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Among numerous insect pollinators, bees are widely recognized as the 

primary agents and contributors to pollination services. However, the 

global bee population is declining due to various biotic and abiotic factors. 

Anthropogenic stressors have been identified and investigated, as they 

pose a significant threat to bees and their foraging activities. These 

stressors include insufficient food resources, pathogens, parasites, and 

pesticide use. Additionally, poor air quality can negatively impact bee 

foraging. The increased concentration of anthropogenic aerosols leads to 

excessive scattering of electromagnetic radiation, resulting in a reduction 

of the degree linear polarization (DoLP) of the skylight. Honey bees (Apis 

mellifera) can navigate by utilizing the polarization pattern surrounding the 

sun, which is considered their primary orientation mechanism. However, to 

achieve optimal orientation, honey bees require at least 15% DoLP in an 

unobstructed area of the overhead sky during flight. 

The mass scattering efficiency for most aerosol types with particles 
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smaller than 1 µm is greater than that with larger particles. The 

atmospheric loading of fine mode particles, represented by PM2.5 

(airborne particles with aerodynamic diameters less than 2.5 μm) mass 

concentration, should exhibit a strong correlation with the celestial DoLP. 

Consequently, decreases in the DoLP, can adversely affect the foraging 

behavior of bee pollinators that rely on polarized light cues for visual 

navigation when the Sun is obscured. However, there is limited empirical 

evidence on whether poor air quality indeed affects the foraging 

performance of honey bees. This study aims to project the potential 

increase in the spatio-temporal magnitude of limited-visibility risk for 

honey bees (Apis mellifera) resulting from a reduction in DoLP due to 

increasing PM2.5 emissions. For this research purpose, field monitoring of 

a colony, ground observation of the DoLP, and future projections of the 

clear-sky visibility for honey bees were conducted. 

By monitoring the foraging activities of honey bee colonies using a 

radio-frequency identification system, it was demonstrated that clear 

increases in the average duration of honey bee foraging during and after a 

severe air pollution event compared to the pre-event period. The average 

foraging duration of honey bees during the event increased by 32 minutes 

compared to the pre-event conditions, indicating a 71% increase in 

foraging time. Furthermore, the average foraging duration measured after 

the event did not recover to its pre-event level. Average foraging trip 

durations increased as PM2.5 mass concentration increased, regardless of 

the occurrence of a heavy pollution event. The influence of an optical 

property (Depolarization Ratio, DR) of dominant particulate matter in the 

atmosphere and the level of air pollution (PM2.5 mass concentration) on 

foraging trip duration was further investigated. The results illustrated that 

both DR and PM2.5 mass concentration have a significant effect on honey 

bee foraging trip duration. Foraging trip duration increases with decreasing 

DR, while it increases with increasing PM2.5 mass concentration. These 
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findings from the field monitoring are essential because longer foraging 

trips increase the likelihood of encountering other stressors, such as 

insecticide residue and parasites, while searching for food and navigating 

between their home and resources. 

Additionally, to evaluate the potential increase of limited-visibility 

risks faced by honey bees due to PM2.5 emissions in the future, a 

comprehensive investigation was conducted. Initially, a relationship 

between PM2.5 mass concentration and DoLP was quantified through 

long-term ground monitoring of linear polarization. This involved utilizing 

a digital all-sky imaging system for ground-based imaging polarimetry. 

Cloud-free full-sky images were collected during two distinct periods, 

spanning from 2018 to 2019 and from 2020 to 2021. The celestial DoLP 

was then determined by analyzing the Stokes parameters associated with 

each observation. By developing a statistical parameterization capturing 

the relationship between PM2.5 mass concentrations and DoLP values, the 

corresponding PM2.5 concentrations required to meet the navigational 

DoLP threshold of honey bees were calculated. The cases were divided 

into two categories: the most probable DoLP over the sky presented to bees, 

which was assumed to be close to the average DoLP, and the higher-end 

DoLP under cloud-free sky conditions, which was assumed to be the 

maximum DoLP. In other words, for a given PM2.5 mass concentration, 

the available DoLP perceived by the bee may fall between the average and 

the maximum DoLPs in their overhead sky. Thus, for future estimations, 

the average and maximum DoLP values for each observation were utilized 

to determine the likely range of corresponding PM2.5 concentrations that 

met the navigational threshold.  

Subsequently, the threshold PM2.5 mass concentrations were applied 

to the projected global distribution of PM2.5 mass concentrations for the 

year 2050, as simulated by the ECHAM5/MESSy atmospheric climate 

chemistry model. This model was chosen to evaluate the potential 
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consequences of the absence of mitigation efforts for air quality. It assumes 

the continuation of national air pollution mitigation policies established in 

2010, while considering anticipated population growth and economic 

development. Then, "risk hotspot" regions (one hotspot is 1.1° by 1.1° in 

latitude and longitude) were determined, where honey bees are projected to 

experience limited visibility for at least one day in 2050. Finally, the 

spatial extent of risk hotspots and the frequency of limited-visibility days 

(LVD) per hotspot (i.e., the number of LVD) were assessed at the global, 

regional, and national scales annually and seasonally. Additionally, the 

expected increases in both the extent of risk hotspots and the frequency of 

LVD relative to the baseline year of 2010, as simulated by the model, were 

estimated. The results showed that India and China will experience 

significant increases in the area under limited-visibility risk and the 

frequency of limited-visibility days. In India, even under a higher-end 

estimation, the area under limited-visibility risk will increase from 0.06 

million (M) km2 in 2010 to 0.75 M km2 in 2050. Moreover, an increased 

frequency of limited-visibility days is expected across nearly every part of 

India. In China, for an area of 2 M km2 under limited-visibility risk in 

2050, 1.1 M km2 will experience an increased frequency of limited-

visibility days between 2010 and 2050. 

The delayed duration of foraging trips and the increased risk of 

limited visibility due to deteriorating air quality, as identified in this study, 

demonstrate that poor air quality can serve as a significant stressor 

alongside existing threats to pollinator-plant interactions, including 

pesticide use, habitat destruction, parasites, and pathogens. These findings 

suggest that mitigating anthropogenic air pollution can play a crucial role 

in safeguarding plant-pollinator interactions, particularly in the world's top 

two producers of pollinator-dependent crops. 

Keywords : Biodiversity, Pollination service, Apis mellifera, PM2.5, 

Degree of linear polarization, Air quality projection  

Student Number : 2015-31317 
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1. Introduction 

1.1 Ecological significance of pollination services 

 

Pollination ecology, particularly focusing on insect pollinators, has 

been extensively investigated in the scientific community due to the 

recognition of pollination as a prime example of an ecosystem service. 

This recognition acknowledges not only the economic advantages but also 

the fundamental life-sustaining processes it provides (Daily 2000; Ricketts 

et al. 2008; Knight et al. 2018). Consequently, numerous interdisciplinary 

studies have been conducted to evaluate the worldwide reliance on insect-

pollinated agriculture and the resulting economic vulnerability caused by 

declines in pollinator populations (Potts et al. 2016; Knight et al. 2018). 

These studies have estimated that over 70% of globally significant food 

crop types benefit from animal pollinators (Klein et al. 2007). Recent 

estimations indicate that the annual global agricultural benefit derived 

from crop pollination by insect pollinators is approximately $400 billion 

(Lautenbach et al. 2012).   

Although these impressive figures are still considered to 

underestimate the total benefits of pollination services, quantifying these 

benefits in monetary terms has proven useful in supporting the 

conservation of ecosystem services in the context of increasing demands 

for food security (Breeze et al. 2016; Khalifa et al. 2021). However, 

economic measures have faced criticism for their anthropocentric 

perspective (Farber et al. 2002; Chee 2004). Many argue that we should 

recognize the non-economic and non-market values of pollination services, 

as nature's usefulness to humans is not its sole manifestation (Nabhan & 

Buchmann 1997; Breeze et al. 2016). This perspective differs to some 

extent from the recognition that pollinators also provide aesthetic and 
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cultural value, which are often regarded as non-market benefits of 

pollination services (Hanley et al. 2015). However, even these non-market 

benefits rely on the way people utilize them, reflecting an anthropocentric 

viewpoint.  

Beyond the anthropocentric perspective, approximately 87.5% of 

global flowering plant species depend on insect pollination for their 

reproduction (Ollerton et al. 2011). In other words, if pollination declines, 

ecological processes related to primary production will be supported by 

only 12.5% of the current flowering plant species on Earth. Such a loss of 

pollination could result in the simultaneous degradation of other 

ecosystem services to some extent (Christmann 2019). Therefore, a global 

overarching goal should be to benefit not only human communities but 

also the diverse biological communities that rely on the multitude of 

pollinators (Allen-Wardell et al. 1998). Ultimately, human well-being is 

inseparable from the conservation of ecosystem functions as a whole 

(Potts et al. 2016). In this regard, pollination services hold not only 

economic significance but also ecological significance. 

As previously stated, insect pollinators, as primary consumers in our 

ecosystem, play a crucial role in the reproduction of nearly all flowering 

plants. However, sudden collapses in pollinator populations can lead to the 

extinction of suitable habitats for a wide range of species (Christmann 

2019). The loss of vegetation can trigger cascading effects, resulting in the 

extinction of species reliant on those habitats and posing a threat to the 

resilience of ecosystem functions. These functions can include mitigating 

the effects of climate change, which is one of the most pressing ecological 

challenges of our time. For instance, the understory vegetation layer in 

ecosystems harbors more than 90% of plant species and represents the 

majority of floristic diversity, with insect pollinators being responsible for 
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their reproduction (Gilliam 2007; Proctor et al. 2012). While understory 

vegetation may not contribute the most to the total productivity of a forest 

ecosystem, it enhances variations in the ecosystem's structure and 

composition (Kim et al. 2016). In temperate forest ecosystems, understory 

vegetation plays a significant role in mitigating climate change by 

increasing net ecosystem production and carbon input into the soil 

(Dirnböck et al. 2020). Another example involves the role of pollinator-

dependent plant species, such as Rosa canica and Cornus mas, in erosion 

control (Comino & Marengo 2010). The roots of Avicennia germinans, a 

common pollinator-dependent mangrove species, provide habitat for 

numerous soil organisms, including mycorrhizal fungi  (Vanegas et al. 

2019). The rapid growth of tulip poplar (Liriodendron tulipifera L.), 

which depends on pollinators, makes it a widely used timber production 

species with high carbon storage capacity (Baveco et al. 2016). Most 

importantly, insect pollination enhances genetic diversity, leading to the 

development of genotypes with greater adaptive capacity to climate 

change (Christmann & Aw-Hassan 2012). However, the wide-ranging 

contributions of pollinators from the genetic to ecosystem levels also 

make our ecosystem more vulnerable to pollinator loss.  

The loss of biodiversity due to the decline in pollination services 

reduces the functional diversity of organisms that help the entire 

ecosystem adapt to and mitigate the effects of increasing environmental 

disturbances, including climate change. This, in turn, can accelerate 

climate warming, resulting in population declines of various species, 

including pollinators. From a biodiversity perspective, pollination is 

receiving increasing recognition. The Kunming-Montreal Global 

Biodiversity Framework (GBF), agreed upon at the 15th meeting of the 

Conference of Parties to the UN Convention on Biological Diversity in 



 

 4 

2022, emphasizes the urgent need for international support and 

commitment to conserve increasingly threatened biodiversity (Convention 

on Biological Diversity, 2022). Target 3 of the framework sets a highly 

ambitious goal of protecting a minimum of 30% of land and ocean areas 

by 2030, including the protection of pollinator habitats (Arneth et al. 

2023). Additionally, Target 11 of the GBF specifically aims not only to 

maintain but also to improve ecosystem functioning, including pollination 

(Antonelli 2023).  

In light of the aforementioned examples, it is evident that pollination 

services, which contribute to maintaining biodiversity in our ecosystem, 

play a vital role in sustaining ecological functions beyond plant 

reproduction, which is commonly considered its primary contribution 

(Christmann 2019). This contribution cannot simply be categorized as 

aesthetic or cultural benefits, as discussed earlier. While an increasing 

number of studies highlight the importance of including non-market 

values of pollination services (Hanley et al. 2015; Christmann 2019), 

many of these studies are still limited to assessing values that people can 

acknowledge and appreciate by utilizing them, such as their role in 

controlling and mitigating environmental disturbances (Mwebaze et al. 

2018; Stout et al. 2019).  

Based on literature review, Figure 1 presents a straightforward 

schematic depiction of pollination services, which serve as a vital 

supporting service in the ecosystem, contributing to the enhancement of 

biodiversity and consequential ecosystem functioning. 
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Figure 1. Schematic depiction of pollination services as a supporting service in 

the ecosystem, contributing to the enhancement of biodiversity. Partially 

redrawn from Hadley & Betts 2012.   
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1.2 Human impacts on bee foraging  

1.2.1 Biotic and abiotic stressors to bee foraging 
 

Among the various insect pollinators, bees are recognized as key 

agents and contributors to pollination services (Powney et al. 2019). 

However, global bee populations are declining due to a combination of 

biotic and abiotic factors (Ricketts et al. 2008; Klein et al. 2017; Cappa et 

al. 2019). These factors can be attributed to anthropogenic stressors, which 

potentially affect the energy budget of bees and consequently result in 

reduced foraging performance (Bordier et al. 2018). The efficiency of 

pollination services heavily relies on the effective foraging behavior of 

bees (Goulson & Nicholls 2022). Anthropogenic stressors that pose threats 

to bee foraging have been extensively identified and investigated (Potts et 

al. 2010; Klein et al. 2017). These stressors can be broadly categorized into 

two groups: biotic and abiotic. Abiotic stressors encompass the use of 

agrochemicals, exposure to pollutants such as heavy metals, the expansion 

of intensive agriculture, and increasing heat stress. Biotic stressors, on the 

other hand, involve disease infections caused by parasites and pathogens. 

The combined impact of these stressors can lead to the degradation of 

pollination services through reduced foraging efficiency and colony 

collapse (Klein et al. 2017). 

The use of agrochemicals, specifically pesticides, stands out as the 

most controversial and extensively studied factor contributing to the global 

bee crisis among the abiotic stressors (Goulson et al. 2015; Lundin et al. 

2015; Woodcock et al. 2017). Regional and global investigations on 

pesticide residues in honey samples have demonstrated that bees are 

exposed to multiple pesticides in the field (Sanchez-Bayo & Goka 2014; 

Mitchell et al. 2017). The impacts of common pesticide exposure on bee 

foraging have been examined, particularly in terms of the navigational 
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ability of forager bees. Henry et al. found that sublethal doses of 

neonicotinoids decreased the success of honey bee (Apis mellifera) 

foraging by measuring the homing probability of forager bees (Henry et al. 

2012). Similarly, Jin et al. found that the neonicotinoid clothianidin 

disrupted the navigation of Osmia cornuta species  (Jin et al. 2015). 

Numerous studies have also demonstrated impairments in the flight ability 

of honey bees after exposure to common pesticides (Tosi et al. 2017; Colin 

et al. 2019). The impacts of insecticides on foraging behavior have been 

widely studied in other bee species as well (Gels et al. 2002; Stanley et al. 

2015).  

Pollutants can also influence the foraging behavior of bees. Heavy 

metals, such as copper and lead, present in roadside dust have been found 

to reduce the frequency of foraging trips per bee (Phillips et al. 2021). In a 

laboratory experiment, honey bees exposed to manganese showed 

increased foraging trip duration (Søvik et al. 2015). Similarly, in another 

laboratory experiment, it was demonstrated that diesel exhaust affected 

learning and memory in honey bees (Girling et al. 2013; Goulson et al. 

