
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사학위논문

Statistical Inference for Random Unknowns

관측할수없는변량효과에관한통계적추론

2023년 8월

서울대학교대학원

통계학과

이항빈



Statistical Inference for Random Unknowns

관측할수없는변량효과에관한통계적추론

지도교수임요한

이논문을이학박사학위논문으로제출함

2023년 7월

서울대학교대학원

통계학과

이항빈

이항빈의이학박사학위논문을인준함

2023년 7월

위원장 정 성 규 (인)

부위원장 임 요 한 (인)

위 원 이 영 조 (인)

위 원 Myunghee Cho Paik (인)

위 원 이 동 환 (인)



Statistical Inference for Random Unknowns

by

Hangbin Lee

A Thesis

submitted in fulfillment of the requirement

for the degree of

Doctor of Philosophy

in Statistics

Department of Statistics

College of Natural Sciences

Seoul National University

August, 2023



Abstract

Statistical Inference for Random Unknowns

Hangbin Lee

Department of Statistics

The Graduate School

Seoul National University

This thesis is composed of six topics related to statistical inference on un-

observed random effects, each centered around the concept of extended like-

lihood that incorporates information about the random unknowns. The first

two topics focus on the theoretical properties of confidence distribution, whose

density can be interpreted as an extended likelihood. The latter four topics

reformulate the hierarchical likelihood, as an extended likelihood at specific

scale, and investigate its theoretical properties, as well as its applications to

deep learning.

In the first topic, an epistemic confidence of the observed confidence in-

tervals is introduced. Furthermore, the relevant subset problem associated is

explained by incorporating the existence of betting markets into the Ramsey-

De Finetti’s Dutch book argument. It is demonstrated that the epistemic

confidence is free from such issues. In the second topic, it is revealed that the

existence of a point mass in confidence distribution plays an important role in

maintaining the essential properties of the confidence distribution. The point

mass has been considered paradoxical in Stein’s paradox and satellite collision

problems, but in fact, it gives an advantage to the confidence distribution.

The proposed confidence distribution is free from the false confidence for the
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parameter of interest, and it maintains the confidence feature in both Stein’s

problem and the satellite conjunction problem.

The third topic introduces the reformulation of hierarchical likelihood (h-

likelihood) and establishes the theoretical properties for h-likelihood inference.

This novel hierarchical likelihood can provide maximum likelihood estimators

for fixed parameters and asymptotically the best unbiased estimators for ran-

dom parameters, resolving the ambiguity of Lee and Nelder’s (1996) original

hierarchical likelihood. The last three topics deal with applications of the h-

likelihood approach to deep learning models. While the most deep learning

models implicitly assume the independence of data, real-world large scale data

is often clustered with temporal-spatial correlations. In such cases, prediction

performance of deep learning models can be improved by introducing random

effects via h-likelihood. The fourth topic deals with deep learning models for

continuous data with temporal-spatial correlations, and the fifth topic focuses

on deep learning models for count data with non-Gaussian random effects. The

sixth topic proposes h-likelihood approach to semi-parametric deep neural net-

works with gamma frailty for analyzing clustered censored data. In all three

topics, the proposed methods improve prediction performance by introducing

random effects into the existing deep learning models.

Keywords: random effects, hierarchical likelihood, deep learning, confidence,

epistemic confidence, confidence distribution, repeated measures, spatiotem-

poral data, survival analysis, frailty model

Student Number: 2015-20310
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Chapter 1

Introduction

In this thesis, we investigate six topics on the statistical inference for random

unknowns. The first two topics focus on the theoretical properties of confidence

distribution, whose density can be interpreted as an extended likelihood. The

third topic reformulates the hierarchical likelihood (h-likelihood), which is an

extended likelihood at specific scale, and establish its theoretical properties.

The last three topics deal with applications of the h-likelihood approach to

deep learning models.

In Chapter 2, we define confidence to be epistemic if it applies to an ob-

served confidence interval. Epistemic confidence is unavailable – or even denied

– in orthodox frequentist inference, as the confidence level is understood to ap-

ply to the procedure. Yet there are obvious practical and psychological needs

to think about the uncertainty in the observed interval. We extend the Dutch

Book argument used in the classical Bayesian justification of subjective proba-

bility to a stronger market-based version, which prevents external agents from

exploiting unused information in any relevant subset. We previously showed
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that confidence is an extended likelihood, and the likelihood principle states

that the likelihood contains all the information in the data, hence leaving no

relevant subset. Intuitively, this implies that confidence associated with the

full likelihood is protected from the Dutch Book, and hence is epistemic. Our

goal is to validate this intuitive notion through theoretical backing and prac-

tical illustrations.

In Chapter 3, we focus on the existence of a point mass in confidence distri-

bution (CD). To make probabilistic inference on multi-parameter cases, several

methods have been proposed, such as generalized fiducial distribution (GFD)

and the reference posterior (RP). However, Stein’s (1959) problem highlights

a fundamental deficiency in probabilistic inference, called the probability di-

lution, in high-dimensional cases. Furthermore, in the context of satellite

conjunction problem, poor-quality data with increasing variance results in a

dilution of collision probability. Additionally, we highlight the ambiguity of

coverage probability in an observed frequentist confidence interval (CI), and

the CD provides valuable information on the ambiguous coverage probability

of an observed CI. However, due to the presence of a point mass, the CD

can maintain the confidence feature and avoid probability dilution in both

Stein’s problem and satellite conjunction problem. A point mass in CD has

been considered paradoxical, but in fact, it gives an advantage rather than a

drawback.

In recent research, another deficiency in probabilistic inference was re-

ported, called the false confidence, which can be mitigated by adopting the

consonant belief (CB). It was claimed that additional consonant feature is cru-

cial for overcoming the deficiencies in probabilistic inferences. However, we
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demonstrate that the CD can be free from the false confidence for the propo-

sition of interest. We further introduces the null belief theorem, which implies

a fundamental deficiency of CB in statistical inferences. Our findings demon-

strate that the CD outperforms the GFD, RP, and CBs. Therefore, it is a

confidence feature, not a consonant one, that successfully avoids deficiencies

of probabilistic inference and overcome difficulties in Stein’s problem and the

satellite conjunction problem.

In Chapter 4, we reformulate the hierarchical likelihood (h-likelihood) and

establish its theoretical properties. Maximum likelihood procedure is widely

use for statistical inferences. The maximum h-likelihood procedure gives max-

imum likelihood estimators for fixed parameters and asymptotically best un-

biased predictors for random parameters. We provide theoretical foundations

for the h-likelihood inference, which extends classical likelihood theories to

broad classes of statistical models with random parameters. We introduce

an generalized Cramer-Rao lower bound, which can be applied to both fixed

and random parameters, and show that the maximum h-likelihood estimators

asymptotically achieve the lower bound. We also study asymptotic theory

when the consistency of either the fixed parameter estimation or the random

parameter prediction is not guaranteed.

In Chapter 5, we propose the h-likelihood approach for DNN with temporal-

spatial random effects. DNN is one of the most powerful tools for prediction,

but many of them implicitly assume that the data are statistically independent.

However, in the real world, it is common for large-scale data to be clustered

with temporal-spatial correlation structures. Variational approaches and inte-

grated likelihood approaches have been proposed to obtain approximate max-
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imum likelihood estimators (MLEs) for correlated data. However, due to the

large size of data, they cannot provide exact MLEs. In this study, we propose

a new hierarchical likelihood approach to DNNs with correlated random effects

for clustered data. By jointly optimizing the the negative h-likelihood loss, we

can provide exact MLEs for both mean and dispersion parameters, as well

as the best linear unbiased predictors for the random effects. Moreover, the

hierarchical likelihood allows a computable procedure for restricted maximum

likelihood estimators of dispersion parameters. The proposed two-step algo-

rithm enables online learning for the neural networks, whereas the integrated

likelihood cannot decompose like a widely-used loss function in DNNs. The

proposed h-likelihood approach offers several advantages, which we demon-

strate through numerical studies and real data analyses.

In Chapter 6, we introduce gamma random effects into the Poisson DNN for

clustered count data via h-likelihood. Poisson deep neural networks (DNNs)

have been developed to predict count data. To improve the predictions for

clustered data, there has been a growing interest in subject-specific predic-

tions of DNNs. In this chapter, we propose a new hierarchical likelihood ap-

proach for introducing gamma random effects into the Poisson DNNs. The

h-likelihood approach simultaneously yields maximum likelihood estimators

for fixed parameters and best unbiased predictors for random effects by opti-

mizing a single objective function, enabling a fast end-to-end Poisson-gamma

DNN. It enhances prediction performance by capturing both nonlinear effects

of input variables and subject-specific cluster effects. We have observed that

the local minima problem can lead to poor predictions when the Poisson DNN

reflects subject-specific cluster effects. To address this issue, we propose an

4



adjustment to the random effects to enhance the prediction performance. In

addition, we introduce a method-of-moments-based estimator to pretrain the

dispersion parameter. Experimental studies and real data analyses confirm

that the Poisson-gamma DNN improves the prediction performance of the ex-

isting methods. In particular, real data analyses illustrate that incorporating

random subject-specific cluster effects helps to identify the nonlinear effects of

the input variables, which cannot be found by the Poisson DNN.

In Chapter 7, we propose the DNN-based semi-parametric frailty model

for prediction of clustered time-to-event data. An advantage of the proposed

model is that the joint maximization of the h-likelihood provides maximum

likelihood estimators for fixed parameters and best unbiased predictors for

random frailties. Thus, the proposed DNN-FM is trained by using a nega-

tive profiled h-likelihood as a loss function, constructed by profiling out the

non-parametric baseline hazard. Experimental studies show that the proposed

method enhances the prediction performance of the existing methods. A real

data analysis shows that the inclusion of subject-specific frailties helps to im-

prove prediction of the DNN-based Cox proportional hazard model.
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Chapter 2

Epistemic confidence in the

observed confidence interval

2.1 Introduction

Given data Y = y of arbitrary size or complexity, generated from a model

pθ(y) indexed with the scalar parameter of interest θ, a confidence interval

CI(y) is computed with coverage probability

Pθ(θ ∈ CI(Y)) = γ.

We are interested in the epistemic confidence, defined as the sense of confi-

dence in the observed CI(y). For simplicity, we shall often drop the explicit

dependence on y from the CI. Arguably, this is what we want from a CI,

but the orthodox frequentist view is emphatic that the probability γ applies

not to the observed interval CI(y), but to the procedure. In the confidence
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interval theory, the coverage probability is called the confidence level. So, in

the frequentist theory, ‘confidence’ has no separate meaning from probability

as well as no epistemic property. Strictly speaking, we do not automatically

have 95% confidence in the observed 95% CI. Schweder and Hjort (2016) and

Schweder (2018) have been strong proponents of interpreting confidence as

‘epistemic probability.’ However, their view is not commonly accepted. Tra-

ditionally, only the Bayesians have no problem in stating that their subjective

probability is epistemic. How do they achieve that? Is there a way to make

the non-Bayesian confidence epistemic? Our aim is to show a way to achieve

that.

Frequentists interpret probability as either a long-term frequency or a

propensity of the generating mechanism. So, for them, unique events, such

as the next toss of a coin or the true status of an observed CI, do not have a

probability. On the other hand, Bayesians can attach their subjective prob-

ability to such unique events. But what does ‘attach’ mean? One standard

interpretation is made based on a logical device called the Dutch Book. As

classically proposed by Ramsey (1926) and De Finetti (1931), your subjective

probability of an event E is defined as the personal betting price that you put

on the event. Though subjective, the price is not arbitrary, but it follows a

normative rational consideration; it is a price that is protected from the Dutch

Book, i.e., no external agent can make a risk-free profit off you. Let’s call your

prices for a collection of bets a betting strategy. Then it is irrational to use a

betting strategy that is guaranteed to lose.

Thus we conceptually define confidence to be epistemic if it is protected

from the Dutch Book, but crucially we assume that there is a betting market of
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a crowd of independent and intelligent players. In this market, bets are like a

commodity with supply and demand from among the players. Assuming a per-

fect market condition – for instance, full competition, perfect information and

no transaction cost – in accordance with the Arrow-Debreu theorem (Arrow

and Debreu, 1954), there is an equilibrium price at which there is balance be-

tween supply and demand. ‘Perfect information’means all players have access

to the generic data y and the statistical model pθ(y). For the betting market in

particular, the fundamental theorem of asset pricing (Ross et al., 1976) states

that, assuming a statistical model, the Dutch Book cannot be made if the price

is determined by the objective probability.

It is worth emphasizing the difference between our setup and the classical

Dutch Book argument used to establish the subjective Bayesian probability. In

the latter, because it does not presume the betting market, bets are made only

between two persons, you and me. To avoid the Dutch Book, you have to make

your bets internally consistent by following probability laws. However, even

if your bets are internally consistent, if your prices do not match the market

prices, I can make a risk-free profit by playing between you and the market; see

Example 2.1. So, the presence of the market imposes a stronger requirement for

epistemic probability. We shall avoid the terms ’subjective’ and ’objective’;

one might consider ‘epistemic’ to be subjective since it refers to a personal

decision-making based on a unique event, but the market consideration makes

it impersonal.

Our question is when or under what condition the confidence, as measured

by the coverage probability, apply to the observed interval. One way to judge

this is whether you are willing to bet on the true status of the CI using the
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confidence level as your personal price. Normatively, this should be the case

if you know there is no better price. Intuitively, this is when you’re sure that

you have used all the available information in the data, so nobody can exploit

you, i.e., construct a Dutch Book against you. Theoretically, to construct

the Dutch Book, an external agent must exploit unused information in the

form of a relevant subset, conditional on which he can get a different coverage

probability.

Pawitan and Lee (2021) showed that the confidence is an extended likeli-

hood (Lee et al., 2017). The extended likelihood principle (Bjørnstad, 1996)

states that the extended likelihood contains all the information in the data.

Intuitively, this implies that the extended likelihood leaves no relevant subset,

and is thus protected from the Dutch Book. In other words, we can attach the

degree of confidence to the observed CI, i.e., confidence is epistemic, provided

it is associated with the full likelihood. Our aim is to establish the theoretical

justification for this intuitive notion and to provide clear illustrative examples.

To summarize briefly and highlight the plan of the chapter, we describe

three key concepts: relevant subset, confidence and ancillary statistic. We

prove the main theorem that there are no relevant subsets if confidence is

associated with the full likelihood. This condition is easily satisfied if the con-

fidence is based on a sufficient statistic. When there is no sufficient statistic,

but there exists a maximal ancillary statistic, then this ancillary defines rele-

vant subsets; the confidence is conditional on the ancillary, but there are no

further relevant subsets.
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2.2 Main theory

2.2.1 Relevant subsets

Intuitively, we could use the coverage probability γ as a betting price if there

is no better price given the data at hand. So the question is, are there any

features of the data that can be used to improve the price? If they exist, such

features are said to be relevant. Formally, a statistic R(y) is defined to be

relevant (cf. Buehler, 1959) if the conditional coverage probability given R(y)

is non-trivially biased in one direction. That is, for a positive bias, there is

ϵ > 0 free of θ and some y, such that

Pθ(θ ∈ CI(Y )|R(y)) ≥ γ + ϵ for all θ. (2.1)

If it exists, the feature R(y) can be used to construct a Dutch Book: Suppose

you and I are betting, and I notice that the event R(y) occurs. If you set the

price at γ, then I would buy the bet from you and then sell it in the betting

market at γ + ϵ to make a risk-free profit of ϵ. Similarly, for the negative bias,

the relevant R(y) has the property

Pθ(θ ∈ CI(Y )|R(y)) ≤ γ − ϵ for all θ. (2.2)

Technically, R(y) induces subsets of the sample space, known as the ‘relevant

subsets,’ so the terms ‘relevant statistic’ and ‘relevant subset’ are interchange-

able. If there is a relevant subset, the confidence level γ is not epistemic.

Conversely, if there are no relevant subsets, the betting price determined by

the confidence level is protected from the Dutch Book. So, mathematically,
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we establish epistemic confidence by showing that it corresponds to a coverage

probability that is free of relevant subsets.

Example 2.1. Let y ≡ (y1, y2) be an iid sample from a uniform distribution

on {θ−1, θ, θ+1}, where the parameter θ is an integer. Let y(1) and y(2) be the

minimum and maximum values of y1 and y2. We can show that the confidence

interval CI(y) ≡ [y(1), y(2)] has a coverage probability

Pθ(θ ∈ CI) = 7/9 = 0.78.

For example, on observing y(1) = 3 and y(2) = 5, the interval [3, 5] is formally

a 78% CI for θ. But, if we ponder a bit, in this case we can actually be sure

that the true θ = 4. So, the probability of 7/9 is clearly a wrong price for

this interval. This is a typical example justifying the frequentist objection to

attaching the coverage probability as a sense of confidence in an observed CI.

Here the range R ≡ R(y) ≡ y(2) − y(1) is relevant. If R = 2 we know for

sure that θ is equal to the midpoint of the interval, so the CI will always be

correct. But if R = 0, the CI is equal to the point y1, and it falls with equal

probability at the integers {θ − 1, θ, θ + 1}. So, for all θ,

Pθ(θ ∈ CI|R = 2) = 1 > 7/9

Pθ(θ ∈ CI|R = 1) = 1 > 7/9

Pθ(θ ∈ CI|R = 0) = 1/3 < 7/9.

In the betting market, the range information will be used by the intelligent

players to settle prices at these conditional probabilities. For example, if y1 = 3
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and y2 = 5, the intelligent players will not use 7/9 as the price and will instead

use 1.00. So, the information can be used to construct a Dutch Book against

anyone who ignores R. How do we know that there is a relevant subset in

this case? Moreover, given R, how do we know if there is no further relevant

subset?

To contrast with the classical Ramsey-de Finetti Dutch Book argument,

suppose y1 = y2 = 3. If, for whatever subjective reasons, you set the price

7/9 for [θ ∈ CI], you are being internally consistent as long as you set the

price 2/9 for [θ ̸∈ CI], since the two numbers constitute a valid probability

measure. Internal consistency means that I cannot make a risk-free profit

from you based on this single realization of y. Even if I know that 1/3 is a

better price, I cannot take any advantage of you because there is no betting

market. So 7/9 is a valid subjective probability. 2

2.2.2 Confidence distribution

Let t ≡ T (y) be a statistic for θ, and define the right-side P-value function

Cm(θ; t) ≡ Pθ(T ≥ t). (2.3)

Assuming that, for each t, it behaves formally like a proper cumulative dis-

tribution function, Cm(θ; t) is called the confidence distribution of θ. The

subscript m is used to indicate that it is a ‘marginal’ confidence, as it depends

on the marginal distribution of T . For continuous T , at the true parame-

ter, the random variable Cm(θ;T ) is standard uniform. For continuous θ, the
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corresponding confidence density is

cm(θ) ≡ cm(θ; t) ≡ ∂Cm(θ; t)/∂θ. (2.4)

The functions Cm(θ; t) and cm(θ) across θ are realized statistics, which depend

on both the data and the model, but not on the true unknown parameter θ0.

We can view the confidence distribution simply as the collection of P-values

or CIs. We define

Cm(θ ∈ CI) ≡
∫

CI
cm(θ)dθ (2.5)

to convey the ‘confidence of θ belonging in the CI’. Fisher (1930, 1933) called

Cm(θ; t) the fiducial distribution of θ, but he required T to be sufficient. How-

ever, the recent definition of the confidence distribution (Schweder and Hjort,

2016) requires only Cm(θ;T ) to be uniform at the true parameter, thus guar-

anteeing a correct coverage probability. Lemma 2.1 below establishes when

Fisher’s fiducial probability Cm(θ; t) becomes a frequentist coverage probabil-

ity, which requires T to be continuous. When T is discrete, the equality is

only achieved asymptotically; see Appendix 2.5.2 for an example.

Assume Condition 2.1 in Section 2.2.3 that for any α ∈ (0, 1), the quantile

function qα(θ) of T is a strictly increasing function of θ. Then the frequentist

procedure based on T gives a γ-level CI defined by

CIγ(T ) =
(
q−1
γ2
(T ), q−1

γ1
(T )
)

(2.6)
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for some γ2 > γ1 > 0 with γ2 − γ1 = γ, to have a coverage probability

Pθ(θ ∈ CIγ(T )) = Pθ

[
T ∈ (qγ1(θ), qγ2(θ))

]
= γ2 − γ1 = γ.

Here the coverage probability is a frequentist probability based on the dis-

tribution of unobserved future data T , whereas given observed data t, the

confidence is for the observed interval CI(t) based on the confidence density of

θ. The confidence becomes

Cm(θ ∈ CIγ(t); t) = Cm(θ = q−1
γ1
(t); t)− Cm(θ = q−1

γ2
(t); t)

= Pθ=q−1
γ1

(t)(T ≥ t)− Pθ=q−1
γ2

(t)(T ≥ t)

= (1− γ1)− (1− γ2) = γ = Pθ(θ ∈ CIγ(T )).

Thus, we have the following lemma.

Lemma 2.1. Under Condition 2.1,

Pθ(θ ∈ CI(T )) = Cm(θ ∈ CI(t); t). (2.7)

where CI(t) is the observed interval of confidence procedure CI(T ) defined in

(2.6).

However, as shown in Example 2.1, a correct coverage probability does not

rule out relevant subsets. This means that the current definition of confidence

distribution does not guarantee epistemic confidence. The key step is to define

a confidence distribution that uses the full information. Motivated by the
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Bayesian formulation and Efron (1993), let’s define the implied prior as

c0(θ) ≡ c0(θ; t) ≡ m(t)
cm(θ; t)

L(θ; t)
, (2.8)

where m(t) cancels out all the terms not involving θ in cm(θ; t)/L(θ; t). Then

define the full confidence density as

cf (θ) ≡ cf (θ; y) ∝ c0(θ)L(θ; y). (2.9)

The subscript f is now used to indicate that the confidence density is associated

with the full likelihood based on the whole data. When necessary for clarity,

the dependence of the confidence density and the likelihood on t and on the

whole data y will be made explicit. cf (θ) is defined only up to a constant term

to allow it to integrate to one. Obviously, if T is sufficient, then cm(θ) = cf (θ),

but in general they are not equal. In Section 2.3, we show a more convenient

way to construct cf (θ). The confidence function parallel to (2.5) can be denoted

by Cf (·). Thus, the full confidence density looks like a Bayesian posterior.

However, the implied prior is not subjectively selected, and can be improper

or data-dependent.

2.2.3 Main theorem

The full confidence density cf (θ) can be used in general to compute the degree

of confidence γ to any observed CI(y) as

γ =

∫
CI(y)

cf (θ)dθ.
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The CI has a coverage probability, which may or may not be equal to γ. We say

that cf (θ) has no relevant subsets, if there is no R(y) such that the conditional

coverage probability is biased in one direction according to (2.1) or (2.2). For

our main theorem, we assume the following regularity conditions.

Condition 2.1. T = T (Y ) is a continuous scalar statistic whose quantile

function qα(θ), defined by Pθ(T ≤ qα(θ)) = α, is strictly increasing function of

θ for any α ∈ (0, 1).

Condition 2.2. There exists a function g(θ) > 0 free of y, such that for any

given Y = y,

Eθ|y

(
g(θ)

c0(θ; y)

∣∣∣θ ∈ CI(y)
)
≤ Eθ|y

(
g(θ)

c0(θ; y)

)
<∞ (2.10)

where Eθ|y(·) is the expectation under confidence density c(θ; y), and c0(θ; y)

is the implied prior.

If the implied prior does not depend on the data, c0(θ; y) = c0(θ), then the

choice g(θ) = c0(θ) leads both sides of (2.10) to be 1. Thus, Condition 2.2

holds for any data-free implied prior even if it is improper. If the implied prior

is data-dependent, g(θ) would be a function which diverges near the boundary

of Θ. We shall illustrate this in Example 2.3 in Section 2.3.3. For the general

single-parameter exponential family,

pθ(y) = h(y) exp(θT (y)− A(θ)) (2.11)

where the parameter space Θ and the sample space of T are identical, the
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choice g(θ) = h(θ)eA(θ) leads to a sufficient condition for Condition 2.2:

Pθ=t(T ∈ CI(t)) ≤ Pθ=t(θ ∈ CI(T )) = γ.

The quantity 1 − Pθ=t(T ∈ CI(t)) is the significance level for testing the null

hypothesis θ = t with acceptance region CI(t). Pθ=t(θ ∈ CI(T )) is the frequen-

tist coverage probability. This inequality states the usual relationship between

the hypothesis testing and the confidence interval.

Theorem 2.1. Consider the full confidence density cf (θ) ∝ c0(θ)L(θ; y) with

c0(θ) being the implied prior (2.8). Let γ be the degree of confidence for the

observed CI(y) such that

∫
CI(y)

cf (θ)dθ = γ for all y.

Under Conditions 2.1 and 2.2, cf (θ) has no relevant subsets.

Proof: We first prove the positively biased case, which presumes that there

exists a positively-biased relevant subset R. Equation (2.1) can be expressed

as ∫
R

I(θ ∈ CIγ(y))fθ(y)dy ≥ (γ + ϵ)

∫
R

fθ(y)dy for any θ ∈ Θ.

Consider a function g(θ) > 0 from Condition 2.2, then we have

A =

∫
Θ

∫
R

I(θ ∈ CIγ(y))fθ(y)dyg(θ)dθ ≥ (γ + ϵ)

∫
Θ

∫
R

fθ(y)dyg(θ)dθ = B.

On both sides the integrands are non-negative, so the order of integration can
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be interchanged. Then the left-hand-side becomes

A =

∫
R

∫
Θ

I(θ ∈ CIγ(y))fθ(y)g(θ)dθdy =

∫
R

[∫
CIγ(y)

g(θ)fθ(y)dθ

]
dy

=

∫
R

[∫
CIγ(y)

c(θ; y)
g(θ)

c(θ; y)/fθ(y)
dθ

]
dy

=

∫
R

m(y)

[
Eθ|y

(
g(θ)

c0(θ; y)

∣∣∣θ ∈ CIγ(y)
)∫

CIγ(y)
c(θ; y)dθ

]
dy

= γ

∫
R

m(y)

[
Eθ|y

(
g(θ)

c0(θ; y)

∣∣∣θ ∈ CIγ(y)
)]

dy,

while the right-hand-side becomes

B = (γ + ϵ)

∫
R

∫
Θ

fθ(y)g(θ)dθdy

= (γ + ϵ)

∫
R

m(y)

[
Eθ|y

(
g(θ)

c0(θ; y)

)]
dy.

Since γ+ϵ > γ, m(y) > 0, and Eθ|y

(
g(θ)

c0(θ;y)

)
≥ Eθ|y

(
g(θ)

c0(θ;y)

∣∣∣θ ∈ CIγ(y)
)

, we get

A < B, which is a contradiction. Hence there is no positively-biased relevant

subset.

Now suppose that there exists a negatively biased relevant subset R∗. Let

R = (R∗)C be the complementary set of R∗, then

γ = Pθ(θ ∈ CIγ(T (Y )))

= Pθ(θ ∈ CIγ(T (Y ))|Y ∈ R)Pθ(Y ∈ R)

+ Pθ(θ ∈ CIγ(T (Y ))|Y ∈ R∗)(1− Pθ(Y ∈ R))

< Pθ(θ ∈ CIγ(T (Y ))|Y ∈ R)Pθ(Y ∈ R) + (γ − ϵ)(1− Pθ(Y ∈ R)),
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which leads to

Pθ(θ ∈ CIγ(T (Y ))|Y ∈ R) > γ + ϵ(1− Pθ(Y ∈ R))/Pθ(Y ∈ R).

Hence R becomes a positively-biased relevant subset, which is shown above to

lead to a contradiction. Therefore, overall there is no relevant subset.

Note that we now have two ways of computing the price of an observed

CI: using Cf (θ ∈ CI) or using Pθ(θ ∈ CI). The latter has the desired coverage

probability, but not guaranteed to be free of relevant subsets; the former is

free of relevant subset, but not guaranteed to match the coverage probability.

If the two are equal, we have a confidence that corresponds to a coverage

probability free of relevant subsets, hence epistemic. If T is sufficient and

satisfies Condition 2.1, Lemma 2.1 implies that the frequentist CI satisfies

Pθ(θ ∈ CI(Y )) = Cm(θ ∈ CI(y)) = Cf (θ ∈ CI(y)) = γ for all θ and y

Thus, we can summarize the first key result in the following corollary:

Corollary 2.1. Under Conditions 2.1 and 2.2, if T is sufficient, the confidence

based on cm(θ; t) has a correct coverage probability and no relevant subsets,

hence it is epistemic.

We note that Pθ(θ ∈ CI(Y )) = Cf (θ ∈ CI(y)) holds asymptotically, regard-

less whether y is continuous or discrete. Corollary 1 specifies the conditions

where it is true in finite samples.

If c0(θ) is a proper probability density that does not depend on y, then cf (θ)

is a Bayesian posterior density, shown already by Robinson’s (1979) Proposi-
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tion 7.4 not to have relevant subsets. For proper priors, Condition 2.2 trivially

holds, so the theorem extends his result to improper and data-dependent pri-

ors. Moreover, there is a significant difference in the interpretation. If you

use a proper but arbitrary c0(θ) that is not the same as the implied prior,

and there is a betting market, your price γ will differ from the market price.

So, as illustrated in Example 2.1, I can construct a Dutch Book against you.

While, assuming no betting market, the theorem is meaningful only for two

people betting repeatedly against each other, with gains or losses expressed in

terms of expected value or long-term average. This is the setting described

by Buehler (1959) and Robinson (1979). Crucially, the presence of relevant

subsets does not guarantee an external agent a risk-free profit from a single

bet. So, it does not satisfy our original definition of epistemic confidence.

Lindley (1958) showed that, assuming T is sufficient, Fisher’s fiducial prob-

ability – hence the marginal confidence – is equal to the Bayesian posterior if

and only if the family pθ(y) is transformable to a location family. However,

his proof assumed c0(θ) to be free of y. Condition 2.2 of the main theorem

allows c0(θ) to depend on the data, so our result is not limited to the location

family.

2.2.4 Ancillary statistics

The current definition of confidence distribution (Schweder and Hjort, 2016)

only requires Cm(θ;T ) to follow uniform distribution. However, if T is not

sufficient, the marginal confidence is not epistemic, because it does not use

the full likelihood, so it is not guaranteed free of relevant subsets. Limiting

ourselves to models with sufficient statistics to get epistemic confidence is
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overly restrictive, since sufficient statistics exist at arbitrary sample sizes in

the full exponential family only (Pawitan, 2001). Using non-sufficient statistics

implies a potential loss of efficiency and epistemic property. Further progress

depends on the ancillary statistic, a feature of the data whose distribution is

free of the unknown parameter (Ghosh et al., 2010). We first have a parallel

development for the conditional confidence distribution given the ancillary

A(y) = a:

Cc(θ; t|a) ≡ Pθ(T ≥ t|a) and cc(θ; t|a) ≡ ∂Cc(θ; t|a)/∂θ.

We have immediately the following corollary from Lemma 2.1. Condition 2.1

needs a little modification, where it refers to the conditional statistic T |a for

each a.

Corollary 2.2. Under Condition 2.1,

Pθ(θ ∈ CI|a) = Cc(θ ∈ CI; t|a). (2.12)

where CI is the confidence interval based on the conditional distribution of T |a.

Furthermore, define the implied prior as

c0(θ) ≡ c0(θ; t|a) ≡ m(t, a)
cc(θ; t|a)
L(θ; t|a)

, (2.13)

where m(t, a) cancels out all the terms not involving θ in cc(θ; t|a)/L(θ; t|a).

As before, the full confidence is cf (θ) ∝ c0(θ)L(θ; y).

Suppose T (y) = t is not sufficient but (t, a) is, where a is an ancillary

statistic. In this case, a is called an ancillary complement, and in a qualitative
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sense it is a maximal ancillary, because

L(θ; y) = L(θ; t, a) ∝ pθ(t|a)p(a) ∝ pθ(t|a) = L(θ; t|a). (2.14)

Thus, conditioning a non-sufficient statistic by a maximal ancillary has recov-

ered the lost information and restored the full-data likelihood. In particular,

the conditional confidence becomes the full confidence: cc(θ; t|a) = cf (θ). Note

that (2.14) holds for any maximal ancillary, so if a maximal ancillary exists,

then the full likelihood is automatically equal to the conditional likelihood

given any maximal ancillary statistic. In its sampling theory form, when t is

the MLE θ̂, full information can be recovered from pθ(θ̂|a), whose approxima-

tion was studied by Barndorff-Nielsen (1983).

In conditional inference (Reid, 1995), we condition on the ancillary to

make our inference more ‘relevant’ to the data at hand; in other words, more

epistemic. But this is typically stated on an intuitive basis; the following

corollary provides a mathematical justification. Since we already condition

on A(y), a further relevant subset R(y) is such that the conditional prob-

ability Pθ(θ ∈ CI|A(y), R(y)) is non-trivially biased in one direction from

Pθ(θ ∈ CI|A(y)) in the same manner as (2.1). Now we can state our second

key result:

Corollary 2.3. If A(y) = a is maximal ancillary for T (y), and CI is con-

structed from the conditional confidence density based on T |a, then under

Conditions 2.1 and 2.2, the conditional confidence Cc(θ ∈ CI; t|a) has a cor-

rect coverage probability and no further relevant subsets. Hence the conditional

confidence is epistemic.
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Because of (2.14), the confidence is epistemic for any choice of the maximal

ancillary. However, maximal ancillary may not be unique; this is an issue

traditionally considered most problematic in conditional inference. If it is

not unique, then the conditional coverage probability might depend upon the

choice. However, this does not affect the guaranteed absence of relevant subset

in the corollary. We discuss this further in Section 2.4 and illustrate with an

example in Appendix 2.5.3.

2.2.5 Computation of epistemic confidence

Our theory indicates that we get epistemic confidence from the full confidence

density cf (θ) ∝ c0(θ)L(θ; y). The corresponding coverage probability is either

a marginal probability or a conditional probability given a maximal ancillary.

The full likelihood L(θ; y) is almost always easy to compute. However, in order

to get a correct coverage, the implied prior c0(θ) must be computed using (2.8)

or (2.13); in practice these can be difficult to evaluate. We illustrate through

a series of examples some suitable approximations of c0(θ) that are simpler to

compute.

Suppose, for sample size n = 1, there is a statistic t1 ≡ T (y1) that satisfies

Condition 2.1, i.e. it allows us to construct a valid confidence density cm(θ, t1).

The statistic t1 trivially exists if y1 itself leads to a valid confidence density.

Then we can compute c0(θ) based on cm(θ; t1)/L(θ; t1). First consider the case

when c0(θ) is free of the data. From the updating formula in Section 3 of
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Pawitan and Lee (2021), the confidence density based on the whole data is

cf (θ; y) ∝ cm(θ; t1)L(θ; y1|t1)L(θ; y2 · · · yn)

∝ c0(θ)L(θ; t1)L(θ; y1|t1)L(θ; y2 · · · yn)

= c0(θ)L(θ; y1)L(θ; y2 · · · yn)

∝ c0(θ)L(θ; y). (2.15)

Once c0(θ) is available, (2.15) is highly convenient, since it is computationally

straightforward. More importantly, as shown in some examples below, formula

(2.15) works even when there is no sufficient estimate from the whole data for

n > 1; see location-family model in Section 2.3.2 and the curved exponential

model in Example 4.

