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ABSTRACT

Towards interpretable machine learning :

A methodology for screening interactions in

functional ANOVA model

Yongchan Choi

The Department of Statistics

The Graduate School

Seoul National University

In this thesis, we propose a post-process interpretation method.

Recently, machine learning has received great attention due to its

remarkable predictive accuracy in various fields. Despite their

strong predictive performance, machine learning models have usu-

ally lack of interpretability since this improvement in predictive

performance has been achieved through increased model complex-

ity. This makes it difficult for people to understand the models.

So, We develop a new post-process interpretation method called

Meta-ANOVA, which interprets a given predictive model. To in-

terpret the model, we devise a framework for detecting interactions
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in the model. Moreover, we propose an efficient learning algorithm

for the functional ANOVA model when the interactions are given.

Keywords: Explainable AI, Model interpretation, Interaction de-

tection, Functional ANOVA model, Identifiability

Student Number: 2016− 20277
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Chapter 1

Introduction

There are two things to be considered when evaluating predictive

models : prediction accuracy and interpretability. Over the recent

decades, many predictive models with high prediction ability, such

as ensemble-based models and deep neural networks, have been

developed, and they have received much attention [Chouiekh and

Haj, 2018; Devlin et al., 2018; He et al., 2016; Radford et al., 2019;

Shen et al., 2017].

Despite their strong predictive performance, machine learning

models have usually lack of interpretability since this improvement

in predictive performance has been achieved through increased

model complexity. This makes it difficult for people to understand

the models. That is, they are treated as black-box. Black-box

models could be acceptable to low-risk tasks. However, in high-

risk tasks such as cancer diagnosis and self-driving cars system,

models that cannot be interpreted are hard to be used. The need

1



for trustworthiness of modern machine learning models in real-

world applications has led to the revival of the field of eXplainable

Artificial Intelligence (XAI).

In this thesis, we introduce a novel method calledMeta-ANOVA,

which aims to construct an interpretable model for a given pre-

dictive model. The key idea of our method is to approximate

the given predictive model using a functional ANOVA model. To

approximate the model efficiently

1. We propose an interaction detection method.

2. We introduce an efficient learning algorithm for functional

ANOVA model.

Meta-ANOVA efficiently learns the functional ANOVAmodel with-

out losing the prediction power of a given model and it is theo-

retically well-grounded. To conduct the first step successfully, we

also provide an efficient interaction detection algorithm similar to

Apriori algorithm.

In Chapter 2, we briefly review XAI methods and the func-

tional ANOVA model. In Chapter 3, we explain the proposed

method. In Chapter 4, we present the results of numerical study.
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Chapter 2

Review

2.1 Review : Post-process interpretation meth-

ods

XAI methods can be classified into several perspectives. We first

categorize the methods into two groups. One is transparent model

design and the other is post-process interpretation.

Transparent model design aims to build models that can be

trained to interpret their predictions (white-box models). These

models provide simultaneous prediction and interpretation, mak-

ing them reliable for their interpretability. Linear model and de-

cision trees are typical transparent models. However, creating a

white-box model often requires introducing constraints, which can

lead to performance degradation.

Post-process interpretation is a method used to understand

the inference process of a pre-trained model. The prediction is ob-
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tained from the pre-trained model, and post-process methods are

then applied to gain interpretation or insight into the prediction.

Unlike transparent model design, post-process interpretation does

not lead to performance degradation, but the interpretability of

the results is often less reliable. Ensuring interpretation reliability

becomes a key concern for these methods. Post-process interpre-

tation can be further divided into two categories: local and global

interpretation. Global interpretation involves understanding how

a given model makes predictions across the entire input space. On

the other hand, local interpretation focuses only on a specific input

vector, rather than considering the entire input space.

2.1.1 Global interpretation

Tsang et al. [2017] devise a global interpretation method, called

NID (Neural Interaction Detection). NID first introduces a frame-

work for detecting statistical interactions from a pre-trained neural

network. NID utilizes the structure of the neural network. In or-

der for the network to have a specific interaction, there should

be at least one hidden node with strong weight connections to

corresponding input nodes. The Figure 2.1 shows the weight con-

nections between the first and third input nodes and the first hid-

den node of the first hidden layer. Let W (l) ∈ Rpl×pl−1 and b(l)

(l = 1, . . . , L) are weight matrices and bias vectors where pl is the

number of hidden units in the l-th layer. The i-th row and j-th

column of W l are denoted by W
(l)
i,: and W

(l)
:,j .

NID measures the weight connections of interaction I for each

4



node of the first hidden layer as follows : µ
(∣∣∣W (1)

i,I

∣∣∣) where µ(·)

is averaging function. µ(·) = min(·) is used in practice . After

measuring the weight connections of all hidden nodes in the first

layer, the influence of the hidden nodes on the output is given as

follows :

z(ℓ) = |wy|⊤
∣∣∣W(L)

∣∣∣ · ∣∣∣W(L−1)
∣∣∣ · · · ∣∣∣W(ℓ+1)

∣∣∣ .
NID defines the interaction strength ωi(I) of an interaction I for

i-th hidden unit as

ωi(I) = z
(1)
i µ

(∣∣∣W(1)
i,I

∣∣∣) .

Finally, the importance score of the neural network ω(I) is defined

by

ω(I) =
p1∑
j=1

ωi(I).

NID provides importance scores for the interactions that the

trained model has. However, NID is applicable only to neural

networks.

2.1.2 Local interpretation

The additive Feature Attribution method is a framework for local

interpretation. Let f and x be a given model and input vector

respectively. The objective is to interpret f at x using an expla-

nation model gx. The explanation model gx is a linear function of

binary variables :

gx (zx) = ϕx,0 +
M∑
j=1

ϕx,jzx,j

5



Figure 2.1: An illustration of an interaction within a fully con-

nected neural network. The bold black arrow means strong weight

connection. The top node of the first hidden layer takes inputs

from (1, 3) with strong connection.

where zx ∈ {0, 1}M is a simplified binary input vector for x

and M is the number of simplified input features. Simplified in-

put refers to transforming the original input data into a human-

understandable format or representation. For instance, consider

an image of a dog where the values of each pixel in the image

are entirely incomprehensible to humans. However, humans can

understand and interpret whether the image contains the dog’s

nose or not. This illustrates that simplified input can be defined

differently based on the domain of the input variables. Assuming

that the transformation to simplified input is feasible.

Additive Feature Attribution method tries to ensure gx(zx) ≈

f(x). Then, it interprets the original model f at x using gx. There

are two representative methods to estimate ϕx,j . One is LIME

6



[Ribeiro et al., 2016] and the other is SHAP-values [Lundberg and

Lee, 2017].

[Ribeiro et al., 2016] utilizes local linear regression using Gaus-

sian kernel where . Let πx(x
′) = exp

(
−∥x′ − x∥2)/σ2

)
be a Gaus-

sian kernel. The objective function of LIME is given as :

L (f, gx, πx) =
∑
x′∈X

πx(x
′)
(
f(x′)− gx

(
z′
))2

+Ω(gx)

where X is input dataset, z′ is a simplified input of x′ and Ω is

L1-penalty. [Ribeiro et al., 2016] minimizes the objective function

and interprets f at x via gx.

