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Abstract

The Bayesian Mallows Rank Model for Individual Recommendation

Taeyoung Chang
Department of Statistics

The Graduate School
Seoul National University

We introduce the Bayesian Mallows rank model suggested by Vitelli et al. (2018),
which is utilized for analyzing ranking data. We observe how it works for the basic
setting where complete ranking data are given and how it can be extended to more
general setting. It leads to the part that explains how individual recommendation
works well via this method. In a simulation to predict missing individual preference,
our recommendation model shows better accuracy than random draw. We apply our
approach to a movie rating data of individual users.
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1 Introduction

In recent years, analyzing rank or preference data (for example, movies, music, restau-
rants) has been receiving much attention. Vitelli et al. [2018] developed the Bayesian
framework for inference in the Mallows rank model which is among the most successful
approaches to analyze rank data. The main advantage of the Bayesian approach is that
probabilistic interpretation for the result of the analysis is available.

In Vitelli’s paper, the authors wrote that typical tasks for rank or preference data are
given as the following :

(i) Summarize multiple individual rankings to estimate the consensus ranking

(ii) Partition the assessors into clusters each sharing a consensus ranking of the items

(iii) Predict the ranks of unranked items at the individual level

The main interest of this paper lies in the third task. We suggest an individual recommen-
dation system exploiting the Bayesian Mallows rank model.

In sections 2.1 and 2.2, we introduce the Bayesian Mallows model for rank data and
how the MCMC algorithm for the posterior can be constructed. In section 2.3, we describe
a mixture model to handle the heterogeneity of assessors. In section 2.4, we discuss the
method to approximate the partition function in case of the exact partition function is not
available. In section 3, we extend the Bayesian Mallows approach to partial rankings using
data augmentation techniques and suggest an individual recommendation system utilizing
the model. In section 4.1, a simulation for measuring the accuracy of our recommendation
model for the case where the top-k ranking is performed. Section 4.2 is dedicated to the
application of our recommendation model to a movie rating data of individual users.

2 Basic Model

2.1 Mallows Rank Model

For the elementary setting, we denote n as the number of items and N as the number
of assessors. Define Rij as the rank of the i-th item assessed by the j-th assessor. Then
define an n-dimensional permutation vector

Rj = (R1j , R2j , · · · , Rnj) ∈ Pn

where Pn is a set of all n-dimensional permutation vectors. Then we can say that Rj

denotes the ranking vector of assessor j for all n items.
For measuring the distance between two ranking vectors, we shall use Footrule distance

or Spearman’s distance. We define it as

d(· , ·) : Pn × Pn −→ [0,∞)

where for the Footrule distance it is the same as ℓ1 distance while for the Spearman’s
distance it is equivalent to the square of ℓ2 distance in the Euclidean space.
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We can observe that those distances are right-invariant distances so that for any rank-
ing vector r and ρ, it holds that d(r,ρ) = d(rρ−1,1n) where r 7→ rρ−1 is a relabelling
map by ρ and 1n is defined as (1, 2, · · · , n). Note that both the Footrule distance and
Spearman’s distance are right-invariant.

As the main model, we shall introduce the Mallows rank model. It is a class of non-
uniform distribution for a ranking vector r on Pn given as below :

P (r|α,ρ) = Zn(α,ρ)
−1 exp

{
− α

n
d(r,ρ)

}
I(r ∈ Pn)

Here, we have two parameters ρ∈Pn and α > 0. ρ is the latent consensus ranking while
α represents the level of agreement between assessors so that as α gets larger, randomly
generated ranking r’s aggregate more to ρ. In short, ρ is similar to the location parameter
µ and α is similar to the precision parameter τ = 1/σ2 in normal distribution N (µ, σ2)
Note that

Zn(α,ρ) =
∑
r∈Pn

exp
{
− α

n
d(r,ρ)

}
is called as the partition function.

Under the right-invariant distance assumption, the partition function Zn(α,ρ) no
longer depends on ρ so we can denote it as Zn(α). The reason can be shown below :

Zn(α,ρ) =
∑
r∈Pn

exp
{
− α

n
d(r,ρ)

}
=

∑
r∈Pn

exp
{
− α

n
d(rρ−1,1n)

}
=

∑
r′∈Pn

exp
{
− α

n
d(r′,1n)

}
=

∑
r∈Pn

exp
{
− α

n
d(r,1n)

}
= Zn(α)

Hence, from now on, we will denote the partition function as Zn(α).
Since we exploit the Bayesian approach, we need to assume prior distributions for

parameters ρ and α. For ρ, we employ the uniform prior π(ρ) = 1
n! I(ρ ∈ Pn) and for the

scale parameter, we use exponential prior π(α|λ) = λe−λα with a fixed value close to zero
assigned for λ.

