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Abstract

Spatio-Temporal Prediction Using Deep
Neural Networks

Park Tae Jun

Department of Statistics

The Graduate School

Seoul National University

Kriging provides the Best Linear Unbiased Predictor (BLUP) for a spatial data

or spatio-temporal data. This is a method of interpolation used to predict spa-

tial process or spatio-temporal process at unobserved locations. However, for

complex data, Kriging, the linear predictor, may not be optimal. Nowadays,

Deep learning using Deep neural networks (DNNs) is being used in many fields.

Deep feedforward networks can be used for regression, so I propose a novel

prediction method using DNN structure in this study. This method may learn

more complex spatio-temporal dependencies. Next, I study the traditional Krig-

ing and my method in terms of statistical learning theory. Finally, I apply my

method to Korea fine dust data to evaluate the performance. Here, the K-fold

Cross Validation method for spatio-temporal data is used.

Keywords: Spatio-temporal data, Kriging, Deep learning, Deep Neural Net-

works, Deep feedforward networks, Statistical learning theory
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Chapter 1

Introduction

Among many types of data today, spatial data refers to data including spatial

location information. The spatio-temporal data includes information indexed

by time stamps to spatial data. For example, temperature data by time and

location and precipitation data by time and location, etc. Since spatio-temporal

data has spatio-temporal dependence, it is necessary to analyze it by applying

a spatio-temporal statistical methodology.

In the spatio-temporal statistics, prediction (i.e., interpolation) in unob-

served location and time is one of the main purposes (Wikle et al., 2019).

Spatio-temporal predictor can be obtained by minimizing the certain optimiza-

tion criterion. The Best Linear Unbiased Predictor (BLUP) that minimizing

the Mean Square Prediction Error (MSPE) is called Kriging predictor (Cressie

et al., 2011). There are different types of Kriging depending on the additional

assumptions. So when the data do not follow the such assumption, Kriging

method no more provide the optimal predictor in a sense of minimum MSPE.

We need an interpolation method for more general cases.

Deep learning architectures using Deep Neural Networks (DNNs) have out-

performed the state-of-the-art in various fields in modern society. It is widely

used for supervised learning, a common form of machine learning (Yann LeCun

et al., 2015). So this algorithm can be applied for a regression that estimates
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the relationships between a label and features. The usage of DNNs in regression

allows deriving more complex and abstract structures (Floriän Kastner et al.,

2018). I apply these properties to regression for complex spatio-temporal data.

Deep learning has also made many advances in dependent data. This method

has been very successful in image recognition or natural language processing.

In the same context, it is used for spatial and spatio-temporal data which have

dependence (Wikle et al., 2022). The study of Chen et al.(2021) is one of the

works on it and this is most related to my work. DeepKriging spatial predictor

Chen et al. (2021) proposed has multiple advantages over Kriging for non-

Gaussian and non-stationary spatial data by using simple DNNs. I take a step

further by using an idea similar to Chen et al. (2021). I study the prediction in

spatio-temporal data with added temporal domains. In addition, considering the

structure of the spatio-temporal random process model, I make a modification

to the DNN structure.

In this work, I propose a spatio-temporal predictor using a DNNs. This

method overcomes the aforementioned limitations of traditional kriging and

learns the latent spatio-temporal process better. I introduce the spatio-temporal

model and spatio-temporal (universal) kriging first to understand the struc-

ture of the methodology. And I introduce Deep feedforward networks, a simple

structure of DNNs in Preliminaries. Next, I propose a spatio-temporal predic-

tion method using DNNs in detail and theoretical properties. Finally, I apply

the method to predict the value of PM2.5 concentrations in Korea. Here, the

detailed structure set in the practical step is described and the cross-validation

for evaluating its performance is considered.
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Chapter 2

Preliminaries

In this study, the prediction methodology using DNNs is established based on

a spatio-temporal model. So in this chapter, I introduce the spatio-temporal

model, spatio-temporal universal kriging predictor, and Deep feedforward net-

works, also called multilayer perceptrons (MLPs). MLPs are the typical simple

DNNs model.

2.1 Spatio-Temporal Model

The most of notations and basic concepts of spatio-temporal statistics follow

Cressie et al., (2011), Montero et al., (2015), and Wikle et al., (2019). Let

Ds × Dt be the space-time domain where Ds ⊂ Rd is the spatial domain for

the spatial dimension d and Dt ⊂ R is the temporal domain. Consider the N

observed spatio-temporal data given by

Z = {Z(s1; t1), · · · , Z(sN ; tN )}⊤

where (si; ti) ∈ Ds×Dt, i = 1, · · · , N. Suppose we have m observations at each

time tj , j = 1, · · · , T. Then we have

Z = {Z(s1,1; t1), · · · , Z(sm,1; t1), · · · , Z(s1,T ; tT ), · · · , Z(sm,T ; tT )}⊤.

Assume our observations arose from a random spatio-temporal process,

{Y (s; t) : s ∈ Ds, t ∈ Dt},
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with iid measurement error, ε, that has E[ε] = 0,Var(ε) = σ2
ε and is indepen-

dent of Y . That is, Z is the realization of the process Y (s; t). So the statistical

model for our spatio-temporal data is

Z(sij ; tj) = Y (sij ; tj) + ε(sij ; tj), (2.1)

for i = 1, · · · , N and j = 1, · · · , T. We now suppose that the spatio-temporal

process follows the model

Y (s; t) = µ(s; t) + η(s; t),

for all (s; t) ∈ Ds × Dt, where µ(s; t) is a deterministic mean and η(s; t) is a

mean-zero random effect capturing the spatio-temporal dependence.

In the data model (2.1), we attempt to find the best predictor Ŷ of the true

process Y . This is supervised learning (Hastie et al., 2009). We predict Y (s0; t0)

at an unobserved point (s0; t0) (i.e., s0 /∈ {s1,1, · · · , sm,1, · · · , s1,T , · · · , sm,T }

and t0 /∈ {t1, · · · , tT }) by minimizing the MSPE between Y (s0; t0) and Ŷ (s0; t0).