When c0(θ) depends on the data, it matters which yi is used to compute

it. In this case the updating formula is only an approximation. As long as

the contribution of log c0(θ) to log cf (θ) is of order O(1/n), we expect a close

approximation as illustrated in Example 3.

2.3 Examples

2.3.1 Simple model

Example 4.1 (continued). Based on y1 alone, we have

c(θ; y1) ∝ L(θ; y1) = 1 for θ ∈ {y1 − 1, y1, y1 + 1},
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so the implied prior c0(θ) = 1 for all θ. The full likelihood based on (y1, y2) is

L(θ) = 1 for θ ∈ {y(2) − 1, y(1) + 1},

so, the full confidence density is cf (θ) ∝ L(θ). For example, if y1 = 3 and

y2 = 5, we do have 100% confidence that θ = 4. And if y1 = y2 = 3, we

only have 33.3% confidence for θ = 4, though we have 100% confidence for

θ ∈ {2, 3, 4}. The MLE of θ is not unique, but we can choose θ̂ = ȳ as the

MLE. It is not sufficient, but (ȳ, R) is, so R is a maximal ancillary. Indeed

the full confidence values match the conditional probabilities given the range

R. Furthermore, from Corollary 3, there is no further relevant subset, so the

confidence is epistemic.2

2.3.2 Location family model

Suppose y1, . . . , yn are an iid sample from the location family with density

pθ(yi) = f(yi − θ),

where f(·) is an arbitrary but known density. Based on y1 alone,

cm(θ; y1) = f(y1 − θ) = L(θ; y1),

so the implied prior is c0(θ) = 1. So, using formula (2.15), the full confidence

density is

cf (θ) ∝ L(θ) =
n∏

i=1

f(yi − θ). (2.16)
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This is a remarkably simple way to arrive at the confidence density of θ and

epistemic CIs without having to find the MLE and its distribution.

Without further specifications, the MLE T ≡ θ̂ is not sufficient, so the

marginal P-value Pθ(T ≥ t) will not yield the full confidence. The distribution

of the residuals (yi − θ) are free of θ, so the set of differences (yi − yj)’s are

ancillary. In his classic paper, Fisher (1934) showed that

pθ(θ̂|a) = k(a)
L(θ)

L(θ̂)
,

where a is the set of differences from the order statistics y(1), . . . , y(n). This

means that the conditional likelihood based on θ̂|a matches the full likelihood

(2.16), and the confidence level of CIs based on (2.16)will match the conditional

coverage probability. Indeed, here (θ̂, a) is sufficient and a is maximal ancillary.

Note however that (2.16) does not require any explicit knowledge or formula

of the ancillary statistic.

2.3.3 Exponential family model

Let y1, . . . , yn be an iid sample from the exponential family with log-density

log pθ(yi) =
J∑

j=1

uj(θ)tj(yi)− A(θ) + v(yi). (2.17)

The MLE is sufficient if J = 1, but not if J > 1. In the latter case, the family

is called the curved exponential family. By Theorem 2.1, when J = 1 confi-

dence statements based on the MLE will be epistemic. Our theory covers the

continuous case in order to get exact coverage probabilities. Many important
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members are discrete, which is more complicated because the definition of the

P-value is not unique, and the coverage probability function is guaranteed not

to match any chosen confidence level. We discuss an example in Appendix

2.5.2.

The standard evaluation of the confidence requires the tail probability of

the distribution of the MLE, which in general has no closed form formula.

Barndorff-Nielsen’s (1983) approximate conditional density of the MLE θ̂ is

given by

pθ(θ̂|a) = k|I(θ̂)|1/2L(θ)
L(θ̂)

+O(n−1), (2.18)

where the MLE is the solution of A′(θ) =
∑

i

∑
j h

′
j(θ)tj(yi), a is the maximal

ancillary and k is a normalizing constant that is free of θ. For J = 1 and the

canonical parameter h1(θ) = θ, the ancillary is null, and the approximation

leads to the right-side P-value

Pθ{Z ≥ r∗(θ)}, r∗(θ) ≡ r +
1

r
log z

r
, (2.19)

where Z is the standard normal variate and

r = sign(θ̂ − θ)
√
w, z = |I(θ̂)|1/2(θ̂ − θ),

with w = 2 log{L(θ̂)/L(θ)} and I(θ̂) the observed Fisher information. From

the P-value we can get the corresponding confidence density and the implied

prior.

Example 2.2. Let y = (y1, · · · , yn) be an iid sample from the gamma distri-
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bution with mean one and shape parameter θ. The density is given by

pθ(yi) =
1

Γ(θ)
θθyθ−1

i e−θyi ,

so we have an exponential family model with

t(yi) = −yi + log yi, A(θ) = logΓ(θ)− θ log θ.

To use formula (2.15), we first find the implied prior density using t1 ≡ t(y1)

alone:

c0(θ) ∝
c(θ; t1)

L(θ; t1)
, (2.20)

where c1(θ) = ∂{Pθ(T1 ≥ t1)}/∂θ and L(θ; t1) = pθ(y1). The probability

Pθ(T1 ≥ t1) is an incomplete gamma integral, which is computed numerically.

The implied prior is shown in Figure 2.1(a). So from (2.15), we get the confi-

dence density

cf (θ) ∝ c0(θ)L(θ) = c0(θ)
n∏

i=1

pθ(yi). (2.21)

For an example with n = 5 and
∑

i t(yi) = −5.8791, which corresponds to the

MLE θ̂ = 3, the confidence density is given by the solid line in Figure 2.1(b).

The normalized likelihood function is also shown by the dashed line, which is

quite distinct from the confidence density.

By comparison, to get the marginal confidence density based on the P-value

formula (2.19), we need

w = −2n logΓ(θ)+ 2n logΓ(θ̂)+ 2n(θ log θ− θ̂ log θ̂)+ 2(θ− θ̂)
∑

(log yi− yi),
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(b) Confidence density

Figure 2.1: (a) Implied priors of θ computed from (2.20) (solid) and (2.19) (◦).
Both are normalized such that they are equal to one at the MLE (•). (b) The
normalized likelihood function (dashed) and the confidence densities based on
a sample with n = 5 using (2.21) (solid) and (2.19) (◦).

where θ̂ is the solution of

nψ(θ)− n log θ − n =
∑

t(yi),

with ψ(θ) ≡ ∂ logΓ(θ)/∂θ, and the observed Fisher information is

I(θ̂) = n{ψ′(θ̂)− 1/θ̂}.

For the data example, the MLE θ̂ has to be computed numerically. The circle

points in Figure 2.1(b) are the marginal confidence density based on the same

sample above. As expected, this tracks almost exactly the one given by for-

mula (2.21). The corresponding implied prior based on cm(θ)/L(θ) is given in

Figure 2.1(a), also closely matching the implied prior based on n = 1. 2
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Example 2.3. This is an example where c0(θ) is data dependent. Let y =

(y1, . . . , yn) be iid sample from N(θ, θ) for θ > 0. The log-density is given by

log pθ(y) = −
n

2
log(2πθ)− 1

2

(∑
i

y2i /θ − 2
∑
i

yi + nθ

)
,

so this is a regular exponential family with sufficient statistic T (y) =
∑

i y
2
i .

The marginal confidence density cm(θ) can be computed based on the non-

central χ2 distribution for T (y). For n = 1, T (y1) = t1 = y21 is sufficient,

and

C(θ; y1) = Pθ(Y
2
1 ≥ y21) = 1− Φ

(
|y1| − θ√

θ

)
+ Φ

(
−|y1| − θ√

θ

)
c(θ; y1) =

1

2
ϕ

(
|y1| − θ√

θ

)(
|y1|
θ
√
θ
+

1√
θ

)
+

1

2
ϕ

(
−|y1| − θ√

θ

)(
|y1|
θ
√
θ
− 1√

θ

)
L(θ; y1) = ϕ

(
y1 − θ√

θ

)
.

Note that the log-density is not of the form (2.11); here Condition 2.2 holds

using g(θ) = θ−3/2eθ/2. Since the implied prior is data-dependent, the full

confidence density depends on which yi is used to compute the implied prior:

cfi(θ) = c0(θ; yi)L(θ; y)

In Figure 2.2, for n = 3, we compare cfi(θ) using three different versions of

c0(θ) based on yi for i = 1, 2, 3. Two datasets are shown, where the first has a

small variance and the second a large variance. These are also compared with

the marginal confidence cm(θ). As shown in the figure, even for such a small

dataset, the effect of the data dependence in this case is negligible. 2
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y = 0.1, 1, 5

Figure 2.2: cfi(θ) for i = 1, 2, 3 and cm(θ) (circle) based on (a) y = (0.9, 1, 1.5)
and (b) y = (0.1, 1, 5). In each panel, all three curves cfi are actually drawn in
solid line, but we can only see one curve because they track each other very
closely.

Example 4. This example of a curved exponential model illustrates complex

cases, where the MLE is not sufficient. Let y1, . . . , yn be iid sample from

N(θ, θ2) for θ > 0. Here (
∑
y2i ,
∑
yi) is minimal sufficient, and the likelihood

function is

L(θ; y) = (2πθ2)−n/2 exp
(
−
∑

y2i /2θ
2 +

∑
yi/θ − n/2

)
.

The MLE is given by

θ̂ = θ̂(y) =
−
∑
yi +

√
(
∑
yi)2 + 4

∑
y2i

2n

with a maximal ancillaryA(y) =
∑
yi/ (

∑
y2i )

1/2
. In terms of (θ̂, a) ≡ (θ̂(y), A(y))
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with b ≡ a2 + a
√
a2 + 4n, the full likelihood is

L(θ; y) = (2πθ2)−n/2 exp
(
−(b+ 2n)θ̂2

4θ2
+
bθ̂

2θ
− n

2

)
.

First consider the confidence distribution based on y1,

Cm(θ; y1) = Pθ(Y1 ≥ y1) = 1− Φ

(
y1 − θ
θ

)
.

We can see immediately that if we use y1 as the statistic, the term inside the

bracket converges to −1 as θ → ∞, and the confidence distribution goes to

1 − Φ(−1) = 0.84. Hence y1 does not satisfy Condition 1. However, we can

show that t1 ≡ |y1| does lead to a valid confidence distribution:

Cm(θ; t1) = P (|Y1| ≥ t1)

= 1− Φ

(
t1 − θ
θ

)
+ Φ

(
−t1 − θ

θ

)
.

After taking derivatives to get cm1(θ; t1) and L(θ; t1), the implied prior based

on t1 is

c0(θ) ∝ cm1(θ; t1)/L(θ; t1) ∝ θ−1.

The updating formula (2.15) gives the full confidence density

cf (θ; y) ∝ c0(θ)L(θ; y) ∝
1

θn+1
exp

[∑ y2i
2θ2

+
∑ yi

θ

]
. (2.22)

In Appendix 2.5.1 we show: (i) we get the same implied prior if we start

with the MLE θ̂1 based on y1 alone, or with the conditional θ̂1|a1. So even

though t1 or θ̂1 are not sufficient, they still lead to a valid implied prior for the
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full confidence; (ii) the conditional confidence density derived using Barndorff-

Nielsen’s formula (2.18) also gives the same implied prior; (iii) the confidence

cm(θ; θ̂1, · · · , θ̂n) with θ̂i = θ̂(yi) is a valid confidence density because Cm(θ ∈

CI(θ̂1, · · · , θ̂n)) = Pθ(θ ∈ CI(θ̂1, · · · , θ̂n)). However, it is not epistemic because

it does not use the full likelihood, so there is a potential loss of information.

To compare with exact theoretical results, we refer to Hinkley (1977), who

derived the conditional density of w = θ−1 (
∑
y2i )

1/2 given the ancillary as

p(w|a) = wn−1 exp{−(w − a)2/2}/In−1(a) (2.23)

where In−1(a) =
∫∞
0
xn−1 exp{−(x− a)2/2}dx. Hinkley used this result to get

the conditional score-test. Let T (y) = (
∑
y2i )

1/2, then we have

Cc(θ; t|a) = Pθ(T ≥ t|a) = P (W ≥ w|a) = 1− Fa(w)

where Fa(w) =
∫ w

0
p(u|a)du. Thus, the confidence density becomes

cc(θ; t|a) = −
∂Fa(w)

∂θ
= p(w = t/θ|a) t/θ2 = pθ(t|a) t/θ

so that the implied prior becomes c0(θ; t|a) ∝ cc(θ; t|a)/L(θ; t|a) ∝ 1/θ, which

is again the same as the result from t1. Thus, we have

cc(θ; t|a) = cc(θ; θ̂|a) = cf (θ; y).

As numerical illustrations, we compare the exact conditional P-value Pθ(T >

t|a) based on (2.23) for testing H0: θ = 1, the corresponding full confidence

Cf (θ) at θ = 1 and the P-value based on the score test. The latter was com-
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Figure 2.3: Approximations of the conditional P-value Pθ(T ≥ t|a) to test
H0: θ = 1 from N(θ, θ2). The x-axis is the exact theoretical value based on
(2.23). The y-axis is ratio of Cf (1) ≡

∫ 1

0
cf (θ)dθ to Pθ(T ≥ t|a) at θ = 1, where

cf (θ) is computed using the constant prior c0(θ) = 1 (+) and the implied prior
c0(θ) = 1/θ (◦). The corresponding P-value from the score test using Fisher’s
observed information is also shown (△). (a) For n = 5 (b) For n = 10.

puted using the observed Fisher information, suggested by Hinkley (1977) to

have good conditional properties. For Figure 2.3(a), we generate 100 datasets

with n = 5 from N(θ, θ2) at θ = 1.2. The full confidence Cf (θ ≤ 1) is com-

puted using the implied prior c0(θ) ∝ 1/θ, and a constant prior c0(θ) ∝ 1.

Panel (b) shows the result for n = 10. The full confidence with the implied

prior c0(θ) ∝ 1/θ agrees with the exact conditional P-value. The use of a

non-implied constant prior c0(θ) ∝ 1 generates over-optimistic P-values, par-

ticularly for small values. While Hinkley’s (1977) score test appears correct

on average, in these small samples, it has a poor conditional property. 2
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2.4 Discussion

We have described a concept of epistemic confidence for an observed confidence

interval. Fisher tried to achieve the same purpose with the fiducial probabil-

ity, but the use of the word ’probability’ had generated much confusion and

controversies, so the concept of fiducial probability has been practically aban-

doned. However, the confidence concept is mainstream, although it comes with

a frequentist interpretation only, so it applies not to the observed interval but

to the procedure. The confidence may not be a probability but an extended

likelihood (Pawitan and Lee, 2021), whose ratio is meaningful in hypothesis

testing and statistical inferences (Lee and Bjørnstad, 2013). The confidence is

logically distinct from the classical likelihood. Our results show that we can

turn a classical likelihood into a confidence density by multiplying it with an

implied prior. Furthermore, we get epistemic confidence by establishing the

absence of relevance subsets.

Schweder and Hjort (2016) and Schweder (2018) have been strong propo-

nents of interpreting confidence as ‘epistemic probability.’ We are in general

agreement with their sentiment, but it is unclear which version of probabil-

ity this is. The only established and accepted epistemic probability is the

Bayesian probability, but in their writing, the confidence concept is clearly

non-Bayesian. Our use of the Dutch Book defines normatively the epistemic

value of the confidence while staying within the non-Bayesian framework.

Conditional inference (Reid, 1995) has traditionally been the main area of

statistics that tries to address the epistemic content of confidence intervals.

However, it goes half-way to the end goal of epistemic confidence that Fisher

would want. The general lack of unique maximal ancillary is a great stumbling
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block, where it is then possible to come up with distinct relevant subsets

with distinct conditional coverage probabilities. This raises an unanswerable

question: What is then the ‘proper’ confidence for the observed interval? Our

logical tool of the betting market overcomes this problem – in this case, the

market cannot settle in an unambiguous price. But Corollary 3 still holds in

the sense that you’re still protected from the Dutch Book. We discuss this

further with an example Appendix 2.5.3.

An issue arises in the subjective probability framework if there is a mis-

match between the subjective and objective probabilities. Extra principles

have been proposed to deal with it. In Lewis’s (1980) ‘Principal Principle’,

Ps{A|Chance(A) = x} ≡ x,

where Ps denotes the subjective probability and ‘Chance’ the objective prob-

ability. So, the Principle simply declares that the subjective probability must

be set to be equal to the objective probability, if the latter exists. Our Dutch

Book argument can be used to justify the Principle, so the principle does not

have to come out of the blue with no logical motivation. However, it is worth

noting that epistemic confidence is not simply declared equal to probability.

Instead, it is the consequence of a theorem that establishes no relevant subset

in order to avoid the Dutch Book. In our setup, the frequentist probability

applies to a market involving a large number of independent players. More-

over, the rational personal betting price is no longer ‘subjective’, for example,

in the choice of the prior. Thus, the conceptual separation of the personal and

the market prices allow both epistemic and frequentist meaning of confidence.

Finally, our use of money and bets to define epistemic confidence has some
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echoes in the game-theoretic foundation of probability (Shafer and Vovk, 2019),

an ambitious rebuilding of probability without measure theory. However, their

key concept is a sequential game between two players. The word ‘sequential’

clearly implies that the game is not meant to involve a risk-free profit from a

single transaction that we want in a Dutch Book. Our usage of probability is

fully within the Kolmogorov axiomatic system, and we make a clear distinction

between probability

2.5 Appendix

This appendix provides additional details and examples for (i) the curved expo-

nential model in Example 4; (ii) a discrete case; (iii) a case where the maximal

ancillary is not unique.

2.5.1 Curved exponential model: N(θ, θ2)

We give more details of the N(θ, θ2) model, where different choices of initial

statistics lead to the same implied prior. Denote the MLE and the ancillary

based only on y1 by θ̂1 ≡ θ̂(y1) and a1. The confidence distribution of θ̂1 is

Cm(θ; θ̂1) = Pθ(θ̂(Y1) ≥ θ̂1) = Pθ

(
−Y1 +

√
5Y 2

1

2
≥ θ̂1

)

= Pθ

(
Y1 ≥

2θ̂1√
5− 1

)
+ Pθ

(
Y1 ≤

−2θ̂1√
5 + 1

)

= 1− Φ

(
1 +
√
5

2

θ̂1
θ
− 1

)
+ Φ

(
1−
√
5

2

θ̂1
θ
− 1

)
.
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Then limθ→∞Cm(θ; θ̂1) = 1 and limθ→0Cm(θ; θ̂1) = 0, so Cm(θ; θ̂1) is a proper

distribution function. The corresponding confidence density is given by

cm1(θ; θ̂1) =
1 +
√
5

2

θ̂1
θ2
ϕ

(
1 +
√
5

2

θ̂1
θ
− 1

)
− 1−

√
5

2

θ̂1
θ2
ϕ

(
1−
√
5

2

θ̂1
θ
− 1

)
.

The implied prior based on θ̂1 is

c0m1(θ; θ̂1) ∝ cm1(θ; θ̂1)/L(θ; θ̂1) ∝ θ−1

where L(θ; θ̂1) is the likelihood function based on θ̂1.

The conditional confidence distribution based on θ̂1|a1 is

Cc(θ; θ̂1|a1) = Pθ(θ̂(Y1) ≥ θ̂1|a1) =
1

Φ(a1)
Φ

(
−a1 −

√
5

2

θ̂1
θ
+ a1

)
,

which is now a valid confidence distribution, with density

cc(θ; θ̂1|a1) =
∂

∂θ
Cc(θ; θ̂1|a1) =

1

Φ(a1)

a1 +
√
5

2

θ̂1
θ2
ϕ

(
−a1 −

√
5

2

θ̂1
θ
+ a1

)
.

The implied prior is

c0(θ; θ̂1|a1) ∝ cc(θ; θ̂1|a1)/L(θ; y1) ∝ θ−1,

the same as the one derived based on θ̂1.

On the other hand, if we construct the full confidence densities by

cfi(θ; θ̂(yi), y(−i)) ∝ cmi(θ; θ̂(yi))L(θ; y(−i)),
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then the resulting confidence density depends on the choice of yi. In this case

we should consider cfi(θ; θ̂i, y(−i)) as an approximation to cf (θ; y). Figure 2.4

plots n confidence densities cfi(θ; θ̂i, y(−i)) (solid) and cf (θ; y) (circle) with yi

from N(1, 1). As shown in (b), when n becomes large, the difference becomes

negligible and cfi(θ; θ̂i, y(−i)) gets closer to cf (θ; y) (circle).
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(b) Confidence densities when n=10
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Figure 2.4: cfi(θ; θ̂i) for i = 1, ..., n (solid), cf (θ; y) (circle) and cm(θ; θ̂1, · · · , θ̂n)
(cross). (a) n = 3, (b) n = 10.

So

cfi(θ; θ̂(yi), y(−i)) ∝ θ−1L(θ; θ̂i)L(θ; y(−i)) =
L(θ; θ̂i)

L(θ; yi)
c0(θ)L(θ; y).

There is a loss of information caused by using cmi(θ), due to the sign of yi as

captured by L(θ; ai). This is negligible even in small samples; see Figure 2.4.

However, the marginal confidence

cm(θ; θ̂1, · · · , θ̂n) ∝ θ−1L(θ; θ̂1, · · · , θ̂n)
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has a larger loss of information, as shown in both Figure 2.4(a) and (b).

It is also possible to compute the conditional confidence density by using

Barndorff-Nielsen’s formula as given in the main text, and to show that we

end up with the same implied prior c0(θ) = 1/θ. Firstly, the likelihood ratio

is given by

L(θ)

L(θ̂)
=
θ̂n

θn
exp

[
−b+ 2n

4

(
θ̂2

θ2
− 1

)
+
b

2

(
θ̂

θ
− 1

)]
,

where b ≡ a2 + a
√
a2 + 4n, and the observed Fisher information

I(θ̂) = −∂
2 logL(θ)
∂θ2

∣∣∣
θ=θ̂

=
b+ 4n

2θ̂2
.

Then we have

pθ(θ̂|a) ≈
c√
2

√
b+ 4n

θ̂

θ̂n

θn
exp

[
−b+ 2n

4

(
θ̂2

θ2
− 1

)
+
b

2

(
θ̂

θ
− 1

)]
.

Let U ≡ θ̂(Y )/θ and let u = θ̂(y)/θ, then the conditional density of u|a

becomes

pθ(u|a) ≈
c
√
b+ 4n√
2

un−1 exp
[
−b+ 2n

4

(
u2 − 1

)
+
b

2
(u− 1)

]
,

which does not contain θ. Let Fa(u) =
∫
p(u|a)du, then

Cc(θ; θ̂|a) = Pθ(θ̂(Y ) ≥ θ̂) = Pθ(U ≥ θ̂/θ) = 1− Fa(θ̂/θ).
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It gives the conditional confidence density

cc(θ; θ̂|a) = −
∂Fa(θ̂/θ)

∂θ
≈ c
√
b+ 4n√
2

θ̂n

θn+1
exp

[
−b+ 2n

4

(
θ̂2

θ2
− 1

)
F +

b

2

(
θ̂

θ
− 1

)]
,

and implied prior c0(θ; θ̂|a) ∝ cc(θ; θ̂|a)/L(θ; y) ∝ 1/θ. Thus, the conditional

confidence density from Barndorff-Nielsen’s formula becomes

cc(θ; θ̂|a) = cf (θ; y) ∝ θ−1L(θ; y),

which, as we would expect, is the same as the full confidence.

2.5.2 Discrete case

A complication arises in the discrete case since the definition of the P-value is

not unique, and the coverage probability function is guaranteed not to match

any chosen confidence level. Given the observed statistic T = t, among several

candidates, the mid P-value

Pθ(T > t) +
1

2
Pθ(T = t)

is often considered the most appropriate (Lancaster, 1961).

We shall discuss the specific case of the binomial and negative binomial

models: Y1 ∼ Bin(n, θ) and Y2 ∼ NB(y, θ). The two models have an identical

likelihood, proportional to L(θ) ∝ θy(1− θ)n−y, but have different probability
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mass functions, respectively

Pθ(Y1 = y) =

(
n

y

)
θy(1− θ)n−y and Pθ(Y2 = n) =

(
n− 1

y − 1

)
θy(1− θ)n−y

Thus, they have the common MLE θ̂ = θ̂1 = θ̂2 = y/n. However, the two

MLEs have different supports

θ̂1 ∈
{
0,

1

n
, · · · , n− 1

n
, 1

}
and θ̂2 ∈

{
1,

y

y + 1
,

y

y + 2
· · ·
}
,

and therefore θ̂1 and θ̂2 have different distribution, which lead to different P-

values. Statistical models such as the binomial and negative binomial models

describe how the unobserved future data will be generated. Thus, all the

information about θ in the data and in the statistical model is in the extended

likelihood. The use of the mid P-values

C(θ; y1 = y) =
1

2
Pθ

(
θ̂1 =

y

n

)
+ Pθ

(
θ̂1 >

y

n

)
=

1

2

(
Iθ(y, n− y + 1) + Iθ(y + 1, n− y)

)
C(θ; y2 = n) =

1

2
Pθ

(
θ̂2 =

y

n

)
+ Pθ

(
θ̂2 >

y

n

)
=

1

2

(
Iθ(y, n− y + 1) + Iθ(y, n− y)

)
lead to different confidence densities

c(θ; y1) =
1

2

(
θy−1(1− θ)n−y

B(y, n− y + 1)
+
θy(1− θ)n−y−1

B(y + 1, n− y)

)
c(θ; y2) =

1

2

(
θy−1(1− θ)n−y

B(y, n− y + 1)
+
θy−1(1− θ)n−y−1

B(y, n− y)

)
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where Iθ(·, ·) is the regularized incomplete beta function and B(·, ·) is the beta

function.
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Figure 2.5: Coverage probabilities of the intervals from the confidence distri-
bution based on the mid p-value for binomial models at n = 10, 50, 100 (top)
and negative binomial models at y = 10, 50, 100 (bottom).

Figure 2.5 shows the coverage probabilities of the 95% two-sided confidence

procedure based on the mid p-value of θ̂ for binomial models and negative bi-

nomial models. We can see that the coverage probabilities fluctuate around

0.95 but they are not consistently biased in one direction. Moreover, as n or y

becomes larger, the difference between the coverage probability and the confi-

dence becomes smaller. In discrete case, it is not possible to access the exact

objective coverage probability of the CI procedure. Here the confidence is a

consistent estimate of the objective coverage probability. In negative binomial
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models with θ = 1, y = n with probability 1, so that it behaves like binomial

confidence procedure for n = y.

Besides information in the likelihood, the confidence uses information from

the statistical model. Consider two different statistical models, M1: N = X+1

where X ∼ Poisson(η1) and Y1|N = n ∼ Bin(n, θ) and M2: Y = X + 1 where

X ∼ Poisson(η2) and Y2|Y = y ∼ NB(y, θ). In M1, Y1|N = n and in M2,

Y2|Y = y have common likelihood, but they are different models, so that they

have no reason to have a common confidence.

2.5.3 When maximal ancillaries are not unique

When the maximal ancillary is not unique, the conditional coverage probability

may depend on the choice of the ancillary. However, the lack of unique ancillary

does not affect the validity of Corollary 3 in the main text. We illustrate here

with an example from Evans (2013). The data y = (y1, y2) are sampled from

a joint distribution with probabilities under θ given in the following table:

(y1, y2) (1, 1) (1, 2) (2, 1) (2, 2)

θ = 1 1/6 1/6 2/6 2/6

θ = 2 1/12 3/12 5/12 3/12

Here both the data y and parameter θ are discrete. Strictly, our theory

does not cover this case, but we shall use it because it can still illustrate clearly

the issues with non-unique maximal ancillaries. The marginal probabilities are

Pθ(Y1 = 1) = 1/3; Pθ(Y1 = 2) = 2/3

Pθ(Y2 = 1) = Pθ(Y2 = 2) = 1/2,
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for θ = 1, 2. So both Y1 and Y2 are ancillaries, i.e., their probabilities do not

depend on θ. The conditional probabilities of (y1, y2) given Y1 = 1 are

(y1, y2) (1, 1) (1, 2)

θ = 1 1/2 1/2

θ = 2 1/4 3/4

and, given Y2 = 1 are

(y1, y2) (1, 1) (2, 1)

θ = 1 1/3 2/3

θ = 2 1/6 5/6.

Based on the unconditional model, on observing (y1, y2) = (1, 1), we have

the likelihood function L(θ = 1) = 1 and L(θ = 2) = 1/2, so the MLE

θ̂ = 1. For (y1, y2) = (2, 2) we have a different likelihood, but still θ̂ = 1.

This means we cannot reconstruct the likelihood based on the MLE alone,

hence MLE is not sufficient. But we can see immediately that we get the same

likelihood function under the conditional model given Y1 = 1 or given Y2 = 1,

so conditioning on each ancillary recovers the full likelihood and each ancillary

is maximal.

Now consider using the MLE itself as a ‘CI’. Conditional on the ancillaries,

the probability that the MLE is correct is

P1(θ̂ = θ|Y1 = 1) = P1(Y2 = 1|Y1 = 1) = 1/2

P2(θ̂ = θ|Y1 = 1) = P2(Y2 = 2|Y1 = 1) = 3/4

P1(θ̂ = θ|Y2 = 1) = P1(Y2 = 2|Y2 = 1) = 1/3

P2(θ̂ = θ|Y2 = 1) = P2(Y2 = 1|Y2 = 1) = 5/6
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These conditional ‘coverage probabilities’ are indeed distinct from each other.

However, comparing the conditional coverage probabilities given Y1 to that

given Y2, there is no consistent non-trivial bias in one direction across θ. So

if you use Y1 as the ancillary, you cannot construct further relevant subsets

based on Y2. This is the essence of our remark after Corollary 3 that the lack

of unique maximal ancillary does not affect the validity of the corollary.

Unfortunately, in this example, the P-value is not defined because the pa-

rameter θ can be an unordered label. So it is not possible to compute any

version of confidence function or any implied prior. In the continuous case,

we define CI to satisfy Pθ(θ ∈ CI) = γ for all θ. However, in discrete cases,

it is often not possible for the coverage probabilities to be same for all θ,

which violates the condition of Theorem 2.1. Fisher (1973) suggested that for

problems such as this, the structure is not sufficient to allow an unambiguous

probability-based inference, so only the likelihood is available.

46



Chapter 3

Point mass in confidence

distributions

3.1 Introduction

Fisher (1930) introduced the fiducial distribution (FD) as an alternative to the

Bayesian posterior distribution, but it is not certain whether the FD obeys the

Kolmogorov’s axioms (Edwards, 1977). Wilkinson (1977) interpreted that the

FD is non-coherent and not the probability. Though the use of FD has been

controversial, it becomes of recent interest, arising as the confidence distribu-

tion (CD). Efron (1998) noted,

“Maybe Fisher’s biggest blunder will become a big hit in the 21st

century!”

Thus, it is important to understand the advantages of CD. Integrating out

nuisance parameters is legitimate to obtain the marginal posterior. Analogous
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to the marginalization paradox of Dawid et al. (1973), an integrated CD may

be no longer a valid CD. Stein’s (1959) problem is a benchmark of a drawback

of the integrated CD, which yields the CI with bad behavior (Schweder and

Hjort, 2016;Wilkinson, 1977). Wilkinson (1977) introduced the marginal CD

and Bernardo (1979) introduced the reference posterior (RP) to resolve this

paradoxical behavior.

The confidence is Neymanian interpretation of Fisher’s FD (Schweder and

Hjort, 2016). However, Fisher objected Neyman’s coverage probability, be-

cause scientists will never repeat the same experiment. In this chapter, we

demonstrate the complementary nature of confidence and FD, emphasizing

their synergy rather than conflict. We hereby refer to them collectively as the

CD, following the suggestion of Efron (1998). Pawitan and Lee (2021) showed

that the CD is not a probability but an extended likelihood, which is necessary

to avoid probability-related paradoxes (Pawitan and Lee, 2017). Integrating

out the nuisance parameters is not a legitimate way to obtain the marginal

extended likelihood. This implies that the integrated CD is not a proper CD

in general, and it is no longer a paradox because the CD is not a probability.

The extended likelihood principle (Bjørnstad, 1996) states that the extended

likelihood contains all the information in the data. Pawitan et al. (2023) pro-

posed an epistemic CD associated with the full data likelihood, which leaves

no room for a relevant subset. They obtained a marginal CD with the full

data likelihood by conditioning on maximal ancillary statistics.

In this chapter, we show that the CD does not have a fundamental defi-

ciency of probabilistic inference, called the probability dilution. In satellite

conjunction analysis, the probability of collision plays an important role in
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risk assessment. However, a probability dilution occurs in which the use of

lower-quality data appears to reduce the probability of collision. This results

in a severe and persistent underestimate of risk exposure. Cunen et al. (2020)

derived a marginal CD for satellite conjunction problem, but Martin et al.

(2021) pointed out that the marginal CD has a drawback of not allowing two-

sided CIs. Stein’s problem is also a kind of probability dilution with increasing

number of parameters k, whereas the satellite problem is a probability dilution

with increasing variance σ2. Hannig (2009) generalized the FD by the GFD,

which is easily implementable in practical applications, but he claimed not

to attempt to derive a paradox-free FD. We show that the integrated CD in

Stein’s problem can be viewed as a GFD. Thus, the GFD cannot avoid the

probability dilution. The RP can improve the GFD with moderate k and σ,

but it cannot avoid the probability dilution entirely. In this chapter, we study

the role of point mass in the CD. The point mass in CD has been considered

as paradoxical (Schweder and Hjort, 2016;Wilkinson, 1977), but we show that

the point mass is necessary to maintain the stated coverage probability (con-

fidence feature) of CI. In order to maintain the confidence feature, the CD

cannot allow two-sided interval in some occasions. Thus, this property is not a

drawback but an advantage of the CD. In consequence, the CD can overcome

the probability dilution entirely, whereas the GFD and RP, which do not have

a point mass, cannot maintain the confidence feature.

Recently, another deficiency in probabilistic inference was raised, called

the false confidence (Balch et al., 2019), which is advocated to be avoidable by

using the consonant belief (CB). An additional consonant feature (Balch, 2012)

is claimed to be necessary for the CD to overcome the false confidence (Balch,
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2020; Denoeux and Li, 2018;Martin et al., 2021). However, is the consonant

feature indeed necessary for the CD? We show that the CD does not have a

false confidence problem for the proposition of interest. We further introduce

the null belief theorem, which precludes the use of an additional consonant

feature. In satellite conjunction problem, risk assessment of collision is often

based on binary hypothesis testing procedures (Hejduk et al., 2019). Due to

the null belief, the CB cannot be used for the testing procedure and performs

uniformly worse than the confidence-based decision making. GFD and RP also

produce small collision probability under poor data to make a wrong decision

when the satellite collides.

For the CD to become a big hit, it should have an advantage over the other

existing methods. In Stein’s problem and the satellite conjunction problem,

the presence of a point mass allows the CD to avoid probability dilution and

false confidence, which lead to wrong decision making. It is worth emphasiz-

ing that all these advantages are stemming from the fact that the CD is an

extended likelihood, not probability.

