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ABSTRACT

Molecular Dynamics Studies
on SARS-CoV-2 Neutralizing
Antibodies and Kynureninases

Jihyeon Lee
Department of Chemistry
The Graduate School

Seoul National University

The dynamic role of proteins in vivo has become perceived increasingly
important in the field of therapeutics. Therapeutic proteins possess
specific functions that contribute to disease alleviation when they
Iinteract with specific disease target molecules: invoking immune
responses, catalyzing biochemical reactions, transporting molecules,
and assembling into membranes without interfering with other
biological pathways. However, limited understanding of protein-
protein and protein-ligand interactions still hinders effective
development of protein therapeutics.

In this thesis, molecular interactions occurring in functional
proteins, such as antibodies and enzymes, are investigated with a
focus on binding thermodynamics and kinetics, respectively. This is

achieved through atomic-level molecular dynamics simulations and



statistical analysis of residue-wise binding free energies and residence
times. First, the simultaneous formation of multiple contacts between
antibodies and their target proteins (SARS-CoV-2 RBD) was
observed to contributes to favorable binding affinity. Second, -
interactions, facilitated by hydrogen bonds formed between residues
in enzyme and its substrate, was found to stabilize the binding pose
and to improve binding kinetics upon substrate binding, resulting in
longer residence times. These studies provide enhanced understanding
of detailed atomic contributions in molecular interactions of
therapeutic proteins and hence, new strategies for improved design of

protein therapeutics.

Keywords: molecular dynamics simulation, binding thermodynamics,
solvation free energy, binding Kkinetics, residence time, protein
therapeutics
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1. INTRODUCTION

Therapeutic proteins should possess specific functions for disease
alleviation in vivo when they interact with the biological systems.
The functional proteins are responsible for invoking immune
responses, catalyzing biochemical reactions, transporting molecular
building blocks, and assembling into membranes without interfering
with other biological pathways. (Keskin et al., 2008, Zhu et al.,
2021) Therefore, understanding molecular interactions in the level
of protein-protein and protein-ligand complex has gained significant
imporatnce in the field of protein therapeutics since it provides the
essential information on their function and efficient ways to design
them. (Sudha et al., 2014, Lu et al., 2020) However, clear
understanding of which specific interactions help a functional protein

gain its function requires detailed atomistic study.

Molecular dynamics (MD) simulation is a critical tool for
exploring the biological mechanisms in atomic detail occurring by
explicitly considering molecular interactions in protein-protein and
protein-ligand complexes. (Karplus et al., 2002) Although there
have been significant efforts to quantify the binding thermodynamics
and Kkinetics with MD simulations, those methods still need to be
improved in accuracy. (Gromiha et al., 2017) For example, binding
free energy, or the binding affinity can be calculated based on the
free energy perturbation and thermodynamic integration methods.
(Deng et al., 2009) However, these methods are limited to free
energy changes involving only small changes from the reference

systems and thus are not proper for evaluating binding free energy.



To overcome the sampling problem, machine learning approaches have
been introduced to predict the binding affinity. (Bernetti, M. et al.,
2020) Even though they can provide results in a relatively short
time as a linear expression of energy function with a high prediction
accuracy (Bertazzo, M. et al., 2021, Vreven, T. et al., 2012), they
need to be improved to get higher level of accuracy to describe the
precise nature of interactions on unseen data. Furthermore,
computing residence time is one of the most direct methodologies for
calculating and predicting kinetics of receptor-ligand complex. (Kokh
et al., 2018) However, the development of well-established strategies
to quantify the effectiveness of ligand-receptor interaction Kkinetics
requires molecular kinetics studies. (Bernetti, M. et al., 2019)
Here, we explore how to find key interactions combined with
MD simulations in terms of binding thermodynamics and kinetics on
two classes of therapeutic proteins, SARS-CoV-2 neutralizing
antibodies in Chapter 2 and therapeutic enzymes in Chapter 3. In
Chapter 2, we suggest the role of simultaneous multiple contacts in
alleviating dehydration penalty and making favorable binding free
energies between antigen and antibody proteins. We analyze them by
applying residue decomposition solvation free energy calculation
without any structural perturbation. In Chapter 3, we provide an
advanced understanding on different binding kinetics between human
kynureninase (HSKYNU) and pseudomonas kynureninase (PfKYNU)
which are relevant to humanized cancer therapy. We propose the
difference in binding kinetics between the two enzymes and quantify
substrates residence time in enzymes by calculating hydrogen bond

populations.



2. Atomic-level thermodynamic analysis of the
binding free energy of SARS-CoV-2
neutralizing antibodies

2.1. Introduction

Understanding protein-protein interactions (PPIs) in the atomic level
is widely acknowledged as crucial in the field of protein therapeutics
development. Investigating PPIs provides valuable insights into the
biological mechanisms associated with various diseases and drug
strategies. (Arkin et al., 2004, Smith et al., 2012, Petta et al.,
2016) However, our current understanding of the individual
molecular interactions that occur between interfacial amino acids and
contribute to build up PPIs, as well as their role in determining
binding affinity remains incomplete and limited. (Scott et al., 2016,
Mabonga et al., 2019, Siebenmorgen et al., 2020) It also has been
limited the recent advance in predicting binding free energy from
protein-protein complex structure. (Mobley et al., 2019, Gromiha et
al, 2017, Vangone et al., 2015) Therefore, it becomes necessary to
acquire more detailed understanding of the intricate nature of
molecular interactions at the binding interface that enable us to
enhance existing methods and gain microscopic insights on how to

effectively modify these PPIs to achieve stronger binding affinity.



One of the most recognized methods to elucidate the individual
molecular interactions is alanine-scanning mutagenesis among several
experimental and computational studies. (Scott et al., 2016, Rao et
al., 2014, Moreira et al., 2007, Nero et al., 2014, Marchand et
al., 2022) This method coupled with free energy simulations has
demonstrated remarkable success in predicting binding free energy of
both small drug molecules (Kortemme et al., 2004, Boukharta et
al., 2014) and protein-protein interfaces. (Moreira et al., 2007,
Simoes et al., 2017) However, employing alanine scanning for all
interfacial residues is time-consuming. Furthermore, site-directed
mutagenesis occasionally leads to substantial alterations in protein
conformations and undesired perturbations to interactions beyond
mutation site, (Dave et al. 2016, Ardejani et al., 2017) which is
then difficult to interpret mutation-based analyzed results in order to
elucidate how binding affinity arises from underlying molecular

interactions.

Binding affinity of protein-protein interactions is not solely
determined by the final structure of the complex but also by the
changes in free energy during complex formation, which includes
environmental changes for interfacial residues. An explicit example
of this i1s the dehydration penalty. For example, the formation of a
hydrogen bond at the binding interface may seem favorable for
binding affinity, but when considering the dehydration penalty, this
is not apparent. Interestingly, interfacial amino acid residues that are

involved in hydrogen bonding with surrounding water molecules before



complex formation require the removal of these water molecules
during binding, resulting in a free energy cost known as the
dehydration penalty. Therefore, when discussing the molecular
interactions involved in building up PPlIs, it is crucial to consider
those influenced by the surrounding water molecules, or solvent-
averaged interactions. There remains a challenge to quantitatively
isolate magnitude of dehydration penalty for individual interface
interaction, though explicit-water free energy simulations naturally

account for it.