2015; Fuentes et al. 2016; Reitmayer et al. 2019). The expansion of 

intensive agriculture, distant from natural habitats, has increased the 

foraging distance of bees, leading to reduced food availability and 

increased nutritional stress (Ricketts et al. 2008; Kennedy et al. 2013; 

Danner et al. 2016; Klein et al. 2017). Although there are limited studies 

specifically examining the effects of rising temperatures due to climate 

change on bee foraging, it is likely that global warming will impact 

foraging efficiency (Goulson & Nicholls 2022). Overheating of the nest 

forces worker bees to spend more energy on cooling the temperature inside 

the nest rather than foraging (Johnson 2002). Such labor reallocation 

would eventually reduce the frequency of foraging activity.  
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Biotic stressors encompass diseases transmitted by parasites and 

pathogens. The spread of diseases through shared floral resources and 

contact between bees has become a growing concern for pollinator 

conservation (Koch et al. 2017). The transmission of diseases not only 

within species but also between different species accelerates their spread 

(Potts et al. 2010; Fürst et al. 2014; Koch et al. 2017). Varroa destructor 

and Nosema ceranae are the most common parasites implicated in the 

recent global collapse of domesticated honey bees (Potts et al. 2010; 

Wilfert et al. 2016). Bees infested with parasites exhibit lower foraging 

efficiency and contribute less to pollination (Lach et al. 2015). The 

widespread presence of Deformed Wing Virus (DWV), carried by Varroa, 

often leads to wing deformities in bees, resulting in increased foraging 

stress and reduced flight performance (Wells et al. 2016; Roberts et al. 

2017). The human-altered viral landscape is now common, leading to the 

prevalence of sublethal and lethal diseases in pollinator communities.  

  

1.2.2 Interactions between the stressors 

 

Although our understanding is limited, an increasing number of 

studies are investigating the interactions between different stressors 

(Goulson et al. 2015; Goulson & Nicholls 2022). The impact of 

flupyradifurone, a new synthetic pesticide, on the reduction of flight 

success in honey bees is more pronounced when the bees are experiencing 

nutritional stress (Tong et al. 2019). Pesticide exposure can suppress the 

immune system of honey bees, facilitating the spread of viral pathogens 

such as DWV (Di Prisco et al. 2013). While some studies did not directly 

examine the interplay of stressors, we can still predict how one stressor can 

synergistically interact with others. For instance, Nosema species, a 



 

 9 

common pathogen infecting honey bees, is less prevalent in low 

temperatures (Gisder et al. 2010), suggesting an increased pathogen 

infectivity under rising temperatures. Dietary stress, often accompanied by 

starvation due to limited floral resources caused by climate change and 

intensive farming, as discussed earlier, can make bees more vulnerable to 

disease infections (Erler et al. 2014; Goulson et al. 2015). Spatial and 

temporal mismatches between plant and pollinator phenology can 

exacerbate nutritional stress in bees (Fisogni et al. 2020). Furthermore, 

floral diversity itself holds the potential to provide antimicrobial effects 

through metabolites in floral resources, enhancing the immunity of bees 

foraging on those resources (Erler et al. 2014). The combination of 

nutritional stress and pathogen stress leads to precocious foraging in bees 

(i.e., forage early in age), contributing to a rapid decline in colony 

population (Perry et al. 2015).     
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1.3 Air quality as an environmental stressor 

 

While a significant amount of research has been conducted on bee 

population decline, with a focus on the aforementioned stressors, only a 

limited number of studies have examined the impacts of air quality on 

pollinator activity. Recently, progress has been made in laboratory studies 

investigating the relationship between olfactory learning in honey bees and 

air pollution (Girling et al. 2013; Reitmayer et al. 2019). However, the 

potential effects of poor air quality on "honey bee vision," which is crucial 

for stable foraging (Srinivasan 2011), have yet to be investigated. Of Note, 

other than bee species, the effects of poor air quality on foraging duration 

of butterfly species have been investigated (Liu et al. 2021), as well as the 

spatial association between PM2.5 and geographical flight ranges of 

nocturnally migrating birds worldwide (La Sorte et al. 2022). Additionally, 

the physiological impacts of poor air quality on butterfly populations have 

been studied, along with bird populations (Tan et al. 2018; Kozlov 2022) 

along with bird populations (Sanderfoot & Holloway 2017; Liang et al. 

2020). 

 

1.3.1 Visual navigation of honey bees (Apis mellifera) 

 

Though invisible to the human eye, the polarization pattern of skylight, 

a major characteristic of electromagnetic radiation (Chen et al. 2020), 

serves as a reliable compass for nearly all insect species (Foster et al. 

2014). While incoming radiation is initially unpolarized, it becomes 

linearly polarized upon scattering by atmospheric molecules (Emde et al. 

2010). It is empirically known that insect species relying on polarized light 

for visual navigation become disoriented during episodes of air pollution, 
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such as volcanic eruptions and wildfire outbreaks, as the degree of linear 

polarization (DoLP) is highly influenced by atmospheric conditions 

(Hegedüs et al. 2007a). Although clouds are not considered pollutants, a 

sky obscured by scattered clouds can limit the "polarotactic response" of 

insects (Henze & Labhart 2007).  

One such insect species is the honey bee (Apis mellifera). In this 

dissertation, the term "honey bee" refers specifically to Apis mellifera. 

Honey bees possess strongly polarization-sensitive photoreceptors (Kelber 

& Somanathan 2019) and use polarized light patterns to orient themselves 

and navigate between food sources and their hive (Rossel & Wehner 1982; 

Kraft et al. 2011; Evangelista et al. 2014). Even when the sun is obstructed 

by clouds, honey bees can still navigate by utilizing the polarization 

pattern surrounding the sun, which is considered their primary orientation 

mechanism (Dovey et al. 2013).  

Therefore, it is crucial to ensure that honey bees are provided with 

sufficient polarized skylight information for their navigation. The 

threshold value for the DoLP that honey bees can perceive can be as low as 

10% (Brines & Gould 1982). However, to achieve optimal orientation, 

honey bees require at least 15% DoLP (referred to as the navigational 

threshold) in an unobstructed area of the overhead sky during flight  

(Brines & Gould 1982; Rossel & Wehner 1984; Henze & Labhart 2007; 

Von Frisch 2013).  
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1.3.2 PM2.5 and the degree of linear polarization (DoLP) of skylight 

 

Airborne aerosols have both direct and indirect effects on climate. 

Directly, they can impact the climate through the extinction (scattering and 

absorption) of solar and terrestrial radiation (Emde et al. 2010). Indirectly, 

aerosols can interact with clouds, leading to aerosol-cloud-climate 

interactions (Mahowald 2011). Anthropogenic aerosols, particularly fine 

particulate matter, are more effective in scattering radiation compared to 

coarse particulate matter like mineral dust. As a result, they contribute to 

the reduction of incoming solar radiation on Earth, known as global or 

regional dimming effects, which can be attributed to anthropogenic black 

and brown carbon (Alpert et al. 2005; Streets et al. 2006; Wang et al. 

2009; Schwarz et al. 2020). It is well known as global or regional dimming 

effects to which anthropogenic black and brown carbon are attributable 

(Schwarz et al. 2009; Schwarz et al. 2020). The ecological effects of 

reduced radiation have been investigated in relation to plant growth, 

including crop production (Burney & Ramanathan 2014; Yue et al. 2017; 

Proctor 2021).   

Increased concentrations of anthropogenic aerosols can also reduce 

the DoLP through excessive scattering of radiation (Hegedüs et al. 2007a; 

Zhao et al. 2018). High levels of atmospheric pollution can attenuate the 

DoLP below the navigational threshold for honey bees, impairing their 

navigational ability by limiting clear-sky visibility. This not only affects 

the sustainability of honey bee colonies (Degen et al. 2015) but also the 

pollination services provided by honey bees, which are essential for plant 

reproduction and ecosystem functioning (Steffan-Dewenter et al. 2005; 

Potts et al. 2010; Potts et al. 2016).  

Under an aerosol-free clean sky, the DoLP is generally strong, but it 
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decreases when non-gaseous particles in the atmosphere scatter skylight 

(Labhart 1996). In natural scenes, DoLP values typically range from 0 to 

50% (Foster et al. 2018). Extremely low DoLP values can be observed 

during heavily polluted conditions, such as massive dust storms with 

multiple scattering of light (Zhao et al. 2018).  

Insect species that rely on polarized light for visual navigation, 

including honey bees, are known to become disoriented during air 

pollution episodes, such as volcanic eruptions and wildfire outbreaks 

(Hegedüs et al. 2007a). Although clouds are not considered pollutants, a 

sky shielded by scattered clouds can limit the "polarotactic response" of 

insects (Henze & Labhart 2007). The DoLP, although a unitless quantity 

indicating the extent of linear polarization in the total intensity of 

incoming light (Yan et al. 2022), is often expressed as a percentage for 

easier comprehension. 

The scattering of light by particulate matter (PM) increases as the 

particle size decreases (Hinds 1999). Consequently, light extinction 

through scattering is primarily governed by fine mode PM, which ranges 

from 0.1 to 2 µm (Cohan et al. 2002). Coarse mode aerosols exhibit 

relatively lower single scattering albedo compared to fine mode aerosols 

with the same refractive index (Boesche et al. 2006; Gassó & 

Knobelspiesse 2022). The mass scattering efficiency for most aerosol 

types with particles larger than 1 µm in radius is lower than that for 

aerosols with smaller particles at both low and high relative humidity 

(Latimer & Martin 2019). This can be attributed to the fact that scattering 

of sunlight per unit mass is most pronounced when the PM size is close to 

the solar wavelengths of interest, such as near-UV (360-380 nm) to short 

visible wavelengths (400-500 nm) as considered in this study (Gassó & 

Knobelspiesse 2022). Excessive scattering results in a reduction of the 
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DoLP (Zeng et al. 2008; Kreuter et al. 2010; Gassó & Knobelspiesse 

2022). Thus, the microphysical properties of fine mode particles strongly 

influence the DoLP of a cloudless sky (Boesche et al. 2006). Multiple 

scattering, in particular, depends on particle concentration (Gassó & 

Knobelspiesse 2022). Therefore, the atmospheric loading of fine mode 

particles, represented by PM2.5 (airborne particles with aerodynamic 

diameters less than 2.5 μm) mass concentration, should exhibit a strong 

correlation with the celestial DoLP.    

 

1.3.3 Importance of understanding the relationship between air quality 

and foraging activities of honey bee 

 

Overhead sky visibility, referred to as "visibility" hereafter, is 

analogous to atmospheric visibility to the human eye, as both are primarily 

influenced by the scattering of light by aerosol particles in the atmosphere 

(Luan et al. 2017; Singh et al. 2017; Yao et al. 2021). The strong 

quantitative correlation between atmospheric visibility and the mass 

concentration of atmospheric particulate matter has already been utilized 

in a few air quality projections that estimate potential changes in 

atmospheric visibility in the near future (Martin et al. 2014; Ford et al. 

2018). However, no efforts have been made to predict the future visibility 

for bees. Due to limited empirical evidence, atmospheric pollution has not 

been widely recognized as a current or emerging threat to pollinators 

(Brown et al. 2016).  

Several modeling studies have predicted the forthcoming impacts of 

well-known anthropogenic threats, such as habitat loss and climate change, 

on honey bees (Imbach et al. 2017; Otto et al. 2018; Cornelissen et al. 

2019). However, there is a lack of quantitative analyses estimating the 
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impact of air quality on the visual navigation of honey bees. 

Poor air quality has the potential to significantly constrain bee foraging 

and, ultimately, their contribution to pollination. Future projections 

indicate that air quality in South Asia and Southeast Asia will deteriorate 

due to climate change-induced air pollution (Kumar et al. 2018; Nguyen et 

al. 2019). Moreover, agricultural production in these regions heavily relies 

on pollination services (Potts et al. 2016). While the pollination crisis in 

the US and Europe has received substantial attention (Goulson et al. 2015; 

Teichroew et al. 2017), the attention given to Asian countries facing 

similar crises has been inadequate. In Asia, the dependency on pollinators 

for crop yield is increasing (Potts et al. 2016), while air quality remains 

persistently low (Akimoto 2003; Baldasano et al. 2003; Lelieveld et al. 

2015; Cheng et al. 2016). Local declines in economically significant bee 

species have already been reported in certain regions of China (Teichroew 

et al. 2017). However, since air pollutants can travel not only between 

countries but also between continents, forming a global circuit (Uno et al. 

2009; Lee et al. 2019), the expected pollinator crisis resulting from poor 

air quality should not be considered a localized issue. Furthermore, 

ongoing climate change is expected to increase the concentration of PM2.5. 

While the effects of climate change on PM2.5, and vice versa, may vary 

across regions, a substantial increase in PM2.5 mass concentrations is 

predicted in source regions and more populated areas (Fang et al. 2013; 

Silva et al. 2017). Additionally, a warming climate is expected to lead to 

more frequent and severe wildfires, which will contribute to increased 

PM2.5 emissions in many regions (Schuur et al. 2015; Liu et al. 2016; 

Wotton et al. 2017).  

 Despite the limited literature correlating worsening air quality with 

bee foraging or population decline, the interaction between air pollution 
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and other potential stressors, as discussed earlier, can exacerbate this risk 

(Figure 2). This amplification arises from the increased likelihood of 

foragers encountering additional stressors such as insecticide residue and 

parasites during prolonged search for food and navigation between their 

nest and resources (Fuentes et al. 2016). Disorientation under a polluted 

sky can lead to extended foraging durations, similar to the disorientation 

experienced during natural atmospheric events like wildfire outbreaks. 

Prolonged foraging duration is a characteristic feature of disoriented honey 

bees (I’Anson Price et al. 2019). Considering that bees typically exhibit 

shorter foraging durations during the full bloom of floral resources, any 

trip longer than the average foraging trip duration can result in suboptimal 

foraging performance (Hemberger & Gratton 2018).    
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Figure 2. Demonstration of how air quality as an anthropogenic stressor can 

interact with pre-existing stressors. Underperformance of bees in foraging during 

poor air quality episodes as longer foraging trip duration increases chances for bee 

foragers of encountering other stressors. Poor air quality with a higher PM2.5 mass 

concentrations can act the same as natural stressors on underperformance of bees in 

foraging.  
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1.4  Research overview 

1.4.1 Purpose of this study 

 

This study aims to estimate the probable increase in the spatio-temporal 

magnitude of limited-visibility risk for honey bees (Apis mellifera) caused 

by a reduction in the DoLP due to increasing PM2.5 emissions. For this 

research purpose, three main sets of sub-studies were conducted, each 

primarily relying on field monitoring, ground observation, and future 

projection. Each of the first two studies has its own hypothesis and 

corresponding objective. 

 

1.4.2   Research objectives and hypotheses 

 

 To assess the impacts of air quality on honey bee foraging 

performance, as indicated by foraging trip duration, which can also 

influence pollination efficiency, field-realistic colony monitoring was 

conducted (Objective 1). Considering that mean foraging trip durations 

have consistently been shown to be shorter than an hour in previous studies 

(Higginson et al. 2011; Perry et al. 2015; Colin et al. 2019; Okubo et al. 

2020), it was hypothesized that an increase in foraging duration is strongly 

associated with ambient PM2.5 mass concentration. Additionally, it was 

hypothesized that honey bee foraging trip duration increases with an 

increase in the optical property of the atmosphere, known as the 

Depolarization Ratio (DR) (Hypothesis 1).  

Furthermore, to quantitatively assess the relationship between air 

pollution levels and celestial DoLP and determine whether the increasing 

mass concentration of PM2.5 leads to a reduction in DoLP (Objective 2), a 

long-term ground-based observation of DoLP was conducted. Through this 
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observation, an empirical relationship between ground-measured PM2.5 

mass concentration and celestial DoLP was derived to predict the DoLP 

distribution across the sky, based on the dominant effect of PM2.5 on light 

scattering and atmospheric visibility (Hinds 1999; Liu et al. 2017; Zheng 

et al. 2017; Wang et al. 2019b; Dhaka et al. 2020; Won et al. 2020; Yao et 

al. 2021). In this dissertation, PM2.5 was a particular research interest as 

multiple scattering simulations have shown that changes in DoLP are most 

sensitive to fine-mode particles (Boesche et al. 2006; Chen et al. 2020). 