By the Bayes theorem, the posterior distribution for ρ and α given N observed ranks
R1, · · · ,RN satisfies the below :

P (ρ, α|R1, · · · ,RN ) ∝ π(ρ)π(α)

Zn(α)N
exp

{
− α

n

N∑
j=1

d(Rj ,ρ)
}

2.2 Metropolis-Hastings Algorithm for The Posterior

Our purpose is to obtain samples from the posterior above. For this, we shall take
advantage of the Metropolis-Hastings algorithm.

A general form of the Metropolis-Hastings algorithm is as follows: (Hoff [2009]) suppose
the target probability distribution to approximate is p(x) for a random variable X .

(a) Given a current value x(s) of X, generate x∗ from a proposal distribution J(x∗|x(s))
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(b) Compute the acceptance ratio

r =
p(x∗)

p(x(s))
/
J(x∗|x(s))
J(x(s)|x∗)

(c) set x(s+1) to x∗ with probability min(1, r)

Back to the mallows rank model, to obtain samples from the posterior distribution, we
shall alternate between two steps below :

(1) Given ρ and α , update ρ by proposing ρ′

(2) Then, given α and ρ , update α by proposing α′

For updating ρ, we utilize Leap-and-Shift (L&S) proposal for the proposal distribution
of the Metropolis-Hastings algorithm. It proceeds as the below :

(i) Draw a random number u ∼ Unif{1, 2, · · · , n}

(ii) Define S ⊂ {1, 2, · · · , n} by S =
[
max(1, ρu − L),min(n, ρu + L)

]
− {ρu}

(iii) Draw a random number v ∼ Unif(S)

(iv) Let ρ∗ ∈ {1, 2, · · · , n}n have elements

{
ρ∗i = ρi i ∈ {1, 2, · · · , n} − {u}
ρ∗u = v

(v) Let ∆ = ρ∗u − ρu. Note that ∆ ̸= 0

(vi) Define the proposed ρ′ ∈ Pn by below :

(a) If ∆ > 0 then 
ρ′u = ρ∗u
ρ′i = ρi − 1 if ρu < ρi ≤ ρ∗u
ρ′i = ρi otherwise

(b) If ∆ < 0 then 
ρ′u = ρ∗u
ρ′i = ρi + 1 if ρu > ρi ≥ ρ∗u
ρ′i = ρi otherwise

Step (i) - (iv) constitute the leap step while step (v) and (vi) constitute the shift step.
Note that an integer L ∈ {1, 2, · · · ,

⌊
n−1
2

⌋
} is fixed as a tuning parameter for the MCMC

algorithm where ‘L’ stands for the leap size. For proposed ρ′ and current ρ, we should
calculate transition probability PL(ρ

′|ρ) and PL(ρ|ρ′) to derive the acceptance ratio of
updating ρ in the Metropolis-Hastings algorithm.

As we calculate PL(ρ
′|ρ), we should consider two random draws ;

drawing u ∼ Unif{1, 2, · · · , n} in step 1 and drawing v ∼ Unif(S) in step 3 where S
depends on ρu. Simply put, PL(ρ

′|ρ) = 1
n · 1

|S| for typical cases. However, if |ρ
′
u − ρu| = 1
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then we should consider something more. When |ρ′
u − ρu| > 1 then u is the only possible

index that proposes ρ′ from ρ. On the other hand, when |ρ′
u − ρu| = 1, there must be one

index ũ other than u s.t. |ρ′
ũ − ρũ| = 1 so that ũ becomes another index that can produce

ρ′ from ρ. In this case, PL(ρ
′|ρ) = 1

n · 1
|S| +

1
n · 1

|S̃| where S is produced from drawing u

while S̃ is produced from drawing ũ.
Using this logic, we can rewrite the equality about PL(ρ

′|ρ) as the following :

PL(ρ
′|ρ) =

n∑
u=1

PL(ρ
′|U = u,ρ)P (U = u)

=
1

n

n∑
u=1

I(ρ′,ρ, u)
1

|S(u)|

where I(ρ′,ρ, u) is an indicator for the possibility of the proposal from ρ to ρ′ given u
is drawed and S(u) is the set S given u is drawn. If ρ′ is proposed from ρ then typically
I(ρ′,ρ, u) = 1 for only one u but if |ρ′

u−ρu| = 1 then I(ρ′,ρ, ũ) = 1 also holds for another
ũ different from u.

Hence, the acceptance probability for updating ρ is equal to min(1, r) where r is given
as below :

r =
P (ρ′, α|R)

P (ρ, α|R)
· PL(ρ|ρ′)

PL(ρ′|ρ)

=
PL(ρ|ρ′)

PL(ρ′|ρ)
· π(ρ

′)

π(ρ)
exp

{
− α

n

N∑
j=1

[
d(Rj ,ρ

′)− d(Rj ,ρ)
]}

where R represents all observed rankings (R1, · · · ,RN )
Next, we need to update α. Here, log-normal distribution is used as a proposal distri-

bution. Sample a proposal α′ from a log-normal distribution logN (log(α), σ2α) with tuning
parameter σ2α fixed. Then the transition probability is calculated as

