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ABSTRACT

Towards interpretable machine learning :

A methodology for screening interactions in

functional ANOVA model

Yongchan Choi
The Department of Statistics
The Graduate School

Seoul National University

In this thesis, we propose a post-process interpretation method.
Recently, machine learning has received great attention due to its
remarkable predictive accuracy in various fields. Despite their
strong predictive performance, machine learning models have usu-
ally lack of interpretability since this improvement in predictive
performance has been achieved through increased model complex-
ity. This makes it difficult for people to understand the models.

So, We develop a new post-process interpretation method called
Meta-ANOVA, which interprets a given predictive model. To in-

terpret the model, we devise a framework for detecting interactions



in the model. Moreover, we propose an efficient learning algorithm
for the functional ANOVA model when the interactions are given.
Keywords: Explainable AI, Model interpretation, Interaction de-
tection, Functional ANOVA model, Identifiability
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ii



Contents

Abstract
1 Introduction

2 Review
2.1 Review : Post-process interpretation methods . . .
2.1.1 Global interpretation . . . . . . . ... ...
2.1.2 Local interpretation . ... ... ... ...

2.2 Review : Learning algorithms of functional ANOVA

2.2.1 Smoothing Spline-ANOVA [Gu, 2013]

2.2.2 (COSSO [Lin and Zhang, 2006] . . ... ..
2.2.3 MARS [Friedman, 1991] . ... ......
2.2.4  ANOVA-Boosting [Kim et al., 2005]

3 Proposed Method
3.1 Introduction. . .. .. ... ... ... .......
3.2 Step 1: Search for interactions . . . ... ... ..

3.2.1 Continuous input variables . .. .. .. ..

iii

Tt W W



3.2.2 General input variables . . . ... ... .. 17

3.2.3 Threshold selection . . . . . ... ... ... 19
3.2.4 Choice of Q5 and Qe . . . . . . . ... ... 20
3.3 Step 2 : Learning approximation model . . .. .. 21
3.3.1 Modified ANOVA-boosting . . . ... ... 22
3.3.2 Synthetic dataset . . . . ... ... ... 23

3.3.3 Interpreting black-box model via Meta-ANOVA 24

4 Experiments 26
4.1 Simulateddata . . ... ... ... ... ... ... 26
4.2 Realdata .. ... ... ... .. ... ... 30
4.3 Ablation studies . . . . ... ... L. 34

4.3.1 Comparison with other learning algorithm

of functional ANOVA model . ... .. .. 35
4.3.2 Sensitive analysisof v . . .. .. ... ... 38
4.3.3 The effect of bumping method . . . . . .. 39
4.3.4 The effect of synthetic dataset . . . . ... 41
5 Conclusion 42
Bibliography 44
A Appendix 48
A.1 Proof of Theorem 3.2.1. . . . . . ... ... .... 48
A.2 Extension to categorical input variables . . . . .. 49
A.3 Additional results for Simulated data . . . . . . . . 51
A.4 Additional results for Real data . . . . . . . .. .. 53

iv



A.5 Comparison with local interpretation models . . . 61

Abstract (in Korean) 64

S e ki



List of Tables

4.1

4.2

4.3
4.4
4.5

4.6

4.7

4.8

List of 10 synthetic functions used in the Simulated
data experiments. . . . . . ... .. ...,
The results of synthetic functions : The compari-
son between Meta-ANOVA and other methods for
AUC:s of second order interactions . . . ... . ..
The descriptions of Real data. . . . . . ... .. ..
Baseline model and its test error for Real data. . .
The results of Meta-ANOVA for Real data : The
test error comparison between baseline model and
Meta-ANOVA. . . . ... .. .. .. .. .....
The results of Simulated data : The comparison be-
tween Meta-ANOVA and other functional ANOVA
algorithms. . . . . . ... ... L
The results of Real data : The comparison between

Meta-ANOVA and other functional ANOVA algo-

The results of the effect of bumping : We report

the test errors for each bumping size. . . . . . . . .

vi



4.9

Al

A2

A3

A4
A5

The results of the effect of synthetic dataset : We
report the test errors for various combinations of

datasets. . . . . . . . ... Lo

Calhousing : The number of detected interactions
for various vy. . . . . .. ...
Letter : The number of detected interactions for
various y. ... ..o
German : The number of detected interactions for

various y. ... Lo

Satellite : The number of interactions for various 7.

Online news : The number of interactions for vari-

vii

41

93

54

95
o6




List of Figures

2.1

4.1

4.2
4.3

4.4

An illustration of an interaction within a fully con-
nected neural network. The bold black arrow means
strong weight connection. The top node of the first
hidden layer takes inputs from (1,3) with strong

connection. . . . . . . . . ... oo 6

The results for synthetic function : The average of
the importance scores for various v. . . . . .. .. 31
The top 10 importance scores for Calhousing dataset 34
The results of sensitive analysis of v using synthetic
function : For each +, we report the AUC scores of
importance score. . . . . . .. .. ... 38
The results of sensitive analysis of v using Real data

For each v, we report the test errors of Meta-
ANOVA. The dashed line represents the test error

of baseline model. . . . . . . .. .. ... ... ... 40

viii



Al

A2

A3

A4

A5

A6

Heat maps of pair interaction scores proposed by
Meta ANOVA framework for synthetic function Fy—
Fig. Cross-marks indicate ground truth interac-
tions. . . ...
Calhousing : Heat map of 2nd-order interaction
scores proposed by Meta-ANOVA framework. . . .
Letter : Heat map of 2nd-order interaction scores
proposed by Meta-ANOVA framework. . . . . . . .
German : Heat map of 2nd-order interaction scores
proposed by Meta-ANOVA framework. . . . . . . .
Letter : Barplot of 3rd-order interaction strength
scores proposed by Meta-ANOVA framework. . . .

The comparison of estimated coefficient for syn-

thetic function F'(Left) and F3(Right) between Meta-

ANOVA and local surrogate models. We check the
coefficient of X9 and Xg for F' and F3 respectively.

ix

02

o8

99

60

61

63



Chapter 1

Introduction

There are two things to be considered when evaluating predictive
models : prediction accuracy and interpretability. Over the recent
decades, many predictive models with high prediction ability, such
as ensemble-based models and deep neural networks, have been
developed, and they have received much attention [Chouiekh and
Haj, 2018; Devlin et al., 2018; He et al., 2016; Radford et al., 2019;
Shen et al., 2017].

Despite their strong predictive performance, machine learning
models have usually lack of interpretability since this improvement
in predictive performance has been achieved through increased
model complexity. This makes it difficult for people to understand
the models. That is, they are treated as black-box. Black-box
models could be acceptable to low-risk tasks. However, in high-
risk tasks such as cancer diagnosis and self-driving cars system,

models that cannot be interpreted are hard to be used. The need



for trustworthiness of modern machine learning models in real-
world applications has led to the revival of the field of eXplainable
Artificial Intelligence (XAI).

In this thesis, we introduce a novel method called Meta-ANOVA,
which aims to construct an interpretable model for a given pre-
dictive model. The key idea of our method is to approximate
the given predictive model using a functional ANOVA model. To

approximate the model efficiently

1. We propose an interaction detection method.

2. We introduce an efficient learning algorithm for functional

ANOVA model.