MSPE is the most commonly used interpolation criterion. In this sense, if we

further consider the best linear unbiased predictor, it is kriging. We attempt

to µ(s; t) consists of p covariates, that is µ(s; t) = x1(s; t)⊤β where x1(s; t) =

(1,x(s; t)⊤)⊤ ∈ Rp+1 is a vector of p+ 1 known covariates including 1 and β is

a vector of coefficients. This results in spatio-temporal universal kriging.

2.2 Spatio-Temporal Universal Kriging

Consider the spatio-temporal universal Kriging, which derives the best linear

unbiased prediction from the above process model. The spatio-temporal process
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Y (s; t) is modeled by

Y (s; t) = µ(s; t) + η(s; t)

= x1(s; t)⊤β + η(s; t).
(2.2)

We assume that the random process is a Gaussian process as usual assumptions,

denoted

Y (s; t) ∼ GP (µ(s; t), c(·; ·)) ,

determined by a mean function µ(s; t) = E[Y (s; t)] = x1(s; t)⊤β and a co-

variance function c (s, s′; t, t) = Cov (Y (s; t), Y (s′; t′)) which is valid (i.e., non-

negative-definite) for all {(s; t), (s′; t′)} ∈ Ds × Dt. In practice, the process is

assumed to be second-order stationary, which implies that µ(s; t) is constant

and the covariance function can be expressed in c(s, s′; t, t′) = c(s′ − s; t′ − t).

Under the Gaussian distributed measurement error, we can consider the joint

Gaussian distributionY (s0; t0)

Z

 ∼ N

x1(s0; t0)
⊤

X

β,

c0,0 c⊤0

c0 Cz

 .

where c⊤0 = Cov(Y (s0,Z)), c0,0 = Var(Y (s0; t0)), Cz = Cov(Z) = Cy +

Cε, Cy = Cov(Y) = Cov((Y (s11; t1), · · · , Y (smT ; tT ))
⊤), Cε = Cov(ε) =

Cov((ε(s11; t1), · · · , ε(smT ; tT ))
⊤), and X is the mT × (p+ 1) covariate matrix

X =
[
x1(sij ; tj)

⊤ : i = 1, · · · ,m; j = 1, · · · , T
]
.

Then we can obtain the conditional distribution,

Y (s0; t0)|Z ∼ N(x1(s; t0)
⊤β + c⊤0 C

−1
z (Z−Xβ), c0,0 − c⊤0 C

−1
z c0),

by using Gaussian process assumption and results for conditional distributions

from a joint multivariate Gaussian distribution. Here, the conditional expected

value E[Y (s0; t0)|Z] = x1(s0; t0)
⊤β + c⊤0 C

−1
z (Z − Xβ) becomes Best Linear
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Unbiased Predictor (BLUP) of Y (s0; t0). Since we may not know β in most

case, the spatio-temporal universal kriging predictor of Y (s0; t0) is

Ŷ (s0; t0) = x1(s0; t0)
⊤β̂ + c⊤0 C

−1
z (Z−Xβ̂), (2.3)

where β̂ = (X⊤C−1
z X)−1X⊤C−1

z Z which is the generalized least squares esti-

mator of β.

When considering the function g that minimizes the MSPE E[(Y (s0; t0) −

g(Z))2], g is given by g(Z) = x1(s0; t0)
⊤β + c⊤0 C

−1
z (Z−Xβ). That is,

Ŷ (s0; t0) = argmin
Ŷ

E[L(Ŷ (s0; t0), Y (s0; t0))]

= E[Y (s0; t0)|Z]
.

under the Mean Squared Error (MSE) loss function L. So universal Kriging

predictor is also best predictor of Y (s0; t0). In most case, Kriging need to es-

timate the covariance or Variogram function which characterizes dependencies

in space and time.

2.3 Deep Feedforward Networks

The most of notations and basic concepts of Deep feedforward networks follow

Hastie et al., (2009) and Goodfellow et al., (2016). Deep feedforward networks,

also called Multi-Layer Perceptrons (MLPs), which are the basic and typical

structure of neural networks are used to predict spatio-temporal data. The goal

of the MLP structure is to approximate some function f∗. Take Regression as

an example, and suppose that there is a function y = f∗(x) from an input x to

an output y ∈ R. The MLP structure is defined as y = f(x;θ) and derives the

most optimal approximation function by learning the value of the parameter θ.

Thus, we finally derive f(x; θ̂) where θ̂ is the learned parameter corresponding
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to the final target function f∗(x). The parameter θ is learned in the direction

of minimizing the loss of f(x;θ) and f∗(x).

Consider single hidden layer feed-forward neural networks which have inputs

xj , j = 1, · · · , p in the input layer, outputs yk, k = 1, · · · ,K in the output layer,

and hidden units zm, m = 1, · · · ,M in the hidden layer. Note that typically

K = 1 for regression. The above MLP model is written by

yk = gk

β0k +

M∑
m=1

βmkσ
(
α0m +

p∑
j=1

αjmxj

)
= gk

(
β0k +

M∑
m=1

βmkzm

)
.

Here, σ is the activation function, gk is the output function, and {(αjm), (βmk), j =

1, · · · , p,m = 1, · · · ,M} are weights. The activation function σ is often set to

be the sigmoid σ(v) = 1/(1 + e−v) or ReLU σ(v) = max{v, 0}, the output

function is set to be the linear gk(v) = v for the regression or the softmax for

the classification that is determined according to the purpose. The weights, the

parameters of the neural networks, is fitted by minimizing of the loss function

L. It is straightforward to increase the number of hidden layers within such a

structure.

