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Abstract

Information Theoretic Analysis of Machine Learning

Sungyeop Lee

Department of Physics and Astronomy

The Graduate School

Seoul National University

I aim to provide a deeper understanding of how machine learning works so

great for solving various problems. Using information theory, I study the in-

formation flow, internal representations, and parameter optimization of neural

networks. First, I visualize the compression and transmission of information

flows of various types of autoencoders, and examine how the various models

remove irrelevant information to reproduce input data. Second, I observe that

the internal representation of neural networks is so special that the frequency

of distinct representations follows scale-invariant power laws both in supervised

and unsupervised learning. I derive how this universal behavior can naturally

arise without explicit regularization during the learning process. Finally, I in-

troduce the mirror descent algorithm in terms of information geometry, and

explain how the learning algorithm can effectively update the parameters of

learning models in the dual space of the primary parameter space. In conclu-

sion, information theory and geometry are excellent tools to visualize, analyze,

and optimize neural networks.

Keywords: Machine learning, Deep learning, Information theory, Information

geometry, Statistical physics

Student Number: 2012-23096
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Chapter 1

Introduction

Recently, machine learning shows successful applications in various fields. In

particular, as data includes more complex patterns, deep learning is more pow-

erful for the data analysis than traditional statistical models. Deep learning

approximates mapping between input and output as nonlinear transformations

using numerous parameters. Currently, deep learning can be technically trained

using advanced optimization methods, but there is still a lack of understanding

on how to interpret the inside of deep learning. In order to develop advanced

machines that can be explained through principle-based learning, it is necessary

to understand the inside of the machine. In this thesis, I analyze various phe-

nomena that arise in the hidden latent and parameter space of deep learning in

terms of information theory and statistical physics.

Information theory is an excellent tool to examine the learning process in

deep neural networks as information transmission and compression of data.

The information flows can be visualized on the information plane of the mutual
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information among input, hidden, and output layers. I examine how the infor-

mation flows are shaped by the network architectures, such as depth, sparsity,

weight constraints, and hidden representations. I adopt autoencoders (AEs)

as a model of deep learning, because they have clear guidelines for their in-

formation flows, and various species, such as vanilla, sparse, tied, variational,

and label AEs. I measured their information flows using Rényi’s matrix-based

α-order entropy functional. As learning progresses, they show a typical fitting

phase where the amounts of input-to-hidden and hidden-to-output mutual in-

formation both increase. In the last stage of learning, however, some AEs show

a compression phase, where input-to-hidden mutual information diminishes. I

derived the physical meaning of the compression phase through the informa-

tion plane analysis, and visualized the different patterns of information flows

according to the characteristics of AE variants.

Information bottleneck theory has proposed that neural networks are ef-

fective information compressors. Motivated from this theory, I examined the

internal representations of neural networks. When input data is converted into

internal representations in the learning process, similar data have close inter-

nal codes. It has been observed that data clustering based on the shared code

follows the power law. This scale-invariant distribution implies that machine

learning largely compresses frequent typical data, and at the same time, differ-

entiates many atypical data as outliers. The scale invariance was explained in

the previous research in the case of unsupervised learning. I extend this find-

ing into supervised and self-supervised learning. Furthermore, I theoretically

derive how the power laws can naturally arise in all types of machine learning.

In terms of information theory, the scale-invariant representation corresponds

to a maximally uncertain data grouping among possible representations that

guarantee pre-specified learning accuracy. It is experimentally verified that this
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phenomenon can emerge robustly regardless of the model architecture and train-

ing time. In addition, I investigated how this result is affected by input data

distributions by using two-dimensional equilibrium Ising spin data.

The above studies focus on the representation of neural activation, while

the following study is an analysis of model parameters in the learning process.

Training deep neural networks is a complex optimization problem in the geom-

etry of the loss landscape. Various optimization techniques based on gradient

descent (GD) have been developed to efficiently find the global minimum of the

loss function. In particular, mirror descent (MD), a generalization of GD, not

only has a profound background from the information geometry perspective,

but also technically implements the implicit regularization. I experimentally

validate the performance of MD when training the overparameterized model

where the number of parameters is greater than that of sample numbers. It

is confirmed that when optimal MD corresponding to the model architectures

is applied, training performance is remarkably enhanced and even better than

momentum-based adaptive algorithm. By examining the update process of MD,

I identify the potential to treat the gradient vanishing problem with the suitable

choice of convex function empirically adopted in MD.
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Table 1.1 Abbreviations used in this thesis.

AE Autoencoder

BCE Binary Cross Entropy

CE Cross Entropy

DPI Data Processing Inequality

ELBO Evidence Lower Bound

GD Gradient Descent

IB Information Bottleneck

IP Information Plane

KL Kullback-Leiber

LAE Label Autoencoder

MD Mirror Descent

MSE Mean Squared Error

PCA Principal Component Analysis

RBMs Restricted Boltzmann Machines

RKHS Reproducing Kernel Hilbert Space

SAE Sparse Autoencoder

TAE Tied Autoencoder

VAE Variational Autoencoder
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Chapter 2

Information flows of machine
learning

2.1 Information plane analysis

Since the development of information theory as a theory of communication by

Shannon [1, 2], it has played a crucial role in various domains of engineering

and science, including physics [3], biology [4], and machine learning [5]. The

information bottleneck (IB) theory interprets the learning process of neural

networks as the transmission and compression of information [6]. Neural net-

works encode input X into internal representation Z; then, they decode Z to

predict the desired output Y . The IB theory is a rate-distortion theory that

compresses irrelevant information in X for predicting Y to the maximum ex-

tent. The objective function of this theory can be mathematically described as

minimizing the mutual information I(X;Z) between X and Z, given a required
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transmission Ireq of the mutual information I(Z;Y ) between Z and Y :

min
p(Z|X)

I(X;Z)− β
[
I(Z;Y )− Ireq

]
, (2.1)

where β is a trade-off coefficient that balances the information compression

and transmission. The numerical method for solving this optimization problem,

so called Blahut–Arimoto algorithm [7, 8], has been extensively studied [9, 10].

Theoretical aspects of IB theory and its applications are well summarized in [11].

Here, it is important to note that machine learning models, including ours

in this study, do not take Equation (2.1) as the loss function, although new

deep variational IB models directly adopt it as the loss function [12]. The IB

theory provides a nice interpretation of learning process, but it does not work

for the optimization of neural networks in general. The mutual information

provides a potent tool for visualizing the learning processes by displaying a

trajectory on the two-dimensional plane of I(X;Z) and I(Z;Y ), called the in-

formation plane (IP). Through IP analyses, Shwartz-Ziv and Tishby found that

the training dynamics of neural networks demonstrate a transition between two

distinct phases: fitting and compression [13,14]. Supervised learning experiences

a short fitting phase in which the training error is significantly reduced. This

first phase is characterized by increases in I(X;Z) and I(Z;Y ). Then, in the

learning process, a large amount of time is spent on finding the efficient internal

representation Z of input X when the fitting phase secures a small training er-

ror. During this second phase of compression, I(X;Z) decreases while I(Z;Y )

remains constant. To avoid unnecessary confusion with the usual data com-

pression or dimensionality reduction, henceforth, I denote the second phase as

“simplifying phase” instead of the original name of “compression phase”.

The simplifying phase associated with the generalization ability of ma-

chine by compressing irrelevant information of training data to prevent overfit-
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ting [14]. The non-trivial simplifying phase and its association with generaliza-

tion have been further observed in other studies using different network models

with different data; however, the universality of the simplifying phase remains

debatable [15–17]. The debates can be partly attributed to the sensitivity to-

ward the architecture of neural networks, activation functions, and estimation

schemes of information measures.

I investigate how the information flows are shaped by the network designs,

such as depth, sparsity, weight constraints, and hidden representations, by using

autoencoders (AEs) as specific models of machine learning. AEs are neural

networks that encode input X into internal representation Z and reproduce X

by decoding Z. This representation learning can be interpreted as self supervised

learning where a label is input as itself, such as Y = X. To examine the IP

analyses of representation learning, I considered AEs because (i) they have a

concrete guide (Y = X) for checking the validity of I(X;Z) and I(Z;Y ) on the

IP, (ii) they have various species to fully explore trajectories on the IP, and (iii)

they are closely related to unsupervised learning.

The remainder of this chapter is organized as follows. I introduce various

types of AEs in Section 2.2 and explain our matrix-based kernel method for

estimating mutual information in Section 2.3. Then, I examine the IP trajec-

tories of information transmission and compression of the AEs in Section 2.4.

Finally, I summarize and discuss our findings in Section 2.5.
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2.2 Representation learning in autoencoders

2.2.1 Information plane of autoencoders

AEs are neural networks specialized for dimensional reduction and representa-

tion learning in an unsupervised manner. A deep AE consists of a symmetric

structure with encoders and decoders as follows:

X − E1 − · · · − EL − Z −D1 − · · · −DL −X ′. (2.2)

where Ei and Di denote the i-th encoder and decoder layer, respectively, and

Z is the bottleneck representation with the smallest dimension. The deep AE

trains an identity function to reproduce input X from output X ′. During the

training process, the AE extracts relevant features for reproducingX while com-

pressing the high-dimensional input X into an internal representation Z on a

low-dimensional bottleneck layer. The encoder and decoder layers form Markov

chains that should satisfy the data processing inequality (DPI), analogously to

supervised learning [18]:

Forward DPI: I(X;E1) ≥ · · · ≥ I(X;EL) ≥ I(X;Z), (2.3)

Backward DPI: I(Z;X ′) ≤ I(D1;X
′) ≤ · · · ≤ I(DL;X

′). (2.4)

The forward DPI represents information compression as input X is pro-

cessed into the bottleneck layer, whereas the backward DPI represents informa-

tion expansion as the compressed representation Z is transformed into output

X ′. It is noteworthy that the usual AEs have physical dimensions, narrowing

toward the bottleneck and expanding away from the bottleneck, which are con-

sistent with the DPI.

The desired output of this AE is identical to the input (X ′ = X). This

identity constrains the input and output mutual information to be located
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on a straight line I(X;T ) = I(T ;X) for arbitrary internal representations,

T ∈ {E1, · · · , EL, Z,D1, · · · , DL}. Here, if the desired output X in I(T ;X) is

replaced with the predicted output X ′ of the AE, the learning dynamics of the

AE on the IP can be analyzed [18]. Then, the two sets of mutual information

for representing information compression and transmission correspond to

I(X;T ) = H(T )−H(T |X) (2.5)

I(T ;X ′) = H(T )−H(T |X ′), (2.6)

where H(T ) represents the Shannon entropy of T , and H(T |X) and H(T |X ′)

are the conditional entropies of T given X and X ′, respectively. The forward

process of the AE realizes the deterministic mapping of T = T (X) and X ′ =

X ′(T ). Then, one-to-one correspondence of X → T implies no uncertainty for

H(T (X)|X) = 0, whereas the possibly many-to-one correspondence of T → X ′

implies some uncertainty for H(T |X ′(T )) ̸= 0. Therefore, the inequality of

I(X;T ) ≥ I(T ;X ′) is evident because H(T ) ≥ H(T )−H(T |X ′), where the con-

ditional entropy H(T |X ′) is non-negative. Based on this inequality, the learning

trajectory of I(X;T ) and I(T ;X ′) on the two-dimensional IP (x, y) can be ex-

pected to stay below the diagonal line y = x. Once the learning process of the

AE is complete with X ′ = X, the two sets of mutual information become equal

to I(X;T ) = I(T ;X ′ = X), and the learning trajectory ends up on the diagonal

line.

2.2.2 Various types of autoencoders

To investigate information flows of machine learning, I adopted AEs because

their theoretical bounds of IP trajectories could guide our IP analysis. IP anal-

ysis has been used to visualize the information process in AEs [18,19]. Their IP

trajectories satisfied the theoretical boundary of I(X;T ) ≥ I(T ;X ′). Previous
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studies examined IP trajectories according to the size of the given bottleneck

layers, but they did not investigate the associations between the simplifying

phases and generalizations of AEs. Another important advantage of adopting

AEs is their diverse variants that enable us to fully explore IP trajectories de-

pending on the network designs, such as depth, sparsity, weight constraints, and

hidden representations. In particular, because a certain AE model is directly

linked to unsupervised learning, the model can be used to understand the in-

formation process of unsupervised learning. Now, I briefly introduce diverse

species of AEs used in our experiments.

