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ABSTRACT	

Molecular	Dynamics	Studies		
on	SARS-CoV-2	Neutralizing		
Antibodies	and	Kynureninases	

	

Jihyeon	Lee	

Department	of	Chemistry	

The	Graduate	School	

Seoul	National	University	

	
The	dynamic	role	of	proteins	in	vivo	has	become	perceived	increasingly	
important	 in	the	 field	of	 therapeutics.	Therapeutic	proteins	possess	
specific	 functions	 that	 contribute	 to	 disease	 alleviation	 when	 they	

interact	 with	 specific	 disease	 target	 molecules:	 invoking	 immune	
responses,	 catalyzing	 biochemical	 reactions,	 transporting	molecules,	
and	 assembling	 into	 membranes	 without	 interfering	 with	 other	

biological	 pathways.	 However,	 limited	 understanding	 of	 protein-
protein	 and	 protein-ligand	 interactions	 still	 hinders	 effective	

development	of	protein	therapeutics.		
In	this	thesis,	molecular	interactions	occurring	in	functional	

proteins,	 such	 as	 antibodies	 and	 enzymes,	 are	 investigated	with	 a	

focus	on	binding	thermodynamics	and	kinetics,	respectively.	This	is	
achieved	 through	 atomic-level	molecular	 dynamics	 simulations	 and	
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statistical	analysis	of	residue-wise	binding	free	energies	and	residence	

times.	First,	the	simultaneous	formation	of	multiple	contacts	between	
antibodies	 and	 their	 target	 proteins	 (SARS-CoV-2	 RBD)	 was	

observed	 to	 contributes	 to	 favorable	 binding	 affinity.	 Second,	 !-
interactions,	facilitated	by	hydrogen	bonds	formed	between	residues	
in	enzyme	and	its	substrate,	was	found	to	stabilize	the	binding	pose	

and	to	improve	binding	kinetics	upon	substrate	binding,	resulting	in	
longer	residence	times.	These	studies	provide	enhanced	understanding	

of	 detailed	 atomic	 contributions	 in	 molecular	 interactions	 of	
therapeutic	proteins	and	hence,	new	strategies	for	improved	design	of	
protein	therapeutics.	

	
Keywords:	molecular	dynamics	simulation,	binding	thermodynamics,	

solvation	 free	 energy,	 binding	 kinetics,	 residence	 time,	 protein	
therapeutics	
Student	Number:	2021-26772	
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1.	INTRODUCTION	

Therapeutic	 proteins	 should	 possess	 specific	 functions	 for	 disease	

alleviation	 in	vivo	when	 they	 interact	with	 the	biological	 systems.	
The	 functional	 proteins	 are	 responsible	 for	 invoking	 immune	

responses,	 catalyzing	 biochemical	 reactions,	 transporting	 molecular	
building	blocks,	and	assembling	into	membranes	without	interfering	
with	other	biological	pathways.	(Keskin	et	al.,	2008,	Zhu	et	al.,	

2021)	Therefore,	understanding	molecular	interactions	in	the	level	
of	protein-protein	and	protein-ligand	complex	has	gained	significant	

imporatnce	in	the	field	of	protein	therapeutics	since	it	provides	the	
essential	information	on	their	function	and	efficient	ways	to	design	
them.	 (Sudha	 et	 al.,	 2014,	 Lu	 et	 al.,	 2020)	 However,	 clear	

understanding	of	which	specific	interactions	help	a	functional	protein	
gain	its	function	requires	detailed	atomistic	study.	

	
Molecular	 dynamics	 (MD)	 simulation	 is	 a	 critical	 tool	 for	

exploring	 the	 biological	 mechanisms	 in	 atomic	 detail	 occurring	 by	

explicitly	 considering	molecular	 interactions	 in	 protein-protein	 and	
protein-ligand	 complexes.	 (Karplus	 et	 al.,	 2002)	 Although	 there	

have	been	significant	efforts	to	quantify	the	binding	thermodynamics	
and	 kinetics	with	MD	 simulations,	 those	methods	 still	 need	 to	 be	
improved	in	accuracy.	(Gromiha	et	al.,	2017)	For	example,	binding	

free	energy,	or	the	binding	affinity	can	be	calculated	based	on	the	
free	 energy	 perturbation	 and	 thermodynamic	 integration	 methods.	

(Deng	 et	 al.,	 2009)	 However,	 these	methods	 are	 limited	 to	 free	
energy	 changes	 involving	 only	 small	 changes	 from	 the	 reference	
systems	and	thus	are	not	proper	for	evaluating	binding	free	energy.	
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To	overcome	the	sampling	problem,	machine	learning	approaches	have	

been	introduced	to	predict	the	binding	affinity.	(Bernetti,	M.	et	al.,	
2020)	Even	 though	 they	 can	provide	 results	 in	 a	 relatively	 short	

time	as	a	linear	expression	of	energy	function	with	a	high	prediction	
accuracy	(Bertazzo,	M.	et	al.,	2021,	Vreven,	T.	et	al.,	2012),	they	
need	to	be	improved	to	get	higher	level	of	accuracy	to	describe	the	

precise	 nature	 of	 interactions	 on	 unseen	 data.	 Furthermore,	
computing	residence	time	is	one	of	the	most	direct	methodologies	for	

calculating	and	predicting	kinetics	of	receptor-ligand	complex.	(Kokh	
et	al.,	2018)	However,	the	development	of	well-established	strategies	
to	 quantify	 the	 effectiveness	 of	 ligand-receptor	 interaction	 kinetics	

requires	molecular	kinetics	studies.	(Bernetti,	M.	et	al.,	2019)	
Here,	we	explore	how	to	find	key	interactions	combined	with	

MD	simulations	in	terms	of	binding	thermodynamics	and	kinetics	on	
two	 classes	 of	 therapeutic	 proteins,	 SARS-CoV-2	 neutralizing	
antibodies	in	Chapter	2	and	therapeutic	enzymes	in	Chapter	3.	In	

Chapter	2,	we	suggest	the	role	of	simultaneous	multiple	contacts	in	
alleviating	 dehydration	 penalty	 and	making	 favorable	 binding	 free	

energies	between	antigen	and	antibody	proteins.	We	analyze	them	by	
applying	 residue	 decomposition	 solvation	 free	 energy	 calculation	
without	any	 structural	perturbation.	 In	Chapter	3,	we	provide	an	

advanced	understanding	on	different	binding	kinetics	between	human	
kynureninase	(HsKYNU)	and	pseudomonas	kynureninase	(PfKYNU)	

which	 are	 relevant	 to	 humanized	 cancer	 therapy.	We	 propose	 the	
difference	in	binding	kinetics	between	the	two	enzymes	and	quantify	
substrates’	residence	time	in	enzymes	by	calculating	hydrogen	bond	

populations.	
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2.	Atomic-level	thermodynamic	analysis	of	the	
binding	free	energy	of	SARS-CoV-2	
neutralizing	antibodies	
	
	

2.1.	Introduction	

Understanding	protein-protein	interactions	(PPIs)	in	the	atomic	level	

is	widely	acknowledged	as	crucial	in	the	field	of	protein	therapeutics	

development.	 Investigating	PPIs	provides	valuable	 insights	 into	 the	

biological	 mechanisms	 associated	 with	 various	 diseases	 and	 drug	

strategies.	(Arkin	et	al.,	2004,	Smith	et	al.,	2012,	Petta	et	al.,	

2016)	 However,	 our	 current	 understanding	 of	 the	 individual	

molecular	interactions	that	occur	between	interfacial	amino	acids	and	

contribute	 to	 build	 up	 PPIs,	 as	 well	 as	 their	 role	 in	 determining	

binding	affinity	remains	incomplete	and	limited.	(Scott	et	al.,	2016,	

Mabonga	et	al.,	2019,	Siebenmorgen	et	al.,	2020)	It	also	has	been	

limited	 the	 recent	 advance	 in	 predicting	 binding	 free	 energy	 from	

protein-protein	complex	structure.	(Mobley	et	al.,	2019,	Gromiha	et	

al,	2017,	Vangone	et	al.,	2015)	Therefore,	it	becomes	necessary	to	

acquire	 more	 detailed	 understanding	 of	 the	 intricate	 nature	 of	

molecular	 interactions	 at	 the	 binding	 interface	 that	 enable	 us	 to	

enhance	 existing	methods	 and	 gain	microscopic	 insights	 on	 how	 to	

effectively	modify	these	PPIs	to	achieve	stronger	binding	affinity.	
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	 One	of	the	most	recognized	methods	to	elucidate	the	individual	

molecular	interactions	is	alanine-scanning	mutagenesis	among	several	

experimental	and	computational	studies.	(Scott	et	al.,	2016,	Rao	et	

al.,	2014,	Moreira	et	al.,	2007,	Nero	et	al.,	2014,	Marchand	et	

al.,	 2022)	This	method	 coupled	with	 free	 energy	 simulations	 has	

demonstrated	remarkable	success	in	predicting	binding	free	energy	of	

both	small	drug	molecules	(Kortemme	et	al.,	2004,	Boukharta	et	

al.,	2014)	and	protein-protein	 interfaces.	(Moreira	et	al.,	2007,	

Simoes	et	al.,	2017)	However,	employing	alanine	scanning	for	all	

interfacial	 residues	 is	 time-consuming.	 Furthermore,	 site-directed	

mutagenesis	 occasionally	 leads	 to	 substantial	 alterations	 in	 protein	

conformations	 and	 undesired	 perturbations	 to	 interactions	 beyond	

mutation	site,	(Dave	et	al.	2016,	Ardejani	et	al.,	2017)	which	is	

then	difficult	to	interpret	mutation-based	analyzed	results	in	order	to	

elucidate	 how	 binding	 affinity	 arises	 from	 underlying	 molecular	

interactions.	

