proceed by defining two sets

that correspond to the non-zero singular values of the matrix L∗:

S1 =
{
ξ∗1 , · · · , ξ∗r1 |ξ

∗
1 ≥ · · · ≥ ξ∗r1 ≥ ν

}
and

S2 =
{
ξ∗r1+1, · · · , ξ∗r |ν > ξ∗r1+1 ≥ · · · ≥ ξ∗r > 0

}
.

(2.15)

The first set, denoted as S1, consists of the singular values greater

than or equal to the constant ν. On the other hand, the second set

denoted as S2, includes the relatively small singular values. Let

r1 := |S1| and r2 := |S2|. r1 represents the cardinality of set S1,

and r2 represents the cardinality of set S2. It is important to note

that ν = γλ for both the SCAD and MCP penalties.
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They established the upper bound under the spikiness condi-

tion, which is expressed as:

∥L̂− L∗∥F√
NT

≤ (α∗ ∨ σ)

(
C1r1

√
logM

n
+ C2

√
r2M logM

n

)
where C1 and C2 are constants. This upper bound is tighter than

(2.14) obtained using the convex penalty when some of the true

singular values have large magnitudes. Additionally, they demon-

strated that the unique global optimal solution is identical to the

oracle estimator under certain conditions. However, finding this

unique global optimal solution is challenging due to the noncon-

vexity of (2.11). It is worth noting that the traditional MC liter-

ature mentioned in this Section assumes that missing entries are

sampled completely at random.

2.6 Algorithms for low-rank matrix com-

pletion

This section describes algorithms: SOFT-IMPUTE for the convex

problem (2.9) and PGH for the nonconvex problem (2.11).

2.6.1 SOFT-IMPUTE algorithm

The SOFT-IMPUTE algorithm [Mazumder et al., 2010] performs

a singular value shrinkage operator and replaces missing values at

each step. The following is performed until the stopping criterion

is reached for k = 0, 1, 2, . . . , with an initial value L0:

Lk+1 ← DSλ (PO(Y) + P⊥
O (Lk)). (2.16)
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The initial value L0 can be set to Y in which the missing values

are replaced with 0. When we tune the regularization parameter,

we can use a matrix trained with a close parameter as a warm

starter. Note that we do not need to set the step size unlike the

SVT algorithm [Cai et al., 2010].

Mazumder et al. [2010, Section 4.1] proved that Lk generated

by the algorithm asymptotically converges to the global solution

L∗ of (2.9) when k → ∞. It also shows that the non-asymptotic

(worst) rate of convergence is of the order of O(1/k). The conver-

gence rate in a specific setting is shown in Agarwal et al. [2010].

Hastie et al. [2015, Section 7.3.2] is also referred. Mazumder et al.

[2010, Section 5] explains that the computational complexity order

is the same as that of SVT algorithm [Cai et al., 2010].

2.6.2 PGH algorithm

We introduce one of the algorithms that find local minima of the

problem (2.11): the Proximal gradient homotopy (PGH) Algo-

rithm [Gui et al., 2016; Wang et al., 2014; Xiao and Zhang, 2013].

The algorithm is a variant of the Proximal gradient method [Nes-

terov, 2013].

Suppose that the penalty function can be decomposed into two

parts as follows:

gλ(|ξi(L)|) = ḡλ(|ξi(L)|) + λ|ξi(L)| (2.17)

where ḡλ(·) is the differential concave function and λ| · | is the

convex function. Note that gλ(|ξi(L)|) = gλ(ξi(L)) since singular
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values of a matrix are nonnegative. The concave part ḡλ(·) for the

SCAD penalty function is given as

ḡλ (|x|) =−
x2 − 2λ |x|+ λ2

2(γ − 1)
I (λ ≤ |x| ≤ γλ)

+

[
(γ + 1)λ2

2
− λ |x|

]
I (|x| > γλ) ,

and for the MCP penalty function, the concave part ḡλ(·) is given

as

ḡλ (|x|) = −
x2

2γ
I (|x| ≤ γλ) +

[
γλ2

2
− λ |x|

]
I (|x| > γλ) .

By denoting Ḡλ(L) :=
∑min(N,T )

i=1 ḡλ(|ξi(L)|) =
∑min(N,T )

i=1 gλ(ξi(L))−

λ∥L∥tr and f̄n,λ(L) := fn(L)+Ḡλ(L), we can rewrite the objective

function (2.11):

Fλ(L) = fn(L) +Gλ(L) = f̄n,λ(L) + λ∥L∥tr. (2.18)

By taking a sufficiently large value of the initial regularization pa-

rameter λ = λ0, and then gradually decreasing it until it reaches

the target value, the algorithm (Algorithm 1) tries to find a so-

lution that minimizes the nonconvex objective function (2.18) for

each fixed λ.

When Lk−1
t is the update value of the k-1 -th iteration in the

t-th path, the following is the local quadratic approximation of

Fλt with respect to λt:

F̃lk−1
t ,λt

(L;Lk−1
t ) =f̄n,λ(L

k−1
t ) + ⟨∇f̄n,λ(Lk−1

t ),L− Lk−1
t ⟩

+
lk−1
t

2
∥L− Lk−1

t ∥2F + λt∥L∥tr
(2.19)
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Algorithm 1 {Lt}K+1
t=1 ← PGH(λ0, λtgt, ϵopt, lmin)

input λ0 > 0, λtgt > 0, ϵopt > 0, lmin > 0

1: parameters η ∈ [0.9, 1)

2: initialize L0 ← 0, l0 ← lmin,K ← ⌊ ln(λ0/λtgt)ln(1/η) ⌋

3: for t = 0, 1, 2, · · · ,K − 1 do

4: λt+1 ← ηλt

5: ϵt+1 ← λt+1/4

6: {Lt+1, lt+1} ← ProxGrad (λt+1, ϵt+1,Lt, lt)

7: end for

8: {LK+1, lK+1} ← ProxGrad (λtgt, ϵopt,LK , lK)

9: return {Lt}K+1
t=1

where lk−1
t is a Lipschitz constant of the k-1 -th iteration in the

t-th path. Lkt is updated to minimize (2.19):

Lkt = argmin
L∈RN×T

F̃lk−1
t ,λt

(L;Lk−1
t ). (2.20)

We use the singular value shrinkage operator to solve this problem.

Note that the low-rank matrix and Lipschitz constant (quadratic

coefficient) estimated at the t-1 -th path are used as the initial

values of Lt and lt at the t-th path (Line 6 and 8 in Algorithm 1).

Lkt converges toward the exact local solution of the optimization

problem that minimizes (2.18) [Wang et al., 2014].

Xiao and Zhang [2013] presented the stopping criterion of the

ProxGrad algorithm in the ℓ1-regularized least-squares (ℓ1-LS),

which can be extended to the MC problem [Gui et al., 2016]. As-

sume that L̂ is the optimal solution to the problem (2.11). Based
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on the optimality condition, there exists Υ ∈ ∂∥L̂∥tr such that,

for all L ∈ RN×T , the inequality

⟨L̂− L,∇f̄n,λ(L̂) + λΥ⟩ ≤ 0 (2.21)

holds. Hence, we measure the suboptimality of L using

ωλ(L̂) = min
Υ∈∂∥L̂∥tr

max
L

{
⟨L̂− L,∇f̄n,λ(L̂) + λΥ⟩

∥L̂− L∥tr

}

= min
Υ∈∂∥L̂∥tr

{∥∥∥∇f̄n,λ(L̂) + λΥ
∥∥∥
op

}
.

(2.22)

The second equality is a consequence of the duality between the

nuclear norm and the spectral norm. The optimality condition

(2.21) guarantees that if L̂ is an exact optimum, we have ωλ(L̂) <

0. If L̂ is close to the optimum, ωλ(L̂) is likely to be a small

positive value.

Algorithm 2 is a process of performing the proximal gradient

method to obtain the t-th approximate local solution of (2.20). We

set the initial value of lkt on Line 3 slightly smaller than lk−1
t be-

cause we expect that Lkt and Lk−1
t become closer as it is repeated.

ϵ̂ is the desired optimization precision.

Algorithm 3 determines lkt and calculates Lkt with the cho-

sen value. In Line 3-6, we increase the Lipschitz constant until

F̃l,λ(L
k
t ;L

k−1
t ) becomes the tight upper bound of the objective

function Fλ(L
k
t ).
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Algorithm 2 {L̃, l̂} ← ProxGrad
(
λ, ϵ̂,L0

t , l
0
t

)
input λ > 0, ϵ̂ > 0,L0

t ∈ RN×T , l0t > 0, k = 0

1: repeat

2: k ← k + 1

3: linit ← max
{
lmin, l

k−1
t /2

}
4:

{
Lkt , l

k
t

}
← LineSearch

(
λ,Lk−1

t , linit

)
5: until ωλ

(
Lkt
)
≤ ϵ̂

6: L̃← Lkt , l̂← lkt

7: return {L̃, l̂}

Algorithm 3 {Lkt , N} ← LineSearch
(
λ,Lk−1

t , l
)

input λ > 0,Lk−1
t ∈ RN×T , l > 0

1: repeat

2: L← argmin
L∈RN×T

F̃l,λ(L;L
k−1
t )

3: if Fλ(L) > F̃l,λ(L;L
k−1
t ) then

4: l← 2l

5: end if

6: until Fλ(L) ≤ F̃l,λ(L;L
k−1
t )

7: N ← l

8: return {L, N}
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Chapter 3

Nonconvex penalized

matrix completion for

causal inference in panel

data

3.1 Introduction

In program evaluation, there has been extensive research aimed at

estimating average treatment causal effects. The data commonly

takes the form of aggregated panel data, where a binary treatment

is applied. Comparative case studies involve comparing outcomes

before and after interventions. However, it is challenging because

either control outcomes (before intervention) or treated outcomes

(after intervention) are observed for each data point. That means
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that potential control outcomes (counterfactuals) for units and

times exposed to the treatment are missing. The typical approach

to tackle this task is to first impute the counterfactuals and then

estimate the average causal effect by comparing them with the

corresponding observed treated outcomes.

Traditionally, regression models have been employed to esti-

mate counterfactuals. Synthetic control literature [Abadie and

Cattaneo, 2018; Abadie et al., 2010] deals with data with a single

treated unit and assumes that patterns observed across different

units remain stable over time. To capture more complex patterns,

researchers have explored two-way fixed effects models [Abadie,

2005; Arkhangelsky et al., 2021; Doudchenko and Imbens, 2016],

which consider both cross-sectional and time-series patterns, as

well as factor models [Bai and Ng, 2017; Xu, 2017], which incor-

porate interactions between these patterns. Athey et al. [2021] re-

cently proposed the nuclear norm matrix completion (MC) meth-

ods. They provided an upper bound on the estimation error for the

nuclear-norm estimator. They established this under the condi-

tion that the true matrix is not excessively spiky, considering both

stochastic and time-dependent treatment adoption patterns. Fur-

thermore, they conducted empirical investigations that revealed

the limitations of the synthetic control approach and demonstrated

the superior performance of MC methods in scenarios where the

number of units is larger than the number of time periods, or where

the treatment adoption date is substantially earlier compared to

the number of time periods.
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Meanwhile, Farias et al. [2021] proposed a de-biased estima-

tor for the average treatment effect. Their focus was on reducing

the bias in the causal effect estimator that arises from using the

nuclear norm penalty when they formulate the problem as a ma-

trix approximation problem. They demonstrated the asymptotic

normality of their estimator. Unlike Athey et al. [2021], they as-

sumed a deterministic treatment adoption process and required

the pattern of treatment adoption to be dissimilar to that of the

true counterfactual matrix. Additionally, they imposed an inco-

herence condition on the true low-rank matrix, which is not robust

to observations with noise.

The rest of this Chapter is organized as follows. In Section

3.2, we introduce the setup and notation. We then review existing

MC methods used for causal inference in panel data in Section

3.3. Our proposed estimator is presented in Section 3.4, and the

theoretical results are discussed in Section 3.5. We finally present

the numerical studies, which include simulations and the analysis

of semi-synthetic data, in Section 3.6.

3.2 Setup and notation

We deal with panel data with dimensions N × T , where N repre-

sents the number of units and T represents the number of time

periods. If a unit i is exposed to a treatment at time t, we

denote it as Wit = 1; otherwise, Wit = 0. The observed out-

come for the (i, t)-th element of the data matrix is denoted as

28



Yit = WitYit(1) + (1 −Wit)Yit(0). Yit(0) represents the outcome

when unit i is not exposed to treatment at time t, while Yit(1)

represents the outcome when it is exposed to treatment. In causal

panel data, we only observe either Yit(0) or Yit(1). If Yit(1) is ob-

served, Yit(0) is missing. Our main question of interest is ”What

would have happened if the treated units did not adopt the treat-

ment?”. To estimate their potential control outcomes, we utilize

the MC methods. To assess the impact of the treatment, we com-

pare the observed treated outcomes with the estimated potential

control outcomes for the same treated units and times.

When it comes to the adoption of treatment, we consider two

commonly used time-dependent structures in the economics liter-

ature: a block structure (simultaneous adoption) and a staggered

structure (staggered adoption) [Athey et al., 2021]. In the block

structure, certain units adopt the treatment simultaneously at a

specific time. A special case of the block structure is the single-

treated-unit block structure [Abadie, 2021; Abadie et al., 2010],

where the treatment is applied to a single unit. In the staggered

structure, different units adopt the treatment at different points in

time [Athey et al., 2021; Shaikh and Toulis, 2021]. For both struc-

tures, once treatment is adopted, the units remain treated. The

matrices below illustrate examples of the treatment structures: (a)

block structure and (b) staggered structure. A checkmark (✓) in-

dicates the control outcome, while a question mark (?) represents

the missing data (the treated outcome).
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(a)



✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ? ? ?

✓ ✓ ✓ ? ? ?