[Lundberg and Lee, 2017] uses Shapley value estimation method

[Shapley et al., 1953] to estimate gx. The estimate of ϕx,j is

ϕx,j =
∑
x̃′⊆x′

|x̃′|! (M − |x̃′| − 1)!

M !

[
f
(
x̃′)− f

(
x̃′\j

)]
where |x̃′| is the number of non-zero entries in x̃′, and x̃′ ⊆ x′

represents all x̃′ vectors where the non-zero entries are a subset

of the non-zero entries in x′. They shows that SHAP-values is

the unique estimation method of additive feature attribution that

satisfies Local accuracy, Missingness and Consistency properties.

See [Lundberg and Lee, 2017] for details of the properties.
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2.2 Review : Learning algorithms of func-

tional ANOVA model

The functional ANOVA model aims to decompose the model into

a sum of components representing main effects and interactions.

It allows us to understand how each component for mains and in-

teractions contributes output of the model. Thus, it is transparent

box model discussed in 2.1.

The functional ANOVA model f has the following form :

f(x) = β0 +

p∑
j=1

fj(xj) +
∑
j<k

fj,k(xj , xk) + . . . (2.1)

where fjs are the main components and fj,ks are second-order

interaction components and so on. The identifiability for the

functional ANOVA model assured by the averaging operator [Gu,

2013]. Let Xj be the support for Xj and µj be the probability

measure on Xj . The support for X = (X1, . . . , Xp) is denoted as

X =
∏p

j=1Xj . The averaging operator Aj on f is defined as

Ajf =

∫
Xj

fdµj .

Condition . The functional ANOVA model f holds identifiability

condition if fj satisfies Ajfj = 0 for all j ⊂ {1, 2, . . . , p} and j ∈ j.

There are several learning algorithms of the functional ANOVA

model [Friedman, 1991; Gu, 2013; Kim et al., 2005; Lin and Zhang,

2006].
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2.2.1 Smoothing Spline-ANOVA [Gu, 2013]

SS-ANOVA (Smoothing Spline-ANOVA) is the most representa-

tive functional ANOVA model. It is assumed that f ∈ F where F

is a RKHS(Reproducing Kernel Hilbert Space). In general, each

component is in the second-order Sobolev Hilbert space. The lth-

order Sobolev Hilbert Space Sl is defined as

Sl =
{
g : g, g′, . . . , g(l−1)are absolutely continuous, g(l) ∈ L2

}
For computational issue, main and second-order interactions are

considered. Denote the norm in the RKHS F by ∥ ·∥. SS-ANOVA

finds f ∈ F to minimize :

1

n

n∑
i=1

{yi − f (xi)}2 + λ
d∑

α=1

θ−1
α ∥Pαf∥2

where d is the number of components in f , Pα is the orthogonal

projection of f onto Fα and θα ≥ 0. In SS-ANOVA, the identifi-

ability condition is ensured due to orthogonality.

2.2.2 COSSO [Lin and Zhang, 2006]

COSSO (COmponent Selection and Smoothing Operator) is a

learning algorithm for a functional ANOVA model that enables

component selection. COSSO uses the sum of RKHS norms as the

penalty, not the squared sum of the norm. COSSO finds f ∈ F

to minimize :

1

n

n∑
i=1

{yi − f (xi)}2 + τn

d∑
α=1

∥Pαf∥

9



Note that the penalty of COSSO is not a norm in F . How-

ever, it is convex. [Lin and Zhang, 2006] shows the existence of

COSSO estimate using the convexity and asymptotic properties

of COSSO. Moreover, they propose an iterative algorithm to solve

the objective function of COSSO more easily. See [Lin and Zhang,

2006] for details of the properties and algorithm.

2.2.3 MARS [Friedman, 1991]

MARS (Multivariate adaptive regression spline) is another learn-

ing algorithm of functional ANOVA model. Each component con-

sists of the modification of the CART. MARS utilizes a pair of

hinge functions. We denote the hinge function as ϕc(x) = max(0, x−

c).

MARS uses a stepwise forward-backward procedure for build-

ing functional ANOVA models. First, MARS adds a pair of hinges

{ϕc(x),−ϕc(x)} and finds the coefficients for each hinge function.

To select components, MARS finds the knot c and selects the

coefficients that satisfy the identifiability condition (forward pro-

cedure). After adding each hinge pair and coefficients, MARS

prunes the existing components to prevent overfitting (backward

procedure). Pruning is conducted based on GCV (Generalized

Cross-Validation). This forward–backward procedure is repeated

until a pre-defined stopping rule is satisfied.

10



2.2.4 ANOVA-Boosting [Kim et al., 2005]

ANOVA-Boosting is a boosting model on the functional ANOVA

model. For computational issue, ANOVA-Boosting only considers

main and 2nd-order interaction. ANOVA-Boosting model f is

f(x) = β0 +

p∑
j=1

fj(xj) +
∑
j<k

fjk(xj , xk)

where fj and fjk are estimated by a linear combination of base

learners. Let Gj be the set of decision trees with two terminal node

split by the variable Xj . For gj ∈ Gj , we can formularize gj as :

gj(xj) = θLI(xj ≤ sj) + θRI(xj > sj).

By identifiability condition(i.e. Ajgj = 0), we have

θLP (Xj ≤ sj) + θRP (Xj > sj) = 0.

This means that one of θL and θR uniquely defines the other one.

Let Gjk be the set of decision trees with four terminal node split

by the variables Xj and Xk. For gjk ∈ Gjk, we can formularize gjk

as

gjk(xj , xk) = θLLI(xj ≤ sj , xk ≤ sk) + θLRI(xj ≤ sj , xk > sk)

+ θRLI(xj > sj , xk ≤ sk) + θLLI(xj > sj , xk > sk)

By the identifiability condition, Ajgjk = 0 and Akgjk = 0 should

be hold.One of θLL, θLR, θRL and θRR uniquely defines the others

same as main case. Similar manner, identifiable base learner for

higher order interaction can be defined.

For each step, ANOVA-Boosting finds the identifiable base

learner that explains the residual most and aggregates it.
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Algorithm 1: ANOVA-boosting algorithm for regression

problem.

Require: {(x(i), y(i)) : i = 1, . . . , n} : Training dataset.

Require: M : The number of trees, η : The learning rate

Require: ℓ : The squared error loss.

Require: f0(x) = ȳ.

for m = 1, . . . ,M do

• Compute the residual r(i) = y(i) − fm−1(x
(i)) for

i = 1, . . . , n

• Fit base learners gj ∈ Gj for j ∈ J1 and gj for j ∈ J2 to the

targets r(i)

• j∗ = argminj∈(J1∪J2)
∑n

i=1 ℓ(r
(i), gj(x

(i)
j ))

• fm = fm−1 + ηgj∗

end

Result: fM

12



Chapter 3

Proposed Method

3.1 Introduction

We present the proposed Meta-ANOVA framework to interpret

any given predictive model. The key idea of our method is to ap-

proximate a given predictive model to functional ANOVA model ,

which can be interpreted both locally and globally simultaneously.