	 Binding	 affinity	 of	 protein-protein	 interactions	 is	 not	 solely	

determined	 by	 the	 final	 structure	 of	 the	 complex	 but	 also	 by	 the	

changes	 in	 free	 energy	 during	 complex	 formation,	 which	 includes	

environmental	changes	for	 interfacial	residues.	An	explicit	example	

of	this	is	the	dehydration	penalty.	For	example,	the	formation	of	a	

hydrogen	 bond	 at	 the	 binding	 interface	 may	 seem	 favorable	 for	

binding	affinity,	but	when	considering	the	dehydration	penalty,	this	

is	not	apparent.	Interestingly,	interfacial	amino	acid	residues	that	are	

involved	in	hydrogen	bonding	with	surrounding	water	molecules	before	
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complex	 formation	 require	 the	 removal	 of	 these	 water	 molecules	

during	 binding,	 resulting	 in	 a	 free	 energy	 cost	 known	 as	 the	

dehydration	 penalty.	 Therefore,	 when	 discussing	 the	 molecular	

interactions	 involved	 in	 building	 up	PPIs,	 it	 is	 crucial	 to	 consider	

those	 influenced	 by	 the	 surrounding	 water	 molecules,	 or	 solvent-

averaged	 interactions.	 There	 remains	 a	 challenge	 to	 quantitatively	

isolate	 magnitude	 of	 dehydration	 penalty	 for	 individual	 interface	

interaction,	though	explicit-water	free	energy	simulations	naturally	

account	for	it.	

	 Here,	 we	 present	 an	 atomic-level	 thermodynamics	 analysis	

that	enables	to	quantify	the	contribution	of	individual	interactions	to	

binding	free	energy,	and	hence,	introduce	a	new	perspective	on	the	

nature	 of	 molecular	 interactions	 that	 govern	 the	 protein-protein	

binding	affinity.	(Lee	et	al.,	2022)	Our	method	utilizes	a	quantity	

∆# = ∆%! + ∆'"#$%,	which	comprises	the	direct	interaction	energy	(D%!)	

between	 a	 protein	 complex	 and	 the	 solvation	 free	 energy	 change	

(D'"#$%)	upon	complex	formation.	(Lazaridis	et	al.,	1999,	Lazaridis	

et	al.,	2000)	This	quantity	is	connected	to	the	binding	free	energy	

(D'&'()) via	(Gilson	et	al.,	1997,	Chong	et	al.,	2016)	

∆'&'() = ∆# − )*∆+*#(+', + ∆+-./,	 (1)	

,	 where	 T	 represents	 the	 temperature,	 and	 D +*#(+', 	and	 D +-./	

represent	 the	 change	 in	 configurational	 and	 external	 entropy,	

respectively.	 Since	 protein	 structures,	 particularly	 at	 the	 binding	

interface,	usually	become	more	rigid	(−)∆+*#(+', > 0)	and	experience	
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a	 reduction	 in	 positional	 and	 orientational	 freedom	 (−)∆+-./ > 0)	

upon	complex	formation,	the	driving	force	for	binding	is	derived	from	

D#	(<0).	Hence,	it	is	meaningful	to	focus	on	this	quantity	to	quantify	

the	role	of	individual	interactions	in	binding	affinity.	The	quantity	

D#	is	referred	to	as	the	effective	binding	energy	(Gohlke	et	al.,	2004)	

or	 solvent-averaged	 interaction	 energy	 (Bryngelson	 et	 al.,	1995),	

considering	the	solvent	effect	(dehydration	penalty)	through	D'"#$%.	

Importantly,	a	formally	exact	atomic	(labeled	by	/)	decomposition,	

∆# = ∑ ∆#00 ,	 is	 achievable,	 allowing	 for	 the	 decomposition	 of	 D%!	

using	classical	force	fields	and	the	application	of	a	previously	derived	

decomposition	 method	 for	 D '"#$% .	 (Chong	 et	 al.,	 2011)	 This	

decomposition	into	individual	atomic	contributions	can	be	carried	out	

without	introducing	any	mutations,	enabling	us	to	analyze	the	system	

of	 interest	 in	 its	 native	 state.	 Our	method’s	 utility	 to	 handle	 a	

system	 of	 interest	 is	 exemplified	 through	 its	 application	 to	 SARS-

CoV-2	neutralizing	antibodies.	We	provide	an	 illustration	that	the	

formation	of	single	contact,	such	as	a	hydrogen	bond,	at	the	interface	

has	 minimal	 contribution	 to	 the	 binding	 free	 energy	 due	 to	 the	

dehydration	 penalty.	 In	 contrast,	 the	 simultaneous	 formation	 of	

multiple	atomic	contacts	favorably	impacts	the	binding	affinity.	This	

is	attributed	to	a	significant	reduction	in	the	dehydration	penalty,	as	

the	total	penalty	 incurred	by	multiple	contacts	 is	smaller	than	the	

sum	 of	 individual	 dehydration	 penalties	 of	 those	 contacts.	 By	

highlighting	these	findings,	we	aim	to	introduce	a	new	perspective	on	

the	 nature	 of	 molecular	 interactions	 that	 govern	 protein-protein	

binding	affinity.	
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2.2.	Methods	

2.2.1.	System	preparation	

We	 studied	 three	Fab	domain	 antibodies—CV30	(Hurlburt	 et	 al.,	

2020),	B38	(Wu	et	al.,	2020),	and	CB6	(Shi	 et	al.,	2020)—

targeting	 the	 receptor	 binding	 domain	 (RBD)	 of	 the	 SARS-CoV-2	

spike	protein	(Figure	2.1A	to	Figure	2.1C).	Their	complex	structures	

were	taken	from	the	Protein	Data	Bank	(PDB):	the	accession	codes	

are	 6XE1,	 7BZ5,	 and	 7C01	 for	 CV30/RBD,	 B38/RBD	 and	

CB6/RBD,	 respectively.	 These	 antibodies	 have	 nearly	 the	 same	

sequences	except	for	the	complementarity	determining	regions	(CDRs;	

see	 Figure	 2.1D).29	 While	 CB6	 has	 a	 longer	 heavy-chain	 CDR	

(HCDR)	3	than	CV30	and	B38,	the	overall	Fab	structures	are	quite	

similar:	Ca	root	mean	square	deviation	to	CV30	is	0.24	Å	for	B38	

and	0.33	Å	for	CB6.	The	RBD	in	the	respective	PDB	files	has	slightly	

different	sequence	lengths,	and	we	modified	the	RBD	in	B38/RBD	

and	 CB6/RBD	 such	 that	 it	 has	 the	 same	 sequence	 length	 (207	

residues)	as	in	CV30/RBD.	Missing	residues	were	modeled	by	using	

the	MODELLER	 program.	 (Webb	 et	 al.,	 2016)	 The	N-	 and	 C-

terminals	of	the	RBD	were	capped	by	ACE	(acetyl)	and	NME	(N-

methylamide)	groups,	respectively.	The	resulting	complex	structures	

were	used	as	 inputs	 to	molecular	dynamics	(MD)	simulations.	We	

renumbered	 the	 residues	 in	 our	 systems,	 and	 the	 correspondence	

between	our	numbering	and	the	one	in	PDB	structures	is	summarized	

in	Figure	2.2	for	CV30/RBD,	Figure	2.3	for	B38/RBD	and	Figure	

2.4	for	CB6/RBD.	 	
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Figure	 2.1.	 Fab	 domain	 antibodies	 complexed	 with	 the	 receptor	

binding	domain	(RBD)	of	the	SARS-CoV-2	spike	protein	studied	in	

the	present	work.	(A)	CV30/RBD.	(B)	B38/RBD.	(C)	CB6/RBD.	

(D)	Sequence	alignment	of	the	complementarity	determining	regions	

(CDRs).	
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Figure	2.2.	Correspondence	 between	 the	numbering	 of	 amino	 acid	

residues	used	in	the	present	work	and	the	one	in	the	PDB	structure	

(6XE1)	for	CV30/RBD.	
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Figure	2.3.	Correspondence	 between	 the	numbering	 of	 amino	 acid	

residues	used	in	the	present	work	and	the	one	in	the	PDB	structure	

(7BZ5)	for	B38/RBD.	
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Figure	2.4.	Correspondence	 between	 the	numbering	 of	 amino	 acid	

residues	used	in	the	present	work	and	the	one	in	the	PDB	structure	

(7C01)	for	CB6/RBD.	
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2.2.2.	MD	simulations		

The	AMBER20	package	(Case	et	al.,	2020)	was	utilized	to	perform	

MD	simulations.	AMBER	ff14SB	(Maier	et	al.,	2015)	was	employed	

for	proteins	and	ions,	and	the	systems	were	solvated	by	TIP3P	waters.	

(Jorgensen	et	al.,	1983)	Besides	neutralizing	counter	ions,	additional	

Na+	and	Cl−	ions	were	added	to	reach	150	mM	ionic	strength.	Prior	

to	simulations,	500	steps	of	the	steepest	descent	minimization	were	

performed	followed	by	500	steps	of	conjugate	gradient	minimization	

with	500	kcal/(mol·Å2)	harmonic	restraints	on	protein	heavy	atoms.	

Additionally,	 1000	 and	 1500	 steps	 of	 the	 steepest	 descent	 and	

conjugate	 gradient	 minimization	 without	 harmonic	 restraints	 were	

carried	out.	The	systems	were	heated	up	with	20	ps	NVT	simulation	

with	 10	 kcal/(mol·Å2)	 restraints,	 followed	 by	 200	 ps	 NPT	

equilibration	 simulation	 at	 300	 K	 and	 1	 bar	 without	 restraints.	

Finally,	100	ns	NPT	production	runs	were	conducted	three	times	for	

each	system.	The	temperature	and	pressure	were	kept	to	300	K	and	

1	bar	by	Langevin	thermostat	(Pastor	et	al.,	1988)	and	Berendsen	

barostat.	(Berendsen	et	al.,	1984)	10	Å	cutoff	was	used	for	short-

range	interactions,	and	long-range	electrostatic	forces	were	handled	

by	the	Particle	Mesh	Ewald	method.	(Darden	et	al.,	1993)		

2.2.3.	Effective	binding	energy	calculation	

We	extracted	complex	structures	every	1	ns,	resulting	in	300	MD	

snapshots	from	the	three	independent	simulations	of	100	ns	length.	