3.2 Ambiguity in confidence of an observed CI

We first show that an observed CI can have an ambiguity in its confidence level

(coverage probability) as a frequentist CI procedure. Stein’s (1959) problem is

important to show a probability dilution of the CI in high-dimensional cases.

Suppose that Y1, ..., Yk are independent with Yi ∼ N(µi, σ
2) for i = 1, ..., k and

the parameter of interest is θ = ||µ|| =
√∑k

i=1 µ
2
i . When θ = 0,

∑k
i=1 Y

2
i

follows the Chi-square distribution and when θ > 0 it follows the non-central
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Chi-square distribution. Stein (1959) showed a probability dilution of the

marginal posterior when θ ≪ k. Recently, the satellite conjunction problem is

of interest, which can be reduced to the two-dimensional problem. Following

Cunen et al. (2020) and Martin et al. (2021), let (Y1, Y2) be the measurements

of the true difference between two satellites’ positions (µ1, µ2) along each axis.

Suppose that Y1 ∼ N(µ1, σ
2) and Y2 ∼ N(µ2, σ

2) are independent and σ is

known. The parameter of interest is the Euclidean distance between the two

satellites θ =
√
µ2
1 + µ2

2. The measurement of θ is denoted by D =
√
Y 2
1 + Y 2

2 .

To distinguish the random variables Y1, Y2 and D from their observed values,

the latter are written in lower cases y1, y2 and d. In satellite problem, the

probability dilution is becoming apparent as σ →∞. In Stein’s problem, the

probability dilution becomes severe as p → ∞. In this chapter, for simplicity

of discussion, we mainly use the satellite problem (k = 2) for derivations, but

our results can be applied to the Stein’s problem.

Suppose that we want to make a frequentist CI based on the statistics D,

D2

σ2
∼ χ2

2

(
θ2

σ2

)
, (3.1)

where χ2
df (ν) denotes the non-central Chi-square distribution with the degrees

of freedom df and non-centrality parameter ν. Suppose that qα(θ) is the (1−α)

quantile function of D such that

Pθ(D ≤ qα(θ)) = 1− α,

where α ∈ (0, 1). Since qα(θ) is a strictly increasing function of θ for any
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α ∈ (0, 1), we can consider an inverse function q−1
α (d) such that

Pθ=q−1
α (d)(D ≤ d) = Pθ(q

−1
α (D) ≤ θ) = 1− α.

However, the range of qα(θ) is [qα(0),∞) where qα(0) > 0 is the (1 − α)

quantile of the central Chi-square distribution. Thus, q−1
α (d) is not defined

for d < qα(0). We let q−1
α (d) = 0 for such d. For α = 0 and 1, let q−1

0 (d) =

limα→0 q
−1
α (d) = 0 and q−1

1 (d) = limα→1 q
−1
α (d) =∞.

Now we try to make a frequentist CI procedure with the α-confidence level

as follows:

CIα(D) = [θL(D), θU(D)), (3.2)

where θL(D) = q−1
1−α−β(D) and θU(D) = q−1

1−β(D) for some 0 ≤ β ≤ 1− α. For

example, if α = 0.9 and β = 0.05, θL(D) = q−1
0.05(D) and θU(D) = q−1

0.95(D) with

the confidence level α = 0.95 − 0.05 = 0.9. Then, the coverage probability of

the CI procedure (3.2) is confidence level α, for all θ ∈ Θ

Pθ(θ ∈ CIα(D)) = Pθ(θL(D) ≤ θ ≤ θU(D))

= Pθ(θL(D) ≤ θ)− Pθ(θU(D) ≤ θ)

= α + β − β = α.

Note that Pθ=0(0 ∈ CIα(D)) = Pθ=0(θL(D) = 0 < θU(D)) = α. Thus, the CI

procedure (3.2) with the level α always provides correct coverage probability.

When β = 0 and β = 1−α, the CI becomes the one-sided interval [θL(D),∞)

and [0, θU(D)), respectively. When β ∈ (0, 1−α) we have two-sided CI. Given

the observed data D = d, the two-sided CI procedure (3.2) with 0 < β < 1−α
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leads to the following observed interval CIα(d) = [θL(d), θU(d)):

(a) If d > q1−α−β(0), the observed CI becomes two-sided interval [θL(d), θU(d)).

(b) If q1−β(0) < d ≤ q1−α−β(0), the observed CI becomes one-sided interval

[0, θU(d)).

(c) If d ≤ q1−β(0), the observed CI becomes an empty interval [0, 0).

Thus, to maintain the coverage probability the two-sided CI procedure can

yield an one-sided or an empty observed CI.

Let σ = 1 and β = 0.05. Figure 3.1 illustrates three CIs with level α = 0.95,

0.90 and 0.60, respectively. When α = 0.95 we have a one-sided CI procedure

with θL(D) = 0 and when α < 0.95 we have a two-sided CI procedure to give an

observed CI [θL(d), θU(d)). Three CIs have the common upper bound θU(d) =

q−1
1−β(d) = q−1

0.95(d). In Figures, the horizontal and vertical axes represent d

and θ, respectively. The dashed lines and the solid lines are θU(d) and θL(d),

respectively. If α = 0.90 (0.60), the two-sided CI procedure gives two-sided

observed CI when d > 2.448 (d > 1.449). When d ≤ 0.320, the three CI

procedures give empty intervals. In figures, the horizontal arrows show the

area A = { d : θ0 = 1 ∈ CI(d) } where θ0 is the true value of θ. Thus, if d ∈ A,

the observed CI contains the true parameter value θ0 = 1. Furthermore,

P (A) = P (θ0 ∈ CI(D)) = α implies that these three CI procedures have the

correct coverage probabilities. The vertical arrows show the observed CIs at

d = 1, 2, and 3. If d = 2, an observed CI [0, 3.451) can be a realization of either

95% or 90% CI procedure. Moreover, if d = 1, an observed CI [0, 2.287) can

be a realization of 60%, 90% or 95% CI procedure. Thus, given an observed
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CI, its coverage probability (confidence level)may not be uniquely determined.

What is a meaning of the confidence for an observed CI?

3.3 GFD and probability dilution

Fisher (1930) used a sufficient statistic to construct the CD. Since y1 and y2

are sufficient statistics for (µ1, µ2), a joint CD for (µ1, µ2) can be obtained:

Cf (µ1, µ2; y1, y2) = Pµ1,µ2(Y1 ≥ y1 and Y2 ≥ y2).

This leads to a joint confidence density,

cf (µ1, µ2; y1, y2) =
∂2Cf (µ1, µ2; y1, y2)

∂µ1∂µ2

=
1

σ2
ϕ

(
µ1 − y1
σ

)
ϕ

(
µ2 − y2
σ

)
= L(µ1, µ2; y1, y2),

where ϕ(·) is the density function of N(0, 1) and L(µ1, µ2; y1, y2) is the likeli-

hood. Thus, it is also a joint posterior under uniform prior for (µ1, µ2). Then,

the integrated CD (or marginal posterior) for θ is obtained

G(θ; d) =

∫
µ2
1+µ2

2≤θ2
cf (µ1, µ2; y1, y2) d(µ1, µ2) = Γ2

(
θ2

σ2
;
d2

σ2

)
, (3.3)

which gives the density

g(θ; d) =
∂

∂θ
G(θ; d) =

2θ

σ2
γ2

(
θ2

σ2
;
d2

σ2

)
, (3.4)

where γ2(θ; ·) = dΓ2(θ; ·)/dθ.
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Figure 3.1: Confidence intervals with (a) α = 0.95, (b) α = 0.90, (c) α = 0.60.
For all three CIs, β = 0.05.
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Hannig (2009) introduced the GFD as a generalization of the CD. We first

show that the integrated CD is also a GFD of Hannig (2009). Consider a data

generating mechanism

(Y1, Y2) = (θ cos θ + σU1, θ sin θ + σU2),

where U1 and U2 are independent random variables from N(0, 1). We can

define the set-valued function as

Q(y1, y2, U
∗
1 , U

∗
2 ) = { θ : (y1, y2) = (θ cos θ + σU∗

1 , θ sin θ + σU∗
2 ) }

= σ

√(y1
σ
− U∗

1

)2
+
(y2
σ
− U∗

2

)2
∼ σ

√
χ2
2

(
d2

σ2

)
,

then following Hannig (2009), G(θ; d) satisfies the definition of GFD.

In the satellite conjunction problem, we see that integrated CD, marginal

posterior under uniform prior, and this GFD are equivalent. We denote the

distribution (3.3) by GFD for notational convenience, but we clearly notice that

GFD is not unique; for example, the marginal CD can also be expressed as a

GFD. Stein (1959) noted its probability dilution as k → ∞. In consequence,

Wilkinson (1977) and Pedersen (1978) showed that the GFD cannot maintain

the correct coverage probability. All these problems remain to hold, we show,

in satellite conjunction problem with k = 2. To resolve the probability dilution,

Wilkinson (1977) proposed the use of the marginal CD and Bernardo (1979)

proposed the RP in the next section.
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3.4 CD and related methods

Let (θ, ψ) and (D,T ) be the polar coordinate representations of (µ1, µ2) and

(Y1, Y2),

(µ1, µ2) = (θ cosψ, θ sinψ) and (Y1, Y2) = (D cosT,D sinT ),

where ψ = tan−1(µ2/µ1) and T = tan−1(Y2/Y1). Here, the distributions of T

and T |D still depend on both θ and ψ; hence, D alone is not a sufficient statistic

for θ under the full data (y1, y2). If we have a maximal ancillary statistics

we may derive the CD with full data likelihood based on the distribution of

D|A. But, in Stein’s problem and satellite conjunction problem, the maximal

ancillary statistics are not known. However, the current definition of the CD

(Schweder and Hjort, 2016) only requires that

C(θ0;D) ∼ Uniform[0, 1] (3.5)

at the true value θ0 of θ, which guarantees that the CD to maintain the correct

coverage probability. Using (3.1), Cunen et al. (2020) derived the marginal CD

for θ based on the statistics D,

C(θ; d) = Pθ(D ≥ d) = 1− Γ2

(
d2

σ2
;
θ2

σ2

)
, (3.6)

where Γ2(·; ν) denotes the non-central Chi-square distribution function, and

they showed that this CD does not have probability dilution. This is equiva-

lent to Wilkinson’s (1977) marginal CD for Stein’s problem with k > 2. This

marginal CD satisfies the current definition (3.5) of the CD, so in this chapter
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we call it the CD. However, it has been considered as paradoxical due to the

point mass. Martin et al. (2021) insisted that the CD is at risk of false confi-

dence. In particular, as is well known, CDs only guarantees reliable inferences

on one-sided CIs. Otherwise, including two-sided CIs and their complements,

are still subject to the false confidence phenomenon. We can view this as the

current status of the CD. In this chapter, we show that the above mentioned

properties are not drawbacks, but rather they are indeed advantages of the

CD.

With a slight abuse of notation, we may define

C(A) = C(A; d) = C(θ ∈ A) =
∫
A

c(θ; d)dθ.

Then, the CD has a point mass at θ = 0, since

C({0}) = 1− Γ2

(
d2

σ2
; 0

)
> 0.

Let Θ be the parameter space of θ and ΩD be the sample space of D. If we

assume Θ = (0,∞), the point mass at zero becomes an unassigned probabil-

ity and the CD is not a probability to have C(Θ) < 1, as Wilkinson (1977)

noted. This makes the point mass look paradoxical (Schweder and Hjort, 2016).

However, if we assume Θ = [0,∞), then C(Θ) = 1 and this CD satisfies the

confidence property,

C(θ0;D) = C([0, θ0];D) = 1− Γ2

(
D2

σ2
;
θ20
σ2

)
∼ Uniform[0, 1],

to give correct coverage probability for any true value θ0 ∈ Θ.
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Let M(D) = C({0};D) denote the point mass at θ = 0 and M(d) denote

its realized value of the point mass. As σ → 0 or θ → ∞, the point mass

M(D) vanishes

M(D)
p→ 1− Γ2(∞; 0) = 0.

As σ →∞ or θ → 0,

M(D)
d→ Uniform[0, 1].

Here the confidence density can be expressed as

c(θ; d) =M(d) · (θ) + c+(θ; d),

where (θ) denotes the Dirac delta function to give a point mass at θ = 0 and

c+(θ; d) = ∂Pθ(D ≥ d)/∂θ.

3.4.1 CD and confidence level of an observed CI

A point mass at a boundary prevents the probability dilution to maintain the

confidence feature. We first investigate a necessary and sufficient condition for

a point mass in the CD. Suppose that θ ∈ Θ is the parameter of continuous

scalar statistic D ∈ ΩD and the 1 − α quantile qα(θ) is a strictly increasing

function of θ for any for any α ∈ (0, 1). Then, we have the following theorem

with a proof in Appendix 3.8.1.

Theorem 3.1. Let ∂ΩD and ∂Θ denote the boundary of ΩD and Θ, respec-

tively. Then, C(θ; d) has no point mass if and only if

qα(θ)→ ∂ΩD as θ → ∂Θ, ∀α ∈ (0, 1). (3.7)
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Pawitan et al. (2023) considered a curved exponential model. Let y = 1

be an observation from Y ∼ N(θ, θ2) for θ ≥ 0, then one may consider a

confidence distribution,

C(θ; y) = Pθ(Y ≥ y) = 1− Φ

(
y − θ
θ

)
,

where Φ(·) denotes the cumulative function of N(0, 1). However, this leads to

lim
θ→∞

C(θ; y) = 1− Φ(−1) ≈ 0.84 < 1.

Here C({0}; y = 1) = 0. Thus, there is no point mass at θ = 0. According to

Wilkinson (1977), this CD has an unassigned probability 0.16 = 1−0.84. This

problem occurs because the quantile function qα(θ) is not increasing function

of θ. Now let d = |y| be an observation of D = |Y | with ΩD = Θ. Then the

corresponding CD is defined as

C(θ; d) = Pθ(D ≥ d) = 1− Φ

(
d− θ
θ

)
+ Φ

(
−d− θ
θ

)
,

which becomes a proper distribution function without a point mass

lim
θ→0

C(θ; d) = 1− Φ(∞) + Φ(−∞) = 0

lim
θ→∞

C(θ; d) = 1− Φ(−1) + Φ(−1) = 1.
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When there is no point mass, under appropriate conditions, Pawitan et al.

(2023) showed that

C(θ ∈ CI(d)) =
∫
CI(d)

c(θ; d)dθ = Pθ(θ ∈ CI(D)),

where the LHS is the confidence of the observed CI and the RHS is the coverage

probability of the CI procedure. Thus, the confidence of the observed CI

corresponds to the coverage probability of the unique CI procedure.

In satellite conjunction problem and Stein’s problem, lower bounds of ΩD

and Θ are zero but qα(0) ̸= 0. Thus, Theorem 3.1 implies that the correspond-

ing CD has a point mass at zero. Now we extend the relationship between

coverage probability and confidence with the presence of a point mass. The

confidence of the observed CIα(d) is as follows, corresponding to each case of

Section 3.2.

(a) When the observed CI is two-sided, θL(d) > 0,

C(CIα(d)) = C(θ < θU(d); d)−C(θ < θL(d); d) = (1−β)−(1−α−β) = α.

(b) When the observed CI becomes one-sided, θL(d) = 0 and θU(d) > 0),

C(CIα(d)) = C(θ < θU(d); d) = 1− β

= max { α : CIα(d) = [0, θU(d)) for some 0 ≤ β ≤ 1− α } ,

which is the maximum coverage probability (confidence level) among CI

procedures having the observed CI [0, θU(d)). For example, in Figure

3.1, both α = 0.95 and α = 0.9 lead to the same observed CI [0, 3.451)

61



for d = 2. Here, the CD gives a confidence

C([0, 3.451); d = 2) = 1− β = 0.95.

(c) When the observed CI becomes an empty set, θL(d) = θU(d) = 0,

M(d) = C({0}; d) = 1− Γ2

(
d2

σ2
; 0

)
= max { α : CIα(d) = ∅ } ,

which is the maximum confidence level among CI procedures, having an

empty interval. The point mass leads to a nice interpretation. In Figure

3.1, all the three procedures lead to CIα(d = 0.2) = ∅. Here, the point

mass of CD is

M(d = 0.2) = C({0}; d) = 0.980,

which implies that the CI procedure produces an empty observed CI if

α < 0.98. Thus, given d = 0.2, we can allow the CI only with α ≥ 0.98.

Here the confidence interval [0, 0] = {0} has the confidence level 0.98.

Given an observed CI, its CD gives the maximum attainable coverage proba-

bility (confidence level) among CI procedures,

C(θ ∈ CI(d)) = maxPθ(θ ∈ CI(D))

= max { α : CIα(d) = CI(d) for some 0 ≤ β ≤ 1− α }.

3.4.2 CD versus GFD

Martin et al. (2021) claimed that a drawback of CD is that it cannot have

the two-sided CIs. We see that the CD allows a two-sided CI procedure,
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Figure 3.2: Average of C(θ; d) and G(θ, d) over 10,000 repeats.
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but it can provide a one-sided observed interval to maintain the confidence

feature (coverage probability). We shall show that any procedure, which can

always allow two-sided interval, cannot avoid the probability dilution. Figure

3.2 shows the averages of cumulative functions, based on CD and GFD from

10,000 repetitions, where θ0 is 1 or 8 and σ varies in (0.1, 1, 5, 20). Both

provide the cumulative distribution for θ. Compared with the CD, the GFD

has apparent probability dilution. The CD and GFD become identical when

σ → 0. However, they can be quite different when σ is large. Since the CD

has a point mass at zero, C({0}) > 0, whereas the GFD does not: G({0}) = 0,

the GFD can always provide a two-sided interval, but it leads to probability

dilution, losing the confidence feature as we shall see.

3.4.3 CD versus RP

Bernardo (1979) proposed the RP to resolve the probability dilution of the

GFD (also the marginal posterior under uniform prior) especially when θ ≪ k.

Figure 3.3 shows the coverage probabilities of the one-sided and two-sided 80%

CIs for satellite conjunction problem (k = 2) and Stein problem (k = 100),

computed from 10,000 repetitions. Probability dilution of GFD is evident,

especially when θ ≪ k. RP improves GFD. Both RP and GFD are the prob-

ability on Θ = (0, 1), without a point mass at zero. This causes a probability

dilution that both RP and GFD cannot maintain confidence feature at near

zero. Note that the CD-based two-sided CIs automatically becomes the one-

sided interval to maintain confidence feature at zero when the observation d

is small. The figure shows that only the CD maintains the confidence feature

for all θ ∈ Θ.
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Figure 3.3: Coverage probabilities of 80% CIs based on CD, GFD, and RP
when k = 2 and k = 100.
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3.5 On false confidence

Pawitan and Lee (2021) showed that the CD is an extended likelihood, not

a probability. However, Martin et al. (2021) noted another fundamental de-

ficiency in probabilistic inference, namely the false confidence property and

claimed that the CD also cannot avoid this deficiency. They introduced the

false confidence theorem below.

False confidence theorem (Balch et al., 2019) For any θ0 ∈ Θ, α ∈ (0, 1),

and p ∈ (0, 1), there exists a subset A ⊂ Θ such that θ0 /∈ A and

Pθ0{C(A;D) ≥ 1− α} ≥ p. (3.8)

This theorem avoids the existence of any false proposition. Existence of a false

proposition with a high confidence is annoying if it is of interest. However, we

may not need a protection from a meaningless false proposition. For example,

suppose that θ0 is a true value of θ. If we use the CD, GFD, and RP, a false

proposition A = {θ : θ ̸= 1} satisfies (3.8). However, since C({1}) = 0 such

a false proposition A is meaningless when the true θ0 is unknown. However,

θ0 = 0 is an interesting proposition, since D follows the central Chi-square

distribution if the proposition holds. For the CD (not GFD and RP), the false

confidence theorem does not hold for A ⊆ {θ : θ ̸= 0}, since a point mass

occurs at zero. For any false proposition ,

C(A;D) ≤ C(θ ̸= 0;D) = 1−M(D) ∼ Uniform[0, 1],
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which means that

Pθ0=0{C(A;D) ≥ 1− α} ≤ Pθ0=0{M(D) ≤ α} = α.

Thus, the false confidence theorem does not hold when θ0 = 0. Let R be the

sum of the radii of two satellites and let H0 (collision; θ ≤ R) be the true, and

let H1 (non-collision; θ > R) be the false proposition A. Then, the level of

false confidence becomes

Pθ0{C(H1;D) ≥ 1− α} = Pθ0{C(H0;D) ≤ α} ≤ Pθ0{C(θ0;D) ≤ α} = α.

Hence, if H0 is true, the level of false confidence cannot grow arbitrarily large.

Thus, assertion H0 avoids false confidence because it includes θ0 = 0. This

satisfies the Martin-Liu validity criterion (Martin and Liu, 2015) at least for

H1, the false proposition of interest. Thus, the CD does not allow a high false

confidence for a false proposition of inferential interest.

To avoid the false confidence theorem, Martin et al. (2021) proposed the

use of CB. Let Θ be the parameter space. Then the CB for a subset A ⊂ Θ is

defined by

Bel(A; d) = 1− sup
θ∈Ac

pls(θ; d), (3.9)

where Bel(·; d) is the consonant belief function and pls(θ; d) = 1−|2C(θ; d)−1|

is the plausibility contour. This CB can avoid the false confidence of any false

proposition. But this unnecessary through protection of CBs against any false

protection make them vulnerable in other prospects of statistical inferences. In

this chapter, we introduce the ‘null belief theorem’, which cannot be avoided
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by any CBs, from the opposite point of view of the false confidence theorem.

Theorem 3.2 (Null belief theorem). Consider a CB Bel(·; d) characterized by

either a CD or a probability. Then, for any true θ0 ∈ Θ and any p ∈ (0, 1),

there exists an interval I with positive length such that

θ0 ∈ I ⊂ Θ and Pθ0{Bel(I;D) = 0} ≥ p.

Proof. First, take a small interval near the true θ0. Let θ̂(d) be the median

of the CD such that C
(
θ̂(d); d

)
= 0.5. Then, for any p ∈ (0, 1), there exists

ϵ > 0 such that

Pθ0{θ̂(D) ∈ (θ0 − ϵ, θ0 + ϵ)} ≤ 1− p.

Let I = (θ0 − ϵ, θ0 + ϵ) be an interval that contains the true value θ0 but is

such that

Pθ0{Bel(I;D) = 0} = Pθ0{θ̂(D) ̸∈ I} ≥ p,

then the theorem is proved. □

Even if an interval I contains the true value θ0, the probability of Bel(I;D) = 0

is greater than p > 0. Such a CB seems to be counter-intuitive. On the

other hand, the CD and the probability including the RP and GFD, avoid the

null belief theorem. The belief function can be useful for the trinary decision

problem with presence of an additional plausibility function (Dempster, 1968),

but the null belief theorem implies that the belief function alone could not be

applied to give a valid hypothesis testing procedure, as we shall show later.
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3.5.1 False confidence and probability dilution

Balch et al. (2019) claimed that the probability dilution is a symptom of the

false confidence. They think that the CD is a probability like GFD and RP.

We emphasize that the probability dilution should be distinguished with false

confidence. Let H0 : θ ≤ R be an assertion of collision and H1 : not H0 be

an assertion of non-collision. Here, G(H0) = G(θ ≤ R) = G([0, R]) is the

probability of collision based on the GFD. Probability dilution means that

G(H0)→ 0 as σ →∞.

This is counter-intuitive because lower-quality data paradoxically appear to

dilute the risk of impending collision (Balch et al., 2019; Hejduk and Snow,

2019). This causes a severe and persistent underestimate of risk exposure.

Based on the CD, Cunen et al. (2020) investigated the probability of collision

C(H0) at the true θ0 = 1.99 ≈ 2 = R, and C(H0) = C([0, 2]) ≈ C([0, 1.99]) ∼

Uniform[0, 1] for any σ. Thus, in their simulation, the average probability of

collision remained close to 0.5 for all σ. In general, the point mass is less than

or equal to C(θ0; d),

M(d) = C(0; d) ≤ C(θ0; d) ∼ Uniform[0, 1],

but when σ →∞ or θ0 → 0, the point mass at θ = 0 converges in distribution

to Uniform[0, 1],

M(D) = 1− Γ2

(
D2

σ2
; 0

)
d→ Uniform[0, 1].
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Figure 3.4: Average confidences and beliefs regarding collision over 100,000
repetitions.

Thus, as σ → ∞, the average of M(D) converges to 0.5. This prevents the

probability dilution.

Figure 3.4 shows the average confidences and beliefs of collision as the

uncertainty σ varies from 0 to 20. As σ increases, C(H0) decreases to 0.5

when θ0 = 1, and C(H0) increases to 0.5 when θ0 = 8. We see that these

phenomena are caused by a point mass at zero: C({0}) > 0. Bel(H0) is the

CB (3.9) based on the CD, C(θ; d). Bel(H0) converges to 0.223 as σ →∞. We

see that Bel(H0) < C(H0), i.e., the additional consonant feature in CB leads

to the loss of the confidence feature. The GFD has no point mass, so G(H0)

goes to zero as σ → ∞. BelG(·) is the CB function (3.9) based on the GFD.

Belf ([0, θ]) has no point mass, so it also suffers from a probability dilution.
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Thus, it is the confidence feature, not the consonant feature, that prevents a

severe and persistent underestimate of risk for satellite collision.

3.6 Hypothesis testing

Hypothesis testing procedures are often used in risk assessment for satellite

conjunction problem. Depending on certain fundamental questions, the null

hypothesis H0 can be either θ ≤ R (collision) or θ > R (non-collision). The

probability (confidence) of collision is the most frequently used test statistic

in satellite conjunction problem (Hejduk and Snow, 2019). For illustration, we

suppose that H0 is the assertion of collision. Then, from the property of CD,

C(θ ≤ θ0;D) ∼ Uniform[0, 1],

the confidence C(H0; d) directly becomes the observed p-value for testing H0,

i.e.,

max
θ∈H0

Pθ (C(H0;D) ≤ α) = α.

Thus, the CD yields α-level hypothesis testing procedure for any σ. However,

since probabilities such as the GFD and RP have no point mass, as σ →∞

G(H0;D)→ 0 and R(H0;D)→ 0.

Thus, if the data are of a poor quality (σ is large), the GFD and RP cannot

accept the null hypothesis even if d < R. For example, suppose that we observe

d = 1 < R = 2. When σ = 1, the CD, GFD and RP give C(H0) = 0.918,

G(H0) = 0.731 and R(H0) = 0.891, respectively. Thus, all of them would
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not reject H0. Here the RP becomes close to the CD. However, in satellite

conjunction problem, σ is often much greater than R (Balch et al., 2019).When

σ = 100, the CD yields C(H0) = 1.000, hence the CD would not reject H0.

However, G(H0) = 0.000 and R(H0) = 0.016 to reject H0 though the observed

value implies the collision (d < R). Therefore, if the collision probability

is given by the CD, there is no reason for engineers to ignore an impending

collision risk due to the negligible probability of collision. However, if it is

based on the GFD or RP, engineers may ignore the impending danger because

of the dilution of collision probability G(H0) and R(H0). In Stein’s problem

it is often of interest to test

H0 : θ = 0 vs. H1 : θ ̸= 0.

Due to the point mass at θ = 0, the CD gives

Pθ∈H0(C(H0;D) < α) = Pθ=0(C(0;D) < α) = α.

Thus, if we use C(H0) as a p-value, we can directly achieve a valid hypothesis

testing procedure with

PH0(Reject H0) = Pθ=0(C(H0) < α) = Pθ=0(M(D) < α) = α.

On the other hand, the GFD and RP have no point mass. Thus, G(H0) and

R(H0) do not lead to a valid hypothesis testing, because G(H0) = R(H0) = 0

for any observation d.

Now, suppose that we use the CB in satellite conjunction problem, Bel(H0) =
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Bel([0, R]). Note here that the CB often becomes zero, due to the null belief

theorem. When true θ0 = R (collision), we have

Pθ0=R {Bel(H0) = 0} = Pθ0=R {C(R;D) ≤ 0.5} = 0.5.

Suppose that the CB is used for testing by rejecting H0 if {Bel(H0) ≤ α}.

Then,

Pθ0=R(Reject H0) = Pθ0=R {Bel(H0) ≤ α} ≥ Pθ0=R {Bel(H0) = 0} = 0.5.

Thus, though H0 (collision) is true, the CB rejects H0 with probability 0.5. It

implies that the CB cannot achieve the significance level under 0.5. Similarly,

BelG(H0) cannot achieve the significance level under 0.847. Thus, the CBs

cannot be applied to hypothesis testing for risk assessment.

When σ =∞, the data (y1, y2) are meaningless as an estimate of (µ1, µ2).

However, poor data cannot justify the small collision probability G(H0) ≈ 0

under impending collision situations. The low collision probability (G(H0)

or R(H0)) does not mean that the two satellites are far apart; it is only a

statement of the general unlikelihood of such an alignment if all one knows is

that the two satellites happen to be in the same general area (Hejduk et al.,

2019). However, it is undesirable for engineers to ignore impending danger be-

cause they believe a negligible collision probability caused by poor data. Since

C(H0) = 1− C(H1)
d→ Uniform[0, 1] as σ →∞, the CD always acknowledges

a non-negligible collision probability even with poor data. In this respect, the

CD is useful for lowering the risk in satellite conjunction problem.
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3.7 Concluding remarks

Neyman’s confidence provides an objective frequentist interpretation to the CI

procedure, whereas the CD offers an epistemic interpretation for an observed

CI. Under appropriate conditions, they are equivalent, hence these two con-

cepts are complementary. The confidence of an observed CI can be understood

as the coverage probability of repeated experiments from a frequentist perspec-

tive. After observing the data, Neyman’s observed CI attains a meaningful

epistemic interpretation, especially when its coverage probability is uncertain.

We demonstrate that consonant feature itself cannot prevent probability dilu-

tion. It is the confidence feature that is key to avoiding severe and persistent

underestimation of risk exposure. The presence of a point mass in the CD

allows the maintenance of the confidence feature. However, probabilities such

as GFD and RP lose the confidence feature near the origin. The CD in (3.6) is

based on the marginal distribution of a non-sufficient statistic D, which may

not fully exploit all the information in the data. Since the CD is an extended

likelihood, the integrated CD is no longer a CD. If a maximal ancillary exists,

the CD for θ can be derived using the conditional distribution without infor-

mation loss, allowing no relevant subset (Pawitan et al., 2023). The pursuit

of a CD with a full data likelihood presents an interesting avenue for future

research. Many properties of the CD still require further investigation and

understanding.
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3.8 Appendix

3.8.1 Proof of Theorem 3.1

Let DU and DL be the upper and lower bounds of ΩD, and let θU and θL be

the upper and lower bounds of Θ. Since the quantile function is continuous,

we write qα(θL) = limθ→θL qα(θ) and qα(θU) = limθ→θU qα(θ). Note here that

we allow the bounds to be ±∞.

(⇒) Suppose that there exists 0 ≤ α ≤ 1 such that

qα(θL) ̸= DL or qα(θU) ̸= DU .

If qα(θL) ̸= DL, there exists d∗ such that DL < d∗ < qα(θL). Since C(θ; d∗)

does not have a point mass,

C(θL; d
∗) = PθL(D ≥ d∗) = 0.

However, by definition of the quantile,

C(θL; d
∗) > C(θL; qα(θL)) = PθL(D ≥ qα(θL)) = α > 0.

This leads to contradiction. If qα(θU) ̸= DU , there exists d∗ such that qα(θU) <

d∗ < DU . Similarly,

C(θU ; d
∗) = PθU (D ≥ d∗) = 1,
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but we have

C(θU ; d
∗) < C(θU ; qα(θU)) = PθU (D ≥ qα(θU)) = α < 1,

which leads to contradiction. Thus, qα(θ)→ ∂ΩD as θ → ∂Θ for all α ∈ (0, 1).

(⇐) Let d be an arbitrary value in ΩD, then (3.7) leads to

C(θL; d) = PθL(D ≥ d) ≥ PθL(D ≥ qα(θL)) = α.

Taking α = 0 leads to C(θL; d) = 0. Similarly we can obtain C(θU ; d) = 1.

Thus, C(θ; d) does not have a point mass for any d ∈ ΩD.
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Chapter 4

Foundations of h-likelihood

inference for random unknowns

4.1 Introduction

Fisher (1922) introduced the classical likelihood for statistical models with

fixed unknowns (parameters), whose maximum likelihood estimators (MLEs)

are asymptotically the best, achieving the Cramer-Rao lower bound. Further-

more, its information matrix and associated delta-method provide a necessary

estimator with a standard error estimator for any function of parameters of

interest. This makes the maximum likelihood procedure is popular and widely

used in practice. It necessitates an extension of the Fisher likelihood to general

models with additional random unknowns (unobservables; Henderson et al.,

1959). In the statistical literature unobservables appear with various names

such as random effects, latent processes, factor, missing data, unobserved fu-

ture observations, potential outcomes etc. Thus, it is of interest to have a
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proper extension of the classical likelihood to give asymptotically the best

predictors for random unknowns, in addition to MLEs for fixed unknowns.

However, despite many attempts, it has yet remained unsuccessful. Bayarri

et al. (1988) demonstrated difficulties by showing that maximization of all the

existing extended likelihoods cannot give sensible estimators for both fixed

and random parameters. Lee and Nelder (1996) proposed the hierarchical (h-

)likelihood, defined on a particular scale of random parameters. Their aim was

that maximum h-likelihood estimators (MHLEs) give MLEs for fixed parame-

ters and at the same time asymptotically best unbiased predictors (BUPs) for

random parameters. Their h-likelihood is an extension of Henderson’s (1959)

joint density for normal linear mixed models to hierarchical generalized linear

models (HGLMs). However, in general MHLEs cannot provide MLEs. Even in

linear mixed models, MHLEs cannot provide MLEs for the variance compo-

nents. Thus, the Laplace approximation (LA) has been advocated to obtain an

approximate MLEs (Lee and Nelder, 2001). Little and Rubin (2019) described

the current status of the h-likelihood approach as,

“Unlike maximization of the classical likelihood of Fisher (1922),

maximization of an extended likelihood does not generally give

consistent estimates of the parameters (Breslow and Lin, 1995). ....

Lee and Nelder (2001) and Lee et al. (2006) proposed maximizing

a ‘modification’ .... which is the correct ML approach.”

However, the modification such as the LA can give severely biased estimation

(Shun and McCullagh, 1995), especially in binary data. Meng (2009) noted

another difficulty to have an asymptotic theory for prediction of missing data,

as we shall discuss later.
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In this chapter, we derive the new h-likelihood whose MHLEs are MLEs for

fixed parameters and at the same time asymptotically best unbiased predictors

(BUPs) for random parameters, achieving the generalized Cramer-Rao lower

bound. Firth (2006) noted the ambiguity in forming the h-likelihood of Lee

and Nelder (1996) and Meng (2009) noted a difficulty of a consistent prediction

of unobservables in missing data problems. This explains why the expectation

and maximization (EM) algorithm (Dempster et al., 1977) does not pay much

attention to the prediction of unobservables. In this chapter, we show how

the reformulated h-likelihood overcomes the difficulties raised by Firth (2006)

and Meng (2009). We show that maximum h-likelihood estimators provide

asymptotically the best estimation and prediction for fixed parameters and

random parameters, respectively. Then, we further show how the h-likelihood

theories can be applied when either an estimator for fixed parameter or a

predictor of random parameter is not consistent. We also discuss how to obtain

the h-likelihood when it is not explicitly expressed.