The classic theoretical basis for approximating some functions is the Uni-

versal approximation theorem (Cybenko G., 1989). There are many versions of

this theorem and Kidger et al., (2020) show the version of networks of bounded

width and arbitrary depth. Before describing the theorem, we first define the

notations used. Use the same definitions and notations as in the paper.

Definition 2.3.1 (Notation for the function space of MLPs). Let ρ : R → R

and n,m, k ∈ N. Define NN ρ
n,m,k as the function space of functions from Rn

to Rm described by MLPs with n input neurons, m output neurons, and an

7



arbitrary number of hidden layers, each with k neurons and activation function

ρ. All output neurons have an identity activation function.

Main result of Patrick et al., (2020) is the following theorem. Write C(K;Rm)

for the set of continuous functions from K to Rm.

Theorem 2.3.1 (Universal approximation theorem, Patrick et al., 2020). Let

K ⊂ Rn be compact set. Let ρ : R → R be any nonaffine continuous function.

Assume that ρ is continuously differentiable at at least one point, with nonzero

derivative at that point. Then, ∀ε > 0, ∀f ∈ C(K;Rm), ∃f̂ ∈ NN ρ
n,m;n+m+2

s.t.

sup
x∈K

|f̂(x)− f(x)| < ε.

That is, NN ρ
n,m;n+m+2 is dense in C(K;Rm) with respect to the uniform norm.

This theorem is used to study the setting of methodological structures and

the theoretical properties of methodology in this paper. The methodology is

expected to be able to learn the general spatio-temporal dependence structure.

8



Chapter 3

The Methodology

In this paper, we propose a novel method for predicting spatio-temporal data.

For this, we study the expansion basis property of the processes. Finally, we

describe the DNN structure that finally derives the final output in this chapter.

3.1 Decomposition of the Spatio-Temporal Process

The easiest way to think for including spatio-temporal information is to add

space and time axes to the input as

(x(s; t)⊤, s, t)⊤.

We expect to learn η(s; t) from this input. However, in reality, the dimension

of the input is not very extended in most situations where the space-time di-

mension is less than or equal to 3. We go through the process of enlarging

the dimension of spatio-temporal space using the properties of spatio-temporal

stochastic processes. By Cressie et al., (2019), rewrite the model (2.2) as

Y (s; t) = x(s; t)⊤β + η(s; t)

= x(s; t)⊤β +

nα∑
i=1

ϕi(s; t)αi + ν(s; t),
(3.1)

where {ϕi(s; t) : i = 1, · · · , nα} are spatio-temporal basis functions at the

spatio-temporal location (s; t), {αi} are random effects and ν(s; t) is small-scale
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spatio-temporal random effects. Ensure that the number of basis functions are

large enough to represent the true spatio-temporal dependence in Y . The basis

functions act like covariates if the coefficient is unknown and may be estimated.

Using the above fact, Approximate η(s; t) for a sufficiently large K ∈ Z as

η(s; t) ≈
K∑
k=1

wkϕk(s; t),

for the weights wk, k = 1, · · · ,K. So, the approximation of (3.1) can be ex-

pressed as

Y (s; t) = x(s; t)⊤β + η(s; t)

≈ x(s; t)⊤β +
K∑
k=1

wkϕk(s; t).

That is, an extended input of length p+K can be obtained as shown in

x∗(s; t) :=
(
x(s; t)⊤, ϕ1(s; t), · · · , ϕK(s; t)

)⊤
∈ Rp+K . (3.2)

This helps to increase the dimension of the input. Thus, it is expected that

neural networks will learn the spatio-temporal structure better. A similar idea

was used in the paper by Chen et al. (2021).

3.2 Deep Neural Networks Structure

We learn the input separately by dividing
(
x(s; t)⊤, ϕ1(s; t), · · · , ϕK(s; t)

)⊤
into

two, and then derive the final output of the ensemble form. Input is divided

into two: the first input is x1(s; t) = x(s; t) ∈ Rp, and the second is x2(s; t) =

(ϕ1(s; t), · · · , ϕK(s; t))⊤ ∈ RK .
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Specify a DNN structure with L layers for xi(s; t), i = 1, 2 as

z1(s; t) = σ(xi(s; t)
⊤w1 + b1);

z2(s; t) = σ(z1(s; t)
⊤w2 + b2);

z3(s; t) = σ(z2(s; t)
⊤w3 + b3);

...

zL−2(s; t) = σ(zL−3(s; t)
⊤wL−2 + bL−2);

fi(s; t) = g(zL−2(s; t)
⊤wL−1 + bL−1).

(3.3)

where di is the length of a vector xi(s; t), and w1 ∈ Rdi×(di+3), w2, · · · ,wL−2 ∈

R(di+3)×(di+3),wL−1 ∈ R(di+3)×1,b1, · · · ,bL−2 ∈ R1×(di+3), bL−1 ∈ R are the

parameters. σ is the activation function and g is the output function. The

number of units of the hidden layer, di+3, was set as above based on Theorem

2.3.1 described above.

We then obtain the final output f(s; t) by an ensemble form using an MLP

structure with the new inputs f1(s; f), f2(s; t) which is the outputs of (3.3).

For f(s; t) = (f1(s; t), f2(s; t))
⊤ ∈ R2, specify a DNN structure with L layers as

follows.

z1(s; t) = σ(f(s; t)⊤w1 + b1);

z2(s; t) = σ(z1(s; t)
⊤w2 + b2);

z3(s; t) = σ(z2(s; t)
⊤w3 + b3);

...

zL−2(s; t) = σ(zL−3(s; t)
⊤wL−2 + bL−2);

f(s; t) = g(zL−2(s; t)
⊤wL−1 + bL−1).

(3.4)

where w1 ∈ R2×5, w2, · · · ,wL−2 ∈ R5×5, wL−1 ∈ R5×1,b1, · · · ,bL−2 ∈

R1×5, bL−1 ∈ R. are the parameters. A schematic diagram of this structure

is shown in Figure 3.1.
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Figure 3.1: Visualization of DNN Structure.