(b)



✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ? ? ? ?

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ? ?

✓ ✓ ✓ ? ? ?


For example, let’s consider the Cigarette sales data [Abadie

et al., 2010]. This dataset includes observations on cigarette sales

per capita for 39 states, including California, in the U.S. from

1970 to 2000. California passed a tobacco control law known as

”Proposition 99” in 1988, which took effect in 1989. Note that

the data exhibits the single-treated-unit block structure. We are

interested in estimating the effect of this law on cigarette sales.

Using the MC methods with data from other states and California

until 1988, we can impute the missing control outcomes (cigarette

sales assuming the law had not been passed) for California from

1989 to 2000. By comparing the observed cigarette sales under

the law with the imputed values, we can assess the impact of the

tobacco control law.

3.3 Review of existing matrix completion

methods

3.3.1 Nuclear norm penalized estimator for the po-

tential control outcomes

Athey et al. [2021] developed matrix completion methods to in-
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corporate both cross-sectional and time-series patterns to recover

the potential control (counterfactual) matrix. They modeled the

potential control matrix as follows:

Y(0) = L∗ + ε (3.1)

where Y(0) ∈ RN×T represents the potential control matrix, L∗ ∈

RN×T denotes the true low-rank matrix, and elements of ε are

σ-sub-Gaussian random variables with mean 0.

The potential control outcomes are estimated using MC meth-

ods enabling the estimation of the average treatment effect. The

estimation process consists of two steps. In the first step, the

counterfactual matrix is estimated as follows:

L̂ = argmin
L∈RN×T

{
1

n
∥PO (Y(0)− L) ∥2F + λ∥L∥tr

}
(3.2)

where ∥ · ∥tr represents the nuclear norm penalty. The average

treatment effect for the treated (ATT) is then calculated:

θ̂ =
∑

(i,t):Wit=1

[
Yit(1)− Ŷit(0)

]
/
∑
(i,t)

Wit. (3.3)

Recall that O is the set of index pairs corresponding to the ob-

served entries in Y(0) and n = |O|. The use of the nuclear norm

penalty offers computational advantages since the objective func-

tion (3.2) is a convex problem. When incorporating two-way fixed

effects, the objective function (3.2) is modified as follows:

argmin
L∈RN×T ,η∈RN ,β∈RT

{
1

n

∥∥PO
(
Y(0)− L− η1⊤

T − 1Nβ⊤)∥∥2
F
+ λ∥L∥tr

}
where η ∈ RN is the vector whose elements represent the unit

effects and β ∈ RT is the vector whose elements represent the
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time effects. Note that incorporating the unit and time effects,

without applying any regularization to them, has shown better

empirical performance compared to the approach without fixed

effects.

Under the assumptions of sub-Gaussian noise (Assumption

3.4.1), unconfoundedness (Assumption 3.5.2), and spikiness (As-

sumption 2.5.2), they derived theoretical results for the following

estimator of the true low-rank matrix L∗:

L̂ = argmin
∥L∥max≤α∗

{
1

n
∥PO(Y(0)− L)∥2F + ∥L∥tr

}
. (3.4)

(3.4) is a slightly modified version of (3.2) introducing an addi-

tional constraint ∥L̂∥max ≤ α∗.

A random observation process determining the set O [Athey

et al., 2021] is defined. Let {ti}i∈[N ] on [T ] represent N indepen-

dent random variables that indicate the times at which the units

adopt the treatment. Each variable has a distribution
{
π(i)
}
i∈[N ]

,

where π(i) ≡ (P (ti = 1) , · · · , P (ti = T )). The set O is defined as

O =
⋃N
i=1 {(i, 1), (i, 2), . . . , (i, ti)}. The expectation with respect

to all distributions
{
π(i)
}
i∈[N ]

is denoted as Eπ. Additionally, we

define pc as

pc := min
1≤i≤N

π
(i)
T (3.5)

where π
(i)
T represents the probability of unit i never adopt the

treatment. The parameter pc is related to the number of observa-

tions (i.e., the number of control entries) and plays a crucial role

in establishing the upper bound for the estimation error of the
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counterfactuals. The upper bound is given by:∥∥∥L∗ − L̂
∥∥∥
F√

NT
≤ C

√(
σ2r log(N + T )

Tp2c
∨ σ2r log3(N + T )

Np2c

)
∨(

(α∗)2√
Npc

∨ (α∗)2 log(N + T )

Npc

)
.

(3.6)

It should be noted that the time-dependency sampling structure

results in a deterioration of the convergence result (3.6) compared

to the result (2.14) obtained with a completely random sampling

structure.

3.3.2 De-biased estimator for the average treatment

effect

Farias et al. [2021] proposed the de-biased estimator for the aver-

age treatment effect for the treated. The observed outcome matrix

Y ∈ RN×T is modeled as follows:

Y = L∗ + ε+Θ ◦W

Θit = θ∗ + δit

where ◦ is the Hadamard or ’entrywise’ product. The counter-

factual matrix is the sum of the low-rank matrix L∗ and the er-

ror matrix ε. W is the treatment matrix with elements Wit, i ∈

[N ] and t ∈ [T ]. Θ represents an unknown matrix of treatment

effects, whose elements consist of the sum of the average treatment

effect θ∗ and the residual treatment effect δit.

First, the low-rank matrix and the treatment effect are jointly

estimated using the nuclear norm penalty. To address the bias
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issue resulting from the penalization of the nuclear norm, a de-

biasing step is incorporated. The estimation procedure consists of

the following steps:

(L̂(init), θ̂(init)) ∈ argmin
L∈RN×T ,θ∈R

1

2
∥Y − L− θW∥2F + λ∥L∥tr (3.7)

θ̂d := θ̂(init) − λ
⟨W, ÛV̂⊤⟩∥∥ΠT̂ ⊥(W)

∥∥2
F

(3.8)

where T̂ ⊥ := T ⊥(Û, V̂) (please refer to (3.15)) and ÛΞ̂V̂ be the

compact SVD of L̂(init). The de-biasing step (3.8) is based on

Lemma B.1.6 [Farias et al., 2021, Lemma 1]. To solve the convex

problem (3.7), an alternating optimization method can be em-

ployed, which iteratively updates the estimates of the low-rank

matrix and the treatment effect until convergence is achieved.

In their theoretical studies, the authors made certain assump-

tions to facilitate the analysis. They assumed incoherence (As-

sumption 2.5.1) of the true counterfactual matrix L∗. They also

assumed a deterministic treatment pattern for the treatment ma-

trixW, allowing for more general patterns beyond the block or the

staggered structures. However, additional conditions (Assump-

tion 3.3.1) on W are necessary for theoretical development. For

brevity, we denote T ∗⊥ = T ⊥(U∗,V∗) (please refer to (3.15)).

Assumption 3.3.1. There exist positive constants Cr1, Cr2 such

that

(a) ∥WV∗∥2F +
∥∥W⊤U∗∥∥2

F
≤ (1− Cr1/ log(N ∧ T )) ∥W∥2F.

(b)
∣∣〈W,U∗V∗⊤〉∣∣ ∥ΠT ∗⊥(W)∥ ≤

not visible not visible (1− Cr2/ log(N ∧ T )) ∥ΠT ∗⊥(W)∥2F.
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These conditions ensure that W does not exhibit a pattern

similar to that of L∗, as such similarity would hinder the accurate

estimation of the causal effect. The equivalent form of Assumption

3.3.1 (a) [Farias et al., 2021, Appendix C] is as follows:

C ′
r1

log(N ∧ T )
∥W∥2F ≤ ∥ΠT ∗⊥(W)∥2F −

∥∥∥U∗⊤WV∗
∥∥∥2
F
.

This states that the size of the projection of W onto the space

T ∗⊥ should be sufficiently large.

They showed the asymptotic normality of the de-biased esti-

mator under certain conditions:(
θ̂d − θ∗

)
/V

1/2
d,θ → N (0, 1),

Vd,θ =
∑
i,t

ΠT ∗⊥(W)2itVar (εit + δitWit) /

∑
i,t

ΠT ∗⊥(W)2it

2

,

where ΠT ∗⊥(W) = (IN −U∗U∗⊤)W(IT −V∗V∗⊤). It holds when

the estimator L̂ converges to L∗ as N,T →∞.

3.4 The proposed estimator

We model the observed outcomes data matrix Y ∈ RN×T as

Y = L∗ + ε+Θ ◦W

Θit = θ∗ + δit

(3.9)

where ◦ is the Hadamard or ’entrywise’ product. Specifically,

Y(0) = L∗ + ε represents the potential control matrix where ε

is the noise matrix, while Y(1) represents the potential treated

matrix. The matrix Θ represents an unknown matrix of heteroge-

neous treatment effects. W is the treatment matrix with entries
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in the set {0, 1}. We model the heterogeneous treatment effects

with θ∗ representing the average treatment effect and δ represent-

ing the residual matrix of the treatment effect. Our goal is to

estimate the average treatment effect:

θ∗ = E (Y(1)−Y(0)) .

Assumptions for the noise matrices are as follows:

Assumption 3.4.1. The elements of ε are σ-sub-Gaussian with

mean 0 and independent of each other.

Assumption 3.4.2. The elements of δ are τ -sub-Gaussian with

mean 0 and independent of each other.

We estimate the parameters of interest in two steps. In the

first step, we adopt nonconvex penalties to estimate the potential

control outcomes (counterfactuals) as follows:

L̂ ∈ argmin
L∈RN×T

 1

n
∥PO (Y(0)− L)∥2F +

min(N,T )∑
i=1

gλ (ξi(L))


:= Fλ(L)

(3.10)

where gλ(·) is a nonconvex penalty such as SCAD and MCP. In

the second step, we calculate the average treatment effect for the

treated (ATT):

θ̂ =
∑

(i,t):Wit=1

[
Yit(1)− Ŷit(0)

]
/
∑
(i,t)

Wit. (3.11)

36



We can enhance the performance by incorporating two-way fixed

effects. (3.10) would be modified accordingly:

(L̂, η̂, β̂) ∈

argmin
L∈RN×T ,η∈RN ,β∈RT

1

n

∥∥∥PO (Y(0)− L− η1⊤T − 1Nβ
⊤
)∥∥∥2

F

+

min(N,T )∑
i=1

gλ (ξi(L))

(3.12)

where η ∈ RN is the vector whose elements represent the unit

effects and β ∈ RT is the vector whose elements represent the

time effects. Note that we do not impose regularization on the

unit effects and time effects.

For the estimation, we adopt the Proximal Gradient Homotopy

(PGH ) Algorithm [Gui et al., 2016; Wang et al., 2014; Xiao and

Zhang, 2013]. Refer to Section 2.6.2 for the algorithm. The details

of the calculation and the stopping criterion of the algorithm are

presented in Appendix A. When estimating two-way fixed effects

in (3.12), we can use first-order conditions once Lt is updated at

each t-th path of the algorithm.

3.5 Theoretical results

3.5.1 Recovery of the potential control outcomes

In this section, we provide theoretical results regarding the re-

covery of the counterfactual matrix. We demonstrate that, given

certain conditions, the nonconvex penalized estimator achieves a

faster convergence rate compared to the previous method that uses
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the convex penalty. Under specific conditions, the oracle estimator

can be a local solution to the nonconvex penalized problem, accu-

rately recovering the true rank. Furthermore, the upper bound of

the oracle estimator is equivalent to that of the nonconvex penal-

ized estimator.

Under Assumption 2.5.2, we focus on the theoretical results

related to the following estimator for L∗:

L̂ = argmin
∥L∥max≤α∗

{
1

n
∥PO(Y(0)− L)∥2F +Gλ(L)

}
, (3.13)

which is a slightly modified version of (3.10). Here, we have in-

troduced the additional constraint ∥L̂∥max ≤ α∗.

The assumption stated below corresponds to the regularity

condition of the gλ(·) and ḡλ(·) functions. The nonconvex penal-

ties SCAD and MCP satisfy this assumption.

Assumption 3.5.1.

(i) There exists a constant ν > 0 on the nonnegative real line

such that the function gλ(t) satisfies g′λ(t) = 0 for all t ≥ ν.

(ii) On the nonnegative real line, ḡ′λ(t) is both monotone and Lip-

schitz continuous. In other words, for any t′ ≥ t, there exists

a constant ζ− ≥ 0 such that ḡ′λ (t
′)− ḡ′λ(t) ≥ −ζ− (t′ − t).

(iii) Both the function ḡλ(t) and its derivative ḡ′λ(t) pass through

the origin, meaning that ḡλ(0) = ḡ′λ(0) = 0.

(iv) On the nonnegative real line, the absolute value of ḡ′λ(t) is

bounded above by λ, specifically |ḡ′λ(t)| ≤ λ.
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In 3.5.1 (i), the constant ν = γλ holds for both SCAD and

MCP penalties. The constant ζ− in Assumption 3.5.1 (ii) deter-

mines the curvature of the concavity of the penalty functions. For

SCAD penalty function, ζ− = 1
γ−1 , while for MCP penalty func-

tion, ζ− = 1
γ .

Recall the random observation process that determines the set

O and definition of pc in (3.5) in Section 3.3.1. Traditional liter-

ature on the MC [Chen et al., 2020; Gui et al., 2016; Gunasekar

et al., 2014; Koltchinskii et al., 2011; Negahban and Wainwright,

2012] assumes randomly sampled missing entries without any spe-

cific structure. In our work, we build upon the approach intro-

duced by Athey et al. [2021], which extends the MC framework

to incorporate the time-dependence structure in the observation

process. This modification enables us to capture more realistic

scenarios and address challenges posed by causal panel data.

The next assumption, known as unconfoundedness, is crucial

for identifying the average treatment effect.

Assumption 3.5.2. The adoption dates ti for units are indepen-

dent of each other and of ε conditional on L∗.

Assumption 3.5.2 means that the error terms are independent

of the assignment of treatment given the systematic component.