Here, we present an atomic-level thermodynamics analysis
that enables to quantify the contribution of individual interactions to
binding free energy, and hence, introduce a new perspective on the
nature of molecular interactions that govern the protein-protein
binding affinity. (Lee et al., 2022) Our method utilizes a quantity
Af = AE, + AGgo1y, Which comprises the direct interaction energy (AE,)
between a protein complex and the solvation free energy change
(AGgp1y) upon complex formation. (Lazaridis et al., 1999, Lazaridis
et al., 2000) This quantity is connected to the binding free energy
(AGping) via (Gilson et al., 1997, Chong et al., 2016)

AGping = Af — T(A'Sconfig + ASext) (1)

, where 7' represents the temperature, and ASc,nfig and A Sey
represent the change in configurational and external entropy,
respectively. Since protein structures, particularly at the binding

interface, usually become more rigid (—TASconfig > 0) and experience



a reduction in positional and orientational freedom (—TASey: > 0)
upon complex formation, the driving force for binding is derived from
Af (<0). Hence, it is meaningful to focus on this quantity to quantify
the role of individual interactions in binding affinity. The quantity
Af is referred to as the effective binding energy (Gohlke et al., 2004)
or solvent-averaged interaction energy (Bryngelson et al., 1995),
considering the solvent effect (dehydration penalty) through AGgy.
Importantly, a formally exact atomic (labeled by a) decomposition,
Af =Y,Af,, is achievable, allowing for the decomposition of AE,
using classical force fields and the application of a previously derived
decomposition method for A Ggyy . (Chong et al., 2011) This
decomposition into individual atomic contributions can be carried out
without introducing any mutations, enabling us to analyze the system
of interest in its native state. Our method s utility to handle a
system of interest is exemplified through its application to SARS-
CoV-2 neutralizing antibodies. We provide an illustration that the
formation of single contact, such as a hydrogen bond, at the interface
has minimal contribution to the binding free energy due to the
dehydration penalty. In contrast, the simultaneous formation of
multiple atomic contacts favorably impacts the binding affinity. This
1s attributed to a significant reduction in the dehydration penalty, as
the total penalty incurred by multiple contacts is smaller than the
sum of individual dehydration penalties of those contacts. By
highlighting these findings, we aim to introduce a new perspective on
the nature of molecular interactions that govern protein-protein

binding affinity.



2.2. Methods

2.2.1. System preparation

We studied three Fab domain antibodies—CV30 (Hurlburt et al.,
2020), B38 (Wu et al., 2020), and CB6 (Shi et al., 2020)—
targeting the receptor binding domain (RBD) of the SARS-CoV-2
spike protein (Figure 2.1A to Figure 2.1C). Their complex structures
were taken from the Protein Data Bank (PDB): the accession codes
are 6XE1, 7BZ5, and 7C01 for CV30/RBD, B38/RBD and
CB6/RBD, respectively. These antibodies have nearly the same
sequences except for the complementarity determining regions (CDRs;
see Figure 2.1D).29 While CB6 has a longer heavy-chain CDR
(HCDR) 3 than CV30 and B38, the overall Fab structures are quite
similar: Co root mean square deviation to CV30 is 0.24 A for B38
and 0.33 A for CB6. The RBD in the respective PDB files has slightly
different sequence lengths, and we modified the RBD in B38/RBD
and CB6/RBD such that it has the same sequence length (207
residues) as in CV30/RBD. Missing residues were modeled by using
the MODELLER program. (Webb et al., 2016) The N- and C-
terminals of the RBD were capped by ACE (acetyl) and NME (N-
methylamide) groups, respectively. The resulting complex structures
were used as inputs to molecular dynamics (MD) simulations. We
renumbered the residues in our systems, and the correspondence
between our numbering and the one in PDB structures is summarized
in Figure 2.2 for CV30/RBD, Figure 2.3 for B38/RBD and Figure
2.4 for CB6/RBD.



Figure 2.1. Fab domain antibodies complexed with the receptor
binding domain (RBD) of the SARS-CoV-2 spike protein studied in
the present work. (A) CV30/RBD. (B) B38/RBD. (C) CB6/RBD.

(D) Sequence alignment of the complementarity determining regions

(CDRs).

(A) (B)

(D)

HCDR1
CV30 AASGVIVSSNYMS--
B38 --SGFIVSSNYMSWV
CB6 AASGFTVSSNYMS--
LCDR1
CV30 RASQSVSSSYLAW
B38 RASQGISS-YLAW

CB6 RASQSISR-YLNW

HCDR2
VIYSGGSTYYADSVKG—---

—-——SGGSTYYADSVKGRFT
VIYSGGSTFYADSVKG—---

LCDR2
GASSRATG

AASTLQSG
AASSLQSG

HCDR3
ARDLDVSGGMDV--—-—
AY-—-——- GMDVWGQ--

ARVLPMY-G-DYLDY--

LCDR3
-—QQYGSS-PQT-

-—QQLNSYPPYT-
YCQQSYSTPPE--

A2t &



Figure 2.2. Correspondence between the numbering of amino acid
residues used in the present work and the one in the PDB structure

(6XE1l) for CV30/RBD.

(A) Heavy chain
1 10 20 30 40 50 60 70 80 90

| | | I I | | |

CV30 EVQLVESGG GLIQPGGSLR LSCAASGVIV SSNYMSWVRQ APGKGLEWVS VIYSGGSTYY ADSVKGRFTI SRDNSKNTLY LOMNSLRAED TAVYYCARDL
PDB 1 10 20 30 40 50 60 70 80 ABC83 87

100 110 120 130 140 150 160 170 180 190

CV30 DVSGGMDVWG QGTTVTVSSA STKGPSVFPL APSSKSTSGG TAALGCLVKD YFPEPVTVSW NSGALTSGVH TFPAVLQSSG LYSLSSVVTV PSSSLGTQTY
PDB 97 100AB 105 115 125 135 145 155 165 175 185

200 210 220

CV30 ICNVNHKPSN TKVDKKVEPK SCDKT
PDB 195 205 215

(B) Light chain

225 235 245 255 265 275 285 295 305 315

CV30 EIVLTQSPGT LSLSPGERAT LSCRASQSVS SSYLAWYQQK PGQAPRLLIY GASSRATGIP DRFSGSGSGT DFTLTISRLE PEDFAVYYCQ QYGSSPQTFG
PDB 1 11 21 26 A2829 39 49 59 69 79 89

325 335 345 355 365 375 385 395 405 415

CV30 QGTKLEIKRT VAAPSVFIFP PSDEQLKSGT ASVVCLLNNF YPREAKVQWK VDNALQSGNS QESVTEQDSK DSTYSLSSTL TLSKADYEKH KVYACEVTHQ
PDB 99 109 119 129 139 149 159 169 179 189

425 435

CV30 GLSSPVTKSF NRGEC

PDB 199 209
(C) RBD
1 10 20 30 40 50 60 70 80 90

| l | | | | | |

RBD ACE IVRFPNIT NLCPFGEVFN ATRFASVYAW NRKRISNCVA DYSVLYNSAS FSTFKCYGVS PTKLNDLCFT NVYADSFVIR GDEVRQIAPG QTGKIADYNY
PDB 326 334 344 354 364 374 384 394 404 414

100 110 120 130 140 150 160 170 180 190

RBD KLPDDFTGCV  IAWNSNNLDS KVGGNYNYLY RLFRKSNLKP FERDISTEIY QAGSTPCNGV EGFNCYFPLQ SYGFQPTNGV GYQPYRVVVL SFELLHAPAT
PDB 424 434 444 454 464 474 484 494 504 514

200 209

RBD VCGPKKSTN NME
PDB 524



Figure 2.3. Correspondence between the numbering of amino acid
residues used in the present work and the one in the PDB structure

(7BZ5) for B38/RBD.