All	ions	and	water	molecules	were	removed	in	yielding	the	snapshots.	
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These	 simulated	 complex	 structures	 were	 used	 for	 computing	 the	

effective	binding	energy	∆#,	

∆# = ∆%! + ∆'"#$%	 (2)	

Here,	 %1 	is	 the	 (gas-phase)	 interaction	 potential,	 '2345 	is	 the	

solvation	 free	 energy,	 and	∆X	 refers	 to	 the	 change	upon	 complex	

formation:		

∆1 = 1*#67$-. − (18(/'&#)9 + 1:;<)	 (3)	

In	the	present	work,	both	antibody	and	RBD	structures	were	taken	

from	 the	 simulated	 complex	 structures	 (referred	 to	 as	 the	 one-

trajectory	 approach).	 In	 this	 case,	 ∆%! 		 is	 given	 by	 the	 direct	

interaction	 energy	 between	 antibody	 and	 RBD	 comprising	 the	

Lennard-Jones	(LJ)	and	electrostatic	terms:		

∆%! = ∑ 568&
(>?) + 68&

(-$-*)78,&   (4) 

in	which	a	and	b	label	constituent	atoms.	The	atomic	decomposition	
of	∆.u	can	hence	be	easily	be	obtained:		

∆%! = ∑ ∆%!,8;0 				∆%!,8 = ∑ 568&
(>?) + 68&

(-$-*)7& 		 (5)	

The	 solvation	 free	 energy	/solv 	in	 this	 work	 was	 calculated	 by	
employing	 the	 three-dimensional	 reference	 interaction	 site	 model	

(3D-RISM)	theory	with	the	Kovalenko-Hirata	closure,	(Imai	et	al.,	
2006,	Kovalenko	et	al.,	2003)	which	allows	us	to	compute	/solv	for	
a	 given	protein	 structure.	∆/solv	can	be	 obtained	by	applying	 the	

3D-RISM	 theory	 individually	 to	 the	 complex,	 antibody	 and	 RBD	
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structures	and	then	using	Equation	3,	and	this	was	repeated	for	100	

structures	 taken	 from	each	simulation	 trajectory	with	a	1	ns	 time	
interval;	average	and	standard	error	were	then	estimated	based	on	

the	three	independent	trajectories.	We	used	our	in-house	program	in	
solving	 the	3D-RISM	equations	on	a	grid	of	256	×	256	×	256	
points	with	a	spacial	resolution	of	0.625	Å	along	each	direction.	A	

formally	 exact	 decomposition	 method	 of	 ∆/solv 	has	 been	 derived	
(Chong	et	al.,	2011),	with	which	we	have	

∆'"#$% = ∑ ∆'"#$%,88 ; 				∆'"#$%,8 = ∆'"#$%,8
(>?) + ∆'"#$%,8

(-$-*)	 	 (6)	

The	atomic	decomposition	of	the	effective	binding	energy,	∆#	 = 	∑ #00 ,	
follows	from	Equations	2,	5	and	6.	This	is	the	basis	of	our	atomic-
level	 thermodynamics	 analysis.	 In	 the	 following,	 results	 will	 be	

reported	in	the	form	of	the	residue-wise	decomposition,	∆#	 = 	∑ #BB ,	
by	summing	up	atomic	contributions	in	residue	i,	∆#B 	= 	∑ ∆#00∈B .		

2.3.	Results	and	discussion	

2.3.1.	Overall	trends	in	effective	binding	energy	

We	 investigated	 three	 Fab	 domain	 antibodies—CV30,	 B38	 and	
CB6—forming	a	complex	with	the	receptor	binding	domain	(RBD)	of	
the	 SARS-CoV-2	 spike	 protein	 (Figure	 2.1).	Molecular	 dynamics	

simulations	 were	 conducted	 for	 CV30/RBD,	 B38/RBD	 and	
CB6/RBD	complex	systems	for	their	structural	and	thermodynamics	

analyses.	Three	independent	production	runs	of	100	ns	length	were	
carried	out	from	which	averages	and	standard	errors	were	estimated.	
The	complex	structures	were	stable	during	the	simulations	(Ca	root	
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mean	 square	 deviations	 from	 the	 respective	 PDB	 structures	 are	

3.4±0.5,	3.3±0.6	and	2.4±0.2	for	CV30/RBD,	B38/RBD	and	
CB6/RBD,	respectively).	We	computed	the	effective	binding	energy	

∆	#	=	∆.u	+	∆/solv	based	on	these	simulated	complex	structures.		

We	 find	 that	 CB6/RBD	 (∆#	=	 −31.4	 ±	 1.7	 kcal/mol)	

exhibits	the	strongest	binding	in	terms	of	∆#,	followed	by	CV30/RBD	
(∆#	=	−30.0	±	1.4	kcal/mol)	and	B38/RBD	(∆#	=	−28.2	±	
1.0	 kcal/mol).	 This	 trend	 is	 in	 accord	 with	 the	 experimental	
observations:	CB6	shows	the	strongest	binding	affinity	(:<=	2.5	nM	
and	IC50	=	0.036	µg/mL),	followed	by	CV30	(:<	=	3.6	nM	and	

IC50	=	0.03	µg/mL)	and	B38	(:<	=	70.1	nM	and	IC50	=	0.177	
µg/mL).	 (Hurlburt	 et	 al.,	 2020)	 To	 elucidate	 how	 such	 binding	

affinity	 is	 determined	 from	 underlying	 molecular	 interactions,	 we	
decomposed	 ∆ # 	into	 contributions	 ∆ #B 	from	 individual	 residues	
(labeled	;),	∆#	 = 	∑ #BB .	Since	all	the	component	proteins	under	study	

have	nonzero	net	charges	(see	Figure	2.1;	all	of	CV30,	B38,	CB6	
and	 RBD	 are	 positively	 charged),	 we	 first	 partitioned	 ∆# 	into	

contributions	 from	 neutral	 and	 charged	 residues	 (Table	 2.1	 and	
Figure	2.5).	It	is	clearly	seen	that	favorable	(negative)	contributions	
to	 ∆#	are	 dominantly	 provided	 by	 neutral	 residues.	 The	 overall	

unfavorable	(positive)	contributions	to	∆#	from	charged	residues	are	
understandable	 from	the	 fact	 that	all	 the	antibodies	and	RBD	are	

positively	charged,	i.e.,	the	net	electrostatic	interaction	between	the	
antibody	and	RBD	should	be	repulsive.		
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Table	2.1.	Effective	binding	energy	∆<	and	neutral-	and	charged-
residue	contributions	

	 ∆#	(kcal/mol)	 neutral	residues	 charged	residues	
CV30/RBD	 –30.0	±	1.4	 –31.2	±	0.3	 1.2	±	1.3	
B38/RBD	 –28.2	±	1.0	 –33.4	±	0.7	 5.2	±	0.4	

CB6/RBD	 –31.4	±	1.7	 –33.3	±	1.5	 1.9	±	1.2	

	

Figure	 2.5.	 Contributions	 to	 the	 effective	 binding	 energy	∆<	(in	

kcal/mol)	 from	 neutral	 (cyan	 bars)	 and	 charged	 (orange	 bars)	

residues.	

	

 	



 - 17 - 

2.3.2.	Connection	between	 effective	 binding	 energy	and	molecular	

interactions	

We	next	analyze	how	the	magnitude	of	individual	∆#B	is	connected	
to	underlying	molecular	interactions.	For	this	purpose,	we	show	in	
Figure	2.6A	the	residue-wise	decomposition	∆#B	and	in	Figure	2.6B	
the	heavy-atom	contact	map	for	CV30/RBD	(a	heavy	atom	contact	
is	 considered	 formed	 if	 the	 heavy	 atom	 distance	 is	 <4.5	 Å).	

Corresponding	results	for	B38/RBD	and	CB6/RBD	are	presented	in	
Figure	2.7	and	Figure	2.8,	respectively.	In	the	following,	we	will	
mainly	refer	to	Figure	2.6	to	succinctly	describe	our	results.		

We	first	notice	that	nonzero	∆#B	values	originate	mostly	from	
the	complementarity	determining	regions	(CDRs)	in	the	antibody	and	

from	those	residues	in	RBD	making	contacts	with	CDRs	(shaded	blue	
in	Figure	2.6A).	This	is	natural	because	it	is	the	CDRs	in	the	anti-	

body	that	specifically	interact	with	the	target	(RBD).	We	shall	be	
particularly	interested	in	those	residues	whose	∆#B	values	are	more	
negative	than	−1	kcal/mol.	Since	the	magnitude	of	such	∆#B	values	
is	much	 stronger	 than	 the	 thermal	 energy	 (=;)	~	0.6	kcal/mol),	
those	 residues	 can	be	 considered	 significant	 contributors	 to	binding	

affinity.	 Significant	 residues	 in	 this	 sense	 are	 listed	 in	 Table	 2.2	

(those	of	B38/RBD	and	CB6/RBD	complex	are	listed	in	Table	2.3	
and	 2.4,	 respectively).	 The	 dominance	 of	 neutral	 residue	

contributions	mentioned	above	is	apparent	from	the	fact	only	a	few	
charged	residues	from	each	system	show	up	in	this	table.	Significant	

residues	are	also	marked	by	the	dots	along	the	horizontal	(residues	
in	CV30)	and	vertical	(residues	in	RBD)	axis	labels	in	Figure	2.6B.	

We	observe	from	a	comparison	of	Figure	2.6A	and	Figure	2.6B	that	
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the	mere	presence	of	contacts	for	a	given	residue	does	not	warrant	its	

thermodynamic	significance.	This	implies	that	the	contact	map	alone	
is	insufficient	for	discriminating	significant	and	insignificant	residues,	

and	more	detailed	analysis	on	the	nature	of	interface	interactions	is	
necessary.		

In	 this	 regard,	we	notice	 that	molecular	 interactions	at	 the	
binding	 interface	 can	 be	 broadly	 classified	 into	 hydrogen	 bonds	

(interaction	 between	 N/O	 atoms	 mediated	 by	 a	 hydrogen	 atom;	
considered	formed	if	the	N/O	distance	is	<3.5	Å;	salt-bridges	are	also	
counted	 as	 hydrogen	 bonds)	 and	 hydrophobic	 carbon-carbon	 (CC)	

contacts	 (considered	 formed	 if	 the	 CC	 distance	 is	 <4.5	 Å).	 The	
average	numbers	of	these	atom-atom	contacts	during	the	simulations	

are	added	in	Table	2.2,	2.3,	and	2.4	for	CV30/RBD,	B38/RBD,	
and	CB6/RBD	complex,	respectively.	We	find	that	the	presence	of	
simultaneous	multiple	contacts	is	the	characteristic	of	this	table	listing	

thermodynamically	significant	residues:	not	only	the	average	number	
of	hydrogen	bonds	and	CC	contacts	typically	exceeds	1,	but	also	in	

most	cases	both	of	hydrogen	bonds	and	CC-bonds	are	simultaneously	
present.	 This	 situation	 is	 illustrated	 in	 Figure	 2.6C	 in	 which	
hydrogen	bonds	are	denoted	by	the	dashed	 lines	and	carbon	atoms	

represented	by	spheres;	the	presence	of	CC	contacts	can	be	inferred	
from	that	of	neighboring	spheres.	For	example,	the	side	chain	of	S56	

in	 CV30	 (∆#B	=	−2.4	 kcal/mol)	 forms	 more	 than	 one	 hydrogen	
bonds	and	CC	contacts	simultaneously	with	the	surrounding	residues;	
in	L131	of	RBD	(∆#B	=	−1.7	kcal/mol),	 less	 than	one	hydrogen	

bond	 is	 present	 on	 average,	 but	 several	 CC	 contacts	 are	 formed	
simultaneously;	 and	 the	 side	 chain	 of	K93	 in	RBD	 (∆#B	=	−2.8	

kcal/mol)	 forms	 about	 two	 hydrogen	 bonds	 simultaneously	 and	 its	
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hydrophobic	neck	makes	a	large	number	of	CC	contacts	(see	Table	