Here, a ground-based digital all-sky imaging system (ground-based 

imaging polarimetry) was employed, and the celestial DoLP was analyzed 

using cloud-free full-sky images collected between 2018 and 2019, as well 

as from 2020 to 2021. The polarization state of sunlight for each 

observation was expressed using Stokes parameters  (Kreuter et al. 2010). 

The DoLP distribution across the sky was mapped, and an empirical 

relationship between PM2.5 and DoLP was parameterized.  

This relationship was then applied to the air quality projection results 

using the global distribution of PM2.5, simulated by the ECHAM5/MESSy 

atmospheric climate chemistry model (EMAC), this model was chosen to 

evaluate the potential consequences of the absence of mitigation efforts for 

air quality. It assumes the continuation of national air pollution mitigation 

policies established in 2010, while considering anticipated population 

growth and economic development (Pozzer et al. 2012b; Lelieveld et al. 

2015). “Risk hotspot” areas (an area of 1.1° by 1.1° in latitude and 

longitude) defined as where honey bees may experience limited visibility 

for at least one day in 2050 were estimated; this is critical to plant 

reproductivity, as even a one-day loss of pollination due to unsuccessful 

navigation of pollinators can have detrimental consequences (Ashman & J. 

Schoen 1994; Rader et al. 2013). Finally, the spatial extent of risk hotspots 
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and the frequency of limited-visibility days (LVD) per hotspot (i.e., the 

number of LVD) were estimated at the global, regional, and national scales 

annually and seasonally. Further, increases in the extent of risk hotspots 

accompanied by increases in the frequency of LVD were estimated. The 

PM2.5 projection for 2010 from the same model as the base year data was 

used. Though the case of honey bee was investigated specifically since its 

polarotatic response on visual navigation is the most well-known, results 

of this study are possibly applied to other pollinator species. The structure 

of this dissertation is depicted in Figure 3. 
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Figure 3. A structural diagram of this proposed study illustrating key elements- 

research hypotheses, objectives and expected conclusion. Chapter 3 presents the 

results corresponding to each research objectiv



 

 

 

 

22 

 

2. Methodology 

2.1 Colony monitoring with RFID 

2.1.1 Study site 

 

The experiment was conducted in an apiary on a hill bordering the 

Beijing Botanical Garden (BBG), Xiangshan park, Haidian District, 

Beijing, China (40° 0' 35'' N, 116° 12' 2'' E). The apiary is situated in close 

proximity to mountains, with the BBG within a 1 km radius. It is 

approximately 20 km northwest of the city center. The BBG is recognized 

as one of the largest ex-situ botanical gardens in Beijing, encompassing an 

area of 56 hectares and housing approximately 6,000 plant species. 

Throughout the study period, a variety of pollinator-dependent flowering 

species including Malus spectabilis, Rosa chinensis, Iris sanguinea, etc. 

were in full-bloom. The apiary is managed by the Institute of Apicultural 

Research, Chinese Academy of Agricultural Sciences. For the experiment, 

a colony comprising approximately 20,000 honey bees, with a single 

queen, was obtained from the apiary and housed in a standard Langstroth 

hive. 

 

2.1.2 RFID tagging and colony monitoring 

 

To monitor the foraging trip durations of worker bees, radio frequency 

identification (RFID) transponders (mic3®  -TAG 16k, microsensys GmbH, 

Erfurt, Germany) were attached to the bees. The transponders had a square 

shape with dimensions of 2 x 1.7 x 0.5 mm and weighed less than 5 mg. A 

total of 400 worker bees of mixed ages were individually tagged with 

unique identification numbers (UIDs) stored in the RFID tags. At the 

entrance of the hive, a reader module (MAJA reader module 4.1) was 
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installed to capture the UID and timestamp of each tagged bee as it passed 

by. The recorded timestamps were stored in a host computer. By 

comparing the recorded time points of the outbound and inbound trips, the 

duration of each foraging trip was calculated as the time difference 

between the two trips. For the analysis, only trip durations ranging from 

10 minutes to 250 minutes were selected, excluding trips outside this 

range, which are considered either orientation flights or incomplete trips 

(Biesmeijer & Seeley 2005; Degen et al. 2015). Throughout the study 

period, a total of 74,104 observations (outbound-inbound trips) were 

recorded. However, due to overlapping timestamps caused by traffic at the 

hive entrance, only 181 "identifiable" pairs of foraging trips (equivalent to 

362 timestamps) were included in the statistical analysis. The monitoring 

of foraging activities using the RFID system was conducted from April 27 

to May 7, 2017. 

 

2.1.3 Acquisition of optical property, ground-observed aerosol 

concentration and meteorological data  

 

Optical property data 

Although changes in PM2.5 mass concentration can explain the 

variation in the DoLP, the DoLP is the outcome of complex interactions 

between aerosol loading and the microphysical properties of aerosols, such 

as morphology, size, and refractive index (Chen et al. 2020). In order to 

examine the contribution of microphysical properties to DoLP variation, 

additional optical property data were utilized. 

Optical property data that complied with our monitoring requirements 

were retrieved. The depolarization ratio (DR) at 532 nm, measured by 

Mie-scattering lidar in Beijing (39.977° N, 116.381° E), was adopted to 

investigate the effects of ambient aerosols on light polarization patterns. 
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The DR values measured between altitudes of 0.06 km and 0.72 km, which 

encompassed the lowest and highest altitudes common to the observation 

days, were averaged and used for analysis. DR serves as a reliable 

indicator of particulate matter irregularity (Pan et al. 2017), which is 

significant in terms of the degree of light polarization. A higher DR value 

(e.g., greater than 0.1) suggests the dominance of non-spherical particles in 

the atmosphere (Kim et al. 2010; Shimizu et al. 2016). As honey bees 

estimate distances and directions between their nest and floral resources 

during their outbound trips (Evangelista et al. 2014), values of the optical 

property variable (DR) and PM2.5 concentration measured at 

approximately the time when bees commenced foraging were used. 

However, since DR data were collected at quarter-hourly intervals and 

PM2.5 mass concentration data were collected hourly, data measured at the 

nearest time points to the outbound trips of the foragers were used. DR 

data were obtained from the Asian Dust and Aerosol Lidar Observation 

Network.   

For the DoLP observations made using a ground-based imaging 

polarimetry system in Seoul, DR data that corresponded to the 

observations were obtained from the Korea Aerosol Lidar Observation 

Network. In addition, Extinction Coefficient (EC) data were also retrieved. 

EC provides a direct measure that can explain the variability in light 

extinction, which in turn affects the DoLP. This measure encompasses 

various microphysical and chemical properties of aerosols, such as size 

distribution, refractive index, and particle shape (Xie et al. 2008). To 

better understand EC, it is necessary to comprehend Aerosol Optical 

Depth (AOD), which represents the extinction of light and is the product 

of coefficients per unit mass of aerosols and the aerosol mass 

concentration. For instance, for sulfate aerosols, the optical depth is 

expressed as Equation (1). 
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AODsulfate = αSO4
2-m SO4

2-H         (1) 

 

αSO4
2- is the light-scattering mass efficiency of the aerosol, expressed 

in units of m2(g SO42-)-1, m SO4
2- is the sulfate mass concentration (g m-3), 

and H is the pathlength through the aerosol layer (m). The light-scattering 

mass efficiency is a quantity that, when multiplied by the mass 

concentration of sulfate, produces the sulfate aerosol scattering 

coefficient, bsp. With a population of different types of aerosols in the 

atmosphere, not only bsp but also bep (aerosol absorption coefficient) can 

be calculated. The EC is the sum of bsp and bep.   

In the global context, PM2.5 is predominantly classified into SNA 

(sum of sulfate, nitrate, and ammonium), OM (organic matter), BC (black 

carbon), dust and sea salt (Cheng et al. 2016). Each type of aerosol 

possesses different microphysical properties and refractive indices, which 

determine the extinction efficiency and subsequently influence the degree 

of light extinction (Dubovik et al. 2002). As stated earlier, light extinction, 

often represented by AOD, is the cumulative effect of two distinct modes: 

scattering and absorption. The impact of each mode on the DoLP may 

vary. Since the atmospheric aerosol column is typically composed of 

particles emitted from diverse sources, it is a mixture rather than a single 

aerosol type that prevails. Consequently, any model attempting to predict 

DoLP solely based on PM2.5 mass concentration cannot achieve a 

perfect fit, represented by R2=1 or any other general regression model. 

Scattering-dominant aerosols encompass SNA and sea-salt particles, 

while absorbing aerosols, primarily BC, dominate at visible wavelengths 

(Li et al. 2022a).  

In this context, single-scattering albedo (SSA), defined as the ratio of 

scattering coefficient (βs) to total extinction coefficient (βe) (Li et al. 

2022a), serves as a useful parameter to assess the contribution of 
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scattering to overall light attenuation. SSA is a comprehensive parameter 

that encapsulates essential information regarding the physical and 

chemical characteristics of aerosols (Pokhrel et al. 2016). Moreover, the 

absorption aerosol optical depth (AAOD) quantifies the contribution of 

absorbing aerosols to light extinction by applying the SSA (AAOD = 

AOD * (1-SSA)), as a decrease in SSA indicates a higher absorption by 

aerosols (Andrews et al. 2017). The global mean SSA at a wavelength of 

550 nm (SSA550) over land is estimated to be 0.93 (Devi & Satheesh 

2022). However, for most locations, very few AAOD or SSA retrievals 

are available after cloud-screening, as low-loading aerosols (AOD440 < 

0.4 or AOD440 < 0.2 for AERONET Level 2 and Level 1.5 data, 

respectively) often introduce biases (Andrews et al. 2017; Mok et al. 

2018). Unfortunately, the SSA440 (hereafter referred to as SSA) retrieval 

provided by AERONET (Level 1.5) exhibits a time difference of 

approximately 2 hours compared to our ground observation, as the 

earliest available SSA data throughout the day corresponds to a solar 

zenith angle (SZA) of approximately 76°, in contrast to the 90° SZA 

during our observation. AOD and SSA data were retrieved from the 

Aerosol Robotic Network (AERONET) operated by the National 

Aeronautics and Space Administration (NASA).  

 

Ground-observed aerosol concentration 

For PM2.5 mass concentrations in Beijing, the data were obtained 

from the Beijing Environmental Protection Monitoring Center. Ground-

based DoLP observations were matched with near-real-time (maximum 

15-minute intervals) PM2.5 mass concentration data obtained from the 

AirKorea network, operated by the Ministry of Environment (MOE). The 

monitoring station (37° 29' 53.3832′′, 126° 53' 24.1152′′) was located 

approximately 1 km from the polarimetry system. Site-specific 
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atmospheric light extinction can vary due to different contributions from 

chemical components within PM2.5. Seoul is a suitable representation of 

anthropogenic PM2.5, particularly SNA (sulfate, nitrate, and ammonium) 

dominance found in many East Asian regions (Cheng et al. 2016). 

To compensate for uncertainties in using SSA for DoLP estimation, 

another set of ground-measured data was examined. The mass 

concentrations of various components in PM2.5, such as SO4
2-, NO3

-, Cl-, 

Na+, NH4
+, K+, Mg2+, Ca2+, organic carbon (OC), elemental carbon (EC), 

S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br and Pb were measured 

at the Seoul Metropolitan Area Intensive Monitoring Site (SIMS) by the 

MOE between 2018 and 2021. These data were obtained in collaboration 

with the National Institute of Environmental Research. Although the 

SIMS was approximately 11 km away from our ground observation site, 

its location and data are considered representative of a wider region of 

Seoul (박종성 et al. 2015 in Korean). In general, during winter in Seoul, 

the contributions from SNA, OC, and EC are highest, with SNA 

(particularly nitrate) being the dominant component of PM2.5 (Park et al. 

2018).    

   

Meteorological variables 

For colony monitoring in Beijing, daily meteorological data, 

including temperature (°C), humidity (%), wind speed (km/h), and cloud 

cover, were obtained for the study period. The data were retrieved online 

from CustomWeather, Inc. (timeanddate.com), specifically from the 

nearest time point to the outbound trip of foragers in the Xiangshan Park 

area, Beijing. Cloud cover was categorized into two levels: "non-

overcast" and "overcast," as bees can still navigate as long as clear 

patches of sky are present. 
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2.2 Operation of ground-based imaging polarimetry system and 

estimation of DoLP over the sky 

 

The DoLP across the full-sky hemisphere was observed using a 

ground-based imaging polarimetry system. The system utilized a 

commercial digital single-lens reflex camera equipped with a charge-

coupled device (CCD). The ground-based full-sky imaging polarimetry 

system is uncomplicated yet ideal for mapping the celestial DoLP 

distribution (Kreuter et al. 2009; Foster et al. 2018). This system was 

composed of a camera (Nikon D70s), fish-eye lens (Lensbaby LLC, 5.8 

mm, f/22, field-of-view ≈ 180), and linear polarizer filter (Cokin X160). 

The camera with the fish-eye lens was mounted on a tripod, positioned to 

ensure that the optical axis of the fish-eye lens was directed vertically 

towards the zenith. This method follows the system operation and image 

calibration described by Kreuter et al. (Kreuter et al. 2009). For a given 

sky, full-sky images were captured at four different polarizer angles (0°, 

45°, 90°, and 135°), based on which three Stokes parameters, I, Q, and U, 

were calculated at each pixel using Equation (2); I is the light intensity, 

and I(0), I(45), I(90), and I(135) are the values at the polarizer angles 

of 0, 45, 90, and 135, respectively. The pixel-by-pixel (3008 × 2000 

pixels) DoLP was then calculated using Equation (3). For visual 

presentation purposes, a color-coded map illustrating the DoLP 

distribution across the entire sky was generated using Matlab R2018b and 

ImageJ. 
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=           (2) 

 

 

  I() = The intensity of radiation recorded in pixels when the linear 

polarization filter is at 0°, 45°, 90° and 135° from the camera top 

view. 

 

           (3) 

 

Only cloudless full-sky conditions were considered for the DoLP 

measurements, with a focus on capturing PM2.5-induced changes. Due to 

the strict sampling restrictions, a total of 40 samples were obtained over the 

four-year period (2018-2021). The ground-based imaging polarimetry 

observations were conducted at the predicted sunrise time to avoid any 

overexposure effects from the Sun. The DoLP theoretically reaches its 

maximum when the solar zenith angle (SZA) is 90°, such as during sunrise 

or sunset (Dahlberg et al. 2011). Additionally, the observations were 

limited to the period between the December solstice and the March equinox 

(December 21, 2018 - March 20, 2019, and December 21, 2020 - March 20, 

2021) to minimize potential seasonal effects caused by the interaction of 

urban PM2.5, the planetary boundary layer, and relative humidity (RH) 

(Miao et al. 2019). RH variability can significantly impact the aerosol size 

distribution, chemical composition, and extinction characteristics through 

the hygroscopic growth of aerosols (Zheng et al. 2017). Moreover, water 

vapor directly influences light extinction, and RH often increases with 

height within the planetary boundary layer. For a given PM2.5 mass 
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concentration, an increase in RH can result in higher light extinction 

(Zheng et al. 2017). Generally, the planetary boundary layer height (PBLH) 

and RH are lowest during winter compared to other seasons (Wang et al. 

2019a). Although the lowest PBLH during winter can enhance mixing, the 

low rate of hygroscopic growth of particles may offset this effect (Zheng et 

al. 2017).  