4.2 Hierarchical likelihood

Suppose that we have a statistical model fθ(y, u), composed with fixed un-

knowns θ = (θ1, · · · , θp)T , random unknowns u = (u1, ..., um)
T and observed

data y = (y1, ..., yN)
T . For the likelihood of both fixed and random parameters

(θ, u), the joint density of (y, u) has been considered,

Le(θ, u; y) ≡ fθ(y, u). (4.1)
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This agrees with the suggestion made by Henderson et al. (1959), Kamin-

sky and Rhodin (1985), Butler (1986), Berger and Wolpert (1988), Bjørnstad

(1996), and Lee and Nelder (1996). The joint density of y and u is often from

a completely specified hierarchical model,

fθ(y, u) = fθ(y|u)fθ(u), (4.2)

describing the data generation scheme. In normal linear mixed models, Hen-

derson et al. (1959) proposed the use of estimators, maximizing this joint

density with respect to fixed and random parameters. Joint maximization

algorithms have been extended by a number of authors (Breslow and Clay-

ton, 1993;Gilmour et al., 1985;Harville and Mee, 1984; Schall, 1991;Wolfinger,

1993) via different justifications. However, care is necessary in defining the

joint density due to the Jacobian term associated with random parameters.

This makes a prediction of random unknowns different from an estimation of

fixed unknowns. It is Lee and Nelder (1996) to argue that a specific scale of

random parameters should be used to form the joint density for MHLEs. In

this chapter, we define the extended likelihood for statistical inferences by

Le(θ, u; y) = L(θ; y)Lp(u; y), (4.3)

where L(θ; y) ≡ fθ(y) =
∫
fθ(y, u)du is the classical likelihood (Fisher, 1922)

and Lp(u; y) ≡ fθ(y|u) is the predictive likelihood (Lee et al., 2017).

Example 4.1 (One-way random effect model). Consider a one-way ran-
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dom effect model with a linear predictor

ηij = µij = E(yij|vi) = µ0 + vi, for i = 1, ..., n; j = 1, ...,m,

where v = (v1, ..., vn)
T ∼ N(0, λ2In), and y|v ∼ N(µ0 + v, σ2IN), N = mn

is the sample size, IN is an identity matrix of size N . For the simplicity of

arguments, let the variance components σ2 = λ2 = 1. Then, the extended

log-likelihood of (µ0, v) is equivalent to Henderson et al.’s (1959) joint density,

ℓe(µ0, v) = logLe(µ0, v; y) = log fµ0(y, v)

= −n(m+ 1)

2
log 2π − 1

2

∑
i,j

(yij − µ0 − vi)2 −
1

2

∑
i

v2i ,

whose maximization over µ0 and v gives the MLE µ̂0 = ȳ =
∑

i,j yij/N . How-

ever, if we re-parameterize v in terms of the log-normal distribution ui = log vi,

then we can set up another extended likelihood of µ0 and u = (u1, ..., un)
T ,

given by

ℓe(µ0, u) = logLe(µ0, u; y) = log fµ0(y, u)

= −n(m+ 1)

2
log 2π − 1

2

∑
i,j

(yij − µ0 − vi)2 −
1

2

∑
i

v2i −
∑
i

vi.

The last term on the right-hand side is the Jacobian term. The two models in

terms of v and u are of course equivalent, but now the joint maximization of

ℓe(µ0, u) gives µ̂0 = ȳ + 1. Therefore, without a general principle to deal with

this problem, the joint maximization concept would indeed be useless.

Example 4.2 (Multiplicative Poisson random effect model). Consider
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a multiplicative Poisson random effect model,

µij = E(yij|ui) = ui · exp(xT
ijβ)

to give a linear predictor

ηij = logµij = xT
ijβ + vi,

where yij|vi ∼ Poi(µij) and vi = logui is the scale of random effects, which

is additive to fixed effects in the linear predictor. Lee et al. (2017) called the

scale of v weak canonical, which makes the support of v to be the whole real

line, and called the resulting extended likelihood Le(θ, v; y) = fθ(y, v) the h-

likelihood. In Example 4.1 and 2, v (not u) is weak canonical. However, in

general, MHLEs cannot give MLEs for fixed parameters.

4.2.1 Reformulation of H-Likelihood

In this chapter, we want to have the h-likelihood, whose MHLEs give MLEs for

fixed parameters. Bjørnstad (1996) proved the extended likelihood principle

that all the information about (θ, u) in the data is in the extended likelihood

Le(θ, u; y) = L(θ; y)Lp(u; y).

According to the classical likelihood principle of Birnbaum (1962), L(θ; y) con-

tains all the information about θ in the data y. Thus, Lp(u; y) cannot have

additional information about θ. Since L(θ; y) does not involve u, intuitively,

Lp(u; y) captures all the information about u in the data y. Together with the
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classical likelihood principle, this means Lp(u; y) must contain all the informa-

tion about u in the data. This tells us that inference of random parameters

should be based on the conditional model Lp(u; y) = fθ(u|y).

Let ℓe(θ, v; y) be Lee and Nelder’s (1996) original h-likelihood. Whereas

the MLEs are invariant with respect to any transformation of θ, Lee and

Nelder (2005) showed that MHLEs for v can be invariant only for the linear

transformation of v due to the Jacobian term. Given the data, let v∗ be a

linear transformation of v,

v∗ = exp{c(θ; y)} · v

to give a Jacobian term |∂v∗/∂v| = exp{c(θ; y)}. Then, ℓe(θ, v∗) and ℓe(θ, v)

give the identical inference for v. Define the h-likelihood as an extended like-

lihood on a scale v∗,

h(θ, v) = ℓ(θ; y) + ℓp(v∗; y) = ℓe(θ, v∗; y) = ℓe(θ, v; y) + c(θ; y). (4.4)

Here c(θ; y) = log |∂v∗/∂v| is a function of θ and y. Now we want that MHLEs

for θ are MLEs. Note that such a function c(θ; y) always exists. For example,

let c(θ; y) = −ℓp(ṽ; y) where ℓp(v; y) = log fθ(v|y) and

ṽ = arg max
v
h(θ, v; y) = arg max

v
ℓp(v; y),

then we have

h(θ, ṽ) = ℓ(θ; y) = log fθ(y).

Lee et al. (2017) called the scale v canonical if c(θ; y) = −ℓp(ṽ; y) does not
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depend on θ, but such a scale rarely exists. The new h-likelihood can give

MLEs for any scale of v.

The classical likelihood L(θ; y) is identical to the statistical model fθ(y)

for the data generation. However, the hierarchical model,

fθ (v∗) fθ (y|v∗) ,

would be invalid for the data generation, since v∗ depends on the data y. Thus,

for a hierarchical model of the data generation, we use

fθ (v) fθ (y|v) ,

but for inferences we use h(θ, v) = logLe(θ, v∗; y) ̸= logLe(θ, v; y).

Example 4.1 (continued). Return to the one-way random-effect model with

an extended likelihood,

ℓe (θ, v) = −
1

2

[∑
i,j(yij − µ0 − vi)2

σ2
+

∑
i v

2
i

λ2
+N logσ2 + n logλ2

]
,

and θ = (µ0, σ
2, λ2)T . Here, the joint maximization cannot give MLEs for the

variance components σ2 and λ2. With the new h-likelihood,

h(θ, v) = ℓe(θ, v)−
n

2
log
(
mλ2 + σ2

λ2σ2

)
,

the MHLEs become MLE of θ and BUP of v, i.e., E(v|y). Lee and Lee (2023)

showed that the new h-likelihood (4.4) is well-defined in general linear mixed

models with temporal-spatial random effects, leading to an efficient fitting
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algorithm for deep neural network (DNN) with normal random effects.

Example 4.2 (continued). Consider a Poisson random effect model with a

linear predictor

ηij = log(µij) = xT
ijβ + logui,

where ui ∼ Gamma(α, α) with E(ui) = 1 and Var(ui) = 1/α. Here v-scale is

weak canonical, leading to the h-likelihood,

h(θ, v) =
∑
i,j

{
yij(xT

ijβ + vi)− exp(xT
ij + vi)

}
+
∑
i

{α(vi − evi) + α logα− logΓ(α) + ci(α; y)} ,

where ci(α; y) = (yi+ + α) + logΓ(yi+ + α) − (yi+ + α) log(yi+ + α). Besides

the MLEs for the whole fixed parameters θ, including variance component α,

this h-likelihood yields the BUP for ui’s,

ũi =
yi+ + α

µi+ + α
= E(ui|y),

and [
−∂

2h(θ, v)
∂u2i

]−1

ui=ũi

=
ũ2i

yi+ + α
=

yi+ + α

(µi+ + α)2
= Var(ui|y).

Lee et al. (2023a) showed that this new h-likelihood gives a fast end-to-end

learning algorithm for Poisson-gamma DNN. Ha and Lee (2003) showed that

the frailty models for survival analysis can be fitted by Poisson HGLMs. Based

on the new profiled h-likelihood, Lee et al. (2023b) proposed an online learning

algorithm for DNN gamma frailty models.
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4.2.2 Bartlizable scale of random effects

We derived a new formulation of the h-likelihood (4.4) in Section 4.2.1. In this

section, we focus on the scale of random parameters to form the h-likelihood,

which gives asymptotically the BUPs. For the notational convenience, we

define h-score as the first derivative,

S(θ, v) = ∂h(θ, v)
∂(θ, v) ,

h-information as the negative Hessian matrix,

I(θ, v) = −∂2h(θ, v)
∂(θ, v)∂(θ, v)T ,

expected h-information as Iθ = E {I(θ, v)} and observed h-information as

Î = I(θ̂, v̂) with MHLEs θ̂ and v̂. Meng (2009) showed that Lee and Nelder’s

(1996) h-likelihood with the weak canonical scale ℓe(θ, v; y) is ‘Bartlizable’ if

and only if

E
[
∂ log fθ(v)

∂v

]
=

∫
∂fθ(v)
∂v dv = 0 and

E
[
∂2 log fθ(v)
∂v∂vT

+

(
∂ log fθ(v)

∂v

)(
∂ log fθ(v)

∂v

)T
]
=

∫
∂2fθ(v)
∂v∂vT

dv = 0.

Meng (2009) further derived an easily verifiable sufficient condition for Bartl-

izability that fθ(v) = 0 and ∂fθ(v)/∂v at the boundary ∂Ωv of the sup-

port Ωv of v. Under the weak canonical scale, it is straightforward to have

fθ(v) = ∂fθ(v)/∂v = 0 at v = ±∞ ∈ ∂Ωv. Thus, Lee and Nelder’s (1996)

h-likelihood ℓe(θ, v) is Bartlizable (Meng, 2009). Firth (2006) noted that the
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weak canonical scale is ambiguous if there is no fixed effect in the linear pre-

dictor. In this chapter, we call h (θ, v) of the form (4.4) the h-likelihood, if the

scale v is Bartlizable. This resolves the ambiguity in defining the h-likelihood

raised by Firth (2006). Note that the Bartlizable scale is more general than

the weak-canonical scale as we shall discuss. Now we modify Meng’s (2009)

Bartlizability for the new h-likelihood and shows a sufficient condition.

Definition 4.1. The h-likelihood h(θ, v) is Bartlizable if the following first

and second Bartlett identities hold:

E [S(θ, v)] = 0 and E
[
S(θ, v)S(θ, v)T − I(θ, v)

]
= 0.

Then, following Lemma relaxes Meng’s (2009) sufficient condition for Bartl-

izability. Proofs are derived in Appendix 4.6.

Lemma 4.1. (i) For any continuous random effects u = (u1, ..., un)
T , there

exists a Bartlizable transformation vi = gv(ui).

(ii) The scale v is Bartlizable if

fθ(v|y) = 0 and ∂fθ(v|y)
∂v = 0 for all v ∈ ∂Ωv. (4.5)

(iii) If fθ(v) is differentiable for any v = (v1, ..., vn)
T ∈ Rn, the scale v is

Bartlizable.

Figure 4.1 shows the relationships among the h-likelihood h(θ,v) (blue),

the Fisher likelihood h(θ, ṽ) (red), and the profiled predictive likelihood h(θ̃,v)

(orange) with θ̃ = arg maxθ h(θ, v). The Fisher likelihood is the upper bound

of projection of h-likelihood to the parameter space Θ, whereas the profiled
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predictive likelihood Lee and Nelder (2002) is the upper bound of projection

of h-likelihood to the support of random effects Ωv. See-saw algorithm leads

to the global maxima of both fixed and random parameters. Here, h(θ̃,v) is

associated with the E-step and h(θ, ṽ) is associated with the M-step. Thus, the

h-likelihood procedure is computationally straightforward, providing MHLEs

for both fixed and random parameters and their standard error estimators.

Example 4.1 (continued). For the one-way random effect model, consider

the h-likelihood on the v-scale,

h (θ, v) = −
∑

i,j(yij − µ0 − vi)2

2σ2
−
∑

i v
2
i

2λ2

− 1

2

[
N logσ2 + n logλ2 + n log

(
mλ2 + σ2

λ2σ2

)]
.

Lemma 4.1 implies that v is Bartlizable. This h-likelihood gives MLE for θ

and BUP for vi,

ṽ
(1)
i =

mλ2(ȳi − µ0)

σ2 +mλ2
= E(vi|y),

where ȳi =
∑

j yij/m. Henderson et al. (1959) called it the best linear unbiased

predictor (BLUP) for vi, because it is linear in y. Here, u is also Bartlizable to

give a h-likelihood,

h (θ, u) = −
∑

i,j(yij − µ0 − logui)2

2σ2
−
∑

i(logui)2
2λ2

− 1

2

[
N logσ2 + n logλ2 + n log

(
mλ2 + σ2

λ2σ2

)]
−
∑
i

logui,

which gives MLEs for θ. Remind that ℓe(θ, u) cannot give MLEs. The MHLEs
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Figure 4.1: The h-likelihood (blue), the marginal likelihood (red), and the
profile likelihood (orange) are computed with N = 2000 samples from yi ∼
N(xiβ + v, 1) and v ∼ N(0, 1). True values of β and v are set to be 1 and −1,
respectively. xi’s are generated from Uniform(0, 1).
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for vi is

ṽ
(2)
i =

mλ2(ȳi − µ0)− σ2λ2

σ2 +mλ2

which is not the BUP of v. However, it gives the BUP of wi = 1/u2i ,

w̃
(2)
i = exp

[
−2mλ2(ȳi − µ0) + 2σ2λ2

σ2 +mλ2

]
= E(wi|y).

Thus, for a prediction of 1/u2i , the h-likelihood h(θ, u) would be desirable.

Example 4.2 (continued). Consider a Poisson-gamma HGLM with a linear

predictor

ηij = log(µij) = xT
ijβ + logui,

where ui ∼ Gamma(α, α) with E(ui) = 1 and Var(ui) = 1/α. If we define a

h-likelihood with u-scale, for α ≤ 1,

E
[
∂h(θ, u)
∂ui

]
= E

[
E
[
yi+ + α− 1

ui
− (µi+ + α)

∣∣∣∣∣u
]]

= (α− 1)E(u−1
i )− α =∞,

where yi+ =
∑

j yij, µi+ =
∑

j exp(xT
ijβ), and θ = (β0, ..., βp, α)

T . Thus, u-

scale is not Bartlizable. It produces the MHLE, ũi = 0 when yi+ < 1 − α,

which is not a BUP. Therefore, it is important to use Bartlizable scale for the

h-likelihood to have BUP.
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4.3 Main Results

We first study asymptotic properties of MHLEs when θ̂ − θ = op(1) and

v̂− v = op(1). In HGLMs, we generally have θ̂ − θ = op(1) and v̂− v = op(1)

to allow the consistency for MHLEs.

Example 4.1 (continued). In the one-way random effect models,

ṽi = vi(θ, y) = arg max
vi

h(θ, u) = λ2

σ2 + nλ2

n∑
j=1

(yij − µ0) = E(vi|y).

Here, v̂i = vi(θ̂, y) leads to

lim
N→∞

v̂i = lim
N→∞

ṽi = lim
N→∞

nλ2

σ2 + nλ2
(ȳi· − µ0) = lim

N→∞

nλ2

σ2 + nλ2
(vi + ϵ̄i·) = vi,

where ϵ̄i =
∑n

j=1 ϵij/n, ϵij = yij − µ0 − vi ∼ N(0, σ2), ȳi =
∑n

j=1 yij/n, and

N → ∞ with n → ∞ and m → ∞. Thus, we have θ̂ − θ = op(1) and

v̂− v = op(1) in the one-way random effect model.

Besides the MLEs for θ, we show that the MHL procedures give the asymp-

totic BUPs for v. Suppose that ζ(θ, v) is an arbitrary function of (θ, v) and

ζ̂(y) is an unbiased estimator of ζ(θ, v) such that

E
[
ζ̂(y)− ζ(θ, v)

]
= 0.

Then, it is immediate to have a generalized Cramer-Rao lower bound.

Theorem 4.1. Under the regularity conditions in Appendix,

Var
[
ζ̂(y)− ζ(θ, v)

]
≥ ζ ′θ I−1

θ ζ ′θ
T (4.6)
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where the matrix inequality A ≥ B means that A−B is positive semi-definite

and

ζ ′θ = E
{
∂ζ(θ, v)
∂(θ, v)

}
.

Remark: Given θ, the lower bound (4.6) becomes the Bayesian Cramer-Rao

bound (Van Trees, 1968), since

∂2h(θ, v)
∂v∂vT

=
∂2ℓe(θ, v)
∂v∂vT

=
∂2ℓp(v; y)
∂v∂vT

.

Thus, the lower bound (4.6) extends the Cramer-Rao bound for ζ(θ) and the

Bayesian Cramer-Rao bound for ζ(v). The Bayesian Cramer-Rao bound can

be obtained by the BUP E(ζ(v)|y), even in finite samples. However, since

the MHLE is the mode, not the conditional expectation, it achieves the bound

asymptotically. As we shall show, in one-way random effect models, the MHLE

ṽ = arg maxv h(θ, v) = E(v|y) is the BUP of v, achieving the lower bound (4.6)

if θ is known. However, in finite samples, ζ(ṽ) may not be the BUP for ζ(v)

in general. The following theorem shows that θ̂ and v̂ = ṽ(θ̂; y) can achieve

the lower bound (4.6) asymptotically.

Theorem 4.2. Under the regularity conditions in Appendix,θ̂ − θ
v̂− v

 d→ N
(
0, I−1

θ

)
.

and the variance can be consistently estimated by the inverse of observed h-

information Î−1 = I(θ̂, v̂)−1.

Remark: Theorem 4.1 and 4.2 show the asymptotic efficiency of the MHLEs,

which achieves the unfulfilled aim of Lee and Nelder’s (1996) h-likelihood.
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Example 4.1 (continued). In the one-way random effect model, we have

two different MHLEs,

ṽ
(1)
i =

mλ2(ȳi − µ0)

σ2 +mλ2
= E(vi|y), and ṽ

(2)
i =

mλ2(ȳi − µ0)− σ2λ2

σ2 +mλ2
,

from the v-scale and u-scale, respectively. Here, v-scale leads to BUP for µij,

µ̃
(1)
ij = µ0 + ṽ

(1)
i = µ0 + E(vi|y) = E(µij|y).

On the other hand, u-scale leads to

µ̃
(2)
ij = µ0 + ṽ

(2)
i = µ0 + E(vi|y)−

σ2λ2

σ2 +mλ2
= E(µij|y) +O(1/m).

For simplicity of arguments, let σ2 = λ2 = 1 and n = 2. Let us investigate

the asymptotic efficiency of the MHLEs. The use of v-scale leads to the MLE

µ̂0 = ȳ = (ȳ1 + ȳ2)/2 and the BUP v̂
(1)
1 = m(ȳ1 − µ̂0)/(m + 1) = m(ȳ1 −

ȳ2)/(2m+2) and v̂(1)2 = m(ȳ2− µ̂0)/(m+1) = m(ȳ2− ȳ1)/(2m+2). Note that

E(µ0− µ̂0) = E(v1− v̂(1)1 ) = E(v2− v̂(1)2 ) = 0. Here the variance and covariance

are given by

Var(µ0 − µ̂0) = Var(ȳ) = Var(E(ȳ|v1, v2)) + E(Var(ȳ|v1, v2)) =
m+ 1

m
,

Var(vi − v̂(1)i ) = Var(E(vi − v̂(1)i |y)) + E(Var(vi − v̂(1)i |y)) =
m+ 2

2m+ 2
,

Cov(µ0 − µ̂0, vi − v̂(1)i ) = −E
[
ȳ{E(vi|y)− v̂(1)i }

]
= −1

2
,

Cov(v1 − v̂(1)1 , v2 − v̂(1)2 ) =
m

2m+ 2
,
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for i = 1, 2. Since the expected h-information gives

[
− ∂2h(µ0, v1, v2)

∂(µ0, v1, v2)∂(µ0, v1, v2)T

]−1

=


m+1
2m

−1
2

−1
2

−1
2

m+2
2m+2

m
2m+2

−1
2

m
2m+2

m+2
2m+2

 ,

we can see that Theorem 4.2 holds exactly.

Even though ṽ = E(v|y) is the BUP, g(ṽ) = g(E(v|y)) ̸= E(g(v)|y) is no

longer the BUP of a nonlinear function g(v). Consider a HGLM with the linear

predictor,

ηij = g(µij) = xT
ijβ + vi.

We want to know when there exists a predictor ṽi that gives the BUP of µij

for all j in finite samples, i.e.,

µ̃ij = g−1(xT
ijβ + ṽi) = E(µij|y). (4.7)

We have already seen that such ṽi exists for the linear mixed models and

Poisson-gamma HGLMs. However, the following theorem shows that such ṽi

may not always exist in finite samples.

Theorem 4.3. Suppose that β ̸= 0 and xT
ijβ can freely move on R. Given

θ, there exists ṽi satisfying (4.7) if and only if there exists a constant ci ∈ Ωv

such that

E
(
g−1
(k)(vi)|y

)
= g−1

(k)(ci) for all k = 0, 1, 2, ... (4.8)

where g−1
(k)(·) is the k-th order derivative of inverse link g−1(·).

Remark: When g(·) is identity, as in a linear mixed model, g−1
(k)(vi) =
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0 for all k ≥ 1. Thus, ci = E(vi|y) satisfies the condition. When g(·) is

logarithm, as in a Poisson-gamma HGLM, g−1
(k)(vi) = exp(vi) for all k. Thus,

ci = log E(exp(vi)|y) satisfies the condition. Now consider a binomial HGLM

with pij = P (Yij = 1|xij, vi) and logit link,

ηij = log
(

pij
1− pij

)
= xT

ijβ + vi.

Suppose that there exists a predictor ṽ∗i satisfying (4.7). Then, by Theorem

4.3, there exists a constant ci satisfying (4.8). Note here that g−1
(0)(vi) = {1 +

exp(−vi)}−1 and

g−1
(1)(vi) = exp(−vi){1 + exp(−vi)}−2 = g−1

(0)(vi)− {g
−1
(0)(vi)}

2.

Let T = g−1
(0)(vi) and t = g−1

(0)(ci). If E(T ) = t holds, then E(T − T 2) <

E(T ) − E(T )2 = t − t2 by the Jensen’s inequality. This implies that the

equation (4.8) cannot be satisfied simultaneously for both k = 0 and k = 1.

Thus, in finite samples, the BUP for µij cannot be obtainable. However, the

MHLE gives an asymptotic BUP for µij.

4.4 H-likelihood theory for irregular cases

In missing data problems, Meng (2009) pointed out that predictors of missing

data cannot be summarizable, v̂ − v = Op(1), even though θ̂ − θ = op(1).

Thus, an asymptotic consistency of the predictor v̂ may not be possible. This

explains why the EM algorithm (Dempster et al., 1977) does not pay much

attention to prediction of unobservable missing data. We also investigate the
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case when v̂ − v = op(1) and θ̂ − θ = Op(1). We study how to overcome

difficulty raised by insummarizability.

4.4.1 Missing data problem when v̂− v = Op(1)

Suppose that y = (y1, ..., yn)
T are i.i.d. sample from fθ(y) with fixed unknown

parameter θ and let u = yn+1 be a future observation. Then, prediction of

a future observation u can be viewed as the missing data problem. Here,

θ̂ − θ = op(1). But for any scale v = g(u), Meng (2009) noted that

v̂ − v = g (û)− g (u) = g′ (ũ) (û− u) + Rn,

where û = g−1(v̂),

Rn = Op(1) and g′(ũ)(û− u) = Op(1).

Thus, v̂− v = Op(1) because of the non-negligible remainder term Rn, i.e., the

consistency and asymptotic normality for MHLE v̂ look non-sensible.

It is of interest to investigate how the MHLE v̂ can be used for the pre-

diction of v. As the MLE θ̂ consistently estimates θ, similarly the MHLE

v̂ predicts v by consistently estimating ṽ = ṽ(θ, y), which is a function of

the data and fixed unknown parameter θ. This clarifies the summarizability

problem raised by Meng (2009); while v̂ − v = Op(1), but

v̂ − ṽ = op(1)
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as derived in Theorem 4.4 below. Let ε = v − ṽ, then

v − v̂ = ṽ − v̂ + ε,

and ε = Op(1) in missing data problems. In view of predicting future (or

missing) data, we estimate ε as null, i.e., v̂ is estimating ṽ to predict v. Then,

we have

Var (v̂ − v) = Var(v̂ − ṽ) + Var(ε|y).

The first term is the variance due to estimating ṽ by v̂ and the second term

is the variance due to the unidentifiable error term ε. But the second term

can be determined by the model assumption, which does not decrease with

larger sample size. To obtain a standard error for prediction of v, we need to

estimate

Var(ε|y) = Var(v − ṽ|y) = Var(v|y).

From Theorem 4.2, we have

∂ṽT

∂θ
= −IθvI−1

vv

and the variance estimator of θ̂ is Îθθ, where Iθv = −∂2h/∂θ∂vT |v=ṽ and Ivv =

−∂2h/∂v∂vT |v=ṽ. Then, by using the delta method, we have the asymptotic

normality of v̂ as follows.

Theorem 4.4. Under regularity conditions in Appendix, we have

√
n (v̂ − ṽ) d→ N (0, V ) ,
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where V = limn→∞ nÎ−1
vv ÎvθÎ

θθÎθv Î
−1
vv and Îθv, Îvv are evaluated at θ = θ̂. The

variance of v̂ − ṽ can be estimated as

V̂ar (v̂ − ṽ) = Î−1
vv ÎvθÎ

θθÎθv Î
−1
vv . (4.9)

Remark: If E(ε) = 0, v̂ is an asymptotically unbiased predictor of v. How-

ever, the assumption E(ε) = 0 is coming from the model assumption which

may not be checkable by observed data. Now, to discuss the estimation of

the variance due to the model error ε, suppose that there exists a normalizing

transformation z = k(v) = k{g(u)} = k ◦ g(u) = r(u) with r(·) = k ◦ g(·) such

that Lp(z|y; θ) is from the normal density with mean ṽ = arg maxz Lp(v|y; θ)

and covariance matrix I−1
vv , where Ivv = −∂2h(θ, z)/∂z∂zT |z=ṽ. Then, it gives

the h-likelihood

h (θ, z) = ℓm(θ) +
1

2
log
∣∣∣∣ 12πIvv

∣∣∣∣− 1

2
(z − ṽ)T Ivv (z − ṽ) .

Here, ṽ = E(z|y) = r(ũ) provided by the normality of the predictive likelihood

Lp(v|y;θ). This leads to E(ε) = E(z − z̃) = 0,

Var (ẑ − z) = Var (ẑ − z̃) + E {Var (z̃ − v|y)}

and V̂ar(z̃ − v|y) = Î−1
vv , where ẑ = r(û) and z̃ = r(ũ) = E(z|y) with ũ =

ũ(θ, y). This gives

V̂ar (ẑ − z) = V̂ar (ẑ − z̃) + V̂ar (z̃ − v|y, ) = Î−1
vv ÎzθÎ

θθÎθz Î
−1
vv + Î−1

vv = Îzz.

Therefore, if a normalizing transformation exists, the h-likelihood gives not
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only MHLEs but also their variance estimators. Moreover, if u itself satisfies

normal approximation well, then, we can have a reasonable variance estimator

from the Hessian matrix of h-likelihood

V̂ar (û− u) = V̂ar (û− ũ) + V̂ar (ũ− u|y)

= Î−1
uu ÎuθÎ

θθÎθuÎ
−1
uu + Î−1

uu = Îuu.

where Î−1
uu is coming from the model assumption.

Example 4.3 (Censored exponential model). Little and Rubin (2019)

considered a censored exponential model, where y = (y1, ..., yn)
T have an in-

dependent exponential distribution with mean θ and the missing mechanism

δ = I(Y ≤ c) with a known constant c, so that the missing mechanism is

not ignorable. Suppose that only the first nobs data are observed and the rest

nmis = n − nobs data are missed. Let u = (u1, ..., unmis
)T with ui = ynobs+i for

i = 1, ..., nmis, then an extended (complete-data) likelihood can be defined as

ℓe(θ, u) = log fθ(y|u) + log fθ(u) = −n log θ − nobsȳobs
θ

− nmisū

θ
,

where ȳobs =
∑nobs

i=1 yi/nobs and ū =
∑nmis

i=1 ui/nmis are the sample means based

on observed data and missing data, respectively. Little and Rubin (2019) noted

that maximization of ℓe(θ, u) provides the nonsensical modes

θ̂ =
nobsȳobs + nmisc

nobs + nmis

and ûi = c.

However, it is worth emphasizing that this nonsensical result is due to the use
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of non-Bartlizable u-scale, since

E
[
∂ log fθ(ui)

∂ui

]
=

∫ ∞

c

1

θ
exp

{
−(ui − c)

θ

}
dui ̸= 0.

Let v = (v1, ..., vnmis
)T with vi = log (ui − c) ∈ R, then v-scale is Bartlizable

from Lemma 4.1, leading to the h-likelihood

h(θ, v) = ℓe (θ, v) + nmis = −n log θ − nobsȳobs
θ

− nmisū

θ
+ nmisv̄ + nmis.

Here, ṽi(θ) = log θ gives

h(θ, ṽ) = −nobs log θ − nobsȳobs
θ

− nmisc

θ
= ℓ(θ),

which gives the MLE for fixed parameter θ and the MHLE for random param-

eters u,

θ̂ = ȳobs + c · nmis/nobs and ûi = θ̂ + c > c,

respectively. Here, as nobs →∞,

Var(θ̂ − θ) = Var(θ̂) = Var(ȳobs) = θ2/nobs → 0

to give θ̂ − θ = op(1), but

Var(ûi − ui) = θ2 + Var(ûi)→ θ2

to give ûi − ui = Op(1). Note here that inverse of the observed h-information
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with respect to θ and u is given by

I(θ̂, û)−1 = θ̂2


n−1
obs n−1

obs · · · n−1
obs

n−1
obs 1 + n−1

obs · · · n−1
obs

... ... . . . ...

n−1
obs n−1

obs · · · 1 + n−1
obs

 ,

which leads to

V̂ar(θ̂) = θ̂2/nobs → Var(θ̂) = θ2/nobs

and

V̂ar(ûi − ui) = θ̂2 + θ̂2/nobs → Var(ûi − ui) = θ2 + θ2/nobs.

Here,

Var(ûi − ui) = Var(ûi − ũi) + Var(ũi − ui),

where

V̂ar(ûi − ũi) = Î−1
uu ÎuθÎ

θθÎθuÎ
−1
uu = θ̂2/nobs → Var(ûi − ũi) = θ2/nobs

and

V̂ar(ũi − ui) = Î−1
uu = θ̂2 → Var(ũi − ui) = θ2.

Thus, ûi is consistently estimating ũi, which is an unbiased estimator of ui
(E(ũi − ui) = 0) and the h-information matrix gives a consistent variance

estimation for Var(ûi − ui).
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4.4.2 Exponential-exponential HGLM when θ̂−θ = Op(1)

Let u ∼ Exp(1/θ) and yi|u ∼ Exp(u) with the density functions,

fθ(u) =
1

θ
exp

(
−u
θ

)
and f(yi|u) = u exp(−uyi),

for i = 1, ..., n. Then, the classical log-likelihood is

ℓ(θ) = − log θ − (n+ 1) log(θ−1 + nȳ) + logΓ(n+ 1),

where Γ(·) is the gamma function and ȳ = (y1 + · · ·+ yn)/n. The MLE of θ is

given by θ̂ = 1/ȳ with the expectation

E(θ̂) = E(1/ȳ) = E(E(1/ȳ|u)) = nθ

n− 1
→ θ

and the variance

Var(θ̂) = Var(1/ȳ) = E(Var(1/ȳ|u)) + Var(E(1/ȳ|u))

=
n3θ2

(n− 1)2(n− 2)
→ θ2 <∞

as n→∞. Thus, the MLE is asymptotically unbiased but θ̂−θ = Op(1). Here,

the Hessian of classical likelihood gives an asymptotically consistent variance

estimation V̂ar(θ̂) = ȳ−2(n+ 1)/n.

In this example, random parameter predictor is consistent. Lemma 4.1

implies that v = logu ∈ R is Bartlizable. Thus, let us first define the h-
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likelihood using v-scale,

h1(θ, v) = ℓe(θ, v) + c1(θ; y)

= − log θ − ev(θ−1 + nȳ) + (n+ 1){v + 1− log(n+ 1)}+ logΓ(n+ 1),

which gives the MLE θ̂ = 1/ȳ and the MHLE v̂1 = − log ȳ. Here, the expected

h-information is

I1(θ, v) = E{I1(θ, v)} = E
{
− ∂2h1(θ, v)

∂(θ, v)∂(θ, v)T

}
=

 θ−2 −θ−1

−θ−1 n+ 1


and the observed h-information leads to

V̂ar

 θ − θ̂

v − v̂1

 = I1(θ̂1, v̂1)
−1 =

 ȳ2 −ȳ

−ȳ n+ 1

−1

=
1

n

(n+ 1)ȳ−2 ȳ−1

ȳ−1 1

 .

Note here that Var(θ − θ̂) = Var(θ̂) since θ is fixed, whereas Var(v − v̂1) ̸=

Var(v̂1) since v is random. The h-information and the Fisher information of

classical likelihood give the same variance estimation for MLE of θ. For the

random parameters, as n → ∞, we have E(v − v̂1) = logn − ψ(n) → 0 and

its variance estimation V̂ar(v − v̂1) = 1/n → Var(v − v̂1) = ψ(1)(n) from the

h-information, where ψ(·) and ψ(1)(·) are digamma and trigamma functions,

respectively. This asymptotically achieves the lower bound of Theorem 4.1,

Var(v − v̂1) = ψ(1)(n) =
1

n
+O(n−2) ≥ 1

n
= (0, 1) I−1

θ (0, 1)T .
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Thus, even though θ − θ̂ = Op(1), we have

v − v̂1 = op(1).

For given θ, the predictor ṽ1 = log(n+ 1)− log(θ−1 + nȳ) leads to

E(u|y) = (n+ 1)/(θ−1 + nȳ) = ũ1 = exp(ṽ1)

and

Var(u|y) = Var(u− ũ1|y) =
n+ 1

(θ−1 + nȳ)2
=

(
∂2h1(θ, u)

∂u2

)−1

u=ũ1

.

