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Abstract

DRPreter: Interpretable Anticancer Drug

Response Prediction Using

Knowledge-Guided Graph Neural

Networks and Transformer

Jihye Shin

Interdisciplinary Program in Bioinformatics

College of Natural Sciences

Seoul National University

Some of the recent studies on drug sensitivity prediction have applied graph

neural networks to leverage prior knowledge on the drug structure or gene

network, while other studies focus on the interpretability of the model to de-

lineate the mechanism governing the drug response. However, it is crucial to

make a prediction model that is both knowledge-guided and interpretable, so

that the prediction accuracy is improved and also practical use of the model

can be enhanced. I propose an interpretable model called DRPreter (Drug Re-

sponse PREdictor and interpreTER) that predicts anticancer drug response.
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DRPreter learns cell line and drug information with graph neural networks

where the cell line graph is further divided into multiple subgraphs with do-

main knowledge on biological pathways. Transformer encoder-based structure

in DRPreter helps detect relationships between pathways and a drug, high-

lighting important pathways that are involved in the drug response. Extensive

experiments on the GDSC (Genomics of Drug Sensitivity and Cancer) dataset

demonstrate that the proposed method outperforms state-of-the-art graph-

based models for drug response prediction. In addition, DRPreter detected

putative key genes and pathways for specific drug-cell line pairs with support-

ing evidence in the literature, implying that the model can help interpret the

mechanism of action of the drug.

Keywords: transcriptomics, Explainable AI, pharmacogenomics, cancer drug

sensitivity, Graph Neural Networks, precision medicine, drug discovery

Student Number: 2021-24949
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Chapter 1

Introduction

1.1 Background

1.1.1 Drug Response Prediction

The advances in technology and scientific capability enable the acquisition of

large amounts of personal omics data at reduced cost (Kellogg et al., 2018).

Consequently, there is a growing interest in using individualized health data

for precision medicine, leading to a number of data-driven healthcare models

(Ahmed, 2020). Pharmacogenomics, one of the branches of precision medicine,

is the study of how a person’s genetic profile influences their response to med-

ications (Kalamara et al., 2018; Singh, 2019). Prediction of drug response or

efficacy using the omics data of patients before the actual treatment is crucial

because it can help increase clinical success and minimize adverse drug effects

by modifying dosages or selecting alternative medications based on predicted

value for personalized chemotherapy. However, obtaining patients’ tumor tis-

sues by surgical procedure or biopsy involves safety issues (Cho, 2020), and

performing animal experiments for clinical trials to infer human drug efficacy
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leads to ethical and financial concerns (Singh et al., 2016). In addition, even

though correlating drug response and omics data can help improve under-

standing of drug mechanisms of action (Rees et al., 2016), many candidate

drugs still fail to enter clinical trials during the drug discovery process due

to an incomplete understanding of the mechanisms (Seyhan, 2019; Kuenzi

et al., 2020). In this respect, an interpretable in silico model for drug response

prediction would be useful for numerous healthcare purposes, especially for

precision medicine and drug discovery (Savage, 2021).

1.1.2 Related works and limitations

Molecular profiles of cancer cell lines and high throughput drug sensitivity

screening databases are publicly available (Shoemaker, 2006; Barretina et al.,

2012; Yang et al., 2012; Basu et al., 2013; Seashore-Ludlow et al., 2015; Iorio

et al., 2016) including CCLE (Cancer Cell Line Encyclopedia) (Barretina et al.,

2012) and GDSC (Genomics of Drug Sensitivity in Cancer) (Yang et al., 2012;

Iorio et al., 2016). Public databases and improved computing technologies

such as machine learning and deep learning have contributed to the rapid

development of models for predicting anticancer drug sensitivity from cancer

cell lines based on their genetic profiles.

The early studies in drug sensitivity prediction utilized machine learning

techniques (Güvenç Paltun et al., 2021; Adam et al., 2020; Firoozbakht et al.,

2022) such as a random forest (Riddick et al., 2011), support vector machine

(Dong et al., 2015), and matrix factorization (Wang et al., 2017; Guan et al.,

2019). However, the traditional machine learning-based models can still be

improved in terms of predictive performance and generalizability (Kalamara

et al., 2018; Baptista et al., 2021). Matrix factorization-based models leave

nonlinear relationships unaddressed because they attempt to identify interac-

tions between the drug and cell line using linear combinations of latent fea-
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tures. With the capability of learning complex nonlinear functions and high

dimensional representations from raw data, various deep learning techniques

have been utilized for predicting drug response (Baptista et al., 2021) and the

overall predictive power of drug sensitivity has been improved (Sakellaropou-

los et al., 2019). DeepDR (Chiu et al., 2019) and MOLI (Sharifi-Noghabi et al.,

2019) are drug-specific models that only use cell profiles such as somatic muta-

tion, gene expression, or copy number variation to predict IC50 values of each

sample. tCNNs (Liu et al., 2019) introduced a model to predict drug sensitiv-

ity for drug-cell pairs using SMILES (Simplified Molecular Input Line Entry

System) (Weininger, 1988) sequences as drug features in addition to the ge-

nomic profiles of cells. The models described above used vector representations

in common for describing cell or drug features.

Graph-based approaches have been introduced in drug response prediction

models to take advantage of the structural information of a drug or a gene

network. A drug can be represented as a molecular graph consisting of a set

of atoms (nodes) and a set of bonds (edges) and the graph is transformed

into a high-level representation by a neural network (Liu et al., 2020; Nguyen

et al., 2021). For example, GraphDRP (Nguyen et al., 2021) obtained drug

embeddings using graph convolutional networks, while cell line embeddings

were derived from binary vectors of genomic aberrations. The state of a cell

line can also be characterized as a gene-gene interaction network where genes

(nodes) have node features from omics data such as gene expression values

(Kim et al., 2021; Zhu et al., 2022; Feng et al., 2021). Zhu et al. proposed

an end-to-end drug response prediction model TGDRP with cell line graph

embedding consisting of genes that hold cancer-related mutations and drug

graph embedding obtained by a graph neural network. They also proposed

TGSA which updates embeddings from TGDRP with similarity information

between cell lines and drugs and predicts drug response again.
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While recent studies described above have introduced graphs into the deep

learning models to leverage structural information and improve prediction ac-

curacy, the models lack interpretability of the predicted results. Several meth-

ods tried to delineate the mechanism governing the drug response, highlighting

the important genes or high-level subsystems such as biological pathways that

can cause changes in cellular phenotype. SWnet (Zuo et al., 2021) explored the

interactions between genetic profile and the chemical structure of drugs using

self-attention and identified genes with the strongest predictive power. Deng

et al. proposed a multilayer perceptron model called pathDNN which incorpo-

rates a layer of pathway nodes and quantified the activity of each pathway to

explain their effect on drug response. DrugCell (Kuenzi et al., 2020) obtained

binary encodings of mutational status via a visible neural network guided by

a hierarchy of cell subsystems and measured the predictive performance of

the subsystems. Although pathDNN and DrugCell attempted to construct an

explainable model with a hierarchical structure, biological pathways were im-

plemented as gene sets rather than gene networks, indicating that domain

knowledge in gene-gene interactions was not fully reflected in the models.