Initially, our ground observations were conducted at both sunrise and 

sunset. However, the sunset observations from our analysis were excluded 

due to the significant effects of relative humidity (RH) and moonlight on 

the DoLP during sunset hours. Here, the observational data obtained from 

both sunrise and sunset is present to demonstrate the potential effects of 

RH on DoLP. The DoLP observations were classified into three groups: 1) 

all (sunrise + sunset, N=68), 2) sunrise only (N=40), and 3) sunset only 

(N=28) datasets, and conducted statistical tests for each dataset. It is 

important to note that the sunset dataset had a relatively smaller sample 

size compared to the other two datasets. The PM2.5-DoLP relationship was 

found to be significant (p<0.001) for all datasets. To investigate whether 

RH had a minimal influence on DoLP variation, the correlation between 

PM2.5 and DoLP was tested while considering the variation in RH. Two 

different scenarios were examined: first, the relationship between PM2.5 

mass concentration and DoLP while controlling for the correlation of RH 

with both variables (partial correlation test), and second, the relationship 

between PM2.5 mass concentration and DoLP while accounting for the 

effects of RH on DoLP only (semi-partial correlation test). The results are 

summarized in Table 1 (a-b). In all three datasets, both for average and 

maximum DoLP, the correlations between PM2.5 and DoLP were 

statistically significant, indicating a strong association between PM2.5 and 

DoLP even without considering the potential effects of RH on both 

variables. 
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Furthermore, in addition to the impact of RH on light extinction 

through the hygroscopic growth of particles, water vapor directly affects 

light extinction. Therefore, the same correlation tests were conducted to 

examine the RH-DoLP relationship while considering the potential effects 

of PM2.5 levels. The relationship was only statistically significant in the 

All dataset, demonstrating that increasing RH leads to a decrease in DoLP 

(Table 1 (c-d)). However, the zero-order correlations between PM2.5 mass 

concentration and the average and maximum DoLP in the Sunrise dataset, 

as observed in our original analysis, remained statistically significant. 

These high correlations (r=-0.75 and -0.81 for average and maximum DoLP, 

respectively) suggest that RH has a minimal influence on controlling the 

PM2.5-DoLP relationship. The RH values recorded during our ground-

based observations ranged from 22% to 88%. 
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Table 1. Results from the partial and semi-partial correlation analyses 

examining the relationships between PM2.5 mass concentration, RH, 

and DoLP in different datasets. Bold text indicates statistically 

significant differences with a p-value<0.01. 

 

 

a) Correlation test results for PM2.5 mass concentration and the 

average DoLP.  

Dataset All Sunrise Sunset 

Test r P-value r P-value r P-value 

Partial 

correlation 

-0.44 <0.01 -0.66 <0.01 -0.58 <0.01 

Semi-partial 

correlation 

-0.40 <0.01 -0.54 <0.01 -0.48 <0.01 

 

b) Correlation test results for PM2.5 mass concentration and the maximum 

DoLP  

Dataset  All Sunrise Sunset 

Test r P-value r P-value r P-value 

Partial 

correlation 

-0.64 <0.01 -0.76 <0.01 -0.62 <0.01 

Semi-partial 

correlation 

-0.57 <0.01 -0.61 <0.01 -0.52 <0.01 

 

c) Correlation test results for RH and the average DoLP  

Dataset All Sunrise Sunset 

Test r P-value r P-value r P-value 

Partial 

correlation 

-0.35 <0.005 -0.05 0.74 0.3 0.13 

Semi-partial 

correlation 

-0.31 <0.01 -0.04 0.79 0.25 0.21 
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d) Correlation test results for RH and the maximum DoLP  

All Sunrise Sunset 

Test r P-value r P-value r P-value 

Partial 

correlation 

-0.02 >0.1 0.02 0.89 0.27 0.17 

Semi-partial 

correlation 

-0.02 >0.1 0.02 0.91 0.23 0.25 

 

 

The ground-based imaging polarimetry system mapped the 

distribution of DoLP over multiple wavelength bands. However, only the 

DoLP of the blue band in the visible spectrum was considered in this study. 

The camera's blue sensor has a spectral response that peaks at 450 nm. 

Although honey bees are most sensitive to polarized skylight in the 

ultraviolet (UV) spectrum (345-360 nm) (Barta & Horváth 2004; Sakura 

et al. 2012; Ogawa et al. 2017), there is only a slight qualitative difference 

between the DoLP values obtained from the blue band and the UV band 

(Pomozi et al. 2001). The DoLP of the UV band can be significantly 

smaller than that of the blue band, both under clear and polluted skies 

(Brines & Gould 1982; Coulson 1988; Dahlberg et al. 2011). It is worth 

noting that bumblebees (Bombus hortorum), another widespread bee 

pollinator, are most sensitive to polarized skylight in the UV (353 nm) and 

blue (430 nm) spectral regions (Barta & Horváth 2004). Additionally, 

since the DoLP exhibits greater sensitivity for smaller solar zenith angles 

(SZA) and longer wavelengths  (Pust & Shaw 2012; Shaw et al. 2014), 

measuring the DoLP in the blue band at sunrise is reasonable for increased 

accuracy. 

The results of exponential regression analysis showed a significant 

relationship between EC and DoLP, indicating that both the average and 

maximum DoLP values decreased as EC increased (p < 0.01). However, 
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the adjusted R2 values, for example, 0.25 for the EC-maximum DoLP 

relationship, were much lower than those of the relationships between 

PM2.5 mass concentration and DoLP (adjusted R2=0.72, P<0.01). PM2.5 

mass concentration was found to be correlated with EC (adjusted R2= 0.42, 

P<0.001). This suggests that the mass concentration of small particles 

with diameters less than 2.5 μm (as the growth of even smaller particles to 

optically more active sizes generally falls within this range) was a useful 

variable in explaining the changes in DoLP. 

The near-real-time (15 min-interval at maximum) ground-measured 

PM2.5 at the time of the ground-based imaging polarimetry system 

operation each day was retrieved from the AirKorea network. The 

monitoring station (37° 29' 53.3832′′, 126° 53' 24.1152′′) was located 

approximately 1 km from the polarimetry system.  
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2.3 Statistical modelling of the empirical PM2.5 mass concentration-

DoLP relationship for future projection 

2.3.1 Threshold concentration of PM2.5 for the lower-bound (LB) and 

upper-bound (UB) estimations 

 

 A non-linear square (NLS) regression model (Equation 4) with a 

Gauss–Newton algorithm was constructed to derive an empirical 

relationship between PM2.5 mass concentration and DoLP. In this study, 

the NLS regression model showed a better fit than the linear regression 

model (ΔAkaike Information Criterion = 259.41).  

 

ln(Yobs) = ˆβ0 + ˆβ1X + e       (4) 

 

Yobs : Observed DoLP (%) 

X : PM2.5 (μg m-3)  

ˆβ0, ˆβ1 : Fitted coefficients 

e : Residual error 

 

To reduce the uncertainty arising from the small sample size (N=40), 

bootstrap simulations were performed 2,000 times based on the NLS 

equation.  

As previously discussed, the perceptual threshold of DoLP for honey 

bees is 10%, which indicates that honey bees do not perceive a DoLP of 

less than 10%. However, for achieving a perfect orientation, a DoLP of 

15% or more should be exhibited over the sky to bees during flight 

(Brines & Gould 1982; Rossel & Wehner 1984; Henze & Labhart 2007; 

Von Frisch 2013). Therefore, a DoLP of 15% was defined as the 

navigational threshold in this study. The DoLP is symmetrically 

distributed over the sky (Hegedüs et al. 2007b), and is close to zero near 
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the Sun and the maximum at a right angle to the Sun (Hegedüs et al. 

2007b, a; Hegedüs et al. 2007c). Honey bees determine their orientation 

by inferring the direction in which a band of the maximum DoLP occurs 

over the full-sky (Rossel & Wehner 1984). However, complete visibility 

of the sky containing the band of maximum DoLP is not always 

guaranteed; this is often the case under thick canopies and clouds, that 

honey bees are more likely to encounter. In fact, as long as the DoLP is 

above the navigational threshold, honey bees can use the radiative 

information even from a very tiny patch in “any part” of the full sky (a 

minimum of 10° of the so-called “celestial window”) (Rossel & Wehner 

1984; Rossel 1993; Labhart 1996). Therefore, the best-fit PM2.5 mass 

concentrations corresponding to the threshold DoLP from average DoLP 

and maximum DoLP over the sky for LB and UB estimations, respectively, 

was used. The best-fit PM2.5 mass concentrations from the regression 

models, corresponding to the average and maximum DoLPs, as threshold 

values for the LB and UB estimations, respectively, was applied. These 

PM2.5 mass concentration thresholds were the best-fit estimates within 

confidence intervals (CIs) from the NLS regression model for each PM2.5 

mass concentration–average DoLP and PM2.5 mass concentration–

maximum DoLP relationship. Then these PM2.5 mass concentrations were 

applied on air quality projections for 2050. 

 

2.3.2 Applying the PM2.5 mass concentration-DoLP relationship on 

air quality projection  

 

The ECHAM5/MESSy atmospheric chemistry (EMAC) general 

circulation model with a spatial resolution of spherical spectral truncation 

of T106 was used, which corresponds to a quadratic Gaussian grid of 

approximately 1.1° by 1.1° in latitude and longitude. The EMAC 



 

 

 

 

37 

comprises submodels describing the low-level Earth systems to 

tropospheric and stratospheric processes and allows the simulation of the 

feedback of air pollution. The global distribution of PM2.5 for the year 

2010, simulated by EMAC, agreed with the observational data (Lelieveld 

et al. 2015). This model was chosen to evaluate the potential 

consequences of the absence of mitigation efforts for air quality. It 

assumes the continuation of national air pollution mitigation policies 

established in 2010, while considering anticipated population growth and 

economic development, which represented a feasible future (Pozzer et al. 

2012b; Lelieveld et al. 2015). Since it is challenging to fully account for 

regional disparities in effects of climate change in future air quality the 

future air quality simulations, the scenario adopted in this study are based 

on the average climatology of the period 2000-2009. 

In detail, the scenario here is different from the Representative 

Concentration Pathways 8.5, in that the former did not consider possible 

effects of climate change on PM2.5 emissions (Pozzer et al. 2012b). 

Though the effects of climate change were not reflected in the air quality 

projection, the model accounted for population growth and economic 

development (Lelieveld et al. 2015). The model was based on projections 

for energy and fuel use and land-use related projections computed by the 

Prospective Outlook for the Long-term Energy System (POLES) model 

and the Integrated Model to Assess the Global Environment (IMAGE) 

(Pozzer et al. 2012b). The POLES model is a global sectoral simulation 

model for the development of energy scenarios until 2050.  

While a range of emission scenarios is available, this particular 

scenario was chosen for two main reasons. Firstly, although the model 

does not consider the effects of climate change, it incorporates population 

growth and economic development. Consequently, regions that have 

transitioned from manufacturing to service-based industries, i.e., 
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developed countries, did not show increases in the number of limited 

visibility days. While stringent clean-air policies have improved air 

quality in some regions, it is uncertain whether such environmental 

regulations can override socioeconomic strategies. China's air quality 

started improving before 2010, to some extent reflecting this trend. 

Additionally, it is challenging to foresee the diverse pathways for future 

policy implementation (Chowdhury et al. 2018). Secondly, the objective 

was to emphasize the consequences of inadequate actions. Despite the 

possibility of technological advancements reducing emissions in the 

future (Lelieveld et al. 2015), the aim was to illustrate the outcomes 

"without such actions." Therefore, countries that have witnessed 

improvements in air quality, such as China, should intensify their efforts, 

while others should be more alert. Consequently, numerous studies 

examining future mortality rates associated with deteriorating air quality  

(Lelieveld et al. 2013; Lelieveld et al. 2015; Chowdhury et al. 2022) 

consider this scenario as representing a feasible future and utilize the air 

quality projection based on this scenario.  

Of additional note is that this global ECHAM5/MESSy atmospheric 

chemistry-general circulation model is the only hour-based global air 

quality projection model. With this advantage, it was possible to single 

out projection results of a specific time window (8:00-16:00 after the time 

zones of each pixel converted to local time, please refer to Methods) at 

which honey bees actively forage. More detailed information on the 

projection of PM2.5 by the EMAC simulations can be found in Lelieveld 

et al. (Lelieveld et al. 2015) and Pozzer et al. (Pozzer et al. 2012a).  

The simulated PM2.5 results were analyzed by season (i.e., MAM, 

JJA, SON, and DJF). The projection results for December, January, and 

February within the same year (2050 or 2010) were grouped. Land covers 

that are outside the scope of this study (land covers labeled as barren or 
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sparsely vegetated, ocean, snow, and ice) were filtered out using the 

Global Land Surface Data Assimilation System (GLDAS) NOAH version 

3.6, based on MODIS (Moderate Resolution Imaging Spectroradiometer) 

IGBP (the International Geosphere-Biosphere Programme) Vegetation 

Type classification (Rodell et al. 2004). 

In this study, at least one occasion of limited visibility during the day 

was defined as a limited-visibility day; this is relevant to the energetics of 

honey bees and their interactions with plants. Many pollinator-dependent 

flowers bloom only for short durations of a few days (albeit for a few 

months in the tropics) (Heinrich & systematics 1975). Some flowers have 

even more limited lifetimes that are as short as one day or a few hours per 

day, during which optimal pollination should be provided (Rader et al. 

2013). Honey bees conform their foraging to energetics (Heinrich & 

systematics 1975). As individual worker honey bees can only undertake a 

limited number of foraging trips in their lifetime, they maximize their 

foraging efficiency (Kacelnik et al. 1986). Thus, honey bees avoid 

undertaking foraging trips with a duration longer than the time expected 

to be sufficient for pollination, since a longer foraging trip duration 

means greater energy expenditure (Kacelnik et al. 1986). This eventually 

reduces the opportunity for plants to receive optimal pollination services. 

Considering the diurnal fluctuations of nectar availability from flowers 

and radiative information from the Sun, the estimation time slot was 

limited to between 8:00 and 16:00. This time slot is reasonable upon 

accounting for the regional and seasonal variations in sunrise-sunset 

times.  
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2.3 Data analysis 

 

All statistical analyses were performed using R version 3. 2. 5 (Team 

2016). The Tukey Honest Significant Differences test (ANOVA Tukey 

multiple comparisons) was also conducted the R function TukeyHSD to 

compare group differences of mean foraging trip durations during the 

pre-dust storm, dust storm, and post-dust storm periods. Due to a 

maintenance issue, it was possible to collect data for May 2, so this date 

was omitted in the pre-dust storm period. Average foraging trip duration 

for each period and P-values of the ANOVA Tukey multiple comparisons 

were calculated through 10,000 parametric bootstrap replicates.    

The effect of the predictor variables (DR, PM2.5 mass concentration 

and meteorological variables) on foraging trip duration of honey bee was 

determined using a generalized linear model (GLM). The GLM with 

Gamma family (link = log) was fitted using the R function glm() in 

package lme4. To eliminate possible impacts of the dust storm event on 

foragers’ fitness and to evaluate pure effects of air quality on foraging 

performance, data obtained during post-storm period were excluded in 

the model (N = 138). Predicted probabilities on foraging trip duration 

from the model against one of the independent variables (IVs) for a given 

value of other IVs were calculated using package TeachingDemos. 

Interaction effects of PM2.5 mass concentration and overcast sky on the 

foraging duration are plotted using package interactions. Different 

models were evaluated using Akaike’s criteria using package bbmle. 

Multicollinearity between predictor variables was assessed by the 

variance inflation factor (VIF) using the R function vif() in package car  

Parameterization of PM2.5 mass concentration-DoLP relationship 

and analyses of global data were conducted using the packages “ncdf4” 

and “dplyr”. Time zone conversion was conducted using the packages 
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“sf”, “lutz,” “purrr”, “lubridate,” and “googleway” Google Maps API 

package. Data visualization (mapping) was conducted using the packages 

“sp”, “maps”, “rgeos”, “maptools”, “rworldmap”, “ggplot2”, “ggalt”, and 

“ggthemes”.  
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3. Quantitative analyses of the underperformance of honey bee in 

visual navigation under degrading air quality 

3.1 Foraging trip duration of honey bee under different levels of air 

quality 

 

Results from the field monitoring of a hive revealed that honey bee 

foragers spent approximately 71% more time on heavily polluted days 

compared to their previous average foraging duration. Interestingly, even 

after the dust storm had passed, the bees continued to invest 71% more 

time (on average) in foraging compared to before the dust storm (Figure 4). 