2.2).	Furthermore,	a	 simple	 regression	analysis	 of	∆#B	in	 terms	 of	
hydrogen	bonds	and	CC	contacts,	presented	in	Figure	2.9,	indicates	

that	 hydrogen	 bonds	 provide	 larger	 contributions	 to	 ∆#B	than	 CC	
contacts,	and	this	roughly	explains	the	difference	in	∆#B	values	shown	
in	 Figure	 2.6C.	 Thus,	 the	 simultaneous	 presence	 of	 multiple	

interactions	 is	 the	 genuine	 characteristic	 of	 those	 residues	 that	
significantly	contribute	to	binding	affinity.		
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Figure	2.6.	(A)	Residue-decomposed	∆<D	versus	residue	number	for	

CV30/RBD.	Black,	red,	and	blue	bars	refer	to	neutral,	negatively	

charged	 and	 positively	 charged	 residues,	 respectively.	 Heavy-	 and	

light-chain	 complementarity-determining	 regions	 (HCDRs	 and	

LCDRs)	in	the	antibody	and	the	residues	in	RBD	that	contact	with	

these	regions	are	shaded	blue.	(B)	Heavy-atom	contact	map.	Only	

those	 contacts	 whose	 average	 populations	 is	 >10%	 during	 the	

simulations	are	 included.	The	dots	along	the	horizontal	(antibody)	

and	vertical	(RBD)	axes	mark	those	residues	whose	∆<D	values	are	

<–1.0	 kcal/mol.	 (C)	 Illustration	 of	 representative	 interfacial	

contacts.	Residues	in	RBD	are	marked	with	the	asterisk.	
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Figure	2.7.	(A)	Residue-decomposed	∆<D	versus	residue	number	for	

B38/RBD.	Black,	 red,	 and	 blue	 bars	 refer	 to	 neutral,	 negatively	

charged	 and	 positively	 charged	 residues,	 respectively.	 Heavy-	 and	

light-chain	 complementarity-determining	 regions	 (HCDRs	 and	

LCDRs)	in	the	antibody	and	the	residues	in	RBD	that	contact	with	

these	regions	are	shaded	blue.	(B)	Heavy-atom	contact	map.	Only	

those	 contacts	 whose	 average	 populations	 is	 >10%	 during	 the	

simulations	are	 included.	The	dots	along	the	horizontal	(antibody)	

and	vertical	(RBD)	axes	mark	those	residues	whose	∆<D	values	are	

<–1.0	 kcal/mol.	 (C)	 Illustration	 of	 representative	 interfacial	

contacts.	Residues	in	RBD	are	marked	with	the	asterisk.	
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Figure	2.8.	(A)	Residue-decomposed	∆<D	versus	residue	number	for	

CB6/RBD.	Black,	 red,	 and	 blue	 bars	 refer	 to	 neutral,	 negatively	

charged	 and	 positively	 charged	 residues,	 respectively.	 Heavy-	 and	

light-chain	 complementarity-determining	 regions	 (HCDRs	 and	

LCDRs)	in	the	antibody	and	the	residues	in	RBD	that	contact	with	

these	regions	are	shaded	blue.	(B)	Heavy-atom	contact	map.	Only	

those	 contacts	 whose	 average	 populations	 is	 >10%	 during	 the	

simulations	are	 included.	The	dots	along	the	horizontal	(antibody)	

and	vertical	(RBD)	axes	mark	those	residues	whose	∆<D	values	are	
<–1.0	 kcal/mol.	 (C)	 Illustration	 of	 representative	 interfacial	

contacts.	Residues	in	RBD	are	marked	with	the	asterisk.	
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Figure	 2.9.	 Linear	 regression	 analysis	 of	 the	 residue-decomposed	

effective	binding	energy	(∆<D)	for	neutral	residues	in	terms	of	the	

number	 of	 hydrogen	 bonds	 (>E?FG),	 the	 number	 of	 CC	 contacts	

(>H?II),	and	the	solvent	accessible	surface	area	(SASA)	of	the	side-

chain	polar	atoms	(>J?KLKL),	∆<D = >E?FG +>H?II +>J?KLKL + @.	

The	weights	 (>’s)	and	 intercept	 (@)	determined	 from	 the	 linear	

regression	 analysis	 are	>E = −A. CD,	>H = −A. EF,	>J = −A. AG	and	

@ = −A. AG,	 indicating	 that	 the	 number	 of	 hydrogen	 bonds	 (>E =

−A. CD)	 more	 significantly	 impacts	 ∆<D	than	 that	 of	 CC	 contacts	

(>H = −A. EF).	
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Table	 2.2.	 Residue-wise	 effective	 binding	 energy	 ∆<D	versus	 the	

interface	contacts	in	CV30/RBD	complex	

residuea	 ∆#B	(kcal/mol)	 #	of	hydrogen	bondsb	 #	of	CC	contactsc	

CV30/RBD	complex	

I28	 –1.1	 0.6	 0.6	
S318	 –1.2	 0.7	 1.6	
L99	 –1.3	 0.0	 8.5	

Y97*	 –1.5	 1.4	 4.1	
Y33	 –1.5	 1.0	 9.7	

Y149*	 –1.6	 1.3	 2.1	
L131*	 –1.7	 0.8	 4.6	
S56	 –2.4	 1.6	 1.5	

K93*	 –2.8	 1.8	 9.5	

Note:	 a	Residues	from	RBD	are	marked	by	the	asterisk.	 b	Average	
number	of	hydrogen	bonds	formed	with	the	surrounding	residues.	 c	
Average	 number	 of	 carbon-carbon	 (CC)	 contacts	 formed	 with	 the	

surrounding	residues.	
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Table	 2.3.	 Residue-wise	 effective	 binding	 energy	 ∆<D	versus	 the	

interface	contacts	in	B38/RBD	complex	

residuea	 ∆#B	(kcal/mol)	 #	of	hydrogen	bondsb	 #	of	CC	contactsc	
B38/RBD	complex	

I30	 –1.1	 0.8	 0.3	
N316	 –1.1	 3.6	 0.5	
S58	 –1.1	 1.2	 0.8	

T97*	 –1.1	 1.4	 2.6	
R99	 –1.2	 3.2	 1.2	

R133*	 –1.2	 2.7	 0.0	
G178*	 –1.4	 1.1	 0.0	
A151*	 –1.4	 1.9	 1.1	

Y149*	 –1.6	 1.1	 2.1	
S254	 –1.6	 2.3	 2.3	

Y318	 –1.8	 1.4	 5.7	
N163*	 –1.8	 2.5	 1.2	
Y35	 –2.1	 1.3	 8.6	

Y181*	 –3.2	 2.5	 17.4	

Note:	 a	Residues	from	RBD	are	marked	by	the	asterisk.	 b	Average	
number	of	hydrogen	bonds	formed	with	the	surrounding	residues.	 c	
Average	 number	 of	 carbon-carbon	 (CC)	 contacts	 formed	 with	 the	

surrounding	residues.	
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Table	 2.4.	 Residue-wise	 effective	 binding	 energy	 ∆<D	versus	 the	

interface	contacts	in	CB6/RBD	complex	

residuea	 ∆#B	(kcal/mol)	 #	of	hydrogen	bondsb	 #	of	CC	contactsc	
CB6/RBD	complex	

G152*	 –1.1	 0.4	 0.0	
P100	 –1.1	 0.3	 11.1	
Y165*	 –1.2	 1.1	 9.2	

G54	 –1.2	 2.3	 0.0	
R133*	 –1.2	 2.6	 0.0	

M101	 –1.3	 0.0	 7.2	
K93*	 –1.8	 2.2	 6.1	
Y149*	 –1.9	 1.2	 2.0	

Y33	 –2.0	 1.0	 5.9	
S56	 –2.6	 2.4	 1,7	

L131*	 –2,9	 1.0	 5.0	

Note:	 a	Residues	from	RBD	are	marked	by	the	asterisk.	 b	Average	
number	of	hydrogen	bonds	formed	with	the	surrounding	residues.	 c	
Average	 number	 of	 carbon-carbon	 (CC)	 contacts	 formed	 with	 the	

surrounding	residues.	
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2.3.4.	 Why	 simultaneous	 multiple	 interactions	 are	

thermodynamically	crucial	

In	 order	 to	 understand	 why	 such	 interactions	 are	 crucial,	 let	 us	
analyze	 ∆#B 	from	 a	 different	 viewpoint.	 In	 general,	 the	 direct	
interaction	 energy	 (∆%!,B)	 and	 the	 solvation	 free	 energy	 change	

(∆'"#$%,B)	 exhibits	 an	 anti-correlation.	 This	 is	 because,	 e.g.,	 the	
formation	 of	 a	 contact	between	 two	 interface	 residues	 (∆%!,B	<	0)	

necessarily	involves	the	dehydration	of	those	residues	(∆'"#$%,B	>	0).	
In	 fact,	 if	we	 examine	 the	 correlation	 between	∆%!,B	and	∆'"#$%,B	
taken	from	all	the	three	antibody/RBD	systems,	we	obtain	almost	a	

perfect	 negative	 correlation	 (Figure	 2.10A;	 Pearson’s	 correlation	
coefficient	is	−0.997).	Thus,	∆#B	=	∆%!,B	+	∆'"#$%,B	≈	0	is	expected	

on	general	ground,	and	this	 is	 indeed	the	case	as	demonstrated	 in	
Figure	 2.10B	 showing	 a	 delta-function	 like	 distribution	 of	 ∆#B	
peaked	around	0.	This	holds	even	when	a	hydrogen	bond	is	involved	

as	exemplified	in	Figure	2.10C:	a	large	gain	in	the	direct	interaction	
energy	(∆%!,B	=	−4.9	kcal/mol	for	G317	and	−10.2	kcal/mol	for	

R79)	upon	a	hydrogen	bond	formation	between	G317	of	CV30	and	
R79	of	RBD	is	almost	perfectly	canceled	by	the	dehydration	penalty	
(∆'"#$%,B	=	+4.7	and	+10.0	kcal/mol,	respectively),	resulting	in	∆#'	

≈	0	(∆#B	=	−0.2	and	−0.3	kcal/mol).		