The simplest structure of AE, called shallow AE, consists of a single bottle-

neck layer between the input and output layers. In the shallow AE (X−Z−X ′),

the forward propagation of input X is defined as

Z = fE(WEX + bE) (2.7)

X ′ = fD(WDZ + bD), (2.8)

where W and b represent the weights and biases, respectively, and f(s) is a

corresponding activation function. Here, the subscripts E and D denote the

encoder and decoder, respectively. The shallow AE is trained to minimize the

reconstruction errors usually measured by the mean squared error (MSE) be-

tween output X ′ and desired output X. It has been analytically proven that

a shallow AE with linear activation (f(s) = s) spans the same subspace as

that spanned by principal component analysis (PCA) [20, 21]. Deep AEs stack

hidden layers in the encoder and decoder symmetrically; moreover, it is well

known that deep AEs yield better compression than shallow AEs.

Right up till recently, a myriad of variants and techniques have been pro-

posed to improve the performance of AEs via richer representations, such as

sparse AE (SAE) [22], tied AE (TAE) [23], variational AE (VAE) [24], and label
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AE (LAE) [25,26].

• SAE was proposed to avoid overfitting by imposing sparsity in the latent

space. The sparsity penalty is considered a regularization term of the

Kullback–Leibler (KL) divergence between the activity of bottleneck layer

Z and sparsity parameter ρ, a small value close to zero.

• TAE shares the weights for the encoder and decoder part (WE = W T
D),

where superscript T depicts the transpose of a matrix. This model is

widely used to reduce the number of model parameters while maintaining

the training performance. Owing to its symmetrical structure, it can be

interpreted as a deterministic version of restricted Boltzmann machines

(RBMs), a representative generative model for unsupervised learning; con-

sequently, the duality between TAE and RBM has been identified [27].

Compared to the vanilla AE, SAE and TAE have regularizations for the

degrees of freedom for nodes and weights, respectively. Later, I visually

validate how these constraints lead to a difference in the information flow

of IP trajectories.

• The ultimate goal of AEs is to obtain richer expressions in the latent space.

Therefore, an AE is not a mere replica model, but a generative model that

designs a tangible latent representation to faithfully reproduce the input

data as output. VAE is one of the most representative generative models

with a similar network structure to AE; however, its mathematical formu-

lation is fundamentally different. The detailed derivation of the learning

algorithm of VAE is beyond the scope of this study, and thus it will be

omitted [24]. In brief, the encoder network of VAE realizes an approxi-

mate posterior distribution qϕ(Z|X) for variational inference, whereas the

decoder network realizes a distribution pθ(X|Z) for generation. The loss
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of VAE, known as the evidence lower bound (ELBO), is decomposed into

a reconstruction error given by the binary cross entropy (BCE) between

the desired output X and predicted output X ′, and the regularization of

KL divergence between the approximate posterior distribution qϕ(Z|X)

and prior distribution p(Z). As tangible Gaussian distributions are usually

adopted as the approximate posterior and prior distributions of qϕ(Z|X)

and p(Z), respectively, VAE has a special manifold of the latent variable

Z.

• AEs do not use data labels. Instead, inputs work as self labels for super-

vised learning. Here, to design the latent space using label guides, I con-

sider another AE, called label AE (LAE). LAE forces the input data to be

mapped into the latent space with the corresponding label classifications.

Then, the label-based internal representation is decoded to reproduce in-

put data. Although the concept of regularization using labels has been

proposed [25, 26], LAE has not been considered as a generative model.

Unlike vanilla AEs that use a sigmoid activation function, LAE uses a

softmax activation function, f(Zi) = exp(Zi)/
∑

j exp(Zj), to impose the

regularization of the internal representation Z to follow the true label Y

as the cross entropy (CE) between Y and Z. Once LAE is trained, it can

generate learned data or images using its decoder, starting from one-hot

vector Z of labels with the addition of noise. Additional details of LAE

are provided in Appendix B. Later, I compare the IP trajectories of VAE

and LAE with those of vanilla AE in a deep structure to examine how

the information flow varies depending on the latent space of generative

models.

Table 2.1 summarizes the loss function, constraints, and activation function
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of the bottleneck layer for each aforementioned AE model.

Table 2.1 Various species of autoencoder. Vanilla AE uses the mean squared

error (MSE) loss. I used a sigmoid function as an activation function for the

bottleneck layer, which helps in unifying the scales of different layers. Regular-

ization of SAE is the KL-divergence between the hidden activity and sparsity

parameter ρ. The only difference in TAE is that it shares the weight of encoder

and decoder. The loss function of VAE, known as the evidence lower bound

(ELBO), consists of the reconstruction error, binary cross entropy (BCE), and

KL-divergence between the approximate posterior qϕ(Z|X) and prior p(Z);

moreover, the stochastic node activities of the bottleneck layer are sampled

from Gaussian distributions. In LAE, the classification error, the cross entropy

(CE) between the softmax hidden activity Z and true label Y , is used as a

regularization term.

Model Main Loss Constraint Bottleneck Activation

AE MSE(X,X ′) None sigmoid

SAE MSE(X,X ′) KL(ρ||Z) sigmoid

TAE MSE(X,X ′) WE =W T
D sigmoid

VAE BCE(X,X ′) KL(qϕ(Z|X)||p(Z)) Gaussian sampling

LAE MSE(X,X ′) CE(Y, Z) softmax

2.3 Estimation of mutual information

After preparing various species of AE models to explore diverse learning paths

on the IP, I need to estimate the mutual information for IP analyses:

I(X;Z) =
∑
x,z

p(x, z) log
p(x, z)

p(x)p(z)
. (2.9)
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In reality, I have samples of data, {x(t), z(t)}Nt=1, instead of their proba-

bilities, p(x), p(z), and p(x, z). Using N samples of data, I may estimate the

probabilities. Here, if X and Z are continuous variables, it is inevitable to

first discretize them. Then, I can count the discretized samples for each bin

and estimate the probabilities. The estimation of mutual information based

on this binning method has some limitations. First, its accuracy depends on

the resolution of discretization. Second, large samples are required to properly

estimate the probability distributions. Suppose that X is an n-dimensional vec-

tor. Despite considering the most naive discretization with binarized activities,

the total number of configurations for the binarized X is already 2n. Thus, it

becomes impracticable for N finite samples to cover the full range of configura-

tions, e.g., 220 ≈ 106 configurations for n = 20. Therefore, other schemes, such

as kernel density estimation [28], k-nearest neighbors, and matrix-based kernel

estimators [29, 30], exist to estimate the entropy and mutual information. The

description of each scheme and the corresponding IP results were presented in

a pedagogical review [31]. Among these various methods, I adopted a matrix-

based kernel estimator, which is mathematically well defined and computation-

ally efficient for large networks. It estimates the Rényi’s α-order entropy using

the eigenspectrum of covariance matrix of X as follows:

Sα(A) =
1

1− α
log2 [tr(A

α)] =
1

1− α
log2

[
N∑
i=1

λi(A)
α

]
, (2.10)

where A is an N ×N normalized Gram matrix of random variable X with size

N and λi(A) is the i-th eigenvalue of A. Note that tr denotes the trace of a

matrix. In the limit of α → 1, Equation (2.10) is reduced to an entropy-like

measure that resembles the Shannon entropy of H(X). If I assume that B is

a normalized Gram matrix from another random variable Z, the joint entropy
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between X and Z is defined as

Sα(A,B) = Sα

(
A ◦B

tr(A ◦B)

)
, (2.11)

where A ◦ B denotes the Hadamard product, i.e., the element-wise product of

two matrices. From Equations (2.10) and (2.11), the mutual information can

be defined as

Iα(X;Z) = Sα(A) + Sα(B)− Sα(A,B), (2.12)

which is analogous to the standard mutual information in the new space called

reproducing kernel Hilbert space (RKHS). Although Iα(X;Z) is mathematically

different from I(X;Z) in Equation (2.9), this quantity satisfies the mathemat-

ical requirements as Rényi’s entropy [29]. Furthermore, it has a great compu-

tational merit in that its computation is not affected much by the dimension

n of X, unlike the standard binning method for estimating the mutual infor-

mation. In a simple setup where an exact computation of I(X;Z) is possible,

I confirmed that the matrix-based Iα(X;Z) gives an accurate estimation of

I(X;Z) (see Appendix A). Compared to the matrix-based estimator, the bin-

ning method gives less accurate results that are violently affected by the reso-

lution of discretization and sample size. Using this estimator, Yu and Principe

visualized the IP trajectories of AEs and suggested the optimal design of AEs

based on IP patterns [18].

The kernel estimator contains a hyperparameter that defines a kernel func-

tion of distances between samples. As the estimator depends on the dimension

and scale of variables for samples, the hyperparameter should be carefully de-

termined [19]. Despite careful determination, the matrix-based kernel estimator

seems unstable because it is sensitive to the training setup of neural networks.

Moreover, once the information process of deep neural networks is quantified
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by this estimator, it sometimes violates the DPI, which is a necessary condition

for interpreting layer stacks as Markov chains. I found that the raw activities of

neural networks can result in inaccurate entropy estimations irrespective of the

estimation schemes when they have different dimensions and scales depending

on layers. Large activities tend to overestimate their entropies, whereas low ac-

tivities tend to underestimate their entropies. In particular, the use of a linear

activation function or rectified linear unit (ReLU) often results in the violation

of DPI (see Figures 6 and 9 in [19]). To address this issue, I unified the activation

function of all hidden layers into the sigmoid function (f(s) = 1/(1+exp(−s))),

except for VAE and LAE, whose bottleneck layers used Gaussian sampling and

a softmax function, respectively; and this setup eliminated the DPI violation.

Saxe et al. argued that using double-sided saturating activation functions

such as f(s) = tanh(s) trivially induces the simplifying phase on the IP, and it is

not related to the generalization of machine learning [15]. They showed that the

mutual information, estimated by the binning method, first increases and then

decreases as the weight parameters of neural networks get larger. The second de-

creasing phase of mutual information causes the simplifying phase. I performed

the same task with various activation functions, including sigmoid and ReLU,

but I estimated the mutual information using the aforementioned matrix-based

kernel method. Then, I confirmed that the second decreasing phase did not oc-

cur by merely increasing the weight parameters, suggesting that the existence

of the simplifying phase does not depend on the selection of activation func-

tions in our matrix-based kernel method. Further details on this experiment are

provided in section A. For those who are interested in using IP analysis, I have

provided the complete source code and documentation on GitHub [32].

16



2.4 Information plane of autoencoders

In this section, I examine the MI of various AE models using the method in-

troduced in the previous section, and visualize it on IP. Our main concern is

whether the phase transition in IP can be observed in representation learning.

Furthermore, by comparing the IPs of different AEs, I investigate how the var-

ious techniques I adopted for efficient training of neural networks modified the

information flow in latent space.

2.4.1 Vanilla autoencoders

In this study, I investigated the information process of representation learning

for real image datasets (Figure 2.1 (a)): MNIST [33], Fashion-MNIST [34], and

EMNIST [35]. MNIST has 60,000 training and 10,000 testing images of 28× 28

pixels of 10 hand-written digits (0–9). Fashion-MNIST has the same data size

as MNIST for 10 different fashion products, such as dresses and shirts. Finally,

EMNIST is an extension of MNIST; it contains 10 digits and 26 uppercase

(A–Z) and lowercase letters (a–z). In this section, I focused on the results of

MNIST because the results of Fashion-MNIST and EMNIST are basically the

same (refer [32]).

For representation learning of MNIST, I first considered a shallow AE

(X − Z − X ′) that included a single hidden or bottleneck layer (Figure 2.1

(b)). The input, hidden, and output layers had nX = 28 × 28 = 784, nZ = 50,

and nX′ = 784 nodes, respectively. I considered a fully-connected network be-

tween layers with the loss functions listed in Table 2.1. For the optimization

of network weights, I used the stochastic gradient descent method with Adam

optimization, given a batch size of 100 for a total of 50 epochs. With each

learning iteration, the MSE(X,X ′) kept decreasing (Figure 2.1 (c)). This im-
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Figure 2.1 Information transmission and compression of autoencoders. (a) Im-

age datasets X of MNIST (top row), Fashion-MNIST (middle), and EMNIST

(bottom). (b) Network structure of a shallow autoencoder: input X, hidden

Z, and output X ′. Note that node numbers are arbitrary for a schematic dis-

play. (c) Error (or loss) between desired output X and reconstructed output X ′

for training (blue) and test (orange) data during learning iterations. Insets are

snapshots of reconstructed training and test images of X ′ at the final iteration.

(d) Trajectory of mutual information (Iα(X;Z), Iα(Z;X
′)) on the information

plane. The color bar represents the number of iterations.
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plies that the output X ′ of AE successfully reproduced the input image X of

training data. To measure the generalization ability of the AE, I examined the

reproduction ability of the AE for test images that were not used in the learning

process. I confirmed that the test error was as small as the training error. Given

the faithful reproduction of input images, the indifferent error between training

and test images defines successful generalization as usual.