(A) Heavy chain
1 10 20 30 40 50 60 70 80 90

B38 GDEVQLVES GGGLVQPGGS LRLSCAASGF IVSSNYMSWV RQAPGKGLEW VSVIYSGGST YYADSVKGRF TISRHNSKNT LYLOMNSLRA EDTAVYYCAR
PDB -11 8 18 28 38 48 58 68 78 88

100 110 120 130 140 150 160 170 180 190

B38 EAYGMDVWGQ GTTVTVSSAS TKGPSVFPLA PSSKSTSGGT AALGCLVKDY FPEPVTVSWN SGALTSGVHT FPAVLQSSGL YSLSSVVIVP SSSLGTQTYI
PDB 98 108 118 128 138 148 158 168 178 188

200 210 220

B38 CNVNHKPSNT KVDKRVEPKS CDK
PDB 198 208 218

(B) Light chain

222 232 242 252 262 272 282 292 302 312

B38 GDDIVMTQSP SFLSASVGDR VTITCRASQG ISSYLAWYQQ KPGKAPKLLI YAASTLQSGV PSRFSGSGSG TEFTLTISSL QPEDFATYYC QQLNSYPPYT
PDB -11 9 19 29 39 49 59 69 79 89

322 332 342 352 362 372 382 392 402 412

|

B38 FGQGTKLEIK RTVAAPSVFI FPPSDEQLKS GTASVVCLLN NFYPREAKVQ WKVDNALQSG NSQESVTEQD SKDSTYSLSS TLTLSKADYE KHKVYACEVT
PDB 99 109 119 129 139 149 159 169 179 189

422 432

B38 HQGLSSPVTK SFNRGECS

PDB 199 209
(C) RBD
1 10 20 30 40 50 60 70 80 90

RBD ACE IVRFPNIT NLCPFGEVFN ATRFASVYAW NRKRISNCVA DYSVLYNSAS FSTFKCYGVS PTKLNDLCFT NVYADSFVIR GDEVRQIAPG QTGKIADYNY
PDB 326 334 344 354 364 374 384 394 404 414

100 110 120 130 140 150 160 170 180 190

I I | I I I I I I I

RBD KLPDDFTGCV ~ IAWNSNNLDS KVGGNYNYLY RLFRKSNLKP FERDISTEIY QAGSTPCNGV EGFNCYFPLQ SYGFQPTNGV GYQPYRVVVL SFELLHAPAT
PDB 424 434 444 454 464 474 484 494 504 514

200 209

RBD VCGPKKSTN NME
PDB 524
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Figure 2.4. Correspondence between the numbering of amino acid
residues used in the present work and the one in the PDB structure

(7C01) for CB6/RBD.

(A) Heavy chain
1 10 20 30 40 50 60 70 80 90

| I I | | I | | | |

CB6 EVQLVESGG GLVQPGGSLR LSCAASGFTV SSNYMSWVRQ APGKGLEWVS VIYSGGSTFY ADSVKGRFTI SRDNSMNTLF LOMNSLRAED TAVYYCARVL
PDB 1 8 18 28 38 48 58 68 8 88

100 110 120 130 140 150 160 170 180 190

CB6 PMYGDYLDYW GQGTLVTVSS ASTKGPSVFP LAPSSKSTSG GTAALGCLVK DYFPEPVIVS WNSGALTSGV HTFPAVLQSS GLYSLSSVVT VPSSSLGTQT
PDB 98 108 118 128 138 148 158 168 178 188

200 210 220

CB6 YICNVNHKPS NTKVDKRVEP KSCDKTHT

PDB 198 208 218
(B) Light chain
228 238 248 258 268 278 288 298 308 318

CB6 DIVMTQSPSS LSASVGDRVT ITCRASQSIS RYLNWYQQKP GKAPKLLIYA ASSLQSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ SYSTPPEYTF
PDB 1 10 20 30 40 50 60 70 80 90

328 338 348 358 368 378 388 398 408 418

| I I | | | | |

CB6 GQGTKLEIKR TVAAPSVFIF PPSDEQLKSG TASVVCLLNN FYPREAAKVOW KVDNALQSGN SQESVTEQDS KDSTYSLSST LTLSKADYEK HKVYACEVTH
PDB 100 110 120 130 140 150 160 170 180 190

428 438

CB6 QGLSSPVTKS FNRGECS

PDB 200 210
(C) RBD
1 10 20 30 40 50 60 70 80 90

I I I | | | | |

RBD ACE IVRFPNIT NLCPFGEVEN ATRFASVYAW NRKRISNCVA DYSVLYNSAS FSTFKCYGVS PTKLNDLCFT NVYADSFVIR GDEVRQIAPG QTGKIADYNY
PDB 326 334 344 354 364 374 384 394 404 414

100 110 120 130 140 150 160 170 180 190

RBD KLPDDFTGCV ~ IAWNSNNLDS KVGGNYNYLY RLFRKSNLKP FERDISTEIY QAGSTPCNGV EGFNCYFPLQ SYGFQPTNGV GYQPYRVVVL SFELLHAPAT
PDB 424 434 444 454 464 474 484 494 504 514

200 209

RBD VCGPKKSTN NME
PDB 524
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2.2.2. MD simulations

The AMBER20 package (Case et al., 2020) was utilized to perform
MD simulations. AMBER ff14SB (Maier et al., 2015) was employed
for proteins and ions, and the systems were solvated by TIP3P waters.
(Jorgensen et al., 1983) Besides neutralizing counter ions, additional
Na" and Cl- ions were added to reach 150 mM ionic strength. Prior
to simulations, 500 steps of the steepest descent minimization were
performed followed by 500 steps of conjugate gradient minimization
with 500 kcal/ (mol - A*) harmonic restraints on protein heavy atoms.
Additionally, 1000 and 1500 steps of the steepest descent and
conjugate gradient minimization without harmonic restraints were
carried out. The systems were heated up with 20 ps NVT simulation
with 10 kcal/(mol -+ A?) restraints, followed by 200 ps NPT
equilibration simulation at 300 K and 1 bar without restraints.
Finally, 100 ns NPT production runs were conducted three times for
each system. The temperature and pressure were kept to 300 K and
1 bar by Langevin thermostat (Pastor et al., 1988) and Berendsen
barostat. (Berendsen et al., 1984) 10 A cutoff was used for short-
range interactions, and long-range electrostatic forces were handled

by the Particle Mesh Ewald method. (Darden et al., 1993)
2.2.3. Effective binding energy calculation

We extracted complex structures every 1 ns, resulting in 300 MD
snapshots from the three independent simulations of 100 ns length.

All ions and water molecules were removed in yielding the snapshots.

_12_



These simulated complex structures were used for computing the

effective binding energy Af,
Af = AEu + AGsolv (2)

Here, E, i1s the (gas-phase) interaction potential, Gg,, 1s the
solvation free energy, and A X refers to the change upon complex

formation:

AX = Xcomplex - (Xantibody + Xrep) (3)

In the present work, both antibody and RBD structures were taken
from the simulated complex structures (referred to as the one-
trajectory approach). In this case, AE, 1is given by the direct
interaction energy between antibody and RBD comprising the

Lennard-Jones (L]) and electrostatic terms:

L 1
AE, = Tap [ul) + 050 @)

in which a and b label constituent atoms. The atomic decomposition

of AE, can hence be easily be obtained:
1
AE, = Za AEu,a; AEu,a = Zb [ua%]) + ugi ec)] (5)

The solvation free energy Gg,, in this work was calculated by
employing the three-dimensional reference interaction site model
(3D-RISM) theory with the Kovalenko-Hirata closure, (Imai et al.,
2006, Kovalenko et al., 2003) which allows us to compute G, for
a given protein structure. AGg,, can be obtained by applying the
3D-RISM theory individually to the complex, antibody and RBD
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structures and then using Equation 3, and this was repeated for 100
structures taken from each simulation trajectory with a 1 ns time
interval; average and standard error were then estimated based on
the three independent trajectories. We used our in-house program in
solving the 3D-RISM equations on a grid of 256 X 256 X 256
points with a spacial resolution of 0.625 A along each direction. A
formally exact decomposition method of A G,y has been derived
(Chong et al., 2011), with which we have
AGsoly = TaAGsorvas AGsowa = ALl , +AGLH) (6)

solv,a solv,a

The atomic decomposition of the effective binding energy, Af = Y., fa,
follows from Equations 2, 5 and 6. This is the basis of our atomic-
level thermodynamics analysis. In the following, results will be
reported in the form of the residue-wise decomposition, Af = Y;fi,

by summing up atomic contributions in residue i, Af; = Y4eiAfy-
2.3. Results and discussion

2.3.1. Overall trends in effective binding energy

We investigated three Fab domain antibodies—CV30, B38 and
CB6—forming a complex with the receptor binding domain (RBD) of
the SARS-CoV-2 spike protein (Figure 2.1). Molecular dynamics
simulations were conducted for CV30/RBD, B38/RBD and
CB6/RBD complex systems for their structural and thermodynamics
analyses. Three independent production runs of 100 ns length were
carried out from which averages and standard errors were estimated.