This	situation	is	altered	when	multiple	interactions	are	present	

at	the	same	time.	This	is	because	there	are	common	water	molecules	
hydrating	those	atoms	that	are	to	form	multiple	contacts	upon	complex	

formation.	Thus,	the	total	dehydration	penalty	for	multiple	contacts	
is	 smaller	 than	 a	 sum	 of	 what	 would	 be	 expected	 for	 individual	

dehydrations	 of	 those	 contacts,	 i.e.,	 the	 dehydration	 penalty	 is	
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significantly	alleviated	for	multiple	contacts.	This	is	demonstrated	in	

Figure	2.11	showing	individual	residues’	∆#B	(green	circles),	∆%!,B	
(cyan	 circles),	 and	∆'"#$%,B	(orange	 circles)	 versus	 the	 number	 of	

hydrogen	bonds	taken	from	all	the	antibody/RBD	systems.	Up	to	the	
number	 of	 hydrogen	 bonds	≈	1,	∆%!,B	and	∆'"#$%,B	nearly	 cancel	
each	 other,	 and	∆#B	remains	 close	 to	 0.	However,	when	multiple	

hydrogen	bonds	are	present	(the	number	of	hydrogen	bonds	>	1),	the	
energetic	 gain	 (decrease	 in	∆%!,B)	 is	 larger	 than	 the	 dehydration	

penalty	 (increase	 in	 ∆'"#$%,B ).	 This	 leads	 to	 ∆#B 	of	 favorable	
(negative)	values	for	multiple	interactions.		

Dehydration	penalty	is	involved	in	any	biological	organization	
processes—folding,	 binding,	 and	 coupled	 folding	 and	 binding—that	

occur	in	aqueous	environments.	One	possible	way	to	alleviate	such	an	
inevitable	 hindrance	 is	 through	 the	 simultaneous	 formation	 of	
multiple	interactions	discussed	here.	Indeed,	it	has	been	shown	that	

those	residues	that	participate	in	the	secondary	structure	(hydrogen	
bonds)	and	in	the	hydrophobic	core	(CC	contacts)	at	the	same	time	

are	the	ones	that	most	stabilize	the	protein	folded	structure.	(Cho	et	
al.,	2021)	The	simultaneous	formation	of	multiple	contacts	has	also	
been	demonstrated	to	be	the	distinguishing	characteristic	unique	to	

protein	 folding	 transition	path.	(Chong	et	al.,	2021)	 Intrinsically	
disordered	proteins	do	not	possess	well-defined	secondary	structures	

when	isolated,	but	they	do	so	upon	binding	with	a	partner	protein.	
Thermodynamically,	this	is	because	enough	stabilizing	energy	cannot	
be	 gained	 just	 by	 forming	 secondary	 structures	 (intramolecular	

hydrogen	bonds)	due	to	the	dehydration	penalty;	(Dill	et	al.,	1990)	
but	additional	side-chain	interactions	with	the	partner	protein	brings	

about	the	secondary	structure	formation	since	the	dehydration	penalty	
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gets	weakened.	(Chong	et	al.,	2019,	Chong	et	al.,	2019)	Such	a	

perspective,	 gained	 through	 the	 application	 of	 atomic-level	
thermodynamics	 analysis,	will	 be	 useful	 also	 in	 developing	 protein	

therapeutics	of	improved	binding	affinity.		
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Figure	2.10.	(A)	Scatter	plot	of	∆HM,D	versus	∆INOPQ,D	taken	from	

all	the	antibody/RBD	systems.	(B)	Histogram	of	∆<D	values	taken	

from	all	the	antibody/RBD	systems.	(C)	Illustration	of	how	the	gain	

in	 the	 direct	 interaction	 energy	 (∆HM,D)	 upon	 the	 formation	 of	 a	

hydrogen	 bond	 at	 the	 binding	 interface	 is	 nearly	 canceled	 by	 the	

dehydration	penalty	(∆INOPQ,D).	
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Figure	2.11.	Individual	residues’	∆<D	(green	circles),	∆HM,D	(cyan	
circles),	and	∆INOPQ,D	(orange	circles)	for	neutral	residues	versus	the	

number	of	hydrogen	bonds	taken	from	all	the	antibody/RBD	systems.	

Solid	curves	are	based	on	the	linear	fits	to	the	respective	data	points,	

and	the	resulting	slopes	are	indicated	in	the	figure.	Red	dashed	curve	

denotes	the	location	of	0	kcal/mol.	
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2.4.	Conclusions	

In	 this	work,	we	present	an	atomic-level	 thermodynamics	analysis	

that	quantifies	how	individual	amino	acids	at	the	binding	interface	
favorably	 contribute	 to	 protein–protein	 binding	 free	 energy.	

Distinguishing	characteristics	of	our	analysis	method	is	that	it	does	
not	 require	 introducing	 any	mutations	 as	 in	 the	 alanine-scanning	
method	and	that	the	solvent	effect—	dehydration	penalty—is	properly	

taken	 into	 account	 via	 solvation	 free	 energy.	 The	 utility	 of	 our	
analysis	method	is	illustrated	through	its	application	to	SARS-CoV-

2	neutralizing	antibodies.	We	 find	 that	a	 single	 contact	 such	as	a	
hydrogen	 bond	 at	 the	 binding	 interface	 barely	 contributes	 to	 the	
binding	free	energy:	a	favorable	direct	interaction	energy	gained	by	

the	contact	formation	is	nearly	canceled	by	the	dehydration	penalty.	
On	the	other	hand,	the	formation	of	simultaneous	multiple	contacts	

is	demonstrated	to	significantly	contribute	to	binding	affinity.	This	is	
because	the	total	dehydration	penalty	for	multiple	contacts	is	smaller	
than	a	sum	of	penalties	expected	for	individual	dehydrations	of	single	

contacts.	We	believe	that	our	results	provide	a	new	perspective	for	
rationalizing	 protein–protein	 interactions	 and	 designing	 protein	

therapeutics	of	improved	binding	affinity.		
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3.	Substrate	Selectivity	in	Human	and	
Pseudomonas	Kynureninases:	Mechanistic	
Insight	from	Molecular	Dynamics	Simulations	

3.1.	Introduction	

Enzyme	 engineering	 has	 been	 in	 a	 rapid	 progress	 in	 potent	 drug	
development	as	a	special	class	of	protein-based	therapeutics.	Enzymes	

have	the	potential	to	be	applied	in	a	wide	range	of	disease	such	as	
cancer,	heart	attacks,	and	genetic	 disorders	by	 catalyzing	 relevant	
chemical	reactions	by	specifically	interacting	with	target.	(Dimitrov,	

2012,	 Vellard,	 2017)	 Among	 widely	 used	 enzyme	 engineering	
strategies,	 improving	 the	 specific	 activity	 is	 one	 of	 the	 important	

studies	 in	 enzyme	 therapeutics.	 Viewed	 from	 the	 perspective	 of	
rational	design,	it	should	be	accompanied	by	the	detailed	knowledge	
of	enzyme	structure,	function	as	well	as	mechanism.	(Chen,	2001)	

With	 the	 availability	 of	 structural	 and	 coevolutionary	

information,	 there	 has	 been	 an	 unprecedented	 development	 in	
computational	approaches	to	make	enzymes	with	desired	properties.	
(Li	et	al.,	2012,	Welborn	et	al.,	2019)	Moreover,	recently	emerging	

machine	learning	approach	has	become	popular	since	it	can	generate	
structures	 for	 unseen	 enzyme	 mutants	 and	 predict	 the	 catalytic	

properties	with	its	advantage	of	generalizability.	(Mazurenko	et	al.,	
2020,	Feehan	et	al.,	2021)	Compared	to	the	state-of-art	approaches,	
however,	Molecular	Dynamics	(MD)	simulations	is	a	useful	tool	to	

ascertain	 the	 catalytic	mechanism	 of	 enzymes	 occurring	 in	 cellular	
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compositions	by	calculating	quantitative	data	of	thermodynamics	and	

kinetics	properties.	(Kiss	et	al.,	2010,	Garcìa-Guevara	et	al.,	2015)	
For	 example,	 Grottesi	 and	 co-workers	 revealed	 the	 characteristic	

residues	 in	 enzyme	active	 site	which	modulate	drug	behaviors	 and	
interdomain	interactions	stabilizing	the	active	state	of	catalytic	pocket	
by	 investigating	 the	 conformational	 dynamics	 of	 SARS-CoV-2	

chymotrypsin-like	protease	(3CLpro)	via	all-atom	MD	simulations.	
(Grottesi	et	al.,	2020)	In	addition,	Bunzel	and	co-workers	showed	

the	relation	between	activation	of	heat	capacity	and	protein	dynamics	
by	 conducting	 MD	 simulations	 and	 statistical	 thermodynamics	
analysis.	They	gave	evidence	that	packed	solvent-exposed	loops	to	the	

active	site	across	evolution	leads	to	better	stabilized	transition-state,	
which	includes	the	negative	activation	of	heat	capacity.	(Bunzel	et	

al.,	2021)	Such	precedent	works	provide	important	opportunities	for	
investigating	molecular	mechanism	via	MD	simulations	coupled	with	
statistical	studies,	and	therefore	facilitate	the	creation	of	new	enzyme.	

	 In	 this	 chapter,	we	 present	 computational	 studies	 aimed	 at	

exploring	 the	 substrate	 selectivity	 differences	 between	 human	
kynureninase	(HsKYNU)	and	pseudomonas	kynureninase	(PfKYNU)	
against	the	two	substrates	3-hydroxylated	kynurenine	(3-OH-KYN)	

and	L-kynurenine	(KYN).	Through	explicit-water	MD	simulations,	
we	 investigated	 the	distinct	binding	kinetics	 that	 contribute	 to	 the	

superior	 KD	 values	 exhibited	 by	 PfKYNU	 for	 both	 substrates.	
Additionally,	 we	 observed	 the	 predominant	 binding	 conformations	
associated	with	enhanced	catalytic	efficiency.	To	further	elucidate	the	

key	interactions	governing	the	bound	and	unbound	states	of	enzyme-
substrate	complexes,	we	performed	residence	time	analysis	using	50	

replicated	MD	trajectories.	Thereby,	we	aim	to	uncover	the	binding	
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characteristics	 underlying	 the	 divergent	 substrate	 selectivity	 and	

provide	insights	into	the	distinct	kinetics	observed	in	HsKYNU	and	
PfKYNU.	
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3.2.	Methods	

3.2.1.	System	preparation	

All	calculations	were	conducted	using	the	X-ray	structures	of	human	
Kynureninase	 (HsKYNU;	 PDB	 code	 3E9K)	 and	 pseudomonas	

Kynureninase	(PfKYNU;	PDB	code	1QZ9).	The	missing	residues	in	
the	original	PDB	files	were	modeled	by	using	MODELLER	software.	