Thus, the h-likelihood h1(θ, v) gives the BUP of u and the observed h-information

gives Var(u− ũ1|y). Furthermore, the expected h-information gives

Var(u− ũ1) = E{Var(u− ũ1|y)}+ Var{E(u− ũ1|y)}

= E{Var(u|y)} = E
{

n+ 1

(θ−1 + nȳ)2

}
=

2θ2

n+ 2
= O(n−1).

This means that ũ1 is a consistent predictor of unobserved random variable

u, which can be viewed as an unbiased estimator of θ = E(u). Thus, even

though we cannot estimate θ consistently, θ̂ − θ = Op(1), we can predict its

unbiased estimator u consistently, û1 − u = op(1). For the conditional mean

µ = E(yi|u), we have µ̃1 = 1/ũ = (θ−1 + nȳ)/(n+ 1) to give µ̂1 = ȳ.

Now we consider another scale of random effects. Note that Bartlizable

scale is more general than the weak canonical scale. Though u-scale is not

weak canonical, it is Bartlizable when n ≥ 2 from Lemma 4.1. Thus, the
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h-likelihood with u-scale can be defined,

h2(θ, v) = ℓe(θ, u) + c2(θ; y)

= − log θ − ev(θ−1 + nȳ)− log(θ−1 + nȳ) + n{v + 1− logn}+ logΓ(n+ 1),

which gives the MLE θ̂ = ȳ and the MHLE v̂2 = − log ȳ + log{n/(n + 1)}.

Here the observed h-information leads to

V̂ar

 θ − θ̂

v − v̂2

 = I2(θ̂, v̂2)
−1 =

1

n

(n+ 1)ȳ−2 ȳ−1

ȳ−1 1 + (n+ 1)−1


= V̂ar

 θ − θ̂

v − v̂1

 · {1 +O(n−1)}.

Thus, both h1(θ, v) and h2(θ, v) yield asymptotically correct inferences. For

given θ, the predictor ṽ2 = logn − log(θ−1 + nȳ) leads to ũ2 = exp(ṽ2) =

n/(θ−1 + nȳ) and

µ̃2 = 1/ũ2 = (θ−1 + nȳ)/n = E(µ|y).

Then, we have

E(µ|y) = θ−1 + nȳ

n
= µ̃2 = exp(−ṽ2)

and

Var(µ|y) = Var(µ− µ̃2|y) =
(θ−1 + nȳ)2

n2(n− 1)
=

(
∂2h2(θ, µ)

∂µ2

)−1

µ=µ̃2

{
1 +O(n−1)

}
,

where (∂2h2(θ, µ)/∂µ
2)

−1
µ=µ̃2

= (θ−1 + nȳ)2/n3. Thus, the h-likelihood with u-
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scale yields the BUP of conditional mean µ = 1/u. It can be shown that

E[(µ− µ̃1)
2 − (µ− µ̃2)

2|y] = (θ−1 + nȳ)2

n2(n+ 1)2
> 0 (4.10)

Thus, in finite samples, we expect that h2(θ, v) provides a better prediction

for µ than h1(θ, v). This shows that in finite samples it is interesting to find a

Bartlizable scale which gives the BUP for the random parameter of interest.

This example becomes Bayarri et al.’s (1988) example when n = 1 with

a parameterization ξ = 1/θ. Here, care is necessary since v̂ − v = Op(1) and

θ̂ − θ = Op(1). When n = 1, u-scale is not Bartlizable since

E
[
∂h2(θ, u)

∂u

∣∣∣∣∣y
]
= E

(
u−1|y

)
− (θ−1 + y) = 0

but

E
[

E
[
∂2h2(θ, u)

∂u2
+

{
∂h2(θ, u)

∂u

}2
∣∣∣∣∣y
]]

= E
[
(θ−1 + y)2 − 2

]
̸= 0.

Here we can find the MLE θ̂ = 1/y and the MHLE û = 1/2y, but their

expectations and variances are infinity. However, given θ and y, the inequality

(4.10) shows that u-scale may still have an advantage for prediction of µ. When

n ≥ 2, we have the classical log-likelihood,

ℓ(ξ) = log ξ − (n+ 1) log(ξ + nȳ) + logΓ(n+ 1).
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Then, the MLE of the parameter ξ is given by ξ̂ = ȳ with the expectation

E(ξ̂) = E(ȳ) = E(E(ȳ|u)) =∞

and the variance

Var(ξ̂) = Var(ȳ) = E(Var(ȳ|u)) + Var(E(ȳ|u)) =∞.

Here, the meaning of the MLE for ξ could be controversial like that of Cauchy

distribution. Thus, we prefer a parameterization θ. When θ̂ − θ = Op(1), the

scale of fixed parameter is also important for inferences like the scale of random

parameters.

4.5 When the h-likelihood is not explicit

In the h-likelihood (4.4), c(θ; y) may not have an explicit form. Han and

Lee (2022) proposed a Monte-Carlo method for approximating the classical

likelihood L(θ; y) by

LB(θ; y) =
1

B

B∑
b=1

Le(θ, v(b))

q(v(b))
,

where v(b) are independent samples from a probability density function q(v(b)),

having the same support with v. When c(θ; y) is not explicitly known, we use

an approximated h-likelihood,

hB(θ, v) = ℓe(θ, v)− ℓe(θ, ṽ) + logLB(θ; y), (4.11)
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and approximated h-information,

IB(θ, v) = −
∂2ℓe(θ, v)

∂(θ, v)∂(θ, v)T +
∂2ℓe(θ, ṽ)

∂(θ, v)∂(θ, v)T −

I11(θ) 0

0 0

 ,

where wb =
Le(θ,v(b))/q(v(b))∑B
b=1 Le(θ,v(b))/q(v(b))

and

I11(θ) =

[
B∑
b=1

{
wb ·

∂ℓe(θ, v(b))

∂θ

}][ B∑
b=1

{
wb ·

∂ℓe(θ, v(b))

∂θ

}]T

−

[
B∑
b=1

wb

{(
∂ℓe(θ, v(b))

∂θ

)(
∂ℓe(θ, v(b))

∂θ

)T

+

(
∂2ℓe(θ, v(b))

∂θ∂θT

)}]
.

This leads to the following theorem.

Theorem 4.5. Under the regularity conditions in Appendix,θ̂B − θ
v̂B − v

 d→ N
(
0, I−1

θ

)
,

hence the approximate MHLEs are asymptotically the best.

4.6 Appendix

Proof of Lemma 4.1

(i) It is enough to investigate the derivatives with respect to v. Since fθ(v|y) =

0 at the boundary, we have

E
{
∂ log fθ(v|y)

∂v

∣∣∣y} =

∫
Ωv

∂fθ(v|y)
∂v dv = 0,
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which leads to the first Bartlett identity

E
[
∂ℓe(θ, v)

∂v

]
= E

[
∂ log fθ(v|y)

∂v

]
= E

[
E
{
∂ log fθ(v|y)

∂v

∣∣∣y}] = 0.

Using the similar argument, we have

E
{
∂2 log fθ(v|y)

∂vi∂vj

∣∣∣y} =

∫
Ωv

∂

∂vi

(
∂fθ(v|y)
∂vj

)
dv = 0,

for any i, j = 1, ..., q. This leads to the second Bartlett identity.

(ii) Consider v(u) = logitFθ(u) = logFθ(u) − log(1 − Fθ(u)) where Fθ(u)

denotes the cumulative distribution function of u, then v(·) is an increasing

function from Ωu to (−∞,∞). The density function of v is given by

fθ(v) = fθ(u)

∣∣∣∣dudv
∣∣∣∣ = fθ(u)

∣∣∣∣ fθ(u)Fθ(u)
+

fθ(u)

1− Fθ(u)

∣∣∣∣−1

= Fθ(u)(1− Fθ(u))

and its derivative is

f ′
θ(v) =

du

dv

d

du
{Fθ(u)(1− Fθ(u))} = Fθ(u)(1− Fθ(u))(1− 2Fθ(u)).

Since Fθ(u) is cumulative distribution function that increases from 0 to 1 and

v(u) is an increasing function of u, we have fθ(v) = f ′
θ(v) = 0 at the boundary

v = ±∞. This satisfies a sufficient condition for the first and second Bartlett

identities (Meng, 2009), hence we can always find at least one Bartlizable trans-

formation.

(iii) Now suppose that the probability density function fθ(v) is differentiable

with respect to u for any u in the support Ωv = (−∞,∞). Since fθ(v) > 0
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and
∫∞
−∞ f(v)dv = 1, we have f(v) = 0 at the boundary v = ±∞. Then we

also have f ′(v) = 0 at the boundary v = ±∞ since
∫ t

−∞ f ′(v)dv < ∞ for any

t ∈ R. Thus, v achieves the sufficient condition for the Bartlett identities.

Proof of Theorem 4.1

We assume the following regularity conditions. Throughout the Appendix,

it is also assumed that the continuity, differentiability and integrability hold

whenever needed.

(R1) fθ(y, v) and its first and second derivatives are absolutely integrable with

respect to y and v.

(R2) c(θ, y) does not depend on y or (∂2c(θ, y))/(∂θ∂θT ) is positive semi-

definite.

(R3) ζ̂(y) is an unbiased estimator of ζ(θ, v) such that

E
[
ζ̂(y)− ζ(θ, v)

]
= 0. (4.12)

with

lim
v→∂Ωv

∫
Ωy

[
ζ̂(y)− ζ(θ, v)

]
fθ(y, v)dy = 0 (4.13)

Note first that

∂

∂(θ, v)

[∫
Ωy

[
ζ̂(y)− ζ(θ, v)

]
fθ(y, v)dy

]

= −
∫
Ωy

∂ζ(θ, v)
∂(θ, v) fθ(y, v)dy +

∫
Ωy

∂fθ(y, v)
∂(θ, v)

[
ζ̂(y)− ζ(θ, v)

]
dy
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Integrating with respect to v leads to

LHS =

∫
Ωv

∂

∂(θ, v)

[∫
Ωy

[
ζ̂(y)− ζ(θ, v)

]
fθ(y, v)dy

]
dv = 0

from the assumption (4.12) and (4.13). Thus, we have

E
[
∂ζ(θ, v)
∂(θ, v)

]
=

∫∫
∂ζ(θ, v)
∂(θ, v) fθ(y, v)dydv

=

∫∫
∂fθ(y, v)
∂(θ, v)

[
ζ̂(y)− ζ(θ, v)

]
dydv

=

∫∫
∂ℓe(θ, v)
∂(θ, v)

[
ζ̂(y)− ζ(θ, v)

]
fθ(y, v)dydv.

Note that

Var
[
∂ℓe(θ, v)
∂(θ, v)

]
= E

[(
∂ℓe(θ, v)
∂(θ, v)

)T (
∂ℓe(θ, v)
∂(θ, v)

)]

= E
[
− ∂2ℓe(θ, v)
∂(θ, v)∂(θ, v)T

]
≥ E

[
− ∂2h(θ, v)
∂(θ, v)∂(θ, v)T

]

and

Cov
[
∂ℓe(θ, v)
∂(θ, v) , ζ̂(y)− ζ(θ, v)

]
= E

[{
ζ̂(y)− ζ(θ, v)

}(∂ℓe(θ, v)
∂(θ, v)

)]
=

∫∫
∂ℓe(θ, v)
∂(θ, v)

[
ζ̂(y)− ζ(θ, v)

]
fθ(y, v)dydv

= E
[
∂ζ(θ, v)
∂(θ, v)

]
.
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By the multivariate Cauchy-Schwartz inequality, we have

Var
[
ζ̂(y)− ζ(θ, v)

]
≥ E

[
∂ζ(θ, v)
∂(θ, v)

]
E
[
− ∂2h(θ, v)
∂(θ, v)∂(θ, v)T E

]−1 [
∂ζ(θ, v)
∂(θ, v)

]T

Proof of Theorem 4.2

Asymptotic normality can be easily proved by the central limit theorem and the

Bartlett identities. Note that the maximum h-likelihood estimator (MHLE)

θ̂ = arg maxθ h(θ, v) adapts the asymptotic normality of the MLE,

(θ̂ − θ)→ N
(
0, Im(θ)

−1
)
,

where Im(θ) = Eθ
[
−∂2ℓ(θ;y)

∂θ∂θT

]
is the expected Fisher information. Thus, the

variance of θ̂ can be estimated by using the observed information,

V̂ar(θ̂) =
[
−∂

2ℓ(θ; y)
∂θ∂θT

]−1

=

[
−∂

2h(θ, ṽ(θ))
∂θ∂θT

]−1

.

By the definition of ṽ, we have ∂h(θ,v)
∂v

∣∣
v=ṽ = 0. Then the chain rule leads to

∂ℓ(θ; y)
∂θ

=
∂h(θ, ṽ(θ))

∂θ

=

(
∂h(θ, v)
∂θ

∣∣∣
v=ṽ

)
+

(
∂ṽ(θ)
∂θ

)(
∂h(θ, v)
∂v

∣∣∣
v=ṽ

)
=
∂h(θ, v)
∂θ

∣∣∣
v=ṽ
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and the Hessian matrix of ℓ(θ; y),

∂2ℓ(θ; y)
∂θ∂θT

=
∂2h(θ, ṽ(θ))
∂θ∂θT

=

(
∂2h(θ, v)
∂θ∂θT

∣∣∣
v=ṽ

)
+

(
∂ṽ(θ)
∂θ

)(
∂2h(θ, v)
∂v∂θT

∣∣∣
v=ṽ

)
.

From the fact that

∂

∂θ

(
∂h(θ, v)
∂vT

∣∣∣
v=ṽ

)
=

(
∂ṽ(θ)
∂θ

)(
∂2h(θ, v)
∂v∂vT

∣∣∣
v=ṽ

)
+

(
∂2h(θ, v)
∂θ∂vT

∣∣∣
v=ṽ

)
= 0,

we have an estimator

V̂ar(θ̂) =
[
−
(
∂2h(θ, v)
∂θ∂θT

)
+

(
∂2h(θ, v)
∂θ∂vT

)(
∂2h(θ, v)
∂v∂vT

)−1(
∂2h(θ, v)
∂v∂θT

)]−1

v=ṽ

which is the submatrix of the inverse of Hessian matrix of h(θ, v) with respect

to the whole fixed and random parameters (θ, v). From the convergence of

MLE, θ̂ → θ as n→∞, it can be shown that v̂ = ṽ(θ̂; y)→ ṽ(θ; y). Further-

more, ṽ(θ; y) → E(v|y) since Var(v|y) → 0 as each ni → ∞. Thus, the MHL

predictor v̂ = ṽ(θ̂) converges to the best unbiased predictor,

v̂→ Eθ(v|y) as ni →∞ for i = 1, ..., q.

The variance of the MHL predictor v̂ can be expressed as

Var(v̂− v) = Var
(

ṽ(θ̂)− ṽ(θ) + ṽ(θ)− v
)
.

113



By the delta method, ṽ(θ̂) ≈ ṽ(θ) + (∂ṽ(θ)/∂θ)T (θ̂ − θ) implies that

Var
(

ṽ(θ̂)− ṽ(θ)
)
≈
(
∂ṽ(θ)
∂θ

)
Var(θ̂)

(
∂ṽ(θ)
∂θ

)T

,

hence Var(v̂− v) can be estimated by

V̂ar(v̂− v) = D−1BT (A− BD−1BT )−1BD−1 + D−1

where

A =
∂2h(θ, v)
∂θ∂θT

, B =
∂2h(θ, v)
∂θ∂vT

, and D =
∂2h(θ, v)
∂v∂vT

.

Note here that V̂ar(v̂− v) is the submatrix of the inverse of Hessian matrix of

h(θ, v) with respect to (θ, v). Similarly, the covariance component becomes

Cov
[
(θ̂ − θ), (v̂− v)

]
≈ Cov

[
(θ̂ − θ),

{
(ṽ− v) + (θ̂ − θ)

(
∂ṽ(θ)
∂θ

)}]
,

which can be estimated by

Ĉov
[
(θ̂ − θ), (v̂− v)

]
=

(
∂ṽ(θ)
∂θ

)T

Ê
[
(θ̂ − θ)(θ̂ − θ)T

]
= −D−1BT (A− BD−1BT )−1.
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Proof of Theorem 4.3

(⇐) By the Taylor expansion and (4.8),

E
[
g−1(xT

ijβ + vi)|y
]
= E

[
∞∑
k=1

g−1
(k)(vi)

k!

(
xT
ijβ
)k ∣∣∣∣∣y

]

=
∞∑
k=1

E
(
g−1
(k)(vi)|y

)
k!

(
xT
ijβ
)k

=
∞∑
k=1

g−1
(k)(ci)

k!

(
xT
ijβ
)k

= g−1
(
xT
ijβ + ci

)
.

Thus, taking v̂i = ci proves the existence of v̂ which gives the BUP for each

µij.

(⇒) Since the equation (4.7) hold for any value of xT
ijβ ∈ R, substituting

xT
ijβ = t and c = v̂i implies that

E
(
g−1(vi + t)|y

)
= g−1(c+ t) ∀t ∈ R.

If the equation E
(
g−1
(k−1)(vi + t)|y

)
= g−1

(k−1)(c+ t) holds for all t ∈ R, then

E
(
g−1
(k)(vi + t)|y

)
= E

[
lim
ϵ→0

g−1
(k−1)(vi + t+ ϵ)− g−1

(k−1)(vi + t)

ϵ

∣∣∣∣∣y
]

= lim
ϵ→0

1

ϵ

[
E
(
g−1
(k−1)(vi + t+ ϵ)|y

)
− E

(
g−1
(k−1)(vi + t)|y

)]
= lim

ϵ→0

1

ϵ

[
g−1
(k−1)(c+ t+ ϵ)− g−1

(k−1)(c+ t)
]

= g−1
(k)(c+ t).
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By induction, it is proved that for any k = 0, 1, 2, ...,

E
(
g−1
(k)(vi + t)|y

)
= g−1

(k)(c+ t) ∀t ∈ R.

Substituting t = 0 ends the proof.

Proof of Theorem 4.4

We consider the following regularity conditions.

(R1) Let θ0 = argmaxθEθ{ℓm(θ)} be the true value of θ. Here, the num-

ber of fixed parameters does not depend on nobs. Then, the MLE

θ̂ = arg maxθ ℓm(θ) satisfies the asymptotic normality with mean θ0 and

variance I−1
0 = I−1 (θ0), where

I (θ) = lim
nobs→∞

1

nobs

(
−∂

2ℓm(θ)

∂θ∂θT

) ∣∣∣
θ=θ0

is the expected Fisher information.

(R2) The support of missing values

Ωu =

{
u ∈ Rnmis :

n∏
i=nobs+1

fθ (ui, δi = 0|xi) > 0

}
⊂ Rnmis

does not depend on fixed parameter θ.

Proof of Theorem 4.5

Lemma 4.2. Suppose that (θ̂, v̂) is a MHLE from the h-likelihood and (θ̂B, v̂B)

is an approximate MHLE from the approximated h-likelihood (4.11). Then, as

116



B →∞,

(θ̂B, v̂B)
p→ (θ̂, v̂) and IB(θ̂B, v̂B)

p→ I(θ̂, v̂).

Proof. We assume the following regularity conditions in Han and Lee (2023):

(R1) There exists a compact set Θ which contains the true value θ0 and θ̂.

(R2) H(θ, v) is a smooth function which is log-concave and has continuous

second derivatives with respect to (θ, v).

(R3) There exists a function M(y, v) such that

E [M(y, v)|y] =
∫
Ωv

M(y, v)L̂p(v|y)dv <∞

and M(y, v) > H(θ, v)/L̂p(v|y) for all (θ, v).

Han and Lee (2023) showed that

1

B

B∑
b=1

Le(θ, v(b))

q(v(b))

p→ L(θ; y) and I11(θ̂B)
p→ −

{
∂2 log fθ(y)
∂θ∂θT

}
θ=θ̂

,

Since log fθ(ṽ|y) = log fθ(ṽ|y)+ log fθ(y)− log fθ(y) = ℓe(θ, ṽ)+ ℓm(θ), we

have

hB(θ, v)
p→ ℓe(θ, v)−ℓe(θ, ṽ)+ℓm(θ) = log fθ(v|y)−log fθ(ṽ|y)+log fθ(y) = h(θ, v).

This leads to

θ̂B = arg max
θ

hB(θ, ṽ) = arg max
θ

{
1

B

B∑
b=1

Le(θ, v(b))

q(v(b))

}
p→ arg max

θ

Lm(θ) = θ̂
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and v̂B = ṽ(θ̂B)
p→ ṽ(θ̂) = v̂. Furthermore, convergence of I11(θ̂B) leads to

[
−∂

2ℓe(θ, v)
∂θ∂θT

+
∂2ℓe(θ, ṽ)
∂θ∂θT

− I11(θ)
]
θ=θ̂B ,v=v̂B

p→
[
−∂

2{ℓe(θ, v)− ℓe(θ, ṽ) + ℓm(θ)}
∂θ∂θT

]
θ=θ̂,v=v̂

= −
{
∂2h(θ, v)
∂θ∂θT

}
θ=θ̂,v=v̂

.

Since ∂h(θ, v)/∂v = ∂ℓe(θ, v)/∂v, we have IB(θ̂B, v̂B)
p→ I(θ̂, v̂). □

Note here that
∂h(θ, v)
∂v =

∂ℓe(θ, v)
∂v =

∂hB(θ, v)
∂v .

Thus, it is enough to consider the derivatives with respect to θ only. Han

and Lee (2023) showed that L̃B(θ)
p→ arg maxθ L(θ; y) and substituting v = ṽ

leads to hB(θ, ṽ) = log L̃B(θ). Thus, we have

θ̂B = arg max
θ

hB(θ, ṽ) = arg max
θ

L̃B(θ)
p→ arg max

θ

L(θ; y) = θ̂.

For the second derivatives, by using the theorem in Han and Lee (2023), we

can show that

I11(θ̂B)
p→
(
∂2ℓe(θ, ṽ)
∂θ∂θT

− ∂2ℓ(θ; y)
∂θ∂θT

)
θ=θ̂

.

This leads to

ĨB(θ̂B, v̂B)
p→ I(θ̂, v̂),

and Î is a consistent estimator of Iθ from the Theorem 4.2.
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Chapter 5

DNN with temporal-spatial

random effects via h-likelihood

5.1 Introduction

Deep neural network (DNN) models have served as the method of learning

highly nonlinear relationship between the input and output variables with

strong prediction performance (Goodfellow et al., 2016; LeCun et al., 2015).

However, most DNN models implicitly assume independence of the data and

ignore underlying correlation structures, despite large-scale data in the real

world often being clustered by multiple categorical features. Recently, there

have been emerging attempts to enhance the prediction for clustered data by

introducing the random effects into the DNN models (Mandel et al., 2021;

Simchoni and Rosset, 2021, 2023; Tran et al., 2020).

Simchoni and Rosset (2021, 2023) proposed linear mixed model neural net-

work (LMMNN)models with single independent random effects and extended
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LMMNN models to multiple random effects allowing temporal-spatial corre-

lation structure. However, their conventional integrated likelihood approach

is computationally intractable because it does not allow decomposition like

an ordinary loss function in DNNs. They proposed the use of block-diagonal

approximation to the covariance matrix to obtain approximate maximum like-

lihood estimators (MLEs) for their LMMNN models. However, their approxi-

mate likelihood can give a severe bias in parameter estimation for models with

correlated random effects. Also, this difficulty prevents them from obtain-

ing restricted maximum likelihood estimators (REMLEs) for LMMNN models.

Variational approach can be an alternative. However, this cannot provide

exact MLEs either but only approximate MLEs.

Lee and Nelder (1996) proposed the use of h-likelihood as an extension of

classical likelihood for statistical models with random effects. In LMMs, the

h-likelihood is Henderson’s joint likelihood (Henderson et al., 1959) of which

the joint maximization gives the MLEs for fixed effects and the best linear un-

biased predictors (BLUPs) for random effects. However, it does not give MLEs

for variance components by a simple joint maximization. This causes the com-

putational difficulty of Simchoni and Rosset (2021, 2023). In this chapter, we

introduce the new h-likelihood for LMMNN models with various temporal-

spatial random effects from the multiple categorical features. The proposed

negative h-likelihood serves as a loss function, which allows the exact MLEs

for all fixed parameters and BLUPs for random effects. The proposed neg-

ative h-likelihood for LMMNN models allows the highly non-linear functions

of input variables and multiple random effects with complex covariance struc-

tures, which is the key to overcoming the computational difficulties in LMMNN
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models.

In Section 5.2, we briefly review the integrated likelihood approach to

LMMs. In Section 5.3, the h-likelihood for LMMs with multiple random effects

is proposed. It is worth emphasizing that its simple joint maximization can

give the MLEs for the whole fixed parameters and BLUPs for random effects,

and bypasses the heavy computation difficulties to obtain the exact MLEs. In

Section 5.4, we propose the use of negative h-likelihood as a loss function of

LMMNN models and introduce a useful adjustment for random effect predic-

tions. This allows online learning algorithm. To compare with the existing

methods, we provide simulation studies in Section 5.5 and real data analyses

in Section 5.6, followed by concluding remarks in Section 5.7. All the proofs

and technical details are in Appendix.

5.2 Integrated likelihood approach for LMMs

Let y be a vector of N responses, X and Z be N ×p and N × q model matrices

for fixed effects β ∈ Rp and random effects v ∈ Rq, respectively. We start with

a standard LMM,

y = Xβ + Zv + e

where e ∼ N(0, σ2
eIN) is a vector of N random noises, v ∼ N(0,D) is a

vector of q random effects, IN is N × N identity matrix and D = D(λ) is

q × q covariance matrix parameterized by λ. Let ψ = (σ2
e ,λ) be the vector of

dispersion parameters and θ = (β,ψ) be the vector of whole fixed parameters.

To obtain the estimates for β and v, Henderson et al. (1959) proposed to
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maximize the Henderson’s joint likelihood,

J (θ, v) = log fθ(y, v) = log fθ(y|v) + log fθ(v)

= − 1

2σ2
e

||y−Xβ − Zv||2 − N

2
log(2πσ2

e)−
1

2
vTD−1v− 1

2
log |2πD|,

(5.1)

where || · ||2 denotes the L2-norm and | · | denotes the determinant. For given

variance components ψ = (σ2
e ,λ), optimization of the joint likelihood (5.1)

gives MLEs for β and the BLUPs for v,

β̂ = (XTX)−1XT (y− Zv̂),

v̂ = Ê(v|y) = (ZTZ + σ2
eD−1)−1ZT (y− ZTXβ̂).

However, it cannot give MLEs for the variance components ψ. For the MLEs

of ψ, the integrated likelihood has been used from the multivariate normal

distribution of y ∼ N(Xβ,V),

ℓ(θ) = log
∫

exp (J (θ, v)) dv

= −1

2
(y−Xβ)TV−1(y−Xβ)− 1

2
log |2πV|,

where the marginal covariance matrix V is

V = V(ψ) = ZDZT + σ2
eIN .
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For given variance components, it is known that the MLEs for β from the

integrated likelihood ℓ(θ) is the same as Henderson’s MLE for β,

β̂ = (XTV−1X)−1XTV−1y = (XTX)−1XT (y− Zv̂).

In LMMs, MLEs for variance components could be biased in finite sample.

To reduce the bias, REMLEs for ψ are often used (Patterson and Thompson,

1971). In LMMs, REMLEs maximize the restricted likelihood,

ℓR(ψ) = ℓ(ψ; β̂)− 1

2
log |XTV−1X|, (5.2)

which is an adjusted profile likelihood (Cox and Reid, 1987; Lee et al., 2017).

However, both the integrated likelihood ℓ(θ) and the restricted likelihood

ℓR(ψ) involve the computation of the inverse of N×N matrix V. In LMMNNs

with single independent random effects of Simchoni and Rosset (2021), V has

a block-diagonal form. This allows computation of exact MLEs. Simchoni and

Rosset (2023) noted that V is not a block-diagonal form in general, even for

LMMs with single categorical feature, when the random effects have a com-

plex correlation structure. In order to avoid computing V−1, they proposed

the use of block-diagonal approximation to V. However, it requires a rigorous

theoretical justification and the resulting approximate MLEs can have severe

biases.

Further difficulties arise when the model contains multiple categorical fea-

tures Z = (Z1, ...,ZK) with corresponding random effects v = (v1, ..., vK),

y = Xβ + Zv + e = Xβ + Z1v1 + · · ·+ ZKvK + e, (5.3)
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where vk ∼ N(0,Dk) is qk-dimensional vector for k = 1, ..., K. Simchoni

and Rosset (2023) claimed that the use of block-diagonal approximation can

avoid heavy computation in the inverse of N ×N matrix. We found that the

integrated likelihood can be computed by using the Woodbury formula,

V−1 = (ZDZT + σ2
eIN)−1 =

1

σ2
e

[
IN − Z(ZTZ + σ2

eD−1)−1ZT
]
,

and the matrix determinant lemma,

log |V| = log |ZDZT + σ2
eIN |

= log |ZTZD + σ2
eIQ|+ (N −Q) logσ2

e ,

where D = block-diag(D1, ...,DK). This formulation can reduce the computa-

tions of integrated likelihood without any approximations. However, ZTZ is

not a block-diagonal matrix when k ̸= 1. Thus, it still requires heavy com-

putation for every mini-batch. We study how the h-likelihood overcomes the

computational difficulties of an integrated likelihood approach.

5.3 H-likelihood approach for LMMs

In Henderson’s joint likelihood, v is additive to the fixed effects β in the linear

predictor of LMMs

E(y|v) = Xβ + Zv.

Lee et al. (2017) called the v-scale the weak-canonical scale and Lee and Nelder

(1996) proposed the use of Henderson’s joint likelihood J (θ; v) as the h-
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likelihood for general non-normal models. However, its joint maximization

cannot give the MLEs for the variance components, which leads to the use

of integrated likelihood. Thus, the key to avoid computational difficulty due

to integration is to define a new proper h-likelihood whose joint maximiza-

tion gives the MLEs for the whole parameters including variance components.

We define the h-likelihood for LMMs, which contain the multiple categorical

features Z = (Z1, ...,ZK) with corresponding random effects v = (v1, ..., vK).

Since

log fθ(y|v) + log fθ(v) = log fθ(y, v) = log fθ(v|y) + log fθ(y),

let us define the h-likelihood based on the canonical scale of random effects vc,

h = h(θ, vc) = ℓ(θ) + log fθ(vc|y)

where ℓ(θ) = log fθ(y) is the integrated likelihood. Given θ, let ṽc be mode of

h. A sufficient condition for h(θ, vc) to be the h-likelihood is that fθ(ṽc|y) is

free of θ. In Appendix 5.9.3, we show that

vc =

(
1

σ2
e

ZTZ + D−1

) 1
2

v

is the canonical scale and the resulting predictive likelihood at vc,

log fθ(ṽc|y) = log fθ(ṽ|y) + log
∣∣∣∣ dvdvc

∣∣∣∣ = −1

2
log |2πIQ|
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is free of θ. This leads to

h(θ, ṽc) ∝ ℓ(θ),

so that the joint maximization of h(θ, v) gives the MLEs for the whole fixed pa-

rameters. Let h(θ, v) be a reparameterization of h(θ, vc), then the h-likelihood

can be expressed as

h = h(θ, v) = log fθ(y|v) + log fθ(v) + log
∣∣∣∣ dvdvc

∣∣∣∣
= J (θ, v)− 1

2
log
∣∣∣∣ 1σ2

e

ZTZ + D−1

∣∣∣∣ .
Thus, the h-likelihood h(θ, v) is not proportional to the Henderson’s joint

likelihood J (θ, v) in (5.1), since log |dv/dvc| depends upon the variance com-

ponents. So the h-likelihood is different from the Henderson’s joint likelihood.

Given θ, the h-likelihood and joint likelihood of v are proportional. Thus, joint

maximization of the h-likelihood provides BLUPs for random effects. With the

model (5.3), the h-likelihood is

h =− ||y−Xβ − Zv||2
2σ2

e

− N

2
logσ2

e −
1

2
vTD−1v− 1

2
log
∣∣∣∣ 1σ2

e

ZTZD + IQ
∣∣∣∣ .
(5.4)

In Markov random field models or smoothing splines, the precision matrix

of the random effects Pk = D−1
k are explicitly expressed and in independent

random effect models Pk = λ−1
k Iqk . Let P = block-diag(P1, ...,PK). Then the

canonical scale vc becomes

vc =

(
1

σ2
e

ZTZ + P
) 1

2

v
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and the h-likelihood becomes

h =− ||y−Xβ − Zv||2
2σ2

e

− N

2
logσ2

e −
1

2
vTPv +

1

2
log |P| − 1

2
log
∣∣∣∣ 1σ2

e

ZTZ + P
∣∣∣∣ ,

which does not requires the computation of D−1.

It is worth emphasizing that the h-likelihood approach does not require

the inverse of N × N matrix but only Q × Q matrix where Q =
∑K

k=1 qk. It

is often true that Q ≪ N. When
∑K

k=2 qK ≪ q1 < N and D1 = λ1Iq1 , it is

not necessary to compute the inverse and the determinant of the whole Q×Q

matrix but (Q− q1)× (Q− q1) matrix. In Appendix 5.9.3, we derive the first

and the second derivatives of the h-likelihood, which can be obtained without

computing the inverse of full Q×Q matrix directly.

The h-likelihood has advantage over the Henderson’s joint likelihood, equiv-

alent to the h-likelihood of Lee and Nelder (1996), in that it is computationally

efficient and gives MLEs for all parameters. Given variance components, the

joint likelihood and the h-likelihood provides common estimators. Thus, dif-

ference is ML estimation of variance components. In Appendix 5.9.3, we show

that the restricted likelihood (5.2) is the adjusted profile h-likelihood,

ℓR(ψ) = hR(ψ) = h(ψ; β̂, v̂c)− 1

2
log
∣∣∣∣ 1σ2

e

XTX− 1

σ4
e

XTZA−1ZTX
∣∣∣∣ (5.5)

where A = 1
σ2
e
ZTZ + D−1. Since the additional log determinant term involves

an inverse of Q × Q matrix, the REML procedure is computationally harder

than the ML procedure.
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5.4 Learning algorithm with the h-likelihood

Figure 5.1: A sketch of the proposed model fitting algorithm via h-likelihood.