1.2 Problem Definition

In this study, a regression model was developed to predict the half maxi-

mal inhibitory concentration (IC50), normalized to natural logarithms, in cell

line-drug pairs. IC50 serves as a representative indicator of drug sensitivity,

quantifying the effectiveness of a drug in inhibiting a particular biological

or biochemical process. It represents the concentration at which a drug can

achieve 50% inhibition of the target activity.
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1.3 Motivation and Contributions

According to the existing studies that suggest deep learning models for drug

response prediction, it is helpful to incorporate the graph representation for

both drug and cell line profiles that enables a detailed description of compound

structure and gene network. Moreover, the gene network can be dissected as

a set of biological pathways that include gene-gene interactions for each spe-

cific biological mechanism, which can help enhance both prediction accuracy

and interpretability. However, current interpretable models for drug response

prediction simply describe the network as gene-pathway layers, leaving the

interaction information inside the biological pathways unused. Here, I propose

a novel anticancer drug response prediction model named DRPreter (Drug

Response PREdictor and interpreTER) with key features as follows:

1. Knowledge-guided cell representation with graphs. DRPreter

constructs a cell line network as a set of subgraphs that correspond to

cancer-related pathways for the detailed representation of the biological

mechanism.

2. Interpretability of drug mechanisms of action. Using Transformer’s

encoder, the interactions between drugs and pathways are derived from

the model and putative key pathways for the drug mechanism can be

highlighted.

3. Enhanced performance. The proposed method DRPreter outperforms

state-of-the-art drug response prediction models demonstrated by com-

parative experiments on the GDSC drug sensitivity dataset.

The following is a description of the graph configuration for cell lines and

drugs and the graphical abstract of DRPreter (Figure 1.1).
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Chapter 2

Materials and Methods

2.1 Graph Neural Networks

A graph neural network (GNN) is a type of neural network that operates on

graph-structured data. GNN uses the topology of the graph to learn the re-

lationships between the input features. It can perform more effectively than

other representation learning methods on input data with topological informa-

tion. In this study, I represent a graph as G = (V, E ) where V = {v1, . . . , vn}

is the set of n nodes and E ⊆ V ×V is the set of edges. The node vi has node

feature xi ∈ Rd, where d is a dimension of the feature. The node feature matrix

of the graph can be represented as X ∈ Rn×d, where n is the number of nodes

in the graph. Adjacency matrix A ∈ Rn×n indicates the total connectivity of

nodes in the graph, where Ai,j = 1 means nodes, vi and vj are linked, and

W (l) represents the parameters of the l -th layer of the graph (Table 2.1).

In each GNN layer, a key mechanism, called message passing, updates the

node representation by using the node features of the previous layer and the

topology of the graph (Gilmer et al., 2017). The message-passing mechanism

7



Table 2.1: Notation of graph neural networks used in this paper.

Notation Description

G A graph.

V Set of nodes of a graph.

v A node included in V.

i, j Indexes of the nodes.

l Index of the layer of a graph.

vi i-th node in V.

xi Node feature of node vi

N (i) Set of neighbor nodes of a node vi

E Set of edges of a graph.

A Adjacency matrix between nodes.

W (l) Trainable parameter matrix of l-th layer.

X(l) Node feature matrix of l-th layer.

σ Nonlinear activation function softmax.

ϵ Learnable parameter.

involves aggregating the information of neighboring nodes and updating the

hidden state of each node by combining the node representation from the

previous layer and the aggregated messages. For every node in each layer, a

transformed feature vector is generated capturing the structural information of

the k-hop neighbor nodes. The GNN can update the i -th node representation

in the l -th layer as in the following Equation (Li et al., 2021; Dai et al., 2022),

where N (i) is the set of neighbor nodes linked to the target node i. For a given

node, the AGGREGATE step applies a permutation invariant function to its

neighboring nodes to produce the aggregated node feature of neighbors, and

the COMBINE step delivers the aggregated node feature to the learnable layer

to produce updated node embedding by integrating the existing embedding

and the aggregated neighbor embedding.

x
(l)
i = COMBINE(l)

(
x
(l−1)
i , AGGREGATE(l−1)

(
x
(l−1)
j : j ∈ N(i)

))
(2.1)
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2.2 Cell line Graph Representation

2.2.1 Cell line Graph Construction

I used a biological template network to represent cell lines to simulate gene–

gene interactions in actual cells. In the cell line graph Gc, genes are represented

by nodes and edges represent the relationships between genes. This template

graph contained 2,369 genes selected using the pathway selection method de-

scribed in the dataset section.

It is known that drugs do not have a universal effect throughout all cellular

components, but tend to have distinct effects on specific genes or pathway

targets. In this way, cancer cells undergo phenotypic changes as a result of

drug molecules inhibiting or activating their target pathways. Motivated by

this point, instead of representing the cell line as a homogeneous large-scale

graph that contains the entire genes, I divided the template network Gc into

pathway subgraphs Gp according to the biological domain knowledge inspired

by Lee et al. and learned graph embeddings from the selected subgraph units.

Finally, the divided cell line graph G
′
c was represented as a heterogeneous

graph containing multiple subgraphs. I selected pathways that can be targeted

by drugs, as they are associated with cancer from the KEGG pathway database

(Kanehisa and Goto, 2000), and used these pathways as pre-defined subgraphs

of the cell line template.

In the case of template graph Gc, the i-th selected pathway subgraph

can be described as G
(i)
p = (V

(i)
p , E

(i)
p ), where V

(i)
p refers to a set of nodes

and E
(i)
p refers to a set of edges of the pathway. Thus, the template graph

Gc is extended as a union of pathway subgraphs, with overlaps between the

pathways in the form of G
′
c = {G(1)

p , ..., G
(34)
p }. In the template cell line graph

Gc, gene sets included in 34 pathways were represented by 2369 nodes and

7954 edges. A divided template graph G
′
c with pathways as subgraphs had

9



4646 nodes and 12,004 edges after combining the data from all pathways. The

types of constituting genes remained the same, but the numbers of nodes and

edges increased when the template network was divided into subnetworks due

to the overlap of functions.