The IP trajectory of the AE during the learning process is presented in

Figure 2.1 (d). As expected, the trajectory satisfies the inequality of Iα(X;Z) ≥

Iα(Z;X
′), and ended up on their equality line because of X ′ ≈ X at the end

of training. As observed by Shwartz and Ziv [14], the IP trajectory showed two

distinct phases of fitting and simplifying. In the initial fitting phase, the input

mutual information Iα(X;Z) between X and Z increased. Then, during the

second simplifying phase, Iα(X;Z) decreased. Note that this representation

learning showed a simultaneous decrease in the output mutual information,

whereas general supervised learning maintained the output mutual information

as constant during the simplifying phase.

Next, I considered a deep AE (X −E1 −E2 −Z −D1 −D2 −X ′) with two

additional encoder layers before the bottleneck layer and two decoder layers

after the bottleneck layer (Figure 2.2 (a)). The corresponding node numbers

for the inner layers were nE1 = 256, nE2 = 128, nZ = 50, nD1 = 128, and nD2 =

256. The deep AE exhibited similar learning accuracy and generalization ability

to the shallow AE (Figure 2.2 (b)). During the learning process, I measured

the mutual information using the matrix-based kernel estimator and confirmed

that the learning process of the deep AE satisfied the DPI (Figure 2.2 (c)). I

observed the simplifying phase in the inner layers of E2, Z, and D1 (Figure 2.2

(d)). However, the simplifying phase was not evident in the outer layers of E1
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and D2 that had relatively large dimensions with high information capacity.

Subsequently, I explored whether the simplifying phase appeared even with

a small amount of training data. Unless sufficient training data are provided,

machine learning can easily overfit a small amount of training data and fail to

generalize the test data. I conducted a learning experiment with the deep AE

using 10% of the total training data. The training error kept decreasing, simi-

larly to the training error given the full training data. However, the test error

was significantly larger than the training error (Figure 2.2 (e)). This demon-

strates that the deep AE failed to generalize. After confirming the satisfaction

of DPI (Figure 2.2 (f)), I examined the IP trajectories. Unlike the results of

full training data, I did not observe the simplifying phase from any layers (Fig-

ure 2.2 (g)). Thus, this difference suggests that the simplifying phase seems to

be associated with generalization by removing irrelevant details.

2.4.2 Sparse activity and constrained weights

To examine the effect of regularization on the information flows, I considered

different species of AEs that can modify the learning phases. SAE and TAE

have additional regularization phases for node activities and weight parameters,

respectively, in comparison to vanilla AE (Table 2.1). First, I examined SAE,

which has the same structure as a shallow AE. SAE showed perfect learning and

generalization (Figure 2.3 (a)). It is of particular interest that the simplifying

phase is markedly exaggerated in SAE (Figure 2.3 (b)). The sparsity penalty

of SAE turns off unnecessary activities of hidden nodes, which can accelerate

the simplifying phase.

Second, I examined TAE, which also has the same structure as shallow

AE and SAE, but has a weight constraint of WE = W T
D . Similarly to shallow
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Figure 2.2 The simplifying phase and generalization of representation learning.

(a) A deep autoencoder with input X; two encoders, E1 and E2; bottleneck

Z; two decoders, D1 and D2; and output X ′. (b) Learning errors for training

(blue) and test (orange) data during iterations. Insets are snapshots of recon-

structed training and test images of X ′ at the final iteration. (c) Changes in

input mutual information (upper) and output mutual information (lower) dur-

ing iterations. (d) Learning trajectories on the information plane. The general

variable T stands for E1, E2, Z,D1, or D2. (b–d) Experiments with the full

training set of 60,000 MNIST data. (e–g) Experiments with the 10% training

set of 6,000 MNIST data.
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AE and SAE, TAE showed perfect learning and generalization; however, its

learning accuracy was slightly lower under the weight constraint (Figure 2.3

(c)). However, TAE did not exhibit the simplifying phase (Figure 2.3 (d)). This

implies that the simplifying phase is not necessary for generalization. Given

the weight constraint, TAE seems to have less potential capacity to remove

irrelevant information than vanilla AE.

2.4.3 Constrained latent space

Now, I survey another species of AEs that more actively modify the latent

space of the bottleneck layer, and further investigate the information flows in

the learning process.

VAE is a generative model that maps input data X into a Gaussian distri-

bution qϕ(Z|X) for the latent variable Z. I considered a deep VAE that had

the same structure (X − E1 − E2 − Z −D1 −D2 −X ′) as deep AE, and con-

firmed that the VAE can learn the training data of MNIST and generalize to

reproduce the test data (Figure 2.4 (a)). However, because VAE had a special

constraint for the bottleneck layer, the information process from the input layer

into the bottleneck layer did not satisfy the DPI (Figure 2.4 (b)). The mutual

information Iα(X;Z) between X and Z did not change during the training pro-

cess. Indeed, the fixed value was close to the maximum entropy of X given its

batch size of 100 samples, Iα(X;Z) ≈ log2(100) ≈ 6.6, which was independent

of dimension nZ of Z (data not shown). It is noteworthy that the mutual in-

formation between X and Z did not change for the learning process, although

the mapping X → Z kept reorganizing to distinguish the feature differences of

X. This shows a limitation of the information measure Iα(X;Z), which failed

to capture the content-dependent representation of Z. Besides the bottleneck

22



Figure 2.3 Information compression in constrained autoencoders. (a) Learning

errors for training (blue) and test (orange) data during iterations. Insets are

snapshots of reconstructed training and test images of X ′ at the final itera-

tion. (b) Learning trajectories on the information plane. (a,b) Results of sparse

autoencoders (SAE). (c,d) Results of tied autoencoders (TAE). The network

structure of SAE and TAE can be represented by X − Z −X ′.
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Figure 2.4 Information trajectories of generative models. (a) Learning errors

for training (blue) and test (orange) data during iterations. Insets are snap-

shots of reconstructed training and test images of X ′ at the final iteration. (b)

Changes in the input mutual information (upper) and output mutual infor-

mation (lower) during iterations. (c) Learning trajectories on the information

plane. (a–c) Results of a variational autoencoder (VAE). (d–f) Results of a

label autoencoder (LAE). VAE and LAE had a deep network structure with

X−E1−E2−Z−D1−D2−X ′. The general variable T denotes E1, E2, Z,D1,

or D2.
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layer, other layers still satisfied the DPI. Next, I displayed the IP trajectories

of VAE for each layer (Figure 2.4 (c)). I did not observe the simplifying phase

in any layer in the VAE. Therefore, VAE can generalize without the simplifying

phase, similarly to TAE.

LAE is another generative model that maps X into Z, where Z corresponds

to label Y of X. Thus, unlike other AE models, LAE uses label information to

shape its latent space. I used the same deep network structure as the deep AE

and VAE for LAE. The deep LAE could also learn the training data of MNIST

and generalize to reproduce the test data as well (Figure 2.4 (d)). LAE satisfied

the DPI (Figure 2.4 (e)), and its IP trajectories also satisfied the inequality of

Iα(X;T ) ≥ Iα(T ;X
′) (Figure 2.4 (f)). It is interesting that LAE has orthogonal

learning phases. LAE first increased the input mutual information Iα(X;T ) for

the encoding part. Once LAE arrived at a certain maximal Iα(X;T ), the output

mutual information Iα(T ;X
′) started to increase. This shows that LAE first

extracts information from the input data relevant for the label classification,

and then transfers information to output for reproducing input images. I found

that the LAE did not exhibit the simplifying phase, even though it successfully

generalized.

2.5 Conclusion

I studied the information flows in the internal representations of AEs using a

matrix-based kernel estimator. AEs are perfect models to investigate how the

information flows are shaped during the learning process depending on the net-

work designs, since they have diverse species with various depths, sparsities,

weight constraints, and hidden representations. When I used sufficient train-

ing data, shallow and deep AEs demonstrated the simplifying phase, following
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the fitting phase, along with the generalization ability to reproduce test data,

thereby confirming the original proposal by Shwartz-Ziv and Tishby [14]. How-

ever, when I used a small amount of training data to induce overfitting, the AEs

did not exhibit a simplifying phase and generalization, suggesting that the sim-

plifying phase is associated with generalization. When a sparsity constraint was

imposed in the hidden activities of SAE, regularization amplified the simplifying

phase and provided more efficient representations for generalization. However,

the constraining weight parameters (WE =W T
D) of TAE showed perfect gener-

alization in the absence of the simplifying phase. Furthermore, VAE and LAE,

shaping the latent space with a variational distribution and label information,

also achieved generalization without the simplifying phase. These counterexam-

ples of TAE, VAE, and LAE clearly demonstrate that the simplifying phase is

not necessary for the generalization of models.

It is noteworthy that the absence of the simplifying phase does not mean

that compression does not occur in representation learning. When the encoder

part has a narrowing architecture, information compression is inevitable, as

demonstrated by the DPI. Then, the removal of irrelevant information from

data may contribute to the generalization of models. After the completion of

representation learning, AEs obtain a certain amount of mutual information

Iα(X;Z) = Ifinal between the input data X and its internal representation Z.

The paths that obtain Ifinal seem different between AEs. In TAE, VAE, and

LAE, Iα(X;Z) monotonically increases to Ifinal. However, in vanilla AE and

SAE, Iα(X;Z) first increases beyond Ifinal, and then decreases back to Ifinal.

The backward process is called the simplifying phase. As the loss function of

representation learning never includes any instruction for the path of Iα(X;Z),

it is not surprising that the existence of the simplifying phase is not universal.

In summary, in the basic structure of AE, I found that the simplifying phase is
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related to the generalization of the model, and confirmed that learning dynam-

ics of neural network can be interpreted with IB theory. However, for several

variants of AE, no simplifying phase was observed, suggesting that all types of

deep learning do not follow a universal learning dynamics.

Although observations and physical meanings of the phase transition in IP

were contradictory in previous studies, it is still manifest that IP analysis is an

excellent tool to monitor information transmission and compression inside the

“black box” of neural networks. For IP analysis, accurate information estimation

is a prerequisite. In general, it is difficult to calculate the entropies of high-

dimensional variables, but I could solve this problem by estimating the physical

quantities corresponding to the entropies in a kernel space. When I applied

the estimator to the representation learning, I found that it is critical to use

bounded activation functions. When I used ReLU as an activation function,

the DPI was easily violated, although I observed the simplifying phase in this

setting. Thus, it can be problematic to estimate the mutual information from

unbounded variables with different scales for different layers. In this study, I

provided concrete grounds to further explore the theoretical understanding of

information processing in deep learning.
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Chapter 3

Scale-invariant representation of
machine learning

3.1 Internal representation of machine learning

The marvellous performance of machine learning [36–38] is due to the internal

representation, denoted by z, of neural networks that extracts features from

data. Here, z works as effective representations to discriminate images, speech,

time series for pattern recognition [39], classical and quantum phases in mat-

ters and active matters [40–43], chemical structures for drug discovery [44,45],

time arrows of non-equilibrium dynamics [46], etc. Therefore, understanding the

mechanism behind the effective feature distillation is a fundamental problem in

machine learning.

The information bottleneck theory interprets machine learning as informa-

tion compression and transmission of the communication theory [47]. Neural

networks have internal representations z that maximally compress irrelevant
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information in input data x for restoring desired outputs y, called labels. Given

data without labels, autoencoders use input itself as output y = x [48]. Then,

the self-supervised learning can work for the dimensional reduction of data

by providing compressed representation z that can faithfully reproduce x. In

particular, when the transformation of x → z is linear mapping, the machine

corresponds to the principal component analysis [49, 50]. In addition to the

self-supervised learning, unsupervised learning such as restricted Boltzmann

machine (RBM) and deep belief networks is also used for dimensional reduc-

tion of x [51]. For the unsupervised learning, the internal representation z can

be interpreted as emergent labels for each x.

The representation z sometimes reflects feature itself like edge detection in

image recognition [52]. On the other hand, z can be considered as a dummy code

where its frequency only matters when no prior knowledge on x is provided. A

recent interesting observation is that the frequency of z follows power laws in

RBMs [53,54], reminiscent of criticality in statistical mechanics [55]. Using the

dummy code z as emergent labels of x, one can interpret the frequency of z as

a cluster size of x labeled by z. Then, the power laws imply that the cluster

size distribution is scale-invariant. It is of great intellectual interest to address

how the power laws arise during the learning process devoid of any specific

instruction for the scale-invariance. Song et al. have derived that the power-law

clustering is an entropy-maximized distribution at a certain compression level of

z in RBMs [53]. In this study, I will extend this idea using information theory,

and show that the power-law scaling of the cluster size distribution emerges

naturally not only in unsupervised learning, but also in supervised learning.

This chapter is organized as follows. In Sec. 3.2, I show that various machine

learning models have scale-invariant distributions for their internal representa-
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tion. I then explain the emergence of the scale invariance using information

theory in Sec. 3.3. Finally, I summarize and discuss our findings in Sec. 3.4.