Following Simchoni and Rosset (2023), we first extend the LMM (5.3) to

the LMMNN with random effects for the multiple categorical features,

y = f(X)β + g1(Z1)v1 + · · ·+ gK(ZK)vK + e (5.6)

where f : Rp∗ → Rp and gk : Rq∗k → Rqk are non-linear functions to be

estimated by the neural networks, X and Zk are n×p∗ and n×q∗k model matrix,

respectively. LMMNN allows complex covariance structures of clustered data

due to categorical variables, temporal-spatial structures, and combinations of

these. Here, f(X) denotes the last hidden layer including the bias node and β

is the weight vector from the last hidden layer to the output layer.
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The extension of the h-likelihood (5.4) to the proposed model (5.6) is

straightforward. By replacing X and Zk to f(X) and gk(Zk) for k = 1, ..., K,

respectively, the canonical scale vc = (vc
1, ..., vc

K) is given by

vc =

(
1

σ2
e

g(Z)Tg(Z) + D−1

) 1
2

v

where g(Z) = (g1(Z1), ..., gK(ZK)). Then, the objective function for training

the network is defined by the negative h-likelihood,

Loss = −2h =
1

σ2
e

N∑
i=1

[
yi − f(xi)

Tβ − g(zi)Tv
]2

+
K∑
k=1

vT
k D−1

k vk + c(ψ),

(5.7)

where c(ψ) = log
∣∣σ−2

e g(Z)Tg(Z)D + IQ
∣∣ + N logσ2

e is a function of ψ and

g(Z) only. Each component of the negative h-likelihood has straight-forward

interpretation:

• 1
σ2
e
||y−Xβ − Zv||2 represents the conditional log-density −2 log fθ(y|v),

which can be decomposed for online learning.

• vTD−1v represents the log-density −2 log fθ(v), which can be viewed as

a kernel regularizer for the weights of categorical features.

• The remaining term c(ψ) is a function of dispersion parameters, which

does not affect learning of mean parameters, i.e., all the weights in neural

network and random effects.

Therefore, the h-likelihood loss for LMM can be understood as the sum of the

squared loss, kernel regularizer for random effects, and an additional function
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for yielding MLEs of dispersion parameters.

Let ŷi = E(yi|v) = f(xi)
Tβ + g(zi)Tv, then the loss function becomes

Loss =
N∑
i=1

[
(yi − ŷi)2

σ2
e

+

∑K
k=1 vT

k D−1
k vk

N

]
+ c(ψ).

and its gradient with respect to the mean parameters in f, g,β, v is given by

∇ Loss = ∇
N∑
i=1

[
(yi − ŷi)2

σ2
e

+

∑K
k=1 vT

k D−1
k vk

N

]

∝
N∑
i=1

[
∇(yi − ŷi)2 +

σ2
e

N

K∑
k=1

∇vT
k D−1

k vk

]
,

which does not involve the log-determinant of Q × Q matrices in c(ψ). Note

further that the gradient with respect to the random effects is ∇vkvT
k D−1

k vk =

2vk/λk when vk is independent random effect. Even if every pair of vk is cor-

related, it only involves the inverse of qk × qk matrix. Thus, for given variance

components ψ, optimization of the negative h-likelihood loss (5.7) with respect

to the mean parameters can naturally decompose for online learning frame-

works. Furthermore, it can be interpreted as the optimization of the sum of

squared error
∑

i(yi−ŷi)2 with the penalty function
∑

k σ
2
evT

k D−1
k vk. In LMMs,

MLEs for mean parameters are robust against estimation of dispersion param-

eters, whereas MLEs for dispersion parameters are sensitive to estimation of

mean parameters. Thus, we update the variance components every m epoch,

not every mini-batch.

An advantage of the h-likelihood is that it avoids heavy computation in

the integrated likelihood. Figure 5.1 shows our two-step algorithm with the
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negative h-likelihood loss. The proposed algorithm allows online learning of

mean parameters including random effects while saving the computational cost

required for estimation of dispersion parameters.

• M-step: Update the mean parameters (f, g,β, v) in the neural network

for every mini-batch.

• V-step: Update the variance components in ψ using the whole training

data for every m epoch.

Figure 5.2 shows the MSE vs. time curves of the h-likelihood approach and

the improved integrated likelihood approach with the Woodbury formula and

the matrix determinant lemma. This assess the relative efficiency of the two

methods in terms of computational complexity and accuracy (MSE). The MSE

of the h-likelihood approach (blue) decreased more rapidly than that of the in-

tegrated likelihood approach (red). These results provide evidence that the

proposed h-likelihood approach is computationally more efficient than the in-

tegrated likelihood approach, even when the latter is improved by using the

Woodbury formula and the matrix determinant lemma.

In early stage of learning, the method-of-moments estimators (MMEs)

could be used for training the variance components, because MLEs are of-

ten sensitive to the bias in the mean parameters and MMEs take less com-

putational cost. It is worth noting that the MMEs require the random effect

predictors v̂, which are not provided by the integrated likelihood while train-

ing the network. When the number of dispersion parameters is small, second

order optimization algorithms can be used for the covariance kernel, such as

the RBF kernel. Newton-Raphson method is implemented for estimation of
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Figure 5.2: MSE curves of the integrated likelihood approach and the proposed
h-likelihood approach from 20 repetitions. N = 10, 000 data are generated
from the normal distribution with a nonlinear function f(x) = (x1+x2) cos(x1+
x2) + 2x1x2, q = 100 dimensional Gaussian random effects v1 and v2 from
N(0, I100), and σ2

e = 1.

dispersion parameters.

5.4.1 REML procedure

The restricted h-likelihood of the proposed model (5.6) can be obtained by

replacing X and Z in (5.5) with f̂(X) and ĝ(Z). For given f̂ and ĝ, the restricted

h-likelihood is given by

hR(ψ) = h(ψ; f̂ , ĝ, β̂, v̂)− 1

2
log
∣∣∣∣∣ f̂(X)T f̂(X)

σ2
e

− f̂(X)T ĝ(Z)A−1ĝ(Z)T f̂(X)

σ4
e

∣∣∣∣∣ ,
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where A = 1
σ2
e
ĝ(Z)T ĝ(Z) + D−1, which allows REML procedure for LMMNN

models.

5.4.2 Adjustments for random effects

In LMMs, constraints are imposed on the random effects E(v) = 0. Without

the constraints, the proposed model (5.6) has additional parameter µk = E(vk)

and the transformation

β∗
0 = β + ϵk

v∗
k = vk − ϵk ∼ N (µ∗

k = µk − ϵk,Dk)

gives the same h-likelihood, so that the parameters may not be identifiable.

Thus, when the DNN models contains the random effects, the bias in local

minima can cause poor predictions. Simchoni and Rosset (2023) considered

two cases of gk(·), the identity function gk(Zk) = Zk and gk(Zk) = ZkWk

where Wk is q∗k × qk matrix with qk ≤ q∗k. When gk(·) is identity function, we

propose the following adjustment for local minima by putting constraints on

the random effect predictors,

v̂∗
k = v̂k −

v̂T
k D̂−11qk

1T
qk

D̂−1
k 1qk

and β̂∗
0 = β̂0 +

v̂T
k D̂−11qk

1T
qk

D̂−1
k 1qk

, (5.8)

where 1qk = (1, ..., 1)T . When the random effect vk is independent, i.e., Dk =

λkIqk , the adjustment becomes

v̂∗
k = v̂k −

1

qk

qk∑
j=1

v̂kj and β̂0 = β̂ +
1

qk

qk∑
j=1

v̂kj.
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Algorithm 1 Two-step Algorithm for H-likelihood
Input: xi, zi
Initialize all the fixed and random parameters.
repeat
< M-step >
for epoch = 1 to m do

Update the mean parameters in f , g, β and v for every mini-batch.
end for
< V-step >
Update dispersion parameters in ψ by using the whole training data (full
batch).

until the loss function is not improved for pre-determined number of times
Adjust the random effect predictors v̂ as in (5.8).

Following theorem shows that the proposed adjustment (5.8) can always reduce

the proposed loss function.

Theorem 5.1. In the LMMNN (5.6), suppose that (θ̂
∗
, v̂∗) is the replacement

of β̂0 and v̂k in (θ̂, v̂) with the adjusted values θ̂
∗

and v̂∗
k in (5.8), then

h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂)

and the equality holds if and only if v̂T
k D̂−11qk = 0, i.e., v̂∗

k = v̂k.

5.5 Comparison with existing methods

To show the performance of their integrated likelihood approaches, namely

the LMMNN with and without assuming spatial correlation (LMMNN-R and

LMMNN-E), Simchoni and Rosset (2023) reported the results from various ex-

isting methods, one-hot encoding (OHE), entity embedding (EMB; Guo and
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Berkhahn (2016)), convolutional neural network (CNN; LeCun et al. (1998))

and stochastic variational deep kernel learning (SV-DKL; Wilson et al. (2016b)).

To study the performance of the proposed model, we first review the existing

methods for comparison.

• OHE is a basic approach to handle the categorical features, but it be-

comes challenging when the number of categories is large.

• EMB is known to improve OHE by mapping the high-cardinality cate-

gorical features into the low-dimensional Euclidean spaces.

• CNN is the most widely used method to analyze visual images. For

spatial data, CNN can be applied by handling the locations as images.

• SV-DKL is a stochastic variational procedure which generalize the deep

kernel learning (Wilson et al., 2016a). It is considered as a SOTA method

for handling spatial data. Deep kernel learning combines the non-parametric

flexibility of kernel methods with the inductive biases of deep learning ar-

chitectures. Wilson et al. (2016b) showed that SV-DKL can take advan-

tages over alternative scalable Gaussian process models and stand-alone

DNNs.

• LMMNN-E transforms the locations into a 1000 dimensional vector which

is treated as a single independent random effects.

• LMMNN-R uses the RBF covariance kernel for the spatial random ef-

fects. It has the similar model formulation with our proposed HL meth-

ods but different loss function and learning algorithm using the block-

diagonal approximation.
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The h-likelihood approach gives exact MLEs, whereas SOTA methods such as

SV-DKL, LMMNN-E and LMMNN-R provide only approximate MLEs.

5.6 Numerical studies

We present numerical studies using spatial data to demonstrate the perfor-

mance of the proposed method. Following Simchoni and Rosset (2023), we

generate the data as follows. For i = 1, ..., N , input variable xi = (xi1, ..., xi10)
T

are sampled from U(−1, 1) distribution and

yi = xi+ · cosxi+ + 2xi1xi2 + zTi v + ϵi

where xi+ = xi1+ · · ·+xi10, the noise ϵi is sampled from N(0, σ2
e), and a vector

of random effects v is sampled from the multivariate normal distribution with

zero mean and covariance represented by RBF kernel, for i, j ∈ {1, ..., q},

Cov(vi, vj) = σ2
v exp

{
−(si − sj)2

2l2

}
,

where si and sj are 2D locations sampled from U(−10, 10)× U(−10, 10) grid.

We generate N = 100, 000 data points with q = 1, 000 random effects.

We randomly separate the data into training set (60%), validation set (20%)

and test set (20%). All experiments are repeated 100 times. To fit the pro-

posed method, Adam optimizer is used for the mean parameters, and Newton-

Raphson methods is used for the variance components. Since the MLEs for

variance components could be sensitive to the bias in the mean parameters,

method-of-moments estimators in Appendix 5.9.2 are used in early stages.
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Standard multi-layer perceptrons (MLPs)with 4 hidden layers of 100-50-25-12

neurons and 25% dropout were applied for all the experiments. Sigmoid acti-

vation function is used for the last hidden layer to obtain the REMLEs, and

ReLU activation function is used for the others. Early stopping criteria with

validation loss is employed to prevent overfitting. The proposed method is im-

plemented using Python based on Keras (Chollet et al., 2015) and Tensorflow

(Abadi et al., 2015), and all the experiments are made on Nvidia RTX 2080Ti

GPU.

We report the mean and standard error of mean squared prediction errors

(MSPEs) of test data,

MSPE =
1

Ntest

Ntest∑
i=1

(yi − ŷi)2.

Since the prediction is insensitive to the estimation of dispersion parameters,

the MLE and REMLE have the same prediction MSPE. Difference between

LMMNN methods and HL method is dispersion parameter estimation of the

HL method. Thus, the exact ML estimation of dispersion parameters enhance

the predictability. Table 5.1 shows that the proposed method is better than all

the existing methods. Table 5.2 shows the estimation of variance components.

For the length-scale parameter l2 in RBF kernel, block-diagonal approximation

of LMMNN method produces severely biased estimates, whereas the proposed

method estimates accurately. For both σ2
e and σ2

v , the proposed exact MLEs

are slightly better than the approximate MLEs using block-diagonal approxi-

mation. Compared to MLE, REMLE is slightly less biased, but the difference

is small despite the additional computing cost. In LMMs of finite samples,

137



Table 5.1: Average of test MSPEs. Results of existing models are cited from
Simchoni and Rosset (2023).

l2 OHE EMB CNN SV-DKL LMMNN-E LMMNN-R HL
0.1 1.35 1.34 1.28 1.26 1.26 1.29 1.11
1.0 1.33 1.34 1.27 1.12 1.18 1.13 1.03
10.0 1.34 1.30 1.22 1.09 1.10 1.10 1.10

Table 5.2: Estimated variance components on average when σ2
e = σ2

v = 1.
Results of LMMNN-R are cited from Simchoni and Rosset (2023).

True LMMNN-R HL (MLE) HL (REMLE)
l2 σ̂2

e σ̂2
v l̂2 σ̂2

e σ̂2
v l̂2 σ̂2

e σ̂2
v l̂2

0.1 1.12 0.99 0.48 0.934 0.983 0.097 0.934 0.983 0.097
1.0 1.12 1.10 1.49 1.001 1.059 1.009 1.001 1.059 1.008
10.0 1.11 0.74 4.93 0.962 0.712 8.929 0.962 0.713 8.934

REMLEs often reduces the bias of the MLEs, but in LMMNN with large N ,

the improvement seems negligible.

To demonstrate the usefulness of the adjustment (5.8) of random effects

predictor, we report the root mean squared errors (RMSEs) of random effects

predictors. Without adjustment, mean and standard error of RMSEs are 0.14

(0.06). With adjustment, mean and standard error of RMSEs are 0.13 (0.05).

We have focused that the adjustment improves not only the random effect

prediction but also estimation of MLEs for variance components, which gives

the good prediction performance of the HL procedure.

In summary, the proposed HL method outperforms the existing methods
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including the SOTA methods of variational approach and integrated likeli-

hood approach for the spatial data, including SV-DKL (Wilson et al., 2016b),

LMMNN-E and LMMNN-R (Simchoni and Rosset, 2023).

5.7 Real data analysis

7 8 9 10 11 12 13 14
Predicted values of y

7

8

9

10

11

12

13

14

Tr
ue

 v
al

ue
s o

f y

Predictions for income data

2 1 0 1 2 3 4 5
Predicted values of y

2

1

0

1

2

3

4

5

Tr
ue

 v
al

ue
s o

f y

Predictions for air quality data

Figure 5.3: The HL predictors from income data (left) and air quality data
(right).

Simchoni and Rosset (2023) analyzed several data sets. They used the 5-

fold cross validation (CV) procedures where 80% of the data is used to predict

and the remaining 20% is test data. Standard MLPs with two hidden layers

of 10-3 neurons and ReLU activation function were used for all the data sets.

RBF kernel was used for spatial correlation. Instead of OHE, analysis ignoring

correlation structure (Ignore)was shown, since OHE perform similarly to EMB

in simulation studies.
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Income data

Income data (MuonNeutrino, 2019) have mean yearly income in dollars for

71, 371 US census tracts from 3, 108 counties. The response variable is log-

income and in addition to the location features (longitude and latitude), the

data contain p = 30 input variables. Here, N = 71, 371, K = 1, and q = 3, 108.

Air quality data

Centers for Disease Control and Prevention reported air quality data (CDC,

2020) of PM2.5 particles level in 71, 347 US census tracts. Simchoni and Rosset

(2023) analyzed the air quality data by using additional features from the

income data. The response variable is PM2.5 particles level with p = 32 input

variables. Here, N = 71, 347, K = 1, and q = 3, 107.

Cars data

Cars data (Reese, 2020) have the price of N = 97, 729 used cars. The response

variable is log-price of the cars. It contains q1 = 15, 226 models, q2 = 12, 235

locations to give Q = q1 + q2 = 27, 461, and p = 73 input variables. Since

D1 = λ1Iq1 , we only need to compute the q2 × q2 inverse matrix, instead of

either N ×N or Q×Q inverse matrices.

Prediction results

Table 3 shows the mean of the MSPEs for test data from 5-fold CV procedure.

In air quality data, the proposed method has the smallest MSPEs. In income

data, it has comparable MSPEs to the smallest MSPE of LMMNN-E without
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Table 5.3: Average of test MSPEs from the 5-fold cross validation. Results of
existing models are cited from Simchoni and Rosset (2023).

Data Ignore EMB CNN SV-DKL LMMNN-E LMMNN-R HL
Income .034 .032 .032 .030 .027 .028 .028

Air .285 .260 .163 .044 .088 .035 .023
Cars .152 .092 .137 .149 .136 .084 .084

spatial random effects. In cars data, the proposed method and LMMNN-R

outperform the other methods. Figure 5.3 shows the predicted values of out-

put variables against the true values for the income data and air quality data.

When Simchoni and Rosset (2023)’s block-diagonal approximation works well

(income data and cars data), the proposed method and LMMNN-R behave

similarly, whereas the approximation does not work well (air quality data), the

proposed method outperforms LMMNN-R. However, not only the correlation

matrix, but also the data, parameters, and the batch size can affect the accu-

racy of the approximation. Thus, it is hard to know whether the approximation

will work well or not.

5.8 Concluding remarks

In LMMs, the conventional integrated likelihood has been successfully imple-

mented to obtain the MLEs. However, with the surge of DNN models, the

integrated likelihood encounters a computational difficulty due to the large

size of data. Variational methods and approximate integrated likelihood ap-

proach have been proposed to obtain approximate MLEs. However, they could
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have non-negligible biases, so the algorithm to obtain the exact MLEs is of in-

terest. Lee and Nelder (1996) proposed the h-likelihood to avoid numerically

difficult integration. However, it does not give the exact MLEs for variance

components. In this chapter, we introduce a new h-likelihood for LMMs, which

gives the MLEs for whole parameters and BLUPs for random effects.

For LMMNN models, the two-step algorithm enables online learning by

minimizing the negative h-likelihood loss function. Its joint optimization pro-

duces exact MLEs for mean and dispersion parameters and BLUP for the ran-

dom effects. The algorithm also avoids a difficulty to implement the REMLE

procedure for variance components. In LMMNN models, we found that an ad-

justment for random effect predictors is useful for enhancing the performance

of variance component estimation. In this chapter, we only considered sim-

ple MLP for the neural network f(x), but more complex architectures can be

easily implemented.

Via simulations and real data analyses, we show that predictive perfor-

mance of HL method outperforms the existing methods, OHE, EMBED, CNN,

and SOTA methods, SV-DKL, LMMMNN-E and LMMNN-R.

In the future we hope to make the proposed method more computation-

ally efficient, applicable to non-normal hierarchical models such as hierarchical

generalized linear models (Lee and Nelder, 1996) with neural networks.

142



5.9 Appendix

5.9.1 The computation of h-likelihood when q1 is large

Suppose that the model contains a large q1 dimensional independent random

effects with D1 = λ1Iq1 Since ZT
1 Z1 is diagonal, the determinant

∣∣∣ 1
σ2
e
ZTZD + IQ

∣∣∣
in the h-likelihood (5.4) can be expressed as∣∣∣∣∣∣∣∣∣∣∣∣

1
σ2
e
ZT
1 Z1D1 + Iq1 1

σ2
e
ZT
1 Z2D2 . . . 1

σ2
e
ZT
1 ZKDK

1
σ2
e
ZT
2 Z1D1

1
σ2
e
ZT
2 Z2D2 + Iq2 . . . 1

σ2
e
ZT
2 ZKDK

... ... . . . ...
1
σ2
e
ZT
KZ1D1

1
σ2
e
ZT
KZ2D2 . . . 1

σ2
e
ZT
KZKDK + IqK

∣∣∣∣∣∣∣∣∣∣∣∣
,

which leads to∣∣∣∣ 1σ2
e

ZTZD + IQ
∣∣∣∣ = |B11| ·

∣∣∣∣ IQ−q1 +
ZT
−1Z−1D−1

σ2
e

−
ZT
−1Z1D1B−1

11 ZT
1 Z−1D−1

σ4
e

∣∣∣∣
where Z−1 = (Z2, ...,ZK), D−1 = block-diag(D2, ...,DK),

B11 =
1

σ2
e

ZT
1 Z1D1 + Iq1 = diag

(
λ1
σ2
e

n1j + 1

)
j=1,...,q1

,

and n1j =
∑N

t=1 z1jt is the number of observations in the j-th category of the

first categorical variable Z1. Since the first term is the determinant of diagonal

matrix B11 and the second term is the determinant of the size
∑K

k=2 qK ≪ q1

matrix, the h-likelihood can be easily computed without handling the inverse

computation of Q × Q matrices. In Appendix 5.9.3, the first and the second

derivatives of the h-likelihood with respect to the variance components are
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derived and they can be obtained without computing the inverse of full Q×Q

matrix.

5.9.2 Methods-of-moments estimators

In early stage of learning, including the initial values, MMEs of variance com-

ponents are used because it is computationally fast and less sensitive to the

bias in the mean parameters. For j = 1, ..., qk, each vkj has normal distribution

with mean zero and variance λk. Thus, we can use

λ̂k =
1

qk − 1

qk∑
j=1

(vkj − v̄k)2,

for the variance of random effects and

σ̂2
e =

1

N − 1

qk∑
j=1

[
yi − f̂(xi)

T β̂ −
K∑
k=1

ĝk(zki)T v̂k

]2

for the variance of noise.

5.9.3 Technical details

Since v|y has the multivariate normal distribution,

v|y ∼ N

(
1

σ2
e

A−1ZT (y−Xβ), A−1

)
,

where A = σ−2
e ZTZ + D−1, the distribution of vc|y is given by

vc|y ∼ N

(
1

σ2
e

A− 1
2 ZT (y−Xβ), IQ

)
,
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which leads to ṽc = σ−2
e A− 1

2 ZT (y−Xβ) and the predictive likelihood

log fθ(ṽc|y) = −1

2
log |2πIQ| = constant.

Thus, vc = A 1
2 v is the canonical scale to give the h-likelihood,

h(θ, vc) =− 1

2σ2
e

(
y−Xβ − ZA− 1

2 vc
)T (

y−Xβ − ZA− 1
2 vc
)

− N

2
log(2πσ2

e)−
1

2
vcTA− 1

2 D−1A− 1
2 vc − 1

2
log
∣∣∣2πA 1

2 DA 1
2

∣∣∣ .
of which the joint maximization gives the MLEs for the whole parameters.

The first derivatives of the h-likelihood with respect to β and vc are

∂h(θ, vc)

∂β
=

1

σ2
e

XT
(

y−Xβ − ZA− 1
2 vc
)
,

∂h(θ, vc)

∂vc
=

1

σ2
e

A− 1
2 ZT (y−Xβ)− vc,

and the second derivatives are

∂2h(θ, vc)

∂β2 = − 1

σ2
e

XTX, ∂2h(θ, vc)

∂β∂vc
= − 1

σ2
e

A− 1
2 ZTX, ∂2h(θ, vc)

∂vc2
= −IQ,

which leads to

∣∣∣∣−∂2h(θ, vc)

∂(β, vc)2

∣∣∣∣ =
∣∣∣∣∣∣ IQ 1

σ2
e
A− 1

2 ZTX
1
σ2
e
XTZA− 1

2
1
σ2
e
XTX

∣∣∣∣∣∣ =
∣∣∣∣ 1σ2

e

XTX− 1

σ4
e

XTZA−1ZTX
∣∣∣∣ .
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Thus, the adjusted profile h-likelihood is given by

hR(ψ) = h(ψ; β̂, v̂c)− 1

2
log
∣∣∣∣ 1σ2

e

XTX− 1

σ4
e

XTZA−1ZTX
∣∣∣∣ ,

which is the integrated likelihood,

hR(ψ) = log
∫∫

exp(h(θ, vc))dvcdβ = log
∫∫

fθ(y, vc)dvcdβ

= log
∫
fθ(y)dβ = log

∫
exp(ℓ(θ))dβ

= ℓ(ψ; β̂)− 1

2
log |XTV−1X| = ℓR(ψ).

Thus, the restricted likelihood is an adjusted profile h-likelihood.

Let se = logσ2
e be the log-variance of random noise and λk = (λk1, ..., λkjk)

be the vector of jk dispersion parameters involved in Dk for k = 1, ..., K, then

the objective function can be expressed as

Loss = e−se (y− ŷ)T (y− ŷ) +Nse +
K∑
k=1

vT
k D−1

k vk + log |B|

= a0(se) +
K∑
k=1

ak(λk) + log |B(se,λ1, ...,λK)|

where ŷ = Xβ̂+Zv̂, B = AD = e−seZTZD+IQ, a0(se) = e−se (y− ŷ)T (y− ŷ)+

Nse and ak(λk) = vT
k D−1

k vk. Here the derivatives of log |B| is difficult to
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evaluate. The first deirvatives of B are given by

∂B
∂se

= −e−seZTZD = IQ − B,

∂B
∂λkj

= e−seZTZ ∂D
∂λkj

= e−se

(
0k−, ZTZk

∂Dk

∂λkj
, 0k+

)
,

where 0k− and 0k+ are zero matrices of size Q × (q1 + · · · + qk−1) and Q ×

(qk+1 + · · ·+ qK), respectively, so that

ZTZ ∂D
∂λkj

=

(
0k−, ZTZk

∂Dk

∂λkj
, 0k+

)
=


0 · · · 0 ZT

1 Zk
∂Dk

∂λkj
0 · · · 0

... . . . ... ... ... . . . ...

0 · · · 0 ZT
KZk

∂Dk

∂λkj
0 · · · 0

 ,

and the non-zero second derivatives are given by

∂2B
∂s2e

= e−seZTZD = B− IQ,

∂2B
∂se∂λkj

= −e−seZTZ ∂D
∂λkj

= − ∂B
∂λkj

,

∂2B
∂λ2kj

= e−seZTZ ∂
2D

∂λ2kj
= e−se

(
0k−, ZTZk

∂2Dk

∂λ2kj
, 0k+

)
,

∂2B
∂λki∂λkj

= e−seZTZ ∂D
∂λkj

= e−se

(
0k−, ZTZk

∂2Dk

∂λki∂λkj
, 0k+

)
.

Thus, the first and second derivatives of log |B| are

∂ log |B|
∂se

= tr

[
B−1 ∂B

∂se

]
= tr[B−1 − IQ] = tr[B−1]−Q

∂ log |B|
∂λkj

= tr

[
B−1 ∂B

∂λkj

]
= e−setr

[
[B−1]kZTZk

∂Dk

∂λkj

]
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∂2 log |B|
∂s2e

= tr

[
B−1∂

2B
∂s2e

]
− tr

[(
B−1 ∂B

∂se

)2
]
= tr[B−1 − B−2]

∂2 log |B|
∂λ2kj

= tr

[
B−1 ∂

2B
∂λ2kj

]
− tr

[(
B−1 ∂B

∂λkj

)2
]

= e−setr

[
[B−1]kZTZk

∂2Dk

∂λ2kj

]
− e−setr

[(
[B−1]kZTZk

∂Dk

∂λkj

)2
]

∂2 log |B|
∂se∂λkj

= tr

[
B−1 ∂2B

∂se∂λkj

]
− tr

[
B−1 ∂B

∂se
B−1 ∂B

∂λkj

]
= −e−setr

[
[B−2]kZTZk

∂Dk

∂λkj

]
∂2 log |B|
∂λki∂λkj

= tr

[
B−1 ∂2B

∂λki∂λkj

]
− tr

[
B−1 ∂B

∂λki
B−1 ∂B

∂λkj

]
= e−setr

[
[B−1]kZTZk

∂2Dk

∂λki∂λkj

]
− e−setr

[
[B−1]kZTZk

∂Dk

∂λki
[B−1]kZTZk

∂Dk

∂λkj

]

where [B−1]k is the submatrix of B−1 from (q1+· · ·+qk−1+1)-th row to (q1+· · ·+

qk)-th row. In real data analyses, one of the categorical features has sometimes

extremely high cardinality q1 ≫
∑K

k=2 qk. In such cases, the corresponding

random effect v1 is assumed to be independent but B = 1
σ2
e
ZTZD + IQ is

not a diagonal, so the computation of the derivatives involves the inverse of

extremely high dimensional matrix. However, B is a sparse matrix such that

B−1 =

B11 B12

B21 B22

−1

=

diag
(

λ1n1j

σ2
e

+ 1
)

1
σ2
e
ZT
1 ZD

1
σ2
e
ZTZ1D1

1
σ2
e
ZT
−1Z−1D−1 + IQ−q1

−1

,

so the inverse B−1 can be computed by using decomposition of the submatrices.

Note here that the second derivative of Dk becomes zero when vk is in-
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dependent. Suppose that v1, ..., vK−1 are independent random effects and the

last random effect vK is correlated, i.e., Dk = λkIqk for k = 1, ..., K − 1 and

DK = DK(λK) for λK = (λK1, ..., λKJ). The computation can be further re-

duced, because for k = 1, ..., K − 1, the first and the second derivatives of Dk

are the identity matrix and zero matrix, respectively.

Proof of Theorem 1

Let β̂∗
0 = β̂0+δ and v̂∗

k = v̂k−δ. Note here that δ does not affect the predicted

values of the output variable ŷ, because β̂∗
0 + Zkv̂∗

k = β̂0 + Zkv̂k. The first

derivative of h-likelihood with respect to δ is given by

∂h(θ̂
∗
, v̂∗)

∂δ
=

∂

∂δ

(
−1

2
(v̂k − δ)T D̂−1

k (v̂k − δ)
)

= v̂T
k D̂−1

k 1qk − δ · 1T
qk

D̂−1
k 1qk ,

which leads to the solution δ = v̂T
k D̂−1

k 1qk/1T
qk

D̂−1
k 1qk , where 1qk = (1, ..., 1)T .

The second derivative is given by

∂2h(θ̂
∗
, v̂∗)

∂δ2
= −1qkD̂−1

k 1qk < 0,

since D̂k should be positive definite. Thus, for given θ̂ and v̂, the h-likelihood

has the unique maximum at δ = v̂T
k D̂−11qk/1T

qk
D̂−11qk . This implies that the

adjustment (5.8) can always increase the h-likelihood,

h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂),

and the equality holds if and only if v̂T
k D̂−1

k 1qk = 0.
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Chapter 6

DNN for clustered count data

via h-likelihood

6.1 Introduction

Deep neural networks (DNNs) have been proposed to capture the nonlinear

relationship between input and output variables (Goodfellow et al., 2016; Le-

Cun et al., 2015). However, DNNs provide efficient marginal predictions for

independent outputs, while in practice, they can be correlated, over-dispersed,

or clustered. On the other hand, random effect models have been employed to

make subject-specific predictions. Lee and Nelder (1996) proposed hierarchi-

cal generalized linear models (HGLMs), which allow random effects from an

arbitrary conjugate distribution of the generalized linear model (GLM) family

of the outputs.

Both DNNs and random effect models have successfully improved predic-

tion accuracy. Recently, there has been a growing interest in combining these
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two extensions. Simchoni and Rosset (2021, 2023) proposed the linear mixed

model neural network for Gaussian (continuous) outputs with the normal ran-

dom effects, which are conjugates of the Gaussian outputs. These Gaussian

DNNs allow explicit expressions for likelihoods. Lee and Lee (2023) introduced

the hierarchical likelihood (h-likelihood) approach, which provides the most ef-

ficient likelihood-based procedure. For non-Gaussian (discrete) outputs, Tran

et al. (2020) proposed a Bayesian approach for DNNs with normal random

effects using the variational approximation method (Bishop and Nasrabadi,

2006; Blei et al., 2017). Mandel et al. (2021) used a quasi-likelihood approach

(Breslow and Clayton, 1993) for DNNs, but the quasi-likelihood method has

been criticized for poor predictions. Lee and Nelder (2001) proposed the use

of the Laplace approximation to have approximate maximum likelihood esti-

mators (MLEs). Although Mandel et al. (2021) also adapted Laplace approxi-

mation for DNNs, their method ignored many terms in the second derivatives

due to computational expense, which could lead to inconsistent estimations

(Han and Lee, 2022). Therefore, a new approach is desired for non-Gaussian

DNNs to have the exact MLEs.

Clustered count outputs are widely encountered in various fields (Henderson

and Shimakura, 2003; Henry et al., 1998; Roulin and Bersier, 2007; Thall and

Vail, 1990), but to the best of our knowledge, there appears to be no available

source code for the Poisson DNN with random effects. In this chapter, we in-

troduce Poisson-gamma DNN for the clustered count data. We propose the use

of the h-likelihood approach, which allows simultaneous estimation of MLEs

for fixed parameters and best unbiased predictors (BUPs) for random effects.

In contrast to the ordinary DNN framework, we found that the local minima
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can cause poor prediction when the network has subject-specific random ef-

fects. To address this issue, we propose an adjustment to the random effect

prediction that prevents from violation of the constraints in random effects for

identifiability. Additionally, we introduce the method-of-moments estimators

for pretraining the variance components.

In Section 6.2, we present the Poisson-gamma DNN. In Section 6.3, we de-

rive the h-likelihood for the Poisson-gamma DNN. In Section 6.4, we present

the algorithm for online learning, which includes an adjustment of random ef-

fect predictors and pretraining procedure for variance components. In Section

6.5, we provide experimental studies to compare the proposed method with

various existing methods. The results of the experimental studies clearly show

that the proposed method improves predictions. In Section 6.6, real data anal-

yses demonstrate that the proposed method has the best prediction accuracy

in various clustered count data. In particular, introducing the subject-specific

effects enhances the ability of the neural network to identify the nonlinear

effects of the input variables. All the proofs are in Appendix 6.8.

6.2 Model Descriptions

6.2.1 Poisson DNN

Let D = {(yij, xij) : i = 1, ..., n, j = 1, ..., qi} be a dataset with output variable

yij and p-dimensional vector of input variables xij, where the subscript (i, j)

denotes the jth outcome of the ith subject (cluster). For the prediction of

count outputs, Poisson DNN (Rodrigo and Tsokos, 2020) gives the marginal
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predictor,

ηmij = logµm
ij = NN(xij;w,β) =

pL∑
k=1

gk(xij;w)βk + β0, (6.1)

where µm
ij = E(Yij|xij) is the marginal mean, NN(xij;w,β) is the neural net-

work predictor, β = (β0, β1, ..., βpL)
T is the vector of weights and bias between

the last hidden layer and the output layer, gk(xij;w) denotes the k-th node of

the last hidden layer, and w is the vector of all the weights and biases before

the last hidden layer. Here the inverse of the log function, exp(·), becomes

the activation function of the output layer. Poisson DNNs allow highly non-

linear relationship between input and output variables, but only provide the

marginal predictions. Thus, Poisson DNN can be viewed as an extension of

Poisson GLM, where

ηmij = xT
ijβ.

6.2.2 Poisson-gamma DNN

To allow subject-specific prediction, we propose the Poisson-gamma DNN,

ηcij = logµc
ij = NN(xij;w,β) + zTijv, (6.2)

where µc
ij = E(Yij|xij, vi) is the conditional mean, NN(xij;w,β) is the marginal

predictor of the Poisson DNN in (6.1), v = (v1, ..., vn)
T is the vector of random

effects from the log-gamma distribution, and zij is the (i, j)-th vector of model
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matrix for random effects. Here the conditional mean µc
ij can be expressed as

µc
ij = exp {NN(xij;w,β)} · ui,

where ui = exp(vi) is the gamma random effect. Using the random effects v,

subject-specific predictions can be made. Note here that, for any ϵ ∈ R, the

model equation (6.2) can be expressed as

logµc
ij =

pL∑
k=1

gk(xij;w)βk + β0 + vi =

pL∑
k=1

gk(xij;w)βk + (β0 − ϵ) + (vi + ϵ),

or equivalently, for any δ = exp(ϵ) > 0,

µc
ij = exp {NN(xij;w,β)} · ui =

[
1

δ
exp {NN(xij;w,β)}

]
· (δui),

which leads to an identifiability problem. Thus, it is necessary to place con-

straints on either the fixed effects or the random effects. Lee and Nelder (1996)

proposed imposing constraints on the random effects rather than fixed effects.