Pσ2
α
(α′|α) = 1√

2πσ2α
exp

(
− 1

2σ2α
(logα′ − logα)2

) 1

α′

Accordingly, we have the ratio Pσ2
α
(α′|α) /Pσ2

α
(α|α′) = α/α′. Thus acceptance probability

for updating α is equal to min(1, r) where r is given as below :

r =
P (ρ, α′|R)

P (ρ, α|R)
/
Pσ2

α
(α′|α)

Pσ2
α
(α|α′)

=
α′

α

π(α′)

π(α)

Zn(α)
N

Zn(α′)N
exp

{
− α′ − α

n

N∑
j=1

d(Rj ,ρ)
}

Note that additional parameter αjump can be exploited to update α only every αjump

update of ρ.
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2.3 A Mixture Mallows Model

So far we have assumed that there exists a unique consensus ranking shared by all
assessors. However, the possibility of dividing assessors into more homogeneous subsets,
each sharing a consensus ranking of the items, brings the model closer to reality.

To handle this idea, we can consider a mixture Mallows model. It can be described as
the following :

• zj ∈ {1, · · · , C} assigns assessor j to one of C clusters for each assessor j = 1, · · · , N .
In other words, z1, · · · , zN are the cluster labels.

• The ranking vectors R’s within each cluster c ∈ {1, · · · , C} are described by a
Mallows model with parameters αc and ρc. Here, ρc can be viewed as the cluster
consensus.

Then the likelihood for the observed rankings R1, · · · ,RN is derived as

P (R1, · · · ,RN |{αc,ρc}c=1,··· ,C , z1, · · · , zN ) =

N∏
j=1

1

Zn(αzj )
exp{−

αzj

n
d(Rj ,ρzj )}

Given the number of clusters C , the parameters and corresponding prior distributions
for the mixture model is given in the following :

• ρ1, · · · ,ρC ∼ πρ independently where πρ is a uniform prior on Pn as in the homo-
geneous setting.

• α1, · · · , αC ∼ πα independently where πα is an exponential prior with fixed λ as in
the homogeneous setting.

• τ1, · · · , τC are the probabilities that an assessor belongs to c-th cluster. The standard
symmetric Dirichlet prior (τ1, · · · , τC) ∼ D(ψ, · · · , ψ) is assumed with a fixed value
of ψ.

• z1, · · · , zN are the cluster labels as mentioned above. P (zj = c | τ ) = τc for each
j = 1, · · · , N and c = 1, · · · , C where τ = (τ1, · · · , τC)

To obtain MCMC samples from the posterior, the algorithm will alternate between
two steps below :

• Sample ρ1, · · · ,ρC and α1, · · · , αC by a Metropolis-Hastings algorithm.

• Sample τ1, · · · , τC and z1, · · · , zN by a Gibbs sampler.

The former is updated in a similar way as in section 2.2. The acceptance probability
is slightly changed according to the cluster index c. The latter is divided into two stages.
The first one is a Gibbs step for τ = (τ1, · · · , τC). Since Dirichlet prior is conjugate to
the multinomial distribution, τ ∼ D(ψ, · · · , ψ) and (n1, · · · , nC) | τ ∼ Multinomial(N, τ )
(here nc is defined as nc =

∑N
j=1 I(zj = c) ) lead to τ | (n1, · · · , nC) ∼ D(ψ + n1, · · · , ψ +

nC). Hence we sample τ from D(n1 + ψ, · · · , nC + ψ) in the first stage. The second one
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is a Gibbs step for (z1, · · · , zN ). For sampling zj , we will use the information of current
τ ,ρ,α and Rj where ρ = (ρ1, · · · ,ρC) and α = (α1, · · · , αC)

P (zj = c | τ ,ρ,α,Rj) ∝ P (zj = c | τ )P (Rj |ρ,α, zj = c) ∵ prior × likelihood

= P (zj = c | τ )P (Rj |ρc, αc)

= τcZn(αc)
−1 exp

{
− αc

n
d(Rj ,ρc)

}
Using this, we can sample zj from P (zj = c | τ ,ρ,α,Rj)

One thing important for fitting a mixture Mallows model is how to determine the
number of clusters C. The number of clusters C is often unknown and the selection of C
can be based on different criteria. We take advantage of the within-cluster sum of distances
given as the following :

C∑
c=1

∑
j : zj=c

d(R̃j ,ρc)

We use the posterior MCMC outputs of the within-cluster sum of distances of the observed
ranks from the corresponding cluster consensus. After separate analyses were performed
for C = 1, 2, · · · C for some C, we expect to observe an ‘elbow’ in the within-cluster distance
posterior distribution as a function of C. It leads to identifying the optimum number of
clusters.