2.2.2 Cell line Graph Encoder on Pathway Subgraphs

Transcriptomic features of nodes and biological network topology were cap-

tured within each subgraph using Graph Attention Network (GAT) (Veličković

et al., 2017). Using the self-attention mechanism, GAT calculates a normalized

attention score αij indicating the importance of the features of the neighbor

nodes for a target node i, where j ∈ N(i). A subsequent step in the message-

passing process is for each node to reflect the importance of the neighbor-

ing nodes’ information in accordance with the previously obtained attention

scores.

X(l) = σ

(
Σj∈N(i)α

(l−1)
ij W (l−1)X(l−1)

)
(2.2)

If template graph Gc is used as it is, edges connected to one gene include

interactions from multi pathways which can be noise. Node representations

were updated through GAT on the cell line graph constructed in the previous

subsection. The cell line graph consists of pathway-based subgraphs, thus the

updated node representation can reflect the intra-pathway gene-gene interac-

tion information. To pool the cell line graph-level embedding, I initially used

a simple hierarchical permutation-invariant graph pooling strategies (Zhang

et al., 2018; Gao and Ji, 2019; Lee et al., 2019). However, the graph pooling

strategies I employed resulted in slight performance degradation. I assumed

that this may be due to the relatively large size of the cell line graph, and

simply pooling the nodes into a vector of the same dimension may lose the

information of the nodes in the cell line. As a result, the embeddings of each

10



Table 2.2: Atomic and bond features of drug graph.

Feature Size Description

Node

Atom type 43 [B, C, N, O, F, ...] (one-hot)

Aromatic 1 Whether the atom is in the aromatic system (binary)

Chirality 2 [R, S] (one-hot or null)

Degree 11 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (one-hot)

Formal charge 1 electric charge (integer)

Hybridization 5 [sp, sp2, sp3, sp3d, sp3d2] (one-hot or null)

Number of Hydrogens 5 [0, 1, 2, 3, 4] (one-hot)

Implicit valence 7 [0, 1, 2, 3, 4, 5, 6] (one-hot)

Radical electrons 1 Number of radical electrons (integer)

Ring 1 Whether the atom is in ring (binary)

Edge Bond type 4 [single, double, triple, aromatic] (one-hot)

node learned through GAT were concatenated to form graph-level embedding

for each pathway.

2.3 Drug Graph Representation

2.3.1 Drug Graph Construction

I used a graph neural network to learn the drug representation by reflecting

the relationships between atoms connected by bonds and the overall molecular

structural information. A drug can be represented as a graph, in which atoms

are nodes, and bonds are edges. I used RDKit (Landrum et al., 2013) to

transform SMILES (Weininger, 1988), a one-dimensional string format drug

structure, into graph format that can reflect structural information of an actual

drug. The ten initial features of atomic nodes were imported from previous

research (Liu et al., 2020; Zhu et al., 2022), which predicted drug sensitivity

from GNN-based embeddings of drug structures. The details of atomic and

bond features can be found in Table 2.2.
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2.3.2 Drug Graph Encoder

A graph isomorphism network (GIN) (Xu et al., 2018) was used to learn the

features of the atomic nodes within the drug graph. GIN applies a neighbor-

hood aggregation method similar to the Iisfeiler-Lehman test (Weisfeiler and

Leman, 1968) and updates the i-th node feature at the l-th layer as follows.

x
(l)
i = MLP (l)

((
1 + ϵ(l)

)
· x(l−1)

i + Σj∈N(i)x
(l−1)
j

)
(2.3)

The graph encoder was chosen following the results of GraphDRP, which in-

volves a comparison of different types of graph neural networks, GIN, GAT,

and GCN+GAT in order to analyze the effectiveness of each graph encoder in

predicting drug response. In addition, GIN is widely used for the embeddings

of drug graphs in various drug response prediction models (Feng et al., 2021;

Nguyen et al., 2021; Zhu et al., 2022; Zheng et al., 2022).

2.4 Knowledge-guided Cell line-Drug Fusion Module

Using Transformer

2.4.1 Knowledge-guided Fusion Module

The transformer model tracks relationships in sequential data, like the words

in the sentence, to discover context and meaning between the components

(Vaswani et al., 2017). I used a Transformer-based module to reflect not only

inter-pathway interactions but also the interactions between the pathways and

each drug, which allows for exploring the pharmacological mechanisms of ac-

tion at the pathway level during a therapeutic process (Figure 2.1).

The model structure has a single encoder-based layer taking pathway em-

beddings X
(l)
p (l = 1, ..., 34) and a drug embedding Xd derived from knowledge-

guided GNNs as input values. Inputs in a typical Transformer’s encoder are

constructed by adding positional encoding to embeddings of source sequences.

12



…

Raw pathway 
embeddings

Raw drug
embedding

…

Drug-aware updated 
pathway embeddings

Cell line-aware updated 
drug embedding

Self-attention score matrix
between pathways and a drug

Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm

(Binary Data type Token)

0 1

Pathways

Pathways

Drug

Drug

Figure 2.1: A detailed structure of type-aware Transformer encoder reflecting

interactions and relationships between pathways and a drug. I extracted drug-

pathway interaction information from the modified encoder of the Transformer

module and identified putative key pathways for the drug’s mechanism of action

using a matrix of self-attention scores between pathways and the drug.
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Unlike translation, where an order of words in a sentence is important, the

pathway embeddings entering the encoder are not affected by the order in

which they are encoded, so a Transformer’s encoder structure other than po-

sitional encoding was used for this study. As an alternative, I added a type

encoded token that indicates whether the embedding is a drug or a pathway.

In an element-wise manner, type encoded binary tokens are added to the input

feature matrix of the same dimension before input embeddings are fed into the

module.

To fusion pathway and drug embeddings, self-attention was performed sev-

eral times through multi-head attention, and the average of each trial was used

as the final attention score. After the encoder has completed its execution, the

encoder produces drug-aware updated pathway embeddings X ′
p
(l) and path-

ways’ transcriptome-aware updated drug embedding X
′
d reflecting interaction

information. These drug-aware pathway embeddings facilitate interpreting the

medication’s mechanism of action since it can reflect both the drug-pathway

interaction information as well as the interaction between the pathways. Drugs

have a large structural variation when compared to cell line graphs which are

composed of the same genes and structurally equal but have different node

feature values. Therefore, it is possible that the variation of the drug embed-

ding may be blurred because the new drug embedding updated as a result of

the Transformer is affected by the cell line embedding. Hence, I connect the

raw drug embedding obtained through GNN prior to the Transformer struc-

ture with the updated drug embedding obtained after the Transformer using

residual connection (He et al., 2016). By residual connection, it is possible to

preserve the original drug structure information and utilize the cell line-drug

interaction information using the updated drug embedding which recognizes

the transcriptomic information of each pathway. I concatenated the resulting

34 subgraph embeddings in order to prevent information loss, thereby embed-
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ding the entire cell line.