The complex structures were stable during the simulations (Co root
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mean square deviations from the respective PDB structures are
3.4+0.5, 3.3%£0.6 and 2.4+0.2 for CV30/RBD, B38/RBD and
CB6/RBD, respectively). We computed the effective binding energy

Af = AE, + AGg,, based on these simulated complex structures.

We find that CB6/RBD (Af = —31.4 = 1.7 kcal/mol)
exhibits the strongest binding in terms of Af, followed by CV30/RBD
(Af = =30.0 £ 1.4 kcal/mol) and B38/RBD (Af = —28.2 =+
1.0 kcal/mol). This trend is in accord with the experimental
observations: CB6 shows the strongest binding affinity (Kp= 2.5 nM
and IC50 = 0.036 pg/mL), followed by CV30 (Kp = 3.6 nM and
IC50 = 0.03 pg/mL) and B38 (Kp = 70.1 nM and ICs0 = 0.177
pg/mL). (Hurlburt et al., 2020) To elucidate how such binding
affinity i1s determined from underlying molecular interactions, we
decomposed A f into contributions A f; from individual residues
(labeled i), Af = }.;fi. Since all the component proteins under study
have nonzero net charges (see Figure 2.1; all of CV30, B38, CB6
and RBD are positively charged), we first partitioned A f into
contributions from neutral and charged residues (Table 2.1 and
Figure 2.5). It is clearly seen that favorable (negative) contributions
to Af are dominantly provided by neutral residues. The overall
unfavorable (positive) contributions to Af from charged residues are
understandable from the fact that all the antibodies and RBD are
positively charged, i.e., the net electrostatic interaction between the

antibody and RBD should be repulsive.
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Table 2.1. Effective binding energy Af and neutral- and charged-

residue contributions

Af (kcal/mol) neutral residues charged residues

CV30/RBD -30.0 £ 1.4 -31.2 £0.3 1.2 £ 1.3
B38/RBD -28.2 1.0 -33.4=*0.7 5.2 £ 0.4
CB6/RBD -31.4 1.7 -33.3 £1.5 1.9 = 1.2

Figure 2.5. Contributions to the effective binding energy Af (in
kcal/mol) from neutral (cyan bars) and charged (orange bars)

residues.
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2.3.2. Connection between effective binding energy and molecular

interactions

We next analyze how the magnitude of individual Af; is connected
to underlying molecular interactions. For this purpose, we show in
Figure 2.6A the residue-wise decomposition Af; and in Figure 2.6B
the heavy-atom contact map for CV30/RBD (a heavy atom contact
1s considered formed if the heavy atom distance i1s <4.5 A).
Corresponding results for B38/RBD and CB6/RBD are presented in
Figure 2.7 and Figure 2.8, respectively. In the following, we will

mainly refer to Figure 2.6 to succinctly describe our results.

We first notice that nonzero A f; values originate mostly from
the complementarity determining regions (CDRs) in the antibody and
from those residues in RBD making contacts with CDRs (shaded blue
in Figure 2.6A). This is natural because it is the CDRs in the anti-
body that specifically interact with the target (RBD). We shall be
particularly interested in those residues whose Af; values are more
negative than —1 kcal/mol. Since the magnitude of such Af; values
18 much stronger than the thermal energy (kgT ~ 0.6 kcal/mol),
those residues can be considered significant contributors to binding
affinity. Significant residues in this sense are listed in Table 2.2
(those of B38/RBD and CB6/RBD complex are listed in Table 2.3
and 2.4, vrespectively). The dominance of neutral residue
contributions mentioned above is apparent from the fact only a few
charged residues from each system show up in this table. Significant
residues are also marked by the dots along the horizontal (residues
in CV30) and vertical (residues in RBD) axis labels in Figure 2.6B.
We observe from a comparison of Figure 2.6A and Figure 2.6B that
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the mere presence of contacts for a given residue does not warrant its
thermodynamic significance. This implies that the contact map alone
is insufficient for discriminating significant and insignificant residues,
and more detailed analysis on the nature of interface interactions is

necessary.

In this regard, we notice that molecular interactions at the
binding interface can be broadly classified into hydrogen bonds
(interaction between N/O atoms mediated by a hydrogen atom;
considered formed if the N/O distance is <3.5 A; salt-bridges are also
counted as hydrogen bonds) and hydrophobic carbon-carbon (CC)
contacts (considered formed if the CC distance is <4.5 A). The
average numbers of these atom-atom contacts during the simulations
are added in Table 2.2, 2.3, and 2.4 for CV30/RBD, B38/RBD,
and CB6/RBD complex, respectively. We find that the presence of
simultaneous multiple contacts is the characteristic of this table listing
thermodynamically significant residues: not only the average number
of hydrogen bonds and CC contacts typically exceeds 1, but also in
most cases both of hydrogen bonds and CC-bonds are simultaneously
present. This situation i1s illustrated in Figure 2.6C in which
hydrogen bonds are denoted by the dashed lines and carbon atoms
represented by spheres; the presence of CC contacts can be inferred
from that of neighboring spheres. For example, the side chain of S56
in CV30 (Af; = —2.4 kcal/mol) forms more than one hydrogen
bonds and CC contacts simultaneously with the surrounding residues;
in L131 of RBD (Af; = —1.7 kcal/mol), less than one hydrogen
bond is present on average, but several CC contacts are formed
simultaneously; and the side chain of K93 in RBD (Af; = —2.8

kcal/mol) forms about two hydrogen bonds simultaneously and its

_18_



hydrophobic neck makes a large number of CC contacts (see Table
2.2). Furthermore, a simple regression analysis of Af; in terms of
hydrogen bonds and CC contacts, presented in Figure 2.9, indicates
that hydrogen bonds provide larger contributions to Af; than CC
contacts, and this roughly explains the difference in A f; values shown
in Figure 2.6C. Thus, the simultaneous presence of multiple
interactions is the genuine characteristic of those residues that

significantly contribute to binding affinity.
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Figure 2.6. (A) Residue-decomposed A f; versus residue number for
CV30/RBD. Black, red, and blue bars refer to neutral, negatively
charged and positively charged residues, respectively. Heavy- and
light-chain complementarity-determining regions (HCDRs and
LCDRs) in the antibody and the residues in RBD that contact with
these regions are shaded blue. (B) Heavy-atom contact map. Only
those contacts whose average populations i1s >10% during the
simulations are included. The dots along the horizontal (antibody)
and vertical (RBD) axes mark those residues whose Af; values are
<—1.0 kcal/mol. (C) Illustration of representative interfacial

contacts. Residues in RBD are marked with the asterisk.
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Figure 2.7. (A) Residue-decomposed A f; versus residue number for
B38/RBD. Black, red, and blue bars refer to neutral, negatively
charged and positively charged residues, respectively. Heavy- and
light-chain complementarity-determining regions (HCDRs and
LCDRs) in the antibody and the residues in RBD that contact with
these regions are shaded blue. (B) Heavy-atom contact map. Only
those contacts whose average populations i1s >10% during the
simulations are included. The dots along the horizontal (antibody)
and vertical (RBD) axes mark those residues whose Af; values are
<—1.0 kcal/mol. (C) Illustration of representative interfacial

contacts. Residues in RBD are marked with the asterisk.
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Figure 2.8. (A) Residue-decomposed A f; versus residue number for
CB6/RBD. Black, red, and blue bars refer to neutral, negatively
charged and positively charged residues, respectively. Heavy- and
light-chain regions (HCDRs and
LCDRs) in the antibody and the residues in RBD that contact with

complementarity-determining

these regions are shaded blue. (B) Heavy-atom contact map. Only
those contacts whose average populations i1s >10% during the
simulations are included. The dots along the horizontal (antibody)
and vertical (RBD) axes mark those residues whose Af; values are
<—1.0 kcal/mol.