2.4 Approximation of The Partition Function via Off-line Importance
Sampling

Notice that we need to know the value of the partition function Zn(α) to calculate the ac-
ceptance probability in the MCMC algorithm. Recall that with the right-invariant distance
assumption, we can represent the partition function Zn(α) as

Zn(α) =
∑
r∈Pn

exp
{
− α

n
d(r,1n)

}
To calculate Zn(α) for some fixed value α, we can recognize that directly summing over

all r in Pn is very inefficient since Pn has n! number of permutation vectors. Note that
d(r,1n) takes only the finite number of discrete values D = {d1, · · · , dz} where z depends
on n and distance d. We can express the partition function as

Zn(α) =
∑
di∈D

|Li| exp
{
− α

n
di
}

where Li = {r ∈ Pn : d(r,1n) = di}. To compute Zn(α), we only need to know |Li| for all
values of di in D.

• When d is footrule distance

– D includes all even numbers from 0 to
⌊
n2/2

⌋
8



– |Li| corresponds to the sequence A061869 available for n ≤ 50 on the OEIS(Online
Encyclopedia of Integer Sequences)

• When d is Spearman’s distance

– D includes all even numbers from 0 to 2
(
n
3

)
– |Li| corresponds to the A175929 available for n ≤ 14 on the OEIS

Although the exact value of the partition function Zn(α) is available for not large
n (when n ≤ 50 or n ≤ 14 for the case of the footrule distance or the Spearman’s
distance respectively), we have trouble when n gets larger. To handle it, we need an
approximation of the partition function. Here, we take advantage of importance sampling
for the approximation.

A general form of importance sampling can be given as the following : (Owen [2009-
2013, 2018]) suppose our goal is to estimate µ = Ep[f(X)] i.e. the expected value of f(X)
under X ∼ p. For a probability density q other than p, we can yield

µ = Ep[f(X)] =

∫
f(x)p(x) dx =

∫
f(x)p(x)

q(x)
q(x) dx = Eq

[f(X)p(X)

q(X)

]
i.e. µ equals the expected value of f(X)p(X)

q(X) under X ∼ q. Then, the importance sampling
estimate of µ is

µ̂q =
1

K

K∑
k=1

f(Xi)p(Xi)

q(Xi)
where Xi ∼ q

The basic idea of importance sampling is to sample the states from a different distribution
when we want to lower the variance of estimation of µ or sampling from original density
p is difficult.

Back to the situation of estimating the partition function, given K number of rank-
ing vectors R1, · · · ,RK sampled from an IS auxiliary distribution q(R), the unbiased IS
estimate of Zn(α) can be written as

Ẑn(α) =
1

K

K∑
k=1

exp
{
− α

n
d(Rk,1n)

} 1

q(Rk)

This IS estimate of Zn(α) is derived as the following

Zn(α) =
∑

R∈Pn

exp{−α
n
d(R,1n)} =

∑
R∈Pn

1

P (R)
exp{−α

n
d(R,1n)}P (R)

= ER∼P (R)

[ 1

P (R)
exp{−α

n
d(R,1n)}

]
= ER∼P (R)

[
f(R)

]
where f(R) = 1

P (R) exp{−
α
nd(R,1n)} and P (R) is an abbreviation of the Mallows model

density P (R|α,1n). Using the general form of importance sampling estimate above, we
get

Ẑn(α) =
1

K

K∑
k=1

f(Rk)P (Rk)

q(Rk)
=

1

K

K∑
k=1

exp
{
− α

n
d(Rk,1n)

} 1

q(Rk)
where Rk ∼ q(R)
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While we cannot sample R from P (R|α,1n) because the exact value of Zn(α) is not
available, it must be computationally feasible to sample R from q(R). The more q(R)
resembles the Mallows likelihood P (Rk|α,1n), the smaller is the variance of Ẑn(α). We
shall use the following pseudo-likelihood approximation for q(R). It is proceeded as below.

(i) Sample a permutation (i1, · · · , in) ∈ Pn which gives the order of the pseudo-likelihood
factorization.

(ii) Factorization is given as

q(R) = P (R|1n) = P (Rin |1n)P (Rin−1 |Rin ,1n)

· · ·P (Ri2 |Ri3 , · · · , Rin ,1n)P (Ri1 |Ri2 , · · · , Rin ,1n)

(iii) The conditional distributions are given by

P (Rin |1n) =
exp{−α

nd(Rin , in)} · I(Rin ∈ {1, · · · , n})∑
rn∈{1,··· ,n} exp{−

α
nd(rn, in)}

P (Rin−1 |Rin ,1n) =
exp{−α

nd(Rin−1 , in−1)} · I(Rin−1 ∈ {1, · · · , n} − {Rin})∑
rn−1∈{1,··· ,n}−{Rin} exp{−

α
nd(rn−1, in−1)}

...

P (Ri2 |Ri3 , · · · , Rin ,1n) =
exp{−α

nd(Ri2 , i2)} · I(Ri2 ∈ {1, · · · , n} − {Rin , · · · , Ri3})∑
r2∈{1,··· ,n}−{Rin ,··· ,Ri3

} exp{−
α
nd(r2, i2)}

P (Ri1 |Ri2 , · · · , Rin ,1n) = I(Ri1 ∈ {1, · · · , n} − {Rin , · · · , Ri3 , Ri2})

Note that each factor is a simple univariate distribution.