On May 4th, when the hourly PM2.5 mass concentration reached its 

maximum, the daily average foraging duration was approximately 77 

minutes, which was about 32 minutes longer than the daily average prior 

to the dust storm. The comparison between the average foraging durations 

on the dust storm day and the post-dust storm days did not show a 

significant difference (Table 2). However, both the average foraging 

durations during and after the dust storm were significantly greater than 

the pre-dust storm levels (P<0.05 and P<0.001, respectively). 

Using a GLM, the effects of the depolarization ratio (DR) and PM2.5 

mass concentration on each foraging trip recorded from April 27 (pre-dust 

storm period) to May 4 (dust storm period) were assed (Table 3). The 

GLM model included real-time DR, PM2.5 mass concentration, 

meteorological variables (including cloud cover), as predictor variables. 

The selection of the best GLM model was based on evaluation using 

Akaike's criteria (Table 4). No multicollinearity was found among the 

predictor variables (Table 5). 

These results indicate a strong association between DR, PM2.5 mass 

concentrations, and foraging duration (P=0.042 and P<0.001, 

respectively). As DR increases, foraging duration decreases, suggesting 
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that when the atmosphere is dominated by more spherical urban pollutants 

(smaller DR) than mineral dust (larger DR), bees are predicted to spend 

more time foraging. Higher PM2.5 mass concentrations are associated 

with delays in foraging. Regardless of DR, foraging trip duration increases 

with increasing PM2.5 mass concentration, considering the other 

predictors at constant values (Figure 5). When foraging trip duration was 

regressed on DR only (alongside meteorological variables) in our study, 

DR did not show any significant effect, while the opposite was observed 

for the PM2.5 mass concentration (Table 6). Although cloud cover as a 

single predictor did not significantly impact honey bee foraging duration, 

a pronounced effect of PM2.5 mass concentration was observed under 

overcast sky conditions (P=0.036, Figure 6). Meteorological factors were 

not found to be associated with the time spent foraging by bees. 
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Figure 4. Foraging duration (min) of honey bee foraging trips (N=181) during 

pre-dust storm (Pre-DS, April 27 – May 3), dust storm (DS, May 4), and post-

dust storm (Post-DS, May 5 - 7) period. Daily foraging duration was resampled 

10,000 times. Note that only a few observations (N=12) were available during DS. 

 indicates then mean fine PM (PM2.5) mass concentration of Pre-DS (48 µg 

m−3), DS (573 µg m−3), and Post-DS (49 µg m−3) period. Hourly PM2.5 mass 

concentrations between the earliest and latest foraging activity recorded of each 

day were averaged. * and ** denote significance as P<0.05 and P<0.001, 

respectively, by ANOVA Tukey multiple comparisons of means 95% family-wise 

confidence level. ns: not significant (Table 2). 
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Table 2. Average foraging trip duration significantly increased on the day of 

DS outbreak and was not recovered to the pre-DS level even after the event 

had ceased. (A) Average foraging trip duration (min) of individual foragers 

(N=181) between April 27 – May 7. (B) ANOVA Tukey multiple comparisons of 

means 95% family-wise confidence level (after Fligner-Killeen’s test). * and ** 

indicate P<0.05 and P<0.001, respectively. Daily foraging durations were 

resampled 10,000 times.  

A 

Average Foraging 

Duration (mins) 

Pre-DS DS Post-DS 

45.04±11.30 76.74±7.18 76.55±15.39 

B 

Group Difference 
Lower 

value 

Upper 

value 
P value 

Pre-DS/DS -31.56 -61.85 -1.26 <0.05* 

Pre-DS/Post-

DS 
-31.20 -48.47 -13.93 <0.001** 

Post-DS/DS -0.36 -32.86 32.15 0.1 
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Table 3.  Effects of predictor variables (optical property (DR) and PM2.5 

mass concentration, and meteorological variables) on foraging trip duration of 

individual foragers. * and ** indicate P<0.05 and P<0.001, respectively.  

 Estimate Std.Error t-value P value 

(Intercept) 3.111 0.973 3.196 0.002* 

DR -4.457 2.165 -2.059 0.042* 

PM2.5 mass 

concentration 

0.004 0.001 4.112 <0.001** 

Cloud cover 

(non-overcast) 

0.574 0.393 1.458 0.147 

Temperature 0.040 0.027 1.516 0.132 

Wind speed 0.007 0.034 0.213 0.832 

Humidity -0.003 0.010 -0.281 0.779 

PM2.5 mass 

concentration: 

Cloud cover  

-0.027 0.013 -2.115 0.036* 
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Table 4. Different models were evaluated using Akaike’s criteria. The best-

fitting model with lower Akaike information criterion (AIC) is in bold. 

Model (GLM, 

family=Gamma, 

Link=log) 

AIC df AIC 

weight 

Residual 

deviance 

FD ~ DR + PM2.5 * C + T + 

W + H 

0.0 9 0.469 59.655 

FD ~ DR * PM2.5 + C + T + 

W + H 

5.3 9 0.034 61.814 

FD ~ PM2.5 + C + T + W + H 6.0 7 0.023 63.828 

FD ~ DR * PM2.5 * C + T + W 

+ H 

3.5 12 0.081 58.661 

FD ~ DR + PM2.5 + C + T + 

W + H 

3.3 8 0.092 61.815 

FD ~ DR + C + T + W + H 

 

15.6 7 <0.021 68.073 

FD ~ PM2.5 + DR * C + T + 

W + H 

 

1.6 9 0.210 60.307 

FD ~ PM2.5 * C + T + W + H 3.3 8 0.091 61.827 

 

⚫ Model structure (the best model as an example):  

ln(FD) = ˆβ0 + ˆβ1X1(DR) + β1X2(PM2.5)* β3X3(C) + β4X4(T)+ β5X5(W) + 

β6X6(H)+ e 

* indicates interaction terms 

 

⚫ Abbreviations:  

FD: Foraging duration (min) 

PM2.5: PM2.5 mass concentration (µg m−3)  

DR: Depolarization ratio  
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C: Cloud-cover  

T: Temperature  

W: Wind speed 

H: Humidity 

 

 

Table 5. Detecting multicollinearity between predictor variables of different 

models based on VIF. VIF smaller than 10 suggests the model does not have a 

collinearity issue (Naimi & Araújo 2016). 

Model Predictor variable 

(Best model) 

FD ~ DR +  

PM2.5 * C + 

T+ W + H 

PM2.5 DR C T W H PM2.5

*C 

3.59 5.61 6.79 2.79 1.83 3.67 3.94 

FD ~ PM2.5  + 

DR * C + T + 

W+ H 

PM2.5 DR C T W H DR*C 

3.69 6.21 39.46 2.43 1.73 3.86 35.42 

FD ~ DR * 

PM2.5 + C + T 

+ W + H 

PM2.5 DR C T W H DR*P

M2.5 

117.48 6.66 3.10 2.61 1.53 5.60 137.71 
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Figure 5. Predicted foraging trip duration (min) from the model against PM2.5 mass 

concentration for given values of the other predictors. Temperature = 28 ℃, Wind 

speed = 7 km h-1, Humidity = 10%, Cloud-cover = Overcast. 
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Figure 6. Predicted effects on PM2.5 mass concentration on foraging trip 

duration under overcast skies. All the other predictor variables are mean-centered. 

The solid line indicates the mean slope estimate, and the shaded area is the predicted 

95% confidence interval.  
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Table 6. Effects of each DR, PM2.5 mass concentration, and cloud cover on 

foraging trip duration alongside meteorological variables evaluated by 

GLMs (family = Gamma, log = link). * and ** indicate p<0.05 and p<0.001, 

respectively. 

 

1) Model: FD ~ DR + T + W + H ( AIC : 13.9) 

 Estimate Std.Error t-value P value 

(Intercept) 3.223 0.756 4.264 <0.001** 

DR 1.085 1.117 0.972 0.333 

T 0.002 0.023 0.087 0.931 

W 0.064 0.031 2.087 0.039* 

H 0.002 0.007 0.262 0.794 

 

2) Model: FD ~ PM2.5 + T + W + H ( AIC : 6.1) 

 Estimate Std.Error t-value P value 

(Intercept) 2.849 0.665 4.287 <0.001** 

PM2.5 0.001 0.0005 2.502 0.014* 

T 0.021 0.023 0.918 0.360 

W 0.050 0.030 1.657 0.100 

H 0.002 0.007 0.298 0.766 

 

3) Model: FD ~ C + T + W + H ( AIC : 15.1) 

 Estimate Std.Error t-value p value 

(Intercept) 3.755 0.624 6.017 <0.001** 

C -0.088 0.192 -0.455 0.650 

T -0.010 0.021 -0.474 0.637 

W 0.071 0.032 2.195 0.030* 

H -0.002 0.007 -0.292 0.770 
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3.2 Relationship between PM2.5 mass concentration and DoLP of 

skylight 

 

Based on ground-based imaging polarimetry, the association 

between the DoLP over the sky and ground-measured PM2.5 mass 

concentration was investigated. Figure 7 displays full-sky images 

representing different DoLP distributions over a cloud-free sky 

corresponding to the lowest PM2.5 mass concentration (1 μg m-3, Figure 

7a), the estimated average of the maximum and minimum PM2.5 mass 

concentration (66 μg m-3, Figure 7b), and the highest PM2.5 mass 

concentration (127 μg m-3, Figure 7c) among the 40 observation samples. 

The DoLP distribution exhibited axial symmetry along the solar-antisolar 

meridian, with the lowest DoLP near the Sun and the highest around the 

zenith (90° from the Sun). As the PM2.5 mass concentration increased, the 

sky region with DoLP below the navigational threshold (15%) expanded, 

indicating a reduction in the areas of the sky containing polarized light 

cues essential for honey bee navigation (Figure 8). 

To establish an empirical relationship between PM2.5 mass 

concentration and the DoLP distribution over the sky, NLS regression 

models were constructed based on our observational data. For future 

estimations, the average and maximum DoLPs over the sky for each 

observation were utilized to determine the likely range of PM2.5 mass 

concentration corresponding to the navigational threshold (refer to 

Chapter 2, Methodology section for further details). The observed average 

(Figure 9a) and maximum DoLPs (Figure 9b) demonstrated a decrease 

with increasing PM2.5 mass concentration (P<0.001 for both average and 

maximum DoLPs). The model underwent 2,000 bootstrapping iterations to 

estimate the uncertainty in the observed data distribution. The model 

estimated the lower and upper bound PM2.5 mass concentrations 
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matching the navigational threshold from the average and maximum 

DoLPs as 130 μg m-3 (CI: 110-160 μg m-3) and 240 μg m-3 (CI: 206-292 

μg m-3), respectively. Thus, when atmospheric PM2.5 mass concentrations 

surpass these threshold values, honey bees are likely to encounter 

impaired navigation. The estimations with PM2.5 mass concentrations of 

130 μg m-3 and 240 μg m-3 applied as threshold concentrations are referred 

to as the LB (lower bound) and UB (upper bound) estimations, 

respectively. 

 

 

 

Figure 7. Full-sky images of the DoLP distribution depending on PM2.5 

mass concentration. The navigational threshold of DoLP for honey bees (15%) 

is used as the maximum boundary of the DoLP range. Depending on PM2.5 mass 

concentration, the observed DoLP (average and maximum values) and 

observation date are as follows: a. 1 μg m-3, DoLP (24.33% and 52.8%), 

December 29, 2018; b. 66 μg m-3, DoLP (19.83% and 36.6%), January 23, 2019; 

and c. 127 μg m-3, DoLP (17.3% and 33.12%), January 15, 2019. The 

approximate position of the Sun and solar-antisolar meridian are indicated as a 

black dot and dashed line, respectively, in each image. MC stands for mass 

concentration. 
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Figure 8.  A statistically significant relationship between the PM2.5 mass 

concentration and the total size of the full-sky region including the DoLP 

greater than the threshold. The size exponentially decreased as the PM mass 

concentration increased. Since this analysis is based on photographic images, the 

size is represented by the number of pixels, each of which possesses the DoLP 

greater than 15%. F-statistic: 99.32, P<0.001 (y = 5029.5e-0.002x, Adjusted 

R²=0.716).  
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Figure 9. Statistical relationship between PM2.5 and the DoLP distribution 

over the sky. a: Relationship between PM2.5 mass concentration and the 

average DoLP over the sky. b: Relationship between PM2.5 mass 

concentration and the maximum DoLP over the sky. Observational sample 

points from the ground-based imaging polarimetry and a fitted line from the NLS 

regression are indicated as black dots and solid black lines, respectively. The 

95% CI and the bootstrapped 95% CI are shown. MC stands for mass 

concentration.  
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To assess the model's performance, a comparison between the model's 

predictions and ground-based DoLP observation data collected in Beijing 

was conducted, utilizing a multi-wavelength sun photometer (unpublished 

data, obtained with the assistance of Dr. Cheng Chen from the Generalized 

Retrieval of Atmosphere and Surface Properties, France). It should be 

noted that these observations were only conducted sporadically (Figure 10 

and Table 7). The observed maximum DoLPs in Beijing, corresponding to 

PM2.5 mass concentrations of 292 μg m-3 and 343 μg m-3 (on February 22, 

2011, at 11:00 and 12:00, respectively), were 7% and 6%, respectively. In 

contrast, our model estimated confidence intervals (CIs) for each mass 

concentration as 10-17% and 7-14%, respectively. Even in the absence of 

such extreme haze events, the observed maximum DoLPs were 32% and 

25% for PM2.5 mass concentrations of 75 μg m-3 and 100 μg m-3, 

respectively. Our model predicted CIs for each mass concentration as 35-

39% and 30-35%. 

It is worth noting that the observed DoLPs in Beijing were slightly 

below the CIs predicted by our model. This discrepancy can be attributed 

to the difference in observation timings. In Beijing, the observations were 

conducted at 11 AM and 12 PM, whereas in our study, observations were 

limited to sunrise when the DoLP is expected to be at its maximum 

throughout the day. 
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Figure 10. PM2.5 mass concentration-DoLP model in this study with DoLP 

observation data collected in Beijing included. 

 

Table 7. Additional information on the observation data collected in Beijing. 

PM2.5 mass concentration and DoLP data were provided by Dr Cheng Chen at the 

Generalized Retrieval of Atmosphere and Surface Properties, France. AOD, AAOD 

and SSA (Level 1.5) measured at 440 nm were retrieved from AERONET. AOD: 

Aerosol Optical Depth, AAOD: Absorption Aerosol Optical Depth, SSA: Single-

Scattering Albedo. 

Date Local 

time  

PM 2.5 mass 

concentration 

(μg m-3) 

DoLP AOD AAOD SSA 

Feb 22, 

2011 

11:00 292 7 3.1 0.24 0.927 

12:00 343 6 2.95 0.22 0.926 

Feb 25, 

2011 

10:00 98 34 1.08 0.12 0.887 

14:00 75 25 1.12 0.11 0.902 
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Increasing AAOD was found to decrease DoLP (N=33, Adjusted 

R2=0.31, P<0.001). However, predicting DoLP based on AAOD is less 

reliable than using PM2.5 mass concentration. In fact, urban cases with 

higher scattering efficiency can have lower Single Scattering Albedo 

(SSA) compared to biomass burning and desert cases with the same 

Aerosol Optical Depth (AOD) but different refractive index (Dubovik et al. 