Let θ be the vector of all unknown parameters (i.e., weights and biases)

of the structure. Then we can rewrite f(s; t) = f(s, t;θ) since f(s; t) is the

function with the parameter θ. We obtain the estimate θ̂ by

θ̂ = argmin
θ

1

N

N∑
i=1

L (f(s, t;θ), Z(s; t)) ,

with training sample data Z. Therefore, with θ̂, the final prediction at an unob-

served spatio-temporal location (s0; t0) is f(s0, t0; θ̂) (Goodfellow et al., 2016).

Denote ŶMLP (s0; t0) = f(s0, t0; θ̂).

Consider spatio-temporal data model (2.1). We assume that the true data

is from this model. Note that We make assumptions about the normality and

stationarity of the stochastic process for the spatio-temporal universal kriging

predictor Ŷ in (2.3). Now, we assume that the spatio-temporal process Y (s; t)

is not satisfied with normality and is more complex. But unfortunately, we

assume that we don’t know the process structure exactly. In this case, the

12



kriging predictor in (2.3) is no more optimal (i.e. best). We expect our predictor

ŶMLP is able to learn the more complex and non-Gaussian process Y . So we

expect ŶMLP to show a better performance than Ŷ based on the Universal

approximation theorem.

13



Chapter 4

Theoretical Study

Our prediction method using DNNs and traditional Kriging prediction method

are supervised learning. So we analyze these two through statistical learning

theory in this chapter. In addition, we study the statistical properties of pre-

diction architecture. This chapter may explain why the prediction method is

described as Chpater 3.

4.1 Statistical Learning Theory

First, view the spatio-temporal kriging as statistical learning model based on

statistical learning theory. The notations and basic concepts of learning the-

ory follow Luxburg et al., (2011). Let x = (x(s; t)⊤, s, t)⊤ be the input of

the input space and Y be the output of the output space. Training data is

{(xi, yi), i = 1, · · · , N}, assumed to be the random sample from the joint

distribution P (x, Y ). Let C(x(s; t)) be a function space which is a set of all

measurable functions with x(s; t) as a feature. Then there is a some function

space FSTUK ⊂ C(x(s; t)) such that with squared error loss function L,

Ŷ = argmin
f∈FSTUK

E(x,Y )L(f(x), Y )

= argmin
f∈FSTUK

E(x,Y )(f(x)− Y )2,
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which is a universal kriging predictor. That is, we predict z0 as f̂FSTUK
(x0) for

a new input x0 as

f̂FSTUK
= argmin

f∈FSTUK

E(x,Y )(f(x)− Y )2,

implying f̂FSTUK
= Ŷ . In this way, we consider the traditional kriging method

as a statistical learning model and then compare it with our DNNs model.

Define Fall as the function space of all measurable functions from input

space to output space. For some function space F ⊂ Fall, the predictors are

f̂Bayes = argmin
f∈Fall

EL(Y, f(x))

f̂F = argmin
f∈F

EL(Y, f(x))

f̂n
F = argmin

f∈F

1

n

n∑
i=1

L(yi, f(xi))

where yi = Z(xi) as above. Note that the risk of a function is R(f) :=

EL(Y, f(x)). When we cannot compute the true risk, we use the empirical risk.

For the comparison of the model, the Access risk is defined as follows.

Definition 4.1.1 (Excess Risk). The excess risk, E(f), is defined by

E(f) := R(f)−R(f̂Bayes).

It compares the risk of f to the f̂Bayes.

We want this value to be reduced through sufficient observations. The access

risk of f̂n
F can be decomposed as

E(f̂n
F ) = R(f̂n

F )−R(f̂Bayes)

= R(f̂n
F )−R(f̂F )︸ ︷︷ ︸

estimation error

+R(f̂F )−R(f̂Bayes)︸ ︷︷ ︸
approximation error

.
(4.1)
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Note that R(f̂n
F ) − R(f̂F ) is the estimation error and R(f̂F ) − R(f̂Bayes) is

the approximation error as described in (4.1). Here, F is the space to be used

in the algorithm. Estimation error tends to be smaller as F is smaller and

more training data is available. Approximation error tends to be smaller as F

is bigger. The visualization of this decomposition is as shown in Figure 4.1.

Here, we prefer to choose F that balances well between these two errors. If

Figure 4.1: Visualization of access risk of f̂n
F

you have a lot of training data, it would be good to choose a bigger F . In

deep learning training, which usually has a large number of data, a big F , such

as a deep neural network structure, is selected. It is similar when we think of

data with a large number of time indexes. Thus, when we say our model space

is FMLP := NN ρ
(p+K),1,(p+K)+3, we would like to argue that it will perform

well because it has more capacity than FSTUK . We show as follows that the

function space of our model FMLP has more capacity than FSTUK under some

acceptable conditions.

Proposition 4.1.1. Let Fall = C(V ;R) for some compact set V ⊂ Rp+K ,

FMLP = NN ρ
(p+K),1,(p+K)+3 for the ReLU activation function ρ, and FSTUK ⊂

C(x(s; t)) ∩ Fall. L is the squared error loss function. Assume that f̂Bayes =
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argmin
f∈Fall

EL(Y, f(x)), f̂Bayes /∈ FSTUK , and E[{L(Y, f(x))}2] is bounded for all

f ∈ Fall. Then R(f̂FMLP
) < R(f̂FSTUK

).

In above proposition, f̂Bayes /∈ FSTUK means that f̂Bayes is more complex to

be in FSTUK . Visualizing what Proposition 4.1.1. means is shown as in Figure

4.2. The lemmas required for proof are as follows (Durrett, 2019).

Figure 4.2: Visualization of bigger capacity

Lemma 4.1.1. Let X and X1, X1, · · · be random variables. Xn → X a.s. if for

all ε > 0,
∑∞

k=n P (|Xk −X| > ε) → 0 as n → ∞

Lemma 4.1.2. Let X and X1, X1, · · · be random variables. Assume that f is

continuous and Xn → X a.s. then f(Xn) → f(X) a.s.