Meta-ANOVA efficiently learns the functional ANOVA model with-
out losing the prediction power of a given model and it is theo-
retically well-grounded. To conduct the first step successfully, we
also provide an efficient interaction detection algorithm similar to
Apriori algorithm.

In Chapter 2, we briefly review XAI methods and the func-
tional ANOVA model. In Chapter 3, we explain the proposed

method. In Chapter 4, we present the results of numerical study.



Chapter 2

Review

2.1 Review : Post-process interpretation meth-

ods

XAI methods can be classified into several perspectives. We first
categorize the methods into two groups. One is transparent model
design and the other is post-process interpretation.

Transparent model design aims to build models that can be
trained to interpret their predictions (white-box models). These
models provide simultaneous prediction and interpretation, mak-
ing them reliable for their interpretability. Linear model and de-
cision trees are typical transparent models. However, creating a
white-box model often requires introducing constraints, which can
lead to performance degradation.

Post-process interpretation is a method used to understand

the inference process of a pre-trained model. The prediction is ob-



tained from the pre-trained model, and post-process methods are
then applied to gain interpretation or insight into the prediction.
Unlike transparent model design, post-process interpretation does
not lead to performance degradation, but the interpretability of
the results is often less reliable. Ensuring interpretation reliability
becomes a key concern for these methods. Post-process interpre-
tation can be further divided into two categories: local and global
interpretation. Global interpretation involves understanding how
a given model makes predictions across the entire input space. On
the other hand, local interpretation focuses only on a specific input

vector, rather than considering the entire input space.

2.1.1 Global interpretation

Tsang et al. [2017] devise a global interpretation method, called
NID (Neural Interaction Detection). NID first introduces a frame-
work for detecting statistical interactions from a pre-trained neural
network. NID utilizes the structure of the neural network. In or-
der for the network to have a specific interaction, there should
be at least one hidden node with strong weight connections to
corresponding input nodes. The Figure 2.1 shows the weight con-
nections between the first and third input nodes and the first hid-
den node of the first hidden layer. Let W) e RPt*Pi-1 and b
(I=1,...,L) are weight matrices and bias vectors where p; is the
number of hidden units in the I-th layer. The i-th row and j-th
column of W' are denoted by Wl(l) and W(é)

NID measures the weight connections of interaction Z for each



node of the first hidden layer as follows : p ( WZ(II)D where p(+)
is averaging function. p(-) = min(-) is used in practice . After
measuring the weight connections of all hidden nodes in the first

layer, the influence of the hidden nodes on the output is given as

follows :
Zw>:|wypy“ﬂm‘wvvw—ny.wvkuw'

NID defines the interaction strength w;(Z) of an interaction Z for

i-th hidden unit as
w@=&ﬂh@“

Finally, the importance score of the neural network w(Z) is defined

by
w(I) = wil).
j=1

NID provides importance scores for the interactions that the
trained model has. However, NID is applicable only to neural

networks.

2.1.2 Local interpretation

The additive Feature Attribution method is a framework for local
interpretation. Let f and x be a given model and input vector
respectively. The objective is to interpret f at x using an expla-
nation model gx. The explanation model gy is a linear function of
binary variables :

M
9 (2x) = bx0 + > bxjZx

Jj=1



Figure 2.1: An illustration of an interaction within a fully con-
nected neural network. The bold black arrow means strong weight
connection. The top node of the first hidden layer takes inputs

from (1, 3) with strong connection.

where z, € {0,1}™ is a simplified binary input vector for x
and M is the number of simplified input features. Simplified in-
put refers to transforming the original input data into a human-
understandable format or representation. For instance, consider
an image of a dog where the values of each pixel in the image
are entirely incomprehensible to humans. However, humans can
understand and interpret whether the image contains the dog’s
nose or not. This illustrates that simplified input can be defined
differently based on the domain of the input variables. Assuming
that the transformation to simplified input is feasible.

Additive Feature Attribution method tries to ensure gx(zx) ~
f(x). Then, it interprets the original model f at x using gx. There

are two representative methods to estimate ¢x ;. Omne is LIME

;ﬁ'! 2 1_..” .__;J!_ W



[Ribeiro et al., 2016] and the other is SHA P-values [Lundberg and
Lee, 2017].

[Ribeiro et al., 2016] utilizes local linear regression using Gaus-
sian kernel where . Let my(x') = exp (—||x’ — x||?)/0?) be a Gaus-

sian kernel. The objective function of LIMFE is given as :

L(f.gema) = Y mel(X) (f(X) = gx (2))" + Qgx)

z'eX
where X is input dataset, z’ is a simplified input of x’ and Q is
Li-penalty. [Ribeiro et al., 2016] minimizes the objective function
and interprets f at x via gx.
[Lundberg and Lee, 2017] uses Shapley value estimation method
[Shapley et al., 1953] to estimate gx. The estimate of ¢y ; is

by = 3 AL D sy (05)]

%/ Ca’

where |X/| is the number of non-zero entries in X/, and X' C 2’
represents all X' vectors where the non-zero entries are a subset
of the non-zero entries in x’. They shows that SHAP-values is
the unique estimation method of additive feature attribution that
satisfies Local accuracy, Missingness and Consistency properties.

See [Lundberg and Lee, 2017] for details of the properties.



2.2 Review : Learning algorithms of func-

tional ANOVA model

The functional ANOVA model aims to decompose the model into
a sum of components representing main effects and interactions.
It allows us to understand how each component for mains and in-
teractions contributes output of the model. Thus, it is transparent
box model discussed in 2.1.

The functional ANOVA model f has the following form :

f(x) =60+ Z filx;) + Z fj7k(mj, Tg)+ ... (2.1)

i<k
where f;s are the main components and f;s are second-order
interaction components and so on. The identifiability for the
functional ANOVA model assured by the averaging operator [Gu,
2013]. Let &; be the support for X; and p; be the probability
measure on &j. The support for X = (X1,..., X)) is denoted as
X = H§:1 X;. The averaging operator A; on f is defined as

A= |t
Xj
Condition . The functional ANOVA model f holds identifiability

condition if fj satisfies Ajf; =0 forall j C {1,2,...,p} and j € j.

There are several learning algorithms of the functional ANOVA
model [Friedman, 1991; Gu, 2013; Kim et al., 2005; Lin and Zhang,
2006].



2.2.1 Smoothing Spline-ANOVA [Gu, 2013]

SS-ANOVA (Smoothing Spline-ANOVA) is the most representa-
tive functional ANOVA model. It is assumed that f € F where F
is a RKHS(Reproducing Kernel Hilbert Space). In general, each
component is in the second-order Sobolev Hilbert space. The [th-

order Sobolev Hilbert Space S; is defined as
S = {g 19,9 ,... ,g(l_l)are absolutely continuous, g(l) € Eg}

For computational issue, main and second-order interactions are
considered. Denote the norm in the RKHS F by |- ||. SS-ANOVA
finds f € F to minimize :

1 2 d -1 pa £)|2

Ez{yi — f(zi)} +>‘29a 1Pfl

i=1 a=1

where d is the number of components in f, P% is the orthogonal
projection of f onto F and 6, > 0. In SS-ANOVA, the identifi-

ability condition is ensured due to orthogonality.