2.5 Improving Predictive Performance using Similar-

ity Graph

Based on the idea that similar drugs and similar cell lines exhibit interchange-

able drug response behaviors, some drug response prediction models use prior

knowledge of drug and cell line similarity to minimize differences between

drugs and cell lines in the latent space. Wang et al. applied regularization

terms based on chemical structural similarities between drugs and similari-

ties between cell lines based on gene expression profiles to improve prediction

accuracy and prevent overfitting.

I followed the similarity-based embedding updating strategy of Zhu et al..

From the completed end-to-end model up to Section 2.3, embeddings of all 580

cell lines and 170 drugs can be made. Then I constructed two homogeneous

graphs each consisting of cell lines and drug nodes, with the initial feature of

each node set as the resulting embeddings of the previous step. Using Graph-

SAGE (Hamilton et al., 2017), I updated the embeddings of each homogeneous

cell line and drug graph. After that, updated embeddings of cell line-drug pair

which is aimed to obtain response were derived respectively from two homoge-

neous graphs. I concatenated two embeddings into the one-dimensional vector

and used a multi-layer perceptron to predict final IC50 values.
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Chapter 3

Results

3.1 Performance Comparison

3.1.1 Dataset

Among the publicly available databases that offer insights into drug response,

certain databases provide gene expression data both before and after drug

administration, such as LINCS (Library of Integrated Network-based Cellular

Signatures) (Subramanian et al., 2017). However, LINCS is limited in terms

of gene expression information, as it only covers approximately 1,000 genes

that correspond to landmark genes. Consequently, it becomes unfeasible to

obtain gene expression values for all the pathway-related genes necessary for

the intended analysis. In order to address this limitation, CCLE data was em-

ployed as an alternative. Although CCLE does not provide gene expression

data after drug administration, it offers gene expression values for a larger

number of genes, enabling a broader coverage for the analysis. In the cell line

template graph, the initial feature of each gene node was derived from tran-

scriptomic data of each cell line obtained from the CCLE database version
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of 21Q4 (DepMap, 2021) (https://portals.broadinstitute.org/ccle, ac-

cessed on 3 December 2021). The gene expression data were TPM values of the

protein-coding genes for DepMap cell lines, which were inferred from RNA-

seq data using the RSEM tool and were provided after log2 transformation,

using a pseudo-count of 1; log2(TPM+1) (DepMap, 2021). I assigned edges of

the graph as only those interactions with high reliability scores and a com-

bined score of at least 990 among the STRING (v11.5) (Szklarczyk et al.,

2019) protein–protein interactions. The edges of the template graph and each

subgraph were all STRING protein–protein interactions. Only the genes cor-

responding to each cancer-related pathway were obtained in KEGG, and the

genes corresponding to each pathway were used as nodes in the subgraph.

The STRING interactions were used as the edges connecting them. Path-

ways for constructing subgraphs were selected in the following manner. The

non-processed pathways listed in categories 6.1 and 6.2. of the KEGG path-

way database (https://www.genome.jp/kegg/pathway.html, accessed on 16

April 2022) were categorized according to the cancer types. These pathways

include common subpathways related to cell signaling, the cell cycle, and apop-

tosis, which are key in various types of cancer. Consequently, if the cancer

pathways provided by KEGG are used as they are, the overlap between the

pathways will be excessive, and the meaning of learning for each pathway

diminishes. Additionally, KEGG provides information on detailed pathways

associated with each cancer type pathway. There were a total of 84 detailed

pathways categorized by function. Among these pathways, I eliminated du-

plicate pathways, metabolic pathways, non-cancer disease pathways, viral in-

fection pathways, and pathways with fewer than 10 genes or gene–gene inter-

action edges. Furthermore, the focal adhesion pathway (hsa04510) was also

eliminated because 91% of the genes constituting this pathway were included

in the remaining pathways. To mitigate potential bias in the embedding pro-
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cess arising from variations in pathway sizes, an assessment of each pathway’s

size was necessary. The selected pathways encompassed a range of 41 to 351

genes, with an average size of 103 genes. Of particular concern was PI3K-Akt

signaling pathway (hsa04151), which has the potential to be exhibited a signif-

icant bias due to its large size of 351 genes. To ascertain whether this pathway

was unconditionally regarded as important in the Transformer-based struc-

ture, self-attention score-based pathway interpretations were conducted. The

subsequent interpretation results did not highlight PI3K-Akt signaling path-

way as the most influential pathway (Figure 3.2, Figure 3.4). Consequently,

it can be concluded that the differing scales of the selected pathways in this

study did not have a substantial impact on the obtained results. The finally

selected 34 cancer-related detailed pathway list can be found in Table 3.1. For

drug graph construction, I obtained SMILES strings from PubChem (Wang

et al., 2009).

For the performance comparison experiment, the nodes constituting the

cell line graph of the existing GNN-based drug response prediction mod-

els were configured according to the settings in each comparison paper. I

compared performance with state-of-the-art GNN-based drug response pre-

diction models: GraphDRP, TGDRP, and TGSA. As the initial feature for

each gene node, the GraphDRP uses mutation (mut) and copy number vari-

ation (cnv), and TGDRP and TGSA also use mut and cnv with gene ex-

pression (exp). As GraphDRP represents cell lines as one-dimensional binary

vectors, one-dimensional CNN is used to get their embeddings. Cell lines

and drugs are represented in graph format in TGDRP and TGSA, and the

embeddings are obtained by GNN. The cancer driver genes from COSMIC

were selected as the genes to represent the cell lines in all baseline mod-

els (Sondka et al., 2018). The COSMIC database provides information about

mutation-containing genes involved with cancer, as well as how these muta-
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Table 3.1: A list of cancer-related pathways used as subgraphs in cell line

template graph.

