

농학석사 학위논문

귀리 유전자원의 다양성 및 유전자형 판별을 위한 SSR 후보 마커 개발

2023년 2월

서울대학교 대학원

농림생물자원학부 작물생명과학전공

라 경 윤

귀리 유전자원의 다양성 및 유전자형 판별을 위한 SSR 후보 마커 개발

지도교수 고 희 종

이 논문을 농학석사 학위논문으로 제출함 2022년 11월

> 서울대학교 대학원 농림생물자원학부 작물생명과학전공 라 경 윤

라경윤의 석사 학위논문을 인준함 2023년 2월

국문초록

귀리(Avena sativa L.)는 식용·사료용·가공용으로 널리 재배되는 세계적인 작물이다. 그러나 국내에서는 재배면적이 작고 관심이 적어서 다양한 원산지의 귀리 유전자원에 대한 농업 형질 평가가 미흡한 실정이다. 또한, 이질 6배체이며 유전체가 큰 귀리는 유전 체 분석 및 마커 개발에 어려움이 많다. 본 연구는 세계 각지에서 수집된 귀리 유전자원 318점들의 농업 형질을 평가하여 그룹화함 으로써 육종과 자원의 관리를 효율화하기 위해 수행하였다. 또한, 국내 대표 귀리 품종 3개의 전유전체 재해독을 통해 염기서열을 분석하고 귀리의 분자 육종에 유용한 SSR 마커들을 개발하고자 하였다.

출수일수, 초장, 초형, 종실피과성, 천립중, 종자 길이, 종자폭 등 7개 형질을 반복 조사하였다. 주성분분석 결과 2개의 주성분이 전 체 분산의 67.61%를 설명하였고, 강한 상관관계에 있는 천립중·종 자폭·종자길이와 출수일수·초장·초형은 각각 제1 주성분과 제2 주 성분에 높은 기여도를 나타내었다. 군집분석 결과 귀리 유전자원 은 상기 농업 형질을 기반으로 7개의 군집으로 구분되었다.

귀리 품종 3개의 염기서열 분석을 토대로 SSR과 SNP 변이를 탐 색하고 염기 2-10개의 SSR motif 280여만 개에 대한 프라이머를 제작하였다. 이를 *in silico* 검정하여 103개의 SSR 마커를 예비 선 발한 뒤, 8개의 귀리 품종에 검정하여 최종 18개의 마커를 개발하 였다. 본 연구에서 확보된 유전체 및 마커 정보는 향후 InDel을 포 함한 유용 마커의 개발 및 귀리의 분자 육종에 긴요하게 활용될 것으로 생각된다. 주요어: 귀리, 유전자원, 다양성, 전유전체 재해독, SSR 마커 학 번: 2021-25281

제 1 장 서언	7
제 2 장 연구사	8
제 3 장 재료 및 방법	12
제 1 절 귀리 유전자원의 다양성 분석	12
1. 공시재료	12
2. 표현형 조사	12
3. 통계분석	12
제 2 절 국내 귀리 품종 전유전체 재해독을 통한 SS	SR
후보 마커 개발	24
1. 공시재료	24
2. 전유전체 재해녹	24
3. Read의 reference genome mapping 및 variation calli	ng
A Appotation of variations	· 24 25
4. Almotation of variations 5 프라이머 석계 ······	$\frac{25}{25}$
6. 마커 검정	25
	10
제 4 장 결과 및 고찰	27
제 1 절 귀리 유전자원의 다양성 분석	27
1. 귀리 유전자원의 표현형 평가	27
2. 상관분석	31
3. 귀리 유전자원의 원산지 분포	32
4. 주성분분석	34
5. 군집분석	36

제 2 절 국내 귀리 품종 전유전체 재해독을 통한 SSR
후보 마커 개발43
1. Sequencing과 OT3098 유전체 서열에 대한 read
mapping ······43
2. 염기서열 변이 탐색
3. SSR 마커 개발 및 선발47
제 5 장 종합 고찰
제 1 절 귀리 유전자원의 다양성 분석
제 2 절 국내 귀리 품종 전유전체 재해독을 통한 SSR
후보 마커 개발
제 6 장 적요
참고문헌
Abstract ······64