2.2.2 COSSO [Lin and Zhang, 2006|

COSSO (COmponent Selection and Smoothing Operator) is a
learning algorithm for a functional ANOVA model that enables
component selection. COSSO uses the sum of RKHS norms as the
penalty, not the squared sum of the norm. COSSO finds f € F

to minimize :

1 n d
S - F @ 4 Y 1P
=1 a=1

9



Note that the penalty of COSSO is not a norm in F. How-
ever, it is convex. [Lin and Zhang, 2006] shows the existence of
COSSO estimate using the convexity and asymptotic properties
of COSSO. Moreover, they propose an iterative algorithm to solve
the objective function of COSSO more easily. See [Lin and Zhang,
2006] for details of the properties and algorithm.

2.2.3 MARS [Friedman, 1991]

MARS (Multivariate adaptive regression spline) is another learn-
ing algorithm of functional ANOVA model. Each component con-
sists of the modification of the CART. MARS utilizes a pair of
hinge functions. We denote the hinge function as ¢.(x) = max(0, z—
c).

MARS uses a stepwise forward-backward procedure for build-
ing functional ANOVA models. First, MARS adds a pair of hinges
{¢c(x), —dc(x)} and finds the coefficients for each hinge function.
To select components, MARS finds the knot ¢ and selects the
coefficients that satisfy the identifiability condition (forward pro-
cedure). After adding each hinge pair and coefficients, MARS
prunes the existing components to prevent overfitting (backward
procedure). Pruning is conducted based on GCV (Generalized
Cross-Validation). This forward—backward procedure is repeated

until a pre-defined stopping rule is satisfied.

10



2.2.4 ANOVA-Boosting [Kim et al., 2005]

ANOVA-Boosting is a boosting model on the functional ANOVA
model. For computational issue, ANOVA-Boosting only considers
main and 2nd-order interaction. ANOVA-Boosting model f is
P
Fx)=Bo+ > filay)+ Y Fiela, zp)
7=1 i<k
where f; and fj;, are estimated by a linear combination of base
learners. Let G; be the set of decision trees with two terminal node

split by the variable X;. For g; € G;, we can formularize g; as :
9i(x;) = 01(xj < s5) + Orl(2; > s5).
By identifiability condition(i.e. Ajg; = 0), we have
0.P(X; <sj)+0rP(X; > s;)=0.

This means that one of 0y, and r uniquely defines the other one.
Let Gji be the set of decision trees with four terminal node split
by the variables X; and Xj. For gj; € Gji, we can formularize g,

as

gik(xj, xr) = Ol (x5 < sj, 2 < s) +O0prl(x; < 55,28 > sk)
+O0rrI(xj > sj, 2 < sg) +0rl(x; > 55,28 > si)
By the identifiability condition, A;g;r = 0 and Aig;r = 0 should
be hold.One of 0r1,,0rr,0rr, and Orgr uniquely defines the others
same as main case. Similar manner, identifiable base learner for
higher order interaction can be defined.
For each step, ANOVA-Boosting finds the identifiable base

learner that explains the residual most and aggregates it.

11



Algorithm 1: ANOVA-boosting algorithm for regression

problem.

Require: {(x(), y@):i=1,...,n}: Training dataset.
Require: M : The number of trees, n : The learning rate
Require: ¢ : The squared error loss.

Require: fy(x) = g.

form=1,...,M do
e Compute the residual r® = 3@ — fm_l(x(i)) for

1=1,....,n

e I'it base learners g; € G; for j € J; and gj for j € J3 to the

targets (@
o J* = argminge s,z i 00, g5(x{)

® fm = fm-1+ Ngj*

end

Result: f;,

12



Chapter 3

Proposed Method

3.1 Introduction

We present the proposed Meta-ANOVA framework to interpret
any given predictive model. The key idea of our method is to ap-
proximate a given predictive model to functional ANOVA model ,
which can be interpreted both locally and globally simultaneously.
The main difference between global and local interpretation model
is the scope of interpretation. Local interpretation models can ex-
plain a block-box model only near a single datum. To understand
the model globally, the methods sholud be applied to entire train-
ing dataset. It is computationally expensive, and even there is no
guarantee that this can make the user to understand model glob-
ally. On the other hand, our method can interpret a given model
for any input since it approximates a given model for the entire

input space.

13



To improve global approximation accuracy, we propose a method
to detect statistical interactions that a given predictive model has
learned.

Let x € X C RP be an p-dimensional input vector and f :
X — R be a given predictive model. Let [p] = {1,...,p} and
J C [p] denote feature index set and interaction respectively. Let
Xj = (z;,7 € j) be a sub-input vector and J, = {j C [p] : |j| = k}
is k-order interaction set. We denote j¢ = [p] \ j.

Before explaining our method, we introduce the definition of
statistical interactions. We follow the definition of statistical in-

teractions provided [Sorokina et al., 2008].

Definition. Function f does not have an interaction of (4, j) if it
can be expressed as the sum of two functions f\; and f\; where

J\i does not depend on z; and f\; does not depend on z; :

F) = Faxppa) + A5 (X))
This is the definition of second-order interactions for the function

f. Higher-order interactions are defined similarly. From the defi-
nition, kth-order interaction can only exist if all its corresponding
(k — 1)th-order interactions exist. For example, the interaction
(1,2,3) can only exist if the interactions (1,2), (1, 3), (2, 3) should

exist. We use this property in Section 3.2

14



3.2 Step 1 : Search for interactions

We introduce a method to detect significant interactions from a
black-box model. This step is main contribution of our method.
This is because most post-process interpretation methods do not
consider interactions, and transparent box models like the func-
tional ANOVA model primarily focus only on main and second-
order interactions. However, our method is an efficient way to find
higher-order interactions. We first consider the case of continuous

input variables and then extend to general input variables.

3.2.1 Continuous input variables

Assume all input variables are continuous and f is differentiable.
For a given model f, we consider the following functional decom-

position:

FoO =B+ > filxy)

k=1jeJy
For identifiability, we assume the following condition :
Condition 1 (Identifiability condition). For any j, let fj(x) =
>y fir(x5)- If fi1(x) does not depend on xje, then fy = 0 for

all i > j.

Note that for any functional decomposition

f(x) = Bo+> %4 {Zje.]k fi (xj)}, we can redefine §y and fjs such
that f satisfies the Condition. An example of the Condition is as

follows :

15



e Assume f(x) = fo+ fi(z1) + fa(z2) + fi2(z12)

where fi(x1) = z1, fo(x2) = 22, fi2(z12) = 3.
e fi+(x) = fi2(z1,2) does not depend on .

e Redefine fy and fjs such that
f(x) = (Bo —3) + fi(z1) + fa(z2)

Before explaining the main theorem used to find interactions,
we first define the partial derivative. Let &; C R be the domain
of x; for each j € [p]. Also, let X = [[_; &; and Aje = [[ ;e &
For a given j € [p] and a function f : X — R, the partial derivative
of f at x w.r.t. the index j given as

D;f(x) := lim fx+eej) = f(x)

e—0 €

where e; is a p-dimensional vector whose j-th element is 1 and 0
otherwise. Consider a set j = (j1, ..., jr). The partial derivative of

f at x w.r.t. the index set j is given as
Djf(x):=Dj, o---0Dj, f(x).