For the given value of α, we sample K number of rankings from q(R) so that we get
R1, · · · ,RK which are exploited for calculating Ẑn(α). Over a discrete grid of 100 equally
spaced α values between small numbers as 0.01 and 10 (this is the range of α that turned
out to be relevant in many applications), we shall produce a smooth partition function
simply using a polynomial of degree 10. What we have is 100 data points of (α, Ẑn(α))’s
for these grid points. A smooth partition function is produced by fitting multiple linear
regression for the model

log Ẑn(α) = β0 + β1α+ β2α
2 + · · ·+ β10α

10

so that for the partition function, only thing we should store before initializing the MCMC
algorithm is those estimated beta parameter values.

3 Partial Rankings and Individual Recommendations

Often, only a subset of the items is ranked by each assessor. These situations can be
handled conveniently in the Bayesian framework by applying data augmentation tech-
niques. Furthermore, with these MCMC samples of augmented individual rankings, we
can suggest a method of individual recommendation.
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In this section, we shall see two cases of partial rankings (top-k ranks & pairwise com-
parison) with corresponding MCMC algorithms to obtain posterior samples and individual
recommendation method.

3.1 Ranking of The Top Ranked Items

First, we shall consider the case of the top-k ranks. Assume that among n items
{A1, · · · , An}, each assessor j has ranked the subset of items Aj ⊂ {A1, · · · , An} giv-
ing them top ranks from 1 to nj = |Aj | . We had a complete ranking Rj ∈ Pn before, but
now we will denote Rj as a partial ranking. Also, we will write R̃j ∈ Pn as an augmented
ranking vector where the unknown part follows uniform prior on the set of permutations
of (nj +1, · · · , n) for each j = 1, · · · , N . For simplicity, we assume a homogeneous setting
here.

Our goal is to sample from the posterior distribution

P (α,ρ |R1, · · · ,RN ) =
∑

R̃1∈S1

· · ·
∑

R̃N∈SN

P (α,ρ, R̃1, · · · , R̃N |R1, · · · ,RN )

where Sj is a set of all possible augmented ranking vectors given original partial ranks with
the allowable ‘fill-ins’ of the missing ranks for each j = 1, · · · , N . For this, our MCMC
algorithm will alternate between two steps below :

• Sample the augmented ranks given the current values of α and ρ

• Sample α and ρ given the current values of the augmented ranks.

The latter is done similarly as in the previous section where in this case R1, · · · ,RN

are replaced by augmented ranks R̃1, · · · , R̃N . For the former, given the current R̃j , we
propose R̃′

j in Sj from a uniform proposal distribution. Then with the current values of α

and ρ, the proposed R̃j is accepted with probability min(1, r) where r is equal to

r =
P (R̃1, · · · , R̃′

j , · · · , R̃N |α,ρ)
P (R̃1, · · · , R̃j , · · · , R̃N |α,ρ)

= exp[−α
n

{
d(R̃′

j ,ρ)− d(R̃j ,ρ)
}
]

Note that we can generalize this algorithm to generic partial ranking, where items
partially ranked by each assessor are not necessarily the top-ranked items. Also, if we add
clustering in the model, then α and ρ in the acceptance ratio are replaced by αzj and ρzj
respectively where zj is the current value of the cluster label for the j-th assessor.

For individual recommendations, we will take advantage of MCMC outputs of aug-
mented ranks R̃1, · · · , R̃N . In the case of top-k ranks, j-th assessor has already picked
his or her top-k items among n items. Suppose the j-th assessor has a latent complete
ranking for all n items in his mind whether consciously or unconsciously. We can denote it
as R̃j,true. We can assume that when the items are movies or TV programs, it is meaning-
less to recommend the items that the assessor has already ranked as top-k since probably
he or she has already seen those items. Then it is natural that we want to recommend
top-ranked items in R̃j,true with items in Aj removed. (Recall that Aj denotes the set of
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items already ranked as top-k by the j-th assessor.) For the case of the top-k rank, we can
say those items are ranked as k + 1, k + 2, or k + 3 in R̃j,true.

We shall find the estimate for R̃j,true exploiting the MCMC outputs of augmented
rank R̃j . Then we will recommend top-ranked items in the estimated ranking with items
in Aj removed. We suggest a cumulative probability(CP) ranking estimate as a single-
point estimate for R̃j,true. Given the MCMC outputs of augmented rank, the CP ranking
estimate is derived as the following :

(1) First, select the item which has the maximum a posteriori marginal probability of
being ranked first.

(2) Second, select the item which has the maximum a posteriori marginal probability of
being ranked first or second among the remaining ones.

(3) Third, select the item which has the maximum a posteriori marginal probability of
being ranked first, second, or third among the remaining ones.

(4) Keep following this sequential scheme.