The main difference between global and local interpretation model

is the scope of interpretation. Local interpretation models can ex-

plain a block-box model only near a single datum. To understand

the model globally, the methods sholud be applied to entire train-

ing dataset. It is computationally expensive, and even there is no

guarantee that this can make the user to understand model glob-

ally. On the other hand, our method can interpret a given model

for any input since it approximates a given model for the entire

input space.

13



To improve global approximation accuracy, we propose a method

to detect statistical interactions that a given predictive model has

learned.

Let x ∈ X ⊂ Rp be an p-dimensional input vector and f :

X → R be a given predictive model. Let [p] = {1, . . . , p} and

j ⊂ [p] denote feature index set and interaction respectively. Let

xj = (xj , j ∈ j) be a sub-input vector and Jk = {j ⊂ [p] : |j| = k}

is k-order interaction set. We denote jc = [p] \ j.

Before explaining our method, we introduce the definition of

statistical interactions. We follow the definition of statistical in-

teractions provided [Sorokina et al., 2008].

Definition. Function f does not have an interaction of (i, j) if it

can be expressed as the sum of two functions f\i and f\j where

f\i does not depend on xi and f\j does not depend on xj :

f(x) = f\i(x[p]\i) + f\j(x[p]\j)

This is the definition of second-order interactions for the function

f . Higher-order interactions are defined similarly. From the defi-

nition, kth-order interaction can only exist if all its corresponding

(k − 1)th-order interactions exist. For example, the interaction

(1, 2, 3) can only exist if the interactions (1, 2), (1, 3), (2, 3) should

exist. We use this property in Section 3.2

14



3.2 Step 1 : Search for interactions

We introduce a method to detect significant interactions from a

black-box model. This step is main contribution of our method.

This is because most post-process interpretation methods do not

consider interactions, and transparent box models like the func-

tional ANOVA model primarily focus only on main and second-

order interactions. However, our method is an efficient way to find

higher-order interactions. We first consider the case of continuous

input variables and then extend to general input variables.

3.2.1 Continuous input variables

Assume all input variables are continuous and f is differentiable.

For a given model f , we consider the following functional decom-

position:

f(x) = β0 +

p∑
k=1

∑
j∈Jk

fj(xj)

For identifiability, we assume the following condition :

Condition 1 (Identifiability condition). For any j, let fj+(x) =∑
j′>j fj′(xj′). If fj+(x) does not depend on xjc , then fj′ ≡ 0 for

all j′ > j.

Note that for any functional decomposition

f(x) = β0+
∑p

k=1

{∑
j∈Jk fj(xj)

}
, we can redefine β0 and fjs such

that f satisfies the Condition. An example of the Condition is as

follows :
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• Assume f(x) = β0 + f1(x1) + f2(x2) + f1,2(x1,2)

where f1(x1) = x1, f2(x2) = x2, f1,2(x1,2) = 3.

• f1+(x) = f1,2(x1,2) does not depend on x2.

• Redefine β0 and fjs such that

f(x) = (β0 − 3) + f1(x1) + f2(x2)

Before explaining the main theorem used to find interactions,

we first define the partial derivative. Let Xj ⊂ R be the domain

of xj for each j ∈ [p]. Also, let X =
∏p

j=1Xj and Xjc =
∏

j∈jc Xj .

For a given j ∈ [p] and a function f : X → R, the partial derivative

of f at x w.r.t. the index j given as

Djf(x) := lim
ϵ→0

f(x+ ϵej)− f(x)

ϵ

where ej is a p-dimensional vector whose j-th element is 1 and 0

otherwise. Consider a set j = (j1, ..., jk). The partial derivative of

f at x w.r.t. the index set j is given as

Djf(x) := Dj1 ◦ · · · ◦Djkf(x).

Theorem 3.2.1. For given j, fj′ = 0 for all j′ > j (j′ > j means

j′ ⊋ j) if and only if

EX′
j∼Qj

[
VarX′

jc∼Qjc

{
Djf(X

′
j,X

′
jc)|X′

j

}]
= 0, (3.1)

Qj and Qjc are any distributions defined on the same support for

Pj and Pjc where Pj and Pjc are the marginal distributions of Xj

and Xjc.
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The proof of the Theorem is in Appendix A.1. Here is an

example of the Theorem.

• Assume f(x) = β0 + f1(x1) + f2(x2) + f1,2(x1, x2) where

x = (x1, x2) ∈ R2, β0 = 1, f1(x1) = x1, f2(x2) = x2 and

f1,2(x1, x2) = θx1x2. Let j = {1}

• We can get the partial derivative Djf(x) = 1 + θx2.

• From the partial derivative, EX′
j∼Qj

[
VarX′

jc∼Qjc

{
Djf(X

′
j,X

′
jc)|X′

j

}]
=

θ2Var(X ′
2).

• If θ ̸= 0, then EX′
j∼Qj

[
VarX′

jc∼Qjc

{
Djf(X

′
j,X

′
jc)|X′

j

}]
> 0.

• If θ = 0 (i.e. f1,2 = 0), then EX′
j∼Qj

[
VarX′

jc∼Qjc

{
Djf(X

′
j,X

′
jc)|X′

j

}]
=

0.

We call EX′
j∼Qj

[
VarX′

jc∼Qjc

{
Djf(X

′
j,X

′
jc)|X′

j

}]
a interaction

importance score for j and denote it as I(j; f)(abbr. I(j)). Note

that I(j) is not the importance score for j itself but the importance

score for the higher order interactions including j.

Note that Qj and Qjc are any distributions defined on the

same support for Pj and Pjc . This implies that if we have the

model and only know the support of each input variable (i.e., the

possible values it can take), without having any training data, we

can compute the statistics.

3.2.2 General input variables

In Section 3.2.1, we assume that all input variables are continuous

and f is differentiable. In this case, the partial derivative can be
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utilized. However, the partial derivative cannot be used when

1. The predictive model is non-differentiable(e.g. tree-based

model)

2. A categorical variable is used as input variable.

In these cases, we cannot use the statistics we proposed. To over-

come this issue, we replace the differentiation with the difference.

Assume Xjs are ordinal variable. Let Xj = {xj1, · · · , xjnj} be
the domain of Xj for j ∈ [p] where xj1 < · · · < xjnj and nj is

the number of values that Xj can have. For a given j ∈ [p] and

a function f : X → R, we define the partial ordinal derivative of

f(x) w.r.t. the index j given as

djf(x) :=


f(x : xj = xji)− f(x : xj = xji−1) if i = nj ,

f(x : xj = xji+1)− f(x : xj = xji) if i = 1,

(f(x : xj = xji+1)− f(x : xj = xji−1)) /2 otherwise.

Consider a vector j = (j1, ..., jk) and a function f : X → R.

We generalize the partial ordinal derivative w.r.t. the index set j

like partial derivative as follows :

djf(x) := dj1 ◦ · · · ◦ djkf(x).

dj can be used when Xjs are ordinal variables. Moreover, it can

be utilized when Xj is categorical input variable. This is because

categorical input variable is transformed to dummy variable(or

one-hot encoded variable) in general. Details about categorical

input are summerized in Appendix A.2.
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For continuous variable, we can expect that Theorem 3.2.1

approximately holds for dj when enough samples are given. Based

on theorem and partial ordinal derivative, we redefine the score of

the higher order interactions of j as follows:

I(j) = EX′
j∼Qj

[
VarX′

jc∼Qjc

{
djf(X

′
j,X

′
jc)|X′

j

}]
Note that I(j) can be applied to the non-differentiable model.