Theorem 3.2.1. For given j, fy =0 for all j > j (§ > j means

i 21]) if and only if
Exieq; [Varxg ~op {D3f (X5 X)X} =0, (3.1)

Q5 and Qjc are any distributions defined on the same support for
P; and Pjc where Py and Pjc are the marginal distributions of X;

and Xje.

16



The proof of the Theorem is in Appendix A.1. Here is an

example of the Theorem.
e Assume f(x) = fo + fi(z1) + fa(z2) + f12(21,22) where

x = (z1,22) € R?, By = 1, fi(z1) = 21, fo(w2) = x2 and

f1,2(331,l‘2) = fzrix9. Let j = {1}

We can get the partial derivative D;f(x) = 1 + Ox».

62 Var(X5).

If 0 # 0, then Exy.q, [varxscNQjc {Dj (X, ch)\xg}} > 0.

0.

We call EXENQJ [VarXJgCNQjC {Djf(XJ’., X;c)|X3H a interaction
importance score for j and denote it as I(j; f)(abbr. I(j)). Note
that I(j) is not the importance score for j itself but the importance
score for the higher order interactions including j.

Note that @5 and Qjc are any distributions defined on the
same support for P, and Pjc. This implies that if we have the
model and only know the support of each input variable (i.e., the
possible values it can take), without having any training data, we

can compute the statistics.

3.2.2 General input variables

In Section 3.2.1, we assume that all input variables are continuous

and f is differentiable. In this case, the partial derivative can be

17

From the partial derivative, Ex/ g, [VarXJ(CNQJ,C {DJf(Xs,chﬂXj}] =
J

110 =0 (ic. fi2=0), then Ex g, [VarXJ(CNQjC {DJ- F(X, X30)|XJ5H _



utilized. However, the partial derivative cannot be used when

1. The predictive model is non-differentiable(e.g. tree-based

model)
2. A categorical variable is used as input variable.

In these cases, we cannot use the statistics we proposed. To over-

come this issue, we replace the differentiation with the difference.

Assume Xjs are ordinal variable. Let Xj = {x;1,-- , 2} be
the domain of X for j € [p] where xj; < --- < xj,, and n; is
the number of values that X; can have. For a given j € [p] and
a function f : X — R, we define the partial ordinal derivative of

f(x) w.r.t. the index j given as

fxrzj=x4)— f(x:2; =25-1) if i =n,,
d]f(X) = f(XCIj :l‘ji_;,_l)*f(XS:lEj :xji) lflzl,
(fx:zj =aj41) — f(x:2; =25-1)) /2 otherwise.
Consider a vector j = (j1,...,Jx) and a function f : X — R.

We generalize the partial ordinal derivative w.r.t. the index set j

like partial derivative as follows :

dif(x) :=dj, o odj, f(x).

dj can be used when Xjs are ordinal variables. Moreover, it can
be utilized when X} is categorical input variable. This is because
categorical input variable is transformed to dummy variable(or
one-hot encoded variable) in general. Details about categorical

input are summerized in Appendix A.2.

18



For continuous variable, we can expect that Theorem 3.2.1
approximately holds for d; when enough samples are given. Based
on theorem and partial ordinal derivative, we redefine the score of

the higher order interactions of j as follows:
1) = Bxgq, [Varxy. gy {45/ (X, Xjo) %3}

Note that I(j) can be applied to the non-differentiable model.
Based on the interaction importance score I(j), we suggest
the interaction detection algorithm. We use the property of the

statistical interactions discussed in Section 3.1 :

kth-order interaction can only exist if all its corresponding (k—

1)th-order interactions exist.

From the property, we can detect significant interactions se-
quentially as Apriori algorithm used for searching association rules.
The algorithm is described in Algorithm 2. When kth-order in-
teraction j is given, its (k — 1)th-order interactions are denoted by
RG)={i\j:jei}

When using Algorithm 2, there are two practical issues to con-

sider. One is too many j with I(j) > 0 and the other is the choice
of Q5 and Qje.

3.2.3 Threshold selection

Highly-complex model may have almost all interactions even if

they have litter effect on the output. Thus, we use a threshold to
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Algorithm 2: Interaction searching algorithm.

Require: K: maximum degree for interaction
Initialization: £t =1
Initialization: S; = [p]

while k£ < K do
Calculate the followings:

o kL« k+1

o Cp ={j€Sk_1:1(j) >0}

end

Result: S =UK S,

exclude minor interactions. The meaning of I(j) is the importance
score for all j’ where j/ > j. From the meaning, we adopt an
approach of excluding interactions that have significantly lower
importance scores compared to the maximum importance score.
For screening kth-order interactions, let I* = {I(j) : j € Sp_1}.
Then, 7, = (v x max I*) for pre-defined hyper-paremeter v where
0 < v < 1. Instead of using 0 as threshold, we use 74 as the
threshold for each k step.

3.2.4 Choice of ); and Qe

To calculate I(j), we need to select Q; and Qje. where Q5 and Qje
are distributions of Xj and ch defined on the same support for

P; and Pjc. Note that Theorem 3.2.1 holds for any distributions
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Q; and Qje. Thus, we can consider Xj and X./ic are independent.
Moreover, it is preferable for )5 and Qjc to be closer to the true
distributions P and Pje. Therefore, we use the distributions Q; =
]Sj and Qje = ch where ]5J and ]5J-c are the marginal empirical

distributions of Xj and Xje.

3.3 Step 2 : Learning approximation model

Let S be the set of interactions obtained in step 1. The functional
ANOVA model with interactions S = UleSk is defined by
Fox) = Bot D fi(xy). (3.2)
JESK
The goal of step 2 is to learn f® to approximate the predictive

model f as much as possible. We can formularize as following:

A~

fe= ar%cglinEpﬁ (f(X), f4(X))

where P is a distribution of input variables. We use a Boosting
model to approximate the original model. However, boosting mod-
els are inherently non-interpretable. To address this, we employ
ANOVA-boosting [Kim et al., 2009], which is a boosting model
based on the functional ANOVA model, making it interpretable.
To efficiently utilize the interactions obtained in step 1, we in-
troduce two modifications to ANOVA-boosting. We refer to this
modified version as Modified ANOVA-boosting.
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3.3.1 Modified ANOVA-boosting

For the first modification, we introduce a greedy algorithm to it-
eratively select the split value for each base learner. ANOVA-
boosting uses all possible search to find split value for each base
learner. Thus, the computational complexity is O(nk) for kth-
order interaction. Note that the advantage of our method is that
it effectively detects the higher-order interactions. If we use an all
possible search, the computations for higher order interactions are
almost infeasible, even for third-order interactions.