3.2 Pairwise Comparison

Now, we shall consider the case of the pairwise comparison. We often have a situation
where assessors compare pairs of items rather than determine ranks of all or a subset of
items. This case can be also handled by the Bayesian framework with data augmentation
techniques.

Before dealing with how the MCMC algorithm is implemented, we first introduce some
notations.

• Ar ≺ As : As is preferred to Ar, so that As has a higher rank than Ar

• Bj : pairwise orderings or preferences stated by assessor j

• Aj : the set of items constrained by assessor j

• tc(Bj) : the transitive closure of Bj , containing all pairwise orderings of the elements
in Aj induced by Bj .

Some examples of transitive closure are given as the below :

Bj = {A1 ≺ A2, A2 ≺ A5} ⇒ tc(Bj) = {A1 ≺ A2, A2 ≺ A5, A1 ≺ A5}
Bk = {A1 ≺ A2, A2 ≺ A5, A4 ≺ A5} ⇒ tc(Bk) = {A1 ≺ A2, A2 ≺ A5, A1 ≺ A5, A4 ≺ A5}

The main idea of the MCMC algorithm remains the same as the one for the case
in section 3.1. In the algorithm, we should propose augmented ranking which obeys the
partial ordering constraints tc(Bj) for each assessor j. If we had decided to imitate the
algorithm in section 3.1 the same, then we would propose augmented rank R̃′

j in Sj from
a uniform proposal distribution where Sj is a set of all possible augmented ranking vectors
compatible with tc(Bj) . But instead of doing this, we shall utilize a ‘modified’ leap-and-
shift proposal distribution as a proposal distribution for updating augmented ranks. For
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the modified version of the L&S proposal, only the leap step is changed from the original
one described in section 2.2. It proceeds as the following.

Given a full augmented rank vector R̃j compatible with tc(Bj), we shall propose R̃′
j .

(i) Draw a random number u ∼ Unif{1, 2, · · · , n}

(ii) If Au /∈ Aj then complete the leap step by drawing R̃∗
uj ∼ Unif{1, 2, · · · , n}

(iii) If Au ∈ Aj then complete the leap step by drawing R̃∗
uj ∼ Unif{lj + 1, · · · , rj − 1}

where lj and rj are defined by

• lj = max{R̃kj : Ak ∈ Aj , k ̸= u, (Ak ≻ Au) ∈ tc(Bj)} with a convention that
lj = 0 if the set is empty

• rj = min{R̃kj : Ak ∈ Aj , k ̸= u, (Ak ≺ Au) ∈ tc(Bj)} with a convention that
rj = n+ 1 if the set is empty

• Briefly, lj is the current rank of the item whose rank is closest to Au among
all assessed items preferred to Au, and rj is the current rank of the item whose
rank is closest to Au among all assessed items less preferred than Au.

For individual recommendation, we will again exploit MCMC outputs of augmented
ranks R̃1, · · · , R̃N . Assume the same situation as in section 3.1. so that j-th assessor has
a latent complete ranking R̃j,true and when those items are movies or TV programs he or
she has already seen the constrained items Aj . Then we want to recommend top-ranked
items in R̃j,true with items in Aj removed as before. We will use the CP ranking estimate
as a single point estimate for R̃j,true using MCMC outputs for augmented ranking R̃j and
recommend top-ranked items in the estimated ranking with items in Aj removed.

4 Simulation and Application to Real Dataset

4.1 Simulation

We test the accuracy of our recommendation model through the simulation. We gener-
ate N = 1000 number of ranking vectors for n = 25 items under a mixture Mallows rank
model with C = 4. Cluster consensus ρ1, · · · ,ρC and cluster scale parameters α1, · · · , αC

are generated from the uniform distribution on Pn and exponential distribution with λ = 1
respectively. The footrule distance is exploited for metric d.

Note that to sample complete rankings R1, · · · ,RN from Mallows(ρ, α), we run a basic
Metropolis-Hastings algorithm in section 2.2 with fixed ρ and α so that we update R with
the L&S proposal. Acceptance probability in section 2.2 is changed as the below :

r =
P (ρ, α|R′)

P (ρ, α|R)
· PL(R|R′)

PL(R′|R)

=
PL(R|R′)

PL(R′|R)
· exp

{
− α

n

N∑
j=1

[
d(R′

j ,ρ)− d(Rj ,ρ)
]}
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From the MCMC samples for R’s, we store obtained rankings at regular intervals (in
simulation, we collect one sample every 1000 iterations after 1000 burn-in iterations). By
using this method, we gain complete rankings for N = 1000 assessors and n = 25 items.