Further details on the unconfoundedness in the program evalua-

tion can be found in Athey et al. [2021].

Recall the two sets (2.15) corresponding to the non-zero true

singular values, and their cardinalities, r1 and r2. The following
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theorem provides the upper bound for the estimation error of our

proposed estimator. For the detailed proof of this theorem, please

refer to Appendix B.1.1.

Theorem 3.5.1. Assume that L∗ satisfies ∥L∗∥max ≤ α∗. For

any optimal solution L̂ to the problem of (3.13) with SCAD or

MCP penalty, there exist constants C1, C2 and C3 such that, for

a penalty parameter λ ≥ C2σ

[√
N log(N+T )∨

√
T log3(N+T )

]
n , the fol-

lowing inequality holds with a probability at least 1− (N + T )−2:∥∥∥L∗ − L̂
∥∥∥
F√

NT

≤ C1

√[
σ2r1 log

3(N + T )

Np2c
+

(
σ2r2 log(N + T )

Tp2c
∨ σ2r2 log

3(N + T )

Np2c

)]
∨(

(α∗)2√
Npc

∨ (α∗)2 log(N + T )

Npc

)
.

(3.14)

In Theorem 3.5.1, (3.14) shows that when r1 > 0, if the condi-

tions (N ∧T )p2c ≫ log3(N+T ) and Npc ≫ (
√
N ∨ log(N+T )) are

satisfied, the right-hand side converges to 0 as N,T → ∞ in the

normal setting where r1 = r2 = O(1). In particular, when r2 = 0,

the estimator L̂ converges to the true counterfactual matrix L∗ if

Np2c ≫ log3(N + T ) and Npc ≫ (
√
N ∨ log(N + T )). This means

that as long as N grows faster than T and tends to infinity, L̂

converges to L∗.

The proposed estimator exhibits a faster convergence rate com-

pared to the nuclear norm-based estimator. In the nuclear norm-

based estimator (3.6) [Athey et al., 2021], when r1 = 0, the upper

bounds (3.14) and (3.6) are identical. However, when r1 > 0 and
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N ≫ T log2(N+T ) (3.14) can provide a tighter compared to (3.6).

Moreover, when r2 = 0 andN ≫ T log2(N+T ) (3.14) can be much

tighter than (3.6). Furthermore, it is worth noting that (3.14) be-

comes equivalent to (3.18) in Theorem 3.5.3. As mentioned by

Athey et al. [2021], the estimation error gets worse when the ob-

servations are time-dependent compared to that in previous study

[Gui et al., 2016] on the MC, where the sampling of missing entries

is assumed to be completely at random. This implies that a larger

amount of data is required for achieving consistent estimation in

the presence of time-dependent observations.

To define the oracle estimator, we introduce two subspaces.

Recall that the compact SVD of L∗ is given by L∗ = U∗Ξ∗V∗⊤,

where U∗ ∈ RN×r, V∗ ∈ RT×r, and Ξ∗ = diag(ξ∗) ∈ Rr×r. The

row(·) ⊆ RT and col(·) ⊆ RN represent the row and the column

space of an N × T matrix, respectively. It is worth noting that

col(L∗) = span{u∗i } and row(L∗) = span{v∗i } where u∗i and v∗i are

the i-th left and right singular vectors of L∗, respectively. Based

on this, we can construct the subspace F and T ⊥ of RN×T [Gui

et al., 2016; Gunasekar et al., 2014; Negahban et al., 2012]:

F(U∗,V∗) ={∆ | row(∆) ⊆ row(L∗) and col(∆) ⊆ col(L∗)}

T ⊥(U∗,V∗) ={∆ | row(∆) ⊥ row(L∗) and col(∆) ⊥ col(L∗)}.
(3.15)

Note that F ≠ T , but F ⊆ T . For any L1 ∈ F(U∗,V∗) and

L2 ∈ T ⊥(U∗,V∗), it can be verified that LT1 L2 = 0 by definition

(consequently, ⟨L1,L2⟩ = 0), which implies that L1 is orthogo-

nal to the space T ⊥(U∗,V∗). The decomposability property of
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regularizers can be found in Negahban et al. [2012]. It is worth

mentioning that F is a rank-r subspace consisting of matrices with

rank r. A projection operator ΠT ⊥(·) onto the T ⊥ is denoted as

follows:

ΠT ⊥(A) =
(
I −U∗U∗⊤

)
A
(
I −V∗V∗⊤

)
. (3.16)

Now we can introduce the oracle estimator as follows:

L̂O = argmin
L∈F(U∗,V∗),∥L∥max≤α∗

fn(L). (3.17)

The oracle estimator L̂O is the estimator when the true rank is

known. In this case, the objective function only considers the

loss function without any penalty functions, and the solution is

restricted to the rank-r subspace F (U∗,V∗). It is important to

note that the functions to be optimized in (3.13) are nonconvex,

which makes finding the global minimum challenging. Further-

more, there exist multiple local minima. In the following theorem,

we prove that the oracle estimator can be the local minimum of

the problem under certain conditions. The proof of this result can

be found in Appendix B.1.2.

Theorem 3.5.2. Assuming that rank(L∗) = r, let ∆̂O = L̂O −

L∗. Suppose αsp(∆̂O) ≤ 1
c0

√
Npc

log(N+T ) . For positive constants

C1, . . . C3 and C4, if ξ
∗ satisfies the condition

min
i∈S
|(ξ∗)i| ≥ γλ+ C1

√
σ2rT log3(N + T )

p2c
∨ (α∗)2T

√
N

pc
,

where S = supp (ξ∗), then for the estimator of (3.13) with SCAD
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or MCP penalty and penalty parameter

λ ≥C2

σ
[√

N log(N + T ) ∨
√
T log3/2(N + T )

]
n

+

C3

√
σ2r log(N + T )

T
∨ pc(α∗)2

√
N

T log2(N + T )
,

the following result holds with a probability greater than 1− (N +

T )−2, L̂O is one of the local minima of the problem (3.13). Addi-

tionally, we have the inequality∥∥∥L∗ − L̂O

∥∥∥
F√

NT
≤ C4

√
σ2r log3(N + T )

Np2c
∨ (α∗)2√

Npc
.

It is worthy note about the condition of αsp(∆̂O) ≤ 1
c0

√
Npc

log(N+T )

in Theorem 3.5.2. This condition can be equivalently expressed as

∥L̂O−L∗∥2F
NT ≥ c′0(α

∗)2 log(N+T )
Npc

, which holds when N is significantly

larger than T and pc is sufficiently large. Alternatively, a weaker

condition can be stated as 1
NT Eπ

[∑N
i=1

∑ti
t=1

(
(L̂O)it − L∗

it

)2]
≥

c′0(α
∗)2 log(N+T )

N . This is based on the proof Lemma B.1.3, which

can be found in Athey et al. [2021].

The following theorem presents the upper bound for the oracle

estimator. The proof can be found in Appendix B.1.3.

Theorem 3.5.3. Suppose that L∗ has rank r and satisfies ∥L∗∥max ≤
α∗. Then, for a constant C, the upper bound between the oracle

estimator L̂O (the solution to (3.17)) and L∗ satisfies∥∥∥L∗ − L̂O

∥∥∥
F√

NT
≤ C

√
σ2r log3(N + T )

Np2c
∨
(

(α∗)2√
Npc

∨ (α∗)2 log(N + T )

Npc

)
.

(3.18)

The inequality holds with a probability of at least 1− (N + T )−2.
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The upper bound of the oracle estimator coincides with the

upper bound of our proposed estimator (3.14) when r2 = 0. Al-

though the oracle estimator cannot be obtained in practice, it

serves as an ideal estimator with an optimal convergence rate.

3.5.2 Estimation of the average treatment effect

In this section, we investigate the asymptotic normality of our

estimator for the causal effect. Additionally, we compare it to

that of the de-biased estimator [Farias et al., 2021] under the as-

sumption of spikiness and observe that our estimator has a smaller

asymptotic variance.

We first show the following theorem, which is the asymptotic

normality of our estimator for the causal effect. The proof of this

theorem can be found in Appendix B.1.4. Let nt = NT − n be

the number of treated observations.

Theorem 3.5.4 (Asymptotic Normality). Suppose that L∗ has

rank r and satisfies ∥L∗∥max ≤ α∗. Additionally, assume that

each δit is a mean-zero, independent random variable with a sub-

Gaussian norm ∥δit∥ψ2
= O(1). We assume that r = α∗ = σ =

O(1) and nt = Ω(NT ). Under these conditions, for the estimator

of (3.11) with a value of Ŷ(0) = L̂O,

θ̂ − θ∗ =
⟨ε+ δ ◦W,W⟩

∥W∥2F
+O

(
1√
Npc

∨ log(N + T )

Npc
∨ log3(N + T )

Np2c

)
(3.19)

holds with a probability greater than 1−(N + T )−2. Furthermore,
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if pc ≫ 1√
N
log

3
2 (N + T ),(

θ̂ − θ∗
)
/V

1/2
θ → N (0, 1),

Vθ =
∑
it

W 2
itVar (εit + δitWit) /

(∑
it

W 2
it

)2 (3.20)

holds as N,T →∞.

It is important to note that the assumption nt = ∥W∥2F =

Ω(NT ) in Theorem 3.5.4 encompasses the block and the staggered

structure, but it accounts for neither the single-treated-unit nor

the single-treated-time block structure.

In the remainder of this section, we establish the asymptotic

normality of the de-biased estimator under the spikiness condition

of the true matrix, allowing us to compare the asymptotic variance

of our proposed estimator to that of the de-biased estimator. The

original de-biased estimator (Section 3.3.2, [Farias et al., 2021]) as-

sumed incoherence of L∗ (Assumption 2.5.1), which is an extreme

assumption in MC models with noise. Therefore, we extend their

work and provide a more general result for asymptotic normality

under the milder assumption of the low-rank matrix.

Let χ := ξ∗1/ξ
∗
r be the condition number of L∗. The following

theorem demonstrates the asymptotic normality of the de-biased

estimator. The proof can be found in Appendix B.1.5.

Theorem 3.5.5 (Asymptotic Normality of the de-biased estima-

tor). Under Assumption 3.3.1, suppose each δit is a mean-zero,

independent random variable with a sub-Gaussian norm ∥δit∥ψ2
=

O(1). Assume that χ = r = σ = O(1), ξ∗r = Ω(N ∧ T ) and
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nt = Ω(NT ), we have the following:

θ̂d−θ∗ =

〈
ε+ δ ◦W,ΠT̂ ⊥(W)

〉∥∥ΠT̂ ⊥(W)
∥∥2
F

+O

√log(N ∧ T )
∥∥∥L∗ − L̂(init)

∥∥∥
F√

NT

 .

(3.21)

Furthermore, if

√
log(N∧T )∥L∗−L̂(init)∥

F√
NT

→ 0 as N,T →∞,(
θ̂d − θ∗

)
/V

1/2
d,θ → N (0, 1),

Vd,θ =
∑
i,t

ΠT̂ ⊥(W)2itVar (εit + δitWit) /

∑
i,t

ΠT̂ ⊥(W)2it

2

.

In Theorem 3.5.5, we do not provide a proof for the con-

vergence of L̂(init) to L∗ in the joint estimation problem of L∗

and θ∗ as it is not the main focus of our study. Previous work

[Athey et al., 2021] demonstrated convergence results for the nu-

clear norm-based estimation of L∗. Additionally, Farias et al.

[2021, Lemma 8] characterized the estimation error under the as-

sumption of incoherence (Assumption 2.5.1) of L∗. In the MC

literature [Negahban and Wainwright, 2012], the upper bound for

the nuclear norm-based estimator was obtained when the missing

pattern is completely at random. To establish the upper bound

in the joint estimation problem for L∗ and θ∗, one can extend or

combine the proofs from previous literature.

The following proposition demonstrates that the asymptotic

variance Vθ of our estimator in (3.19) is smaller than Vd,θ (3.21)

when the elements of error matrices have constant variances. This

implies that our estimator exhibits less variation and provides

more accurate estimations compared to the de-biased estimator.

The proof can be found in Appendix B.2.3.
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Proposition 3.5.6. Assume that Var(εit) = σ2
ε and Var(δit) =

σ2
δ . For the asymptotic variance of our estimator, denoted as Vθ,

and that of the de-biased estimator, denoted as Vd,θ, we have the

following inequality:

Vθ ≤ Vd,θ.

3.6 Numerical studies

In our numerical studies, we focus on two main tasks. Firstly,

our goal is to recover the potential control matrix using our pro-

posed method and evaluate their performance. To achieve this,

we conduct simulations to investigate the upper bounds and ana-

lyze real-world data. Secondly, our focus shifts toward estimating

the average treatment effect. We perform simulations to assess the

asymptotic normality of the estimators and analyze semi-synthetic

data.

3.6.1 Recovery of the potential control outcomes

We begin by conducting the simulations to validate our theoreti-

cal result regarding the upper bound. In this simulation, we con-

sider a true matrix with dimensions N = 40, T = 10, and a rank

of 5. We generate the true matrix L∗ using the compact SVD:

L∗ = U∗ diag(ξ∗)V∗⊤, where columns of U∗ and V∗ are the left

and right singular vectors of a random matrix and we set the sin-

gular values ξ∗ to be (32.5, 31.8, 29.2, 26.5, 20.7). Furthermore, we

sample observation noise from N (0, 0.52).
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In the scenario of the block structure, we randomly select the

number of control units (Nc) to ensure that the ratio of control

units to the total number of units isNc/N = {0.2, 0.4, 0.6, 0.8, 0.9}.

For treated units, the treatment is adopted at time T0 = 7, where

T0 represents the treatment adoption time. We repeated the sam-

pling process 10 times for each Nc/N ratio. We calculate the av-

erage of the mean squared error in Frobenius norm (MSE) ∥L∗ −

L̂∥2F /(NT ) and the estimated rank (Rank) from the 10 repetitions.