Contents of tables

[Table 1] Agronomic traits and orgins of 318 A. sativa genetic
resources 13
[Table 2] Basic statistical information for agronomic traits of
318 A. sativa genetic resources
[Table 3] Eigenvalues and eigenvectors of agronomic traits of
318 A. sativa genetic resources 35
[Table 4] The results of cluster analysis of 318 A. sativa
genetic resources
[Table 5] The A. sativa accessions belonging to each cluster
[Table 6] Summary of whole genome resequencing data and
[_ more of perminant, or minore genome reperference. Genome mina
detected variants mapped on OT3098 v2 43
detected variants mapped on OT3098 v2 43 [Table 7] The number of designed <i>A. sativa</i> SSR primers
detected variants mapped on OT3098 v243[Table 7] The number of designed A. sativa SSR primers according to type of SSR motifs
detected variants mapped on OT3098 v2 43 [Table 7] The number of designed <i>A. sativa</i> SSR primers according to type of SSR motifs 47 [Table 8] The number of preliminary selection of SSR candidate
 detected variants mapped on OT3098 v2 43 [Table 7] The number of designed <i>A. sativa</i> SSR primers according to type of SSR motifs 47 [Table 8] The number of preliminary selection of SSR candidate markers in <i>A. sativa</i>
 detected variants mapped on OT3098 v2 ······ 43 [Table 7] The number of designed <i>A. sativa</i> SSR primers according to type of SSR motifs ······· 47 [Table 8] The number of preliminary selection of SSR candidate markers in <i>A. sativa</i> ····· 48 [Table 9] The number of selected SSR candidate markers in <i>A.</i>

[Table 10] *A. sativa* SSR candidate markers sequences, repeat

types, and average melting temperatures 50

Contents of figures

[Figure 1] Frequency distribution of 7 agronomic traits of 318

- [Figure 4] PCA biplot of the first two principal components and the percentage of variance explained by each 36
- [Figure 6] Distribution of 7 clusters of 318 *A. sativa* genetic resources on each agronomic traits 41

- [Figure 9] The expected locations of the developed *A. sativa* SSR candidate markers on the chromosomes 49

제 1 장 서언

귀리(Avena sativa L.)는 식용, 사료용, 가공용으로 사용되는 다목적 작 물이다(Ihsan 등, 2021; Carlson 등 2022). 국내에서는 식용으로 1,300ha, 사료용으로 3,500ha가 재배되는 것으로 추정되며(2021년), 전 세계적으로 곡물 생산 6위에 달하는 주요 작물이다(http://www.fao.org/faostat/en/, accessed Nov 2022).

유전자원은 육종에 있어서 목표 형질에 대한 변이를 제공한다는 점에서 중요성을 지닌다(고희종 등, 2010). 유전자원을 이용하기 위해서는 이에 대한 평가가 선행되어야 하는데, Boczkowska와 Tarczyk (2013)은 유전 자은행의 효과는 제공할 수 있는 정보의 양에도 있다고 하였다. Ihsan 등(2021)이 형태학적 평가는 유전적 다양성을 평가하는 데 유용하다고 하였는데, 국내에서 귀리 유전자원의 형태학적 평가는 일부 원산에 한해 연구되거나(이수경 등, 2019), 화학형만 연구되었을 뿐(Rauf 등, 2019; 김 경민 등, 2018) 다양한 원산의 유전자원에 대한 표현형 다양성을 연구한 적이 없어 이를 살펴보고자 하였다.

귀리는 유전체 크기가 크고, 이질6배체로 광범위한 유전자 중복과 반복 서열이 많아(Kulcheski 등, 2010; Peng 등, 20221) reference genome과 같은 연구가 어려웠다. 그러나 2020년 귀리 OT3098의 reference genome 염기서열이 보고되면서 분자유전학적 연구 기반이 마련되었다.

본 연구의 목표는 318점의 귀리 유전자원을 평가하여 그룹화함으로써 육종 기초를 마련하고 관리를 효율적으로 하는 데에 있다. 또한, 전유전 체 재해독을 통해 국내 대표 귀리 품종에 대해 분석하고, SSR 후보 마 커를 개발하여 유전형 분석 기반을 마련하고자 하였다.