Based on the interaction importance score I(j), we suggest

the interaction detection algorithm. We use the property of the

statistical interactions discussed in Section 3.1 :

kth-order interaction can only exist if all its corresponding (k−

1)th-order interactions exist.

From the property, we can detect significant interactions se-

quentially as Apriori algorithm used for searching association rules.

The algorithm is described in Algorithm 2. When kth-order in-

teraction j is given, its (k−1)th-order interactions are denoted by

R(j) = {j \ j : j ∈ j}.

When using Algorithm 2, there are two practical issues to con-

sider. One is too many j with I(j) > 0 and the other is the choice

of Qj and Qjc .

3.2.3 Threshold selection

Highly-complex model may have almost all interactions even if

they have litter effect on the output. Thus, we use a threshold to
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Algorithm 2: Interaction searching algorithm.

Require: K: maximum degree for interaction

Initialization: k = 1

Initialization: S1 = [p]

while k ≤ K do

Calculate the followings:

• k ← k + 1

• Ck = {j ∈ Sk−1 : I(j) > 0}.

• Sk = {j1 ∪ j2 : j1, j2 ∈ Ck, |j1 ∪ j2| = k,R(j1 ∪ j2) ⊂ Ck}.

end

Result: S = ∪Kk=1Sk

exclude minor interactions. The meaning of I(j) is the importance

score for all j′ where j′ > j. From the meaning, we adopt an

approach of excluding interactions that have significantly lower

importance scores compared to the maximum importance score.

For screening kth-order interactions, let Ik = {I(j) : j ∈ Sk−1}.

Then, τk = (γ×max Ik) for pre-defined hyper-paremeter γ where

0 < γ < 1. Instead of using 0 as threshold, we use τk as the

threshold for each k step.

3.2.4 Choice of Qj and Qjc

To calculate I(j), we need to select Qj and Qjc . where Qj and Qjc

are distributions of X′
j and X′

jc defined on the same support for

Pj and Pjc . Note that Theorem 3.2.1 holds for any distributions
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Qj and Qjc . Thus, we can consider X′
j and X′

jc are independent.

Moreover, it is preferable for Qj and Qjc to be closer to the true

distributions Pj and Pjc . Therefore, we use the distributions Qj =

P̂j and Qjc = P̂jc where P̂j and P̂jc are the marginal empirical

distributions of Xj and Xjc .

3.3 Step 2 : Learning approximation model

Let S be the set of interactions obtained in step 1. The functional

ANOVA model with interactions S = ∪Kk=1Sk is defined by

fa(x) = β0+
∑
j∈Sk

fj(xj). (3.2)

The goal of step 2 is to learn fa to approximate the predictive

model f as much as possible. We can formularize as following:

f̂a = argmin
fa

EP ℓ (f(X), fa(X))

where P is a distribution of input variables. We use a Boosting

model to approximate the original model. However, boosting mod-

els are inherently non-interpretable. To address this, we employ

ANOVA-boosting [Kim et al., 2009], which is a boosting model

based on the functional ANOVA model, making it interpretable.

To efficiently utilize the interactions obtained in step 1, we in-

troduce two modifications to ANOVA-boosting. We refer to this

modified version as Modified ANOVA-boosting.
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3.3.1 Modified ANOVA-boosting

For the first modification, we introduce a greedy algorithm to it-

eratively select the split value for each base learner. ANOVA-

boosting uses all possible search to find split value for each base

learner. Thus, the computational complexity is O(nk) for kth-

order interaction. Note that the advantage of our method is that

it effectively detects the higher-order interactions. If we use an all

possible search, the computations for higher order interactions are

almost infeasible, even for third-order interactions.

On the other hand, the computational complexity of the greedy

algorithm increases linearly with k. Thus, we use a greedy algo-

rithm similar to the decision tree. Here is the example of greedy

search for Modified ANOVA-boosting. The objective is to find a

base learner for interaction (1, 2).

1. Train base learners g1 ∈ G1 and g2 ∈ G2.

2. Choose the best one gj among g1 and g2 where

j = argmin
k∈{1,2}

n∑
i=1

ℓ(r(i), gk(x
(i)
k )).

3. (Assume j = 1) For a given s1 where s1 is split value for g1,

find best split value s2 for g1,2.

By applying the greedy algorithm, modified ANOVA-boosting can

efficiently consider higher-order interactions obtained in step 1.

However, it is well known that greedy algorithm may cause the
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local minima problem(e.g. XOR problem). To overcome this issue,

we introduce second modification.

We applies the bumping method(Hastie et al. [2009]) to modi-

fied ANOVA-boosting. This technique uses bootstrap sampling to

avoid the local minima problem. To find a base learner for inter-

action j, draw B bootstrap dataset Z1, . . . ,ZB and train B base

learners using Zb(b = 1, . . . , B). Lastly choose the best one.

3.3.2 Synthetic dataset

We train fa using the modified ANOVA-boosting with synthetic

dataset. The reason for using synthetic dataset is to fill in the sup-

port of the input data in order to better approximate the origin

model. We use two types of synthetic dataset : One is interpola-

tion samples and the other is extrapolation samples. Let x(i) and

x(j) are two training input samples. We generate interpolation

and extrapolations samples as follows :

1) Interpolations samples

x̃ = λx(i) + (1− λ)x(j)

where λ ∼ Beta(α, α) for α > 0.

2) Extrapolation samples

x̃ = −δx(i) + (1 + δ)x(j)

where δ ∼ U(0, β) for β > 0. Thus, training dataset for Meta-

ANOVA consists of two datasets :

• Original training dataset T = {(x(i), f(x(i))) : i = 1, . . . , n}
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• Synthetic dataset N = {(x̃(i), f(x̃(i))) : i = 1, . . . , ns} where

ns is pre-defined the number of synthetic samples.

Using modified ANOVA-boosting and synthetic dataset, we

train fa to approximate f . Meta-ANOVA algorithm is described

in Algorithm 3

3.3.3 Interpreting black-box model viaMeta-ANOVA

Let f̂a be the estimated Meta-ANOVA model. Then, it can be

represented as follows :

f̂a(x) = β0 +
K∑
k=1

∑
j∈Sk

f̂j(xj).

Let x be a given input datum. Then, our model can give the

predicted value f̂j(xj) for each component. Thus, it can provide

local interpretation. To interpret the black-box model globally, we

introduce the importance score of each component as following:

IS(j) = Var
(
f̂j(Xj)

)
Under the identifiability condition for functional ANOVA model,

the larger the interactions importance score, the greater the influ-

ence on the prediction.
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Algorithm 3: Meta-ANOVA algorithm

Require: T ∪N = {(x(i), f(x(i))) : i = 1, . . . , n+ ns} :

Training and synthetic dataset.

Require: S = ∪Kk=1Sk : The detected interactions

Require: M : The number of trees, η = 1 : learning rate.