2002). Therefore, while SSA (or AAOD) is a useful parameter, it is not a 

comprehensive variable for predicting DoLP. 

In Seoul, the contributions from secondary inorganic aerosols (SNA), 

organic matter (OM = organic carbon * 1.4), and elemental carbon (EC) 

are highest in winter, with SNA (especially nitrate) being the dominant 

component of PM2.5 (Park et al. 2018). Ground-based Lidar observations 

indicated that mineral dust was only a minor source of PM2.5 during our 

observation period. Using measured mass concentrations of various 

PM2.5 components (SO4
2-, NO3

-, Cl-, Na+, NH4
+, K+, Mg2+, Ca2+, OC, EC, 

S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br and Pb), Lasso 

regression models were constructed to select the best model for predicting 

celestial DoLP. It should be noted that due to missing values, only 27 

cases were included in the model. The selected best model includes NO3
-, 

Cl-, EC, and OC as predictors.   

Additionally, when building a regression model to predict DoLP using 

mass concentrations of SNA, OM, and BC, high multicollinearity was 

observed between OM and EC (VIF>10). Therefore, the relative 

contribution of increased mass concentrations of NO3
-, Cl-, and EC to 

DoLP was analyzed using a GLM with a Gamma distribution and log link 

function. The model including EC showed a better AIC value than the 

model including OM. Due to the skewness of data at low PM2.5 

concentrations, the GLM model was chosen. The results indicated that, in 

our observations, NO3
- alone can predict DoLP (Table 8). Figure 11 
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illustrates the decrease in DoLP as a function of increasing NO3
-. 

Furthermore, the results showed that a unit increase in EC could lead to a 

greater decrease in the mean DoLP value compared to SNA. This suggests 

that when the proportion of EC is higher than that of SNA in the total 

PM2.5, the DoLP can be significantly reduced. Although uncertainties 

exist, these findings represent the best estimate obtained in our study. 

 

Table 8. Relative contribution of increase in mass concentrations of NO3
-, Cl- 

and OC analyzed by GLM (Maximum DoLP = NO3
- + Cl- + EC , family = 

Gamma (link = log). 

 

 

Figure 11. Estimated effect of nitrate alone mass concentration (μg m-3) on the 

DoLP. 

 Estimate Std. Error t-value p value 

(Intercept) 4.00 0.036 111.518  

NO3
- -0.008 0.004 -2.026 <0.1 

Cl- -0.095 0.090 -1.053 0.301 

OC -0.016 0.014 -1.123 0.271 
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The proportion of absorbing aerosols, specifically EC, in the total 

PM2.5 is lower during winter in Seoul compared to scattering aerosols 

(Kim et al. 2018). In our analysis, the mass concentration of EC accounted 

for approximately 1.2-13% of the total PM2.5. The annual average value of 

EC in East Asian countries generally does not exceed 10%, while it can 

exceed 20% in African countries and Indian regions (Cheng et al. 2016; 

Snider et al. 2016). Therefore, the PM2.5 mass concentration-DoLP model 

in this study is particularly applicable to cases, especially in urban areas, 

where SNA dominate PM2.5. Since no Asian dust event occurred during 

our ground observation period, any effect of mineral dust was not analyzed. 

However, on January 8, 2023, it was possible to conduct an additional 

DoLP observation when dust particles were the dominant component of 

PM2.5 (as determined by ground-based Lidar observation). The PM2.5 

mass concentration was 56 μg m-3, and the observed DoLP was 36.9%. 

According to our model, the predicted range of DoLP was 38.5-42.2%. The 

observed DoLP was slightly lower than the predicted DoLP. Considering 

that the DoLP in Beijing was close to zero when the city was covered by a 

dust storm (AOD440=2.7, PM2.5 mass concentration=193 μg m-3), the 

impact of dust particles should be at least comparable to that of SNA and 

Elemental Carbon (EC). Additionally, a previous study demonstrated that, 

under the same AOD450 the DoLP in a desert area is estimated to be lower 

than that in an urban area (Kreuter et al. 2010). Thus, the PM2.5-DoLP 

model in this study gives rather higher estimates.  
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3.3 Potential impact of future air quality change on the visual 

navigation of honey bee 

3.3.1 Global changes in the spatial extent of risk hotspots and the 

frequency of limited-visibility days 

 

Annual total changes in spatial extent of risk hotspots and frequency 

of limited-visibility days (LVD) per hotspot in 2050 relative to 2010 are 

different by region and country (see Appendix 1 for classification of 

region and country). In 2010, the risk hotspots identified by the LB and 

UB estimations were predominantly captured in Sub-Saharan Africa 

(Figure 12a, b, respectively). This region already experienced high PM2.5 

mass concentration and had many risk hotspots in 2010; therefore, the 

high PM2.5 is expected to persist in 2050 (Table 9), with no remarkable 

increase in the frequency of LVD. PM2.5 is expected to increase 

significantly by 2050 in India and China (Figure 12c, d), two countries 

contributing over 40% to the total spatial increase in hotspots with 

increased LVD frequency in 2050, compared to that in 2010 (Figure 12e, f 

and Tables 10, 11). Over northern India, the frequency of LVD for honey 

bees is expected to increase by at least 100 days, as per the LB estimation. 

Further, some parts of the northeastern regions of China will experience an 

increase of more than 20 days in the frequency of LVD. Although the 

predicted increase in the LVD frequency is less pronounced in the UB 

estimation than that in the LB estimation, the LVD frequency in most of 

northern India is estimated to increase by more than 20 days (up to 103 

days, Table 13). Between 2010 and 2050, the frequency of LVD in the 

Sub-Saharan region is predicted to be generally less than 10 days (Figure 

12c, d); however, some countries, such as Chad, Niger, and Algeria, 

present the most challenging environments for honey bees where they can 

be perturbed during flight almost year-round as per both estimations. In 
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addition, both estimations captured the largest increase in the maximum 

number of LVD to occur in Bangladesh and Egypt following India (Tables 

12, 13).  

Almost every hotspot captured in 2010 is estimated to either 

maintain the status quo or experience an increase in the number of LVD 

by at least one day in 2050 (Figure 12e, f). In contrast, very few hotspots 

will experience a decrease in the number of LVD. Based on the LB 

estimation for 2050, the frequency of LVD will increase by at least one 

day over a 14.6 M km2 area that includes newly emerging hotspots. Of 

note, risk hotspots of 13.4 M km2 may experience no change in the 

number of LVD. Further, larger areas are expected to have no change as 

shown by the UB estimation. However, risk hotspots of 4.4 M km2 are to 

experience an increase in the frequency of LVD. 

Overall, the LB estimation shows that by 2050, the risk hotspots will 

be globally distributed over an area of approximately 28 M km2, which is 

almost the size of Africa, a 20% increase in the spatial extent of hotspots 

from that in 2010 will occur (Table 14). The UB estimation shows a more 

desirable result, where the risk hotspots will be distributed over 

approximately 10 M km2, with a 16% spatial increase between 2010 and 

2050 (Table 14).   

Since seasonality is a crucial factor in the dynamics of plant-

pollinator interactions (Rabeling et al. 2019; Martins et al. 2021), Figure 

13a and Figure 13b further demonstrate the seasonal variability of the 

increases in the LVD frequency evaluated by the LB and UB estimations, 

respectively. Here, regions where risk hotspots are dominant, namely 

Africa, the Eastern Mediterranean, South-Eastern Asia, and Western 

Pacific, were the focus. At the global scale, the greatest spatial expansion 

accompanied by increase in the frequency of LVD is expected to occur in 

December-January-February (DJF), followed by March-April-May 
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(MAM), September-October-November (SON), and June-July-August 

(JJA) as per the LB estimation, and DJF followed by SON, MAM, and 

JJA as per the UB estimation (Table 15). The spatial extent of risk hotspots 

in 2050 is expected to be the greatest in DJF, followed by SON, MAM, 

and JJA in both estimations. It is noteworthy that while much smaller 

number of the risk hotspots are captured in JJA compared to the other 

seasons, honey bees in E. Mediterranean countries are still likely to 

experience limited visibility for more than 10 days on average during this 

season. The likely range of LVD frequencies for each season in 2050 

(within the 95% lower and upper CIs of the PM2.5 thresholds for each LB 

and UB estimation) and the impacted areas are shown in Figure 14. 
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Figure 12. Global distribution of risk hotspots and annual total frequency of 

LVD as the number of LVD days per risk hotspot in 2010, as evaluated by the 

LB and UB estimations (a and b). Changes in the annual total frequency of LVD 

in 2050 compared to that in 2010 (c and d). The estimated spatial extent of risk 

hotspots where no change (status quo), increase, or decrease in the frequency of 

LVD is expected in 2050 (e). Bars with solid fill and oblique line fill represent LB 

and UB estimations, respectively. Note that hotspots where decreases in the 

frequency of LVD expected (<0 in c and d) are very few so that they are 

unnoticeable in the maps.   
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Table 9. Total spatial extent of risk hotspots by country and region projected 

in the LB and UB estimations in 2050. 

 

Country Extent (km2) 

India         2,602,000  745,000 

Myanmar           292,000  44,000 

Indonesia           140,000  16,000 

Bangladesh           129,000  71,000 

Thailand           104,000  30,000 

Nepal             14,000  - 

China         5,206,000        1,985,000  

Mongolia           597,000          186,000  

Cambodia           152,000           46,000  

Vietnam             59,000  15,000 

Laos             59,000  15,000 

Australia             55,000  - 

North Korea             36,000  - 

South Korea             13,000  - 

Democratic Republic of the Congo         1,037,000          526,000  

Sudan           955,000          468,000  

Nigeria           891,000          583,000  

Mali           783,000          540,000  

Chad           700,000  685,000 

Angola           673,000  323,000 

Central African Republic           635,000  449,000 

South Sudan           572,000  217,000 

Niger           527,000  527,000 

Cameroon           341,000  232,000 

Zambia           336,000  61,000 

Mauritania           313,000  313,000 
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Algeria           297,000  106,000 

Burkina Faso           259,000  183,000 

Ivory Coast           247,000           15,000  

 Ghana           216,000  77,000 

 Guinea           215,000  31,000 

 Senegal           212,000  45,000 

 South Africa           201,000  - 

 Mozambique           165,000  30,000 

 Benin           108,000  15,000 

 Togo             77,000  15,000 

 Namibia             69,000  - 

 Uganda             62,000  - 

 Sierra Leone             62,000  15,000 

 Republic of the Congo             47,000  - 

 United Republic of Tanzania             46,000  - 

 Somaliland             46,000  - 

 Ethiopia             31,000  - 

 Eritrea             30,000  - 

 Liberia             15,000  - 

 Guinea Bissau             15,000  - 

 Malawi             15,000  - 

 Pakistan           460,000  108,000 

 Iraq           324,000  221,000 

 Morocco           312,000          154,000  

 Iran           270,000  93,000 

 Afghanistan           242,000  38,000 

 Libya           228,000  215,000 

 Saudi Arabia           154,000           27,000  

 Syria           127,000           76,000  

 Egypt           121,000  107,000 
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Yemen           120,000  - 

 Tunisia             64,000  13,000 

 United Arab Emirates             43,000  - 

 Oman             14,000  - 

 Kuwait             14,000  - 

 Jordan             13,000  - 

 Lebanon             13,000  - 

 Russia         1,828,000          211,000  

 Kazakhstan           665,000           84,000  

 Turkmenistan           216,000           36,000  

 Kyrgyzstan           188,000           93,000  

 Turkey           159,000  12,000 

 Italy           141,000  - 

 Tajikistan             98,000           12,000  

 Romania             75,000  - 

 Ukraine             51,000           10,000  

 Greece             37,000  - 

 Uzbekistan             35,000  - 

 Republic of Serbia             34,000  - 

 Azerbaijan             24,000  - 

 Hungary             21,000           11,000  

 Israel             13,000  - 

 Slovakia             10,000  - 

 Canada             87,000  - 

 United States of America              7,000  - 

 Brazil           690,000  138,000 

 Argentina           394,000  68,000 

 Bolivia             75,000  - 

 Paraguay             29,000  - 
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Table 10. List of top 10 countries that account for a major part of the global 

increase in the spatial extent of the hotspots where the number of LVD are 

projected to increase by at least one day in 2050 relative to 2010 in the LB 

estimation.  

 

Country Extent (M km2) 

China             3.8 

India             2.6  

Nigeria             0.8  

Russia             0.5  

Sudan             0.5 

Pakistan             0.4  

Chad             0.4  

Mali             0.4  

Iraq             0.3 

Central African Republic             0.3  
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Table 11. List of top 10 countries that account for a major part of the global 

increase in the spatial extent of the hotspots where the number of LVD are 

projected to increase by at least one day in 2050 relative to 2010 in the UB 

estimation.  

 

Country Extent (M km2) 

China 1.1 

India 0.7 

Nigeria 0.4 

Niger 0.3 

Chad 0.3 

Sudan 0.2 

Cameroon 0.2 

Iraq 0.2 

Libya 0.1 

Mali 0.1 
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Table 12. List of top 30 countries that are to have the greatest peak in changes 

in the frequency of LVD per risk hotspot projected in the LB estimation. 

Increase in the number of days relative to 2010 is given. Top three countries with 

the highest value for each column are in bold. 

  

Country 
Max. number of 

days 
(+) Δ from 2010 

Chad 316 1 

Niger 272 0 

Algeria 250 0 

Mali 223 2 

Sudan 211 4 

Nigeria 207 0 

Mauritania 185 0 

Libya 184 1 

Iraq 176 4 

India 169 129 

Cameroon 167 0 

Morocco 156 0 

Egypt 154 28 

Burkina Faso 139 1 

Saudi Arabia 125 4 

Senegal 115 0 

Syria 112 9 

Iran 110 3 

Bangladesh 91 64 

Pakistan 90 20 

Democratic Republic of the 

Congo 
82 0 

China 81 4 

Mongolia 77 2 
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Yemen 73 4 

Angola 70 0 

Guinea 65 1 

Turkmenistan 63 2 

Ghana 58 0 

Central African Republic 57 0 

Togo 49 1 
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Table 13. List of top 30 countries that are to have the greatest peak in changes 

in the frequency of LVD per risk hotspot projected in the UB estimation. 

Increase in the number of days relative to 2010 is given. Top three countries with 

the highest value for each column are in bold.  

 

Country 
Max. number of 

days 

(+) Δ from 

2010 

Chad 225 1 

Niger 214 0 

Nigeria 152 1 

Mali 117 0 

Algeria 115 1 

India 106 103 

Cameroon 89 3 

Libya 81 1 

Mauritania 65 1 

Iraq 61 1 

Morocco 57 1 

Sudan 53 2 

Democratic Republic of the Congo 50 0 

China 49 1 

Angola 47 0 

Egypt 40 10 

Bangladesh 37 37 

Mongolia 32 2 

Burkina Faso 30 0 

Syria 27 3 

Ghana 26 0 

Saudi Arabia 26 0 

Iran 24 0 

Senegal 18 0 
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Central African Republic 13 0 

Zambia 13 0 

Brazil 10 0 

Pakistan 6 2 

Tunisia 6 0 

Benin 5 0 
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Table 14. Spatial extent of risk hotspots in 2050 and changes in the extent 

between 2010 and 2050 globally. 

 

Region LB estimation UB estimation 

Spatial 

extent of 

risk 

hotspots in 

2050 (km2) 

Δ between 

2010 –

2050 (%) 

Spatial 

extent of 

risk 

hotspots in 

2050 (km2) 

Δ between 

2010 –

2050 (%) 

Global 28,095,000 20.0 10,338,000 16.0 

 

 

 

 

Figure 13. Seasonal variability in the change in frequency of LVD between 

2050 and 2010, evaluated by the LB estimation (a) and the UB estimation (b).  
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Table 15. Seasonal changes in the spatial extent of risk hotspots in 2050 and 

changes in the spatial extent of risk hotspots of increasing LVD frequency in 

2050 relative to 2010 projected in the LB and UB estimations.  