Lemma 4.1.3. Let X and X1, X1, · · · be random variables. Assume that Xn →

X a.s. Let g, h be continuous functions with (i) g ≥ 0 and g(x) → ∞ as

|x| → ∞, (ii) |h(x)|/g(x) → 0 as |x| → ∞, and (iii) Eg(Xn) ≤ K < ∞, ∀n.

Then Eh(Xn) → Eh(X) as n → ∞.

Proof of Proposition 4.1.1. By Theorem 2.3.1, FMLP = NN ρ
(p+K),1,(p+K)+3

is dense in Fall = C(V ;R). Define the sequence {εn} as εn = 1/n, for all

17



n ∈ N. Then ∀n ∈ N, ∃fn ∈ FMLP s.t. supx∈V |fn(x) − f̂Bayes(x)| < εn since

f̂Bayes(x) ∈ Fall. Define the sequence {fn} as above. Note that

εn > sup
x∈V

|fn(x)− f̂Bayes(x)|

≥ |fn(t)− f̂Bayes(t)|

≥ |fn+1(t)− f̂Bayes(t)|, ∀n ∈ N,∀ t ∈ V.

For some ε0 > 0, if ε0 > 1, |fn(x) − f̂Bayes(x)| < ε0,
∀ x ∈ V,∀ n ∈ N. If ε0 ≤ 1,

∃n0 ∈ N s.t. 1/(n0 + 1) < ε0 ≤ 1/n0. So |fn(x)− f̂Bayes(x)| < ε0,
∀ x ∈ V,∀ n(∈

N) ≥ n0. Now, let ε > 0 be given. Then ∃M ∈ N s.t. if n ≥ M, |fn(x) −

f̂Bayes(x)| < ε, ∀x. In other words, fn(x) → f̂Bayes(x) as n → ∞, ∀x ∈ V.

Define Wn = fn(x) − f̂Bayes(x). Then, for n ≥ M, |Wn| < ε ⇒ P (|Wn| >

ε) = 0. So, if n ≥ M, then

P (|Wn| > ε) + P (|Wn+1| > ε) + · · ·

= P (|fn(x)− f̂Bayes(x)| > ε) + P (|fn+1(x)− f̂Bayes(x)| > ε) + · · ·

=
∞∑
k=n

P (|fk(x)− f̂Bayes(x)| > ε)

= 0.

That is, ∀ε > 0,∃M ∈ N s.t. if n ≥ M,
∣∣∣∑∞

k=n P (|fk(x)− f̂Bayes(x)|)
∣∣∣ = 0,

which implies limn→∞
∑∞

k=n P (|fk(x)− f̂Bayes(x)| > ε) = 0. So,

fn(x) → f̂Bayes(x) a.s.

by Lemma 4.1.1. Then, (fn(x)− Y )2 → (f̂Bayes(x)− Y )2 a.s. by Lemma 4.1.2.

Since E[(fn(x)− Y )4] < K for some K ∈ R,

lim
n→∞

E[(fn(x)− Y )2] = E[(f̂Bayes(x)− Y )2]

by Lemma 4.1.3.
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Since argminf∈Fall
E(f(x) − Y )2 = f̂Bayes /∈ FSTUK and FSTUK ⊂ Fall,

E[(f̂FSTUK
(x) − Y )2] > E[(f̂Bayes(x) − Y )2] (Equality holds when f̂Bayes ∈

FSTUK). Let α = E[(f̂FSTUK
(x) − Y )2] − E[(f̂Bayes(x) − Y )2] > 0. Then, for

α/2, ∃fFMLP
∈ FMLP s.t.

E[(fFMLP
(x)− Y )2]− E[(f̂Bayes(x)− Y )2] < α/2.

Then,

E[(f̂FMLP
(x)− Y )2]− E[(f̂Bayes(x)− Y )2] < α/2

since E[(f̂FMLP
(x)− Y )2] ≤ E[(fFMLP

(x)− Y )2]. So,

E[(f̂FMLP
(x)− Y )2] < E[(f̂Bayes(x)− Y )2] + α/2.

Since E[(f̂FSTUK
(x)− Y )2] = α+ E[(f̂Bayes(x)− Y )2] for α > 0,

E[(f̂FMLP
(x)− Y )2] < E[(f̂Bayes(x)− Y )2] + α/2

= E[(f̂FSTUK
(x)− Y )2]− α/2

< E[(f̂FSTUK
(x)− Y )2].

Thus,

[(f̂FMLP
(x)− Y )2] < E[(f̂FSTUK

(x)− Y )2]

and

inf
f∈FMLP

Ex,Y [(f(x)− Y )2] < inf
f∈FSTUK

Ex,Y [(f(x)− Y )2].

This impiles R(f̂FMLP
) < R(f̂FSTUK

) as desired. □

The ensemble structure as (3.4) is not considered. This is for the convenience

of the proof. This proposition simply shows the learning performance of DNNs

on complex data.
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4.2 Ensemble Method

In (3.4), we use the structure of an ensemble neuron network for deriving the

final output. A similar structure is introduced by Gadgay et al., (2012). Al-

though described later, this shows better results in the test step than in the

absence of an ensemble. It divides the different features of the input. Then we

get an aggregated predictor with the two version of predictors using different

learning sets. It can be considered as Bagging predictor (Breiman., 1996).

Let L = {(xi, yi), j = 1, · · · , n} be a training set. Each (x, y) ∈ L is obtained

from the probability distribution P (x, y) independently. Let the predictor from

L be f̂(x,L). Suppose that we have training subsets Lk each including inde-

pendent observed data from the distribution same as L. Then, the average of

f̂(x,L) over L is the true Bagging predictor

fA(x) = ELf̂(x,L).