On the other hand, the computational complexity of the greedy
algorithm increases linearly with k. Thus, we use a greedy algo-
rithm similar to the decision tree. Here is the example of greedy
search for Modified ANOVA-boosting. The objective is to find a

base learner for interaction (1,2).
1. Train base learners g; € G; and g2 € Go.

2. Choose the best one g; among g; and g2 where
n ' ]
Jj= argminZE(r(l),gk(mg))).
ke{1,2} ;.
3. (Assume j = 1) For a given s; where s is split value for g1,

find best split value sy for g 2.

By applying the greedy algorithm, modified ANOVA-boosting can
efficiently consider higher-order interactions obtained in step 1.

However, it is well known that greedy algorithm may cause the
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local minima problem(e.g. XOR problem). To overcome this issue,
we introduce second modification.

We applies the bumping method(Hastie et al. [2009]) to modi-
fied ANOVA-boosting. This technique uses bootstrap sampling to
avoid the local minima problem. To find a base learner for inter-
action j, draw B bootstrap dataset Z!,..., Z? and train B base

learners using Z°(b = 1,..., B). Lastly choose the best one.

3.3.2 Synthetic dataset

We train f* using the modified ANOVA-boosting with synthetic
dataset. The reason for using synthetic dataset is to fill in the sup-
port of the input data in order to better approximate the origin
model. We use two types of synthetic dataset : One is interpola-
tion samples and the other is extrapolation samples. Let x® and
x() are two training input samples. We generate interpolation
and extrapolations samples as follows :

1) Interpolations samples
% = Mx@ 4+ (1 - \)xW)

where A ~ Beta(a, a) for a > 0.

2) Extrapolation samples
% = —6x + (1 4 6)xV)

where § ~ U(0,5) for § > 0. Thus, training dataset for Meta-
ANOVA consists of two datasets :

e Original training dataset T = {(x®, f(x®)):i=1,...,n}
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e Synthetic dataset N = {(x¥), f(x¥)):i=1,...,n,} where

ng is pre-defined the number of synthetic samples.

Using modified ANOVA-boosting and synthetic dataset, we
train f® to approximate f. Meta-ANOVA algorithm is described
in Algorithm 3

3.3.3 Interpreting black-box model via Meta-ANOVA

Let f@ be the estimated Meta-ANOVA model. Then, it can be

represented as follows :
K
Fr) =0+ D filxy).
k=1jeS
Let x be a given input datum. Then, our model can give the
predicted value fj(xj) for each component. Thus, it can provide

local interpretation. To interpret the black-box model globally, we

introduce the importance score of each component as following;:
15(j) = Var (fJ(XJ)>

Under the identifiability condition for functional ANOVA model,
the larger the interactions importance score, the greater the influ-

ence on the prediction.
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Algorithm 3: Meta-ANOVA algorithm

Require: TUN = {(x, f(xD)):i=1,....,n+n,} :
Training and synthetic dataset.

Require: S = UleSk : The detected interactions

Require: M : The number of trees, n = 1 : learning rate.

Require: fo(x) = argmin, >, £(f(x%),)

form=1,...,M do
e Compute the residual () = f(x®) — f,,_1(x®)

fori=1,...,n+ng
N 3L(yi,&)]
* i [ 90 | 4= frn_1 (x:)
for je S do

— Draw B bootstrap datasets Z', ..., Z5.

— Fit base learners gJ?, b=1,...,B using

greedy algorithm.
n+ns
— g;=  argmin Z E(r(i),gj (x™))
gi€{g}:b=1,....B} ;=1

end
n+ng ' )
e j* = argmin Z K(T(’),Qj(xjgl)))
i€s 4

® fon="Ffm-1+ Tl@j*

end

Result: fjs
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Chapter 4

Experiments

We conduct experiments to evaluate the performance of our method,

focusing on two aspects : 1) How effectively our interaction search
algorithm can find the true interactions, and 2) How well Meta-
ANOVA approximates the given predictive model. The evaluation
is carried out in two scenarios: 1) Simulated data, and 2) Real

data.

4.1 Simulated data

Since ground-truth labels for interactions are not available in a
general predictive model, we utilize ten synthetic functions that
consist of second and higher-order interactions. All ten functions
and input distributions are the same as described in Liu et al.
[2020]; Tsang et al. [2017]. The list of synthetic function is in
Table 4.1. We regard these functions as given predictive models

and apply our framework.
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Table 4.1: List of 10 synthetic functions used in the Simulated

data experiments.

By | 772205 —sin~ ' (xz4) + log (s + 5) — L o Gy
T10 y T8

Fy | ©™%2\/2]x3] — sin” ' (0.524) + log(|xs + x5 + 1) +

— Tox
1+|a:m|\/1+\a: |
_ _ 2wl 1
Fs | explz1 — @a| 4 |woxs| — 23" 4 log(x] + @2 + 27 + 23) + @0 + 5
1+ 27,
F exp |z1 — @a| + |zaws| — mg\u\ 4 (1114)2 + log(xi + x? + x? + mg) + x9 + 152
10

1
| — + vexp(zs + xs5) + |6 + 7| + T8Toz10

1+ a2 423 +

Fs | exp(Jzize| + 1) —exp(|zs + za] + 1) + cos(ws + x6 — ws) + 1/ 22 + 22 + 22,

1

5

F t t ? 0) —
7 | (arctan(z1) + arctan(zs2))” + max(zsx4 + x6,0) T ry—

Y

1+

K
|zo] —

Fs | @img + 273775176 4 9= @4t @527 4 i (17 sin(2s + x9)) + arccos(0.9210)

Fy | tanh(zi1x2 + x3xa)/|zs] + exp(as + x6) + log((zezras)® + 1) + zoz10 +

I

1+ |210]

Fio | sinh(x1 + x2) + arccos(tanh(zs + x5 + 7)) + cos(xa + x5) + sec(x7x9)

As discussed in Section 3.2, our method can detect interactions
that model has learned. To evaluate our framework, We conduct
experiments on synthetic functions F} — Fjg. First, interaction
detection is conducted (step 1). For synthetic functions, we select
the threshold hyper-parameter v = 0 because the object is to find
true interactions. To calculate I(j), we draw 100 samples from
()5 and 400 samples from @Qjc. We limit the maximum interaction
order K to 4. The reason is that interpreting interactions beyond
the 4th- order interaction becomes challenging.

After step 1, we approximate the synthetic functions utiliz-

ing interactions detected from step 1. The hyper-parameters for
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modified ANOVA-Boosting are fixed by

(n, M, B, a, B,ns) = (0.1,3000,5,0.5,0.2,5 x n)

First, we assess the ability of our method to detect second-
order interactions for synthetic functions. For a given second-
order interaction j € S, we can estimate IS(j) = Var (j‘;(XJ)>,
the importance score of j, using training dataset. We set I.5(j) =0
for j &€ Ss.