contacts. Residues in RBD are marked

(C) Illustration of representative interfacial

with the asterisk.
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Figure 2.9. Linear regression analysis of the residue-decomposed
effective binding energy (Af;) for neutral residues in terms of the
number of hydrogen bonds (w;xyg), the number of CC contacts
(w,xcc), and the solvent accessible surface area (SASA) of the side-
chain polar atoms (ws3xsasp), Afi = W1Xpp + WaXcc + W3Xsp5a + b.
The weights (@’ s) and intercept (b) determined from the linear
regression analysis are w; = —0.72, w; = —0.14, w3 = —0.03 and
b = —0.03, indicating that the number of hydrogen bonds (w; =
—0.72) more significantly impacts A f; than that of CC contacts
(w, = —0.14).
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Table 2.2. Residue-wise effective binding energy A f; versus the
interface contacts in CV30/RBD complex

residue® Af; (kcal/mol) # of hydrogen bonds’ # of CC contacts*

CV30/RBD complex

128 -1.1 0.6 0.6
S318 -1.2 0.7 1.6
L99 -1.3 0.0 8.5
YOT7* -1.5 1.4 4.1
Y33 -1.5 1.0 9.7
Y149* -1.6 1.3 2.1
L131* -1.7 0.8 4.6
S56 -2.4 1.6 1.5
K93* -2.8 1.8 9.5

Note: * Residues from RBD are marked by the asterisk. ” Average
number of hydrogen bonds formed with the surrounding residues. ¢
Average number of carbon-carbon (CC) contacts formed with the

surrounding residues.

_24_



Table 2.3. Residue-wise effective binding energy A f; versus the
interface contacts in B38/RBD complex

residue® Af; (kcal/mol) # of hydrogen bonds® # of CC contacts®

B38/RBD complex

130 -1.1 0.8 0.3
N316 -1.1 3.6 0.5
S58 -1.1 1.2 0.8
T97* -1.1 1.4 2.6
R99 -1.2 3.2 1.2
R133* -1.2 2.7 0.0
G178* -1.4 1.1 0.0
Al51*% -1.4 1.9 1.1
Y149* -1.6 1.1 2.1
S254 -1.6 2.3 2.3
Y318 -1.8 1.4 5.7
N163* -1.8 2.5 1.2
Y35 -2.1 1.3 8.6
Y181* -3.2 2.5 17.4

Note: * Residues from RBD are marked by the asterisk. ” Average
number of hydrogen bonds formed with the surrounding residues. ¢
Average number of carbon-carbon (CC) contacts formed with the

surrounding residues.
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Table 2.4. Residue-wise effective binding energy A f; versus the
interface contacts in CB6/RBD complex

residue® Af; (kcal/mol) # of hydrogen bonds® # of CC contacts®

CB6/RBD complex

G152* -1.1 0.4 0.0
P100 -1.1 0.3 11.1
Y165* —-1.2 1.1 9.2
G54 -1.2 2.3 0.0
R133* -1.2 2.6 0.0
M101 -1.3 0.0 7.2
K93* -1.8 2.2 6.1
Y149* -1.9 1.2 2.0
Y33 -2.0 1.0 5.9
S56 -2.6 2.4 1,7
L131* -2,9 1.0 5.0

Note: * Residues from RBD are marked by the asterisk. ” Average
number of hydrogen bonds formed with the surrounding residues. ¢
Average number of carbon-carbon (CC) contacts formed with the

surrounding residues.
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2.3.4. Why simultaneous multiple interactions are

thermodynamically crucial

In order to understand why such interactions are crucial, let us
analyze A f; from a different viewpoint. In general, the direct
interaction energy (AE,;) and the solvation free energy change
(AGsoy;) exhibits an anti-correlation. This is because, e.g., the
formation of a contact between two interface residues (AE,; < 0)
necessarily involves the dehydration of those residues (AGgoy; > 0).
In fact, if we examine the correlation between AE,; and AGgoy;
taken from all the three antibody/RBD systems, we obtain almost a
perfect negative correlation (Figure 2.10A; Pearson’ s correlation
coefficient is —0.997). Thus, Af; = AEy; + AGsey,; = 0 is expected
on general ground, and this is indeed the case as demonstrated in
Figure 2.10B showing a delta-function like distribution of A f;
peaked around 0. This holds even when a hydrogen bond is involved
as exemplified in Figure 2.10C: a large gain in the direct interaction
energy (AE,; = —4.9 kcal/mol for G317 and —10.2 kcal/mol for
R79) upon a hydrogen bond formation between G317 of CV30 and
R79 of RBD is almost perfectly canceled by the dehydration penalty
(AGsoy; = +4.7 and +10.0 kcal/mol, respectively), resulting in Af;
~ 0 (Af; = —0.2 and —0.3 kcal/mol).

This situation is altered when multiple interactions are present
at the same time. This is because there are common water molecules
hydrating those atoms that are to form multiple contacts upon complex
formation. Thus, the total dehydration penalty for multiple contacts
1s smaller than a sum of what would be expected for individual

dehydrations of those contacts, i.e., the dehydration penalty 1is
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significantly alleviated for multiple contacts. This is demonstrated in
Figure 2.11 showing individual residues Af; (green circles), AEy;
(cyan circles), and AGsey,; (orange circles) versus the number of
hydrogen bonds taken from all the antibody/RBD systems. Up to the
number of hydrogen bonds = 1, AE,; and AGs,y,; nearly cancel
each other, and Af; remains close to 0. However, when multiple
hydrogen bonds are present (the number of hydrogen bonds > 1), the
energetic gain (decrease in AE,;) 1s larger than the dehydration
penalty (increase In A Gsoy;). This leads to A f; of favorable

(negative) values for multiple interactions.

Dehydration penalty is involved in any biological organization
processes—folding, binding, and coupled folding and binding—that
occur in aqueous environments. One possible way to alleviate such an
inevitable hindrance is through the simultaneous formation of
multiple interactions discussed here. Indeed, it has been shown that
those residues that participate in the secondary structure (hydrogen
bonds) and in the hydrophobic core (CC contacts) at the same time
are the ones that most stabilize the protein folded structure. (Cho et
al., 2021) The simultaneous formation of multiple contacts has also
been demonstrated to be the distinguishing characteristic unique to
protein folding transition path. (Chong et al., 2021) Intrinsically
disordered proteins do not possess well-defined secondary structures
when isolated, but they do so upon binding with a partner protein.
Thermodynamically, this is because enough stabilizing energy cannot
be gained just by forming secondary structures (intramolecular
hydrogen bonds) due to the dehydration penalty; (Dill et al., 1990)
but additional side-chain interactions with the partner protein brings

about the secondary structure formation since the dehydration penalty
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gets weakened. (Chong et al., 2019, Chong et al., 2019) Such a
perspective, gained through the application of atomic-level
thermodynamics analysis, will be useful also in developing protein

therapeutics of improved binding affinity.
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Figure 2.10. (A) Scatter plot of AE,; versus AGg,y; taken from
all the antibody/RBD systems. (B) Histogram of Af; values taken
from all the antibody/RBD systems. (C) Illustration of how the gain
in the direct interaction energy (AE,;) upon the formation of a
hydrogen bond at the binding interface is nearly canceled by the
dehydration penalty (AGgey,;).
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Figure 2.11. Individual residues’ Af; (green circles), AE,; (cyan
circles), and AGg,y; (orange circles) for neutral residues versus the
number of hydrogen bonds taken from all the antibody/RBD systems.
Solid curves are based on the linear fits to the respective data points,
and the resulting slopes are indicated in the figure. Red dashed curve
denotes the location of 0 kcal/mol.
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2.4 . Conclusions