Pathway name KEGG identifier Number of genes Number of edges

Ubiquitin mediated proteolysis hsa04120 142 534

TGF-β signaling pathway hsa04350 94 228

Estrogen signaling pathway hsa04915 137 222

MAPK signaling pathway hsa04010 294 692

PPAR signaling pathway hsa03320 74 28

mTOR signaling pathway hsa04150 155 688

Regulation of actin cytoskeleton hsa04810 218 552

B cell receptor signaling pathway hsa04662 79 208

Cell adhesion molecules hsa04514 146 150

Chemokine signaling pathway hsa04062 190 514

Apoptosis hsa04210 136 424

Cytokine-cytokine receptor interaction hsa04060 293 588

Wnt signaling pathway hsa04310 167 384

p53 signaling pathway hsa04115 73 180

Ras signaling pathway hsa04014 232 600

Notch signaling pathway hsa04330 59 76

Calcium signaling pathway hsa04020 239 218

HIF-1 signaling pathway hsa04066 109 204

T cell receptor signaling pathway hsa04660 104 336

ErbB signaling pathway hsa04012 85 326

Cell cycle hsa04110 126 1076

Melanogenesis hsa04916 101 110

cAMP signaling pathway hsa04024 221 222

VEGF signaling pathway hsa04370 59 102

Hedgehog signaling pathway hsa04340 56 80

Adherens junction hsa04520 71 172

Basal transcription factors hsa03022 44 470

PI3K-Akt signaling pathway hsa04151 351 1030

JAK-STAT signaling pathway hsa04630 162 508

Hematopoietic cell lineage hsa04640 96 102

Toll-like receptor signaling pathway hsa04620 102 328

Homologous recombination hsa03440 41 140

ECM-receptor interaction hsa04512 88 120

NF-κB signaling pathway hsa04064 102 392
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tions can cause cancer. I selected 702 COSMIC Cancer Gene Census (https:

//cancer.sanger.ac.uk/cosmic/census?tier=all, accessed on 3 December

2021) genes that all three omics type data are provided in CCLE, and used

the genes equally for the baseline model execution. Moreover, the types of cell

lines and drugs used in this study are the same as in the TGDRP and TGSA.

The data type used by DRPreter model differs from every baseline model,

and those two models used the most numerous omics types among them. To

use only cell line-drug pairs with three omics data available, a lot of filtering

was done on cell lines and drugs. Since all omics data had to be imported for

baseline model execution, the same cell line-drug pair was used as in the most

data-intensive models. Consequently, the performance test consists of 580 can-

cer cell lines that can obtain omics data from CCLE and 170 anticancer drugs

provided by GDSC2. The total number of possible cell line-drug pairs is 82,833

with log-normalized IC50 values.

3.1.2 Experimental Setups

In the regression experiments for predicting natural log-transformed IC50 val-

ues based on drug and cancer cell line profiles, I used four standard evaluation

metrics to compare the results of different models by computing the statis-

tical correlation and accuracy between predicted and observed IC50 values.

The metrics include pearson correlation coefficient (PCC), spearman correla-

tion coefficient (SCC), mean absolute error (MAE) and mean squared error

(MSE). PCC measures the linear correlation of observed and predicted IC50

values while SCC is a non-parametric measure for rank correlation between

observed and predicted IC50 values. MSE and MAE directly measure the dif-

ference between observed and predicted IC50 values.
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3.1.3 Rediscover Responses of Known Pairs

All possible cell line-drug pairs were randomly divided into train, validation,

and test datasets at an 8:1:1 ratio, and the experiments were conducted re-

peatedly on 10 random seeds. For each model, the test performance is averaged

over the seeds and reported as mean ± standard deviation. Comparing the re-

sults of different models was based on four common evaluation indicators. The

mean squared error and mean absolute error between the predicted IC50 and

the correct answer IC50 and the Pearson correlation coefficient and Spearman

correlation coefficient between each IC50 distribution were used as evaluation

criteria. Compared to the baseline model I selected above, I conducted an ab-

lation study to examine each part’s effectiveness of DRPreter (Table 3.2) and

showed a performance improvement of about 20% in MSE with my best model

(Table 3.3). In the ablation study, a random data experiment was conducted as

a control and analyze the contribution of the gene expression as input in The

mean squared error and mean absolute error between the predicted IC50 and

the correct answer IC50 and the Pearson correlation coefficient and Spearman

correlation coefficient between each IC50 distribution were used as evaluation

criteria. prediction performance. Instead of using actual gene expression val-

ues, random embeddings of the same dimensionality as the transcript data

were generated specifically for each cell line based on its index. I replaced the

transcript data with the random data and kept the drug features intact. I

evaluated the The mean squared error and mean absolute error between the

predicted IC50 and the correct answer IC50 and the Pearson correlation coeffi-

cient and Spearman correlation coefficient between each IC50 distribution were

used as evaluation criteria. prediction performance using the random data and

compared it with the performance using the original transcript data to analyze

the difference in performance to assess the importance of transcript data in

the prediction task. The experimental results revealed a substantial enhance-
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ment in performance when utilizing actual gene expression data. Furthermore,

the performance was further improved by incorporating several modules that

constitute DRPreter.

3.2 Case Study

3.2.1 Interpolation of Unknown Values

The method of missing values prediction has been widely used in drug-response-

prediction studies (Liu et al., 2019, 2020; Nguyen et al., 2021; Zhu et al., 2022)

to identify whether the model is capable of inductive prediction. For evaluat-

ing the inductive predictability DRPreter model, I trained with all the known

cell line–drug pairs and predicted values without experimental results of pairs

in the GDSC2 database. There were a total of 98,600 pairs using 580 cancer

cell lines and 170 drugs, but 15,767 cell lines were not covered by my data

due to filtering because of a lack of omics data or due to the absence of drug

response experiments in GDSC. The model with the highest performance was

used to predict missing drug response values.

I illustrate the distributions of known IC50 values in GDSC2 and the pre-

dicted values of DRPreter model (Figure 3.1). The box plots are grouped by

drugs, and each box represents the distribution of the IC50 values within a cell

line. I displayed the drugs with the top 10 highest and top 10 lowest median

IC50 values. After conducting Mann–Whitney Wilcoxon test for each drug

distribution, 18 drugs among the 20 selected drugs showed no significant dif-

ference between the GDSC2 and predicted unknown IC50 value distribution.

The result implies the predicted missing IC50 values follow the measured value

distribution.

Not knowing the actual values for these missing pairs, I conducted litera-

ture searches to assess model predictions. Bortezomib had the smallest overall
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Figure 3.1: Box plot of drug-specific IC50 distributions of cell lines. The dis-

tribution of GDSC2 data (blue) compared with predicted missing IC50 values

(orange). The 10 drugs with the highest median IC50 values and the 10 drugs

with the lowest median were selected. Among the 20 drugs, IC50 value distribu-

tions of 18 drugs showed no significant differences through the Mann–Whitney

Wilcoxon Test. ns: not significant, *: 0.01 ¡ p-value ¡ 0.05.
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IC50 distribution, and the most sensitive cell line pair was LP-1 in my model.

LP-1 is a cell line derived from the peripheral blood of a multiple myeloma

patient. Bortezomib is a proteasome inhibitor that is widely used in patients

with multiple myeloma (Field-Smith et al., 2006; Kouroukis et al., 2014). Ra-

pamycin was not included among the top 10 sensitive drugs in the known

GDSC data but in model predicted values, so I analyzed it further. In this

study, rapamycin was most sensitive to the MV-4-11 cell line. The MV-4-11

cells are macrophages that were isolated from the blast cells of a biphenotypic

B myelomonocytic leukemia patient. Rapamycin can inhibit leukemic activ-

ity in acute myeloid leukemia by mTOR inhibition through the blockade in

G0/G1 phase of the cell cycle (Récher et al., 2005).