We compare our method to other existing methods that de-
tect interactions including Two-Way ANOVA Fisher [1992], Hi-
erLasso (Hierarchical Lasso) Bien et al. [2013], RuleFit Friedman
and Popescu [2008], AG (Additive groves Sorokina et al. [2008],
NID (Neural Interaction Detection) Tsang et al. [2017] and PID
(Persistence Interaction Detection) Liu et al. [2020]. PID is a
similar method to NID. Like NID, PID is also a methodology for
detecting interactions from a neural network. The main differ-
ence lies in the way it measures the importance of interactions.
PID quantifies the strength of interactions based on the theory of
persistent homology.

There is a notable distinction between Meta-ANOVA and other
baseline methods. Our method is capable of detecting interactions
for any predictive model, making it model-agnostic. On the other
hand, other methods can only be applied to specific models. This
implies that even when the true function is available, other meth-

ods would still need to train a model within their specific function
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class to detect interactions. Additionally, if one wants to detect
interactions from a particular model, other methods may not be
applicable or may require re-training a model using their specific
function class.

The AUC score of interaction strength is used as a perfor-
mance comparison measure. We conducted 10 trials and removed
the two trials with the highest and lowest AUC scores. The aver-
aged AUC score results are presented in Table 4.2. It is evident
that Meta-ANOVA can perfectly detect second-order ground-truth

interactions.

Table 4.2: The results of synthetic functions : The comparison
between Meta-ANOVA and other methods for AUCs of second

order interactions

ANOVA  HierLasso RuleFit AG NID PID = Meta-ANOVA

Fy 0.992 1.000 0.754 1.000 0.985 0.986 1.000
I 0.468 0.636 0.698 0.880 0.776 0.804 1.000
F3 0.657 0.556 0.815 1.000 1.000 1.000 1.000
Fy 0.563 0.634 0.689 0.999 0.916 0.935 1.000
3 0.544 0.625 0.797 0.670 0.997 1.000 1.000
Fe 0.780 0.730 0.811 0.640 0.999 1.000 1.000
Fr 0.726 0.571 0.666 0.810 0.880 0.888 1.000
Fy 0.929 0.958 0.946 0.937 1.000 1.000 1.000
Fy 0.783 0.681 0.584 0.808 0.968 0.972 1.000
Fio 0.765 0.583 0.876 1.000 0.989 0.987 1.000
Average 0.721 0.698 0.764 0.870 0.951 0.957 1.000
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Furthermore, Meta-ANOVA screening algorithm successfully
detects all true interactions in synthetic functions. This means
that all ground-truth interactions are included in the set S, even
the highest order interactions.

Additionally, we use various values of v to select threshold
for mains and compare the average of importance scores 1.5(j)
for the detected 2nd-order interactions. The results are shown in
Figure 4.1. These results suggest that the higher I(j), introduced
by our proposed method, the more likely our algorithm captures

important interactions.

4.2 Real data

For Real data, we analyze five datasets : Calhousing Pace and
Barry [1997], letter recognition Frey and Slate [1991], german
credit Gromping [2019], Satellite and Online news dataset. De-
tails about each dataset are summarized in Table 4.3. We split
the data into train/validation/test sets in a ratio of 70/10/20 for
all datasets.

For Real data, our method needs a pre-trained model. We

consider following models:
1. Neural network with for hidden layers(140-100-60-20).
2. XGBoost with depth 3,4, 5.

3. Random forest
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Table 4.3: The descriptions of Real data.

Dataset Number of samples | Number of features Problem
Calhousing 21k 8 Regression
Letter-recognition 20k 16 Classification
German-credit 1k 61 Classification
Satellite 6k 36 Classification
Online news 40k 58 Classification

Table 4.4: Baseline model and its test error for Real data.

Dataset Model | Test error
Calhousing NN 0.2063
Letter-recognition NN 0.0255
German-credit XGB4 0.1900
Satellite XGB4 0.0668
Online news XGB3 0.3316

The hyper-parameters for each model are selected using the

validation set. We choose the model with the best test error (MSE

for regression and misclassification rate for classification) for each

dataset, and we refer to it as the baseline model. The results are

summarized in Table 4.4. We can observe that the best test error

models for each dataset are NN (Neural Network) and XGB (XG-

Boost), which are not interpretable due to their high complexity.

In the case of Real data, the true interactions of the baseline

model are unknown. Therefore, we evaluate how well our method

32



Table 4.5: The results of Meta-ANOVA for Real data : The test

error comparison between baseline model and Meta-ANOVA.

Baseline model | Meta-ANOVA
Calhousing 0.2063 0.2188
Letter 0.0255 0.0481
German credit 0.1900 0.1900
Satellite 0.0668 0.0772
Online news 0.3316 0.3351

approximates the baseline model by comparing the test error of
Meta-ANOVA to the baseline model. All the hyper-parameters
required for Meta-ANOVA, except for v, are kept the same. As
mentioned earlier, complex models often include interactions that
have little impact on the output. To exclude such interactions, we
introduce the hyaper-parameter v. In all experiments with Real
data, we set v = 0.1.

Table 4.5 shows the test error for the baseline model and Meta-
ANOVA. From the results, we can confirm that our method shows
almost the same test error compared to the baseline models, which
means Meta-ANOVA approximates the baseline model effectively.

We check 15(j), the importance score for interaction j. Figure
4.3 shows the top 10 importance score for Calhousing dataset. It
is well known that 'median income(7)’ is closely related to house
price. Moreover, 'Longitude’ and ’latitude’ (0,1) shows strength

interactions. Through this results, we are able to confirm that the
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baseline model considers 'median income’ and location information

as important features.

Importance interactions

7 0, 1) 2 4.5) 4 1 o (L7 (5.6 (46)

Figure 4.2: The top 10 importance scores for Calhousing dataset

4.3 Ablation studies

In this section, we report the results of ablation studies. The

things to be examined in the ablation studies are as follows:

e Comparison with other learning algorithm of functional ANOVA

model
e The sensitive analysis of ~
e The effect of bumping method

e The effect of synthetic dataset
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4.3.1 Comparison with other learning algorithm of

functional ANOVA model

If training data is available, we can use functional ANOVA mod-
els to train a transparent box model. This is because functional
ANOVA models are inherently interpretable on their own. There-
fore, we compare the performance of models when using functional
ANOVA models directly and our method. To confirm this, we use
two types of data : 1) Simulated data and 2) Real data.

In Simulated data, we compare our method to other functional
ANOVA models when true function consists of main and second-
order interactions. We consider the following true regression func-
tion [Lin and Zhang, 2006] :

T+ a3
2

h(x) = g1(x1)+g2(w2)+g3(23)+ga(24)+g1(2324)+g2(

where g1(t) = £, ga(t) = (2t — 1), gs(t) = 52227 and gu(t) =

0.1sin(27t)+0.2 cos(27t)+0.3 sin?(27t)+0.4 cos? (2mt) +0.5 sin®(27t).
We consider 10 input variables Xi,...,X19 ~ Unif(0,1). Note
that h only uses four input variables. Therefore, X5, ..., X9 are

uninformative. We consider two simulation cases.

e Casel: n =400

e Case 2 : n=10,000

We generate y = h(z)+e where € ~ N(0,0.25462). ISE (Integrated
squared error) is used as comparison measure same as [Lin and
Zhang, 2006].