In this work, we present an atomic-level thermodynamics analysis
that quantifies how individual amino acids at the binding interface
favorably contribute to protein —protein binding free energy.
Distinguishing characteristics of our analysis method is that it does
not require introducing any mutations as in the alanine-scanning
method and that the solvent effect— dehydration penalty—is properly
taken into account via solvation free energy. The utility of our
analysis method is illustrated through its application to SARS-CoV-
2 neutralizing antibodies. We find that a single contact such as a
hydrogen bond at the binding interface barely contributes to the
binding free energy: a favorable direct interaction energy gained by
the contact formation is nearly canceled by the dehydration penalty.
On the other hand, the formation of simultaneous multiple contacts
is demonstrated to significantly contribute to binding affinity. This is
because the total dehydration penalty for multiple contacts is smaller
than a sum of penalties expected for individual dehydrations of single
contacts. We believe that our results provide a new perspective for
rationalizing protein — protein interactions and designing protein

therapeutics of improved binding affinity.
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3. Substrate Selectivity in Human and
Pseudomonas Kynureninases: Mechanistic
Insight from Molecular Dynamics Simulations

3.1. Introduction

Enzyme engineering has been in a rapid progress in potent drug
development as a special class of protein-based therapeutics. Enzymes
have the potential to be applied in a wide range of disease such as
cancer, heart attacks, and genetic disorders by catalyzing relevant
chemical reactions by specifically interacting with target. (Dimitrov,
2012, Vellard, 2017) Among widely used enzyme engineering
strategies, improving the specific activity is one of the important
studies in enzyme therapeutics. Viewed from the perspective of
rational design, it should be accompanied by the detailed knowledge

of enzyme structure, function as well as mechanism. (Chen, 2001)

With the availability of structural and coevolutionary
information, there has been an unprecedented development in
computational approaches to make enzymes with desired properties.
(Liet al., 2012, Welborn et al., 2019) Moreover, recently emerging
machine learning approach has become popular since it can generate
structures for unseen enzyme mutants and predict the catalytic
properties with its advantage of generalizability. (Mazurenko et al.,
2020, Feehan et al., 2021) Compared to the state-of-art approaches,
however, Molecular Dynamics (MD) simulations is a useful tool to

ascertain the catalytic mechanism of enzymes occurring in cellular
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compositions by calculating quantitative data of thermodynamics and
kinetics properties. (Kiss et al., 2010, Garcia-Guevara et al., 2015)
For example, Grottesi and co-workers revealed the characteristic
residues in enzyme active site which modulate drug behaviors and
interdomain interactions stabilizing the active state of catalytic pocket
by investigating the conformational dynamics of SARS-CoV-2
chymotrypsin-like protease (3CLpro) via all-atom MD simulations.
(Grottesi et al., 2020) In addition, Bunzel and co-workers showed
the relation between activation of heat capacity and protein dynamics
by conducting MD simulations and statistical thermodynamics
analysis. They gave evidence that packed solvent-exposed loops to the
active site across evolution leads to better stabilized transition-state,
which includes the negative activation of heat capacity. (Bunzel et
al., 2021) Such precedent works provide important opportunities for
investigating molecular mechanism via MD simulations coupled with

statistical studies, and therefore facilitate the creation of new enzyme.

In this chapter, we present computational studies aimed at
exploring the substrate selectivity differences between human
kynureninase (HSKYNU) and pseudomonas kynureninase (PfKYNU)
against the two substrates 3-hydroxylated kynurenine (3-OH-KYN)
and L-kynurenine (KYN). Through explicit-water MD simulations,
we investigated the distinct binding kinetics that contribute to the
superior KD values exhibited by PfKYNU for both substrates.
Additionally, we observed the predominant binding conformations
associated with enhanced catalytic efficiency. To further elucidate the
key interactions governing the bound and unbound states of enzyme-
substrate complexes, we performed residence time analysis using 50

replicated MD trajectories. Thereby, we aim to uncover the binding
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characteristics underlying the divergent substrate selectivity and
provide insights into the distinct kinetics observed in HsSKYNU and
PfKYNU.
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3.2. Methods

3.2.1. System preparation

All calculations were conducted using the X-ray structures of human
Kynureninase (HsKYNU; PDB code 3E9K) and pseudomonas
Kynureninase (PfKYNU; PDB code 1QZ9). The missing residues in
the original PDB files were modeled by using MODELLER software.
(Webb, et al., 2016) To obtain the symmetric protein conformation,
the PyMoL plugin was utilized. Molecular docking of 3-hydroxylated
kynurenine (referred to as 3-OH-KYN) and L-kynurenine (referred
to as KYN) were conducted using GalaxyDock3 (Yang et al., 2019).
For docking, the substrate binding site was assigned based on the
inhibitor site and the PEG site in the original X-ray structure of
HsKYNU and PfKYNU, respectively. The final enzyme-substrate
complex structure to be used for initial structure for MD simulation
was selected based on two criteria: (1) the distance between amine
group of substrates and C4A of PLP is within 3.5 A, and (2) it has
the lowest docking score. This selection is crucial as the enzyme
reaction initiates with the transamination between the amine group
of substrate and the internal aldimine linkage of PLP (C4A) and
LYS247 (amine).

3.2.2. Molecular Dynamics simulations

All-atom molecular dynamics (MD) simulations were carried out

using PMEMD-cuda module of AMBER 20 package (Case et al.,
2020), employing the ff14SB force field. (Maier et al., 2015) Each
of four enzyme-substrate combinations, HsKYNU/3-OH-KYN,
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HSKYNU/KYN, PfKYNU/3-OH-KYN, PfKYNU/KYN, was
solvated in a cubic box using TIP3P water molecules. (Jorgensen et
al., 1983) Counter ions were added to achieve the neutral pH and
the concentration of 150 mM NaCl. The system underwent energy
minimization, including 500 steps of steepest descent minimization
followed by 500 steps of conjugate gradient minimization. This was
followed by the second energy minimization, consisting of 1,000 steps
of steepest descent minimization followed by 1,500 steps of conjugate
gradient minimization. The equilibration process involved three steps
in two phases. In the first equilibration step, the system was heated
from OK to 310 K over 100 ps with weak harmonic restraints of
10.0 kcal/(mol'A*) applied to entire simulation system in the NVT
ensemble. The second equilibration step applied the same amount of
harmonic restraints to the backbone atoms of the enzyme-substrate
complexes for 100 ps. In the third equilibration step, 1.0
kcal/(mol-A®) of harmonic restraints were applied to Ca atoms of the
complex system for 100 ps. The final equilibration phase was
performed in the NPT ensemble by Langevin thermostat (Pastor et
al., 1988) and Berendsen barostat (Berendsen et al., 1984) for 4
ns without restraints. Subsequently, production simulation was
conducted for 200 ns, which was repeated 10 times for each system.
Additional production simulation was performed for 100 ns, which
was 50 times for each system, in order to gather more informative
data from MD trajectories. The choice of 100 ns was made based on
the observation that substrates typically exited the binding pocket
before this time, indicating an unbound state if they did not return
to the binding pocket. For handling short-range interactions, a 10 A

cutoff was employed. On the other hand, long-range electrostatic
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forces were handled by the Particle Mesh Ewald method. (Darden et
al., 1993)

3.2.3. Trajectory Analysis

The MD trajectories were analyzed using a combination of CPPTRAJ
(Roe et al., 2013) and our own Python script. Hydrogen bonds were
identified when distance between the atoms X and Y in hydrogen
bonds X-H:--Y was within 3.5 A, where X and Y represents nitrogen
(N) and oxygen (O) atom. To access the presence of substrates in
the binding pocket during the simulations, VMD software was

employed.
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3.3. Results and Discussion

3.3.1. Hydrogen bond analysis of the human and pseudomonas

kynureninase complexes

We first compared structural dynamics of HSKYNU and PfFKYNU by
Ca RMSD calculation. Except the modeled regions, the RMSD values
remained stable without substantial fluctuations, below 4 A.
Therefore, we focused on regions around the active site. Throughout
the MD simulations, we observed distinct binding conformations of
both substrates (3-OH-KYN and KYN) depending on the enzyme
(HsKYNU or PfKYNU) they complex with. In some cases, the
substrates even detached from the binding pocket in short time. To
gain deeper insights into these dynamics, we looked into molecular
details by examining hydrogen bond populations formed between
substrates and surrounding residues throughout the simulations.
Specifically, we captured hydrogen bonds in each symmetry-related
monomer (the active site is located in the homo-dimeric interface of
the enzyme) when the distance between N and O atoms is within 3.5
A in the MD snapshots. We calculated the hydrogen bond populations
for both complexes over the course of the 200 ns simulations, and

only those with populations exceeding 10 % are shown in Table 3.1

and Table 3.2 for HSKYNU and PfKYNU complexes, respectively.