 

Season 

LB projection UB projection 

Spatial 

extent of risk 

hotspots in 

2050 (km2) 

Spatial 

extent of risk 

hotspots of 

increasing 

frequency of 

LVD (km2) 

Spatial 

extent of 

risk 

hotspots in 

2050 (km2) 

Spatial 

extent of 

risk hotspots 

of 

increasing 

frequency of 

LVD (km2) 

MAM 12,345,000 6,090,000 3,268,000 869,000 

JJA 5,719,000 903,000 1,874,000 203,000 

SON 13,869,000 5,687,000 4,203,000 1,419,000 

DJF 21,257,000 10,330,000 8,525,000 3,114,000 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

76 

 

 

Figure 14. The likely range of LVD frequencies for each season in 2050 

based on the obtained 95% CIs of PM2.5 mass concentration thresholds of 

each LB and UB estimation (in panel a and b, respectively). 
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3.3.2 Predominant expansion of limited-visibility risk in India and 

China 

 

India and China are major contributors to the spatial expansion of risk 

hotspots where honey bees may experience increases in the frequency of 

LVD (Table 11, 12). In India, the total area of the risk hotspots by the LB 

estimation is expected to be 2.6 M km2 in 2050 (Table 9), which is an 

estimated 5-fold increase from 0.5 M km2 in 2010 (Figure 15a, compared 

with Figure 12a). Nearly all risk hotspots of 2010 in India may experience 

an increase in the number of LVD. The spatial extent of risk hotspots with 

increased LVD frequency by more than 20 days is greater than that with 

smaller increments, accounting for approximately 30% of the country’s 

vegetated land surface. Overall, 90% of the vegetated land surface is 

expected to undergo an increase in the frequency of LVD in the LB 

estimation. According to the UB estimation, the spatial extent of risk 

hotspots in 2050 is expected to be 0.7 M km2 (Table 10) and increases in 

frequency of LVD will occur in almost every hotspot of 2010.  

In China, the total area of risk hotspots is expected to reach 5.2 M km2 

by 2050 (Table 9), which is a 1.13-fold increase relative to the 4.6 M km2 

recorded in 2010 (Figure 15b). Risk hotspots distributed over an area of 

3.8 M km2 (Figure 12a), which accounts for than 80% of the hotspot area 

compared to that of 2010, will be subjected to an increase in the frequency 

of LVD. Most risk hotspots that comprise 40% of the total vegetated land 

surface will be subjected to small increments (1–5 days). Nonetheless, our 

estimations show that the spatial extent of such risk hotspots (3 M km2) by 

size is the greatest among all countries. The UB estimation evaluated that 

the spatial extent of risk hotspots in 2050 would be 2 M km2 (Table 10) 

and increases in the frequency of LVD are expected to occur in 1.1 M km2 

of this area between 2010 and 2050.  
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Figure 15. Changes in the spatial extent corresponding to different ranges of 

increases in the frequency of LVD in 2050 estimated in the LB and UB 

estimations. a: India, b: China. Bars in the graphs represent spatial extent 

(primary axis), and solid lines demonstrate the percentage of the spatial extent to 

the total vegetated land surface of each country (secondary axis).  
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4. Summary and Discussion 

 

In Chapter 3.1, the results of colony monitoring using RFID clearly 

demonstrated a strong association between foraging trip duration and 

PM2.5 mass concentration. This indicates that days with high PM2.5 mass 

concentrations can significantly impact honey bee foraging performance, 

regardless of the occurrence of a major dust storm event. High PM2.5 

mass concentrations are characteristic of severe urban pollution days.  

While the relationship between PM2.5 and DoLP has been discussed 

in a limited number of studies, the effect of wildfires on DoLP reduction 

due to multiple scattering of smoke aerosols has been highlighted 

(Hegedüs et al. 2007a; Shaw et al. 2014). According to a study by 

Hegedüs et al. found that during a forest fire outbreak, the average DoLP 

was lower than 8%, which is below the threshold necessary for bee 

navigation (Hegedüs et al. 2007a). 

Although the PM2.5 mass concentration alone has a significant 

effect on foraging duration, this effect is synergistic with overcast skies. 

The polarization pattern, measured by the angle of polarization, remains 

relatively consistent under different cloud conditions (Pomozi et al. 2001; 

Hegedüs et al. 2007b). However, the DoLP is reduced under overcast 

skies, indicating limited usefulness of celestial polarization information 

for bees. In completely overcast skies with thick clouds, the DoLP can 

drop to zero (Brines & Gould 1982; Pomozi et al. 2001). Therefore, it is 

logical that the effect of PM2.5 mass concentration synergizes with 

overcast skies, supporting our findings. This implies that honey bees face 

greater difficulties in navigation under very cloudy skies when air quality 

is poor.     

Furthermore, the results demonstrate that, contrary to our hypothesis, 

foraging duration increases in cases dominated by anthropogenic 
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pollutants (smaller DR) rather than dust-dominated cases (larger DR). The 

DR provides valuable information for characterizing the dominant particle 

type in the atmosphere in terms of their physical shape (Ge et al. 2011; Bi 

et al. 2017). During an Asian dust event, non-spherical particles are 

predominantly present in the atmosphere, and these irregularly shaped 

mineral particles exhibit a large DR.  

DR and size describe different optical properties of PM, larger 

particles tend to have a larger DR. Empirical studies conducted in Beijing 

showed that the average hourly and monthly DR for coarse particles with 

an optical size (Dp) of 5 µm was higher than that for fine particles with 

Dp of 1 µm (Tian et al. 2018). The DoLP depends greatly on the size of 

scattering particles (Schechner et al. 2003), and larger particles are less 

effective in terms of depolarization. Light scattering for a given mass 

concentration of PM increases with decreasing particle size (Hinds 1999). 

Therefore, our visibility is also influenced by fine mode PM (ranging from 

0.1 – 2 µm). The microphysical properties of fine mode particles strongly 

affect the DoLP of a cloudless sky (Boesche et al. 2006). Thus, the effects 

of DR and PM2.5 mass concentration on foraging duration can counteract 

each other. 

This finding is consistent with a study exploring how different 

combinations of aerosol mode and AOD influence the DoLP. Over land 

surfaces with a given AOD, the average DoLP of fine mode particles is 

lower than that of coarse mode particles characterized as polluted dust 

(Chen et al. 2020). Additionally, in both coarse and fine modes, the DoLP 

is reduced as AOD increases (Chen et al. 2020). Taken together with our 

results, it is the mass concentration of fine mode particles rather than the 

dominant morphology that is important in determining the DoLP of the 

sky. This could explain why foraging duration does not increase with 

increasing DR in our study. However, when foraging trip duration was 
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regressed on DR only (alongside meteorological variables) in our study, 

DR did not show any significant effect, while the opposite was true for 

PM2.5 mass concentration (Table 6). Therefore, the mass concentration of 

PM2.5 overrides the effect of DR on honey bee foraging performance.    

In an experimental study, it was observed that disoriented colonies 

had significantly longer average foraging durations compared to oriented 

colonies (I’Anson Price et al. 2019). The increased trip duration observed 

in our study during a heavy air pollution episode can be attributed to the 

complexity of visual cues, as expected. In an experimental study, it was 

observed that disoriented colonies had significantly longer average 

foraging durations compared to oriented colonies  (I’Anson Price et al. 

2019). The increased trip duration observed in our study during a heavy 

air pollution episode can be attributed to the complexity of visual cues, as 

expected. Further, although it was unable to quantify this precisely, it is 

notable that a few observations during DS (degraded air quality 

conditions) indicated that forager bees either disappeared after attempting 

outbound trips or did not initiate foraging in the first place. 

It is noteworthy that the foraging duration of forager bees did not 

return to pre-dust storm levels after the dust storm. Despite the average 

PM2.5 mass concentration during the post-dust storm period (49 µg m−3) 

being as low as that during the pre-dust storm period (48 µg m−3), the bees 

still spent 32 minutes more in foraging. This may be attributed to physical 

damage they incurred and the low quality of food foraged during the dust 

event. Although variations in the quality or availability of floral resources 

throughout the study period were not investigated, a causal link between 

foraging trip duration and resource availability depending on different air 

quality should be considered in further studies. Foragers frequently 

encounter airborne PM, which could lead to poor foraging performance 

due to exposure to toxic chemical elements (Negri et al. 2015). 
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Additionally, newly-stored (1-day-old) fresh pollen is consumed three 

times more often than older stored (10-day-old) pollen (Carroll et al. 

2017). This suggests that a state of malnutrition within the colony may 

persist if low-quality food resources are stored and consumed for several 

days. These factors contribute to the acute impacts of poor air quality on 

bee foraging.  

In a recent study conducted in India, where many of the world's most 

polluted cities are located, significant correlations were found between 

increases in PM10 and physiological changes in Giant Asian honey bees 

(Apis dorsata) (Thimmegowda et al. 2020). Giant Asian honey bees from 

severely polluted areas in Bangalore, India, exhibited significantly lower 

survival rates. These bees from highly polluted sites also had higher 

exposure to toxic metals such as lead (Pb). Serious physical damage to 

wings, antennae, and hindlegs was observed as well. Furthermore, colony-

level chronic impacts through gene expression can be predicted. For 

example, vitellogenin, associated with the survival of worker bees, was 

found to be depleted in bees sampled from highly polluted sites compared 

to those from low-polluted sites (Thimmegowda et al. 2020). This is 

significant because reduced fitness of individual foragers and their 

colonies due to degraded foraging performance can have detrimental 

impacts on pollination services. In an additional colony monitoring 

conducted in 2023, a significant positive correlation was found between 

ambient PM2.5 mass concentration and inside-hive PM2.5 mass 

concentration (R2=0.54, P<0.05). Therefore, it cannot be excluded that the 

physiological effects of particulate matter on the rest of the bees that 

stayed inside the hive during a severe pollution episode and did not 

perform foraging trips. 
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Figure 16. Correlation between ambient PM2.5 mass concentration and 

inside-hive PM2.5 mass concentration.  

 

The experimental design of this study was constrained due to a 

severe outbreak of air pollution during the study period. Additionally, it 

should be noted that our results may not provide a comprehensive analysis 

of specific air pollutants such as nitrogen dioxide and hydroxyl radicals. 

For instance, Fuentes et al. (2016) examined the impact of air pollutants, 

including ozone, on floral scents and observed significant degradation of 

floral volatile compounds even under moderate levels of air pollution. 

Honey bee foragers experienced delays in locating floral sources even at 

very low ozone levels (less than 20 parts per billion per volume). However, 

during episodes of heavy pollution, relatively short durations of sunshine 

can impede the production of surface ozone by ozone precursors like 

hydroxyl radicals (Lee et al. 2004). Interactions between different types of 

pollutants can yield diverse effects on honey bee foraging. 

In summary, the findings presented in Chapter 3.1 lead us to 

conclude that the foraging performance of individual honey bees may be 
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hindered by poor air quality. This is the first empirical study to 

quantitatively assess variations in foraging duration based on air quality 

while also analyzing the relationship between foraging duration and 

atmospheric optical properties. Impaired foraging performance can 

contribute as an additional stressor alongside other factors believed to be 

the main proximate causes of the global decline in bee populations. 

In Chapter 3.2, the aim was to empirically quantify the relationship 

between atmospheric PM2.5 and the DoLP and utilize this relationship to 

identify global risk hotspots where honey bees might experience limited 

visibility during flight. Statistical analyses estimated two threshold levels 

of PM2.5 mass concentrations: 130 μg m-3 (lower bound (LB) estimation) 

and 240 μg m-3 (upper bound (UB) estimation). At these thresholds, the 

DoLP over the sky starts to decrease below the navigational threshold for 

honey bees. Although the primary dataset was collected between the 

December solstice and March equinox, it was assumed that these PM2.5 

thresholds represent the higher-end estimates overall. This is because 

higher relative humidity during other seasons can generally reduce the 

DoLP to levels lower than those estimated in the model. To supplement 

the analysis, additional DoLP observations were conducted in November 

2022 and collected 16 supplementary data points. Using these additional 

data, a supplementary PM2.5-DoLP model (N=56) was constructed to 

compare its explanatory power and confidence interval with the original 

model presented in the manuscript. It is important to note that the ground 

observation station was relocated to a site approximately 600 meters away 

from the original site. Consequently, only the maximum DoLP values 

were estimated for the additional observations. Therefore, the comparison 

of explanatory powers between the original and supplementary PM2.5-

DoLP models was only conducted for the maximum DoLP. Nevertheless, 

it was assumed that changes in average DoLPs follow similar patterns to 
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those in the maximum DoLPs, as the distribution of DoLP patterns across 

the sky is highly uniform. Additionally, in the previous analysis, the 

average and maximum DoLPs exhibited a strong correlation (r=0.90). The 

explanatory power of the new PM2.5-DoLP model, incorporating the 

additional observation data, was slightly lower (adjusted R2=0.69, P value 

<0.001) than that of the original model (adjusted R2=0.71, P value<0.001). 

This slight difference can be attributed to the relocation of the observation 

site and the slightly extended seasonal range of observation (compared to 

the original range from the December solstice to the March equinox). 

However, Figure 2 illustrates that the CI for the PM2.5 threshold, 

estimated from the supplementary PM2.5-DoLP model, expanded to 199-

291 μg m-3, with the lower bound becoming smaller compared to the CI 

from the original model (206-292 μg m-3). Furthermore, the best-fit 

threshold based on the upper bound estimation (using the maximum 

DoLP) is slightly smaller (235 μg m-3) than the thresholds from the 

original model (240 μg m-3). 

 

 

Figure 17. Original PM2.5-DoLP model with data collected in Beijing (left) 

and supplementary PM2.5-DoLP model incorporating observations in Seoul 

from 2022 (right).  
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As demonstrated throughout Chapter 3.3, in an area greater than 10 

M km2 globally, honey bees are expected to experience visual impairment 

for at least one day in 2050, even under the UB estimation. Countries with 

stronger regulatory policies on air quality generally have only a few risk 

hotspots. In contrast, the risk of limited visibility for honey bees is 

expected to be prevalent in the Sub-Saharan region, India, and China. 

Furthermore, based on the spatial extent and frequency of limited -

visibility days (LVD), the risk is estimated to significantly increase in 

India and China by 2050. According to our estimations, honey bees in 

India and China will experience a rapid reduction in clear-sky visibility, 

impeding their optimal foraging for survival and plant pollination. This 

situation has serious implications for plant-pollinator interactions in the 

ecosystem. 

Safeguarding the fundamental relationship between plants and 

pollinators is crucial for agriculture and farming-based livelihoods in 

various regions (Klein et al. 2007; Christmann 2019). Many African and 

Asian countries are notorious for poor air quality (Akimoto 2003; 

Baldasano et al. 2003). However, their agricultural dependence on bee 

pollination has been growing over the past few decades (Potts et al. 2016; 

Aizen et al. 2019). Among African countries, the socio-economic status of 

the Sub-Saharan region, especially in areas heavily reliant on pollinator-

dependent vegetation production, is significantly threatened (Stein et al. 

2017; Tibesigwa et al. 2019). In Asia, particular attention should be paid 

to India and China as the potential impacts of worsening air quality on 

honey bee navigation are expected to be the greatest in these countries by 

2050. India is the world's second-largest producer of fruits and 

vegetables, , with over 70% of the population relying on agriculture as a 

source of income (Ahmad et al. 2011). In some regions, agricultural 

production dependent on honey bee pollination is active even during the 
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DJF season, which poses the highest evaluated risk based on our 

estimations (Bhalchandra et al. 2014; Sambasivam et al. 2020). China 

receives the greatest economic benefit from pollination globally, with the 

northeastern region earning the highest profit (Lautenbach et al. 2012). 

Northeastern China earns the biggest profit (Lautenbach et al. 2012). 