The SCAD estimator is obtained with a parameter value of γ = 5.

The tuning parameter λ is selected using 5-fold cross-validation.

Figure 3.1 illustrates the results obtained by the MC meth-

ods using the SCAD and the nuclear norm penalty. In Figure

3.1 (Left), we observe that as the number of controlled units in-

creases (i.e., fewer missing elements in the matrix) the estimation

error becomes smaller. Moreover, the proposed estimator with the

SCAD penalty outperforms the nuclear-norm estimator in terms

of estimation accuracy for all Nc/N ratios. This finding aligns

with our theoretical result regarding the upper bound. Figure 3.1

(Right) displays that the SCAD penalty provides estimates that

are closer to the true rank compared to the nuclear norm penalty

across all Nc/N settings. Note that the true rank is denoted by

the black horizontal line at 5.

In the staggered structure, we follow a similar approach. For

treated units, the treatment is adopted at various times starting

from T0. Figure 3.2 illustrates that the MSE is smaller and the true

rank is better estimated when using the SCAD penalty compared
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Figure 3.1: The simulation results for the block structure with the

nuclear norm and the SCAD penalty: the average MSE (Left)

and the average Rank (Right). Note that the black horizontal

line in (Right) represents the true rank of 5.

to using the nuclear norm penalty, which is similar to the results

for the block structure.

In the analysis using real data, we aim to assess the accuracy

of our proposed method and other existing approaches in estimat-

ing the counterfactual matrix. We work with data matrices that

contain control units, and we deliberately designate certain entries

as treated (i.e., missing). We impute the missing values with var-

ious methods including our own and then compare the imputed

values with the actual control outcomes. Two treatment adoption

scenarios are considered: the block structure and the staggered

structure. In both scenarios, the tuning parameter λ is selected

using 5-fold cross-validation to minimize the average root mean

squared error (RMSE). The parameter γ of the SCAD penalty is
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Figure 3.2: The simulation results for the staggered structure with

the nuclear norm and the SCAD penalty: the average MSE (Left)

and the average Rank (Right). Note that the black horizontal line

in (Right) represents the true rank of 5.

set as fixed, following Fan and Li [2001]. The treatment adoption

process is repeated 10 times, and we report the average RMSE.

We compare the performance of the following estimators in our

evaluation: (1) Fixed: A two-way fixed effects model, where the

outcome variable Yit(0) is modeled as Yit(0) = ηi + βt + εit. (2)

Synthetic [Abadie et al., 2010; Athey et al., 2021]: The synthetic

control method. The weights are estimated using pre-intervention

outcomes. (3) MC (Nuclear) [Athey et al., 2021]: The MC method

with the nuclear norm penalty. (4) MC+fixed (Nuclear) [Athey

et al., 2021]: The MC method with the nuclear norm penalty, in-

corporating fixed effects on both units and times. (5) MC (SCAD):

Our MC method with the SCAD penalty. (6) MC+fixed (SCAD):

Our MC method with the SCAD penalty, incorporating fixed ef-
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fects on both units and times. Note that for the nuclear norm-

based methods, namely MC (Nuclear) and MC+fixed (Nuclear),

we set maximum estimated ranks. These maximum ranks are de-

termined based on the spectrums of the control matrices, where

the missing entries are imputed with the averages of the matrices.

We first utilized the Cigarette sales data [Abadie et al., 2010]

for our analysis. California enacted its state law called Propo-

sition 99 to control tobacco sales in 1988. The original dataset

contains treated outcomes starting from 1989 for California, while

only control outcomes are observed for other states. However,

for our experiment, we excluded the data for California as the

untreated values are unavailable. Instead, we focused on the con-

trol per-capita cigarette sales of the remaining 38 states, covering

the period from 1970 to 2000 (N = 38 and T = 31). We arti-

ficially designated certain units and time periods as treated, and

then compared the actual observations with the imputed values.

In the block structure scenario, we set Nc/N ≈ 0.7 (Nc = 27)

and T0 = 19 to align with the year when California passed its

tobacco control law. For the staggered structure scenario, we set

Nc/N ≈ 0.7 (Nc = 27). The treatment adoption times for treated

units were randomly assigned after T0 = 13.

Table 3.1 presents the average test RMSE and the average es-

timated rank (Rank) for low-rank-based models based on 10 repe-

titions in the block and the staggered structures for the Cigarette

sales data. Among the low-rank models, the one incorporating

fixed effects, particularly when utilizing SCAD penalties, yields
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the best results. On the other hand, the model that only con-

siders fixed effects performs poorly for both structures. While the

synthetic control approach outperforms the low-rank models with-

out fixed effects, its results are inferior to those obtained with the

MC with fixed effects for both structures.

Method Block Staggered

Fixed effects 18.5289 (-) 16.5367 (-)

Synthetic 14.7203 (-) 13.3319 (-)

MC (Nuclear) 16.3344 (6) 16.0396 (6)

MC+fixed (Nuclear) 14.2500 (6) 12.9798 (5)

MC (SCAD) 15.1553 (1) 14.4285 (1)

MC+fixed (SCAD) 12.0015 (1) 11.9644 (1)

Table 3.1: The average RMSE and the average Rank of the low-

rank matrix in the parentheses for the analysis of the Cigarette

sales data with the block and the staggered structures

The second dataset analyzed in this thesis comprises the an-

nual GDP of seventeen countries [Abadie et al., 2015]. The Berlin

Wall fell in November 1989, and the official reunification of West

and Eastern Germany took place in October 1990. We excluded

the data for West Garmany due to the unavailability of untreated

values. Our analysis focuses on the remaining 16 countries over

the years from 1960 to 2003 (N = 16 and T = 44). In the block

structure scenario, we set Nc/N ≈ 0.6 (Nc = 10) and T0 = 31

to align with the year of reunification. For the staggered struc-
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ture scenario, we also set Nc/N ≈ 0.6 (Nc = 10), and the treat-

ment adoption times for treated units were randomly assigned

after T0 = 21.

Table 3.2 displays the average test RMSE and the average

Rank for low-rank-based models, obtained from 10 repetitions,

in the block and the staggered structures using the GDP data.

We observe that the SCAD estimator with fixed effects produces

the best outcomes for the block structures. On the other hand,

for the staggered structures, the SCAD estimator without fixed

effects outperforms the other methods. It is worth noting that the

nuclear-norm-based estimators exhibit poor performance in both

scenarios.

Method Block Staggered

Fixed effects 3450.5 (-) 2638.2 (-)

Synthetic 2407.1 (-) 2306.1 (-)

MC (Nuclear) 9788.6 (3.5) 7778.3 (3.5)

MC+fixed (Nuclear) 2386.9 (3.9) 1884.9 (3.7)

MC (SCAD) 2512.0 (1.9) 1863.5 (2.7)

MC+fixed (SCAD) 2138.0 (1.6) 1922.5 (1.2)

Table 3.2: The average RMSE and the average Rank of the low-

rank matrix in the parentheses for the analysis of the GDP data

with the block and the staggered structures

We briefly discuss the low-rank models and the synthetic con-

trol method which is a traditional approach in program evaluation.
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The low-rank models take into account both unit and time pat-

terns and their interactions. Specifically, the models incorporat-

ing fixed effects can capture patterns that the models only with a

low-rank matrix might overlook [Athey et al., 2021]. On the other

hand, the synthetic control focuses solely on patterns among units.

In our experiment, we observed that the synthetic control method

performed poorly when there was a significant deviation between

the observed outcomes of the treated states and the control units.

This finding aligns with the observations in Abadie et al. [2010,

Section 3.4], where it was noted that certain states with extreme

values during the pre-intervention period could not be accurately

reconstructed as a convex combination of cigarette sales from other

states. In summary, MC methods are more robust in the selec-

tion of treated and control units compared to the synthetic control

method. For a more detailed discussion, please refer to Appendix

C.

3.6.2 Estimation of the average treatment effect

To verify the theoretical results concerning the asymptotic normal-

ity of the estimators, we implement the simulations. We consider

a true matrix with dimensions N = 40, T = 40, and a rank of

5. To generate the true matrix L∗, we employ the compact SVD:

L∗ = U∗ diag(ξ∗)V∗⊤. Here, columns of U∗ and V∗ represent the

left and right singular vectors of a randomly generated matrix, and

we set the singular values ξ∗ to be (32.5, 31.8, 29.2, 26.5, 20.7). Ad-

ditionally, we set the true average treatment effect θ∗ to be 1. We
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independently sample the observation noise ϵit and the treatment

noise δit from N (0, 0.52).

In the block structure scenario, we randomly select the control

units and treatment adoption times that satisfy the conditions

20 ≤ Nc ≤ 39 and 20 ≤ T0 ≤ 39, respectively [Farias et al.,

2021]. To assess the asymptotic normalities of our estimator and

the de-biased estimator, we conduct 200 instances. We present

the empirical distributions of (θ̂− θ∗)/Vθ (3.20) and (θ̂d− θ∗)/Vθ,d

(3.21), where Vθ and Vθ,d represent the asymptotic variances of our

estimator and the de-biased estimator, respectively. The tuning

parameter λ is chosen using 5-fold cross-validation.

Figure 3.3 displays histograms depicting the empirical distri-

butions of our estimator and the de-biased estimator. The his-

tograms are overlaid with the N (0, 1) density function. The aver-

age asymptotic variances for 200 repetitions are 0.016 and 0.033

for our estimator and the de-biased estimator, respectively. These

results provide support for our theoretical findings in Section 3.5.2.

In the analysis using real datasets, the objective is to assess

the accuracy of our method and other existing approaches in es-

timating the average treatment effect. We deliberately designate

certain entries of data matrices as treated, as described in Section

3.6.1. Additionally, we introduce artificial treatments based on

Farias et al. [2021]. We set the true treatment effect θ∗ = σδ =

Y(0)/10, where Y(0) denotes the collected data and Y(0) repre-

sents its average. The noise is randomly selected from N (0, σ2
δ ).

We report the average normalized error (ANE) |(θ̂ − θ∗)/θ∗| over
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Figure 3.3: Empirical distributions of (θ̂−θ∗)/Vθ for our estimator

(Left) and of (θ̂d − θ∗)/Vθ,d for the de-biased estimator (Right).

The lines represent the N (0, 1) density functions.

10 repetitions. The tuning parameter is chosen through 5-fold

cross-validation. We compare the results for our estimator with

the de-biased estimator (De-biased) [Farias et al., 2021] and the

debiased estimator incorporating the two-way fixed effect (De-

biased+fixed). The other estimators for the average treatment

effect, except for De-biased and De-biased+fixed, are estimated

based on (3.11) using the corresponding estimators for the coun-

terfactuals. These estimators for the average treatment effect are

denoted with the same acronym as methods of estimating the

counterfactuals. Note that the methods for recovering the coun-

terfactual are described in Section 3.6.1. Additionally, we set the

maximum estimated ranks for the low-rank matrices in the nu-

clear norm-based methods, specifically MC (Nuclear), MC+fixed

(Nuclear), De-based and Debiased+fixed.

The first dataset is the Cigarette sales data [Abadie et al.,

2010]. Table 3.3 presents the average ANE with the block and the
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staggered structures. Among the various estimators, the estimator

corresponding to the SCAD estimator incorporating fixed effects

exhibits the best performance. However, it is worth noting that

the de-biased estimator with fixed effects produces results that are

not significantly different from the best-performing estimator for

both structures.

Method Block Staggered

Fixed effects 0.4158 0.4710

Synthetic 0.3098 0.3906

MC (Nuclear) 0.9221 0.9193

MC+fixed (Nuclear) 0.4503 0.3721

MC (SCAD) 0.4158 0.4296

MC+fixed (SCAD) 0.2601 0.3132

De-biased 0.3585 0.4537

De-biased+fixed 0.2725 0.3259

Table 3.3: The average ANE on the Cigarette sales data with the

block and the staggered structures

We utilize the GDP data [Abadie et al., 2015] for the second

dataset. Table 3.4 displays the average ANE with the block and

the staggered structures. The SCAD estimator without fixed ef-

fects demonstrates superior performance for the block structures,

while the de-biased estimator incorporating fixed effects yields the

best result for the staggered structures.
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Method Block Staggered

Fixed effects 1.1384 0.8466

Synthetic 0.8661 0.5714

MC (Nuclear) 7.6874 5.4102

MC+fixed (Nuclear) 0.8696 0.6081

MC (SCAD) 0.5156 0.4335

MC+fixed (SCAD) 0.6666 0.5458

De-biased 62.3592 0.5588

De-biased+fixed 0.5687 0.3116

Table 3.4: The average ANE on the GDP data with the block and

the staggered structures
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Chapter 4

Conclusions

In this thesis, we studied causal inference in panel data. We pro-

posed an estimator for recovering potential control outcomes by

incorporating nonconvex penalties into the MC for the two treat-

ment adoption scenarios: simultaneous and staggered. Our pro-

posed estimator demonstrated improved convergence rates com-

pared to the existing approach based on the convex penalty and

achieved the same convergence rate as the oracle estimator under

certain conditions. Moreover, we established the asymptotic nor-

mality of the estimator for the treatment effect, with a smaller

variance compared to the de-biased method. In our numerical

studies, we conducted extensive experiments to evaluate the per-

formance of our estimator and the corresponding estimator for

the treatment effects. We empirically demonstrated that our es-

timator is more robust compared to the synthetic control method

when it comes to the selection of control and treatment units in

treatment adoption structures. An important direction of future
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research is to extend our approach to settings where treatment

exposure depends on other observed covariates or prior outcomes.
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Appendix A

Appendix A.