For HSEKYNU complexes, hydrogen bonds formed with related
residues in the active site throughout the simulations. However, there
are also some hydrogen bonds that are unique to one of the complexes,
highlighting differences in the specific interactions between substrates

and enzymes. For example, the ring in 3-OH-KYN consistently
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interacts with H102* and to faces the side chain of H102%,
maintaining the binding conformation during MD simulations.
(Figure 1A) In contrast, KYN fails to establish hydrogen bonds with
H102*, resulting in an alternative binding conformation compared to
3-OH-KYN, as shown in Figure 3.1B. This distinct binding
conformation is further supported by the presence of additional
hydrogen bonds involving H253, K427, N429, Y275, N333*, and
R428 in HsSKYNU/KYN complex, which are not observed in the
HsKYNU/3-OH-KYN complex (Table 3.1 and Figure 3.1B).
Furthermore, when KYN adopts the inverted binding conformation
relative to 3-OH-KYN, it binds outside the binding pocket and does

not come back to the initial site.

On the other hand, for PfFKYNU complexes, they showed
stable binding conformations for both 3-OH-KYN and KYN during
the simulations (Figure 3.2A and B). By following the same analysis
done for HsKYNU complexes, we found the types of interacting
residues in PFKYNU are quite similar to those in HsSKYNU listed in
Table 3.1 although they are numbered differently (Table 3.2).
However, PfKYNU/3-OH-KYN complex lacks certain hydrogen
bonds due to the strong interactions between N- and C-terminus of
3-OH-KYN and PLP, causing the acidic group in 3-OH-KYN to be
positioned further away from Y226, W256*, and T282*. The
absence in hydrogen bonds in PfKYNU/KYN complex can be
attributed to similar reason as mentioned earlier. The N- and C-
termini of the substrate weakly interact with PLP, bringing them
closer to Y226, T282*, and W256*, while being farther away from
residues D33, N35, and H204. This 1s in contrast to PIKYNU/3-
OH-KYN complex, which exhibits stronger interactions with PLP,
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causing it to move away from residues Y226, T282*, and W256*
and closer to residues on the opposite side, D33, N35, and H204,
by making more interactions with additional polar hydroxyl group in
its ring. Thus, the presence or absence of hydrogen bonds between
the complexes is influenced by the strength of interaction with PLP,
whether it is strong or relatively weak. Another notable difference is
the involvement of R70*, which interacts with substrate’ s ring and
makes hydrogen bond. R70* demonstrates strong electrostatic
properties in its amphipathic side chain, allowing it to form hydrogen
bonds with the functional groups in ring in substrates. These hydrogen
bonds were observed, regardless of whether the substrate is
hydroxylated or not. Notably, the hydrogen bond populations were
not found in monomer 1 of the PFKYNU/KYN complex, and we will

further discuss about it in the next section.
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Table 3.1. Hydrogen bond populations (>10%) in HsKYNU
complexed with 3-OH-KYN and KYN during the simulations.
Residues involved in hydrogen binding with symmetry-related

monomer are marked with an asterisk mask (*).

Monomer Enzyme residues = 3-OH-KYN (%) KYN (%)

Monomer 1  N74 68.0 51.0
S75 43.0 36.2
H102* 16.3 -
E103* 17.5 -
H253 - 18.5
Y275 26.8 26.5
PLP276 7.7 68.2
D426 22.5 16.7
K427 - 12.7
R428 15.5 11.0
N429 - 21.0
R434 72.7 54.2

Monomer 2 N74 36.2 86.0
S75 30.2 21.7
H102* 11.7 -
E103* 27.0 -
H253 - 14.5
Y275 43.8 -
PLP276 83.2 90.3
N333* 30.0 -
D426 - 24.5
R428 27.3 -
R434 42.7 88.3
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Table 3.2.

Hydrogen bond populations (>10%)

in PfKYNU

complexed with 3-OH-KYN and KYN during the simulations.

Residues involved in hydrogen binding with symmetry-related

monomer are marked with an asterisk mask (*).

Monomer  Enzyme residues 3-OH-KYN (%] KYN (%)

Monomer 1 D33 33.7 -
N35 77.7 28.5
S36 34.7 37.5
R70%* 15.7 15.3
Y226 - 16.0
PLP227 94.8 69.3
D367 38.2 13.7
R369 63.8 78.2
R375 71.5 62.3

Monomer 2 D33 17.3 30.2
N35 75.2 -
S36 59.2 65.5
R70* - 15.8
Y176 11.1 32.2
H204 43.3 -
Y226 29.8 53.5
PLP227 99.8 45.8
W256* - 27.5
T282* - 30.0
D367 29.0 56.3
R369 68.0 66.2
R375 97.5 24.5
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Figure 3.1. Binding pocket of HSKYNU (orange cartoon) and the
hydrogen bonding environment involving residues listed Table 1 when
complexed with (A) 3-OH-KYN (cyan stick) and (B) KYN
(magenta stick). The minimized (left) and final simulated structure
at 200 ns (right) are exhibited. Hydrogen bonds formed between the
side chain of H102* in HsKYNU and the functional groups in ring
in substrates are indicated by red dashed arrow. (C) m-m stacking
distance is shown as cyan and magenta dashed arrows for 3-OH-
KYN and KYN, respectively. Distances over simulation time are

represented for each monomer 1 (left) and monomer 2 (right).
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Figure 3.2. Binding pocket of PFKYNU (orange cartoon) and the
hydrogen bonding environment involving residues listed Table 1 when
complexed with (A) 3-OH-KYN (cyan stick) and (B) KYN
(magenta stick). The minimized (left) and final simulated structure
at 200 ns (right) are exhibited. Hydrogen bonds formed between the
side chain of H102* in HsKYNU and the functional groups in ring
in substrates are indicated by red dashed arrow. (C) m-cation
stacking distance is shown as cyan and magenta dashed arrows for
3-OH-KYN and KYN, respectively. Distances over simulation time

are represented for each monomer 1 (left) and monomer 2 (right).
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3.2.2. Impact of hydrogen bonds for mediating m-interactions

To access the potential impact of hydrogen bonds on m-m stacking
interactions, we performed the analysis of time-dependent averaged
m-m stacking distances between H102* and two substrates, 3-OH-
KYN (cyan) and KYN (magenta), in each monomer (Figure 3.1C).
Our results demonstrates that in all simulations, the average m-m
stacking distances between H102* and 3-OH-KYN are 3.4 = 0.7
A for monomer 1 and 2.8 + 0.4 A for monomer 2 (cyan lines in
Figure 3.1C left and right panel, respectively). In contrast, the
average mM-m stacking distances between H102* and KYN are 4.9 +
1.1 A for monomer 1 and 3.8 = 0.5 A for monomer 2, respectively
(magenta lines in Figure 3.1C left and right panel, respectively).
These results indicate that ring of KYN 1is positioned farther away
from H102* and lacks strong interactions, such as hydrogen bond,
due to the absence of hydroxyl group in its ring. Furthermore, the
average distances of H102*—KYN steadily increase over the course
of MD simulations, surpassing 3.5 A threshold at around 12 ns
(Figure 3.1C). This observation suggests that the ring of KYN
exhibits weak interactions with H102*, leading to deviation from the
initial binding conformation and flipped of KYN. In contrast, the
hydrogen bonds formed between the hydroxyl group in the ring of 3-
OH-KYN and the side chain of H102* play a crucial role in
maintaing the m-m stacking interactions between them in
HsKYNU/3-OH-KYN complex. Based on these findings, we propose
that the presence of hydrogen bonds involving the hydroxyl group in
the ring of 3-OH-KYN and the side chain of H102* is an important
determinant for the higher catalytic efficiency exhibited by the
HsKYNU/3-OH-KYN complex compared to the HsKYNU/KYN
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complex.