3.2 Power laws in machine learning

I first reproduce that the frequency of z follows power laws in RBMs (Fig. 3.1

(a)). Next, I observe that the scale-invariant internal representation is also found

in supervised learning (Fig. 3.1 (b,c)). Finally, I examine how the emergence

of power laws can be dependent on learning process and data preparation.

For those who are interested in reproducing our results, I have provided the

complete source code and documentation on GitHub [56].

3.2.1 Unsupervised learning

The goal of unsupervised learning is to extract inherent probability distribu-

tion p(x) of data x, unlike the supervised learning that extracts the paired

information between x and label y. RBM is a representative neural network for

unsupervised learning that is composed by input layer for x and hidden layer

for z [57,58]. The RBM has a special graph structure in which input nodes are

not connected to other input nodes, and the same is for hidden nodes (Fig. 3.1

(a)). This allows factorization of conditional probability p(z|x) =
∏
i p(zi|x) for

z = (z1, z2, · · · , zm) and p(x|z) =
∏
j p(xj |z) for x = (x1, x2, · · · , xn). The goal

of RBM, matching the model distribution p(x) into the data distribution p̂(x),

is achieved by the contrastive divergence algorithm, a kind of sampling method

using the forward probability p(z|x) and backward probability p(x|z) [59].

For the unsupervised learning, I used the MNIST dataset [33], which consists

of 60,000 training and 10,000 testing images of 28×28 pixels of 10 different hand-

written digits (0-9). After the RBM successfully generates original digit images,
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Figure 3.1 (Color online) Scale-invariant internal representations of machine

learning. (a) Unsupervised learning of restricted Boltzmann machine (RBM)

with MNIST dataset. The network of RBM consists of visible and hidden units

of x and z. An image x of MNIST is reconstructed to x̂ through the hidden rep-

resentation z. (b) Supervised learning with image dataset of Fashion-MNIST.

Architecture of a deep neural network consists of input x, hidden zµ(µ = 1, 2, 3),

and output ŷ. Note that the number of nodes is arbitrary for a schematic visual-

ization. (c) Self-supervised learning with EMNIST dataset. It has a symmetric

structure with the bottleneck layer z2. Right panels are corresponding log-log

plots between degeneracy m(k) and frequency k of internal representations: z

(circles) for RBM; and z1 (triangles), z2 (squares), and z3 (circles) for super-

vised and self-supervised learning.
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Figure 3.2 (Color online) Power-law data clustering. (a) The size distribution

of data clusters via internal representation z of the restricted Boltzmann ma-

chine (RBM, blue circles) and k-means clustering (coral squares). (b) Two-

dimensional visualization of z using t-distributed Stochastic Neighbor Embed-

ding (t-SNE) with different colors for different z. (c) t-SNE plot of x with

different colors for different k-means clusters. I set k= 2048 to be comparable

with the total number (≈ 2000) of distinct states in the RBM.
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I count frequencies kz of specific z allowing the mapping of different images of

x into the same z. I observed that the neural networks have a few frequent

z and many rare z, which is described by the degeneracy of the frequency k,

m(k) =
∑

z δ
(
k− kz

)
. It is of particular interest that the frequency degeneracy

follows power laws of m(k) ∼ k−β−1 (Fig. 3.1 (a)), as reported in Song et

al. [53]. The scale-invariant cluster size distribution is non-trivial given that the

representative clustering method of k-means, based on the Euclidean distance

between data, produced uni-polar distribution with a characteristic cluster size

(Fig. 3.2 (a)). The different cluster size distributions can be further visualized

using two dimensional projection through t-distributed Stochastic Neighbor

Embedding (t-SNE) method (Fig. 3.2 (b,c)). The scale-invariant distribution of

RBMs may have functional advantage to classify the data into a large cluster

of frequent typical data, and many small clusters of atypical data as outliers.

3.2.2 Authentic supervised learning

The goal of supervised learning is to predict true labels y from input data x.

In the communication theory (y → x→ z → ŷ), a message y is transferred to a

noisy code x, which is then mapped into a compressed code z. Finally, I decode

z to have ŷ. The transmission succeeds if the decoded message is consistent

with the true message (ŷ = y).

As a concrete example, I consider Fashion-MNIST dataset [34] in which

labels y are ten fashion products such as sneakers and shirts. The labels are

assigned to 70,000 (60,000 training and 10,000 test) 28× 28 pixel images of x.

Using a deep neural network, I transformed x → z1 → z2 → z3 → ŷ while

reducing the dimension of the corresponding layers from 784 to 70, 50, 35, and

10 (Fig. 3.1 (b)). Here, true labels y are expressed as 10-dimensional one-hot
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vectors of which components have values between 0 and 1. The network is

trained to reduce the discrepancy between y and ŷ.

Once the classification accuracy for the test data reaches 87%, I examined

frequencies of internal representations of z1, z2, and z3. Since they have con-

tinuous values in the multi-layer perceptrons, I binarized them to count finite

coarse-grained representations. I count frequencies kz of discretized z allowing

the mapping of different images of x into the same z. It is of particular interest

that the frequency degeneracy follows power laws of m(k) ∼ k−β−1, where the

exponent β depends on the dimension of the µ-th hidden layers zµ (Fig. 3.1 (b)).

I confirmed that the existence of power laws is insensitive to the binarization

threshold, and the power-law exponents do not depend on the initialization of

learning. It is noteworthy that the scale invariance has never been instructed

by the learning algorithm.

3.2.3 Self-supervised learning

In real-world dataset, labels are not always available. For such dataset, if x

played the role of label y = x, those machines for self-supervised learning are

called autoencoders, which are useful for dimensional reduction [48], denois-

ing [60], and generation [61, 62]. In particular, the structure of x → z → x̂

implies that the compressed representation z is used to reconstruct original x

(Fig. 3.1 (c)). This study focuses on the compressing conditions where the di-

mension of z is smaller than the dimension of x. Unlike the narrowing networks,

widening networks map different x into different z. This makes the frequency

of representation z trivial with kz = 1.

The autoencoders are tightly related with RBMs. The unfolded structure

of the forward and backward process of x ↔ z in RBMs can be interpreted as
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information flows, x → z → x̂, in autoencoders where the weight parameter of

the encoder part is transpose of the weight parameter of the decoder part [27].

However, it is noteworthy that z is a stochastic and discrete variable in RBMs,

whereas z(x) is a deterministic and continuous function of x in autoencoders.

Nevertheless, if one adopts the sigmoidal function as the activation function for

autoencoders, z(x) can be interpreted as the expectation value E[z] of RBMs.

I confirmed that binarized z of the autoencoders also showed the power-law

scalings when I carried out all-to-all connnected multilayer perceptron learning

on the above Fashion-MNIST data (data not shown). Instead of repeating with

the same dataset, here I considered another dataset, EMNIST, consisting of

hand-written images of 10 digits (0-9) and 26 uppercase (A-Z) and lowercase

letters (a-z) [35]. Among them, I trained 30,000 lowercase letters with deep

structure of autoencoders x → z1 → z2 → z3 → x̂. Once the reconstructed

image x̂ faithfully reproduced the original image x, I counted the frequency of

zµ of each hidden layer. The frequency degeneracy m(k) again follows power

laws in every hidden layer with different exponents (Fig. 3.1 (c)).

To examine the robustness of our finding, I change the activiation function

from the sigmoid function to Rectified Linear Unit (ReLU). Then, I confirmed

that power laws still arise with the ReLU activation (data not shown). Next,

I examine a convolutional neural network (CNN) that incorporates the infor-

mation of proximal sites of x, which is known to show excellent performance

for image recognition [63]. I considered CIFAR-10, consisting of 50,000 training

and 10,000 testing 32×32 color images in 10 classes such as airplane and auto-

mobile [64]. I then adopted convolutional autoencoders. Once the reconstructed

image x̂ faithfully reproduce the original image x, I counted the frequency of

z, and confirmed that the frequency degeneracy m(k) again follows power laws
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(Fig. 3.3).

Figure 3.3 (Color online) Internal representations of convolutional neural net-

work (CNN). (a) Architecture of a CNN with three internal layers of z1, z2, and

z3. Image data of CIFAR10 is reconstructed through the self-supervised learn-

ing of the CNN. (b) The frequency distributions of internal representations: z1

(purple triangles), z2 (green squares), and z3 (blue circles).

3.2.4 Power laws with data distribution

It is questionable whether the power laws originate from learning processes, or

merely from data distributions.

Suppose that neural networks start with random initial parameters before

learning. Then, input data x is transformed to random internal representations.

Depending on parameter initialization schemes, shallow internal representation

z1 sometimes displays a power-law scaling (Fig. 3.4). However, deep internal

representation of zµ for µ > 1 experiences repeated transformation with random

weights, which averages out the signal transfers, and converges into a few trivial

representation. Therefore, the robust emergence of power laws clearly requires
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Figure 3.4 (Color online) Data clustering during learning process. Supervised

learning of MNIST data through three internal representations of z1, z2, and z3.

The frequency distributions of internal representations: z1 (purple triangles), z2

(green squares), and z3 (blue circles) at (a) 0, (b) 1, (c) 10, and (d) 100 epochs.
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learning process. This excludes the possibility that the power laws may result

from an artifact of random binarization of internal representations. However,

it is surprising that one epoch, that experiences every training sample once, is

good enough to start to show power-law scaling.

Next, the power laws should depend on original data distributions. For ex-

ample, when data include identical samples, the distribution of corresponding

internal representations is trivially influenced by the frequency of the identical

samples. Although the image data in our study do not have identical samples,

one may speculate that they have complex structures which generate the power

laws without going through learning processes. To check this possibility, I ex-

amined structureless patterns x generated from two-dimensional Ising models.

The Ising model has equilibrium patterns of x depending on its energy,

E(x) = −J
∑
⟨i,j⟩

xixj , (3.1)

where ⟨i, j⟩ represents the nearest-neighboring pairs and I fixed J = 1. Then,

the realization probability of a pattern x follows the Boltzmann distribution:

p(x) =
exp[−E(x)/T ]

Z
, Z =

∑
x

exp[−E(x)/T ]. (3.2)

Depending on temperature T , one can generate diverse patterns. Low tempera-

ture produces simple patterns including a few defects, whereas high temperature

produces random patterns mixing black (xi = 1) and white (xi = −1) pixels.

At the critical temperature (T ≈ 2.26) in the two-dimensional Ising model,

complex patterns arise with long-range correlations between pixels. I prepared

50,000 equilibrium samples at each temperature. Since low temperature pro-

duces simple patterns, many identical samples of x are inevitably included in

the low-temperature samples. I put the diverse Ising patterns of x as inputs for
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a shallow autoencoder (x → z → x̂) including one hidden layer. The autoen-

coder was trained to reconstruct pattern x̂ which is identical with the input x.

Given the input x and transformed z, I obtain their frequencies kx and kz, and

then their degeneracy distributions of m(kx) and m(kz) for x and z (Fig. 3.5).

Note that I introduced new notations of m(kx) and m(kz) to distinguish the

degeneracy m(k) for kx and kz. As expected, the peculiar input distribution of

kx due to identical samples at low temperature is trivially reflected in the distri-

bution of kz. However, if sufficiently diverse patterns, generated above critical

temperature, are used for learning, their internal representations follow power

laws. This result lends support to our observation of power laws not only for

natural images, but also for synthetic structureless images, unless input data

distributions have peculiar shapes with many identical samples.

3.3 Theoretical analysis of power laws

An intriguing question is how the power laws arise frequently in the various ma-

chine learning for diverse data. None of the learning algorithms have instructed

the special shaping of z. Our claim is that the power laws correspond to entropy-

maximized distributions among possible ones that satisfy pre-specified learning

accuracies (Fig. 3.6). To progressively investigate this idea, I first review the

information theoretic concepts of resolution and relevance [65], and the deriva-

tion of the scale-invariant hidden representations of RBMs [53]. Then, I extend

this reasoning to explain the scale-invariant hidden representations for self- and

authentic supervised learning, which is the major finding of this study.
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Figure 3.5 Self-supervised learning of Ising patterns. 10 × 10 lattice Ising pat-

terns are used for input x for a shallow autoencoder (x → z → x̂). Output x̂

corresponds to reconstructed patterns. Two-dimensional Ising model was used

to generate 50,000 equilibrium samples at three temperatures (low T = 1.53,

critical T = 2.26, high T = 3.28). Input x and internal representation z are

characterized with different degeneracy distributions m(kx) and m(kz). For the

binarization of z, I used a threshold 0.4.
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Figure 3.6 (Color online) Cluster size distribution of machine learning. In su-

pervised learning, input image x is represented by its compressed code z (blue

solid line), and then finally grouped into output y (red dotted line). Cluster size

distribution m(k) of cluster size k for two clustering scenarios. Two clustering

scenarios give the same learning accuracy. Then, which one is more likely to

happen?
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3.3.1 Resolution and relevance

Let us consider a random variable z, of which frequency is kz with a total

number of realizations, M =
∑

z kz. The uncertainty of z can be quantified

using the Shannon entropy,

H(Z) = −
∑
z

kz
M

log
kz
M
. (3.3)

Since H(Z) quantifies the effective number of distinct realizations of z, it is

named resolution [65]. In terms of coding theory, H(Z) corresponds to a min-

imum description length for z [55]. Different realizations z may take the same

frequency kz = k. Unless I have any prior knowledge on z, the frequency kz

may be the only extractable feature for z at the moment. Then, it is natural to

consider the degeneracy m(k) of the frequency k. Given the degeneracy m(k),

I can reformulate Eq. (3.3) in terms of k-summation instead of z-summation,

H(Z) = −
∑
k

km(k)

M
log

k

M
(3.4)

with M =
∑

k km(k).