We assume the case of top-10 rankings so that we fit our model using only top-10
ranked items for each assessor. The optimal number of clusters is identified by exploiting
within-cluster distance posterior distribution for separate analyses with C = 1, 2, · · · , 10.
We fit our model using hyperparameters L = 5, σα = 0.1, λ = 0.1, ψ1, · · · , ψC = 10 and
αjump = 10. We run the MCMC for 105 iterations with a burn-in of 104 iterations. After
fitting, we have MCMC outputs for augmented ranking R̃1, · · · , R̃N . As mentioned in
section 3.1, we derive the CP ranking estimate for each assessor. Since top-10 items are
assumed to be already observed, we can recommend five items ranked as 11, 12, · · · , 15 in
the CP ranking estimate. Note that in this simulation we know the true complete ranking
R̃j,true for each assessor j. Thus we can measure the number of correctly recommended
items that are recommended by our model and lie between rank 11 and rank 15 in true
complete ranking. We store such number for N = 1000 individuals and iterate the same
work 10 times by setting a random seed from 1 to 10 to measure the accuracy of our
recommendation model. The result is shown in the tables below.

Iteration A = 5 A ≥ 4 A ≥ 3 A ≥ 2 A ≥ 1

1 0.000 0.022 0.182 0.597 0.929
2 0.001 0.017 0.188 0.620 0.923
3 0.001 0.048 0.296 0.687 0.953
4 0.002 0.022 0.213 0.602 0.917
5 0.005 0.095 0.396 0.766 0.964
6 0.002 0.030 0.193 0.611 0.937
7 0.001 0.042 0.255 0.674 0.936
8 0.008 0.076 0.352 0.728 0.953
9 0.006 0.099 0.364 0.701 0.946
10 0.000 0.048 0.252 0.666 0.954

Table 1: Relative frequency of the number of correctly recommended items for each iteration. Here
A stands for the number of correctly recommended items. Random seed 1 is used for the iteration
1, random seed 2 is used for the iteration 2, and so on.

Method A = 5 A ≥ 4 A ≥ 3 A ≥ 2 A ≥ 1

Our model (mean) 0.0026 0.0499 0.2691 0.6652 0.9412
Our model (sd) 0.0028 0.0302 0.0791 0.0573 0.0153

Random draw 0.0003 0.0170 0.1668 0.5665 0.9161

Table 2: The first two rows of the table shows the mean and standard deviation of the relative
frequency for 10 iterations using our recommendation model. The last row of the table shows
the exact probability when we randomly recommend 5 items out of 15 items.

As we can see in Table 2, our recommendation model has better accuracy than random
draw on average. For each number of correctly recommended items (5, larger than or equal
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to 4, larger than or equal to 3, larger than or equal to 2, and larger than or equal to 1),
the mean relative frequency of our model is always higher than the exact probability
for the random draw. Note that we can calculate this exact probability by hand using a
combination (for example, the exact probability for A = 5 is calculated as

(
5
5

)(
10
0

)
/
(
15
5

)
).

Every iteration has a higher relative frequency for all of those events except (A = 5) as
we can see in Table 1.

4.2 Application to Movie Rating Data

Now, we shall move on to the application to the real dataset. Here, we use the data of
9000 movies and 100,000 ratings from 700 users, where those ratings have been obtained
from the Official GroupLens website. This dataset can be downloaded on Kaggle. Since
n = 9000 may not be computationally feasible with the Bayesian Mallows rank model,
we focus on n = 151 movies which are assessed by more than 100 users. Users give rates
scaling from 0 to 5 where a half point is allowed.

In order to take advantage of our recommendation model, we should transform this
data into partial ranking data. We can interpret “Movie A is given a higher rate than
Movie B by assessor 1” as “Movie A is preferred to Movie B by assessor 1” so that we
can transform our data into a pairwise comparison case. Every possible pair is compared
for this conversion. Note that a pair of movies given the same rate is discarded since we
cannot judge the preference of the user between those two movies.

We fit our recommendation model for this preference data with hyperparameter L =
5, σα = 0.1, λ = 0.1, and αjump = 10. We run the MCMC for 105 iterations with a burn-
in of 104 iterations. The number of clusters C is chosen as 1 after inspecting the plot of
within-cluster distances. Note that since n > 50, the exact value of the partition function is
not available under the footrule distance. Therefore the partition function is approximated
by importance sampling described in section 2.4. After running MCMC, we have a CP
ranking estimate and from this ranking, we will recommend top-ranked movies. Of course
for the recommendation, we shall exclude the movies that are already assessed by the user.

In the following, for three users with user IDs 10, 100, and 250, we will display the rat-
ings by each user and the corresponding CP ranking estimate with the resulting individual
recommendation by our model.
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user ID movie title rating

10

The Usual Suspects 5
The Shawshank Redemption 4
Ace Ventura : Pet Detective 3

Batman 3
Die Hard 3

Reservoir Dogs 3
The Empire Strikes Back 4

The Princess Bride 4
Raiders of the Lost Ark 4

Aliens 4
Return of the Jedi 4
The Terminator 4

Indiana Jones and the Last Crusade 4
Good Will Hunting 4

There’s Something About Mary 5
The Matrix 5

Table 3: Rating by user 10

user ID movie title ranking

10

There’s Something About Mary 1
The Usual Suspects 2

The Matrix 3
American Beauty 4

Pulp Fiction 5
Schindler’s List 6
Taxi Driver 7
Fight Club 8

The Godfather 9
Monty Python and the Holy Grail 10

The Godfather : Part II 11
The Dark Knight 12

Amélie 13
The Lord of the Rings : The Fellowship of the Ring 14

Leon : The Professional 15
The Lord of the Rings : The Return of the King 16

GoodFellas 17
Memento 18

Ferris Bueller’s Day Off 19
Dr. Strangelove 20

Table 4: CP estimate ranking for user 10
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user ID movie title order