ISE=E (h(X) - h(X))2
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Table 4.6: The results of Simulated data : The comparison be-
tween Meta-ANOVA and other functional ANOVA algorithms.

Model ISE(case 1) | ISE(case 2)
SS-ANOVA [Gu, 2013] 0.0617 0.0117
COSSO [Lin and Zhang, 2006] | 0.0431 X

MARS2 [Friedman, 1991] 0.0483 0.0174

NN 0.0814 0.0121
Meta-ANOVA(NN) 0.0891 0.0132
Meta-ANOVA(MARS?2) 0.0517 0.0188

We estimate ISE by Monte Carlo integration using 10,000 test
points. Neural network with for hidden layers(100-100-50-20) is
used as predictive model for our method. We use the main and
second-order interactions for SS-ANOVA, COSSO and MARS. We
conduct experiments for various values of hyper-parameters and
select the best model for each algorithm.

For our method, we draw 100 samples from ()5 and 400 samples
from Qje to calculate I(j). We set v = 0.1 and (M, B, o, 8,n,) =
(3000, 5,0.5,0.2,5 x n). The results are in Table 4.6.

MARS?2 denotes MARS with depth 2. X means computation-
ally infeasible. In case 1, NN shows bad performance. This is
likely due to overfitting, which appears to occur because of the
small sample size. Thus, our method using NN also shows bad
performance. However, our method is model-agnostic. Thus, we

test our method using MARS. The result shows that our method
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using MARS has performance similar to MARS, and even better
than SS-ANOVA.

In case 2, SS-ANOVA shows best ISE. However, our method
for NN is pretty comparable with SS-ANOVA and outperforms
COSS0 and MARS2. Moreover, our method for MARS shows
similar ISE compared to MARS2. Note that the true regression
function consists of main and second interactions, which is a fa-
vorable experimental setting for the functional ANOVA model.

We conduct the comparison using Real data : Calhousing
dataset. In Real data, we cannot use ISE because we don’t know

true function. Thus, we select MSE as comparison measure.

Table 4.7: The results of Real data : The comparison between
Meta-ANOVA and other functional ANOVA algorithm.

Model Test error
Meta-ANOVA(NN) | 0.2188
SS-ANOVA 0.2484
COSSO X
MARS, 0.2784

Table 4.7 shows the results for each functional ANOVA learn-
ing algorithm. Note that our method shows best test error com-
pared to other algorithms. This is likely because there exist higher
order interactions among the input variables to explain the re-
sponse variable in the Calhousing dataset. Therefore, our method

is expected to perform well on data where a significant number of
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Gamma

Figure 4.3: The results of sensitive analysis of « using synthetic
function : For each -y, we report the AUC scores of importance

score.
higher order interactions are present.

4.3.2 Sensitive analysis of ~

In step 1, v controls the number of interactions. We check how
affects the results for Meta-ANOVA. We consider two cases : 1)
Simulated data and 2) Real data. For Simulated data, we use Fj
in Table 4.1.

1
F5(x) 5 +vexp(zg + x5) + |26 + 27| + 28379710

1+ a2 +ad + a3

The true interactions in Fy are
e Second order: (1,2),(1,3),(2,3),(4,5),(6,7),(8,9),(8,10), (9, 10)
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e Third order : (1,2,3),(8,9,10)

We regard Fj as a given predictive model and apply Meta-ANOVA.
The hyper-paremters for our method is same as other experiments
except for v. We conduct experiments for various v and measure
the AUC score of the importance score for each . The Figure 4.3
suggests that our method shows robust results on Simulated data
as long as <y is not too large.

We also conduct sensitive analysis of v using Real data. Similar
to previous experiments, we don’t know the true interactions of the
predictive model. Thus, we use test errors as comparison measure.
The results are in Figure 4.4. The results show that our method

does not sensitive to v as long as it is not too large.

4.3.3 The effect of bumping method

In step 2, we introduce bumping method to ANOVA-Boosting
since greedy algorithm can cause local minima problem. We check
the effect of bumping using Calhousing dataset. The results are
in Table 4.8. The results show that bumping method efficiently
reduces the local minima problem. X means without using boot-
strap samples and refers to directly using the training data.
Based on test error, it appears that not using bumping leads
to the occurrence of local minima problems. However, when us-
ing bumping, such issues are relatively less likely to happen, and
the number of bootstrap samples(B) does not have a significant

impact.
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Figure 4.4: The results of sensitive analysis of v using Real data :
For each =y, we report the test errors of Meta-ANOVA. The dashed

line represents the test error of baseline model.
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Table 4.8: The results of the effect of bumping : We report the

test errors for each bumping size.

Bumping size(B) | Test error
X 0.2584
5 0.2188
10 0.2179
20 0.2177

4.3.4 The effect of synthetic dataset

To better approximate the given predictive model, we use not

only the training dataset but also synthetic dataset. We check the

effect of synthetic dataset using Calhousing dataset. The results

are in Table 4.9. The results show that synthetic dataset helps the

ability to approximate the given predictive model.

Table 4.9: The results of the effect of synthetic dataset : We report

the test errors for various combinations of datasets.

Dataset Test error
Train 0.2262
Train + interpolation 0.2195
Train + interpolation + extrapolation 0.2188
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Chapter 5

Conclusion

In this thesis, we introduce a new post-process interpretation method
called Meta-ANOVA. Meta-ANOVA interprets a given pre-trained
predictive model by approximating it as a functional ANOVA
model. Since functional ANOVA model is interpretable on its
own, we can interpret the given predictive model.

To interpret the given predictive model correctly, the func-
tional ANOVA model should closely approximate the original model.
To approximate the given model well, we develop the interactions
detection algorithm and introduce the modified learning algorithm
for ANOVA-Boosting to utilize higher order interactions.

In comparison with other interpretation methods, our method
can detect higher order interactions the given predictive model has.
Moreover, Meta-ANOVA can give local and global interpretation
simultaneously. Also, our method is model-agnostic, which means

it can be applicable as long as the outputs can be obtained.

42



Recently, transparent box models such as NAM (Neural Addi-
tive Model) [Agarwal et al., 2021] and NBM (Neural Basis Model)
[Radenovic et al., 2022] have been developed using DNNs. It would
be interesting to use them as approximation model. We leave this

as future work.
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Appendix A
Appendix

A.1 Proof of Theorem 3.2.1.

Note that for a given j C [p], we can represent f as following:

= bo + Z Gy(x) + Gy(x Z fis (X43),

¥<j jz<je
where Gy;j(x) = fi (xj) + 25, cje firvia (Xyujs)-
"Only if’ part :
For a given j C [p] fy = 0 for all j > j means
50+ZGJJ )+ fi(x5) Z fis(X53),
J'<j Jz<j¢
and D;f(x) = D; fj(x;) which does not depend on xjc. Therefore
/ / _
Varg: g {DJ- 1, ch)} —0.
'If” part :
For a given j C [p], Varx: ;e {Djf(Xg, X;C)|X3} = 0 means that
J
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Dj f(x) does not depend on xjc. Note that

D;f(x) = D;fj(x;)+D; Z fiuiz(X5052) | = Dy fi(x4) +Dj fi+ (x).
J2Cj¢

Since both Djf(x) and D;jfj(x;) do not depend on Xje, so does
Dj fi+(x). Thus, fy =0 for all j > j. ]

A.2 Extension to categorical input variables

Let x € X = {0,1}? be an input vector and f : X — R be a given
predictive model constructed by any machine learning algorithm
such as random forest, deep neural networks. We assume ANOVA

model as follows
P
= po + Z Z B! (A.1)
k=1 \ jeJi

Note that when x;s are all binary, i.e. 0 or 1, all f(x) can be
perfectly represented by an ANOVA model. For j C [p], 8; # 0
implies that the interaction j is valid for the given function f(x).