Now let us quantify the uncertainty of k that a certain z has a frequency

kz = k,

H(K) = −
∑
k

km(k)

M
log

km(k)

M
. (3.5)

If one does not distinguish states z that have the same frequency kz = k, the

variability of frequency k can measure the amount of relevant information in

data. Thus H(K) is named relevance [65]. If every z is distinct with the same

frequency kz = 1 andm(1) =M , I have no relevanceH(K) = 0, although I have

a maximal resolution H(Z) = logM . On the other hand, if every z is identical

with kz = M and m(M) = 1, I have also no relevance H(K) = 0, but with

zero resolution H(Z) = 0. Therefore, these two extreme cases correspond to no
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frequency variability where I cannot distinguish z in terms of their frequency

kz.

3.3.2 Unsupervised learning

The information measures of resolution and relevance have been adopted to

explain the scale-invariant hidden representations of RBMs [53,55]. The graph-

ical model of RBMs consists of visible and hidden units of x and z. RBMs are

trained to have a large model probability p(x, z) with a good pairing of data x

and hidden representation z [51]. I can interpret z as emergent labels for x. This

allows to define a group of x, which have the same label z, as a cluster. In par-

ticular, under compressing conditions when the dimension of z is smaller than

the dimension of x, similar x is grouped together with label z. Then, kz denotes

the size of the z-labeled cluster, and m(k) corresponds to the distribution of

cluster sizes.

What is an expected distribution of the cluster sizes? RBMs do not im-

pose any constraint on the shaping of the size distribution during the learning

process. Song et al. found that the size distribution m(k) follows power laws,

and derived that the power laws correspond to the most likely distribution at a

fixed resolution of z [53]. The scale-invariant distribution maximizes the uncer-

tainty of the size k of a cluster to which a specific x belongs. This constrained

optimization can be formulated using Lagrange multipliers:

L = H(K) + β

(
H(Z)−R

)
+ α

(∑
k

km(k)

M
− 1

)
. (3.6)

The Lagrange multiplier α controls the normalization for k-distribution, while

β controls the resolution for H(Z) = R. The maximum frequency variability

H(K) subject to the two constraints is obtained at the variation condition of
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δL/δm(k) = 0. The optimal condition leads to the power-law size distribution,

m(k) ∝ k−β−1. (3.7)

Moreover, the scale-invariant hidden representation z achieves the goal for un-

supervised learning to make the model probability p(x) =
∑

z p(x, z) close to

the data probability p̂(x).

3.3.3 Supervised learning

The goal of supervised learning is faithful reproduction of true label y given

input x. For multi-layer neural networks, x is transformed to hidden repre-

sentations z, and then, z is again transformed to output ŷ. The supervised

learning optimizes an appropriate representation z to produce ŷ, which is ulti-

mately used to predict true y. The learning accuracy can be estimated by the

mutual information between internal representation z and true label y,

I(Z;Y ) = H(Y )−H(Y |Z), (3.8)

that quantifies how much uncertainty H(Y ) of y is reduced by knowing z. The

information gain corresponds to learning accuracy of the internal representation

z. Here, I focus on the neural networks of which internal layers have smaller sizes

as they get farther from the input layer. The compressing condition provides

coarse-grained representation z for x. In particular, if I discretize z, I can again

interpret a group of x, that have the same hidden state z, as a cluster. Now, I

derive the most likely distribution of hidden representation z that guarantees a

certain learning accuracy as I(Z;Y ) = R′. Like the objective for unsupervised

learning in Eq. (3.6), the objective for supervised learning can be formulated

as

L′ = H(K) + β

(
I(Z;Y )−R′

)
+ α

(∑
k

km(k)

M
− 1

)
. (3.9)
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Among possible representations z satisfying pre-specified learning accuracy, I

find a representation z that maximizes the uncertainty of the cluster size. It

requires caution to understand that this exploration is different from the opti-

mization of learning algorithms. I seek for the most flexible representation z,

that gives the largest frequency variability H(K), subject to a fixed learning ac-

curacy. Thus, I explore snapshots of z at any learning status. Figure 3.4 showed

power-law distributions of m(k) at any given learning accuracy during learning

epochs.

3.3.4 Self-supervised learning

I first consider the self-supervised learning of autoencoders in which labels

are input itself as y = x. The mutual information of autoencoders is simply

I(Z;X) = H(Z)−H(Z|X) = H(Z), where the conditional entropy H(Z|X) =

0 vanishes because the hidden representation is a deterministic function z(x) of

x in autoencoders. This condition makes Eq. (3.9) identical to Eq. (3.6) with

L′ = L and R′ = R. I already know that the optimal size distribution fol-

lows power laws in Eq. (3.7) that maximizes L. This explains why power laws

naturally arise in the self-supervised learning.

As mentioned earlier, the unfolded structure of RBMs can be interpreted as

constrained autoencoders [27]. The forward and backward propagation of x↔ z

corresponds to the information flow of x → z → x̂. The autoencoders have a

constraint that the encoder weight parameter for x → z is the same with the

transpose of the decoder weight parameter of z → x̂. Then, the scale-invariant

hidden representation of RBMs can be understood either as (i) maximizing

H(K) subject to a certain resolution H(Z) = R, or (ii) maximizing H(K)

subject to a certain learning accuracy I(Z;X) = R′.
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3.3.5 Authentic supervised learning

Next, I show that the previous conclusion of the self-supervised learning is also

applicable for authentic supervised learning. The mutual information can be

decomposed as:

I(Z;Y ) = H(Y ) +H(Z)−H(Y,Z). (3.10)

The first term H(Y ) is constant, since labels y are given as data in supervised

learning. As a result, H(Y ) is trivially independent on z and m(k). The second

term H(Z) depends on m(k) as shown in Eq. (3.4). The third term is the

entropy for the joint frequency ky,z,

H(Y,Z) = −
∑
y,z

ky,z
M

log
ky,z
M

. (3.11)

Now, I derive that H(Y,Z) does not explicitly depend on m(k). At first sight,

the independence of H(Y,Z) on m(k) looks non-trivial, since both H(Y,Z) and

m(k) depend on z. For the self-supervised learning (Y = X), I have a constant

H(X,Z) = logM , if every x is distinguished (kx,z = 1). It is clear that H(X,Z)

is always constant independently with m(k).

For the authentic supervised learning, let us imagine a causal graph between

variables (Fig. 3.7). The number of realizations of hidden representation z is the

frequency kz, of which degeneracy is m(k). The number of realizations for y and

z is ky,z, which is used to compute H(Y,Z). Therefore, z is a confounder that

affects both m(k) and H(Y, Z) in the causal graph. In terms of causality [66],

H(Y,Z) and m(k) are called d-separate for fixed z:

H(Y, Z) |= m(k) | z, (3.12)

which means that m(k) does not explicitly affects H(Y,Z) and vice versa. The

functional independence can be further demonstrated in two situations. The
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Figure 3.7 Causal graph for supervised learning. Solid arrows represent explicit

transformation from parent to child nodes, whereas dotted arrows represent

implicit transformation from a set of parent variables to child nodes.

first situation is that m(k) changes, but H(Y, Z) does not change (Fig. 3.8

(a)). The second situation is that H(Y,Z) changes, but m(k) does not change

(Fig. 3.8 (b)).

So far, I confirmed that H(Y ) and H(Y, Z) in the learning accuracy of

Eq. (3.10) do not explicitly depend on m(k). This results in δL′/δm(k) =

δL/δm(k). This explains why the authentic supervised learning has the power-

law distributions of m(k) like the self-supervised learning.

It is noteworthy to mention one exceptional situation where every cluster has

data x with pure labels y (Fig. 3.8 (c)). This situation is difficult to practically

happen in machine learning with large noisy data. The ideal clustering with

no impurity leads to H(Y, Z) = H(Z) + H(Y |Z) = H(Z), because labels do

not have additional information beyond the hidden representation z. Plugging

this result into Eq. (3.10), I have I(Z;Y ) = H(Y ). This makes H(K) the only

m(k)-dependent term of L′ in Eq. (3.9). Then, m(k) ∝ k−1 maximizes L′. This
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solution corresponds to the power-law distribution with β = 0. The zero value

of Lagrange multiplier nullifies the constraint for the learning accuracy in L′.

Figure 3.8 Labels and internal representations of data. MNIST digit images x

have their true labels (2, 3, and 8), and they are grouped with their internal

representations z (blue circles). (a) A scenario that kz changes from kz = {1, 2}

to kz = {3}, but ky,z = 1 does not change. Therefore, the size distribution m(k)

changes, but H(Y, Z) does not change. (b) A scenario that kz = {1, 2} does not

change, but ky,z changes from ky,z = 1 to ky,z = {1, 2}. Therefore, the size

distribution m(k) does not change, but H(Y,Z) changes. (c) A pure clustering

scenario that every x for a given z has the same label y.

In summary, except for the pure clustering, the objective L′ for supervised

learning has only two m(k)-dependent terms of H(K) and H(Z). This conclu-

sion is the same with L for unsupervised learning. The objective functional,

L = H(K) + βH(Z), has been intensively studied by Marsili and his col-

leagues [53,55,65,67,68]. Assuming that data follows a Boltzmann distribution,

k/M ∝ exp(−E(k)), as in equilibrium thermodynamics, the entropy of Z can
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be interpreted as an internal energy by ignoring a constant shift:

H(Z) = −
∑
k

p(k) log
k

M
=

∑
k

p(k)E(k) = U, (3.13)

where p(k) = km(k)/M . Then, the Shannon entropy H(K) can be interpreted

as thermodynamic entropy:

H(K) = −
∑
k

p(k) log p(k) = S. (3.14)

Interpreting β = −1/T as negative inverse temperature, one can define ther-

modynamic free energy:

F = −TL = U − TS. (3.15)

Then, the maximization of L corresponds to the minimization of free energy

F . The optimal distribution m(k), satisfying δF/δm(k) = 0, has been derived

to follow the scale-invariant power laws, m(k) ∝ k−β−1 [65]. This explains

why power laws naturally arise in both unsupervised and supervised learning. I

tempted to call this result as a thermodynamic second law of machine learning.

3.4 Conclusion

I studied internal representations z of data in machine learning. Song et al. first

observed that restricted Boltzmann machines have special representations with

a few frequent z and many rare z, of which frequency distributions follow power

laws [53]. In this study, I showed that the scale-invariant representations are

observed not only in the unsupervised learning but also in supervised learning.

Furthermore, I derived that the scale invariance can naturally arise in machine

learning using information theory. The critical representations correspond to

entropy-maximized ones given pre-specified learning accuracy. If I define a group

of data x that have the same z (compressed codes or emergent labels), the
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frequencies of z can be interpreted as cluster sizes of x. Then, the maximum

uncertainty of the cluster size distribution implies that the size of a cluster, to

which a certain data x belongs, can be most flexibly determined. Therefore, at

any given learning accuracy, z can show the criticality.

In this study, I examined compressing structures of neural networks with

classical architectures, such as multi-layer perceptrons, vanilla autoencoders,

convolutional neural networks, and restricted Boltzmann machines, although

recent deep learning considers infinitely-wide networks and overparameterized

models as well [69–71]. It remains future research to explore how our conjecture

of thermodynamic second law of machine learning applies in modern architec-

tures such as transformers [72].

The power laws, also known as the Pareto principle, have been ubiquitously

observed in social and biological data including real neural activities [73–77].

Unlike the symbolic property of criticality in statistical mechanics, the emer-

gence of criticality in those data does not require fine tuning [78–80]. Schwab

et al. have shown that multivariate systems can generate the criticality with-

out fine tuning when latent variables are involved in the systems [78]. I note

that whereas these studies focused on the statistics of observed data x in real

neural networks, our study explained the statistics of internal representation z

in artificial neural networks. The criticality in the existing data that comprise

the natural world and the emergence of criticality during the learning process,

discussed in this study, are of great intellectual interest. A further investigation

of criticality will stimulate cross-fertilization between the fields [81].