Require: f0(x) = argminγ
∑n

i=1 ℓ(f(x
(i)), γ)

for m = 1, . . . ,M do

• Compute the residual r(i) = f(x(i))− fm−1(x
(i))

for i = 1, . . . , n+ ns

• ri = −
[
∂L(yi,a)

∂a

]
a=fm−1(xi)

for j ∈ S do

– Draw B bootstrap datasets Z1, . . . ,ZB.

– Fit base learners gbj , b = 1, . . . , B using

greedy algorithm.

– ĝj = argmin
gj∈{gbj :b=1,...,B}

n+ns∑
i=1

ℓ(r(i), gj(x
(i)))

end

• j∗ = argmin
j∈S

n+ns∑
i=1

ℓ(r(i), ĝj(x
(i)
j ))

• fm = fm−1 + ηĝj∗

end

Result: fM
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Chapter 4

Experiments

We conduct experiments to evaluate the performance of our method,

focusing on two aspects : 1) How effectively our interaction search

algorithm can find the true interactions, and 2) How well Meta-

ANOVA approximates the given predictive model. The evaluation

is carried out in two scenarios: 1) Simulated data, and 2) Real

data.

4.1 Simulated data

Since ground-truth labels for interactions are not available in a

general predictive model, we utilize ten synthetic functions that

consist of second and higher-order interactions. All ten functions

and input distributions are the same as described in Liu et al.

[2020]; Tsang et al. [2017]. The list of synthetic function is in

Table 4.1. We regard these functions as given predictive models

and apply our framework.
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Table 4.1: List of 10 synthetic functions used in the Simulated

data experiments.

F1 πx1x2
√
2x3 − sin−1(x4) + log(x3 + x5)−

x9

x10

√
x7

x8
− x2x7

F2 πx1x2
√

2|x3| − sin−1(0.5x4) + log(|x3 + x5|+ 1) +
x9

1 + |x10|

√
x7

1 + |x8|
− x2x7

F3 exp |x1 − x2|+ |x2x3| − x
2|x4|
3 + log(x2

4 + x2
5 + x2

7 + x2
8) + x9 +

1

1 + x2
10

F4 exp |x1 − x2|+ |x2x3| − x
2|x4|
3 + (x1x4)

2 + log(x2
4 + x2

5 + x2
7 + x2

8) + x9 +
1

1 + x2
10

F5
1

1 + x2
1 + x2

2 + x2
3

+
√

exp(x4 + x5) + |x6 + x7|+ x8x9x10

F6 exp(|x1x2|+ 1)− exp(|x3 + x4|+ 1) + cos(x5 + x6 − x8) +
√

x2
8 + x2

9 + x2
10

F7 (arctan(x1) + arctan(x2))
2 +max(x3x4 + x6, 0)−

1

1 + (x4x5x6x7x8)2
+

(
|x7|

1 + |x9|

)5

+

10∑
i=1

xi

F8 x1x2 + 2x3+x5+x6 + 2x3+x4+x5+x7 + sin(x7 sin(x8 + x9)) + arccos(0.9x10)

F9 tanh(x1x2 + x3x4)
√

|x5|+ exp(x5 + x6) + log((x6x7x8)
2 + 1) + x9x10 +

1

1 + |x10|
F10 sinh(x1 + x2) + arccos(tanh(x3 + x5 + x7)) + cos(x4 + x5) + sec(x7x9)

As discussed in Section 3.2, our method can detect interactions

that model has learned. To evaluate our framework, We conduct

experiments on synthetic functions F1 − F10. First, interaction

detection is conducted (step 1). For synthetic functions, we select

the threshold hyper-parameter γ = 0 because the object is to find

true interactions. To calculate I(j), we draw 100 samples from

Qj and 400 samples from Qjc . We limit the maximum interaction

order K to 4. The reason is that interpreting interactions beyond

the 4th- order interaction becomes challenging.

After step 1, we approximate the synthetic functions utiliz-

ing interactions detected from step 1. The hyper-parameters for
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modified ANOVA-Boosting are fixed by

(η,M,B, α, β, ns) = (0.1, 3000, 5, 0.5, 0.2, 5× n)

.

First, we assess the ability of our method to detect second-

order interactions for synthetic functions. For a given second-

order interaction j ∈ S2, we can estimate IS(j) = Var
(
f̂j(Xj)

)
,

the importance score of j, using training dataset. We set IS(j) = 0

for j ̸∈ S2.

We compare our method to other existing methods that de-

tect interactions including Two-Way ANOVA Fisher [1992], Hi-

erLasso (Hierarchical Lasso) Bien et al. [2013], RuleFit Friedman

and Popescu [2008], AG (Additive groves Sorokina et al. [2008],

NID (Neural Interaction Detection) Tsang et al. [2017] and PID

(Persistence Interaction Detection) Liu et al. [2020]. PID is a

similar method to NID. Like NID, PID is also a methodology for

detecting interactions from a neural network. The main differ-

ence lies in the way it measures the importance of interactions.

PID quantifies the strength of interactions based on the theory of

persistent homology.

There is a notable distinction betweenMeta-ANOVA and other

baseline methods. Our method is capable of detecting interactions

for any predictive model, making it model-agnostic. On the other

hand, other methods can only be applied to specific models. This

implies that even when the true function is available, other meth-

ods would still need to train a model within their specific function
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class to detect interactions. Additionally, if one wants to detect

interactions from a particular model, other methods may not be

applicable or may require re-training a model using their specific

function class.

The AUC score of interaction strength is used as a perfor-

mance comparison measure. We conducted 10 trials and removed

the two trials with the highest and lowest AUC scores. The aver-

aged AUC score results are presented in Table 4.2. It is evident

thatMeta-ANOVA can perfectly detect second-order ground-truth

interactions.

Table 4.2: The results of synthetic functions : The comparison

between Meta-ANOVA and other methods for AUCs of second

order interactions

ANOVA HierLasso RuleFit AG NID PID Meta-ANOVA

F1 0.992 1.000 0.754 1.000 0.985 0.986 1.000

F2 0.468 0.636 0.698 0.880 0.776 0.804 1.000

F3 0.657 0.556 0.815 1.000 1.000 1.000 1.000

F4 0.563 0.634 0.689 0.999 0.916 0.935 1.000

F5 0.544 0.625 0.797 0.670 0.997 1.000 1.000

F6 0.780 0.730 0.811 0.640 0.999 1.000 1.000

F7 0.726 0.571 0.666 0.810 0.880 0.888 1.000

F8 0.929 0.958 0.946 0.937 1.000 1.000 1.000

F9 0.783 0.681 0.584 0.808 0.968 0.972 1.000

F10 0.765 0.583 0.876 1.000 0.989 0.987 1.000

Average 0.721 0.698 0.764 0.870 0.951 0.957 1.000
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Furthermore, Meta-ANOVA screening algorithm successfully

detects all true interactions in synthetic functions. This means

that all ground-truth interactions are included in the set S, even

the highest order interactions.

Additionally, we use various values of γ to select threshold

for mains and compare the average of importance scores IS(j)

for the detected 2nd-order interactions. The results are shown in

Figure 4.1. These results suggest that the higher I(j), introduced

by our proposed method, the more likely our algorithm captures

important interactions.