A.1 Computation of the PGH algorithm

In this section, we discuss necessary computations for implement-

ing the PGH algorithm in our problem. First, we calculate the

closed-form solution of (2.20). By performing simple calculations,

and letting L̃ := Lk−1
t , we can obtain the following:

Lkt = argmin
L∈RN×T

F̃lk−1
t ,λt

(L; L̃)

= argmin
L∈RN×T

lk−1
t

2

∥∥∥∥∥L−
{
L̃− 1

lk−1
t

∇f̄n,λ(L̃)

}∥∥∥∥∥
2

F

+ λt∥L∥tr

= argmin
L∈RN×T

1

2

∥∥∥∥∥L−
{
L̃− 1

lk−1
t

∇f̄n,λ(L̃)

}∥∥∥∥∥
2

F

+
λt

lk−1
t

∥L∥tr.

The matrix approximation problem with the nuclear norm penalty

can be achieved using the singular value shrinkage operator defined

in Section 2.3. Therefore the solution is obtained as follows:

Lkt = DSλt

lk−1
t

(
L̃− 1

lk−1
t

∇f̄n,λ(L̃)

)
. (A.1)
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Recall that ∇f̄n,λ(L̃) = ∇fn(L̃) + ∇Ḡλ(L̃). We can compute

∇fn(L̃) = − 2
nPO(Y(0) − L̃) based on the definition of fn. For

∇Ḡλ, if we denote the SVD of L̃ as U
L̃
diag

(
ξ(L̃)

)
V⊤

L̃
, then

∇Ḡ(L̃) = U
L̃
diag

(
ḡ′λ(ξ1(L̃)), · · · , ḡ′λ(ξmin(N,T )(L̃))

)
V⊤

L̃
[Yao and

Kwok, 2016, Lemma 21]. Specifically, for the SCAD penalty, we

have:

ḡ′λ(x) = −
|x| − λ

(γ − 1)
I (λ ≤ |x| ≤ γλ)− λI (|x| > γλ) ,

and for the MCP penalty, we can derive:

ḡ′λ(x) = −
|x|
γ
I (|x| ≤ γλ)− λI (|x| > γλ) .

A stopping criterion for the PGH algorithm in MC problems

is presented in (2.22). However, calculating ωλ(L̂), which takes

into account ∂∥L̂∥tr, is not as straightforward as in the case of the

ℓ1-LS problem. Therefore, an alternative stopping criterion, as

presented in Xiao and Zhang [2013], can be used. The alternative

criterion is as follows:

lkt

∥∥∥Lk−1
t − Lkt

∥∥∥
F
≤ ϵ̂,

where ϵ̂ represents the desired optimization precision (convergence

tolerance) in the t-th path of the PGH algorithm.
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Appendix B

Appendix B.

B.1 Proof of Theorems

B.1.1 Proof of Theorem 3.5.1

We define the error matrix for the observed entries as E =
∑

(i,t)∈O εitAit,

where Ait refers to ei(N)et(T )
⊤. To demonstrate the proof of The-

orem 3.5.1, we make use of several lemmas. The first lemma is

necessary for determining the value of λ and provides an upper

bound for ∥E∥op. This lemma is taken from Athey et al. [2021].

Lemma B.1.1. There exists a constant C such that

∥E∥op ≤ Cσmax
[√

N log(N + T ),
√
T log3/2(N + T )

]
,

with a probability greater than 1− (N + T )−2.

This result relies on a concentration inequality for the sum of

random matrices. Note that the correlation assumption of O leads

to a larger upper bound than that of the independent assumption.
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The next lemma plays a crucial role in obtaining the faster con-

vergence rate for the nonconvex penalized estimator by providing

an upper bound for ∥ΠF (∇fn(L∗))∥op. The detailed proof of this

lemma can be found in Section B.2.1.

Lemma B.1.2. For an r-dimensional subspace F (U∗,V∗), there

exists a constant C such that

∥ΠF (E)∥op ≤ Cσ
√
T log

3
2 (N + T ).

This inequality holds with a probability of at least 1− (N + T )−2.

The next lemma, derived from Athey et al. [2021], is closely

related to the Restricted Strong Convexity (RSC) condition [Ne-

gahban and Wainwright, 2011, 2012; Negahban et al., 2012] with

high probability.

Lemma B.1.3. If the estimator L̂ satisfies
∥∥∥L̂− L∗

∥∥∥2
F
≥ 4(α∗)2θ/pc

(or equivalently αsp(L̂ − L∗) ≤
√

NTpc
4θ ) for a positive number θ,

then there exists a constant C ≥ 0.001 such that, when Cθ > T ,

we have

pc
2

∥∥∥L̂− L∗
∥∥∥2
F
≤

∑
(i,t)∈O

〈
Ait, L̂− L∗

〉2
+ 8(α∗)2T

√
N

with a probability greater than 1− 2 exp
(
−Cθ

T

)
.

First, for ∆̂ = L̂ − L∗, it should be noted that the condition

∥∆̂∥2F ≥ 4(α∗)2θ/pc is equivalent to αsp(∆̂) ≤
√

NTpc/4θ since

∥∆̂∥max =
αsp(∆̂)∥∆̂∥F√

NT
≤ α∗ holds. Therefore, the condition can

be interpreted as the spikiness of ∆̂, indicating that the maximum

magnitude of the entries of ∆̂, is limited.
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The Restricted Strong Convexity (RSC) condition [Gui et al.,

2016; Negahban and Wainwright, 2012] is a useful property that

helps control the estimation error by ensuring the strong convexity

of loss functions within a given set. The loss function fn is said

to satisfy the RSC condition [Gui et al., 2016, Assumption 3.1]

with a positive curvature κf (without a tolerance function) if the

following inequality holds for any ∆ in a constraint set:

fn(L
∗ +∆) ≤ fn(L

∗) + ⟨∇fn(L∗),∆⟩+ κf∥∆∥2F .

In the MC problems, the parameter relies on the sampling op-

erator, i.e., the random observation process [Hamidi and Bayati,

2019]. The constraint set in this work is defined to control the

spikiness of L̂− L∗.

If we apply the appropriate θ = c′0T log(N + T ) to Lemma

B.1.3, it is evident that when condition
∥∥∥L̂− L∗

∥∥∥2
F
≥ c′0(α

∗)2T log(N+

T )/pc (or equivalently αsp(∆̂) ≤ 1
c0

√
Npc

log(N+T )), is satisfied, the fol-

lowing inequality holds with a probability greater than 1 − (N +

T )−2 for ∆̂ = L̂− L∗:

fn(L
∗ + ∆̂)− fn(L

∗)− ⟨∇fn(L∗), ∆̂⟩

=
1

n

∑
(i,t)∈O

(
Yit(0)−

〈
Ait,L

∗ + ∆̂
〉)2
− 1

n

∑
(i,t)∈O

(Yit(0)− ⟨Ait,L∗⟩)2

+
2

n

∑
(i,t)∈O

(Yit(0)− ⟨Ait,L∗⟩) ⟨Ait, ∆̂⟩

=
1

n

∑
(i,t)∈O

〈
Ait, L̂− L∗

〉2
≥ pc
2n

∥∥∥L̂− L∗
∥∥∥2
F
− 8

n
(α∗)2T

√
N.
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These equations are derived using the fact that

fn(L) =
1
n ∥PO(Y(0)− L)∥2F = 1

n

∑
(i,t)∈O (Yit(0)− ⟨Ait,L⟩)2 and

∇fn(L) = − 2
n

∑
(i,t)∈O (Yit(0)− ⟨Ait,L⟩)Ait. Additionally, if

∥∆̂∥2F ≥ 32(α∗)2T
√
N/pc, we can establish the inequality:

fn(L
∗ + ∆̂)− fn(L

∗)− ⟨∇fn(L∗), ∆̂⟩ ≥ pc
2n
∥∆̂∥2F −

8

n
(α∗)2T

√
N

≥ pc
2n
∥∆̂∥2F −

pc
4n
∥∆̂∥2F

=
pc
4n
∥∆̂∥2F ,

which holds with a probability greater than 1 − (N + T )−2. In

this case, the loss function fn satisfies the RSC condition with a

positive curvature κf = pc
2n .

The key to prove Theorem 3.5.1 lies in the next lemma, adapted

from Gui et al. [2016], in which the upper bound for the estimation

error using nonconvex penalties in the context of trace regression is

provided. Note that ζ− = 1
γ−1 for the SCAD penalty and ζ− = 1

γ

for the MCP penalty.

Lemma B.1.4 (Adapted from Gui et al. [2016]). Suppose that

αsp(∆̂) ≤ 1
c1

[√
Npc

log(N+T ) ∧N1/4√pc
]
(which is equivalent to ∥∆̂∥2F ≥

c′1(α
∗)2T

[
log(N + T ) ∨

√
N
]
/pc) and the nonconvex penalty sat-

isfies Assumption 3.5.1. Under the condition that κf := pc
2n > ζ−,

for any optimal solution L̂ of (3.13) with a penalty parameter

λ ≥ 2∥E∥op/n, the following inequality holds with a probability

greater than 1− (N + T )−2:∥∥∥L̂− L∗
∥∥∥
F
≤

τ
√
r1

κf − ζ−
+

3λ
√
r2

κf − ζ−
. (B.1)
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Here, r1 = |S1| and r2 = |S2|. The paramter τ is defined as

τ = ∥ΠFS1
(∇fn(L∗))∥op = ∥ΠFS1

( 2nE)∥op, where FS1 represents a

subspace of F associated with S1.

Proof of Theorem 3.5.1.

If ∥L̂−L∗∥2F ≥ (α∗)2
[
C ′ log(N + T ) ∨ C ′′√N

]
T/pc for appropri-

ate constants C ′ and C ′′, Lemma B.1.4 is applicable. By using

Lemma B.1.2 and Lemma B.1.1, we obtain the following inequal-

ities:
1

n

∥∥∥ΠFS1
(E)
∥∥∥
op
≤ C1

σ

n

√
T log

3
2 (N + T ), (B.2)

1

n
∥E∥op ≤ C2

σ

n
max

[√
N log(N + T ),

√
T log

3
2 (N + T )

]
. (B.3)

Using equations (B.2) and (B.3) in Lemma B.1.4 with ζ− = κf/2,

there are positive constants C ′
1 and C ′

2 such that:

∥∆̂∥F√
NT

≤C ′
1σ

√
r1 log

3(N + T )

Np2c
+

C ′
2σ

√r2 log(N + T )

Tp2c
∨

√
r2 log

3(N + T )

Np2c

 .

(B.4)

If C ′ log(N +T ) ≥ C ′′√N and ∥L̂−L∗∥2F ≤ C ′(α∗)2T log(N +

T )/pc holds, then we have:

∥∆̂∥F√
NT

≤ C ′α∗

√
log(N + T )

Npc
. (B.5)

If C ′′√N ≥ C ′ log(N + T ) and ∥L̂−L∗∥2F ≤ C ′′(α∗)2T
√
N/pc

holds, then the following inequality holds:

∥∆̂∥F√
NT

≤ C ′′α∗

√
1√
Npc

. (B.6)
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By combining equations (B.4), (B.5) and (B.6), we obtain the

upper bound:∥∥∥L∗ − L̂
∥∥∥
F√

NT
≤ C

√
(α∗)2

pc

(
1√
N
∨ log(N + T )

N

)
∨[

σ2r1 log
3(N + T )

Np2c
+

(
σ2r2 log(N + T )

Tp2c
∨ σ2r2 log

3(N + T )

Np2c

)]
.

B.1.2 Proof of Theorem 3.5.2

To prove Theorem 3.5.2, we first introduce the lemma, which is

demonstrated in Section B.2.2. Recall that ∆̂O = L̂O − L∗.

Lemma B.1.5. L∗ ∈ RN×T has rank r, and suppose αsp(∆̂O) ≤
1
c0

√
Npc

log(N+T ) . Then for a constant C, the following upper bound

holds between the oracle estimator L̂O (the solution to equation

(3.17)) and the true matrix L∗:∥∥∥L̂O − L∗
∥∥∥
F√

NT
≤ C

√
σ2r log3(N + T )

Np2c
∨ (α∗)2√

Npc

with a probability greater than 1− (N + T )−2.

The proof of Theorem 3.5.2 is derived based on the proof of

Gui et al. [2016, Theorem 3.5].

Proof of Theorem 3.5.2.

We aim to demonstrate that the oracle estimator satisfies the first-

order optimality condition of optimization problem (3.13), which
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states that there exists some ŴO ∈ ∂
∥∥∥L̂O∥∥∥

tr
such that, for any

L′ ∈ RN×T , the following holds:

max
L′

〈
L̂O − L′,∇f̄n,λ

(
L̂O

)
+ λŴO

〉
≤ 0. (B.7)

We project the left-hand side of equation (B.7) onto the sub-

spaces F and T ⊥, resulting in the following:〈
L̂O − L′,∇f̄n,λ

(
L̂O

)
+ λŴO

〉
=
〈
ΠF

(
L̂O − L′

)
,∇f̄n,λ

(
L̂O

)
+ λŴO

〉
︸ ︷︷ ︸

I1

+

〈
ΠT ⊥

(
L̂O − L′

)
,∇f̄n,λ

(
L̂O

)
+ λŴO

〉
︸ ︷︷ ︸

I2

.

(B.8)

To analyze the term I1, let ξ∗ be the vector of the singular

values of L∗ and let ξ̂O = ξ
(
L̂O

)
be the corresponding vector

for L̂O. According to the perturbation bounds for singular val-

ues (Weyl’s inequality) [Stewart, 1998, Theorem 1], we have the

following inequality:

max
i

∣∣∣(ξ∗)i − (ξ̂O)
i

∣∣∣ ≤ ∥∥∥L∗ − L̂O

∥∥∥
op
≤
∥∥∥L∗ − L̂O

∥∥∥
F
.

By applying Lemma B.1.5, we obtain the inequality:

max
i

∣∣∣(ξ∗)i − (ξ̂O)
i

∣∣∣ ≤ C1

√
σ2rT log3(N + T )

p2c
∨ (α∗)2T

√
N

pc
.