The average prediction error of the simgle set predictor f(x,L) is e = ELEx,y(y−

f̂(x,L))2. And the average prediction error in fA is eA = Ex,y(y−fA(x))
2. Then,

by the Jensen’s inequality,

e = Ex,yy
2 − 2Ex,yELf̂(x,L) + Ex,yEL(f̂(x,L))2

≥ Ex,yy
2 − 2Ex,yfA(x) + Ex,y(ELf̂(x,L))2

= Ex,yy
2 − 2Ex,yfA(x) + Ex,y(fA(x))

2

= Ex,y(y − fA(x))
2

= eA

Therefore, fA imporves f . The bagging estimate is defined as

f̂B(x) =
1

B

B∑
b=1

f̂(x,L(b)).
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where L(b), b = 1, · · · , B are the training bootstrap samples. In our case, we

have a covariate dataset L1 and a spatio-temporal information dataset L2 with

the predictors f̂(x,L1) and f̂(x,L2). Our method sample two uncorrelated sub-

sets without replacement, unlike traditional Bagging. And the two predictors

are aggregated by giving weight instead of average. Overall, however, it is con-

sistent with Bagging method.

To sum up, we consider the reason for using DNNs for learning complex

data. And we consider the advantage of Bagging ensemble using divided training

inputs.
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Chapter 5

Application

We applied the prediction method using DNNs to real-world data to compare

the test performance of any of our models with the existing spatio-temporal

kriging methods. For the data, Korea’s fine dust (PM2.5 concentration) spatio-

temporal data was used. Fine dust data is known to be non-gaussian and diffi-

cult to predict. So, we try to evaluate the performance on complex models by us-

ing our method to show better performance of this data. The application codes

and data are in the Github repository: https://github.com/park4264/Spatio-

Temporal-Prediction-Using-Deep-Neural-Networks

5.1 Detailed Structural Settings

Recall that we have two inputs, x1(s; t) = x(s; t) ∈ Rp and x2(s; t) = (ϕ1(s; t), · · · ,

ϕK(s; t))⊤ ∈ RK . Consider the second input x2(s; t) and define it more specifi-

cally as

x2(s; t) = (ϕ1(s; t), · · · , ϕK(s; t))⊤

= (ϕ1(s; t), · · · , ϕk1(s; t), ϕk1+1(s; t), · · · , ϕK(s; t))⊤,

where the first k1 basis include time information and the last K−k1 =: k2 basis

include spatial information. Set k1 ≈ 5T and k2 ≈ 5m, which seems to be able

to heuristically contain spatio-temporal information well.
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Next, the Wendland function was used as the basis function. Let θ1 and θ2

be scale parameters for the basis, respectively. Let {zj}, j = 1, · · · , k1 be a one-

dimensional gird, and {uj}, j = 1, · · · , k21, {vj}, j = 1, · · · , k22 be a rectangular

gird. Then The basis function was set as

ϕj(s; t) =


ϕ
(
|t− zj |/θ1

)
, j ∈ {1, · · · , k1}

ϕ
(
||s− uj−k1 ||/θ2

)
, j ∈ {k1 + 1, · · · , k1 + k21}

ϕ
(
||s− vj−k1−k21 ||/θ1

)
, j ∈ {k1 + k21 + 1, · · · ,K}

where

ϕ(x) =


1

3
(1− x)6(35x2 + 18x+ 3), x ∈ [0, 1]

0, otherwise

.

Set the number of hidden layers to 3. The ReLU function, σ(v) = max{v, 0},

is used as the activation function. Since it is a regression, the output function

is set to the linear function, gk(v) = v. Apply it to the data with the input set

as above.

5.2 Data Description

As for the data, PM2.5 concentration on Korea was obtained from AirKorea

(https://www.airkorea.or.kr). Hourly PM2.5 concentration from 1:00 to 24:00

on January 9, 2022, February 1, 2022 and June 29, 2022 were considered. These

three days are chosen as the representative days for high, normal and low PM2.5

concentrations. In this way, the performance of the model was evaluated for all

cases by obtaining spatio-temporal data that include the time of three days

of PM2.5 concentration and (latitude, longitude) of the observation locations.

Plotting the data of February 1, 2022 is shown in Figure 5.1.

Data on January 9, 2022, when PM2.5 concentration is high, a total of 11544

data points over 24 hours were used at a total of 481 stations, with an average
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Figure 5.1: Data plot for the PM2.5 concentration on February 1

value of PM2.5 concentration being approximately 67.419µ/m3. Next, data on

February 1, 2022, when PM2.5 concentration is normal, a total of 10704 data

points over 24 hours were used at a total of 446 stations, with an average value

of PM2.5 of approximately 29.008µ/m3. Lastly, data on June 29, 2022, when

PM2.5 concentration is low, a total of 10200 data points over 24 hours were

used at a total of 425 stations, with an average value of PM2.5 being approxi-

mately 5.153µ/m3. For the observations, the histogram is shown in Figure 5.2.

In addition, a summary being the observed data is shown in Table 5.1.

The source of the covariate data is the Korea Meteorological Administra-

tion (https://www.weather.go.kr). Six covariates were used: temperature, wind,
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Figure 5.2: Data histogram for the PM2.5 concentration on January 9 (Top),

February 1 (Middel), and June 29 (Bottom).
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Location Time Total PM2.5 mean

January 9 481 24 11544 67.419µ/m3

February 1 446 24 10704 29.008µ/m3

June 29 425 24 10200 5.153µ/m3

Table 5.1: The number of locations and times observed, the total number of

data, and PM2.5 concentration mean by date

wind x-axis components, wind y-axis components, precipitation, and humidity.