4.2 Real data

For Real data, we analyze five datasets : Calhousing Pace and

Barry [1997], letter recognition Frey and Slate [1991], german

credit Grömping [2019], Satellite and Online news dataset. De-

tails about each dataset are summarized in Table 4.3. We split

the data into train/validation/test sets in a ratio of 70/10/20 for

all datasets.

For Real data, our method needs a pre-trained model. We

consider following models:

1. Neural network with for hidden layers(140-100-60-20).

2. XGBoost with depth 3, 4, 5.

3. Random forest
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Figure 4.1: The results for synthetic function : The average of the

importance scores for various γ.
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Table 4.3: The descriptions of Real data.

Dataset Number of samples Number of features Problem

Calhousing 21k 8 Regression

Letter-recognition 20k 16 Classification

German-credit 1k 61 Classification

Satellite 6k 36 Classification

Online news 40k 58 Classification

Table 4.4: Baseline model and its test error for Real data.

Dataset Model Test error

Calhousing NN 0.2063

Letter-recognition NN 0.0255

German-credit XGB4 0.1900

Satellite XGB4 0.0668

Online news XGB3 0.3316

The hyper-parameters for each model are selected using the

validation set. We choose the model with the best test error (MSE

for regression and misclassification rate for classification) for each

dataset, and we refer to it as the baseline model. The results are

summarized in Table 4.4. We can observe that the best test error

models for each dataset are NN (Neural Network) and XGB (XG-

Boost), which are not interpretable due to their high complexity.

In the case of Real data, the true interactions of the baseline

model are unknown. Therefore, we evaluate how well our method
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Table 4.5: The results of Meta-ANOVA for Real data : The test

error comparison between baseline model and Meta-ANOVA.

Baseline model Meta-ANOVA

Calhousing 0.2063 0.2188

Letter 0.0255 0.0481

German credit 0.1900 0.1900

Satellite 0.0668 0.0772

Online news 0.3316 0.3351

approximates the baseline model by comparing the test error of

Meta-ANOVA to the baseline model. All the hyper-parameters

required for Meta-ANOVA, except for γ, are kept the same. As

mentioned earlier, complex models often include interactions that

have little impact on the output. To exclude such interactions, we

introduce the hyaper-parameter γ. In all experiments with Real

data, we set γ = 0.1.

Table 4.5 shows the test error for the baseline model and Meta-

ANOVA. From the results, we can confirm that our method shows

almost the same test error compared to the baseline models, which

means Meta-ANOVA approximates the baseline model effectively.

We check IS(j), the importance score for interaction j. Figure

4.3 shows the top 10 importance score for Calhousing dataset. It

is well known that ’median income(7)’ is closely related to house

price. Moreover, ’Longitude’ and ’latitude’ (0,1) shows strength

interactions. Through this results, we are able to confirm that the
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baseline model considers ’median income’ and location information

as important features.

Figure 4.2: The top 10 importance scores for Calhousing dataset

4.3 Ablation studies

In this section, we report the results of ablation studies. The

things to be examined in the ablation studies are as follows:

• Comparison with other learning algorithm of functional ANOVA

model

• The sensitive analysis of γ

• The effect of bumping method

• The effect of synthetic dataset
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4.3.1 Comparison with other learning algorithm of

functional ANOVA model

If training data is available, we can use functional ANOVA mod-

els to train a transparent box model. This is because functional

ANOVA models are inherently interpretable on their own. There-

fore, we compare the performance of models when using functional

ANOVA models directly and our method. To confirm this, we use

two types of data : 1) Simulated data and 2) Real data.

In Simulated data, we compare our method to other functional

ANOVA models when true function consists of main and second-

order interactions. We consider the following true regression func-

tion [Lin and Zhang, 2006] :

h(x) = g1(x1)+g2(x2)+g3(x3)+g4(x4)+g1(x3x4)+g2(
x1 + x3

2
)+g3(x1x2)

where g1(t) = t, g2(t) = (2t − 1)2, g3(t) =
sin(2πt)

2−sin(2πt) and g4(t) =

0.1 sin(2πt)+0.2 cos(2πt)+0.3 sin2(2πt)+0.4 cos3(2πt)+0.5 sin3(2πt).

We consider 10 input variables X1, . . . , X10 ∼ Unif(0, 1). Note

that h only uses four input variables. Therefore, X5, . . . , X10 are

uninformative. We consider two simulation cases.

• Case 1 : n = 400

• Case 2 : n = 10, 000

We generate y = h(x)+ϵ where ϵ ∼ N(0, 0.25462). ISE (Integrated

squared error) is used as comparison measure same as [Lin and

Zhang, 2006].

ISE = E
(
ĥ(X)− h(X)

)2
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Table 4.6: The results of Simulated data : The comparison be-

tween Meta-ANOVA and other functional ANOVA algorithms.

Model ISE(case 1) ISE(case 2)

SS-ANOVA [Gu, 2013] 0.0617 0.0117

COSSO [Lin and Zhang, 2006] 0.0431 X

MARS2 [Friedman, 1991] 0.0483 0.0174

NN 0.0814 0.0121

Meta-ANOVA(NN) 0.0891 0.0132

Meta-ANOVA(MARS2 ) 0.0517 0.0188

We estimate ISE by Monte Carlo integration using 10,000 test

points. Neural network with for hidden layers(100-100-50-20) is

used as predictive model for our method. We use the main and

second-order interactions for SS-ANOVA, COSSO andMARS. We

conduct experiments for various values of hyper-parameters and

select the best model for each algorithm.

For our method, we draw 100 samples from Qj and 400 samples

from Qjc to calculate I(j). We set γ = 0.1 and (M,B,α, β, ns) =

(3000, 5, 0.5, 0.2, 5× n). The results are in Table 4.6.

MARS2 denotes MARS with depth 2. X means computation-

ally infeasible. In case 1, NN shows bad performance. This is

likely due to overfitting, which appears to occur because of the

small sample size. Thus, our method using NN also shows bad

performance. However, our method is model-agnostic. Thus, we

test our method using MARS. The result shows that our method
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using MARS has performance similar to MARS, and even better

than SS-ANOVA.

In case 2, SS-ANOVA shows best ISE. However, our method

for NN is pretty comparable with SS-ANOVA and outperforms

COSSO and MARS2. Moreover, our method for MARS shows

similar ISE compared to MARS2. Note that the true regression

function consists of main and second interactions, which is a fa-

vorable experimental setting for the functional ANOVA model.

We conduct the comparison using Real data : Calhousing

dataset. In Real data, we cannot use ISE because we don’t know

true function. Thus, we select MSE as comparison measure.

Table 4.7: The results of Real data : The comparison between

Meta-ANOVA and other functional ANOVA algorithm.

Model Test error

Meta-ANOVA(NN) 0.2188

SS-ANOVA 0.2484

COSSO X

MARS4 0.2784

Table 4.7 shows the results for each functional ANOVA learn-

ing algorithm. Note that our method shows best test error com-

pared to other algorithms. This is likely because there exist higher

order interactions among the input variables to explain the re-

sponse variable in the Calhousing dataset. Therefore, our method

is expected to perform well on data where a significant number of
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Figure 4.3: The results of sensitive analysis of γ using synthetic

function : For each γ, we report the AUC scores of importance

score.

higher order interactions are present.