We also analyzed m —cation distance formed between the
protonated N in R70* and the center of mass of ring in substrates
over simulation time (Figure 3.2C). To our delight, the populations
of hydrogen bonds of R70* are in accordance with the present of T-
cation interactions formed between substrates and R70* (Table 2 and
Figure 3.2C). Concurrent with the hydrogen bond populations, the
average m-cation distances in each symmetry-related monomers of
PfKYNU complexes are below 3.5 A — 3.2 £ 0.3 A for monomer
1 in PFKYNU/3-OH-KYN, 3.4 + 0.2 A and 2.7 = 0.2 A for
monomer 1 and 2 in PFKYNU/3-OH-KYN,respectively — except for
monomer 1 of PFIKYNU/KYN(4.4+0.4 A) where hydrogen bonds
with R70* are absent (Figure 3.2C). These hydrogen bonds formed
with R70* may support to facilitate m-m stacking interactions
between W64* and substrates, which are believed to be crucial for
Initiating the catalytic reactions, as suggested by Karamitros and co-

workers. (Karamitros et al., 2020)

Evidently, by the multiple sequence alignment of KYNU
family, Leucine in HsKYNU is at the equivalent position to R70% of
PfKYNU. (Momany et. al., 2004) Leucin is insufficient to build
strong interactions with substrates, regardless of whether they are
hydroxylated or not. In a nutshell, the hydrogen bond is a pivotal
interaction to have have substrates dominant binding pose for
initiating the catalytic reactions and PfKYNU may easily be more
accessible to both substrates than HsSKYNU since R70* in PFKYNU
can form the hydrogen bonds with any functional group in the ring

in substrates by far-reached electrostatics.
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3.3.3. Role of residence time in different catalytic activities of

human and pseudomonas kynureninases

We extend our analysis to study the importance of hydrogen bonds
formed between H102* and substrates in HsSKYNU and R70* and
substrates in PFKYNU. In doing so, we perform additional simulations
of 100 ns repeated 50 times for each system, generating snapshots
at 1 ns interval to store statistical data as mentioned earlier. By
using the stored data trough MD trajectories, we calculate residence
time of 3-OH-KYN and KYN in HSKYNU and PfKYNU by defining
the bound and unbound states based on the # —interaction durations

for 100 ns.

For HSKYNU, the m-m stacking interactions had an important
role in fitting ring in the substrate to face with H102* which results
in better catalytic efficiency (Figure 3.1). Therefore, if the distance
between the center of mass of H102* and ring in substrates is below
4.5 A in a given snapshot, it is considered as an m-m stacking
interaction, and a residence time of 1 ns is added. Based on the
residence time within a single trajectory, if it is less than 10 ns in
both monomers, the complex in that trajectory is defined as unbound
state, and as bound state if the residence time is equal to or greater
than 10 ns (Figure 3.3). As can be seen in the orange pie chart in
Figure 3.3, the HsSKYNU has more number of bound states when
making a complex with 3-OH-KYN, and the number of bound states
1s four times as much as the unbound states (bound : unbound = 40 :
10). On the other hand, HSKYNU/KYN complex exhibits a similar
number of bound and unbound states, with a slightly higher number

of unbound states (bound : unbound = 22 : 28). This result suggests
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that HSKYNU has not a distinct preference to KYN, compared to 3-
OH-KYN.

For PfKYNU, employing distance as a criterion, the time-
dependent distance between the protonated N of R70* and the center
of mass of ring in substrates are analyzed to determine the residence
time and discern the bound or unbound states (Figure 3.4). In the
green pie chart in Figure 3.4, PFKYNU complexes have more bound
states regardless of the substrates (PfKYNU/3- OH-KYN; bound :
unbound = 37 : 13, PIKYNU/KYN; bound : unbound = 46 : 4).
This suggests that PFKYNU shows comparable preference for both 3-
OH-KYN and KYN, indicating a lower substrates specificity
compared to HSKYNU. These findings are consistent with the
experimental AD data, which reveals the PIKYNU/KYN complex
exhibits approximately 13.3-fold higher binding affinity compared to
HsKYNU/KYN and approximately 3-fold higher affinity than the
HsKYNU/3-OH-KYN (Karamitros et al., 2020). In conclusion, our
residence time calculations suggest that the m-m stacking between
H102* in HsKYNU and ring in substrates, as well as m-cation
stacking between R70* in PfKYNU and ring in substrates, may
contribute to the disparity in catalytic efficiency observed between

HsKYNU and PfKYNU towards 3-OH-KYN and KYN.
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Figure 3.3. Histogram graph showing frequency of m-m stacking
interactions between H102* in HsKYNU and ring in 3-OH-KYN
(top, cyan bars) and KYN (bottom, magenta bars). The analysis
involved 50 repeated calculations for each monomer 1 (darker bars)
and monomer 2 (lighter bars), with each iteration producing 100
snapshots per 1 ns. The m-m stacking interactions are considered
present when the m-m stacking distance is within 4.5 A. The pie
charts represent the distribution of bound (orange) and unbound
(light orange) states across the 50 iterations. The unbound state is
defined as interactions occurring withing 10 ns, while the bound state
is defined as interactions lasting longer than 10 ns since we analyzed

hydrogen bond populations more than 10 %.
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Figure 3.4. Histogram graph showing frequency of m-cation
interactions between R70* in PFKYNU and ring in 3-OH-KYN (top,
cyan bars) and KYN (bottom, magenta bars). The analysis involved
50 repeated calculations for each monomer 1 (darker bars) and
monomer 2 (lighter bars), with each iteration producing 100
snapshots per 1 ns. The m-cation interactions are considered present
when the Tt-cation distance is within 6.0 A. The pie charts represent
the distribution of bound (green) and unbound (light green) states
across the 50 iterations. The unbound state is defined as interactions
occurring withing 10 ns, while the bound state is defined as
interactions lasting longer than 10 ns since we analyzed hydrogen

bond populations more than 10 %.
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3.4. Conclusions

Understanding detailed atomic binding interactions between substrate
and enzyme is essential for optimizing catalytic efficiency, and
elucidating substrate selectivity in the atomic level has been
challenging. In this study, we identified the populations of hydrogen
bonds formed between substrates and enzyme residues and elucidated
their role in maintaining the active conformation for higher catalytic
activity. By employing all-atom MD simulations and residence time
analysis, we investigated the molecular binding mechanism that
underlies different enzyme kinetics. This study does not deal with the
catalytic activity directly and handles only the process of substrate
binding in terms of strength of binding and binding specificity. The
insights gained from our research have the potential to facilitate the

design of new humanized enzyme with enhanced catalytic efficiency.
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4. CONCLUSION

In this thesis, we explored the thermodynamics and kinetics of
functional proteins, SARS-CoV-2 neutralizing antibodies and
candidates for therapeutic enzymes. First, we suggested
thermodynamics methods to quantify the binding affinity of individual
residues at the binding interface between SARS-CoV-2 RBD and its
antibodies without introducing structural perturbations, enabling the
assessment of their contributions to favorable binding. Next, we
examined the binding interactions of two enzymes, originated from
human and bacteria, when complexed with two distinct intermediates,

3-OH-KYN and KYN, in the kynurenine pathway.

Although our studies were based on the experimental findings, we
conducted them through computational simulations and placed the
focus on specific systems, and further investigations involving a
broader range of systems would enhance our understanding of protein
therapeutics. Despite these limitations, the knowledge gained from
our works has the potential to contribute to the development of protein
therapeutics. By elucidating the binding mechanisms in the view of
thermodynamics and kinetics, we can better design and optimize
therapeutic proteins to unravel the complexities of protein interactions

and further advance the filed of protein therapeutics.
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