10

American Beauty 1st
Pulp Fiction 2nd

Schindler’s List 3rd
Taxi Driver 4th
Fight Club 5th

Table 5: Recommended movies for user 10

user ID movie title rating

100

Toy Story 4
Heat 3

Leaving Las Vegas 4
Twelve Monkeys 5

Fargo 4
Mission : Impossible 3

The Rock 3
Twister 3

Independence Day 3
Willy Wonka & the Chocolate Factory 5

Table 6: Rating by user 100

user ID movie title ranking

100

Twelve Monkeys 1
Willy Wonka & the Chocolate Factory 2

The Godfather 3
A Clockwork Orange 4

Taxi Driver 5
Pulp Fiction 6
Casablanca 7

The Empire Strikes Back 8
Amélie 9

The Shawshank Redemption 10
Eternal Sunshine of the Spotless Mind 11

Raiders of the Lost Ark 12
Memento 13

Schindler’s List 14
The Matrix 15

The Lord of the Rings : The Fellowship of the Ring 16
American Beauty 17

The Lord of the Rings : The Two Towers 18
Fight Club 19

The Godfather : Part II 20

Table 7: CP estimate ranking for user 100
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user ID movie title order

100

The Godfather 1st
A Clockwork Orange 2nd

Taxi Driver 3rd
Pulp Fiction 4th
Casablanca 5th

Table 8: Recommended movies for user 100

user ID movie title rating

250

Taxi Driver 4
Die Hard : With a Vengeance 4.5
The Shawshank Redemption 5

Forrest Gump 5
Schindler’s List 5

The Silence of the Lambs 5
The Godfather 5

One Flew Over the Cuckoo’s Nest 5
The Godfather : Part II 5

Back to the Future 4.5
Austin Powers : International Man of Mystery 4

The Truman Show 4.5
Good Will Hunting 4.5

Armageddon 4
Saving Private Ryan 4.5
American History X 4

The Matrix 5
Ghostbusters 4

American Beauty 4.5
Total Recall 4
Fight Club 4.5

The Green Mile 5
Gladiator 4.5
Memento 4.5
Shrek 5

Monsters, Inc. 4.5
Harry Potter and the Philosopher’s Stone 4

Amélie 5
A Beautiful Mind 5

Pirates of the Caribbean : The Curse of the black Pearl 4
The Dark Knight 5

Inception 5

Table 9: Rating by user 250
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user ID movie title ranking

250

The Shawshank Redemption 1
Schindler’s List 2
The Godfather 2

The Dark Knight 3
The Matrix 4

The Godfather : Part II 5
Amélie 6
Fargo 7

Inception 8
The Silence of the Lambs 9

The Lord of the Rings : The Return of the King 10
One Flew Over the Cuckoo’s Nest 11

The Usual Suspects 12
The Green Mile 13
Casablanca 14

Shrek 15
Forrest Gump 16

A Beautiful Mind 17
GoodFellas 18
Pulp fiction 19

The Lord of the Rings : The Fellowship of the Ring 20

Table 10: CP estimate ranking for user 250

user ID movie title order

250

Fargo 1st
The Lord of the Rings : The Return of the King 2nd

The Usual Suspects 3rd
Casablanca 4th
GoodFellas 5th

Table 11: Recommended movies for user 250
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국문 초록

본 논문은 Vitelli의 2018년 논문에서 다루어진 베이즈 맬로우 순위 모형에 대해서 소개
한다. 해당 모형은 순위 데이터를 분석하는 데 사용된다. 우선 해당 모형이 가장 기본이 되는
완전 순위 데이터가 주어진 상황에서 어떻게 작동하는 지를 살펴보고, 보다 더 일반적인 상황
으로어떻게확장되는지다루었다.그런다음,해당방법론으로개별추천이어떻게이루어질
수 있는 지 설명하였다. 개별 사용자 선호도 중 결측치가 있는 데이터를 임의로 생성하여 시
뮬레이션 실험을 한 결과, 완전 임의 선택을 통해 추천할 아이템을 고르는 방법에 비해 해당
모형을 사용한 추천 방식이 더 나은 정확도를 보였음을 확인하였다. 마지막으로, 영화 평점
사이트에서개별유저의평점부여데이터를활용하여각사용자에게새로운영화를추천하는

데에 해당 모형을 적용해보았다.

주요어 : 맬로우 순위 모형, 개별 추천, 베이즈 추론, 마코프체인-몬테카를로, 데이터 증강
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