However, since the location of the observation station where the PM2.5 con-

centration is observed and the observation station of the Korea Meteorological

Administration is different, it is not completely consistent. So, we interpolated

the covariate at the same latitude and longitude as the PM2.5 concentration

observed. As a method, we used simple spatio-temporal kriging.

5.3 Results

The K-fold cross-validation was used as a test method. In spatio-temporal data,

there should be a difference from the normal K-fold cross-validation that ran-

domly divides the training set and the verification set. Therefore, when the test

was conducted for a certain spatio-temporal location, we should conduct the

test except for all the corresponding locations and times. It is introduced by

Meyer et al. (2018) under the name Leave-Location-and-Time-Out CV (LLTO

Cross-Validation). The method is visualized in Figure 5.3.

For the test, 2 out of 24 hours were randomly extracted 5 times, and about

30 out of the number of stations were randomly extracted 5 times, and the test

was conducted with a total of 25 folds, 60 validation points in a single fold.

Note that there are 60 locations to test in a single fold, but as described above,
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Figure 5.3: Visualization of the LLTO Cross-Validation

about 1000 out of about 10,000 training data are excluded.

Since it needs GPUs to perform 25 tests, the test was conducted under

1xNVIDIA-TESLA-V100 GPU environment of Google Cloud Platform (GCP,

https://cloud.google.com). In practical application situations, we applied the

Dropout method (Srivastava et al., 2014) which can reduce overfitting, and the

Batch Normalization method (Ioffe et al., 2015) which can stabilize the model.

In addition, considering that spatio-temporal kriging can be done comfortably

in the package of the R environment, the traditional spatio-temporal kriging

method is compared using the same dataset in the R environment.

There are two validation statistics for real-valued spatio-temporal processes:

the Mean Squared Prediction Error (MSPE) and the Mean Absolute Prediction

Error (MAPE)(Wikle et al., 2019). Note that for validation data {Z(si; tj) : i =

1, · · · ,m, j = 1, · · · , T} and predictions {Ẑ(si; tj) : i = 1, · · · ,m, j = 1, · · · , T}

the MSPE is given by

MSPE =
1

mT

T∑
j=1

m∑
i=1

(
Z(si; tj)− Ẑ(si; tj)

)2
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and the MAPE is given by

MAPE =
1

mT

T∑
j=1

m∑
i=1

∣∣Z(si; tj)− Ẑ(si; tj)
∣∣.

The performance of the method was evaluated using these two validation statis-

tics.

We compute these statistics for the traditional kriging method (Kriging in

Table 5.2) and the spatio-temporal prediction method using DNNs proposed

in this paper (Ours in Table 5.2, Hereinafter referred to as Ours). In addi-

tion, statistics for six additional cases are also evaluated: Method 1, Method 2,

Method 3, Method 4, Method 5, and Method 6 in Table 5.2. Define Method 1

as a way that has no ensemble structure. That is, for p + K enlarged inputs

x∗(s; t) in (3.2), the final output is computed by corresponding MLPs like (3.3).

Method 2 proceeds the same process as Method 1 using only K basis without p

covariates. Method 3 proceeds the same process as Method 1 using only p basis

without K covariates. Recall that there are two steps for the methodology in

this paper to define Method 4, Method 5, and Method 6. The first step is to

obtain f(s; t) = (f1(s; t), f2(s; t))
⊤ ∈ R2 by (3.3) , and the second step is to

obtain final output f(s; t) by (3.4). We can replace the first step with least

squares regression for the multiple linear model. That is, for i = 1, 2,

fi(s; t) = x1
i (s; t)

⊤(X⊤
i Xi)

−1X⊤
i Z

where x1
i (s; t) = (1,xi(s; t))

⊤ andXi =
[
x1
i (sij ; tj)

⊤ : i = 1, · · · ,m; j = 1, · · · , T
]

which is mT ×(p+1) matrix. We can also replace the second step with a simple

weighted average ensemble method. That is,

f(s; t) := w1f1(s; t) + w2f2(s; t)
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where

w1, w2 = argmin
w1,w2

1

N

∑
L(Z(si; ti), w1f1(si; ti) + w2f2(si; ti))

such that w1 +w2 = 1, w1, w2 ≥ 0 with squared error loss function L. Method

4 is the same as replacing the second step of Ours with a weighted average

ensemble. Method 5 is the same as replacing the first step of Ours with least

squared regression. Method 6 is the same as replacing the first and second step

of Ours with least squared regression and weighted average ensemble.

Table 5.2 provides the mean and standard deviation (SD in Table 5.2) results

of the 25 validation MSPE and MAPE values for all of the above methods. First

of all, comparing the results of Kriging, Ours, and Method 1, the performance of

Ours is the best. Therefore, Ours is better than the traditional kriging method

and method that do not include ensembles in terms of mean error performance.

In addition, learning using basis decomposition shows good performance by

considering the results of method 1 and method 2. Lastly, Considering the

results of the rest of the methods (i.e., Method 4, Method 5, and Method 6)

which have less complexity, Ours are almost always the best, but the rest also

show comparable performance. In conclusion, Ours shows good performance

for complex non-Gaussian spatio-temporal data by the results of the cross-

validation test. The higher the average PM2.5 concentration, the greater the

error value. Because of the difference in variance and complexity.