In this chapter, we use the constraints E(ui) = E(exp(vi)) = 1 as described in

Lee et al. (2017). The use of constraints E(ui) = 1 has an advantage that the

marginal predictions can be directly obtained, because

µm
ij = E[E(Yij|xij, ui)] = E [exp {NN(xij;w,β)} · ui] = exp {NN(xij;w,β)} .

Thus, we employ vi = logui to the equation (6.2), where ui ∼ Gamma(λ−1, λ−1)

with E(ui) = 1 and var(ui) = λ. By allowing two separate output nodes, the
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Poisson-gamma DNN provides both marginal and subject-specific predictions,

µ̂m
ij = exp

{
NN(xij; ŵ, β̂)

}
and µ̂c

ij = exp
{

NN(xij; ŵ, β̂) + zTij v̂
}
,

where the hats denote the predicted values. Subject-specific prediction can be

achieved by multiplying the marginal mean predictor µ̂m
ij from Poisson DNN

and the subject-specific predictor of random effect ûi = exp(v̂i). Note that

var(Y |x) = E(var(Y |x, v)) + var(E(Y |x, v)) ≥ E(var(Y |x, v)),

where var(E(Y |x, v)) represents between-subject variance and E(var(Y |x, v))

represents within-subject variance. To enhance the predictions, Poisson-gamma

DNN uses the conditional predictor E(Y |x, v) having only within-subject vari-

ance, whereas Poisson DNN improves the marginal predictor E(Y |x) by allow-

ing highly nonlinear function of x. By replacing NN(·) with a linear model

ηmij = xT
ijβ, in the Poisson-gamma DNN, the model becomes the Poisson-

gamma HGLM.

6.3 Construction of h-likelihood

For statistical models with random effects, it is important to define the objec-

tive function for obtaining MLEs of fixed parameters θ = (w,β, λ). Consider

an extended likelihood for different scale (θ, u),

ℓe(θ, u) =
∑
i,j

log fθ(yij|ui) +
∑
i

log fθ(ui), (6.3)
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and an extended likelihood for (θ, v),

ℓe(θ, v) =
∑
i,j

log fθ(yij|vi) +
∑
i

log fθ(vi).

Note here that nonlinear transformation of random effects leads to a different

extended likelihood. Due to the Jacobian terms,

ℓe(θ, v) = ℓe(θ, u) +
∑
i

log
∣∣∣∣duidvi

∣∣∣∣ ̸= ℓe(θ, u).

The two extended likelihoods ℓe(θ, u) and ℓe(θ, v) lead to different MLEs, rais-

ing the question on how to obtain the true MLE. In Poisson-gamma HGLMs,

Lee and Nelder (1996) proposed the use of ℓe(θ, v). Given the variance com-

ponent λ, their approach can give MLEs for β and BUPs for u by the joint

maximization of ℓe(θ, v). However, it could not yield MLE for the variance

component λ. In this chapter, we derive the new h-likelihood whose joint max-

imization leads to MLEs of the whole fixed parameters including the variance

component λ and BUPs of the random effects u and conditional mean µc.

Consider an objective function of the form

h(θ, v) = ℓe(θ, v) + c(θ; y), (6.4)

where c(θ; y) =
∑n

i=1 ci(θ; yi) is a function of θ and yi = (yi1, ..., yiqi)
T for each

subject i = 1, ..., n. Then, the equation (6.4) can be expressed as

h(θ, v) = {log fθ(y) + log fθ(v|y)}+ c(θ; y) = ℓ(θ; y) + log fθ(v∗|y),
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where

ℓ(θ; y) = log
∫

exp {ℓe(θ, v)} dv (6.5)

is the classical marginal log-likelihood for MLEs of θ, and v∗ = (v∗1, ..., v
∗
n)

T

with elements

v∗i = vi · exp {−ci(θ; yi)} .

A sufficient condition for h(θ, v) to yield exact MLEs of all the fixed parameters

in θ is that fθ(ṽ∗|y) is independent of θ, where ṽ∗ is the mode,

ṽ∗ = arg max
v∗

h(θ, v∗) = arg max
v∗

log fθ(v∗|y).

Let ci(θ; yi) = (yi+ + λ−1) + logΓ(yi+ + λ−1)− (yi+ + λ−1) log(yi+ + λ−1) and

yi+ be the sum of responses in yi, then f(ṽ∗|y) becomes free of θ,

log f(ṽ∗|y) =
n∑

i=1

log fθ(ṽ∗i |y) =
n∑

i=1

{log fθ(ṽi|y) + ci(θ; yi)} = 0,

which leads to yielding MLEs because

h(θ, ṽ) = ℓ(θ, y).

Thus, joint maximization of the h-likelihood (6.4) provides exact MLEs for the

fixed parameters θ, including the variance component λ. Furthermore, BUPs

of u and µc can be obtained from the h-likelihood,

ũ = exp(ṽ) = E(u|y) and µ̃c = exp(ṽ) · NN(X;w,β) = E(µc|y).
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It is worth emphasizing that the h-likelihood differs from the Henderson’s joint

likelihood (Henderson, 1973) for linear mixed models whose joint maximization

cannot yield MLEs of variance components.

6.4 Learning algorithm with the h-likelihood

6.4.1 Loss function for online learning

The proposed Poisson-gamma DNN can be trained by optimizing the negative

h-likelihood loss,

Loss = −h(θ, v) = − log fθ(y|v)− log fθ(v)− c(θ; y)

= −
∑
i,j

[
yij
(
logµm

ij + vi
)
− eviµm

ij

]
−

n∑
i=1

[
vi − evi − logλ

λ
− logΓ

(
λ−1
)
+ ci(λ; yi+)

]
,

which is a function of the two separate output nodes µm
ij = NN(xij;w,β) and

vi = zTijv. To apply online stochastic optimization methods, the proposed loss

function is expressed as

Loss =
∑
i,j

[
−yij

(
logµm

ij + vi
)
+ eviµm

ij −
vi − evi
qiλ

+ ai(λ; yi)

]
, (6.6)

where ai(λ; yi) = q−1
i {λ−1 logλ+ logΓ(λ−1)− ci(λ, yi+)} .
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6.4.2 The local minima problem

Though DNNs often encounter the local minima, Dauphin et al. (2014) claimed

that local minima may not produce poor predictions in ordinary DNNs. How-

ever, we observed that the local minima can lead to poor prediction when the

network reflects subject-specific effects. In Poisson-gamma DNNs, we impose

the constraint E(ui) = 1 for identifiability, because

µc
ij = exp {NN(xij;w,β)} · ui =

[
1

δ
exp {NN(xij;w,β)}

]
· (δui) .

However, in practice, Poisson-gamma DNNs often end with local minima that

violate the constraint. To prevent poor prediction due to local minima, we

introduce an adjustment to the predictors of ui,

ûi ←
ûi

1
n

∑n
i=1 ûi

and β̂0 ← β̂0 + log
(
1

n

n∑
i=1

ûi

)
(6.7)

to satisfy
∑n

i=1 ûi/n = 1. The following theorem shows that the proposed

adjustment improves the local h-likelihood prediction.

Theorem 6.1. In Poisson-gamma DNNs, suppose that β̂0 and ûi are estimates

of β0 and ui such that
1

n

n∑
i=1

ûi = 1 + ϵ

for some ϵ ∈ R. Let û∗i and β̂∗
0 be the adjusted estimators in (6.7). Then,

h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂),

and the equality holds if and only if ϵ = 0, where θ̂ and θ̂
∗

are vectors of the
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(c) PG-NN with adjustment

Figure 6.1: Predicted values of ui from two replications (marked as o and x for
each)when ui is generated from the Gamma distribution with λ = 1, n = 100,
q = 100.

same fixed parameter estimates but with different β̂0 and β̂∗
0 for β0, respectively.

Theorem 1 shows that the adjustment (6.7) improves the random effect

prediction. According to our experience, even though limited, this adjustment

becomes important, especially when the cluster size is large. Figure 6.1 is the

plot of ûi against the true ui under (n, q) = (100, 100) and λ = 1. Figure

6.1 (a) shows that the fixed effect estimator of subject-specific effects using

Poisson DNN (PF-NN) produces poor prediction of ui. Figure 6.1 (b) and

(c) show that random effect prediction (PG-NN) improves the subject-specific

prediction, and the proposed adjustment improves it further.

6.4.3 Pretraining variance components

We found that the MLE for λ = var(ui) could be sensitive to the choice of

initial value, giving a slow convergence. We propose the use of method-of-
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Figure 6.2: Learning curve for the variance component λ when (a) λ = 0, (b)
λ = 0.5, and (c) λ = 1.

moments estimator (MME) for pretraining λ,

λ̂ =

[
1

n

n∑
i=1

(ûi − 1)2

][
1

2
+

√
1

4
+
n
∑n

i µ̂
−1
i+ (ûi − 1)2

{
∑n

i (ûi − 1)2}2

]
. (6.8)

Convergence of the method-of-moments estimator (6.8) is shown in Appendix

6.8.1. Figure 6.2 shows that the proposed pretraining procedure accelerates the

convergence in various settings. The entire learning algorithm of the proposed

method is briefly described in Algorithm 2.

6.5 Experimental Studies

To investigate the performance of the Poisson-gamma DNN, we conducted

experimental studies. The five input variables xij = (x1ij, ..., x5ij)
T are gen-

erated from the AR(1) process with autocorrelation ρ = 0.5 for each i =

1, ..., n and j = 1, ..., q. The random effects are generated from either ui ∼

Gamma(λ−1, λ−1) or vi ∼ N(0, λ) where vi = logui. In normal random ef-

161



Algorithm 2 Learning algorithm for Poisson-gamma DNN via h-likelihood

Input: xij, zij

< Stage 1 >
for epoch = 0 to method-of-moments epochs do

Train w, β and v by minimizing the negative h-likelihood.
Compute method-of-moments estimator of λ.
Adjust the random effect predictors.

end for

< Stage 2 >
for epoch = 0 to maximum epochs do

Train all the fixed and random parameters by minimizing the negative
h-likelihood.
Adjust the random effect predictors.

end for

Compute MLE of λ.

fects (Lee and Nelder, 1996), it is common that the constraint E(vi) = 0 is

imposed. When λ = 0, the conditional mean µc
ij becomes the marginal mean

µm
ij . The output variable yij is generated from a Poisson distribution with the

conditional mean

µc
ij = ui · exp

{
0.2 + 0.2(cosx1ij + cosx2ij + cosx3ij) +

0.2

x24ij + 1
+

0.2

x25ij + 1

}
.

Results are based on the 100 sets of simulated data. The data consist of

q = 10 observations for n = 1, 000 subjects. For each subject, 6 observations

are assigned to the training set, 2 are assigned to the validation set, and the

remaining 2 are assigned to the test set. To evaluate the prediction perfor-
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mances, the root mean squared Pearson residuals (RMSR) for Poisson outputs

and the root mean squared errors (RMSE) for continuous outputs are often

considered,

RMSR =

√√√√ ∑
(i,j)∈test

(yij − µ̂ij)2

µ̂ijNtest
and RMSE =

√√√√ ∑
(i,j)∈test

(yij − µ̂ij)2

Ntest
,

respectively. Note that RMSE is the RMSR for continuous outputs, because

var(yij) is constant in the Gaussian distribution, whereas var(yij) = µij in the

Poisson distribution. The RMSE could be used for count outputs, whereas the

RMSR would be used for count outputs. We report both for comparison.

For comparison, we consider the following models.

• P-GLM : Classic Poisson GLM for count data using R.

• N-NN : Conventional DNN for continuous data.

• P-NN : Poisson DNN for count outputs.

• PN-GLM : Poisson-normal HGLM using lme4 (Bates et al., 2015).

• PG-GLM : Poisson-gamma HGLM using the proposed method.

• NF-NN : N-NN with fixed subject-specific effects for continuous data.

• NN-NN : N-NN with normal random effects for continuous data.

• PF-NN : P-NN with fixed subject-specific effects for count data.

• PG-NN : The proposed Poisson-gamma DNN for count data.
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P-GLM, N-NN, and P-NN are used for marginal prediction, while the oth-

ers are used for subject-specific prediction. N-NN, NF-NN, and NN-NN are

models for continuous outputs, whereas the remaining models are designed for

count outputs. For NF-NN and PF-NN, MLEs are obtained by maximizing

the conditional likelihood
∑

i,j log fθ(yij|vi). On the other hand, for PN-GLM,

PG-GLM, NN-NN, and PG-NN, subject-specific predictions are made by max-

imizing the h-likelihood.

PN-GLM is the generalized linear mixed model with random effects vi ∼

N(0, λ). Current statistical software for PN-GLM and PG-GLM (lme4 and

dhglm) cannot provide the exact MLEs because of the intractable integra-

tion for computing the marginal likelihood (6.5) using the extended likelihood

(6.3). The proposed PG-NN can be used to give exact MLEs for PG-GLM.

Among various methods for NN-NN (Lee and Lee, 2023;Mandel et al., 2021;

Simchoni and Rosset, 2021, 2023; Tran et al., 2020), we applied the state-of-

the-art method proposed by Lee and Lee (2023). All the DNNs and PG-GLMs

were implemented in Python using Keras (Chollet et al., 2015) and TensorFlow

(Abadi et al., 2015). For all DNNs, we employed a standard multi-layer per-

ceptron (MLP) consisting of 3 hidden layers with 10 neurons and leaky ReLU

activation function. We applied the Adam optimizer with a learning rate of

0.001 and an early stopping process based on the validation loss while training

the DNNs. NVIDIA Quadro RTX 6000 were used for computations.

Table 6.1 shows the average of test RMSEs and RMSRs from the experi-

mental studies. When the true model does not have random effects (G(0)), the

PG-NN is comparable to the P-NN, which should perform the best (marked by

the bold face) in terms of RMSE and RMSR. N-NN (P-NN) is also better than

164



Table 6.1: Averages of test RMSEs and RMSRs of simulation studies over 100
replications of each scenario. G(0) implies the absence of random effects, i.e.,
vi = 0 for all i. Bold numbers are the minimum values.

Distribution of random effects (λ)
Model G(0) G(0.5) G(1) N(0.5) N(1)

P-GLM RMSE 1.560 2.240 2.751 2.954 5.381
RMSR 1.046 1.501 1.839 1.747 2.804

N-NN RMSE 1.505 2.206 2.727 2.914 2.407
RMSR 1.013 1.473 1.816 1.713 1.143

P-NN RMSE 1.503 2.205 2.727 2.913 2.469
RMSR 1.011 1.470 1.812 1.711 1.161

PN-GLM RMSE 1.561 1.680 1.727 1.945 5.351
RMSR 1.048 1.106 1.105 1.118 2.772

PG-GLM RMSE 1.561 1.704 1.753 1.978 2.469
RMSR 1.048 1.123 1.106 1.139 1.161

NF-NN RMSE 1.638 1.666 1.748 2.021 4.664
RMSR 1.152 1.301 1.136 1.241 1.256

NN-NN RMSE 1.516 1.785 2.062 2.360 5.354
RMSR 1.020 1.121 1.209 1.256 2.773

PF-NN RMSE 1.629 1.634 1.653 1.854 2.183
RMSR 1.147 1.135 1.128 1.129 1.128

PG-NN RMSE 1.507 1.622 1.647 1.850 2.280
RMSR 1.016 1.079 1.084 1.061 1.085
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NF-NN and NN-NN (PF-NN and PG-NN). When the distribution of random

effects is correctly specified (G(0.5) and G(1)), the PG-NN performs the best.

Even when the distribution of random effects is misspecified (N(0.5),N(1)), the

PG-NN performs the best in terms of RMSR. This result is in accordance with

the simulation results of McCulloch and Neuhaus (2011), namely, in GLMMs,

the prediction accuracy is little affected for violations of the distributional

assumption for random effects. However, in N(1), the PF-NN performs the

best in terms of RMSE. We believe that in count data, the RMSR should be

considered as a performance measure because the variance increases with the

mean, and the RMSE is sensitive to large prediction values.

6.6 Real Data Analysis

To investigate prediction performance for clustered count outputs in real data,

we considered the following datasets:

• Epilepsy data: Epilepsy data are reported by Thall and Vail (1990)

from a clinical trial of n = 59 patients with epilepsy. The data contain

N = 236 observations with qi = 4 repeated measures from each patient

and p = 4 input variables.

• CD4 data: CD4 data are from a study of AIDS patients with advanced

immune suppression, reported by Henry et al. (1998). The data contain

N = 4612 observations from n = 1036 patients with qi ≥ 2 repeated

measurements and p = 4 input variables.

• Bolus data: Bolus data are from a clinical trial following abdominal
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surgery for n = 65 patients with qi = 12 repeated measurements, re-

ported in Henderson and Shimakura (2003). The data have N = 780

observations with p = 2 input variables.

• Owls data: Owls data are reported by Roulin and Bersier (2007),

which can be found in the R package glmmTMB (Brooks et al., 2023). The

data contain N = 599 observations and n = 27 nests with p = 3 input

variables. The cluster size qi in each nest varies from 4 to 52.

• Fruits data: Fruits data are reported in Banta et al. (2010). The data

have N = 625 observations clustered by n = 24 types of maternal seed

family with p = 3 input variables. The cluster size qi varies from 11 to

47.

For all the DNNs, a standard MLP with one hidden layer of 10 neurons and

a sigmoid activation function were employed. For longitudinal data (Epilepsy,

CD4, Bolus), the last observation for each patient was used as the test set. For

clustered data (Owls, Fruits), an observation was randomly selected as the test

set from each cluster. RMSRs and RMSEs are reported in Table 6.2. Except

for Fruits data, non-linear effects may not improve the marginal prediction

from the P-GLM. DNNs are widely acknowledged for improving predictions

in large-sized datasets. We faced challenges in finding large-sized count data,

but our analyses show that the non-linear effects improve the subject-specific

predictions, maintaining the superior performance of the PG-NN. This implies

that introducing subject-specific random effects in DNNs helps to identify the

nonlinear effects of the input variables in moderately sized data. For Fruits

data, PG-GLM performs the best in terms of RMSR. However, PF-NN has
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the best performance in RMSE. PG-NN performs comparably.

6.7 Concluding Remarks

Lee and Lee (2023) showed that the h-likelihood provides the most efficient

likelihood-based subject-specific procedure for continuous outputs (NN-NN).

For non-normal outputs, the Laplace approximation has often been used to

obtain approximate MLEs. With the new h-likelihood (6.4), both MLEs of

fixed parameters and BUPs of the random effects can be directly obtained from

the single objective function. This enables a fast end-to-end learning algorithm.

By introducing subject-specific random effects, DNNs can effectively identify

the nonlinear effects of the input variables for moderately-sized data. Though

we focus on introducing the h-likelihood procedure for clustered count data

and use the standard MLP for experimental studies and real data analyses,

the proposed method (PG-NN) can be adapted to the state-of-the-art network

architectures by using the negative h-likelihood as the loss function.

6.8 Appendix

6.8.1 Convergence of the method-of-moments estimator

As derived in Section 6.8.2, for given λ and µi+, maximization of the h-

likelihood leads to

ûi = ûi(yi) = exp (v̂i(yi)) =
yi+ + λ−1

µi+ + λ−1
.
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Table 6.2: Test RMSEs and RMSRs of real data analyses. Bold numbers are
the minimum values.

Dataset
Model Epilepsy CD4 Bolus Owls Fruits

P-GLM RMSE 4.951 36.57 4.646 5.856 39.19
RMSR 1.520 6.115 2.110 2.307 6.818

N-NN RMSE 7.522 37.51 5.071 5.850 27.93
RMSR 2.119 8.516 1.982 2.297 6.573

P-NN RMSE 6.072 39.06 4.782 6.110 30.01
RMSR 1.712 6.830 2.354 3.076 6.854

PN-GLM RMSE 3.943 24.73 3.810 7.120 38.43
RMSR 1.242 3.422 1.727 5.791 6.795

PG-GLM RMSE 4.009 37.14 3.799 6.692 28.83
RMSR 1.229 4.424 1.714 4.479 5.786

NF-NN RMSE 6.663 36.04 3.847 5.560 27.07
RMSR 1.750 6.921 1.718 2.215 5.897

NN-NN RMSE 6.744 36.53 3.872 5.539 27.80
RMSR 1.770 7.640 1.727 2.674 5.825

PF-NN RMSE 3.890 23.77 3.865 5.992 26.60
RMSR 1.238 3.558 1.816 2.951 6.430

PG-NN RMSE 3.126 23.17 3.771 5.215 28.83
RMSR 1.135 3.513 1.677 2.000 6.376
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Thus, E(ûi) = 1 and Var(ûi) = λ {1− (λµi+ + 1)−1}. Define di as

di =
ûi − 1√

1− (λµi+ + 1)−1
=
yi+ − µi+

µi+ + λ−1

√
1 + λ−1µ−1

i+

to have E(di) = 0 and Var(di) = λ for any i = 1, ..., n. Then, by the law of

large numbers,

1

n

n∑
i=1

d2i → E(d2i ) = Var(di) + E(di)2 = λ.

Note here that

1

n

n∑
i=1

d2i =

{
1

n

n∑
i=1

(ûi − 1)2

}
+

1

λ

{
1

n

n∑
i=1

(ûi − 1)2

µi+

}
.

Then, solving the following equation,

λ−

{
1

n

n∑
i=1

(ûi − 1)2

}
− 1

λ

{
1

n

n∑
i=1

(ûi − 1)2

µ̂i+

}
= 0,

leads to an estimate λ̂ in (6.8) and λ̂→ λ as n→∞.

6.8.2 Technical details

Let ṽi = arg maxvi
{log fθ(v|y)}. Then maximization of the log fθ(v|y) yields

ṽi = arg max
vi

[
qi∑
j=1

(
yijvi − µm

ij e
vi
)
+
vi − evi
λ

]
= log

(
yi+ + λ−1

µi+ + λ−1

)
,
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where yi+ =
∑qi

j=1 yij and µi+ =
∑qi

j=1 µ
m
ij . This leads to

log f(ṽ∗|y) =
n∑

i=1

{log fθ(ṽi|y) + ci(θ; yi)} = 0.

Thus, maximization of the h-likelihood gives MLEs for fixed parameters,

arg max
θ

h(θ, ṽ) = arg max
θ

ℓ(θ; y).

Furthermore, from the distribution of ui|yi,

ũi = exp(ṽi) =
yi+ + λ−1

µi+ + λ−1
= E(ui|yi)

and

µ̃c
ij = exp(ṽi) · NN(X;w,β) = µm

ij · E(ui|yi) = E(µc
ij|y)

become the BUPs of ui and µc
ij, respectively.

Proof of Theorem 1.

The adjustment (6.7) transports

û∗i = ûi/(1 + ϵ) and v̂∗i = v̂i − log(1 + ϵ).
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Since (θ̂, v̂) and (θ̂
∗
, v̂∗) have the same conditional expectation µ̂ij, equation

(6.4) yields

h(θ̂
∗
, v̂∗)− h(θ̂, v̂) =

n∑
i=1

[
v̂∗i − exp(v̂∗i )

λ̂

]
−

n∑
i=1

[
v̂i − exp(v̂i)

λ̂

]

= λ̂−1

{
n∑

i=1

(v̂∗i − v̂i)−
n∑

i=1

(û∗i − ûi)

}
= nλ̂−1 {ϵ− log(1 + ϵ)} ≥ 0,

and the equality holds if and only if ϵ = 0. Thus, h(θ̂
∗
, v̂∗) ≥ h(θ̂, v̂).
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Chapter 7

DNN for semi-parametric frailty

models via h-likelihood

7.1 Introduction

Recently, deep neural network (DNN) has provided a major breakthrough to

enhance prediction in various areas (Goodfellow et al., 2016;LeCun et al., 2015).

The DNN models allow extensions of Cox proportional hazards (PH) models

(Kvamme et al., 2019; Sun et al., 2020). Recently, subject-specific prediction of

the DNN models has been studied by including random effects in neural net-

work (NN) predictor (Mandel et al., 2021; Tran et al., 2020). However, these

DNN random-effect models have been studied for only complete data. In this

chapter, we propose a new DNN-FM. To the best of our knowledge, there is no

literature on the DNN-FM for censored survival data. Lee and Nelder (1996)

introduced the h-likelihood for the inference of general models with random

effects and Ha et al. (2001) extended it to the semi-parametric frailty mod-
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els. We reformulate the h-likelihood to obtain maximum likelihood estimators

(MLEs) for fixed unknown parameters and best unbiased predictors (BUPs)

for random frailties (Searle et al., 1992) by a simple joint maximization of the

profiled h-likelihood (Lee et al., 2017), which is constructed by profiling out

the non-parametric baseline hazard for semi-parametric DNN-FMs. Thus, the

proposed DNN-FM can be trained by using a negative profiled h-likelihood

as a loss function. Experimental studies show that the proposed method en-

hances the prediction performance of the existing DNN-Cox and FM in terms

of Brier score and C-index, which are popular predictive measures in survival

analysis.

In Section 7.2, we review the DNN-Cox model. We propose the DNN-FM

and introduce its h-likelihood in Section 7.3 and learning algorithm in Section

7.4. The experimental study is presented to compare its predictive performance

with various methods in Section 7.5. A real data analysis is in Section 7.6,

followed by concluding remarks in Section 7.7. A theoretical framework for an

online learning and all the technical details are in Appendix 7.8.

7.2 A review of DNN-Cox model

7.2.1 DNN-Cox model

Let Ti be the survival time (time-to-event) for subject i = 1, . . . , n, and let

xi = (xi1, . . . , xip)
T be a p-dimensional vector of input variables (covariates or

features). The semi-parametric Cox model has a hazard function of Ti,

λi(t|xi) = λ0(t) exp(ηi), ηi = xT
i β (7.1)
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where λ0(·) is a non-parametric baseline hazard function, the linear predictor

ηi = xT
i β is a parametric model for risk function (or risk score) of covariates

xi, and β is a vector of p-dimensional regression parameters without intercept

(or bias) term. The survival function for Ti given xi is

S(t|xi) = P (Ti > t|xi) = exp{−Λ0(t)e
ηi},

where Λ0(t) is the baseline cumulative hazard.

The Cox model (7.1) is extended to the DNN-Cox model, by relaxing the

parametric linear model ηi = xT
i β with a non-linear function of xi,

ηi =

pL∑
k=1

βkg
(L)
k (xi;w) = NN(xi;w,β), (7.2)

where NN(·) denotes neural network risk predictor of the output layer with

the last hidden layer; β = (β1, · · · , βpL)T is a vector of the output weights,

with pL number of nodes of the Lth hidden layer; and w = (wT
1 ,wT

2 , . . . ,wT
L)

T

is a combined vectorization consisting of a vector wl of the lth hidden weights.

Here, the g
(L)
k (xi;w) is the k-th node of the last hidden layer g(L)(xi;w) =

(g
(L)T
1 (xi;w), . . . , g

(L)T
pL (xi;w))T , which depends on the input variables xi and

the hidden weights w, and the last hidden layer can be expressed as the form

of compositional functions

g(L)(xi;w) = σ(L)(· · · σ(2)(σ(1)(xi;w1);w2) · · · ;wL),

where σ(l)(·) denotes the activation function of hidden layer.
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In survival analysis, the observable random variables are, for i = 1, . . . , n,

yi = min(Ti, Ci) and δi = I(Ti ≤ Ci)

where Ci is the censoring time corresponding to Ti. The DNN weights (w,β)

in (7.2) can be estimated by maximizing the Breslow’s log-likelihood (Breslow,

1972;Kvamme et al., 2019; Tarkhan and Simon, 2022),

ℓ =
∑
i

δiηi −
∑
k

d(k) log
{ ∑

i∈R(k)

exp(ηi)
}
, (7.3)

where ηi = NN(xi;w,β) is the NN predictor which also represents an output

node of the DNN-Cox model, R(k) = {i : yi ≥ y(k)} is the risk set at time y(k)
which is the kth smallest distinct event time among the yi’s, and d(k) is the

number of events at y(k).

7.2.2 Prediction measures

For censored data, the Brier score and concordance index (C-index) have been

widely used to evaluate the predictive performance of DNN-Cox model (7.2)

(Kvamme et al., 2019).

Brier score

The time-dependent Brier score is defined as

BS(t) = E {I(t)− S(t|x)}2 ,
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where BS(t) is the mean squared error of the difference between I(t) and

S(t|x). Here, I(t) is the event status at the time point t (i.e. I(t) = I(T >

t) = 1 if T > t and 0 otherwise) and S(t|x) is a model-based survival function.

The estimated Brier score (Graf et al., 1999) is given by

B̂S(t) =
1

n

n∑
i=1

ŵi(t)
{
yi(t)− Ŝ(t|xi)

}2

,

where yi(t) = I(yi > t) at a specific time point t and Ŝ(t|xi) is estimated

survival function given xi. Here, ŵi(t) is the inverse probability of censoring

weights (IPCW),

ŵi(t) =
(1− yi(t))δi

Ĝ(yi)
+
yi(t)

Ĝ(t)
,

where Ĝ(t) = P̂ (C > t) indicates the estimated survival function of censoring

time. Thus, the estimated Brier score can be viewed as the mean squared error

between the observed event status yi(t) and the predicted survival function

Ŝ(t|xi). The lower Brier score indicates a better predictive performance. For

overall predictive performance, the integrated Brier score (IBS) is widely used

with the maximum survival time tmax,

IBS =
1

tmax

∫ tmax

0

BS(s)ds.

C-index

The definition of C-index is based on the property that a survival model should

predict a shorter survival time for subjects that fail earlier and a longer survival

time for subjects that fail later. Let Ti and Tj be independent survival times

with corresponding covariate vectors xi and xj, respectively. Then the C-index
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is defined by

C = P (S(t|xi) > S(t|xj)|Ti > Tj) = P (ηi < ηj|Ti > Tj).

where ηk = NN(xk;w,β) are the NN predictors of the DNN-Cox model (7.2).

Following Harrell Jr et al. (1996), the C-index can be estimated by

Ĉ =

∑
i

∑
j δiI(yi < yj){I(η̂i > η̂j) + 0.5I(η̂i = η̂j)}∑

i

∑
j δiI(yi < yj)

,

where η̂k = NN(xk; ŵ, β̂). The range of C-index is from 0 to 1, and a larger

value indicates a better performance.

7.3 Proposed DNN for frailty model

The FMs have been introduced for prediction of clustered survival time. Con-

sider a clustered survival dataset

DN = {(yij, δij, xij), i = 1, . . . , n; j = 1, . . . , ni},

where yij = min(Tij, Cij) is the jth observation of the ith subject (or cluster),

Tij and Cij are the corresponding survival and censoring times, respectively,

and δij = I(Tij ≤ Cij) is censoring indicator, and xij = (xij1, . . . , xijp)
T is a

vector of p covariates corresponding to Tij. Here, n is the number of clusters,

ni is cluster size and N =
∑n

i=1 ni is the total sample size. The dependency

among Tij’s can be modelled via a frailty in the hazard function. Let ui denote

the unobserved frailty of the ith cluster. Then, the semi-parametric FM has
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the conditional hazard function,

λij(t|ui, xij) = λ0(t) exp(xT
ijβ)ui = λ0(t) exp(ηij), ηij = xT

ijβ + vi, (7.4)

where ηij is linear predictor and vi = logui.

7.3.1 DNN-FM

The FM (7.4) is extended to a new DNN-FM by replacing xT
ijβ with

NN(xij;w,β) =
pL∑
k=1

g
(L)
k (xij;w)βk. (7.5)

In this chapter, we assume the gamma distribution for the frailty ui with

E(ui) = 1 and var(ui) = α, which is denoted by Gamma(1/α, 1/α). Figure

7.1 presents a schematic diagram of architecture of the DNN-FM, which is

constructed by allowing for output nodes NN(xij; ŵ, β̂) and ûi from the two

separate input layers, namely input vector xij and one-hot encoding vector of

subjects zi, respectively. In the DNN-FM, subject-specific prediction can be

made by multiplying the risk predictor exp{NN(xij; ŵ, β̂)} and frailty predic-

tors ûi.

7.3.2 Construction of h-likelihood

In the FM (7.4), it is important to define the likelihood to obtain the exact

MLEs for fixed parameters and BUPs for random frailties. Let y = min(T,C),

y∗ = (y, δ), θ = (βT , α)T , and ψ be the vector of whole fixed parameters.

Under the conditional independence and non-informative censoring given vi,
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Input Layer

Hidden Layer
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NN(𝐱𝑖𝑗; ෝ𝒘, 𝜷)
Output Layer (Node #1)

Risk Prediction

NN(𝐱𝑖𝑗; ෝ𝒘, 𝜷) + 𝐳𝑖
𝑇 ො𝐯 Subject-specific Risk Prediction

One-hot encoded vector 𝐳𝑖
for random part

Input Layer

ො𝑢𝑖 = exp 𝐳𝑖
𝑇 ො𝐯

Output Layer (Node #2)

Frailty Prediction

Figure 7.1: An example of model architecture for DNN-FM.

Ha et al. (2001) proposed the use of an extended likelihood

ℓe(ψ, v; y∗, v) =
∑
i,j

log fψ(yij, δij|vi) +
∑
i

log fψ(vi), (7.6)

where

log fψ(yij, δij|vi) = δij{logλij(yij|vi)} − Λij(yij|vi)

= δij{logλ0(yij) + ηij} − Λ0(yij) exp(ηij)

is the conditional censored log-likelihood of yij and δij given vi, Λ0(·) is the

cumulative baseline hazard function, fψ(vi) is a density function of vi with the

parameter ψ and vi = log(ui). Lee and Nelder’s (1996) original h-likelihood

was aimed to obtain MLEs for all fixed parameters and good predictors for
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random effects by the joint maximization. However, their h-likelihood cannot

give an exact MLE for variance component α. In this chapter, we introduce

a new h-likelihood for the gamma FM (7.4). Consider an extended likelihood

with vc scale,

h(ψ, vc) = ℓ(ψ; y∗) + log fψ(vc|y∗), (7.7)

where ℓ(ψ; y∗) = log
∫
fψ(y∗, v)dv is the marginal log-likelihood. Given ψ, let

ṽc = arg max
vc

h(ψ, vc) = arg max
vc

fψ(vc|y∗).