However, this region has been identified as having the maximum number 

of risk hotspots within the nation in both estimations. Failure to meet the 

pollination demand for agricultural production in India and China may 

cause food shortages and global micronutrient deficiency (Ellis et al. 

2015; Smith et al. 2015).  

China and India are the two largest recipients of pollination benefits 

and, coincidentally, the two largest emitters of anthropogenic aerosols (Lu 

et al. 2011; Cheng et al. 2016). In recent years, the annual average PM2.5 

in many cities in the two countries (e.g., parts of the Indo-Gangetic Plain 

(van Donkelaar et al. 2021), Delhi (Cheng et al. 2016), the central Indian 

region (Massey et al. 2009), and the capital city of Hebei Province in 

China (Brauer et al. 2016) have experienced annual average PM2.5 

concentrations exceeding the threshold concentrations defined in our 

analyses.  

Note that our estimations are conservative in two ways. First, the 

measured DoLP values in this study were obtained when secondary 

inorganic aerosols were dominant, Second, the measured DoLPs 

represented the maximum DoLPs observed during the day. In the global 

context, PM2.5 is primarily classified into different components, including 

SNA (sum of sulfate, nitrate, and ammonium), OM (organic matter), BC 

(black carbon), dust, and sea salt (Cheng et al. 2016). Each type of aerosol 

has distinct microphysical properties and refractive indices, which 

influence their extinction efficiency and, consequently, the DoLP 

(Dubovik et al. 2002; Li et al. 2022a). The effects of different types of 



 

 

 

 

88 

aerosols on PM2.5 during our observations were accounted for in the CIs 

estimated in our PM2.5 mass concentration-DoLP model. Among the 

ground-measured metrics, extinction coefficients could serve as the most 

straightforward variable for predicting the DoLP. However, the statistical 

relationship between the extinction coefficients and the (maximum) DoLP 

had a much lower explanatory power (R2=0.44) compared to the 

relationship between PM2.5 mass concentrations and the maximum DoLP 

(R2=0.72). Notably, when using real measurements of each PM2.5 

component during our observations, Lasso regression predicts that a 1 unit 

increase in OM has a larger effect on the DoLP compared to SNA (see 

Methods). Given that SNA, especially nitrate, was the dominant 

component of PM2.5 during the DoLP observation period in our study 

location (Seoul), the DoLP predicted by PM2.5 mass concentration in 

other regions, such as the Eastern Mediterranean and India, where the 

contribution of OM to PM2.5 surpasses that of SNA, may be lower than 

estimated by the model. In addition, theoretically, the DoLP is maximum 

when the solar zenith angle (SZA) is 90°, corresponding to sunrise or 

sunset (Dahlberg et al. 2011). As the DoLP exhibits greater sensitivity to 

smaller SZAs and longer wavelengths (Pust & Shaw 2012; Shaw et al. 

2014), the DoLP in the blue band (peak sensitivity at 450 nm) was 

observed during sunrise to enhance accuracy. Although honey bees (Apis 

mellifera in this study) are most sensitive to polarized skylight in the 

ultraviolet (UV) spectrum (345–360 nm) (Barta & Horváth 2004; Sakura 

et al. 2012; Ogawa et al. 2017), there is only a slight qualitative difference 

between the DoLP values obtained from the blue band and those from the 

UV band (Pomozi et al. 2001; Gassó & Knobelspiesse 2022). In fact, the 

DoLP in the band can be significantly smaller than that in the blue band, 

both under clear and polluted sky (Brines & Gould 1982; Coulson 1988; 

Dahlberg et al. 2011; Gassó & Knobelspiesse 2022). It is worth noting that 
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bumblebees (Bombus hortorum), another widely distributed bee pollinator, 

are most sensitive to polarized skylight in the UV and blue (430 nm) 

spectral regions88. Collectively, the expected DoLP based on PM2.5 mass 

concentrations in different regions and at different times should be lower 

than that estimates provided by the model in this study.    

In conclusion, future air quality deterioration due to rising 

particulate matter concentrations is primarily influenced by current 

anthropogenic activities, which have the potential to significantly increase 

the risk of limited visibility for honey bees and reduce the DoLP across 

the sky. India and China are the top two countries expected to experience 

drastic increases in the spatial extent and frequency of LVD. Although this 

study did not consider the effects of climate change on air quality due to 

high uncertainty, increasing anthropogenic warming is projected to 

exacerbate the effect on air quality (Hong et al. 2019).  For example, 

increasing extreme fire weather is a widely agreed-upon result of 

anthropogenic climate change (Touma et al. 2021). Any efforts to reduce 

anthropogenic emissions may potentially be offset by the increased 

probability of wildfire occurrence, as witnessed in the western United 

States (McClure & Jaffe 2018). Even with strong mitigation, PM2.5 

concentrations in the region are projected to increase. With weak 

mitigation efforts, PM2.5 mass concentrations in the western US are 

projected to increase by approximately up to 150 μg m-3 (Xie et al. 2022). 

In addition to fire activity, large-scale circulation changes will alter 

weather conditions conducive to deadly pollution days (Hong et al. 2019). 

Increases in atmospheric stagnation days accompanied by increasing heat 

waves and decreasing precipitation in the future are projected to be the 

main contributors to future PM2.5 increases, even under a medium-low 

emission scenario (Hong et al. 2019). There has been an increasing 

number of studies discussing the air quality co-benefits of climate change, 
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and vice versa (Nemet et al. 2010; West et al. 2013; Thompson et al. 

2014; Vandyck et al. 2018; Karlsson et al. 2020). Initially, these 

discussions primarily focused on monetary values related to human health 

and mitigation implications. However, it is evident that more recent 

research is now exploring the co-benefits arising from air quality and 

climate change regulation on the overall welfare of the ecosystem, such as 

enhancing biodiversity. 

Risk hotspots are and will continue to be disproportionately 

distributed globally. However, the impacts of impaired navigation of 

honey bees can be transboundary, thereby requiring global cooperation on 

air quality control. Nonetheless, several precedents have been witnessed 

with atmospheric PM2.5 reduction, especially under strict regulation, even 

in the short term, providing an optimistic outlook (Zhang et al. 2010; 

Dhaka et al. 2020; Mahato et al. 2020; Singh & Chauhan 2020; van 

Donkelaar et al. 2021; Yao et al. 2021), providing optimistic outlook. In 

fact, the implementation of strong clean air actions in China has resulted 

in recent nationwide improvement in air quality. If this trend continues, 

the risk of limited visibility in China could be lower than what is 

presented here (Zhang et al. 2019). However, it is important not to 

underestimate the potential offset of reduction in aerosol precursor 

emissions by the effects of topography, meteorology, and aerosol 

interactions, which can lead to increased PM2.5 mass concentrations (Le 

et al. 2020; Li et al. 2022c). Unfavorable topography and meteorological 

conditions often play decisive roles in heavy air pollution throughout 

China, especially in the Northeast region where many of the estimated 

limited visibility hotspots are located (Li et al. 2022b). Interactions 

between different airborne pollutants can also promote PM2.5 elevations 

(Le et al. 2020; Li et al. 2021). Both aspects were reflected in unexpected 

increases in PM2.5 mass concentration with substantial reduction in 
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anthropogenic emissions during a preventive lockdown period over China 

(Le et al. 2020). A huge reduction in precursor emissions and the 

consequential aerosol radiative effect accounted for the enhanced PM2.5 

levels by increasing surface ozone. The increase in ozone enhanced 

atmospheric oxidizing capacity, inducing secondary aerosol formation. In 

conclusion, the overall dissertation highlight the importance of regulating 

air quality to safeguard plant-pollinator interactions. 
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5. Concluding remarks  

 

In this dissertation, compelling evidence was present that that air 

pollution impairs clear sky visibility for honey bee (Apis mellifera), the 

most versatile pollinator, by reducing the intensity of polarized light. 

Further, the potential global implications of air quality changes on the 

visual navigation abilities of honey bees in the year 2050 were identified 

and estimated. The risk of limited visibility identified here could be an 

overarching stressor to existing threats to pollinator-plant interactions, 

such as pesticide use, habitat destruction, parasites, and pathogens that 

have been widely studied.  

Adverse associations between poor air quality, particularly with 

respect to PM2.5 human health have been extensively investigated in 

various epidemiological and modeling studies. However, research 

focusing on the impacts of poor air quality with increasing PM2.5 

emission on species other than humans has been limited. In addition, 

several studies have examined the ecological impacts of changes in 

radiation levels resulting from atmospheric air pollutants, focusing on 

plant growth and crop production. However, limited attention has been 

given to the interactions between light properties and pollutants and their 

potential effects on plant pollinators. This dissertation provides new 

insights into the ecological impacts of increasing emission of 

anthropogenic air pollutants.  
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국문초록  

 
생태계의 다양한 수분매개곤충 중 벌은 주요 수분매개자로 많은 

연구가 이루어져 왔다. 그러나 지난 수십 년간 생물학적∙비생물학적 

원인들로 전지구적 벌 개채수가 계속해서 감소하고 있다. 이러한 경향에 

먹이자원의 감소, 서식지 파괴, 살충제 사용과 같은 인위적 스트레스의 

증가가 벌 개체수 및 벌의 채이 활동에 영향을 미치는 원인으로 

지목되어 연구되고 있다. 여기에 대기질의 저하 또한 벌의 채이 활동을 

방해할 수 있다. 대기 중 미세먼지의 증가는 태양빛 중 전자기파의 

과도한 산란을 일으키고 이는 빛의 선형편광도 감소로 이어진다. 서양 

꿀벌(Apis mellifera)은 태양 주변에 나타나는 선형편광에 담긴 광학적 

정보를 활용하여 비행한다. 그러나 꿀벌이 이러한 광학적 정보를 비행에 

활용하기 위해서는 최소 15%의 선형편광도(Degree of linear 

polarization, DoLP)가 기반되어야 한다.  

대부분의 대기 중 입자상 에어로졸의 질량 산란 효율은 직경이 큰 

입자보다 직경이 1 µm 미만인 입자에서 크다. 따라서, PM2.5(직경이 2.5 

µm 이하인 입자)로 나타내어지는 초미세먼지의 농도는 DoLP와 상관성이 

있다. 결과적으로 PM2.5 질량농도 증가에 따른 DoLP의 감소는 꿀벌의 

시계를 제한함으로써 채이 활동 효율을 저하시킬 수 있다. 그러나 

대기질의 저하가 실제 꿀벌의 채이 활동에 어떤 영향을 주는지에 대한 

경험적 증거가 부족했다. 이 연구는 대기 중 PM2.5 질량농도와 DoLP 

사이의 상관관계를 밝히고, PM2.5 증가에 따른 꿀벌 시계 제한의 

시공간적 규모를 예측하는 것을 목표로 한다.   

무선주파수인식장치를 활용하여 꿀벌 군집의 채이 활동을 모니터링 

함으로써 대기 중 고농도 미세먼지 발생 시의 꿀벌의 평균 채이 시간을 

저농도 미세먼지 발생 시의 평균과 비교할 수 있었다. 고농도 미세먼지 

발생 시의 꿀벌의 채이 시간은 그렇지 않은 경우보다 평균 71% 

증가하였다. 또한, 대기 중 미세먼지 농도가 다시 낮아졌을 때 채이 

시간이 그 이전의 수준으로 회복되지 않았다. 그러나, 모니터링 결과를 

바탕으로 구축한 선형 모형을 통해, 고농도 미세먼지 발생과 상관없이 

PM2.5 질량농도의 증가가 꿀벌 채이 시간을 지수적으로 감소시킴을 

분석하였다. 입자의 모양을 설명하여 발생 기원을 구분할 수 있게 
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해주는 광학적 지표인 편광소멸도(depolarization ratio)를 변수로 한 

통계 분석에서 대기 중에 황사 입자와 같은 비구형의 입자가 많은 

날보다 일반적인 도심 오염물질이 더 압도적인 경우 PM2.5 질량농도의 

DoLP 감소에 대한 효과가 훨씬 더 큰 것으로 분석되었다. 이러한 실제 

필드에서의 모니터링 결과가 갖는 중요한 이유는, 늘어난 비행 시간으로 

꿀벌이 살충제나 해충과 같은 다른 스트레스 원인들에 노출될 확률을 

높아지기 때문이다.  

필드에서의 경험적 증거를 토대로 PM2.5 증가에 따른 꿀벌 시계 

제한의 시공간적 규모의 잠재적 증가를 분석하기 위해 지상관측과 미래 

예측으로 이루어진 종합적인 연구를 수행하였다. 우선, 장기간의 편광 

지상관측을 통해 PM2.5 질량농도와 DoLP 사이의 상관관계를 

정량화하였다. Digital all-sky imaging polarimetry system을 활용하여 

2018-2019년, 2020-2021년의 기간동안 편광 관측을 수행하였다. 이후 

전천 촬영물에 대해 스토크스 매개변수를 사용하여 DoLP를 산출하였다. 

PM2.5 질량농도와 DoLP 사이의 상관관계를 모수화함으로써 전체 하늘의 

DoLP를 꿀벌이 비행에 사용할 수 있는 최소한의 DoLP(15%) 이하로 

감소시키는 PM2.5의 임계 질량농도를 산출할 수 있었다. 꿀벌과 

선형편광도에 관련한 연구는 전체 하늘에 나타나는 다양한 DoLP 값 중 

최대 DoLP에 대해서만 이루어져 왔으나, 구름과 같은 영향으로 실제 

꿀벌이 비행 중 직면하는 하늘에 항상 DoLP의 최대값이 분포하는 것은 

아니다. 따라서 이 연구에서는 최대 DoLP와 평균 DoLP 두가지 경우를 

나누어 임계 PM2.5 질량농도를 산출하였다. 즉, 일정 PM2.5 질량농도에 

있어 꿀벌의 비행 중 전체 하늘에 나타나는 DoLP는 이 최대값과 평균값 

사이에 놓이게 된다.  

앞서 산출한 PM2.5 임계 질량농도를 ECHAM5/MESSy 대기 기후 화학 

모형이 모의한 2050년 전지구 PM2.5 예측값에 투영하였다. 이 모형은 

대기질 개선을 위한 노력이 2010년 수준에 머무를 것이라고 가정하고 

2050년의 지역별 인구 증가 및 경제적 성장을 기반으로 미래의 대기질을 

모의한다. 이러한 모형에의 투영을 통해 꿀벌이 시계 제한을 경험할 

것으로 예측되는 고위험지역(risk hotspot)을 확인하고, 2050년 꿀벌 

시계 제한의 시공간적 규모를 분석하였다. 분석 결과, 인도와 중국에서 

꿀벌 시계 제한의 시공간적 규모 증가가 가장 클 것으로 나타났다. 

보수적인 상한계 추정임에도 불구하고, 인도는 꿀벌 시계 제한의 빈도가 



 

 

 

 

109 

1일 이상 늘어나는 고위험지역이 2010년 0.06 백만 km2 수준에서 2050년 

0.75백만 km2로 크게 증가할 것으로 추정되었다. 한 편, 중국에서는 

2050년 고위험지역이 2백만 km2에 걸쳐 분포하는 것으로 추정되었는데 

이 중 1.1백만 km2의 지역에서 2010년 대비 시계 제한의 빈도가 최소 

1일 이상 증가하는 것으로 분석되었다.  

대기 중 미세먼지 증가에 기인한 꿀벌의 시계 제한과 이에 따른 

벌의 채이 시간의 증가는 앞서 연구된 기타 인위적 스트레스 요인에 

더불어 식물-수분매개자 간 관계를 위협하는 주요 인자가 될 수 있다. 

종합적으로, 이 학위논문의 연구결과는 식물-수분매개자 간 상호작용를 

보호함에 있어 대기오염 완화의 중요성을 강조하고 있다.           

 

 

주요어: 생물다양성, 수분서비스, 꿀벌, PM2.5, 선형편광도, 대기질 
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