Based on the biological processes at the cellular and molecular level of

cancer cells and drugs, DRPreter can make inductive predictions for cell lines

and drugs when there are no known responses and seems to have the potential

to select candidates for drug treatment.

3.2.2 Gradient-Weighted Gene Nodes Interpretation

It is essential for drug-response prediction methods to capture significant bi-

ological implications and to make accurate predictions. A gene-level analysis

was performed first to determine whether the model was taking into account

genes that are known as drug targets, involved in target pathways, or biomark-

ers of disease. I prioritized genes from an input drug and cancer–cell line pair

by scoring each gene with a gradient-weighted extent to check whether it is

drug-target-related. The importance score of each gene node was determined

by GradCAM, which is a widely utilized technique to produce explanations

of model decisions (Selvaraju et al., 2017), and I considered the score as the

extent of its contribution. In this model, GradCAM determined the influence

of input gene nodes on the label by tracing back the gradient backpropagation
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process of the model for predicting IC50 value. Table 3.4 shows the top five

most significant genes of each cell line–drug pair in the test dataset.

As verified by literature searches, the bolded genes in Table 3.4 are the

target genes or genes associated with the target pathway for each drug-cell

line pair. The target was obtained from DrugBank (Wishart et al., 2008) and

GDSC, and the gene corresponding to the target pathway was obtained from

GeneCards (Safran et al., 2010) and Harmonizome (Rouillard et al., 2016).

Afatinib is an irreversible ErbB family blocker (Ioannou et al., 2011) that tar-

gets EGFR and ERBB2, and its target pathway is EGFR signaling pathway.

The model found ERBB2 as a significant gene of the afatinib pair. As with the

majority of cancers, TP53 is the most common mutated gene showing a pre-

dominant clonal expression in Non-Small-Cell Lung Cancer (NSCLC) (Canale

et al., 2022). It is known to be possible to use CLDN18 as an early-stage indi-

cator of pancreatic ductal carcinogenesis and to study CLDN18 ’s regulatory

mechanisms for uncovering key pathways like the PKC pathway of pancreatic

cancer (Tanaka et al., 2011). CDK2 corresponds to the mTOR signaling path-

way, which is the target pathway of Rapamycin. The use of Bortezomib and

Paclitaxel suggests the potential for rationally designed treatments for solid

tumors with MAPK pathway activation (Mehnert et al., 2011).

3.2.3 Pathway-level Interpretation using DRPreter

I examined which pathways were stimulated in different cancer types that are

sensitive to drugs and those that are not, as well as whether this model could

capture such meaningful pathways. Self-attention score from the Transformer-

based structure (Figure 2.1) was investigated for a drug that is sensitive only

to specific cell lines. All the GDSC data with known IC50 values were shown in

the same way as Figure 3.1(a), and Dasatinib was selected as having the widest

IC50 distributions. The wide distribution of IC50 means that the drug exhibits
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(b)(a) vLeukemia Cell line: MEG-01 Breast Cancer Cell line: BT-483

Figure 3.2: Visualization of self-attention score from Transformer. (a) Dasatinib

and Leukemia cell line MEG-01 pair (b) Dasatinib and Breast cancer cell line

BT-483. The figures show the y-axis as the query of the transformer, and the

x-axis as the key. On each axis, there is a drug and 34 pathways which start

with ”hsa,” indicating KEGG pathway identifiers.

the greatest differences in efficacy based on the type of cell line. I compared

the self-attention score Transformer on MEG-01, the cell line judged to be

sensitive with the smallest IC50 value, and BT-483, the most insensitive cell

line with the largest IC50 value, among the 548 cell line pairs with Dasatinib

(Figure 3.2). The MEG-01 cell line was derived from the hematopoietic and

lymphoid tissue of a leukemia patient, and the BT-483 cell line was derived

from the breast tissue of a breast cancer patient.

TGF-β signaling pathway (hsa04350) is the pathway with the highest at-

tention score in MEG-01 cell line which is the most sensitive to dasatinib. The

second most important pathway, ubiquitin-mediated proteolysis (hsa04120),

involves the covalent binding of ubiquitin to the target protein and its degrada-

tion. It is known that ubiquitin-mediated degradation can regulate the TGF-β

signaling pathway (Izzi and Attisano, 2004). The TGF-β signaling pathway

suppresses tumors in normal and premalignant cells yet promotes oncogenesis
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in advanced cancer cells, and its components are regulated by ubiquitin mod-

ifying enzymes that abnormalities of the enzymes can cause malfunctioning of

the pathway which can cause cancer, tissue fibrosis, and metastasis (Huang

and Chen, 2012; Iyengar, 2017; Seoane and Gomis, 2017). In this regard, the

ubiquitin modifying enzymes in the pathway and their counterparts are in-

creasingly being explored as potential drug targets (Iyengar, 2017). Dasatinib

is the tyrosine kinase inhibitor that can be the treatment of chronic myeloid

leukemia (Keskin et al., 2016). Dasatinib functions by binding to the ATP site

of the active conformation of BCR-Abl (Sun et al., 2011). As a signal transduc-

tion inhibitor, dasatinib inhibits the proliferation of tumor cells by inhibiting

tyrosine kinase action, especially blocking transcriptional and promigratory

responses to TGF-β through inhibition of Smad signaling (Bartscht et al.,

2015). The ubiquitin pathway can regulate the basal level of Smads, and al-

tered Smad proteins can cause a malfunction in responding to the incoming

signals due to their importance in transducing TGF-β signals (Izzi and Atti-

sano, 2004). From the ubiquitin to the TGF-β pathway, this model captures

the drug’s mechanism of action.

Moreover, the ECM-receptor interaction pathway (hsa04512) was found to

be most important in breast cancer-oriented cell line which is the most insen-

sitive to Dasatinib. The ECM-receptor interaction pathway has been shown

to be possibly useful as a biomarker for breast cancer (Bao et al., 2019), but

it does not relate to dasatinib’s mechanism of action. Hence, DRPreter model

identifies the pathways related to the drug mechanism of action for drug-

sensitive carcinoma and focuses on the biomarker for carcinoma without drug

efficacy.
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3.2.4 Improve CCLE cell line-based model into TCGA patient-

based model

I employed breast cancer patient data from The Cancer Genome Atlas (TCGA)

(53 and 68, 2013) as an external validation for the study. Due to the inherent

differences between TCGA data derived from in vivo patient samples and the

in vitro cell line data on which the DRPreter model was trained, it posed

challenges to directly apply the DRPreter for TCGA data. To address this, I

sought to enhance the CCLE cell line-based model by adapting it to the TCGA

patient-based model for classification purposes. I achieved this by incorporat-

ing an additional MLP layer at the front of the DRPreter model, which served

to convert the TCGA gene expression space into the CCLE gene expression

space. Subsequently, while keeping the model parameters of the DRPreter

frozen, I exclusively trained the MLP layer for space transformation using the

TCGA data. In this paper, I will consistently refer to the revised model with

this setup as ’TCGAtoCCLE’.