From (7.7), a sufficient condition for h(ψ, vc) to give the exact MLEs for ψ is

that fψ(ṽc|y∗) is independent of ψ. Let

vci = vi exp {ai(α, δi+)} , (7.8)

where ai(α, δi+) = (δi+ + α−1) (log(δi+ + α−1)− 1)− logΓ(δi++α−1), then the

predictive likelihood becomes

log f(ṽc|y∗) =
n∑

i=1

log fψ(ṽci |y∗) =
n∑

i=1

{log fψ(ṽi|y∗)− ai(α, δi+)} = 0,

which is free from ψ. Thus, ℓ(ψ, y∗) = h(ψ, ṽc). Let h(ψ, v) be a reparame-

terization of the h-likelihood (7.7), then

h = h(ψ, v) = ℓe(ψ, v; y∗, v) + log
∣∣∣∣ dvdvc

∣∣∣∣ = h(ψ, vc),

where ℓe(ψ, v; y∗, v) is the h-likelihood (7.6) of Ha et al. (2001) and the Jacobian

term is log
∣∣ dv
dvc
∣∣ = −∑n

i=1 ai(α, δi+). Note here that h(ψ, v) ̸= ℓe(ψ, v; y∗, v).
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Given ψ, we have the BUP for u, E(u|y∗), by solving ∂h/∂v = 0 (or ∂h/∂u =

0), where u = exp(v). The joint maximization of the new h-likelihood gives

MLEs for the whole fixed parameters including variance component and BUPs

for the random frailties. Technical details are derived in Appendix 7.8.1.

7.4 Learning algorithm using the profiled h-

likelihood

For the DNN-FM, the new h-likelihood is

h = h(ψ, v) =
n∑

i=1

ni∑
j=1

[
δij{logλ0(yij) + ηij} − Λ0(yij) exp(ηij)

]
+

n∑
i=1

[
logui − ui

α
− α−1 logα− logΓ(α−1)− ai(α, δi+)

]
(7.9)

where

ηij = NN(xij;w,β) + vi

and ai(α, δi+) is given in (7.8). For eliminating the non-parametric baseline

hazard λ0(·) in (7.9), following Ha et al. (2001), we have a profiled h-likelihood,

hp = hp(θ, v) = hPL −
n∑

i=1

ai(α, δi+), (7.10)

182



where

hPL =
∑
ij

δijηij −
∑
k

d(k) log

 ∑
(i,j)∈R(k)

exp(ηij)


+

n∑
i=1

[
logui − ui

α
− logα

α
− logΓ

(
1

α

)]

is the penalized partial likelihood (Ripatti and Palmgren, 2000;Therneau et al.,

2003). Here, R(k) = {(i, j) : yij ≥ y(k)} is risk set at time y(k), and d(k) is the

number of events at y(k) which is the kth smallest distinct event times among

the yij’s. However, direct maximization of the penalized partial likelihood

cannot provide MLEs. To obtain the MLEs, Gu et al. (2004) proposed the use

of the marginal partial log-likelihood

ℓp = log
∫

exp(hPL)dv.

However, this integration is often numerically intractable. Ha et al. (2017,

2001) and Ripatti and Palmgren (2000) proposed the use of the Laplace ap-

proximation of ℓp, but it is still numerically difficult and does not give the

exact MLEs. The Laplace approximation can yield a biased estimation for

frailty models with a small cluster size or under heavy censoring (Gorfine and

Zucker, 2023; Jeon et al., 2012).

An advantage of the h-likelihood approach is that the nuisance parameters

associated with the non-parametric hazard λ0(·) can be eliminated by profiling.

Since the joint maximization of hp gives the MLEs for fixed parameters and

BUPs for random frailties, the DNN-FM can be trained by using the negative

profiled h-likelihood −hp as loss function, which contains NN(x;w,β) and ui.
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7.4.1 Local minima problem

In the FM, we impose the constraints E(ui) = 1 for identifiability. For any ϵ,

λij(t|ui, xij) = λ0(t) exp {NN (xij;w,β)}ui

= λ0(t) exp {NN (xij;w,β) + ϵ} (ui/ exp(ϵ)).

However, DNN models often encounter local minima which violates the con-

straints. This causes a computational difficulty in the DNN-FM. To prevent

poor prediction due to the local minima, we introduce an adjustment on the

predictor of ui,

ûi ←
ûi

1
n

∑n
i=1 ûi

(7.11)

to satisfy
1

n

n∑
i=1

ûi = 1.

7.4.2 ML learning algorithm

We propose a h-likelihood learning algorithm:

• Inner loop: Given α̂, find (ŵ, β̂, û) under a loss function −hp in (7.10).

• Adjustment: Transport û as in (7.11).

• Outer loop: Given (ŵ, β̂, û), find α̂ under a loss function −hp in (7.10).

This algorithm describes double loop iterative procedures with an additional

adjustment on the frailty predictors: for details, see Algorithm 3. Figure 7.2

displays a schematic diagram of the h-likelihood learning procedure of the

DNN-FM.
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ML estimation for variance α

ො𝛼 = ෞvar 𝑢𝑖
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−ℎ𝑝 = − log 𝑓𝜃
∗ 𝐲, 𝛅 𝐯 − log 𝑓𝛉 𝐯 + ∑𝑎𝑖 𝛼, 𝛅

Figure 7.2: A schematic diagram of DNN-FM fitting procedure.

Algorithm 3 H-likelihood Learning Algorithm.
Repeat until α converges:

Train the network:

ŵ, β̂, v̂← arg min
w,β,v

{−hp(w,β, α̂, v)}

return ŵ, β̂, v̂

Adjust the frailties:

ū←
∑n

i=1 exp(v̂i)/n

v̂i ← v̂i − log ū for i = 1, ..., n

return v̂

Compute variance component:

α̂← arg min
α

{
−hp(ŵ, β̂, α, v̂)

}
return α̂
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7.5 Experimental studies

To evaluate the performance of the proposed method, experimental studies are

conducted based on 100 replications of simulated data. We use the extended

forms of the IBS and C-index of FMs (Van Oirbeek and Emmanuel, 2016;

Van Oirbeek and Lesaffre, 2010) as performance measures. Details are derived

in Appendix 7.8.2.

7.5.1 Experimental design

Given ui and xij, survival times Tij are generated from the hazard function

λij(t|ui, xij) = λ0(t) exp{f(xij)}ui,

where f(xij) is an unknown true risk function of xij and λ0(t) = ϕtϕ−1 is set to

be a Weibull baseline hazard with shape parameter ϕ = 2. The DNN-FM fits

the true but unknown f(xij) by NN(xij;w,β). Here, the five input variables

xij = (x1ij, ..., x5ij)
T are generated from AR(1) process with autocorrelation

ρ = 0.5 and frailties ui are generated from gamma distribution with E(ui) = 1

and Var(ui) = α, and

f(xij) = 0.4 cos(x1ij) + 0.3 cos(x2ij) + 0.6 cos(x3ij) + 0.5x2ij · x3ij

+ 0.4/(x24ij + 1) + 0.5/(x25ij + 1).

We set the frailty variance α to be 0, 0.5, 1 and 2, where α = 0 means

the DNN-Cox model without frailty. The censoring times are generated from

an exponential distribution with parameter empirically determined to achieve
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approximately two right censoring rates, low (around 15%) and high (around

45%).We set the total sample size N = 8000 with (n, ni) = (1000, 8) for all i.

Thus, the dataset contains 1000 subjects and each subject has 8 observations.

For each subject i, we assign 4 observations (j = 1, 2, 3, 4) to the training set,

2 observations (j = 5, 6) to the validation set and the remaining 2 observations

(j = 7, 8) to the test set.

For comparison, we consider the fitting of the following four models.

• Cox: Cox proportional hazard model

• DNN-Cox: DNN-Cox proportional hazard model

• FM: Gamma frailty model

• DNN-FM: The proposed DNN-frailty model

The network architecture and hyper-parameters are tuned by using the vanilla

DNN-Cox. As an optimal result, we set all the DNN models to have 3 hidden

layers of 10 nodes with relu activation function. We use the full batch and

AdamW optimizer with learning rate 0.01. Early stopping with validation

loss is employed to prevent overfitting. The Cox model is implemented using

lifelines package in Python, gamma FM is implemented using frailtyEM

(Balan and Putter, 2019) package in R, and the DNN models (DNN-Cox, DNN-

FM) are implemented using Python based on Keras (Chollet et al., 2015) and

Tensorflow (Abadi et al., 2015).
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7.5.2 Experimental results

For evaluation of the prediction performances, IBS (7.12) and C-index (7.13)

in Appendix 7.8.2 are computed on the test set. Figure 4 shows box plots of

IBS for each model under 15% censoring. Figure 7.3 (a) shows that all models

have comparable results when there is no frailty. Even if there is no frailty

(α = 0), the proposed DNN-FM model is still comparable to the vanilla DNN-

Cox, which should have the smallest IBC. Figure 7.3 (b), (c) and (d) show that

the DNN-FM has the smallest IBS values when frailty is presented. Figure 7.4

shows box plots of C-index for each model under 15% censoring. When there

is no frailty term, Figure 7.4 (a) shows that the two DNN models (DNN-Cox,

DNN-FM) have comparable results, but that the two non-DNN models (Cox,

FM) give poor results, which means they do not capture the nonlinear effect

of input variables in terms of C-index. As expected, Figure 7.4 (b), (c) and (d)

show that the DNN-FM has the highest C-index. Next, Figures 7.5 and 7.6

present box plots of IBS and C-index under 45% censoring, respectively and

they overall show similar trends to Figures 7.3 and 7.4. However, the trends in

Figure 7.5 (a) are somewhat different. That is, the two standard models (Cox

and FM) in Figure 7.5 (a) give poor results as compared to those in Figure

7.3 (a), meaning that under 45% censoring, they do not again capture the

nonlinear effect of input variables in terms of IBC.

Mean and standard deviation of IBS and C-index for each model with two

censoring rates are summarized in Table 7.1. This confirms that the DNN-FM

outperforms three existing models (Cox, DNN-Cox and FM). Table 7.2 reports

mean and standard deviation of estimated frailty variance (α̂) from train sets

under 100 replications of simulated data. When α = 0, the true model does
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Figure 7.3: 15% censoring: Box plot of IBS from 100 replications for each
frailty variance, var(u) = α.
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Figure 7.4: 15% censoring: Box plot of C-index from 100 replications for each
frailty variance, var(u) = α.
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Figure 7.5: 45% censoring: Box plot of IBS from 100 replications for each
frailty variance, var(u) = α.
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Figure 7.6: 45% censoring: Box plot of C-index from 100 replications for each
frailty variance, var(u) = α.
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Table 7.1: Mean (standard deviation) of IBS and C-index from 100 replications
for each frailty variance α.

Censoring Measure α Cox DNN-Cox FM DNN-FM

15%

IBS

0
0.062 0.056 0.062 0.056
(0.013) (0.012) (0.013) (0.012)

0.5
0.058 0.055 0.053 0.048
(0.007) (0.006) (0.006) (0.006)

1
0.077 0.075 0.058 0.053
(0.004) (0.004) (0.003) (0.003)

2
0.090 0.090 0.046 0.042
(0.005) (0.005) (0.003) (0.004)

C-index

0
0.499 0.615 0.499 0.618
(0.009) (0.008) (0.007) (0.008)

0.5
0.500 0.596 0.627 0.675
(0.008) (0.009) (0.008) (0.008)

1
0.499 0.580 0.697 0.730
(0.008) (0.009) (0.008) (0.007)

2
0.502 0.559 0.779 0.802
(0.007) (0.009) (0.006) (0.005)

45%

IBS

0
0.151 0.139 0.151 0.139
(0.003) (0.003) (0.003) (0.003)

0.5
0.160 0.151 0.147 0.137
(0.003) (0.003) (0.003) (0.003)

1
0.176 0.169 0.141 0.133
(0.003) (0.003) (0.003) (0.003)

2
0.191 0.188 0.117 0.112
(0.003) (0.004) (0.004) (0.004)

C-index

0
0.498 0.616 0.498 0.617
(0.011) (0.009) (0.011) (0.009)

0.5
0.500 0.599 0.619 0.667
(0.011) (0.010) (0.011) (0.009)

1
0.498 0.587 0.689 0.720
(0.009) (0.011) (0.009) (0.008)

2
0.502 0.567 0.772 0.789
(0.009) (0.010) (0.007) (0.006)
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Table 7.2: Mean and standard deviation of estimated frailty variance α̂ from
100 replications.

Censoring α FM DNN-FM

15%

0 0.006 (0.009) 0.008 (0.010)
0.5 0.390 (0.035) 0.485 (0.050)
1 0.823 (0.051) 1.000 (0.062)
2 1.711 (0.084) 2.043 (0.094)

45%

0 0.008 (0.012) 0.011 (0.014)
0.5 0.417 (0.047) 0.496 (0.054)
1 0.859 (0.060) 0.995 (0.090)
2 1.748 (0.102) 2.065 (0.123)

not have frailties, and the estimates of α under FM and DNN-FM with two

censoring rates (15% and 45%) are closed to zero. As α increases, the MLE of

α under FM is downward biased, whereas that under DNN-FM is consistent.

As expected, we see that the standard deviations of α̂ tend to increase as α or

censoring rate increases.

7.6 Multi-center bladder cancer data

We illustrate the DNN-FM method using a bladder cancer multi-center trial

conducted by the EORTC (Sylvester et al., 2006). We consider 392 bladder-

cancer patients from 21 centers that participated in EORTC trial 30791. The

primary endpoint (event of interest) was time (day) to the first bladder can-

cer recurrence from randomization. Of the 392 patients, 200 (51.02%) had

recurrence of bladder cancer (event of interest) and 81 (20.66%) died prior to

recurrence (a competing event). 111 (28.32%) patients who were still alive and

without recurrence were censored at the date of the last available follow-up.
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Following Park and Ha (2019), we regarded the 81 competing risk events as

censored, resulting that censoring rate is 49.98% with 192 censored patients.

The data are unbalanced due to different number of patients in each center.

In this chapter, we used the data with 373 patients from 16 centers which have

more than 5 patients in each center. The numbers of patients per center varied

from 6 to 78, with mean 23.3 and median 17.5. In each center, we used two

randomly selected patients as test set, another two randomly selected patients

as validation set, and the remaining patients as training set. We consider the

following 12 categorical input variables (x):

• Chemotherapy (main covariate): yes, no

• Age: less than or equal to 65, greater than 65

• Gender: male, female

• Prior recurrent rate: primary, less than 1/yr, greater than 1/yr

• Number of tumors: single tumor, 2-7 tumors, more than 7 tumors

• Tumor size: less than 3cm, greater than or equal to 3cm

• T category: Ta=0, T1=1

• Carcinoma in situ: yes, no

• G grade: G1, G2, G3

Table 7.3 presents IBS and C-index on the test set of the bladder cancer data.

The DNN-FM shows the smallest IBS and the highest C-index which indicate

the best prediction performance, and DNN-Cox outperforms the two non-DNN
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Figure 7.7: Time-dependent Brier score for four survival prediction models on
the test set of the bladder cancer data.

models (Cox and FM). In the train set, the estimated frailty variances are small

with α̂ = 0.069 for DNN-FM and α̂ = 0.086 for FM, leading to similar values

of IBS and C-index from the Cox and FM. Thus, in this dataset the nonlinear

effect of input variables are important in predicting the survival probability of

patients in each center. Figure 7.7 shows the time-dependent Brier scores on

the test set under the four models. Here, the Brier scores of the four models

are similar at almost time points before 3 years. However, after 3 years, the

Brier scores of the proposed DNN-FM are always noticeably lower than other

three models. Accordingly, the DNN-FM improves prediction of the DNN-Cox

model.
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Table 7.3: IBS and C-index for four survival prediction models on the test set
of the bladder cancer data

Measure Cox DNN-Cox FM DNN-FM
IBS 0.189 0.183 0.187 0.168

C-index 0.675 0.682 0.668 0.693

7.7 Concluding remarks

We have presented a new DNN-FM. The joint maximization of its profiled h-

likelihood provides MLEs for fixed parameters and BUPs for random frailties.

Our empirical results demonstrate that the proposed method improves the

prediction performance of the existing DNN-Cox and FMs in terms of IBS

and C-index. The specification of the gamma frailty distribution in semi-

parametric FMs is insensitive to the estimates of fixed regression parameters

if the variance of frailty is not very large (Gorfine and Zucker, 2023; Ha et al.,

2017, 2001; Hsu et al., 2007). Extension of the proposed method to other

frailty distribution such as parametric (e.g. log-normal) or non-parametric

distribution (Chee et al., 2021) would be an interesting further work. The

proposed DNN-FM can be trained for very large clustered survival data by

using an online learning, whose theoretical framework is in Appendix 7.8.3.
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7.8 Appendix

7.8.1 Derivation for the predictive likelihood

Recall that y∗ = (y, δ), where the (i, j)th component of y is yij = min(Tij, Cij).

Note that ṽ is given by

ṽ = arg max
v

{log fψ(v|y∗)}

= arg max
v

{log fψ(y∗|v) + log fψ(v)− log fψ(y∗)}

= arg max
v

{
n∑

i=1

ni∑
j=1

(
δijvi − Λ

(m)
ij evi

)
+

n∑
i=1

(
vi − evi
α

)}

= arg max
v

n∑
i=1

{
vi
(
δi+ + α−1

)
− evi

(
Λi+ + α−1

)}
= log

(
δi+ + α−1

Λi+ + α−1

)

where δi+ =
∑ni

j=1 δij, Λi+ =
∑ni

j=1 Λ
(m)
ij =

∑ni

j=1 Λ0(yij) exp(f(xij)). This

implies that

ũi = exp(ṽi) =
δi+ + α−1

Λi+ + α−1
= E(ui|y∗

i )

is the BUP (Searle et al., 1992) for ui(= exp(vi)) in sense that it gives minimum

mean squared error of prediction (best) and E(ũi − ui) = 0 (unbiased) with

E(ũi) = E(ui) = 1, since

ui|y∗
i ∼ Gamma

(
δi+ + α−1, (Λi+ + α−1)−1

)
,

which is easily derived from the fact that the gamma distribution is conjugate

of the frailty model. From the density function of gamma distribution above,
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the predictive likelihood at ṽc is given by

log f(ṽc|y∗) =
n∑

i=1

log fψ(ṽci |y∗) =
n∑

i=1

{log fψ(ṽi|y∗)− ai(α, δi+)}

=
n∑

i=1

{log fψ(ũi|y∗) + log ũi − ai(α, δi+)} = 0,

where ũi = exp(ṽi).

7.8.2 Evaluation measures for DNN-FM

The Brier score can be extended to the DNN-FM as a conditional form:

BSc(t) = E {Y (t)− S(t|u, x)}2 ,

where S(t|u, x) is the conditional survival function given u, and the estimated

conditional BS (Van Oirbeek and Emmanuel, 2016) is given by

B̂Sc(t) =
1

N

∑
ij∈DN

ŵij(t)
{
yij(t)− Ŝ(t|ûi, xij)

}2

, (7.12)

where N =
∑N

i=1 is the total sample size and the IPCW is

ŵij(t) =
(1− yij(t))δij

Ĝ(yij)
+
yij(t)

Ĝ(t)
, with Ĝ(t) = P̂ (C > t).

The BS can be also summarized as the integrated Brier score (IBS).

The C-index can be also extended to the DNN-FM with clustered survival

data (Van Oirbeek and Lesaffre, 2010). For the clustered data, we consider

the overall conditional C-index, i.e., the concordant probability defined for all
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comparable pairs; it can distinguish two different types of pairs, within-cluster

pairs and between-cluster pairs, i.e. pairs whose members belong to the same

cluster or to different clusters, respectively. Thus, the overall C-index (CO)

can be split up into a between-cluster C-index (CB) and a within-cluster C-

index (CW ). Let i = 1, . . . , n define the cluster and let ij be the subset j of

the cluster i (j = 1, . . . , ni). We also denote by ij and ij′ two patients from

the same cluster i and by ij and i′j′ two patients from two different clusters

i and i′ (i ̸= i′). For simplicity, we consider no ties, even if it can handle

similarly to the case in Section 7.2.2 with presence of ties. Then the estimated

within-cluster C-index (ĈW ) is given by

ĈW =
1

n

n∑
i=1

[∑ni

j=1

∑ni

j′=1 δijI(yij < yij′)I
(
η̂
(m)
ij > η̂

(m)
ij′

)
∑ni

j=1

∑ni

j′=1 {δijI(yij < yij′)}

]
,

where η̂
(m)
ij = NN(xij; ŵ, β̂) and the frailty terms are not included directly

in the calculation of the within-cluster concordance since they are the same

for the compared patients in each pair. Next, the estimated between-cluster

C-index (ĈB) considers only comparison between patients of different clusters

and includes the estimated frailty terms; it is given by

ĈB =

∑n
i=1

∑ni

j=1

[∑n
i′=1

∑n′
i

j′=1 δijI(yij < yi′j′)I (η̂ij > η̂i′j′)

]
∑n

i=1

∑ni

j=1

[∑n
i′=1

∑n′
i

j′=1 {δijI(yij < yi′j′)}
] ,

where η̂ij = η̂
(m)
ij + v̂i = NN(xij; ŵ, β̂)+ v̂i and v̂i = log ûi. Thus, the estimated

overall C-index (ĈO) can be expressed as a weighted mean of ĈB and ĈW
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(Van Oirbeek and Lesaffre, 2010), given by

ĈO =
nT,comp

nW,comp

ĈW +
nT,comp

nB,comp

ĈB, (7.13)

where nT,comp is the number of comparable pairs, and nW,comp and nB,comp are

the number of comparable within-and between-cluster pairs, respectively. Note

that ĈB can be easily calculated based on the function, concordance-index,

with a Python library lifelines.

7.8.3 Online learning for the DNN-FM

Since the loss function of the DNN-Cox model does not naturally decouple, it

causes computational difficulties in large data sets. To overcome this difficulty,

Tarkhan and Simon (2022) proposed an online framework. In this section, we

extend the online framework to DNN-FM by a simple modification (7.14) of

hp in (7.10).

Let Ds be a set of random samples of size si ≥ 0 drawn from the popu-

lation of each patient (or cluster) i = 1, ..., n, where si(≤ ni) are non-negative

integers. Under the assumption of no ties and no censoring, define the profiled

h-likelihood from the mini-batch Ds as

h(s)p =
∑
i:si>0

si∑
j=1

ηij − log


∑

(k,l)∈R(s)
ij

exp(ηkl)

+
vi − exp(vi)

niα
+ ci(α, ni)

 ,
(7.14)

where ci(α, ni) = {−α−1 logα − logΓ(α−1)− ai(α, ni)}/ni and R
(s)
ij = {(k, l) :

ykl ≥ yij and (i, j, k, l) ∈ Ds} is the risk set at the (i, j)th ordered failure
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time yij. Note here that profiled h-likelihood (7.14) from the mini-batch gives

h
(s)
p (θ, v) = hp(θ, v) when Ds = Dn. Let U (s)

β (θ, v), U (s)
α (θ, v), and U

(s)
v (θ, v)

be the score functions of profiled h-likelihood from Ds with respect to β, α,

and v, respectively,

U
(s)
β (θ, v) = ∂h

(s)
p (θ, v)
∂β

, U (s)
α (θ, v) = ∂h

(s)
p (θ, v)
∂α

, U (s)
v (θ, v) = ∂h

(s)
p (θ, v)
∂v .

Then, if si > 0 for some i and sj = 0 for all j ̸= i, we have the following

Theorem 7.1.

Theorem 7.1. Let θ∗ = (β∗, α∗) be the vector of true values of fixed parameters

and ṽ be the mode of profiled h-likelihood at θ = θ∗, then

E
[
U

(s)
β (θ∗, ṽ)

]
= 0 and E

[
U (s)
α (θ∗, ṽ)

]
= 0.

Remark 1: Tarkhan and Simon (2022) studied the online learning framework

for the DNN-Cox model. Theorem 7.1 extends the framework to the DNN-FM,

with restriction that a mini-batch should be sampled within a cluster.

Theorem 7.2. Let v∗ be the vector of realized values of random parameters

(i.e. log-frailties), then

E
[
U (s)

v (θ∗, v∗)
]
→ 0 as ni →∞ for all i.

Remark 2: When the cluster size ni approaches infinity for all i, Theorem 7.2

shows that the frailty predictors converge in probability to their true realized

values. It implies that the frailty predictors approach the fixed effect estimators

of v of the Cox model with fixed parameters v. Therefore, the online learning
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framework of Tarkhan and Simon (2022) can be directly used for DNN-FM

when ni →∞. In this case, mini-batches can be drawn from multiple clusters.

7.8.4 Proofs

Proof of Theorem 1

(a) Here, it is enough to consider

h
(s)
1 (θ, v) =

∑
i:si>0

si∑
j=1

ηij − log


∑

(k,l)∈R(s)
ij

exp(ηkl)


 ,

since β does not involve the remaining terms of profiled h-likelihood. Here,

ηij = η
(m)
ij + vi and η(m)

ij = η(m)(xij;β) = NN(xij;w,β). Analogous to Tarkhan

and Simon (2022), we define a counting process dNij(t) as

∫ b

a

g(t)dNij(t) = g(tij)I(tij ∈ [a, b]),

and define dN (s)(t) =
∑

i:si>0

∑si
j=1 dNij(t) to be a counting process for failure

times over all patients in Ds under the assumption that the failure time process

is absolutely continuous with respect to Lebsegue measure on time, which

implies that there is no ties at any time t. Then, h(s)1 (θ, v) can be expressed

as

h
(s)
1 (θ, v) =

∑
i:si>0

si∑
j=1

ηij −
∑
i:si>0

si∑
j=1

∫ τ

0

log


∑

(k,l)∈R(s)
ij

Mkl(t) exp(ηkl)

 dNij(t),
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where τ is the duration of the study, and its derivative is

U
(s)
β (θ, v) = ∂h

(s)
1 (θ, v)
∂β

=
∑
i:si>0

si∑
j=1

η′(xij;β)−
∑
i:si>0

si∑
j=1

∫ τ

0

∑
k,l

wkl(θ, v)η′(xkl;β)dNij(t)

=
∑
i:si>0

si∑
j=1

η′(xij;β)−
∑
i:si>0

si∑
j=1

∫ τ

0

wij(θ, v)η′(xij;β)dN
s(t),

where η′(xij;β) is the gradient of η(m)(xij;β) with respect to β,

wij(θ, v) =
Mij(t) exp{η(m)(xij;β) + vi}∑
k,lMkl(t) exp{η(m)(xkl;β) + vi}

is a weight proportional to the hazard of failure and Mij(t) is an indicator

representing whether ij is at risk at time t, i.e., tij ≥ t. Thus, the score

function U
(s)
β (θ∗, ṽ) is given by

U
(s)
β (θ∗, ṽ) =

∑
i:si>0

si∑
j=1

η′(xij;β
∗)−

∑
i:si>0

si∑
j=1

∫ τ

0

wij(β
∗, ṽ)η′(xij;β

∗)dN s(t),

and it is enough to show that E(U (s)
β (θ∗, ṽ)) = E(E(U

(s)
β (θ∗, ṽ)|v = v∗)) = 0.

As in Tarkhan and Simon (2022), we have

E

(∑
i:si>0

si∑
j=1

η′(xij;β
∗)
∣∣∣v = v∗

)
=
∑
i:si>0

si∑
j=1

∫ τ

0

E (wij(β
∗, v∗)η′(xij;β

∗)dN s(t)) ,
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Then the score function becomes

E(U
(s)
β (θ∗, ṽ)|v = v∗)

= E

(∑
i:si>0

si∑
j=1

η′(xij;β
∗)−

∑
i:si>0

si∑
j=1

∫ τ

0

wij(β
∗, ṽ)η′(xij;β

∗)dN s(t)

)

=
∑
i:si>0

si∑
j=1

∫ τ

0

E [wij(β
∗, v∗)η′(xij;β

∗)dN s(t)]

−
∑
i:si>0

si∑
j=1

∫ τ

0

E [wij(β
∗, ṽ)η′(xij;β

∗)dN s(t)|v = v∗]

=
∑
i:si>0

si∑
j=1

∫ τ

0

η′(xij;β
∗)E [{wij(β

∗, v∗)− wij(β
∗, ṽ)}dN s(t)|v = v∗] .

If the mini-batch is sampled within the i-th cluster only,

wij(β
∗, v∗)− wij(β

∗, ṽ)

=
Mij(t) exp{η(m)(xij;β

∗) + v∗i }∑si
l=1Mil(t) exp{η(m)(xil;β

∗) + v∗i }
− Mij(t) exp{η(m)(xij;β

∗) + ṽi}∑si
l=1Mil(t) exp{η(m)(xil;β

∗) + ṽi}

=
Mij(t) exp{η(m)(xij;β

∗)}∑si
l=1Mil(t) exp{η(m)(xil;β

∗)}
− Mij(t) exp{η(m)(xij;β

∗)}∑si
l=1Mil(t) exp{η(m)(xil;β

∗)}

= 0,

which leads to E(U (s)
β (θ∗, ṽ)) = 0.

(b) The score function with respect to α is

U (s)
α (θ, v) = ∂h

(s)
p (θ, v)
∂α

=
si
ni

∂

∂α

[
logui − ui

α
− logα

α
− logΓ

(
α−1
)
− ai(α, ni)

]
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where ai(α, ni) = (ni + α−1) {log (ni + α−1)− 1} − logΓ (ni + α−1) . Since

ui|y∗
i ∼ Gamma

(
δi+ + α−1, (Λi+ + α−1)−1

)
and ũi = ũi(α) = (ni + α−1)/(Λi+ + α−1) = E(ui|y∗

i ),

U (s)
α (θ∗, ṽ) = U (s)

α (θ, v)|θ=θ∗,v=ṽ

=
si
ni

1

α2

[
(ui − logui − 1) + log (αni + 1)− ψ

(
ni +

1

α

)
+ ψ

(
1

α

)] ∣∣∣
θ=θ∗,v=ṽ

=
si
ni

1

α∗2

[
(ũi − log ũi − 1) + log (α∗ni + 1)− ψ

(
ni +

1

α∗

)
+ ψ

(
1

α∗

)]
=
si
ni

1

α∗2

[
ũi − 1 + log

(
Λi+ +

1

α∗

)
− log

(
1

α∗

)
− ψ

(
ni +

1

α∗

)
+ ψ

(
1

α∗

)]
=
si
ni

1

α∗2

[
E(ui|y∗)− 1− E(logui|y∗)− log

(
1

α∗

)
+ ψ

(
1

α∗

)]

where ψ(·) is the digamma function. Thus, we have

E
[
U (s)
α (θ∗, ṽ)

]
=
si
ni

1

α∗2

[
E(ui)− 1− E(logui)− log

(
1

α∗

)
+ ψ

(
1

α∗

)]
= 0

since E(ui) = 1 and E(logui) = ψ(1/α∗) + log(α∗).

Proof of Theorem 2

Let zij be the one-hot encoded vector of cluster number, so that zTijv = vi, then

the predictor ηij can be expressed as ηij = η(m)(xij;β) + vi = η∗(xij, zij;β, v).

For example,

ηij = xT
ijβ + vi = (xT

ij, zTij)(θ, v).
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Define h(s)1 (θ, v) as

h
(s)
1 (θ, v) =

∑
i:si>0

si∑
j=1

ηij − log


∑

(k,l)∈R(s)
ij

exp(ηkl)


 ,

then the profiled h-likelihood in (7.14) can be expressed as

h(s)p (θ, v) = h
(s)
1 (θ, v) +

∑
i:si>0

si∑
j=1

[
vi − exp(vi)

niα
+ ci(α, ni)

]
.

Thus, h(s)1 (θ, v) is equivalent to the log-partial likelihood (Tarkhan and Simon,

2022) when v is treated as the fixed parameters, and the remaining terms does

not depend on β. Therefore, by the results of Tarkhan and Simon (2022),

E
[
U

(s)
β (θ∗, v∗)

]
= 0,

and

E
[
U (s)

v (θ∗, v∗)
]
= E

[∑
i:si>0

si∑
j=1

∂

∂v

[
vi − exp(vi)

niα
+ ci(α, ni)

]]
θ=θ∗,v=v∗

.

When ni →∞,

∂

∂vi

[
vi − exp(vi)

niα∗ + ci(α
∗, ni)

]
=

1

ni

[
1− exp(v∗i )

α∗

]
→ 0.

Thus,

E
[
U (s)

v (θ∗, v∗)
]
→ 0.
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국문초록

관측할수없는변량효과에관한통계적추론

이논문은관측할수없는변량효과에대한통계적추론에관련된여섯개

의주제로구성되어있으며,각각의주제는관측할수없는변량에관한정보를

갖고있는확장된가능도(extended likelihood)를중심으로연결되어있다. 전

반부의두주제는신뢰도(confidence) 이론에관한내용으로,신뢰분포의밀도

함수(confidence density)를확장된가능도로해석하여,신뢰도에관한이론적

성질을규명하였다. 후반부의네주제는특수한스케일에서의확장된가능

도로정의되는계층적가능도(hierarchical likelihood)에 관한이론적성질과

딥러닝으로의확장및응용에관한내용을다룬다.

첫번째 주제에서는 관측된 신뢰구간에 대해 인식론적 신뢰도(epistemic

confidence)를 정의하고이를계산하기위한방법을제시하였다. 또한, 빈도

주의적관점에서정의되는신뢰도가갖는 relevant subset 문제를 Ramsey-De

Finetti의 Dutch book 논의에 betting market의존재를도입함으로써설명하

고, 인식론적신뢰도가이러한문제로부터자유로울수있음을보였다. 두번

째주제에서는 Stein의역설과인공위성충돌문제를통해신뢰분포가특정

지점에서 point mass를갖는문제를새로운관점에서해석하여, 역설적으로

여겨지던 point mass의존재가신뢰분포의핵심적인성질을유지하도록만

들어주는데중요한역할을한다는것을밝혔다. 이와더불어, 제안한형태의

신뢰분포가확률형태의추론이갖는근본적인한계점으로지적된거짓신뢰

(false confidence) 문제에서 (적어도목표가설에한해)자유롭다는것을밝히

고,기존의다른방법론들과달리 Stein 문제및인공위성충돌문제에서적정

신뢰도를유지할수있음을보였다.
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세번째주제에서는계층가능도를새롭게정의하고이론적성질을규명하

였다. 새로운계층가능도는고정효과의최대가능도추정량과변량효과의

점근적최소분산불편추정량을제공할수있으며,기존의계층가능도가갖고

있던이론적모호성을해소할수있다. 마지막세주제는새롭게정의한계층

가능도를기반으로한딥러닝모형을다루고있다. 대부분의딥러닝모형들이

데이터의독립성을암묵적으로가정하고있지만,실제데이터는시공간적상

관관계를갖는경우가많다. 딥러닝모형에변량효과를도입함으로써이러한

문제를해결할수있으며, 계층가능도기반접근법은기존의방법론에비해

여러가지장점을갖는다. 네번째주제에서는시공간상관관계를갖는연속형

데이터를다루기위한딥러닝모형을다루었고, 다섯번째 주제에서는비정

규변량효과를갖는가산형데이터를다루기위한딥러닝모형을다루었다.

여섯번째주제에서는군집화된절단자료를분석하기위한계층가능도기반

준모수적(semi-parameteric) 접근법에대해다루었다. 세 주제모두, 제안한

방법을통해딥러닝모형에변량효과를도입함으로써기존방법론의예측

성능을향상시킬수있었다.

주요어: 변량효과,계층가능도,딥러닝,신뢰도,인식론적신뢰도,신뢰분포,

반복측정자료,시공간자료,생존자료분석,프레일티모형

학번: 2015-20310
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