50



Chapter 4

Mirror descent: learning via dual
geometry

4.1 Optimization for machine learning

Deep learning shows remarkable results in various fields [36–38]. Despite the

numerous success, the fundamental principles of deep learning are still myste-

rious. Various studies on the representation of the latent space, distribution of

the parameters of the well-trained model are being actively conducted. From a

technical viewpoint, training deep neural networks is a complicated optimiza-

tion problem in extremely high-dimensional parameter space. The geometry of

the loss landscape is determined by all settings involved in training and it can

be non-convex or even non-smooth. The ultimate goal of training is to find the

global minimum of the loss function, which induces the generalization of the

model.

As the difficulty of the task using machine learning increases and the model

51



becomes more complex, overparameterized model is mainly dealt with where

the number of model parameters is much greater than the size of data points.

In overparameterized model, it is known that there are infinitely many global

minima of training data, so model can interpolate any points in training re-

gion [82,83]. Among those tremendous minima, finding the true global minima

that can explain the unseen test data is a key problem. Many studies have fo-

cused on the characteristics of the overparameterized model with respect to the

gradient descent (GD)-based optimizations [70,84–86].

In the machine learning field, since it is very hard to explore the geometry

of the loss function simply using the instantaneous gradients, advanced opti-

mization algorithms have been suggested [87–91]. In fact, there are numerous

optimization algorithms that have not been extensively verified, and it would

be important task to examine the applicability of those algorithms to machine

learning.

In this chapter, I would like to review the traditional optimization algo-

rithm so called mirror descent (MD) [92–94] and show excellent performance

when training deep neural network. MD is the generalization of GD from the in-

formation geometry viewpoint [95]. MD utilizes the geometry of the dual space,

mirror of the primal space, to update the model parameters in non-trivial way.

Since GD is the simplest example of MD with the self dual structure where the

primal and dual space are identical, it does not take advantage of this hidden

structure.

As an alternative to overparameterized model, I train the general fully-

connected multilayer perceptron (MLP) networks with small dataset, more re-

alistic settings compared to training extremely heavy model with large dataset.

Training performance varies depending on all kinds of settings, but the most
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important factors are the activation function, objective function, and learning

rate. To compare the performance in different loss landscape, I tested regres-

sion and classification models. I used sigmoid activation, mean squared error

(MSE) in a regression model and ReLU activation, cross entropy loss are used

in a classification model. Each model is trained with large and small learning

rate, respectively, and the performance of different MD algorithms are com-

pared with the Adam optimization [90]. It is confirmed in each experiment that

the performance is remarkably improved when the optimal MD is applied, and

the characteristics of MD contributing to these results are investigated.

This chapter is organized as follows. In section 4.2 and 4.3, I will review

the basic concepts of the information geometry and MD, respectively. Exper-

imental results of training overparameterized model are shown in section 4.4

and 4.5. And I discuss the characteristics of MD that contribute to the per-

formance difference in section 4.6. Section 4.7 concludes with comments and

future directions.

4.2 Information Geometry

Information geometry is a study on the invariant geometrical structure of a

family of probability distributions. I consider a family S = {p(x, θ)} of prob-

ability distributions, where x is a random variables and θ is a n-dimensional

vector parameter. This forms a manifold of which θ is coordinate system.

Among the various types of probability distributions, the most representa-

tive example is the exponential family

p(x, θ) = exp{⟨θ, x⟩ − ψ(θ)} (4.1)

where ⟨·, ·⟩ denotes the inner product and ψ corresponds to the normalization
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factor known as the cummulant generating function or free energy. From the

normalization condition
∫
p(x, θ)dx = 1, ψ can be written as

ψ(θ) = log

∫
exp(⟨θ, x⟩)dx (4.2)

and it can be shown that ψ(θ) is a convex function. A dually flat Riemannian

manifold is represented by dual coordinate and all the geometrical structure

can be derived from the dual convex function. The dual coordinate is given by

the Legendre transformation

µ = ∇ψ(θ) (4.3)

which is the expectation of x,

µ = E[x] =
∫
xp(x, θ)dx. (4.4)

The dual convex function φ, the Legendre dual of ψ, is defined by

φ(µ) = ⟨µ, θ⟩ − ψ(θ) (4.5)

From the convex function ψ, I can define the Riemannian metric given as the

Hessian of ψ

gij(θ) = ∂i∂jψ(θ). (4.6)

The dual Riemannian metric can also be defined in the same way with dual

convex function

gij(µ) = ∂i∂jφ(µ). (4.7)

And it can be shown that the Riemannian metric in an exponential family

(Eq. (4.1)) is the Fisher information matrix defined by

gij(θ) = Fij ≡ E [∂i log p(x, θ)∂j log p(x, θ)] (4.8)
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I can define divergence function as a statistical distance between two point P

and Q, of which coordinates are written as θP and θQ. Canonical examples of

divergence function are f -divergence and Bregman divergences

1) f -divergence

Df [p : q] =

∫
p(x, θ)f

(
q(x, θ)

p(xθ)

)
dx (4.9)

2) Bregman divergence

Dψ[p : q] = ψ(p)− ψ(q)− ⟨∇ψ(q), (p− q)⟩ . (4.10)

Note that Kullback-Leibler (KL) divergence, a well-known function widely used

in machine learning, is an example of f -divergence with f(u) = − log u

DKL[p : q] =

∫
p(x, θ) log

(
p(x, θ)

q(x, θ)

)
dx. (4.11)

One interesting property is that the second order Taylor series expansion of

KL-divergence is given by the Fisher information matrix F

DKL[p(θ) : p(θ + d)] ≈ 1

2
dTFd. (4.12)

If I want to know the update vector d that minimizes the loss function L(θ) in

distribution space, I have to minimize the following:

d∗ = argmin
θ

{L(θ + d) + λ (DKL[p(θ) : p(θ + d)]− c)}

= argmin
θ

{
L(θ) +∇θL(θ)Td+

1

2
λdTFd− λc

}
(4.13)

where the second term in the right hand side of the first line is the Lagrange mul-

tiplier that constraints the constant shift. The solution that makes the derivative

zero is given by

d∗ ∝ F−1∇θL(θ). (4.14)
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In this way, the method of updating the parameters in the steepest directions

in the distance distribution is called the natural gradient descent [96]

∇̃θL(θ) = F−1∇θL(θ). (4.15)

Natural gradient descent assumes the parameter space as the Riemannian man-

ifold and its geometrical structure is used to the update process.

4.3 Mirror descent

Gradient descent (GD) is the most fundamental algorithm for optimization

problems. It aims to minimize the loss function iteratively based on the gradient

of the loss function with respect to model parameters

θt+1 = θt − η∇θL(θt) (4.16)

where L and θt are loss function and parameters at time step t, respectively.

If the loss function is as simpler as convex function, its gradient monotoni-

cally decreases and GD ultimately converges to the global minimum. However,

the loss landscape of deep neural networks has a complex geometry, and the

gradient frequently vanishes in the global minima and saddle points. There-

fore, many advanced optimization techniques that do not simply depend on the

instantaneous gradients have been developed.

As an motivation of mirror descent (MD), let us derive the familiar GD

in the following way. If I want to minimize the function L(θ), I could try to

minimize its linear approximation alternatively:

θt+1 = argmin
θ

{L(θt) + ⟨∇θL(θt), θ − θt⟩+
1

2η
||θ − θt||2} (4.17)

where the last term in the right hand side is the L2 regularization to prevent θ

from being too far from the point θt. By dropping the term that doesn’t depend
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on θ, I get

θt+1 = argmin
θ

{⟨∇θL(θt), θ⟩+
1

2η
||θ − θt||2}, (4.18)

and it exactly gives the definition of GD with learning rate η. Here I can re-

place the regularization term as general distance functions, so called proximity

functions Ψ:

θt+1 = argmin
θ

{η ⟨∇θL(θt), θ⟩+Ψ(θ, θt)}. (4.19)

In particular, Bregman divergence is the representative example of the proxim-

ity function

Dψ[θ; θ
′] = ψ(θ)− ψ(θ′)−

〈
∇θψ(θ

′), (θ − θ′)
〉

(4.20)

where ψ is the arbitrary convex function. The update rule with Bregman diver-

gence gives the definition of MD

∇θψ(θt+1) = ∇θψ(θt)− η∇θL(θt) (4.21)

θt+1 = (∇θψ)
−1(∇θψ(θt)− η∇θL(θt)). (4.22)

Note that the entire process of MD is purely determined by the choice of convex

function ψ in Bregman divergence. The examples of the convex function and

corresponding Bregman divergence are summarized in Table 4.1.

The literal interpretation of MD (Eq. (4.22)) is as follows. I first map the

primal parameters θt to a dual parameter µt with the mirror map or link func-

tion ∇θψ(θ), i.e., µt = ∇θψ(θt). Then, I update the dual parameter with the

gradient computed in the primal space µt+1 = µt−η∇θL(θt) and map µt+1 back

to a original space via inverse map θt+1 = (∇θψ)
−1(µt+1). These processes are

diagrammatically depicted in Figure 4.1.
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Table 4.1 Examples of Bregman divergence.

Convex function ψ(θ) Bregman divergence Bψ(θ, θ
′)

1
2 ||θ||

2
2

1
2 ||θ − θ′||2∑n

i=1(θi ln θi − θi)
∑n

i=1

(
θi ln

θ′i
θi
− θi + θ′i

)
∑n

i=1 e
θi

∑n
i=1(θi − θ′i + 1)eθ

′
i

1
2 ||θ||

2
q

1
2 ||θ||

2
q − 1

2 ||θ
′||2q −

〈
θ⊙|θ|q−2

||θ||q−2
q

, θ − θ′
〉

Figure 4.1 Diagram of mirror descent algorithm
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It just looks like adding a map and inverse map before and after GD, respec-

tively, but it has several interesting properties. In Equation (4.22), the primal

parameters are transformed via mirror map ∇ψ before updating. Even though

inverse map is finally applied, this transformation affects the updating process

intrinsically. For this reason, MD is interpreted as implicit regularization to pa-

rameters. The effects of this regularization on MD performance will discussed

in detail in the next section.

Another property is that MD is associated with natural gradient descent

introduced in Equation (4.15) [97]. Using some chain-rules, the update of MD

in the dual space can be expressed as follows

µt+1 = µt − η∇θL(θt) (4.23)

= µt − η
[
∇2
µφ(µt)

]−1∇µL(∇µφ(µt)). (4.24)

Here, if I assume that dual convex function is the free energy of the dual data

distribution given as the exponential family, i.e. p(x, µ) = exp (⟨µ, x⟩ − φ(µ)),

the second derivative of it is the same as the Fisher information matrix (F ≡

∇2
µφ(µ)), which gives the definition of natural gradient descent along the dual

space.

The essence of MD is determining the type of the convex function defined in

Bregman divergence. Although I can define infinitely many classes of Bregman

divergence in principle, a practical example applicable to machine learning is the

q-norm potential, i.e. ψ(θ) = 1
2 ||θ||

2
q . And the dual convex function is given as p-

norm potential φ(µ) = 1
2 ||µ||

2
p with the relation (1/p+ 1/q = 1). This particular

types of MD is called p-norm algorithm [98]. Except for the trivial GD case

where p = q = 2, other (p, q) combinations induce the different dual geometry

and change the way that parameters are updated in the primal space.

Let us explicitly derive the update procedure of MD with q-norm potential
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ψ(θ) = 1
2 ||θ||

2
q . The derivative of the potential is given by

∂iψ(θ) =
θi|θi|q−2

||θ||q−2
q

. (4.25)

Thus, the mirror map from the primal to dual space is given by

µt = ∇θψ(θt) = θt ⊙
(

|θt|
||θt||q

)q−2

. (4.26)

And the update of the dual parameters is

µt+1 = θt ⊙
(

|θt|
||θt||q

)q−2

− η∇θL(θt). (4.27)

Finally, the inverse mirror map from dual to the primal space with the dual

convex function φ(µ) = 1
2 ||µ||

2
p is given by

θt+1 = (∇θψ(θ))
−1 (µt+1) = ∇µφ(µt+1) (4.28)

= µt+1 ⊙
(

|µt+1|
||µt+1||p

)p−2

. (4.29)

Note that the mirror and inverse mirror map act as a scaling operator similar

to weight normalization to primal parameters at t-step and dual parameters

at (t + 1)-step, respectively. For GD case with (q = 2), note that the scale

transformation becomes identity. When q is larger(smaller) than 2, mirror map

acts as a scaling down(up) operator.

In general, most of the optimization techniques for training deep neural net-

works adjust the magnitude and direction of the gradients to treat the gradient

vanishing or exploding problem. On the other hand, MD updates parameters

by adjusting the scale of the parameters to the level of the gradient scale. MD

internally utilizes the dual space of different scales, but by taking the inverse

mirror map ultimately, it prevents the dramatic scale changes of the primal

parameters, which induces the stable learning.