For a given j C [p|, we write equation (A.1) as follows:
x)=Bo+ D xpld By + Y ByuXi! ¢ + Y Biaxial.
Jaj J2Cj°¢ JzCje
For given j and j' C j, let gy j(xjc) = By + 35, cje BiriaXjo!- Then,

we can write

f(x) = Bo+ ZXJ 195 XJ Z BisXis -

i JsCje
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Theorem A.2.1. For a given j, By = 0 for all j’ > j if and only
if gj.3(xje) s a constant function for all xje, where j’ > j means
¥ odbuti 43

Proof) The ’if” part is trivial. For the ’only if part’, we can first
show that gy;(xjc) = 5 when xje = 0. In turn, we can show that
By =0 for any j’ > j and |j’ — j| = 1 by let xjc such that z; =1
for j € j —j and 0 otherwise. By applying similar arguments

repeatedly, we can show that Sy = 0 for all j’ > j. O

Theorem A.2.2. For any j, we can represent gjj(Xje) as follow.
gii(x5e) = > (DI f(x i xy = 1,x55 = 0) (A-2)
JSi
Proof) Let j = (j1, ..., jx) where k = |j|. Since

f(X 1X; = 1) = P+ gjd(ch) + Zgj/J(ch) + Z /BJSXjS! and

< J3Cje

f(x:x;=0) = fo+ Z BisXjs!s

J3Cje
the following holds:
gi3(xge) = flxixg = 1) = f(x % = 0) = > gy 5(xje).
i<i
Considering that
fx:xy=1,x5_3y=0)= o+ Zgj,j(xjc) + Z Bis X, ! (A.3)
gy jsCje
we can get

Zgjvj(ch) = f(X : Xj/ = 11Xjfj’ = 0) - f(X : Xj = O) (A4)
gy
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By the principle of inclusion-exclusion, we can represent > ., _; gy j(Xje)

given as:
doorilbge) = (=17 Y >0 g(x5e)
i< Isii<kjcj—{ji }

+ (-t > > g;xe)

1<i1<i2 <k JCj—{ji, .jiy }

S S g, 49)

1§11<12<<Zk71§k.~]‘c‘]_{311 7"'7.jik,1}

By (A.4) and (A.5) we have the following:

> grilxe) = (-1)° > fxixg_g,y = Lxy,y =0)

<3 1<ii<k
1 ) _ _
+ (=D > F X g ) = LX) = 0)
1<is <ia<k
+ .
+ (_1)k_2 Z f(X : Xj*{jip“'vjik—l} = 1’X{ji1"”’jik—1} = 0)

1<ii<in< - <ip—1<k
0 if £ is odd
_ (A.6)
2f(x:x;=0) if kis even

Thus by combining (A.3) and (A.6), the proof is done. O
Note that gj;j(xjc) can be defined by partial ordinal deriva-
tive when the input variables can take value {0, 1}. Thus, partial

derivative can be used when categorical input variables are given.

A.3 Additional results for Simulated data
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Figure A.1: Heat maps of pair interaction scores proposed by Meta
ANOVA framework for synthetic function £} — Fjg. Cross-marks

indicate ground truth interactions.
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A.4 Additional results for Real data

Table A.1: Calhousing : The number of detected interactions for

various 7.
v:01 | ~v:02 ] v:03 | v:04 | v:0.5
Main 8 8 8 8 8
Second 21 21 21 21 15
Third 35 30 16 6 0
Fourth 20 5 2 0 0

93



Table A.2: Letter : The number of detected interactions for vari-

ous 7.

v:01 | v:02 ] v:03 | v:04 | v:0.5
Main 16 16 16 16 16
Second 120 105 78 55 36
Third 50 50 27 10 0
Fourth 0 0 0 0 0
o4



Table A.3: German :

various .

The number of detected interactions for

v:01 | v:02 ] v:03 | v:04 | v:0.5
Main 61 61 61 61 61
Second 300 253 91 21 10
Third 7 6 2 1 0
Fourth 0 0 0 0 0
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Table A.4: Satellite : The number of interactions for various ~.

v:01 | ~v:02 ] v:03 | v:04 | v:0.5
Main 36 36 36 36 36
Second 300 300 210 91 45
Third 100 99 7 1 1
Fourth 3 3 1 0 0
56



Table A.5: Online news :

Y.

The number of interactions for various

v:01 | v:02 ] v:03 | v:04 | v:0.5
Main 58 58 58 58 58
Second 276 91 36 15 10
Third 1 1 1 1 1
Fourth 0 0 0 0 0
o7



Figure A.2: Calhousing : Heat map of 2nd-order interaction scores

proposed by Meta-ANOVA framework.

o8



o
i

54321

N

7 8 9% 1011 1z 13 14

15 14 13 12 11 10 9 8 7 6

Figure A.3: Letter : Heat map of 2nd-order interaction scores

proposed by Meta-ANOVA framework.
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Figure A.4: German : Heat map of 2nd-order interaction scores

proposed by Meta-ANOVA framework.
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Figure A.5: Letter : Barplot of 3rd-order interaction strength
scores proposed by Meta-ANOVA framework.

A.5 Comparison with local interpretation

models

We compare our method to LIME and SHAP-values, which are
local interpretation models. They utilize only main feature to ap-
proximate models. When LIME and SHA P-values are applied to a
model in which the roles of interactions are important (e.g., tree-

based models), there could be bias in the estimated coefficients
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since they only utilize main features to approximate the models.
To investigate this issue, we conduct experiments using two syn-
thetic models : 1) F(x) = 2x; + 3x2 + 102122 and 2) F3 in Table
4.1. Inputs for F' are sampled from Unif(—1,1)

For LIME and SHAP-values, we randomly sample 20 inputs
and apply each input to LIME and SHAP-values. Next, we ob-
tain 20 coefficients forxo and xg, respectively, where each of which
is linear in synthetic function F' and F3. We use averages of 20
coefficients for LIME and SHAP-values. The results are sum-
marized in Figure A.6. We can clearly see that Meta-ANOVA
provides well-estimated coefficients for each two variables. In con-
trast, LIME and SHA P-values become worse for this setting and
even show negative coefficient for some inputs(true is positive for
both models). This shows that local explanation should be inter-

preted carefully.
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Figure A.6: The comparison of estimated coefficient for synthetic

function F'(Left) and F3(Right) between Meta-ANOVA and local

surrogate models. We check the coefficient of Xy and Xg for F

and Fj respectively.
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