Using that S = supp (ξ∗) with |S| = r and applying the triangular
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inequality, we have:

min
i∈S

∣∣∣(ξ̂O)
i

∣∣∣ =min
i∈S

∣∣∣(ξ̂O)
i
− (ξ∗)i + (ξ∗)i

∣∣∣
≥−max

i∈S

∣∣∣(ξ̂O − ξ∗
)
i

∣∣∣+min
i∈S
|(ξ∗)i|

≥ − C1

√
σ2rT log3(N + T )

p2c
∨ (α∗)2T

√
N

pc
+ γλ+

C1

√
σ2rT log3(N + T )

p2c
∨ (α∗)2T

√
N

pc

=γλ.

The second inequality is based on the assumption of the theorem.

Since rank
(
L̂O

)
= r and L̂O ∈ F , we have(

ξ̂O

)
1
≥ . . . ≥

(
ξ̂O

)
r
≥ γλ >

(
ξ̂O

)
r+1

= · · · =
(
ξ̂O

)
min(N,T )

= 0.

The compact SVD of the oracle estimator is L̂O = U∗ diag
(
(ξ̂O)1, · · · , (ξ̂O)r

)
V∗⊤. Recall that Gλ(L) = Ḡλ(L) + λ∥L∥tr. Thus,

ΠF

(
∇Gλ

(
L̂O

))
= ΠF

(
∇Ḡλ

(
L̂O

)
+ λ∂

∥∥∥L̂O∥∥∥
tr

)
= ΠF

(
U∗ diag

(
ḡ′λ((ξ̂O)1), · · · , ḡ′λ((ξ̂O)r)

)
V∗⊤ + λU∗V∗⊤ + λẐO

)
= U∗

(
diag

(
ḡ′λ((ξ̂O)1), · · · , ḡ′λ((ξ̂O)r)

)
+ λIr

)
V∗⊤,

where ẐO ∈ T ⊥ and
∥∥∥ẐO∥∥∥

op
≤ 1. The second equality follows

from∇Ḡλ (L) = U∗ diag
(
ḡ′λ((ξ̂O)1), · · · , ḡ′λ((ξ̂O)r)

)
V∗⊤ [Yao and

Kwok, 2016, Lemma 21] and the definition of ∂∥ · ∥tr, and the last

equality holds by projecting each component onto F .

Now for gλ(t) = ḡλ(t)+λ|t| and g′λ(t) = ḡ′λ(t)+λt for all t > 0,

the i-th element of the diagonal matrix diag
(
ḡ′λ((ξ̂O)1), · · · , ḡ′λ((ξ̂O)r)

)
+
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λIr is

ḡ′λ

((
ξ̂O

)
i

)
+ λ = g′λ

((
ξ̂O

)
i

)
.

Also, since g′λ(t) = 0 for all t ≥ γλ, we have g′λ

((
ξ̂O

)
i

)
= 0 for

i ∈ S. Therefore, this results in

ΠF

(
∇Gλ

(
L̂O

))
= 0. (B.9)

Furthermore, by the optimality condition, for all L′ ∈ RN×T ,

max
L′

〈
ΠF

(
L̂O − L′

)
,∇fn

(
L̂O

)〉
≤ 0. (B.10)

Using equations (B.9) and (B.10), we have the following for I1:

max
L′

〈
ΠF

(
L̂O − L′

)
,∇f̄n,λ

(
L̂O

)
+ λŴO

〉
=max

L′

〈
ΠF

(
L̂O − L′

)
,∇fn

(
L̂O

)〉
+

max
L′

〈
ΠF

(
L̂O − L′

)
,ΠF

(
∇Gλ

(
L̂O

))〉
≤0.

(B.11)

To analyze the term I2, let’s consider the SVD of ∇Ḡλ(L̂O) as

∇Ḡλ(L̂O) = U∗ diag
(
ḡ′λ((ξ̂O)1), · · · , ḡ′λ((ξ̂O)r)

)
V∗⊤. When we

project ∇Ḡλ

(
L̂O

)
onto the subspace T ⊥, we have:

ΠT ⊥

(
∇Ḡλ

(
L̂O

))
=
(
IN −U∗U∗⊤)U∗ diag

(
ḡ′λ((ξ̂O)1), · · · , ḡ′λ((ξ̂O)r)

)
V∗⊤ (IT −V∗V∗⊤)

= (U∗ −U∗) diag
(
ḡ′λ((ξ̂O)1), · · · , ḡ′λ((ξ̂O)r)

) (
V∗⊤ −V∗⊤)

= 0.

If the condition
∥∥∥L̂O − L∗

∥∥∥2
F
≥ c0(α

∗)2T log(N+T )/pc is satisfied,
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then we can show that:∥∥∥∇fn(L∗)−∇fn
(
L∗ + ∆̂O

)∥∥∥
F
≤ C2

pc
T log(N + T )

∥∥∥∆̂O

∥∥∥
F
.

(B.12)

Since L̂it − L∗
it ≤ 2α∗, we have:

1

n

∑
(i,t)∈O

⟨Ait, L̂O − L∗⟩2 = 1

n

∑
(i,t)∈O

(
(L̂O)it − L∗

it

)2
≤ 4(α∗)2.

Using this, we can calculate:∥∥∥∆̂O

∥∥∥2
F
≥ c0

1

4n

∑
(i,t)∈O

⟨Ait, L̂O − L∗⟩2T log(N + T )/pc

and thus

1

n

∑
(i,t)∈O

⟨Ait, L̂O − L∗⟩2 ≤ 4

c0

pc
T log(N + T )

∥∆̂∥2F .

Note that fn(L
∗+∆̂O)−fn(L∗)−⟨∇fn(L∗), ∆̂O⟩ = 1

n

∑
(i,t)∈O⟨Ait, L̂O−

L∗⟩. Therefore fn satisfies the strong smoothness condition with

a parameter of C2
pc

T log(N+T ) . By the equivalent condition of the

strong smoothness, equation (B.12) holds.

Applying the triangular inequality, we have:∥∥∥∇fn (L̂O)∥∥∥
op
≤ ∥∇fn (L∗)∥op +

∥∥∥∇fn (L∗)−∇fn
(
L̂O

)∥∥∥
op

≤ ∥∇fn (L∗)∥op +
∥∥∥∇fn (L∗)−∇fn

(
L̂O

)∥∥∥
F

≤ ∥∇fn (L∗)∥op + C2
pc

T log(N + T )

∥∥∥∆̂O

∥∥∥
F
,

(B.13)

and by applying the inequality from Lemma B.1.5 to (B.13), we
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obtain:∥∥∥ΠT ⊥

(
∇fn

(
L̂O

))∥∥∥
op

≤
∥∥∥∇fn (L̂O)∥∥∥

op
≤ ∥∇fn (L∗)∥op + C2

pc
T log(N + T )

∥∥∥∆̂O

∥∥∥
F

≤ 2

n
∥E∥op + C2

pc
T log(N + T )

C1

√
σ2rT log3(N + T )

Np2c
∨ (α∗)2T

√
N

pc

≤ C3

σ
[√

N log(N + T ) ∨
√
T log3/2(N + T )

]
n

+ C4

√
σ2r log(N + T )

T
∨ pc(α∗)2

√
N

T log2(N + T )

≤ λ.

The last inequality holds based on the assumption regarding the

magnitude of λ. By defining ẐO = −λ−1ΠT ⊥

(
∇fn

(
L̂O

))
and

using the fact that that ẐO ∈ T ⊥,
∥∥∥ẐO∥∥∥

op
≤ 1, we have ŴO =

U∗V∗⊤ + ẐO ∈ ∂
∥∥∥L̂O∥∥∥

tr
. Furthermore,

ΠT ⊥

(
∇fn

(
L̂O

)
+ λŴO

)
= ΠT ⊥

(
∇fn

(
L̂O

)
+ λ

(
U∗V∗⊤ + ẐO

))
= ΠT ⊥

(
∇fn

(
L̂O

))
− λ

1

λ
ΠT ⊥

(
∇fn

(
L̂O

))
= 0.

Now we calculate I2:

I2 =
〈
ΠT ⊥

(
L̂O − L′

)
,∇f̄n,λ

(
L̂O

)
+ λŴO

〉
=
〈
ΠT ⊥

(
L̂O − L′

)
,∇fn

(
L̂O

)
+ λŴO

〉
+
〈
ΠT ⊥

(
L̂O − L′

)
,∇Ḡλ

(
L̂O

)〉
= 0.

(B.14)
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We can derive (B.7) by combining equations (B.11), (B.14) and

(B.8).

B.1.3 Proof of Theorem 3.5.3

Proof. If the inequality
∥L∗−L̂O∥F√

NT
≤ c0

√
(α∗)2 log(N+T )

Npc
holds, then

the following inequality holds as well:∥∥∥L∗ − L̂O

∥∥∥
F√

NT
≤ C1

√
(α∗)2 log(N + T )

Npc
.

If the above inequality does not hold, we can use Lemma B.1.5 to

derive the following inequality:∥∥∥L∗ − L̂O

∥∥∥
F√

NT
≤ C2

√
(α∗)2√
Npc

∨ σ2r log3(N + T )

Np2c

with a probability greater than 1− (N + T )−2.

By considering both cases, we complete the proof.

B.1.4 Proof of Theorem 3.5.4

Let nt = NT − n be the number of treated observations. We can

easily show that (3.11) is equivalent to:

θ̂ = argmin
θ∈R

1

nt

∥∥∥POc

(
Y(1)− Ŷ(0)− θW

)∥∥∥2
F
. (B.15)

By utilizing the equation (B.15), we can prove the theorem. The

proof is inspired by Zhang and Zhang [2014] and Farias et al.

[2021].

Proof. The first order condition of (B.15) is:

⟨W,POc

(
Y(1)− L̂O − θ̂W

)
⟩ = 0.
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Using the definition of Y(1), this can be rewritten as:

⟨W,POc

(
L∗ − L̂O

)
⟩+⟨W,POc (ϵ+ δ ◦W)⟩+

(
θ∗ − θ̂

)
∥W∥2F = 0.

Since ⟨W,POc(A)⟩ = ⟨W,A⟩ for any matrix A, based on the

definition of W and the projection operator P, we have:

(θ̂ − θ∗) =
⟨W,L∗ − L̂O⟩
∥W∥2F

+
⟨W, ϵ+ δ ◦W⟩
∥W∥2F

.

Let δ′ = ⟨W,L∗−L̂O⟩
∥W∥2F

. Note that for any matrices A and B, we

have

|⟨A,B⟩| ≤ ∥A∥op∥B∥tr

≤ ∥A∥op
√
r∥B∥F

≤ ∥A∥F
√
r∥B∥F .

The first inequality holds due to the matrix Hölder inequality.

Therefore,

|δ′| = |⟨W,L∗ − L̂O⟩|
∥W∥2F

≤

√
r
∥∥∥L∗ − L̂O

∥∥∥
F
∥W∥F

∥W∥2F

≤

√
r
∥∥∥L∗ − L̂O

∥∥∥
F√

nt
.

The last inequality holds because ∥W∥2F = nt by the difinition of

W. Now, according to Theorem 3.5.3,

|δ′| ≲

√
(α∗)2r

√
NT

ntpc
∨ (α∗)2rT log(N + T )

ntpc
∨ σ2r2T log3(N + T )

ntp2c
.

If r = α∗ = σ = O(1) and nt = Ω(NT ), then (3.19) holds. Addi-

tionally, if pc ≫ 1√
N
log

3
2 (N +T ), we can establish the asymptotic

normality using the central limit theorem (CLT).
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B.1.5 Proof of Theorem 3.5.5

The second step for estimating the causal effect, as described in

(3.8), is derived from the following lemma [Farias et al., 2021,

Lemma 1]. The proof of this lemma is omitted.

Lemma B.1.6. Suppose (L̂(init), θ̂(init)) be a minimizer of (3.7).

We denote the SVD of L̂(init) as L̂(init) = ÛΞ̂V̂⊤, and let T̂ ⊥ =

T ⊥(Û, V̂). We define ε̂ = ε+δ◦W. Then, the following equation

holds:(
θ̂ − θ∗

)
∥ΠT̂ ⊥(W)∥2F

= λ
〈
W, ÛV̂⊤

〉
+
〈
ΠT̂ ⊥ (W) , ε̂

〉
+
〈
W,ΠT̂ ⊥ (L∗)

〉
.

In the remaining part of this section, we introduce the non-

convex proxy problem and establish its connection with the con-

vex problem discussed in Farias et al. [2021]. We then describe

the implication of Assumption 3.3.1, which is derived from this

relationship. Finally, we utilize it in the proof of the theorem.

We consider the following original convex problem:

min
L∈RN×T ,θ∈R

h(L, θ) :=
1

2
∥Y − L− θW∥2F + λ∥L∥tr

and the non-convex proxy problem:

min
A∈RN×r,B∈RT×r,θ∈R

h̃(A,B; θ)

:=
1

2

∥∥Y −ABT − θW
∥∥2
F
+

λ

2
∥A∥2F +

λ

2
∥B∥2F .
(B.16)

It is well known that minimizing h̃ is equivalent to solving

minh(L; θ) s.t. rank(L) ≤ r. We hope that for the solution A
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and B of (B.16), A ≈ A∗ and B ≈ B∗ hold, where L∗ = A∗B∗⊤

with A∗ = U∗Ξ∗1/2,B∗ = V∗Ξ∗1/2. Farias et al. [2021, Lemma 3]

showed that the critical points of h̃ approximately satisfy the first-

order condition of h, so that (AB⊤, θ) is close to the optimizer of

h. Note that Assumption 3.3.1 is required for the establishment

of Farias et al. [2021, Lemma 3].

The next lemma [Farias et al., 2021, Lemma 16] presents the

implication of Assumption 3.3.1 (a).