60



4.4 Experimental results of mirror descent

As an alternative example of an overparameterized model, I consider general

full-connected multilayer perceptron (MLP) models with small dataset. Among

the numerous tasks using MLP, I train regression and classification model, which

are canonical examples of supervised learning. I assume that the loss geometry

is changed by setting the activation function and objective function differently.

MNIST image dataset [99] are trained with a part of the train data (1k) and

the generalization is checked with all of the test data (10k). Candidates of MD

with different q-norm potentials are summarized in Table 4.2. I also trained

each model with Adam optimization as a benchmark.

Table 4.2 Candidates of convex and dual convex functions.

ψ(θ) = 1
2 ||θ||

2
q , φ(µ) =

1
2 ||µ||

2
p

q 1.5 2 3 5 6 8 10

p 3 2 1.5 1.25 1.2 1.14 1.11

As a regression model, autoencoder with the 3 hidden layers, sigmoid acti-

vation and mean squared error (MSE) is used. Learning rate is set to be 0.01.

I trained the model for 20 epochs with single batch size and compared the re-

construction performance of MD for different optimizers. The final loss of the

train and test data are summarized in Table 4.3. For graphical simplification,

the loss per iteration and reconstructed images of the test data for the some

q-values are shown in Figure 4.2 and 4.3, respectively.

In regression problem, the training was slow in GD, while it accelerated

at large q-values. However, higher q-norm potential did not always give better

results, and among the candidates tried, the generalization performance was

the best when q = 8.
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Table 4.3 Regression loss of MNIST dataset for various MD and Adam opti-

mizers with learning rate 0.01.

Regression Learning rate=0.01

Model Train Test

MD(q = 1.5) 0.1136 0.1147

MD(q = 2) 0.067 0.0694

MD(q = 3) 0.0283 0.0343

MD(q = 5) 0.0169 0.0214

MD(q = 6) 0.015 0.0184

MD(q = 8) 0.0112 0.0163

MD(q = 10) 0.0111 0.0169

Adam 0.0095 0.0382

Table 4.4 Classification accuracy of MNIST dataset for various MD and Adam

optimizers with learning rate 0.01.

Classification Learning rate=0.01

Model Train Test

MD(q = 1.5) 8.5 9.6

MD(q = 2) 9.8 10.2

MD(q = 3) 90.6 81.9

MD(q = 5) 100.0 88.4

MD(q = 6) 100.0 87.8

MD(q = 8) 83.6 71.1

MD(q = 10) 62.5 55.8

Adam 92.0 79.9
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Figure 4.2 Regression results of MNIST dataset. Regression loss of the (a) train

and (b) test data for various MD and Adam optimizers with learning rate 0.01.
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Figure 4.3 Reconstructed images of test data for various MD and Adam opti-

mizers with learning rate 0.01.

Classification model is trained with the 3 hidden layers, ReLU activation and

cross entropy as an objective function. Learning rate is set to be 0.01. I trained

the model for 20 epochs with single batch size and compared the classification

accuracy of MD for different optimizers. The results are shown in Table 4.4 and

Figure 4.4, respectively. Like the regression problem, there was a performance

improvement of MD with q-value larger than 2. Especially when q = 5, 6, the

training label were predicted perfectly and showed better generalization than

Adam.

4.5 Additional results of mirror descent

This section shows the additional results of the MD with different learning rate

and dataset. Table 4.5, 4.6, and Figure 4.5 summarizes the results of MNIST

dataset with learning rate 0.05. Compared with the small learning rate case, it

can be seen that Adam is sensitive to the learning rate and the performance is

highly degraded. However, MD is not significantly affected by the learning rate

and maintains similar accuracy. Table 4.7, 4.8, Figure 4.6, and 4.7 shows the
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Figure 4.4 Classification results of MNIST dataset. Accuracy of the (a) train

and (b) test data for various MD and Adam optimizers with learning rate 0.01.
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same experiments with Fashion-MNIST dataset [100]. Although the optimal

q-value for the best performance has changed, but it still showed better results

than Adam with different learning rates.

Table 4.5 Regression loss of MNIST dataset for various MD and Adam opti-

mizers with learning rate 0.05.

Regression Learning rate=0.05

Model Train Test

MD(q = 1.5) 0.107 0.1086

MD(q = 2) 0.0314 0.0362

MD(q = 3) 0.0274 0.0335

MD(q = 5) 0.0111 0.0158

MD(q = 6) 0.0111 0.0156

MD(q = 8) 0.0147 0.0213

MD(q = 10) 0.0272 0.0322

Adam 0.0488 0.0703
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Table 4.6 Classification accuracy of MNIST dataset for various MD and Adam

optimizers with learning rate 0.05.

Classification Learning rate=0.05

Model Train Test

MD(q = 1.5) 13.9 15.9

MD(q = 2) 48.7 47.5

MD(q = 3) 99.7 86.4

MD(q = 5) 99.9 87.7

MD(q = 6) 96.1 82.2

MD(q = 8) 40.4 39.3

MD(q = 10) 29.8 29.8

Adam 11.6 11.4

Table 4.7 Regression loss of Fashion-MNIST dataset for various MD and Adam

optimizers.

Regression Learning rate=0.01 Learning rate=0.05

Model Train Test Train Test

MD(q = 1.5) 0.0765 0.0852 0.0735 0.0804

MD(q = 2) 0.0592 0.0621 0.0513 0.0445

MD(q = 3) 0.0514 0.0428 0.0344 0.0233

MD(q = 5) 0.0298 0.0182 0.0214 0.0212

MD(q = 6) 0.0244 0.0193 0.0386 0.0269

MD(q = 8) 0.0249 0.0233 0.0573 0.0482

MD(q = 10) 0.0416 0.032 0.0555 0.05

Adam 0.0358 0.0476 0.0859 0.0887
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Figure 4.5 Regression(left) and classification(right) results of MNIST dataset.

Regression loss and classification accuracy of the train (a,d), test (b,e) data,

and reconstructed images of test data (c) for various MD and Adam optimizers

with learning rate 0.05.
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Figure 4.6 Regression results of Fashion-MNIST dataset. Regression loss of the

train (a,d), test (b,e) data, and reconstructed images of test data (c,f) for various

MD and Adam optimizers with learning rate 0.01 (left) and 0.05 (right).
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Figure 4.7 Classification results of Fashion-MNIST dataset. Classification accu-

racy of the train (a,d) and test data (b,e) for various MD and Adam optimizers

with learning rate 0.01 (left) and 0.05 (right).
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Table 4.8 Classification accuracy of Fashion-MNIST dataset for various MD

and Adam optimizers.

Classification Learning rate=0.01 Learning rate=0.05

Model Train Test Train Test

MD(q = 1.5) 10.2 10.0 8.1 7.9

MD(q = 2) 22.9 21.9 59.9 52.4

MD(q = 3) 81.1 73.2 92.3 78.5

MD(q = 5) 87.5 76.3 74.5 66.3

MD(q = 6) 72.8 66.1 20.4 20.5

MD(q = 8) 30.3 28.9 10.7 10.0

MD(q = 10) 10.7 10.1 10.7 10.0

Adam 63.4 58.1 8.6 10.0

4.6 Analysis of mirror descent

In the previous section, it was confirmed that the performance was remarkably

enhanced when q-value was larger than 2 in common. As shown in Eq. (4.27),

the role of q-norm potential in MD is to transform the primal parameters,

which balances the scale of gradients. Large q reduces the scale of the primal

parameters, which ultimately has the effect of resurrecting small gradients. This

means that even if the gradients are small, training can be accelerated through

additional process in dual space.

In fact, with conventional initialization schemes such as Xavier and He, the

L2-norm of the initial parameters and their gradients were order of 102 and

10−2, respectively, i.e. ||θ||2 ∼ O(102), ||∇θL||2 ∼ O(10−2). The difference in

scale was so large that there was no substantial change with naive addition or

subtraction like GD. On the other hand, when the large q-norm potential is
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used to transform the primal parameters, the scale of the dual parameters is

balanced with corresponding gradients, i.e. ||µ||2 ∼ O(10−1)(q = 5).

As shown in section 4.5, the performance of Adam optimization highly de-

pend on the learning rate, while MD show robust result with respect to the

learning rate. Learning rate plays a crucial role in optimization in general. How-

ever, in MD, q-norm potential has a more dominant effect than the learning rate

in terms of scale balance between parameters and update terms. Therefore, the

selection of the optimal q-value lowers the sensitivity of the empirically deter-

mined learning rate that affects the performance.

4.7 Conclusion

Various optimization algorithms have been developed to explore the complex

loss geometry of deep neural networks, which gives a deeper understanding of

GD. MD, a generalization of GD, has profound backgrounds both in primal

and dual space perspectives. In primal space, it adjust the scale of parameters

with implicit regularization. In dual space, MD is equivalent to the natural

gradient descent along the dual coordinates. The key step of MD is the selection

of an appropriate convex function. In particular, in the p-norm algorithm, it

corresponds to finding an appropriate (p, q) combination, which balances the

scale of parameters and gradients.

In this chapter, I verified the performance of MD when training general

fully-connected MLP model with small dataset, a realistic surrogate of over-

parameterized model. I conducted experiments by classifying the training set-

tings according to the activation function, objective function, and learning rate.

When proper q-norm potential is used, the performance of training and general-

ization of MD were remarkably enhanced and it gives the better result than the
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state of the art optimization, Adam. More exactly, I concluded that adjusting

q-norm value has the potential to solve the gradient vanishing and exploding

problems, chronic situations encountered when training deep neural networks.

It would be interesting subject how to automatically determine the optimal

convex function in accordance with various training options and I leave it as

the follow-up study.
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Appendix A

Matrix-based kernel estimator of
mutual information

The matrix-based kernel method [29] estimates Rényi’s α-entropy for a random

variable X by

Hα(X) =
1

1− α

∫
x∈X

fαX(x)dx. (A.1)

Let X = {x1, x2, ..., xN} denote N data points and κ : X × X → R be a

real valued positive definite kernel that defines a Gram matrix K ∈ RN×N as

Kij = κ(xi, xj). The normalized Gram matrix is defined as

Aij =
1

N

Kij√
KiiKjj

. (A.2)

Then, the matrix-based Rényi’s α-order entropy is given by

Sα(A) =
1

1− α
log2 [tr(A

α)] =
1

1− α
log2

[
N∑
i=1

λi(A)
α

]
, (A.3)
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where λi(A) denotes the i-th eigenvalue of A. In the limit of α → 1, Equa-

tion (A.3) is reduced to the Shannon entropy-like object

lim
α→1

Sα(A) = −
N∑
i=1

λi(A) log2 λi(A). (A.4)

I used α = 1.01 in this study. The joint entropy of two random variables X

and Z can be defined as

Sα(A,B) = Sα

(
A ◦B

tr(A ◦B)

)
, (A.5)

where A and B are Gram matrices of X and Z, respectively, and A ◦ B de-

notes the Hadamard product. From Equations (A.3) and (A.5), the mutual

information in the kernel space is defined as

Iα(X;Z) = Sα(A) + Sα(B)− Sα(A,B). (A.6)

The Gaussian kernel is commonly used:

κσ(xi, xj) = exp

(
−
||xi − xj ||2F

2σ2

)
, (A.7)

where || · ||F denotes the Frobenius norm. There are crucial factors that affect

the estimation performance, such as the Gaussian kernel bandwidth σ and the

scale and dimension of kernel input. The asymptotic behavior of entropy by

varying σ can be denoted by

lim
σ→0

Sα(A) = logN (A.8)

lim
σ→∞

Sα(A) = 0. (A.9)

Large-scale and high-dimensional features of input have the same effect

as a small σ—the overestimation of entropy. In contrast, small-scale and low-

dimensional features of input give the same effect as large σ, which results in
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the underestimation of entropy. Therefore, proper hyperparameter tuning is

required for σ to avoid excessively high or low saturation of entropy during

training. Scott’s rule [101], a simplified version of Silverman’s rule [102], is

commonly used for selecting the width of Gaussian kernels:

σ = γN−1/(4+n), (A.10)

where γ is an empirically determined constant. As Equation (A.10) is a mono-

tonically increasing function with respect to feature dimension n, it compensates

for higher feature dimension. I used γ = 2 for our experiments.