(Webb,	et	al.,	2016)	To	obtain	the	symmetric	protein	conformation,	
the	PyMoL	plugin	was	utilized.	Molecular	docking	of	3-hydroxylated	

kynurenine	(referred	to	as	3-OH-KYN)	and	L-kynurenine	(referred	
to	as	KYN)	were	conducted	using	GalaxyDock3	(Yang	et	al.,	2019).	

For	 docking,	 the	 substrate	 binding	 site	was	 assigned	 based	 on	 the	
inhibitor	 site	 and	 the	PEG	 site	 in	 the	 original	X-ray	 structure	 of	
HsKYNU	 and	 PfKYNU,	 respectively.	 The	 final	 enzyme-substrate	

complex	structure	to	be	used	for	initial	structure	for	MD	simulation	
was	selected	based	on	two	criteria:	(1)	the	distance	between	amine	

group	of	substrates	and	C4A	of	PLP	is	within	3.5	Å,	and	(2)	it	has	
the	 lowest	 docking	 score.	 This	 selection	 is	 crucial	 as	 the	 enzyme	
reaction	initiates	with	the	transamination	between	the	amine	group	

of	 substrate	and	 the	 internal	aldimine	 linkage	 of	PLP	(C4A)	and	
LYS247	(amine).		

3.2.2.	Molecular	Dynamics	simulations	

All-atom	 molecular	 dynamics	 (MD)	 simulations	 were	 carried	 out	
using	 PMEMD-cuda	module	 of	AMBER	20	 package	 (Case	 et	 al.,	

2020),	employing	the	ff14SB	force	field.	(Maier	et	al.,	2015)	Each		
of	 four	 enzyme-substrate	 combinations,	 HsKYNU/3-OH-KYN,	
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HSKYNU/KYN,	 PfKYNU/3-OH-KYN,	 PfKYNU/KYN,	 was	

solvated	in	a	cubic	box	using	TIP3P	water	molecules.	(Jorgensen	et	
al.,	1983)	Counter	ions	were	added	to	achieve	the	neutral	pH	and	

the	concentration	of	150	mM	NaCl.	The	system	underwent	energy	
minimization,	 including	500	steps	of	 steepest	descent	minimization	
followed	by	500	steps	of	conjugate	gradient	minimization.	This	was	

followed	by	the	second	energy	minimization,	consisting	of	1,000	steps	
of	steepest	descent	minimization	followed	by	1,500	steps	of	conjugate	

gradient	minimization.	The	equilibration	process	involved	three	steps	
in	two	phases.	In	the	first	equilibration	step,	the	system	was	heated	
from	0K	to	310	K	over	100	ps	with	weak	harmonic	restraints	of	

10.0	kcal/(mol∙Å2)	applied	to	entire	simulation	system	in	the	NVT	
ensemble.	The	second	equilibration	step	applied	the	same	amount	of	

harmonic	restraints	to	the	backbone	atoms	of	the	enzyme-substrate	
complexes	 for	 100	 ps.	 In	 the	 third	 equilibration	 step,	 1.0	
kcal/(mol∙Å2)	of	harmonic	restraints	were	applied	to	Ca	atoms	of	the	

complex	 system	 for	 100	 ps.	 The	 final	 equilibration	 phase	 was	
performed	in	the	NPT	ensemble	by	Langevin	thermostat	(Pastor	et	

al.,	1988)	and	Berendsen	barostat	(Berendsen	et	al.,	1984)	for	4	
ns	 without	 restraints.	 Subsequently,	 production	 simulation	 was	
conducted	for	200	ns,	which	was	repeated	10	times	for	each	system.	

Additional	production	simulation	was	performed	for	100	ns,	which	
was	50	times	for	each	system,	in	order	to	gather	more	informative	

data	from	MD	trajectories.	The	choice	of	100	ns	was	made	based	on	
the	 observation	 that	 substrates	 typically	 exited	 the	 binding	 pocket	
before	this	time,	indicating	an	unbound	state	if	they	did	not	return	

to	the	binding	pocket.	For	handling	short-range	interactions,	a	10	Å	
cutoff	 was	 employed.	 On	 the	 other	 hand,	 long-range	 electrostatic	
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forces	were	handled	by	the	Particle	Mesh	Ewald	method.	(Darden	et	

al.,	1993)	

3.2.3.	Trajectory	Analysis	

The	MD	trajectories	were	analyzed	using	a	combination	of	CPPTRAJ	

(Roe	et	al.,	2013)	and	our	own	Python	script.	Hydrogen	bonds	were	
identified	when	distance	 between	 the	 atoms	X	and	Y	 in	hydrogen	
bonds	X-H…Y	was	within	3.5	Å,	where	X	and	Y	represents	nitrogen	

(N)	and	oxygen	(O)	atom.	To	access	the	presence	of	substrates	in	
the	 binding	 pocket	 during	 the	 simulations,	 VMD	 software	 was	

employed.	
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3.3.	Results	and	Discussion	

3.3.1.	 Hydrogen	 bond	 analysis	 of	 the	 human	 and	 pseudomonas	

kynureninase	complexes	

We	first	compared	structural	dynamics	of	HsKYNU	and	PfKYNU	by	

Ca	RMSD	calculation.	Except	the	modeled	regions,	the	RMSD	values	
remained	 stable	 without	 substantial	 fluctuations,	 below	 4	 Å.	

Therefore,	we	focused	on	regions	around	the	active	site.	Throughout	
the	MD	simulations,	we	observed	distinct	binding	conformations	of	
both	 substrates	(3-OH-KYN	and	KYN)	depending	on	 the	 enzyme	

(HsKYNU	 or	 PfKYNU)	 they	 complex	 with.	 In	 some	 cases,	 the	
substrates	even	detached	from	the	binding	pocket	in	short	time.	To	

gain	deeper	 insights	 into	these	dynamics,	we	 looked	 into	molecular	
details	 by	 examining	 hydrogen	 bond	 populations	 formed	 between	
substrates	 and	 surrounding	 residues	 throughout	 the	 simulations.	

Specifically,	we	captured	hydrogen	bonds	in	each	symmetry-related	
monomer	(the	active	site	is	located	in	the	homo-dimeric	interface	of	

the	enzyme)	when	the	distance	between	N	and	O	atoms	is	within	3.5	
Å	in	the	MD	snapshots.	We	calculated	the	hydrogen	bond	populations	
for	both	complexes	over	the	course	of	the	200	ns	simulations,	and	

only	those	with	populations	exceeding	10	%	are	shown	in	Table	3.1	

and	Table	3.2	for	HsKYNU	and	PfKYNU	complexes,	respectively.		

For	HsKYNU	complexes,	hydrogen	bonds	formed	with	related	
residues	in	the	active	site	throughout	the	simulations.	However,	there	

are	also	some	hydrogen	bonds	that	are	unique	to	one	of	the	complexes,	
highlighting	differences	in	the	specific	interactions	between	substrates	

and	 enzymes.	 For	 example,	 the	 ring	 in	 3-OH-KYN	 consistently	
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interacts	 with	 H102*	 and	 to	 faces	 the	 side	 chain	 of	 H102*,	

maintaining	 the	 binding	 conformation	 during	 MD	 simulations.	
(Figure	1A)	In	contrast,	KYN	fails	to	establish	hydrogen	bonds	with	

H102*,	resulting	in	an	alternative	binding	conformation	compared	to	
3-OH-KYN,	 as	 shown	 in	 Figure	 3.1B.	 This	 distinct	 binding	
conformation	 is	 further	 supported	 by	 the	 presence	 of	 additional	

hydrogen	bonds	involving	H253,	K427,	N429,	Y275,	N333*,	and	
R428	 in	HsKYNU/KYN	 complex,	 which	 are	 not	 observed	 in	 the	

HsKYNU/3-OH-KYN	 complex	 (Table	 3.1	 and	 Figure	 3.1B).	
Furthermore,	when	KYN	adopts	the	inverted	binding	conformation	
relative	to	3-OH-KYN,	it	binds	outside	the	binding	pocket	and	does	

not	come	back	to	the	initial	site.	

On	 the	 other	 hand,	 for	 PfKYNU	 complexes,	 they	 showed	
stable	binding	conformations	for	both	3-OH-KYN	and	KYN	during	
the	simulations	(Figure	3.2A	and	B).	By	following	the	same	analysis	

done	 for	 HsKYNU	 complexes,	 we	 found	 the	 types	 of	 interacting	
residues	in	PfKYNU	are	quite	similar	to	those	in	HsKYNU	listed	in	

Table	 3.1	 although	 they	 are	 numbered	 differently	 (Table	 3.2).			
However,	 PfKYNU/3-OH-KYN	 complex	 lacks	 certain	 hydrogen	
bonds	due	to	the	strong	interactions	between	N-	and	C-terminus	of	

3-OH-KYN	and	PLP,	causing	the	acidic	group	in	3-OH-KYN	to	be	
positioned	 further	 away	 from	 Y226,	 W256*,	 and	 T282*.	 The	

absence	 in	 hydrogen	 bonds	 in	 PfKYNU/KYN	 complex	 can	 be	
attributed	 to	 similar	 reason	 as	mentioned	 earlier.	The	N-	 and	C-
termini	 of	 the	 substrate	weakly	 interact	with	PLP,	bringing	 them	

closer	to	Y226,	T282*,	and	W256*,	while	being	farther	away	from	
residues	D33,	N35,	and	H204.	This	is	in	contrast	to	PfKYNU/3-

OH-KYN	complex,	which	 exhibits	 stronger	 interactions	with	PLP,	
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causing	it	to	move	away	from	residues	Y226,	T282*,	and	W256*	

and	closer	to	residues	on	the	opposite	side,	D33,	N35,	and	H204,	
by	making	more	interactions	with	additional	polar	hydroxyl	group	in	

its	ring.	Thus,	the	presence	or	absence	of	hydrogen	bonds	between	
the	complexes	is	influenced	by	the	strength	of	interaction	with	PLP,	
whether	it	is	strong	or	relatively	weak.	Another	notable	difference	is	

the	involvement	of	R70*,	which	interacts	with	substrate’s	ring	and	
makes	 hydrogen	 bond.	 R70*	 demonstrates	 strong	 electrostatic	

properties	in	its	amphipathic	side	chain,	allowing	it	to	form	hydrogen	
bonds	with	the	functional	groups	in	ring	in	substrates.	These	hydrogen	
bonds	 were	 observed,	 regardless	 of	 whether	 the	 substrate	 is	

hydroxylated	or	not.	Notably,	the	hydrogen	bond	populations	were	
not	found	in	monomer	1	of	the	PfKYNU/KYN	complex,	and	we	will	

further	discuss	about	it	in	the	next	section.	
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Table	 3.1.	 Hydrogen	 bond	 populations	 (>10%)	 in	 HsKYNU	

complexed	 with	 3-OH-KYN	 and	 KYN	 during	 the	 simulations.	