4.3.2 Sensitive analysis of γ

In step 1, γ controls the number of interactions. We check how γ

affects the results for Meta-ANOVA. We consider two cases : 1)

Simulated data and 2) Real data. For Simulated data, we use F5

in Table 4.1.

F5(x) =
1

1 + x21 + x22 + x23
+
√

exp(x4 + x5) + |x6 + x7|+ x8x9x10

.

The true interactions in F5 are

• Second order : (1, 2), (1, 3), (2, 3), (4, 5), (6, 7), (8, 9), (8, 10), (9, 10)
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• Third order : (1, 2, 3), (8, 9, 10)

We regard F5 as a given predictive model and applyMeta-ANOVA.

The hyper-paremters for our method is same as other experiments

except for γ. We conduct experiments for various γ and measure

the AUC score of the importance score for each γ. The Figure 4.3

suggests that our method shows robust results on Simulated data

as long as γ is not too large.

We also conduct sensitive analysis of γ using Real data. Similar

to previous experiments, we don’t know the true interactions of the

predictive model. Thus, we use test errors as comparison measure.

The results are in Figure 4.4. The results show that our method

does not sensitive to γ as long as it is not too large.

4.3.3 The effect of bumping method

In step 2, we introduce bumping method to ANOVA-Boosting

since greedy algorithm can cause local minima problem. We check

the effect of bumping using Calhousing dataset. The results are

in Table 4.8. The results show that bumping method efficiently

reduces the local minima problem. X means without using boot-

strap samples and refers to directly using the training data.

Based on test error, it appears that not using bumping leads

to the occurrence of local minima problems. However, when us-

ing bumping, such issues are relatively less likely to happen, and

the number of bootstrap samples(B) does not have a significant

impact.
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Figure 4.4: The results of sensitive analysis of γ using Real data :

For each γ, we report the test errors of Meta-ANOVA. The dashed

line represents the test error of baseline model.
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Table 4.8: The results of the effect of bumping : We report the

test errors for each bumping size.

Bumping size(B) Test error

X 0.2584

5 0.2188

10 0.2179

20 0.2177

4.3.4 The effect of synthetic dataset

To better approximate the given predictive model, we use not

only the training dataset but also synthetic dataset. We check the

effect of synthetic dataset using Calhousing dataset. The results

are in Table 4.9. The results show that synthetic dataset helps the

ability to approximate the given predictive model.

Table 4.9: The results of the effect of synthetic dataset : We report

the test errors for various combinations of datasets.

Dataset Test error

Train 0.2262

Train + interpolation 0.2195

Train + interpolation + extrapolation 0.2188
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Chapter 5

Conclusion

In this thesis, we introduce a new post-process interpretation method

called Meta-ANOVA. Meta-ANOVA interprets a given pre-trained

predictive model by approximating it as a functional ANOVA

model. Since functional ANOVA model is interpretable on its

own, we can interpret the given predictive model.

To interpret the given predictive model correctly, the func-

tional ANOVAmodel should closely approximate the original model.

To approximate the given model well, we develop the interactions

detection algorithm and introduce the modified learning algorithm

for ANOVA-Boosting to utilize higher order interactions.

In comparison with other interpretation methods, our method

can detect higher order interactions the given predictive model has.

Moreover, Meta-ANOVA can give local and global interpretation

simultaneously. Also, our method is model-agnostic, which means

it can be applicable as long as the outputs can be obtained.
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Recently, transparent box models such as NAM (Neural Addi-

tive Model) [Agarwal et al., 2021] and NBM (Neural Basis Model)

[Radenovic et al., 2022] have been developed using DNNs. It would

be interesting to use them as approximation model. We leave this

as future work.
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Appendix A

Appendix

A.1 Proof of Theorem 3.2.1.

Note that for a given j ⊂ [p], we can represent f as following:

f(x) = β0 +
∑
j′<j

Gj′j(x) +Gjj(x) +
∑
j3<jc

fj3(xj3),

where Gj′j(x) = fj′(xj′) +
∑

j2⊂jc fj′∪j2(xj′∪j2).

’Only if’ part :

For a given j ⊂ [p] fj′ = 0 for all j′ > j means

f(x) = β0 +
∑
j′<j

Gj′j(x) + fj(xj) +
∑
j3<jc

fj3(xj3),

and Djf(x) = Djfj(xj) which does not depend on xjc . Therefore

VarX′
jc∼Qjc

{
Djf(x

′
j,X

′
jc)

}
= 0.

’If’ part :

For a given j ⊂ [p], VarX′
jc∼Qjc

{
Djf(X

′
j,X

′
jc)|X′

j

}
= 0 means that
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Djf(x) does not depend on xjc . Note that

Djf(x) = Djfj(xj)+Dj

∑
j2⊂jc

fj∪j2(xj∪j2)

 = Djfj(xj)+Djfj+(x).

Since both Djf(x) and Djfj(xj) do not depend on xjc , so does

Djfj+(x). Thus, fj′ = 0 for all j′ > j.

A.2 Extension to categorical input variables

Let x ∈ X = {0, 1}p be an input vector and f : X → R be a given

predictive model constructed by any machine learning algorithm

such as random forest, deep neural networks. We assume ANOVA

model as follows

f(x) = β0 +

p∑
k=1

∑
j∈Jk

βjxj!

 (A.1)

Note that when xjs are all binary, i.e. 0 or 1, all f(x) can be

perfectly represented by an ANOVA model. For j ⊂ [p], βj ̸= 0

implies that the interaction j is valid for the given function f(x).

For a given j ⊂ [p], we write equation (A.1) as follows:

f(x) = β0 +
∑
j′⊂j

xj′ !

βj′ +
∑
j2⊂jc

βj′∪j2xj2 !

+
∑
j3⊂jc

βj3xj3 !.

For given j and j′ ⊂ j, let gj′,j(xjc) = βj′ +
∑

j2⊂jc βj′∪j2xj2 !. Then,

we can write

f(x) = β0 +
∑
j′⊂j

xj′ !gj′,j(xjc) +
∑
j3⊂jc

βj3xj3 !.

49



Theorem A.2.1. For a given j, βj′ = 0 for all j′ > j if and only

if gj,j(xjc) is a constant function for all xjc , where j′ > j means

j′ ⊃ j but j′ ̸= j.

Proof) The ’if’ part is trivial. For the ’only if part’, we can first

show that gj′j(xjc) = βj when xjc = 0. In turn, we can show that

βj′ = 0 for any j′ > j and |j′ − j| = 1 by let xjc such that xj = 1

for j ∈ j′ − j and 0 otherwise. By applying similar arguments

repeatedly, we can show that βj′ = 0 for all j′ > j.