To validate the matrix-based kernel method, I consider a bivariate normal

distribution as a simple example. Let us assume that two variables X1 and X2

follow a bivariate normal distribution:X1

X2

 ∼ N

µ1
µ2

 ,Σ

 , Σ =

 σ21 ρσ1σ2

ρσ1σ2 σ22

 , (A.11)

where µi and σi are mean and standard deviation of the variable Xi (i = 1, 2),

respectively, and ρ denotes their correlation strength. The entropy of each vari-

able and their joint entropy are given as follows:

H(Xi) =
1

2
log(2πeσ2i ), (A.12)

H(X1, X2) =
1

2
log((2πe)2|Σ|) = log(2πeσ1σ2) +

1

2
log(1− ρ2). (A.13)

Then, the mutual information between X1 and X2 can be exactly computed

as

I(X1;X2) = H(X1) +H(X2)−H(X1, X2) = −1

2
log(1− ρ2). (A.14)

Now, I estimated I(X1;X2) numerically using a binning method and the

matrix-based kernel method with 1,000 samples generated from the bivariate
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normal distribution of mean 0 and variance 1. Figure A.1 (a) shows (X1, X2)

distributions under different correlation strengths. As shown in Figure A.1 (b),

the theoretical value of I(X1;X2) is consistent with the estimated values of

the binning method with a proper quantizer (Bin = 20) and the matrix-based

kernel method with a proper hyperparameter (γ = 2). Note that Bin represents

the level of discretization for the continuous activity of Xi. For the binning

method, Figure A.1 (c,d) show that its estimate of mutual information largely

varies depending on the binning level and sample size. However, the matrix-

based kernel method gives a robust estimate relatively less sensitive to the

sample size (Figure A.1 (e)).

Saxe et al. observed that information estimation depends on the activation

functions in a simple setup of a three neuron model (x−z−y) [15]. They sampled

a scalar input x from a standard normal distribution of N (0, 1) and multiplied

it by a constant weight w; subsequently, they determined the hidden activity

z = f(wx) using a nonlinear activation function f(s). Then, they discretized

z and estimated the input mutual information I(x; z) using a binning method.

When the unbounded activation function of f(s) = ReLU(s) was used, I(x; z)

continued to increase with w. However, when the bounded activation function

of f(s) = tanh(s) was used, I(x; z) first increased with w, and then decreased

as w increased. This is a natural result when the binning method is used to

estimate the mutual information because large activities are saturated with

large w (Figure 2 in [15]). I analyzed the same task with the matrix-based kernel

method (Figure A.2 (a)). When the activation function is a sigmoid function

of f(s) = 1/(1 + exp(−s)), I(x; z) does not decrease at large w; however, the

absolute value looks different from the unbounded activation functions of linear

(f(s) = s) and ReLU (f(s) = ReLU(s)). I also considered a more complex

network with 100-dimensional input X sampled from N (0, 1). In this case,
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Figure A.1 Estimation of mutual information by binning and matrix-based ker-

nel methods. (a) Distributions of two variables (X1, X2) following bivariate

normal distributions with various correlation strengths of ρ. (b) Exact mutual

information (Theory) and its optimal estimation by the binning method (Bin)

and the matrix-based kernel method (Kernel). (c) Mutual information esti-

mated by the binning method with various binning levels (Bin) of discretization

for the continuous variables X1 and X2. Mutual information estimation with

various sample sizes (p, percentage of the sample size to the entire data) of (d)

the binning method and (e) the matrix-based kernel method.
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weight W was represented by a 50× 100 matrix whose elements were sampled

from a uniform distribution of U(0, 1); then, the hidden activity Z becomes

a 50-dimensional vector, i.e., Z = f(WX). I then observed Iα(X;Z) while

increasing the standard deviation of weight W (Figure A.2 (b)). I confirmed

that Iα(X;Z) at large W does not decrease when a sigmoid activation function

is used, like the unbounded activation functions of linear and ReLU. Therefore,

this experiment demonstrated that the matrix-based kernel method is a robust

estimation technique for bounded activation function and the simplifying phase

cannot be attributed to the selected activation function.

Figure A.2 Mutual information obtained by matrix-based kernel estimation.

(a) Input mutual information in a three-neuron network (x − z − y). Input

x was sampled from a standard normal distribution and the hidden activity

was computed by z = f(wx), where w is the weight and f(s) is an activation

function. Three different activation functions (linear, ReLU, and sigmoid) were

used. (b) Input mutual information for a general setup with 100-dimensional

input vector X and 50-dimensional hidden vector Z = f(WX). In this setup,

weight W was a 50× 100 matrix whose elements were sampled from a uniform

distribution.
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Appendix B

Manifold learning of label
autoencoder

LAE is a generative model that shapes its latent space using label classification.

The explicit form of the LAE loss function is given as follows:

LLAE =
1

N

N∑
i=1

||Xi −X ′
i||2 −

λ

N

N∑
i=1

nZ∑
j=1

Yi,j logZi,j , (B.1)

where N is the batch size and nZ is the feature dimensionality of the label. Zi,j

is the softmax output of encoder that predicts the j-th class of the i-th sample

and Yi,j is the corresponding true label. The first term is a reconstruction error

(MSE) and the second term is a regularization given by the classification error

of the encoder. The regularization coefficient λ is set to 0.01. Figure B.1 shows

the manifold learning of LAE when the one-hot vector corresponding to zero

is changed to other digits as an input of the decoder. It is a two-dimensional

submanifold embeded in a ten-dimensional label latent space.
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Figure B.1 Manifold learning in LAE. This represents the interpolation im-

age when one-hot vector corresponding to zero; i.e., Z0 = [1, 0, 0, · · · , 0],

is transformed to other digits as an input of the LAE decoder part.

For instance, the first row represents the reproduction X ′ decoded from

Z = aZ0 + (1− a)Z1 by decreasing a from 1 to 0.
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초록

이 논문은 기계 학습이 다양한 문제들을 효과적으로 해결하는 원리에 대해 심층

적으로 이해하는 것을 목표로 하며 정보 이론을 활용하여 신경망의 정보 흐름,

내부 표현, 변수 최적화를 연구한다. 먼저, 다양한 종류의 오토인코더에서 압축과

전송으로 이루어지는 정보 흐름을 시각화하고 각 모형들이 입력 데이터 재생성과

무관한정보를어떻게제거하는지알아본다.둘째로,지도학습과비지도학습에서

신경망의 내부 표현이 크기 불변 멱법칙을 따르는 현상을 관찰하고 학습 과정에서

명시적인 규제 없이 어떻게 이 현상이 보편적으로 나타나는지 유도한다. 끝으로,

거울 하강 알고리즘을 정보 기하학 관점에서 소개하고 변수 공간의 쌍대 공간을

통해 학습 변수들이 어떻게 효과적으로 갱신되는지 알아본다. 결과적으로 정보

이론과 정보 기하학이 신경망 내부를 시각화하고, 분석하고, 최적화하는데 유용한

기법임을 확인한다.

주요어: 기계 학습, 심층 학습, 정보 이론, 정보 기하, 통계 물리

학번: 2012-23096

94



감사의 글

먼저 지도교수님이신 김석 교수님께 깊은 감사를 드립니다. 학부 인턴십부터 박사

졸업에 이르기까지 제가 방황할 때마다 해 주셨던 시기적절한 조언은 언제나 제가

앞으로 나아갈 방향에 대한 큰 가르침이었습니다. 기계 학습 연구지도를 해 주신

조정효 교수님께도 깊은 감사를 드립니다. 교수님의 좋은 지도 덕분에 흥미로운

연구를 하게 되었고 이 자리까지 올 수 있었습니다. 기계 학습의 입자물리 적용

연구를 지도해 주신 조원상 박사님께도 감사드립니다. 물리학과 기계 학습 전반에

걸쳐 다양한 이론과 실험들을 논의하며 많은 것을 배울 수 있었습니다. 학위논문

심사에 참여해 주신 이원종, 백용주, 현창봉 교수님께도 감사의 인사를 전합니다.

연구방향에대한조언과검토를통해저의부족한견문을넓혀주신이덕선,송태근

교수님, 황원석 박사님, 황준오 군에게도 감사를 전합니다.

입자물리를 공부하던 시기에 연구실 선배로서 많은 도움을 주었던 김정민, 김

준호박사님과오랜시간을같은분야에서함께한김동욱,김정욱,이기홍,황윤석,

남궁준, 최선진 박사에게 늦게나마 감사의 인사를 드립니다. 늘 유쾌한 만남으로

즐거운 시간을 가졌던 윤영빈, 양명재 박사에게도 고마움을 전합니다. 비록 많은

시간을 함께 보내진 못 했지만 연구실 후배인 이은우, 최재혁 군에게도 고마움과

격려를 전합니다.

오랜기간동거동락한인생친구이기원군에게특별히고마움을전하며서로의

진로에 조언과 격려를 아끼지 않은 안세일, 이한얼, 박한빈, 손승욱, 문효원, 박찬

95



주 군에게도 고마움을 표합니다. 힘들 때마다 옆에서 든든하게 있어준 바둑동아리

강정호 선배에게도 감사의 인사를 전합니다. 저의 긴 학위과정 동안 응원해 준 중,

고등학교 동기인 보균, 종현, 성구, 재호, 용준, 문태, 용건, 준석에게도 고맙다는

인사를 하고 싶습니다.

제 모습을 흐뭇하게 지켜보고 계실 아버지께도 마음 속으로 이 기쁨을 전합니

다.아들에대한무한한관심과교육자로서의참된가르침이지금까지제가꾸준히

앞으로 전진할 수 있는 초석이 되었습니다. 저희 가족의 큰 버팀목이신 무상사 석

성우 큰스님께 감사의 인사를 드립니다. 한 가족으로서 늘 진심어린 격려를 해 준

매형, 누나에게도 감사드리며 귀염둥이 조카 찬호, 나나를 통해 보답하겠습니다.

멀리서도 항상 응원해주신 여러 친척분들께도 감사드립니다. 끝으로 힘들었던 시

간들을 함께 보내며 잘 되리라는 믿음을 언제나 잃지 않으신 어머니께 이 영광을

드립니다.

96


	Abstract
	Chapter 1 Introduction 
	Chapter 2 Information flows of machine learning 
	2.1 Information plane analysis 
	2.2 Representation learning in autoencoders
	2.2.1 Information plane of autoencoders 
	2.2.2 Various types of autoencoders 
	2.3 Estimation of mutual information 
	2.4 Information plane of autoencoders 
	2.4.1 Vanilla autoencoders 
	2.4.2 Sparse activity and constrained weights 
	2.4.3 Constrained latent space 
	2.5 Conclusion 
	Chapter 3 Scale-invariant representation of machine learning
	3.1 Internal representation of machine learning 
	3.2 Power laws in machine learning 
	3.2.1 Unsupervised learning 
	3.2.2 Authentic supervised learning 
	3.2.3 Self-supervised learning 
	3.2.4 Power laws with data distribution 
	3.3 Theoretical analysis of power laws 
	3.3.1 Resolution and relevance 
	3.3.2 Unsupervised learning 
	3.3.3 Supervised learning 
	3.3.4 Self-supervised learning 
	3.3.5 Authentic supervised learning 
	3.4 Conclusion 
	Chapter 4 Mirror descent: learning via dual geometry
	4.1 Optimization for machine learning 
	4.2 Information Geometry 
	4.3 Mirror descent 
	4.4 Experimental results of mirror descent 
	4.5 Additional results of mirror descent 
	4.6 Analysis of mirror descent 
	4.7 Conclusion 
	Chapter A Matrix-based kernel estimator of mutual information 
	Chapter B Manifold learning of label autoencoder 
	Bibliography 
	초록 


<startpage>8
Abstract i
Chapter 1 Introduction  1
Chapter 2 Information flows of machine learning  5
2.1 Information plane analysis  5
2.2 Representation learning in autoencoders 8
2.2.1 Information plane of autoencoders  8
2.2.2 Various types of autoencoders  9
2.3 Estimation of mutual information  13
2.4 Information plane of autoencoders  17
2.4.1 Vanilla autoencoders  17
2.4.2 Sparse activity and constrained weights  20
2.4.3 Constrained latent space  22
2.5 Conclusion  25
Chapter 3 Scale-invariant representation of machine learning 28
3.1 Internal representation of machine learning  28
3.2 Power laws in machine learning  30
3.2.1 Unsupervised learning  30
3.2.2 Authentic supervised learning  33
3.2.3 Self-supervised learning  34
3.2.4 Power laws with data distribution  36
3.3 Theoretical analysis of power laws  39
3.3.1 Resolution and relevance  42
3.3.2 Unsupervised learning  43
3.3.3 Supervised learning  44
3.3.4 Self-supervised learning  45
3.3.5 Authentic supervised learning  46
3.4 Conclusion  49
Chapter 4 Mirror descent: learning via dual geometry 51
4.1 Optimization for machine learning  51
4.2 Information Geometry  53
4.3 Mirror descent  56
4.4 Experimental results of mirror descent  61
4.5 Additional results of mirror descent  64
4.6 Analysis of mirror descent  71
4.7 Conclusion  72
Chapter A Matrix-based kernel estimator of mutual information  74
Chapter B Manifold learning of label autoencoder  80
Bibliography  82
초록  94
</body>