I utilized TCGA gene expression data obtained from UCSC Xena (Gold-

man et al., 2020) (https://xenabrowser.net/datapages/, accessed on 13

April 2023), specifically log2(FPKM) values inferred from RNA-seq data. Fur-

thermore, the binary drug response values indicating responder or non-responder

were obtained from Ding et al.. The dataset consisted of a total of 360 drug-

patient pairs, encompassing 26 drugs and 126 patients.

Binary drug response classification

I conducted experiments using a 5-fold cross-validation approach with three

different seeds. The experiments were performed under two settings: random

split and unseen patient stratified by subtype. Initially, the complete dataset

was randomly split and subjected to 5-fold cross-validation for testing. Subse-

quently, to evaluate the prediction capability for unseen patients, I conducted
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an additional experiment where predictions were made for new patients who

were not included in the training phase. It was ensured that the same pa-

tient was not included in the training, validation, and test sets. Furthermore,

each divided set was stratified based on the patient’s subtype. An ablation

study was conducted in the two aforementioned settings to assess the impact

of adding the TCGA to CCLE conversion layer and showed a performance

improvement for each metric with the conversion layer (Table 3.5).

Four metrics were used to evaluate the performance of the models: Area

Under the ROC Curve (AUC), Balanced Accuracy (BACC), Precision (PREC),

and Cohen’s Kappa (KAPPA). AUC represents the area under the Receiver

Operating Characteristic (ROC) curve. It measures the ability of the model to

distinguish between positive and negative samples across various classification

thresholds. A higher AUC value indicates better overall model performance.

AUC =

∫ 1

0
TPR(f) dFPR(f) (3.1)

BACC calculates the average of sensitivity and specificity. It takes into ac-

count both the true positive rate and true negative rate, providing a more

reliable measure of overall classification performance, especially in imbalanced

datasets.

BACC =
TPR + TNR

2
(3.2)

Precision is the proportion of correctly predicted positive samples over the

total predicted positive samples. By focusing on the correctness of positive

predictions, indicates the model’s ability to avoid false positives.

PREC =
TP

TP + FP
(3.3)

Cohen’s Kappa measures the agreement between the predicted and actual

labels while considering the agreement that could occur by chance. It takes

into account the imbalance in class distribution and provides a normalized
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measure of agreement.

KAPPA =
Pr(a) − Pr(e)

1 − Pr(e)
(3.4)

In these formulas, TPR represents the True Positive Rate, FPR represents the

False Positive Rate, TNR represents the True Negative Rate, TP represents the

number of True Positive instances, FP represents the number of False Positive

instances, Pr(a) represents the observed agreement, and Pr(e) represents the

chance agreement.

Subtype-specific visualization using t-SNE

I conducted a comparative analysis to assess the capability of DRPreter and

TCGAtoCCLE models in generating embeddings for distinguishing patients

based on their subtypes. Breast cancer subtype data was downloaded from

Berger et al., which provides subtypes for 1,050 TCGA patients. The specific

counts for each subtype are as follows: ’Luminal A (LumA)’ (563), ’Her2’ (82),

’Luminal B (LumB)’ (208), ’Basal’ (192), and ’Normal’ (5).

A t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten

and Hinton, 2008) plot was constructed using patient embeddings obtained

from the models. To quantitatively evaluate the embedding quality of DR-

Preter and TCGAtoCCLE, mutual information (Steuer et al., 2002) was cal-

culated between the results of agglomerative clustering (Zepeda-Mendoza and

Resendis-Antonio, 2013) using embeddings derived from each model and the

actual subtypes of patients. Mutual information is a measure of the degree of

dependency between two variables and serves as a metric to evaluate how well

the clustering results align with the actual patient subtypes. A higher mutual

information score indicates better performance of the clustering in correctly

grouping patient subtypes using the embeddings from the model. Therefore,

according to the mutual information score on the t-SNE plot, it can be con-

33



cluded that the embedding quality of TCGAtoCCLE is better (Figure 3.3).

(a) (b)

Figure 3.3: Tumor subtype classification potential revealed by t-SNE. Each

point represents a patient sample. (a) The t-SNE plot of the 1,050 patients’ em-

beddings using DRPreter. (b) The t-SNE plot of the 1,050 patients’ embeddings

using TCGAtoCCLE. In each plot, the mutual information value calculated be-

tween the results of agglomeration clustering and the actual subtypes of patients

was displayed.

Pathway-based interpretation for Capecitabine

Among the 360 drug response data, only Capecitabine showed a clearly dif-

ferent drug response depending on the subtype. Within the data, all LumA pa-

tients were responders to Capecitabine, and basal patients were non-responders

(Asleh et al., 2023). Consequently, I investigated the divergences in emphasized

pathways within the model based on the subtypes (Figure 3.4).

The p53 signaling pathway (hsa04115) emerges as a commonly impli-

cated pathway among LumA breast cancer patients, as supported by the

self-attention score analysis of the Transformer model. LumA is character-

ized by estrogen receptor-positive (ER+) and progesterone receptor-positive,

HER2-negative, and also exhibits low levels of the Ki-67 protein that regu-
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lates the growth rate of cancer cells. Coutant et al. studied p53 gene signa-

tures to predict prognosis and response to chemotherapy in ER-positive and

ER-negative breast cancers. They revealed that ER+ breast cancers with p53

dysfunction, measured by a transcriptional signature, are more sensitive to

chemotherapy than p53 normal cases. Hence, it seems appropriate for the

Transformer to focus on the p53 signaling pathway to assess p53 dysfunc-

tion in this transcriptome-based model. In addition, no common pathways

were identified in basal patients who were non-responders to Capecitabine.

Instead, the ubiquitin-mediated proteolysis pathway (hsa04120) and the Toll-

like receptor signaling pathway (hsa04620) were notably important in each

respective sample. Previous studies have linked that the ubiquitin ligases of

the ubiquitin-proteasome system, which encompasses the ubiquitin-mediated

proteolysis pathway, to basal-like breast cancer (Versari et al., 2006; Qi and

Ze’ev, 2015; Saucedo-Cuevas et al., 2014; Chan et al., 2011). Toll-like receptors

(TLRs) are highly expressed in breast cancer cells (Kidd et al., 2013), and their

expression levels vary across different breast cancer subtypes and stages (Shi

et al., 2020). Therefore, in line with the findings from analysis in cell lines, the

focus for responders is on pathways associated with drug responsiveness, while

non-responders receive information related to cancer-type-specific biomarkers.