Theorem A.2.2. For any j, we can represent gj,j(xjc) as follow.

gj,j(xjc) =
∑
j′⊆j

(−1)|j−j′|f(x : xj′ = 1,xj−j′ = 0) (A.2)

Proof) Let j = (j1, ..., jk) where k = |j|. Since

f(x : xj = 1) = β0 + gj,j(xjc) +
∑
j′<j

gj′,j(xjc) +
∑
j3⊂jc

βj3xj3 ! and

f(x : xj = 0) = β0 +
∑
j3⊂jc

βj3xj3 !,

the following holds:

gj,j(xjc) = f(x : xj = 1)− f(x : xj = 0)−
∑
j′<j

gj′,j(xjc).

Considering that

f(x : xj′ = 1,xj−j′ = 0) = β0 +
∑
j̃⊆j′

gj̃,j(xjc) +
∑
j3⊂jc

βj3xj3 !,(A.3)

we can get

∑
j̃⊆j′

gj̃,j(xjc) = f(x : xj′ = 1,xj−j′ = 0)− f(x : xj = 0). (A.4)
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By the principle of inclusion-exclusion, we can represent
∑

j′<j gj′,j(xjc)

given as:

∑
j′<j

gj′,j(xjc) = (−1)0
∑

1≤i1≤k

∑
j̃⊂j−{ji1}

gj̃,j(xjc)

+ (−1)1
∑

1≤i1<i2≤k

∑
j̃⊂j−{ji1 ,ji2}

gj̃,j(xjc)

+ . . .

+ (−1)k−2
∑

1≤i1<i2<···<ik−1≤k

∑
j̃⊂j−{ji1 ,...,jik−1

}

gj̃,j(xjc)(A.5)

By (A.4) and (A.5) we have the following:∑
j′<j

gj′,j(xjc) = (−1)0
∑

1≤i1≤k

f(x : xj−{ji1} = 1,x{ji1} = 0)

+ (−1)1
∑

1≤i1<i2≤k

f(x : xj−{ji1 ,ji2} = 1,x{ji1 ,ji2} = 0)

+ . . .

+ (−1)k−2
∑

1≤i1<i2<···<ik−1≤k

f(x : xj−{ji1 ,...,jik−1
} = 1,x{ji1 ,...,jik−1

} = 0)

−

0 if k is odd

2f(x : xj = 0) if k is even

(A.6)

Thus by combining (A.3) and (A.6), the proof is done.

Note that gj,j(xjc) can be defined by partial ordinal deriva-

tive when the input variables can take value {0, 1}. Thus, partial

derivative can be used when categorical input variables are given.

A.3 Additional results for Simulated data
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Figure A.1: Heat maps of pair interaction scores proposed by Meta

ANOVA framework for synthetic function F1 − F10. Cross-marks

indicate ground truth interactions.
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A.4 Additional results for Real data

Table A.1: Calhousing : The number of detected interactions for

various γ.

γ : 0.1 γ : 0.2 γ : 0.3 γ : 0.4 γ : 0.5

Main 8 8 8 8 8

Second 21 21 21 21 15

Third 35 30 16 6 0

Fourth 20 5 2 0 0
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Table A.2: Letter : The number of detected interactions for vari-

ous γ.

γ : 0.1 γ : 0.2 γ : 0.3 γ : 0.4 γ : 0.5

Main 16 16 16 16 16

Second 120 105 78 55 36

Third 50 50 27 10 0

Fourth 0 0 0 0 0
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Table A.3: German : The number of detected interactions for

various γ.

γ : 0.1 γ : 0.2 γ : 0.3 γ : 0.4 γ : 0.5

Main 61 61 61 61 61

Second 300 253 91 21 10

Third 7 6 2 1 0

Fourth 0 0 0 0 0
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Table A.4: Satellite : The number of interactions for various γ.

γ : 0.1 γ : 0.2 γ : 0.3 γ : 0.4 γ : 0.5

Main 36 36 36 36 36

Second 300 300 210 91 45

Third 100 99 7 1 1

Fourth 3 3 1 0 0
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Table A.5: Online news : The number of interactions for various

γ.

γ : 0.1 γ : 0.2 γ : 0.3 γ : 0.4 γ : 0.5

Main 58 58 58 58 58

Second 276 91 36 15 10

Third 1 1 1 1 1

Fourth 0 0 0 0 0
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Figure A.2: Calhousing : Heat map of 2nd-order interaction scores

proposed by Meta-ANOVA framework.

58



Figure A.3: Letter : Heat map of 2nd-order interaction scores

proposed by Meta-ANOVA framework.
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Figure A.4: German : Heat map of 2nd-order interaction scores

proposed by Meta-ANOVA framework.
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Figure A.5: Letter : Barplot of 3rd-order interaction strength

scores proposed by Meta-ANOVA framework.

A.5 Comparison with local interpretation

models

We compare our method to LIME and SHAP-values, which are

local interpretation models. They utilize only main feature to ap-

proximate models. When LIME and SHAP-values are applied to a

model in which the roles of interactions are important (e.g., tree-

based models), there could be bias in the estimated coefficients
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since they only utilize main features to approximate the models.

To investigate this issue, we conduct experiments using two syn-

thetic models : 1) F (x) = 2x1 + 3x2 + 10x1x2 and 2) F3 in Table

4.1. Inputs for F are sampled from Unif(−1, 1)

For LIME and SHAP-values, we randomly sample 20 inputs

and apply each input to LIME and SHAP-values. Next, we ob-

tain 20 coefficients forx2 and x8, respectively, where each of which

is linear in synthetic function F and F3. We use averages of 20

coefficients for LIME and SHAP-values. The results are sum-

marized in Figure A.6. We can clearly see that Meta-ANOVA

provides well-estimated coefficients for each two variables. In con-

trast, LIME and SHAP-values become worse for this setting and

even show negative coefficient for some inputs(true is positive for

both models). This shows that local explanation should be inter-

preted carefully.
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Figure A.6: The comparison of estimated coefficient for synthetic

function F (Left) and F3(Right) between Meta-ANOVA and local

surrogate models. We check the coefficient of X2 and X9 for F

and F3 respectively.
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국문초록

본학위논문에서는새로운 post-process interpretation방법인Meta-

ANOVA를 제안한다. 최근 다양한 분야에서 머신러닝 모형이 주목

할만큼 좋은 예측 성능을 보이고 있다. 그러나 머신러닝 모형의 좋은

예측 성능에도 불구하고 최근에 개발된 머신러닝 모형은 일반적으로

설명력이 부족하다. 그 이유는 좋은 예측 성능을 보이는 모형들은

모형의 복잡도 또한 높기 때문이다. 이러한 복잡도는 사람들이 해당

모형을 이해하기 어렵고 따라서 다양한 분야에서 사용되는 것을 방

해한다.

따라서 우리는 복잡한 모형을 해석하기 위해 Meta-ANOVA라는

새로운 post-process 방법론을 제안하였다. 주어진 모형을 이해하고

설명하기 위해 우리는 해당 모형이 가지고 있는 교호작용을 찾는

새로운 알고리즘을 제안하였다. 뿐만 아니라 우리는 모형이 가진 교

호작용을찾은뒤이를이용하여주어진모형을효과적으로학습하는

새로운 functional ANOVA model의 학습 알고리즘을 제안하였다.

주요어: 설명가능 AI,모형설명,교호작용탐지, Functional ANOVA

model, Identifiability

학 번: 2016–20277
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