Lemma B.1.7. Suppose A∗,A ∈ RN×r and B∗,B ∈ RT×r. Let

A∗B∗⊤ = U∗Ξ∗V∗⊤,AB⊤ = UΞV⊤ be the SVD of A∗B∗⊤,AB⊤,

respectively. Assume A∗ = U∗Ξ∗1/2, B∗ = V∗Ξ∗1/2, and χ =

ξ1(Ξ
∗)/ξr(Ξ

∗). Suppose σ
√
N∧T
ξmin

≤ C2
1

χ2r2 log5(N∧T ) , and

∥A−A∗∥F + ∥B−B∗∥F ≤ CF
σ
√
N ∧ T log2.5(N ∧ T )

√
ξmaxr

ξmin
.

(B.17)

Let T ∗⊥ be the orthogonal space related to A∗B∗⊤ and T ⊥ be the

orthogonal space related to AB⊤. If there exists a constant Cr1

such that ∥WV∗∥2F +
∥∥W⊤U∗∥∥2

F
≤
(
1− Cr1

log(N∧T )

)
∥W∥2F, then

for large enough N and T , the following holds:

∥WV∥2F +
∥∥∥W⊤U

∥∥∥2
F
≤
(
1− Cr1

2 log(N ∧ T )

)
∥W∥2F

∥ΠT ⊥(W)∥2F ≥
Cr1

2 log(N ∧ T )
∥W∥2F.

Please refer to the definition (3.15) for the orthogonal spaces.

Since (B.17) approximately holds according to Farias et al. [2021,

Lemma 3], we can directly use the result of the lemma to prove the
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theorem. Note that a similar result for the case of the de-biased

estimator for Lasso appears in Zhang and Zhang [2014].

Proof of Theorem 3.5.5. By Lemma B.1.6, we have:

θ̂d − θ∗ =
⟨ΠT̂ ⊥(W), ϵ+ δ ◦W⟩
∥ΠT̂ ⊥(W)∥2F

+
⟨W,ΠT̂ ⊥(L

∗)⟩
∥ΠT̂ ⊥(W)∥2F

.

Let δ′ =
⟨W,ΠT̂ ⊥ (L∗)⟩
∥ΠT̂ ⊥ (W)∥2F

. Since |⟨A,B⟩| ≤ ∥A∥op∥B∥tr =
√
r∥A∥F ∥B∥F

for any matrices A and B, and

⟨W,ΠT̂ ⊥(L
∗)⟩ = ⟨W,ΠT̂ ⊥(L

∗−L̂(init))⟩ = ⟨ΠT̂ ⊥(W),L∗−L̂(init)⟩,

we can obtain:

∣∣δ′∣∣ ≤ √r∥ΠT̂ ⊥(W)∥F
∥∥∥L∗ − L̂(init)

∥∥∥
F

∥ΠT̂ ⊥(W)∥2F
=

√
r
∥∥∥L∗ − L̂(init)

∥∥∥
F

∥ΠT̂ ⊥(W)∥F
.

According to Lemma B.1.7, we have 1
∥ΠT̂ ⊥ (W)∥F ≤ C

√
log(N∧T )
∥W∥F .

Hence, ∣∣δ′∣∣ ≲
√
r log(N ∧ T )

∥∥∥L∗ − L̂(init)
∥∥∥
F

∥W∥F

=

√
r log(N ∧ T )

∥∥∥L∗ − L̂(init)
∥∥∥
F√

nt
.

If nt = Ω(NT ) and r = O(1), (3.21) holds. Furthermore, if√
log(N∧T )∥L∗−L̂(init)∥

F√
NT

→ 0 as N →∞, then the asymptotic nor-

mality can be established using the central limit theorem (CLT).
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B.2 Proof of Lemmas and Proposition

B.2.1 Proof of Lemma B.1.2

First, we introduce the Bernstein inequality of rectangular matri-

ces, as presented by Tropp [2012].

Proposition B.2.1 (Matrix Bernstein Inequality). Let Z1, . . . ,ZN

be independent matrices in Rd1×d2 such that E [Zi] = 0 and ∥Zi∥op ≤

D almost surely for all i ∈ [N ]. Let σZ be a parameter such that

σ2
Z ≥ max


∥∥∥∥∥
N∑
i=1

E
[
ZiZ

⊤
i

]∥∥∥∥∥
op

,

∥∥∥∥∥
N∑
i=1

E
[
Z⊤
i Zi

]∥∥∥∥∥
op

 .

For any α ≥ 0, the following inequality holds:

P


∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≥ α

 ≤ (d1 + d2) exp

[
−α2

2σ2
Z + (2Dα)/3

]
.

To prove Lemma B.1.2, we referenced the proof process used

in Athey et al. [2021, Lemma 2] and Gui et al. [2016, Lemma E.3.].

We denote the projection operator onto the subspace F as ΠF (·)

and it follows that ΠF (A) = U∗U∗⊤AV∗V∗⊤ [Gui et al., 2016].

Proof of Lemma B.1.2.

Since U∗ and V∗ are matrices corresponding to the left and

right singular vectors of L∗, for S = F (U∗,V∗), we have the

following relation:

∥ΠS (E)∥op =
∥∥∥U∗U∗⊤EV∗V∗⊤

∥∥∥
op

=
∥∥∥U∗⊤EV∗

∥∥∥
op
.
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We start by introducing the definitions. For every i ∈ [N ], we

define Bi as follows:

Bi = U∗⊤

(
ti∑
t=1

εitAit

)
V∗ = U∗⊤EV∗.

It should be noted that based on the definition of E, U∗⊤EV∗ =∑N
i=1Bi and E [Bi] = 0 for all i ∈ [N ]. We set the bound D to be

D ≡ C2σ
√
log(N + T ), where C2 is a sufficiently large constant.

For each (i, t) ∈ O, we define ε̄it = εitI(|εit| ≤ D) and Bi =

U∗⊤ {∑ti
t=1 ε̄itAit

}
V∗ for all i ∈ [N ].

By applying the union bound and utilizing the property that εit

is σ-sub-Gaussian random variable (P (|εit| ≥ t) ≤ 2 exp
{
−t2/

(
2σ2
)}

),

we can derive the following inequality for any α ≥ 0:

P
(
∥U∗⊤EV∗∥op ≥ α

)
≤ P

∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+ 2NT exp

(
−D2

2σ2

)

≤ P

∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+
1

(N + T )3
.

(B.18)

Let us define Zi as Bi − E
[
Bi

]
for each i ∈ [N ]. Then, the

following holds:∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+

∥∥∥∥∥E
[
N∑
i=1

Bi

]∥∥∥∥∥
op

.
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Since the mean of εit is 0, we can establish the following:

|E [ε̄it]| = |E [εitI(|εit| ≤ D)]| = |E [εitI(|εit| ≥ D)]|

≤
√
E
[
ε2it
]
P (|εit| ≥ D)

≤
√
2σ2 exp {−D2/ (2σ2)}

≤ σ

(N + T )4
.

Given that E
[
N∑
i=1

Bi

]
= U∗⊤E

[
N∑
i=1

ti∑
t=1

εitAit

]
V∗, we have

∥∥∥∥∥E
[
N∑
i=1

Bi

]∥∥∥∥∥
max

=
∥∥∥U∗⊤

∥∥∥
op

∥∥∥∥∥
N∑
i=1

ti∑
t=1

εitAit

∥∥∥∥∥
op

∥V∗∥op

≤
√
NT

∥∥∥∥∥
N∑
i=1

ti∑
t=1

εitAit

∥∥∥∥∥
max

≤ σ
√
NT

(N + T )4
≤ σ

(N + T )3
.

Thus, we can establish the following result:∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+
σ

(N + T )3
. (B.19)

To find σZ in Proposition B.2.1, we start by examining ZiZ
⊤
i :

ZiZ
⊤
i =U∗⊤ei(N)

ti∑
t

(ε̄it − E(ε̄it)) et(T )⊤V∗V∗⊤

ti∑
t

(ε̄it − E(ε̄it)) et(T )ei(N)⊤U∗.

We denote u∗
i as the i-th row of U∗ and v∗

i as the i-th row of

V∗. Using this notation, we can show that U∗⊤ei(N) = u∗
i and

V∗⊤ {∑ti
t=1 (ε̄it − E(ε̄it)) et(T )

}
=
∑ti

t=1 (ε̄it − E(ε̄it))v∗
t .
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Since εit ’s are independent, we have:

E

[{
ti∑
t=1

(
ε̄it − E(ε̄it)et(T )⊤

)}
V∗V∗⊤

{
ti∑
t=1

(ε̄it − E(ε̄it)) et(T )

}]

= E

[
ti∑
t=1

(ε̄it − E(ε̄it))2 ∥v∗
t ∥22

]
.

The following also holds:

N∑
i=1

E
[
ZiZ

⊤
i

]
= E

[
N∑
i=1

u∗
i

{
ti∑
t=1

(ε̄it − E(ε̄it))2 ∥v∗
t ∥22

}
u∗⊤
i

]

= E

[
N∑
i=1

u∗
iu

∗⊤
i

{
ti∑
t=1

(ε̄it − E(ε̄it))2 ∥v∗
t ∥22

}]
.

Now we establish that∥∥∥∥∥
N∑
i=1

E
[
ZiZ

⊤
i

]∥∥∥∥∥
op

≤ max
(i,t)∈O

{
E
[
(ε̄it − E [ε̄it])

2
]}∥∥∥∥∥

N∑
i=1

E

[
u∗
iu

∗⊤
i

(
ti∑
t=1

∥v∗
t ∥22

)]∥∥∥∥∥
op

≤ 2σ2

(
T∑
t=1

∥v∗
t ∥22

)∥∥∥∥∥
N∑
i=1

u∗
iu

∗⊤
i

∥∥∥∥∥
op

= 2σ2r,

where the inequality holds because the random variable ε̄it −

E [ε̄it] is centered and σ-sub-Gaussian. The equality holds since∑T
t=1 ∥v∗

t ∥22 = r and
∑N

i=1 u
∗
iu

∗⊤
i = Ir.

Similarly, we can also examine Z⊤
i Zi:

Z⊤
i Zi =V∗⊤

ti∑
t

(ε̄it − E(ε̄it)) et(T )ei(N)⊤U∗U∗⊤

ei(N)

ti∑
t

(ε̄it − E(ε̄it)) et(T )⊤V∗.
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Using U∗⊤ei(N) = u∗
i and

E

[
V∗⊤

{
ti∑
t=1

(ε̄it − E(ε̄it)et(T ))

}{
ti∑
t=1

(ε̄it − E(ε̄it)) et(T )⊤
}
V∗

]

= E

{
ti∑
t=1

(ε̄it − E(ε̄it))2 v∗
tv

∗⊤
t

}
,

we obtain
N∑
i=1

E
[
Z⊤
i Zi

]
= E

[
N∑
i=1

∥u∗
i ∥22

{
ti∑
t=1

(ε̄it − E(ε̄it))2 v∗
tv

∗⊤
t

}]
.

Consequently, we prove the following:∥∥∥∥∥
N∑
i=1

E
[
Z⊤
i Zi

]∥∥∥∥∥
op

≤ max
(i,t)∈O

{
E
[
(ε̄it − E [ε̄it])

2
]}∥∥∥∥∥

N∑
i=1

∥u∗
i ∥22 E

[
ti∑
t=1

v∗
tv

∗⊤
t

]∥∥∥∥∥
op

≤ 2σ2
N∑
i=1

∥u∗
i ∥22

∥∥∥∥∥
T∑
t=1

v∗
tv

∗⊤
t

∥∥∥∥∥
op

= 2σ2r

where the second inequality holds because the spectral norm is

monotone, and the equality holds from
∑N

i=1 ∥u∗
i ∥22 = r and

∑T
t=1 v

∗
tv

∗⊤
t =

Ir. Therefore, we set σ2
Z = 2σ2r.

Furthermore, since
∥∥Bi

∥∥
op
≤
∥∥∥∑N

i=1

∑ti
t=1 εitAit

∥∥∥
op
≤ D

√
T

and
∥∥E[Bi]

∥∥
op
≤ D
√
T for all i ∈ [N ], we have ∥Zi∥op ≤ 2D

√
T .

Finally, by applying Proposition B.2.1, we obtain the following

inequality:

P


∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≥ α

 ≤ (N + T ) exp

[
− α2

4σ2r + (4Dα
√
T )/3

]

≤ (N + T ) exp

[
− 3

16
min

(
α2

σ2r
,

α

D
√
T )

)]
.
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Consequently, there exists a constant C3 with a probability greater

than 1− exp(−t) such that:∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≤ C3σmax(
√

r[t+ log(N + T )],
√
T log(N + T )[t+ log(N + T )]).

By choosing a sufficiently large constant C log(N + T ) for a

constant C to t in the above equation, and using (B.18) and (B.19),

we can obtain the following inequality with a probability greater

than 1− 2(N + T )−3 for a constant C1:∥∥∥U∗⊤EV∗
∥∥∥
op
≤ C1σmax

[√
r log(N + T ),

√
T log3/2(N + T )

]
= C1σ

√
T log3/2(N + T )

since r ≤ T and
√

log(N + T ) < log3/2(N + T ).

B.2.2 Proof of Lemma B.1.5

The lemma establishes the deterministic upper bound of the oracle

estimator under the spikiness condition of ∆̂O = L̂O − L∗. The

proof is inspired by Gui et al. [2016, Lemma D.3].