Residues	 involved	 in	 hydrogen	 binding	 with	 symmetry-related	

monomer	are	marked	with	an	asterisk	mask	(*).	

Monomer	 Enzyme	residues	 3-OH-KYN	[%]	 KYN	[%]	

Monomer	1	 N74	 68.0	 51.0	
	 S75	 43.0	 36.2	
	 H102*	 16.3	 -	
	 E103*	 17.5	 -	
	 H253	 -	 18.5	
	 Y275	 26.8	 26.5	
	 PLP276	 77.7	 68.2	
	 D426	 22.5	 16.7	
	 K427	 -	 12.7	
	 R428	 15.5	 11.0	
	 N429	 -	 21.0	
	 R434	 72.7	 54.2	
Monomer	2	 N74	 36.2	 86.0	
	 S75	 30.2	 21.7	
	 H102*	 11.7	 -	
	 E103*	 27.0	 -	
	 H253	 -	 14.5	
	 Y275	 43.8	 -	
	 PLP276	 83.2	 90.3	
	 N333*	 30.0	 -	
	 D426	 -	 24.5	
	 R428	 27.3	 -	
	 R434	 42.7	 88.3	



 - 43 - 

Table	 3.2.	 Hydrogen	 bond	 populations	 (>10%)	 in	 PfKYNU	

complexed	 with	 3-OH-KYN	 and	 KYN	 during	 the	 simulations.	

Residues	 involved	 in	 hydrogen	 binding	 with	 symmetry-related	

monomer	are	marked	with	an	asterisk	mask	(*).	

Monomer	 Enzyme	residues	 3-OH-KYN	[%]	 KYN	[%]	

Monomer	1	 D33	 33.7	 -	
	 N35	 77.7	 28.5	
	 S36	 34.7	 37.5	

	 R70*	 15.7	 15.3	
	 Y226	 -	 16.0	

	 PLP227	 94.8	 69.3	
	 D367	 38.2	 13.7	
	 R369	 63.8	 78.2	

	 R375	 71.5	 62.3	
Monomer	2	 D33	 17.3	 30.2	

	 N35	 75.2	 -	
	 S36	 59.2	 65.5	
	 R70*	 -	 15.8	

	 Y176	 11.1	 32.2	
	 H204	 43.3	 -	

	 Y226	 29.8	 53.5	
	 PLP227	 99.8	 45.8	
	 W256*	 -	 27.5	

	 T282*	 -	 30.0	
	 D367	 29.0	 56.3	

	 R369	 68.0	 66.2	
	 R375	 97.5	 24.5	
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Figure	3.1.	Binding	pocket	of	HsKYNU	(orange	cartoon)	and	the	

hydrogen	bonding	environment	involving	residues	listed	Table	1	when	

complexed	 with	 (A)	 3-OH-KYN	 (cyan	 stick)	 and	 (B)	 KYN	

(magenta	stick).	The	minimized	(left)	and	final	simulated	structure	

at	200	ns	(right)	are	exhibited.	Hydrogen	bonds	formed	between	the	

side	chain	of	H102*	in	HsKYNU	and	the	functional	groups	in	ring	

in	substrates	are	indicated	by	red	dashed	arrow.	(C)	!-!	stacking	

distance	 is	 shown	as	 cyan	and	magenta	dashed	arrows	 for	3-OH-

KYN	 and	 KYN,	 respectively.	 Distances	 over	 simulation	 time	 are	

represented	for	each	monomer	1	(left)	and	monomer	2	(right).	
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Figure	3.2.	Binding	pocket	 of	PfKYNU	(orange	 cartoon)	and	 the	

hydrogen	bonding	environment	involving	residues	listed	Table	1	when	

complexed	 with	 (A)	 3-OH-KYN	 (cyan	 stick)	 and	 (B)	 KYN	

(magenta	stick).	The	minimized	(left)	and	final	simulated	structure	

at	200	ns	(right)	are	exhibited.	Hydrogen	bonds	formed	between	the	

side	chain	of	H102*	in	HsKYNU	and	the	functional	groups	in	ring	

in	 substrates	 are	 indicated	 by	 red	 dashed	 arrow.	 (C)	 !-cation	

stacking	distance	is	shown	as	cyan	and	magenta	dashed	arrows	for	

3-OH-KYN	and	KYN,	respectively.	Distances	over	simulation	time	

are	represented	for	each	monomer	1	(left)	and	monomer	2	(right).	
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3.2.2.	Impact	of	hydrogen	bonds	for	mediating	!-interactions	

To	access	 the	potential	 impact	 of	hydrogen	bonds	 on	!-!	 stacking	

interactions,	we	performed	the	analysis	of	time-dependent	averaged	
!-!	stacking	distances	between	H102*	and	two	substrates,	3-OH-
KYN	(cyan)	and	KYN	(magenta),	in	each	monomer	(Figure	3.1C).	

Our	 results	 demonstrates	 that	 in	 all	 simulations,	 the	 average	!-!	
stacking	distances	between	H102*	and	3-OH-KYN	are	3.4	±	0.7	

Å	for	monomer	1	and	2.8	±	0.4	Å	for	monomer	2	(cyan	lines	in	
Figure	 3.1C	 left	 and	 right	 panel,	 respectively).	 In	 contrast,	 the	
average	!-!	stacking	distances	between	H102*	and	KYN	are	4.9	±	

1.1	Å	for	monomer	1	and	3.8	±	0.5	Å	for	monomer	2,	respectively	
(magenta	 lines	 in	Figure	3.1C	 left	and	 right	panel,	 respectively).	

These	results	indicate	that	ring	of	KYN	is	positioned	farther	away	
from	H102*	and	lacks	strong	interactions,	such	as	hydrogen	bond,	
due	to	the	absence	of	hydroxyl	group	in	its	ring.	Furthermore,	the	

average	distances	of	H102*−KYN	steadily	increase	over	the	course	
of	MD	 simulations,	 surpassing	 3.5	 Å	 threshold	 at	 around	 12	 ns	

(Figure	 3.1C).	 This	 observation	 suggests	 that	 the	 ring	 of	 KYN	
exhibits	weak	interactions	with	H102*,	leading	to	deviation	from	the	
initial	 binding	 conformation	 and	 flipped	 of	KYN.	 In	 contrast,	 the	

hydrogen	bonds	formed	between	the	hydroxyl	group	in	the	ring	of	3-
OH-KYN	 and	 the	 side	 chain	 of	 H102*	 play	 a	 crucial	 role	 in	

maintaing	 the	 !-!	 stacking	 interactions	 between	 them	 in	
HsKYNU/3-OH-KYN	complex.	Based	on	these	findings,	we	propose	
that	the	presence	of	hydrogen	bonds	involving	the	hydroxyl	group	in	

the	ring	of	3-OH-KYN	and	the	side	chain	of	H102*	is	an	important	
determinant	 for	 the	 higher	 catalytic	 efficiency	 exhibited	 by	 the	

HsKYNU/3-OH-KYN	 complex	 compared	 to	 the	 HsKYNU/KYN	
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complex.	

We	 also	 analyzed	 !	 −cation	 distance	 formed	 between	 the	

protonated	N	in	R70*	and	the	center	of	mass	of	ring	in	substrates	
over	simulation	time	(Figure	3.2C).	To	our	delight,	the	populations	
of	hydrogen	bonds	of	R70*	are	in	accordance	with	the	present	of	!-

cation	interactions	formed	between	substrates	and	R70*	(Table	2	and	
Figure	3.2C).	Concurrent	with	the	hydrogen	bond	populations,	the	

average	!-cation	 distances	 in	 each	 symmetry-related	monomers	 of	
PfKYNU	complexes	are	below	3.5	Å	–	3.2	±	0.3	Å	for	monomer	
1	 in	PfKYNU/3-OH-KYN,	3.4	±	0.2	Å	and	2.7	±	0.2	Å	for	

monomer	1	and	2	in	PfKYNU/3-OH-KYN,respectively	–	except	for	
monomer	1	of	PfKYNU/KYN(4.4±0.4	Å)	where	hydrogen	bonds	

with	R70*	are	absent	(Figure	3.2C).	These	hydrogen	bonds	formed	
with	 R70*	 may	 support	 to	 facilitate	 !-!	 stacking	 interactions	
between	W64*	and	substrates,	which	are	believed	to	be	crucial	for	

initiating	the	catalytic	reactions,	as	suggested	by	Karamitros	and	co-
workers.	(Karamitros	et	al.,	2020)		

Evidently,	 by	 the	 multiple	 sequence	 alignment	 of	 KYNU	
family,	Leucine	in	HsKYNU	is	at	the	equivalent	position	to	R70*	of	

PfKYNU.	(Momany	et.	al.,	2004)	Leucin	 is	 insufficient	 to	build	
strong	 interactions	with	 substrates,	 regardless	 of	whether	 they	are	
hydroxylated	or	not.	In	a	nutshell,	the	hydrogen	bond	is	a	pivotal	

interaction	 to	 have	 have	 substrates	 dominant	 binding	 pose	 for	
initiating	 the	 catalytic	 reactions	and	PfKYNU	may	easily	be	more	

accessible	to	both	substrates	than	HsKYNU	since	R70*	in	PfKYNU	
can	form	the	hydrogen	bonds	with	any	functional	group	in	the	ring	

in	substrates	by	far-reached	electrostatics.		
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3.3.3.	Role	of	residence	time	in	different	catalytic	activities	of	
human	and	pseudomonas	kynureninases	

We	extend	our	analysis	to	study	the	importance	of	hydrogen	bonds	

formed	between	H102*	and	substrates	in	HsKYNU	and	R70*	and	
substrates	in	PfKYNU.	In	doing	so,	we	perform	additional	simulations	

of	100	ns	repeated	50	times	for	each	system,	generating	snapshots	
at	1	ns	 interval	 to	 store	 statistical	 data	 as	mentioned	 earlier.	By	
using	the	stored	data	trough	MD	trajectories,	we	calculate	residence	

time	of	3-OH-KYN	and	KYN	in	HsKYNU	and	PfKYNU	by	defining	
the	bound	and	unbound	states	based	on	the	π−interaction	durations	

for	100	ns.		