Also, I conducted a further experiment to investigate the dissimilarities in

embeddings among structurally similar drugs. Through a comparative analysis

of Capecitabine and the other drug sharing the most similar structural charac-

teristics, I aimed to elucidate the specific interaction of the drug with LumA.

This experimental study aimed to determine whether these dissimilarities can

shed light on the targeted action of Capecitabine on LumA using DRPreter.

Dice similarity with Capecitabine was calculated for all 26 drugs with TCGA

drug response data. Subsequently, a comparison was performed between the

embeddings of Gemcitabine and Capecitabine, yielding the highest similarity
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value of 0.3656. Although the similarity is the highest among drugs, it is only

0.3656. However, when I looked at what pathway the model is most interested

in between Gemcitabine and the tumor sample pair, it came out almost the

same as Capecitabine (Figure 3.5). This finding indicates that the model’s

transformer-based architecture demonstrates sensitivity towards variations in

gene expression, but does not strongly capture the structural characteristics

of the drug.
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(a) (b)

(c) (d)

Figure 3.4: Visualization of self-attention score from Transformer. (a) and (b)

depict the results for LumA subtype patients who responded to Capecitabine.

(c) and (d) represent the results for basal subtype patients who did not respond

to the treatment. The figures show the y-axis as the query of the transformer,

and the x-axis as the key. On each axis, there is a drug and 34 pathways which

start with ”hsa,” indicating KEGG pathway identifiers.
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(a) (b)

(c) (d)

Figure 3.5: Visualization of self-attention score from Transformer. (a) and (b)

depict the results of Gemcitabine for LumA subtype patients who responded to

Capecitabine. (c) and (d) represent the results of Gemcitabine for basal subtype

patients who did not respond to the treatment. The figures show the y-axis as

the query of the transformer, and the x-axis as the key. On each axis, there

is a drug and 34 pathways which start with ”hsa,” indicating KEGG pathway

identifiers.
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Chapter 4

Conclusion

In this section, I will summarize the works in this paper and set forth future

works for further improvement.

1. An interpretable drug response prediction model called DRPreter inte-

grates biological and chemical domain knowledge with cutting-edge deep

learning technologies to deliver outstanding predictive performance and

interpretability.

2. I introduced cancer-related pathways and constructed the cell line net-

work as a set of subgraphs to represent and interpret biological mecha-

nisms in detail.

3. I extracted drug-pathway interaction information from the modified en-

coder of the Transformer module and obtained putative key pathways

for the drug mechanism.

4. Ablation studies verified the effectiveness of each component of the

model and performance comparison experiments showed DRPreter has
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enhanced predictive power than the state-of-the-art drug response pre-

diction models.

5. Through external validation using TCGA data, the feasibility of extend-

ing the model from cell line data to patient data was illustrated.

To properly apply the drug response predicted by the model for clinical use

or drug discovery, it is essential to understand the process and mechanism from

which it was derived due to safety and reliability issues. Accordingly, I imple-

mented gene and pathway-level analysis via DRPreter, and it has been shown

that DRPreter predicts drug sensitivity based on known drug mechanisms of

action and target-related factors. I also identified the cell line that would act

most sensitively for each drug in the absence of experimental data through

a case study and confirmed that it is widely used for each drug currently in

the clinical situation. By doing so, patients who have shown resistance to a

specific drug may be able to select a drug candidate group that would replace

the ineffective drug. However, this study utilized genes within the pre-selected

34 pathways, and the Transformer model was trained to learn relationships

exclusively within these pathways. As a result, there is a limitation in the in-

terpretation regarding the significance of pathways outside the selected ones.

Therefore, there is room for further study by incorporating a larger number

of genes and pathways to explore beyond the current limitations and enhance

the understanding of pathway interactions.

Also, the Transformer architecture, commonly used in natural language

processing tasks such as machine translation and text generation, may not

be the most appropriate choice if data has a different structure or charac-

teristics. Therefore, the suitability of the Transformer architecture for the

given input configuration, comprising multiple pathways and a single drug,

should be carefully evaluated. This consideration was further substantiated
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through pathway-based interpretation using the self-attention scores of the

Transformer-based structure. Notably, when different cell lines were employed

for the same drug, the model’s attention was observed to vary according to

the gene expression profiles specific to each cell line type. This finding sig-

nifies that the Transformer-based structure employed in this study has the

capability to extract meaningful information from the gene expression data.

However, when experiments with different drugs were performed on the same

tumor samples, there were cases where the results were exactly the same (Fig-

ure 3.4, Figure 3.5), so meaningless results were obtained when the number of

pathways and drugs differs. This suggests that there is potential for further

model modifications to enhance pathway-based interpretation performance for

data imbalance.
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국문초록

약물 반응성 예측에 대한 최근 연구 중 일부는 그래프 신경망을 적용하여 약물

구조또는유전자네트워크에대한사전지식을활용하는반면,다른연구는약물

반응을지배하는메커니즘을설명하기위한모델의해석가능성에초점을맞추고

있다. 그러나 예측 정확도가 향상되고 모델의 실용성이 향상될 수 있도록 사전

지식에 기반하면서도 해석 가능한 예측 모델을 만드는 것이 중요하다. 따라서

DRPreter(Drug Response PREdictor and interpreTER)라는 해석 가능한 모

델을 제안한다. DRPreter는 도메인 지식을 바탕으로 생물학적 패스웨이를 서브

그래프로 하여 세포주 그래프를 분할하고, 그래프 신경망을 통해 세포주 및 약물

정보를 학습한다. DRPreter에서 사용한 트랜스포머의 인코더 기반 구조는 약물

반응과 관련된 중요한 패스웨이를 강조하고, 패스웨이들과 약물 사이의 관계를

탐지하는 역할을 한다. GDSC(Genomics of Drug Sensitivity and Cancer) 데

이터에 대한 성능 평가 결과는 본 모델이 항암제 반응 예측을 위한 그래프 기반

최신 모델들의 성능을 능가한다는 것을 보여준다. 또한 특정 항암제-세포주 쌍에

대해 핵심 유전자와 패스웨이를 추정하고 문헌에서 이를 뒷받침하는 증거를 찾

았고, 이는 본 모델이 약물의 작용 매커니즘을 해석하는 데 도움을 줄 수 있음을

시사한다.

주요어: 전사체학, 설명가능 인공지능, 약물유전체학, 항암제 반응성, 그래프 신

경망, 맞춤의학, 신약 발굴

학번: 2021-24949
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