Proof of Lemma B.1.5. Let ∆̂O = L̂O − L∗. According to the

observation model Yit(0) = ⟨Ait,L∗⟩ + ϵit for (i, t) ∈ O, we can
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express the difference between fn

(
L̂O

)
and fn (L

∗) as follows:

fn

(
L̂O

)
− fn (L

∗)

=
1

n

∑
(i,t)∈O

(
Yit(0)− ⟨Ait, L̂O⟩

)2
− 1

n

∑
(i,t)∈O

(Yit(0)− ⟨Ait,L
∗⟩)2

=
1

n

∑
(i,t)∈O

(
Yit(0)− ⟨Ait,L

∗ + ∆̂O⟩
)2
− 1

n

∑
(i,t)∈O

(Yit(0)− ⟨Ait,L
∗⟩)2

=
1

n

∑
(i,t)∈O

(
ϵit − ⟨Ait, ∆̂O⟩

)2
− 1

n

∑
(i,t)∈O

ϵ2it

=
1

n

∑
(i,t)∈O

(
ϵ2it − 2⟨Ait, ∆̂O⟩ϵit + ⟨Ait, ∆̂O⟩2 − ϵ2it

)
=

1

n

∑
(i,t)∈O

⟨Ait, ∆̂O⟩2 −
2

n

∑
(i,t)∈O

⟨ϵitAit, ∆̂O⟩

=
1

n

∑
(i,t)∈O

⟨Ait, ∆̂O⟩2 −
2

n
⟨E, ∆̂O⟩,

where E =
∑

(i,t)∈O ϵitAit and the third equality holds because

Yit(0) = ⟨Ait,L∗ + ∆̂O⟩ = ϵit − ⟨Ait, ∆̂O⟩. Since the oracle esti-

mator L̂O minimizes fn(·) over the subspace F , and L∗ ∈ F , we

have fn

(
L̂O

)
≤ fn (L

∗), which yields:

1

n

∑
(i,t)∈O

⟨Ait, ∆̂O⟩2 ≤
2

n
⟨E, ∆̂O⟩. (B.20)

If αsp(∆̂O) ≤ 1
c0

√
Npc

log(N+T ) holds, then we establish the follow-

ing inequality:

∑
(i,t)∈O

〈
Ait, L̂O − L∗

〉2
≥ pc

2

∥∥∥L̂O − L∗
∥∥∥2
F
− 8(α∗)2T

√
N. (B.21)

This inequality is derived from Lemma B.1.3, and it holds with a

probability greater than 1− (N + T )−2.
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By substituting the inequality (B.20) into (B.21), we obtain:

pc
2n

∥∥∥L̂O − L∗
∥∥∥2
F
− 8(α∗)2T

√
N/n ≤ 2

n
⟨E, ∆̂O⟩.

Then, we can derive the following inequality:∥∥∥∆̂O

∥∥∥2
F
≤ 4

pc
⟨E, ∆̂O⟩+

16

pc
(α∗)2T

√
N

=
4

pc
⟨ΠF (E), ∆̂O⟩+

16

pc
(α∗)2T

√
N

≤ 4

pc
∥ΠF (E)∥op

∥∥∥∆̂O

∥∥∥
tr
+

16

pc
(α∗)2T

√
N

≤ 4
√
r

pc
∥ΠF (E)∥op

∥∥∥∆̂O

∥∥∥
F
+

16

pc
(α∗)2T

√
N.

Using the inequality 2ab ≤ a2 + b2, we have∥∥∥∆̂O

∥∥∥2
F
≤ 8r

p2c
∥ΠF (E)∥2op +

1

2

∥∥∥∆̂O

∥∥∥2
F
+

16

pc
(α∗)2T

√
N,

and then

1

2

∥∥∥∆̂O

∥∥∥2
F
≤ 8r

p2c
∥ΠF (E)∥2op +

16

pc
(α∗)2T

√
N.

Then, applying Lemma B.1.2, we obtain the bound:∥∥∥∆̂O

∥∥∥
F√

NT
≤

√
C1

σ2r log3(N + T )

Np2c
+ C2

(α∗)2√
Npc

,

which completes the proof.
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B.2.3 Proof of Proposition 3.5.6

Proof. Since ϵit and δit are independent of each other, we have:

Vd,θ − Vθ

=
∑
i,t

ΠT̂ ⊥ (W)2itVar(ϵit)

/∑
i,t

ΠT̂ ⊥ (W)2it

2

−
∑
i,t

W 2
itVar(ϵit)

/∑
i,t

W 2
it

2

+
∑
i,t

ΠT̂ ⊥ (W)2itVar(δitWit)

/∑
i,t

ΠT̂ ⊥ (W)2it

2

−
∑
i,t

W 2
itVar(δitWit)

/∑
i,t

W 2
it

2

.

(B.22)

For the first and second terms in (B.22), the following inequality

holds since ∥ΠT̂ ⊥(W)∥2F ≤ ∥W∥2F :

∑
i,t

ΠT̂ ⊥ (W)2itVar(ϵit)

/∑
i,t

ΠT̂ ⊥ (W)2it

2

−
∑
i,t

W 2
itVar(ϵit)

/∑
i,t

W 2
it

2

= Var(ϵit)

{
1∑

(i,t)ΠT̂ ⊥(W)2it
− 1∑

(i,t)W
2
it

}
≥ 0.

(B.23)

For the last two terms in (B.22), note that W is not random
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and Wit = W 2
it = W 3

it. We have:∑
i,t ΠT̂ ⊥ (W)

2
it Var(δitWit)(∑

i,t ΠT̂ ⊥ (W)
2
it

)2 −
∑

i,t W
2
it Var(δitWit)(∑
i,t W

2
it

)2
= Var(δit)


∑

i,t ΠT̂ ⊥ (W)
2
it Wit(∑

i,t ΠT̂ ⊥ (W)
2
it

)2 −
∑

i,t W
3
it(∑

i,t W
2
it

)2


= Var(δit)×(∑
i,t ΠT̂ ⊥ (W)

2
it Wit

)(∑
i,t W

2
it

)2
−
(∑

i,t W
3
it

)(∑
i,t ΠT̂ ⊥ (W)

2
it

)2
(∑

i,t ΠT̂ ⊥ (W)
2
it

)2 (∑
i,t W

2
it

)2
= Var(δit)

(∑
i,t ΠT̂ ⊥ (W)

2
it Wit

)(∑
i,t W

2
it

)
−
(∑

i,t ΠT̂ ⊥ (W)
2
it

)2
(∑

i,t ΠT̂ ⊥ (W)
2
it

)2 (∑
i,t W

2
it

)
≥ Var(δit)

(∑
i,t ΠT̂ ⊥ (W)it W

2
it

)2
−
(∑

i,t ΠT̂ ⊥ (W)
2
it

)2
(∑

i,t ΠT̂ ⊥ (W)
2
it

)2 (∑
i,t W

2
it

)
≥ Var(δit)×(∑

i,t ΠT̂ ⊥ (W)it Wit −
∑

i,t ΠT̂ ⊥ (W)
2
it

)(∑
i,t ΠT̂ ⊥ (W)it Wit +

∑
i,t ΠT̂ ⊥ (W)

2
it

)
(∑

i,t ΠT̂ ⊥ (W)
2
it

)2 (∑
i,t W

2
it

)
= 0.(B.24)

The first inequality holds by the Cauchy-Schwarz inequality, and the last

equality is derived from∑
i,t

ΠT̂ ⊥ (W)it
(
Wit −ΠT̂ ⊥ (W)it

)
= ⟨ΠT̂ ⊥ (W) ,W −ΠT̂ ⊥(W)⟩ = 0.

Therefore, based on (B.23) and (B.24), we conclude that Vd,θ − Vθ ≥

0.
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Appendix C

Appendix C.

C.1 Comparison with the Synthetic control

method

To begin, we provide a brief overview of the synthetic control

method [Abadie et al., 2010; Athey et al., 2021]. We define OUc as

the set of control units and OUt as the set of treated units. It is

important to note that |OUc | = nc and |OUt | = nt. In our treatment

adoption scenarios, the number of treated units nt is always greater

than or equal to 1. Following the approach of Athey et al. [2021],

the estimation of weights in the synthetic control method in our

experiments relies solely on the use of Y(0) without considering

any additional information. For each unit i ∈ OUt and for years

t > T0, we estimate the counterfactual outcome as

Ŷit(0) =
∑
j∈OU

c

ŵ
(i)
j Yjt(0),
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where ŵ(i) = (ŵ
(i)
1 , · · · , ŵ(i)

nc )
⊤ is chosen as follows:

ŵ(i) = argmin
w

T0∑
h=1

vh

Yih(0)−
∑
j∈OU

c

w
(i)
j Yjh(0)

2

(C.1)

for the block structures. The positive constants vh for h = 1, · · · , T0

represent the predictive power of each predictor on Ŷih(0), and can

be determined using data-driven methods. In the case of the stag-

gered structures, where ti denotes the treatment adoption point

(ti ≥ T0) for unit i in OUt , the weight is selected as

ŵ(i) = argmin
w

ti∑
h=1

vh

Yih(0)−
∑
j∈OU

c

w
(i)
j Yjh(0)

2

. (C.2)

It is worth noting that settings with a small T0 and a large nc may

introduce a significant risk of overfitting, as stated in Abadie et al.

[2010]. Empirical evidence from Athey et al. [2021] demonstrates

that the synthetic control method’s performance deteriorates as

T0/T becomes smaller compared to the MC methods.

We examine situations where the results of the synthetic con-

trol are inferior to those of the MC methods. To illustrate this,

we utilize experimental results with the Cigarette sales data from

Section 3.6.1. Figure C.1 presents time-series plots displaying the

observed cigarette sales for a specific repetition in the block struc-

tures. The blue lines represent the time-series plots for the control

states, and the red lines represent the time series for the treated

states. In this analysis, we used 27 states as control units, ex-

cluding the other 11 states shown in the figure. The treatment

adoption date is indicated by the dashed vertical line.
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Figure C.1: Time series of the observed cigarette sales for a specific

repetition in the block structures.

In Figure C.2, we show the observed and estimated outputs for

treated states in the block structures, taken from the correspond-

ing repetition in our analysis of real data. The closer the estimated

lines align with the observed data, the better the performance.

The figure illustrates that the results of the synthetic control for

Kentucky, New Hampshire, and North Carolina are poor both be-

fore and after the intervention, whereas the MC methods exhibit

relatively better patterns. These states have observed outcomes

with extreme values compared to other states as shown in Figure

C.1. This aligns with the findings in Abadie et al. [2010, Section

3.4], which states that the outcomes of states with extreme values

during the pre-intervention period cannot be accurately replicated

as a convex combination of other states’ cigarette sales. Among the

38 states, it was observed that the synthetic control performs well
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when the treated units do not differ significantly in characteris-

tics (e.g., Maine, Ohio, and Wisconsin). Synthetic control models

assume that patterns across units are stable over time, while low-

rank models incorporate patterns both across units and over time

allowing for interactions between them. Particularly, the MC with

fixed effects can capture patterns that the traditional MC cannot.

Additionally, the performance enhancement of the MC may be at-

tributed to its ability to utilize additional observations (the values

of treatment units during pre-intervention periods) [Athey et al.,

2021].

Figure C.3 presents time-series plots of the observed cigarette

sales for a specific repetition for the staggered structures. The time

T0 is indicated by the dashed vertical line. Recall that the treat-

ment adaptation dates for each state were individually selected,

after T0 = 13. Figure C.4 displays the observed and estimated

outputs of the treated units for the corresponding repetition in

the staggered structures. The dashed vertical lines indicate the

treatment adoption dates for each treated state. The results of the

synthetic control for Kentucky, New Hampshire, and Utah appear

to be poor, but the outcomes for Kentucky and New Hampshire are

comparatively better than those in the block structures depicted

in Figure C.2. This difference can be attributed to the inclusion

of North Carolina, which also exhibits extreme outcomes, among

the control units as shown in Figure C.3. In summary, the results

of the synthetic control method vary considerably depending on

the selection of treated and control units. On the other hand, the
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MC methods demonstrate more robustness to variations in the

treatment adoption pattern.
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Figure C.2: Time series of the estimated and observed cigarette

sales for all treated states in a specific repetition of the block struc-

tures. The dashed vertical lines indicate the year when Proposition

99 was passed.
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Figure C.3: Time series of the observed cigarette sales for a specific

repetition in the staggered structures.
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Figure C.4: Time series of the estimated and observed cigarette

sales for all treated states in a specific repetition of the staggered

structures. The dashed vertical lines indicate the year of the treat-

ment adoption, which varies for each treated state.
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국문초록

Low-rank 행렬 완성은 행렬의 누락된 성분을 채우기 위해 널리 사

용되는 방법이다. 행렬의 특이값 크기를 축소하는 nuclear norm

벌점화는 계산 편의성 때문에 일반적으로 사용되나, 추정에 편향을

발생시킨다. 이 문제를 해결하기 위해 SCAD와 같은 비볼록 벌점화

가 사용되며, 이는 성기고 편향되지 않은 추정량을 제공한다.

본 학위 논문은 시간 의존적 처리 (치료) 채택 구조를 갖는 패널

자료에서 인과 효과를 추정하기 위해 비볼록 벌점화 행렬 완성 방법

을 연구한다. 우리는 먼저 nuclear norm 벌점화에 의존하는 기존 방

법을 개선하는 잠재 제어 행렬에 대해 제안된 추정량의 추정 오류에

대한상한을도출한다. 놀랍게도,이상한은참특이값의크기에대한

추가 조건이 주어졌을 때 오라클 추정량이 얻는 상한과 일치한다.

또한 치료 효과에 대한 추정량의 점근적 정규성과, 이 추정량이 기존

방법에 비해 더 작은 점근 분산을 갖는다는 것을 증명한다. 우리는

잠재 제어 행렬의 복구와 평균 치료 효과의 추정을 평가하기 위해 수

치 연구를 수행한다. 시뮬레이션은 우리의 이론적 결과를 검증하고,

실제 자료를 사용한 실험은 제안 방법의 유망한 성능을 입증한다.

주요어: 시간 의존적 처리 채택, 잠재 제어 행렬, SCAD, 불편

추정량, 상한, 오라클 추정량, 인과 효과, 점근적 정규성
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