For	HsKYNU,	the	!-!	stacking	interactions	had	an	important	

role	in	fitting	ring	in	the	substrate	to	face	with	H102*	which	results	
in	better	catalytic	efficiency	(Figure	3.1).	Therefore,	if	the	distance	
between	the	center	of	mass	of	H102*	and	ring	in	substrates	is	below	

4.5	 Å	 in	 a	 given	 snapshot,	 it	 is	 considered	 as	 an	 !-!	 stacking	
interaction,	 and	 a	 residence	 time	 of	 1	 ns	 is	 added.	Based	 on	 the	

residence	time	within	a	single	trajectory,	if	it	is	less	than	10	ns	in	
both	monomers,	the	complex	in	that	trajectory	is	defined	as	unbound	
state,	and	as	bound	state	if	the	residence	time	is	equal	to	or	greater	

than	10	ns	(Figure	3.3).	As	can	be	seen	in	the	orange	pie	chart	in	
Figure	3.3,	the	HsKYNU	has	more	number	of	bound	states	when	

making	a	complex	with	3-OH-KYN,	and	the	number	of	bound	states	
is	four	times	as	much	as	the	unbound	states	(bound	:	unbound	=	40	:	

10).	On	the	other	hand,	HsKYNU/KYN	complex	exhibits	a	similar	
number	of	bound	and	unbound	states,	with	a	slightly	higher	number	
of	unbound	states	(bound	:	unbound	=	22	:	28).	This	result	suggests	
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that	HsKYNU	has	not	a	distinct	preference	to	KYN,	compared	to	3-

OH-KYN.		

For	 PfKYNU,	 employing	 distance	 as	 a	 criterion,	 the	 time-
dependent	distance	between	the	protonated	N	of	R70*	and	the	center	
of	mass	of	ring	in	substrates	are	analyzed	to	determine	the	residence	

time	and	discern	the	bound	or	unbound	states	(Figure	3.4).	In	the	
green	pie	chart	in	Figure	3.4,	PfKYNU	complexes	have	more	bound	

states	regardless	of	the	substrates	(PfKYNU/3-	OH-KYN;	bound	:	
unbound	=	37	:	13,	PfKYNU/KYN;	bound	:	unbound	=	46	:	4).	
This	suggests	that	PfKYNU	shows	comparable	preference	for	both	3-

OH-KYN	 and	 KYN,	 indicating	 a	 lower	 substrates	 specificity	
compared	 to	 HSKYNU.	 These	 findings	 are	 consistent	 with	 the	

experimental	 KD	 data,	 which	 reveals	 the	 PfKYNU/KYN	 complex	
exhibits	approximately	13.3-fold	higher	binding	affinity	compared	to	
HsKYNU/KYN	and	approximately	3-fold	higher	 affinity	 than	 the	

HsKYNU/3-OH-KYN	(Karamitros	et	al.,	2020).	In	conclusion,	our	
residence	 time	 calculations	 suggest	 that	 the	!-!	 stacking	 between	

H102*	 in	 HsKYNU	 and	 ring	 in	 substrates,	 as	 well	 as	 !-cation	
stacking	 between	 R70*	 in	 PfKYNU	 and	 ring	 in	 substrates,	 may	
contribute	 to	 the	 disparity	 in	 catalytic	 efficiency	 observed	 between	

HsKYNU	and	PfKYNU	towards	3-OH-KYN	and	KYN.		
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Figure	 3.3.	 Histogram	 graph	 showing	 frequency	 of	 !-!	 stacking	

interactions	 between	H102*	 in	HsKYNU	and	 ring	 in	3-OH-KYN	

(top,	 cyan	bars)	and	KYN	(bottom,	magenta	bars).	The	analysis	

involved	50	repeated	calculations	for	each	monomer	1	(darker	bars)	

and	monomer	2	(lighter	bars),	with	each	 iteration	producing	100	

snapshots	 per	 1	 ns.	 The	!-!	 stacking	 interactions	 are	 considered	

present	when	 the	!-!	 stacking	distance	 is	within	4.5	Å.	The	pie	

charts	 represent	 the	 distribution	 of	 bound	 (orange)	 and	 unbound	

(light	orange)	states	across	the	50	iterations.	The	unbound	state	is	

defined	as	interactions	occurring	withing	10	ns,	while	the	bound	state	

is	defined	as	interactions	lasting	longer	than	10	ns	since	we	analyzed	

hydrogen	bond	populations	more	than	10	%.	
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Figure	 3.4.	 Histogram	 graph	 showing	 frequency	 of	 !-cation	

interactions	between	R70*	in	PfKYNU	and	ring	in	3-OH-KYN	(top,	

cyan	bars)	and	KYN	(bottom,	magenta	bars).	The	analysis	involved	

50	 repeated	 calculations	 for	 each	 monomer	 1	 (darker	 bars)	 and	

monomer	 2	 (lighter	 bars),	 with	 each	 iteration	 producing	 100	

snapshots	per	1	ns.	The	!-cation	interactions	are	considered	present	

when	the	!-cation	distance	is	within	6.0	Å.	The	pie	charts	represent	

the	distribution	of	bound	(green)	and	unbound	(light	green)	states	

across	the	50	iterations.	The	unbound	state	is	defined	as	interactions	

occurring	 withing	 10	 ns,	 while	 the	 bound	 state	 is	 defined	 as	

interactions	 lasting	 longer	 than	10	ns	 since	we	analyzed	hydrogen	

bond	populations	more	than	10	%.	
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3.4.	Conclusions	

Understanding	detailed	atomic	binding	interactions	between	substrate	

and	 enzyme	 is	 essential	 for	 optimizing	 catalytic	 efficiency,	 and	
elucidating	 substrate	 selectivity	 in	 the	 atomic	 level	 has	 been	

challenging.	In	this	study,	we	identified	the	populations	of	hydrogen	
bonds	formed	between	substrates	and	enzyme	residues	and	elucidated	
their	role	in	maintaining	the	active	conformation	for	higher	catalytic	

activity.	By	employing	all-atom	MD	simulations	and	residence	time	
analysis,	 we	 investigated	 the	 molecular	 binding	 mechanism	 that	

underlies	different	enzyme	kinetics.	This	study	does	not	deal	with	the	
catalytic	activity	directly	and	handles	only	the	process	of	substrate	
binding	in	terms	of	strength	of	binding	and	binding	specificity.	The	

insights	gained	from	our	research	have	the	potential	to	facilitate	the	
design	of	new	humanized	enzyme	with	enhanced	catalytic	efficiency.	
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4.	CONCLUSION	

In	 this	 thesis,	 we	 explored	 the	 thermodynamics	 and	 kinetics	 of	

functional	 proteins,	 SARS-CoV-2	 neutralizing	 antibodies	 and	
candidates	 for	 therapeutic	 enzymes.	 First,	 we	 suggested	
thermodynamics	methods	to	quantify	the	binding	affinity	of	individual	

residues	at	the	binding	interface	between	SARS-CoV-2	RBD	and	its	
antibodies	without	introducing	structural	perturbations,	enabling	the	

assessment	 of	 their	 contributions	 to	 favorable	 binding.	 Next,	 we	
examined	the	binding	 interactions	of	 two	enzymes,	originated	 from	
human	and	bacteria,	when	complexed	with	two	distinct	intermediates,	

3-OH-KYN	and	KYN,	in	the	kynurenine	pathway.	

Although	our	 studies	were	based	on	 the	experimental	 findings,	we	

conducted	 them	 through	 computational	 simulations	 and	 placed	 the	
focus	 on	 specific	 systems,	 and	 further	 investigations	 involving	 a	

broader	range	of	systems	would	enhance	our	understanding	of	protein	
therapeutics.	Despite	 these	 limitations,	 the	 knowledge	 gained	 from	
our	works	has	the	potential	to	contribute	to	the	development	of	protein	

therapeutics.	By	elucidating	the	binding	mechanisms	in	the	view	of	
thermodynamics	 and	 kinetics,	 we	 can	 better	 design	 and	 optimize	

therapeutic	proteins	to	unravel	the	complexities	of	protein	interactions	
and	further	advance	the	filed	of	protein	therapeutics.	
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국문초록	

	 생체	내에서	단백질의	동적	역할이	단백질	치료제	분야에서	

매우	 중요하게	 다뤄지고	 있다.	 단백질은	 다른	 생물학적	 경로를	

방해하지	않으면서	면역	반응	유도,	생화학적	반응	촉매화,	분자	운송,	

그리고	막단백질	형성	등	질병	완화에	특정하면서도	다양한	역할을	

한다.	그러나	단백질-단백질과	단백질-리간드	상호작용에	대한	제한된	

지식이	단백질	치료제의	발전을	어렵게	만든다.		

본	 논문에서는	 항체나	 효소와	 같은	 기능성	 단백질의	 분자	

상호작용을	결합	열역학과	운동학의	관점에서	연구한다.	본	연구는	

원자	단위의	분자동역학	시뮬레이션과	단백질	결합	구조의	잔기별	결합	

자유	에너지	계산과	단백질에	결합된	리간드의	체류	시간	계산	결과를	

통계적으로	분석하여	수행되었다.	먼저,	항체와	표적	단백질	사이에	

동시에	다중의	상호작용이	형성될	때	결합	친화도가	좋아짐을	보인다.	
그리고	 효소	 잔기와	 리간드	 사이에	 형성되는	 수소	 결합에	 의해	

발생하는	 !-상호작용이	 안정적인	 결합	 구조를	 유지하며,	 이것이	
효소와	리간드	결합	구조의	긴	체류	시간과	결합	운동학	향상에	영향을	
미침을	보인다.	이러한	연구를	통해	우리는	단백질에서	일어나는	분자	
상호작용에	 대한	 이해도를	 높이고,	 나아가	 단백질	 치료제	 디자인	
향상에	새로운	전략을	제시하는	데에	기여함을	목표로	한다.
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