Considering the original purpose of interpolation, we can predict values at

unobserved locations and times. Thus, we can obtain a super-resolution spatio-

temporal map. Through the previous test results, it is expected that this will

provide more accurate super-resolution map than those obtained by the tradi-

tional kriging method.
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January 9 February 1 June 29

MSPE MAPE MSPE MAPE MSPE MAPE

Kriging
Mean 405.095 19.932 65.416 8.006 13.616 3.665

SD 111.846 2.850 18.889 1.172 3.170 0.441

Ours
Mean 97.975 9.864 39.785 6.163 12.274 3.448

SD 15.938 0.821 17.763 1.342 4.999 0.623

Method 1
Mean 142.664 11.763 48.008 6.790 13.372 3.612

SD 53.983 2.075 19.718 1.381 4.552 0.570

Method 2
Mean 130.154 11.270 53.264 7.090 12.705 3.518

SD 41.879 1.772 26.619 1.729 4.633 0.572

Method 3
Mean 271.870 16.286 77.764 8.695 13.176 3.591

SD 87.994 2.577 28.103 1.472 4.179 0.533

Method 4
Mean 99.570 9.941 39.226 6.137 12.277 3.448

SD 17.843 0.865 16.030 1.249 4.935 0.622

Method 5
Mean 101.024 9.995 40.679 6.233 12.556 3.493

SD 21.448 1.061 17.773 1.353 4.792 0.595

Method 6
Mean 102.445 10.081 40.036 6.191 12.547 3.491

SD 19.028 0.914 17.025 1.306 4.837 0.602

Table 5.2: Results that provides the mean and standard deviation of validation

MSPE and MAPE values by date of PM2.5 concentration observation.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This paper dealt with the spatio-temporal prediction method using DNN struc-

ture. For this, we studied the spatio-temporal random process, kriging method,

and MLPs structure. Then, a novel methodology was specified using the proper-

ties studied. This method was expected to learn complex spatio-temporal data

better using deep learning.

Also, we studied the theoretical properties of this method. By statistical

learning theory, two learning models, our method and the traditional kriging

method, were compared. As a result, we showed that the approximation error

of our method is smaller than that of the traditional method. This means that

the model has more capacity so the performance of our method is expected to

be good for complex big data. We also considered the ensemble of predictors

using different training sets.

In addition, We applied this method to real-world spatio-temporal data. As

data, PM2.5 concentration data in Korea was used. In this process, we speci-

fied a more detailed structure of our method. The K-fold cross-validation test

was conducted and a test method for spatio-temporal data was introduced.

These results provided that our method had a smaller prediction error than the

traditional method.
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6.2 Future Work

This paper proposed an interpolation method for the spatio-temporal data.

Future study is to predict the future value of the spatio-temporal data. To do

this, we seem to have a good idea through a time series of spatial processes

(Wikle et at., 2019):

{Yt(·) : t = 0, 1, · · · },

with the time space Dt = {0, 1, 2, · · · }. In other words, deep learning is applied

by treating our data as time series data. Neural network structures for predict-

ing time series data include Long Short-Term Memory (LSTM, Hochreiter et

al., 1997) and Gated Recurrent Unit (GRU, Chung et at., 2014). If there is

enough time data, spatio-temporal data prediction using this idea is expected

to perform well.
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[8] José-Maŕıa Montero, Gema Fernández-Avilés, Jorge Mateu. (2015). Spatial

and spatio-temporal geostatistical modeling and kriging. Wiley

[9] Hastie T, Tibshirani R, Friedman J. (2009). The elements of statistical

learning: Data mining, inference, and prediction, Second edition. Springer

[10] Ian Goodfellow, Yoshua Bengio, Aaron Courville. (2016). MIT Press

[11] Cybenko G. (1989). Approximation by superpositions of a sigmoidal func-

tion. Mathematics of Control, Signals, and Systems

33



[12] Kidger Patrick, Lyons Terry. (2020). Universal approximation with deep

narrow networks. arXiv preprint arXiv:1905.08539

[13] Ulrike von Luxburg, Bernhard Schölkopf. (2011). Statistical Learning The-

ory: Models, Concepts, and Results. arXiv preprint arXiv:0810.4752

[14] Durrett R. (2019). Probability: Theory and examples, Fifth edition. Cam-

bridge series in statistical and probabilistic mathematics

[15] Halsey Royden, Patrick Fitzpatrick. (2010). Real analysis, Fourth edition.

Pearson

[16] Basawaraj Gadgay, Subhash Kulkarni, Chandrasekhar B. (2012). Novel

ensemble neural network models for better prediction using variable input

approach. International journal of computer applications

[17] Breiman L. (1996). Bagging predictors.

[18] Hanna Meyer, Christoph Reudenbach, Tomislav Hengl, Marwan Katurji,

Thomas Nauss. (2018). Improving performance of spatio-temporal machine

learning models using forward feature selection and target-oriented valida-

tion.

[19] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Rus-

lan Salakhutdinov. (2014). Dropout: A simple way to prevent neural networks

from overfitting. Journal of machine learning research

[20] Sergey Ioffe, Christian Szegedy. (2015). Batch normalization: Accelerating

deep network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167

[21] Sepp Hochreiter, Jürgen Schmidhube. (1997). Long short-term memory.

Neural computation

34



[22] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio.

(2014). Empirical evaluation of gated recurrent neural networks on sequence

modeling. arXiv preprint prearXiv:1412.3555

35



국문초록

크리깅은 관측한 시공간 데이터를 이용해 관측되지 않은 위치를 예측하는 통계

적 기법이다. 데이터를 예측하여 보간하는데 시공간 데이터의 시공간 의존성을

이용한다. 그러나 복잡한 데이터의 경우 크리깅은 최적의 예측값이 되지 않을 수

있다. 최근 심층 신경망을 이용한 딥러닝은 많은 분야에서 활용되고 있다. 다층 퍼

셉트론을 회귀에 활용할 수 있다는 점을 이용해 본 논문에서는 이 신경망 구조를

이용한 새로운 크리깅 방법을 제안한다. 이 방법은 더 복잡한 시공간 확률 과정을

학습할 수 있다. 그다음, 통계 학습 이론의 관점에서 기존의 크리깅 방법과 제안된

방법을비교한다.마지막으로,실제한국의미세먼지농도데이터에제안된방법을

활용하여 이것의 성능을 평가한다. 여기서 교차 검증 방법을 사용한다.

주요어: 시공간 데이터, 크리깅, 딥러닝, 심층 신경망, 다층 퍼셉트론, 통계 학습

이론

학번: 2021-24984
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