제 2 장 연구사

유전자원의 다양성은 형태학적 방법과 분자적 방법으로 검정할 수 있 다. 국외의 경우 Diederichsen(2008)이 지리적 분포와 다양성을 비교하기 위해 캐나다 유전자은행에 보존된 귀리 유전자원 10,105점의 질적 형질 을 조사하였다. 조사 대상은 환경 영향을 적게 받는 이삭 모양, 이삭 직 립성, 이삭 밀도, 호영 색, 호영 털, 까락, 잎혀, 종실피과성을 포함한 아 종 구분 등의 8개 형질이었다 (Diederichsen, 2008). 이어 2009년에는 노 지에서 초장, 잎 색, 도복, 수장, 호영 길이, 조숙성을 추가로 조사하여 중복자원을 추려냄으로써 유전적 다양성에 대한 위협을 줄이고 유전자은 행의 유전자원 구성을 최적화하였다(Diederichsen, 2009).

Tang 등(2014)은 중국에서 Avena 속의 2배체인 A. atlantica, 4배체인 A. abyssinica, 6배체인 A. sativa와 A. byzantina 등 25종의 114 자원을 대상으로 18개의 표현형 조사를 통해 다양성과 유전적 관계를 조사한 바 있다. 조사 대상 형질은 까락, 호영 색, 이삭 모양, 이삭 길이, 초장, 이삭 당 영화수 등이었다. Ahmed, Roy, and Majumdar (2011)은 인도에서 사 료용 귀리 75개 자원의 형태학적 형질 10가지를 평가하고 형질 간 상관 관계와 청예수량에 대한 경로계수를 분석하였다. 또한, D² 분석으로 다 양성을 밝혔다. Krishna, Ahmed, Pandey, and Kumar (2014)는 인도에 서 사료용 귀리 50 자원의 형질 16개를 조사하고 D² 분석으로 군집화하 였다. D² 분석은 다양한 형질을 기반으로 그룹 간 거리를 측정하는 방법 으로, 유전적 다양성을 측정하기 위해 사용되는 방법이다. Kaur, Kapoor, Vikal, and Kaur (2018)은 인도에서 귀리 96개 자원의 34개의 형질을 조 사한 뒤 형질을 사료용, 식용, 다목적용으로 나누어 용도에 따라 6개 군 집으로 나누었다. 사료용으로 설정된 형질은 첫 번째 수확의 초장, 청예 수량, 건물수량, 출수일수, 잎면적지수, 조단백함량 등이었고, 식용으로 구분된 형질은 천립중, 지엽 길이 및 너비, 영화수, 유효경수, 수장, 종실 수량, 베타글루칸 함량 등이었다.

분자적 방법을 사용한 예시로는 Leišová, Kučera, and DotLačiL (2007) 이 microsatellites 26개로 allele 353개를 탐지하여 귀리 유전자원 330점 의 다양성을 살펴보았고, Boczkowska와 Tarczyk (2013)는 67개의 폴란 드 재래품종의 유전적 다양성을 8개의 ISSR (Inter simple sequence repeat) 마커를 이용하여 평가한 것이 있다. Cieplak, Okoń, and Werwińska (2021)은 ISSR과 SCoT(Start codon targeted) 마커로 중부 유럽에서 재배되고 있는 귀리 36품종의 유전적 다양성을 조사하였다. Kapoor, and Singh (2017)은 인도 96개 품종의 유전적 다양성을 평가하 기 위해 SSR 마커 40개를 이용하여 10개 그룹으로 나누었다.

형태학적 방법과 분자적 방법을 결합한 경우로는 Canales 등(2021)이 지중해 지역의 재래품종 669개와 품종 40개의 출수일수를 스페인에서 조 사하고 SNP genotyping을 통해 출수기 관련 후보 유전자를 밝혔고, Rio 등(2021)은 같은 집단의 출수일수·초장·생체중·종실수량 등 4가지의 표현 형을 이용하여 genomic prediction과 training set optimization 하였다. Ihsan 등(2021)은 파키스탄과 미국 원산의 236개 자원의 21개 질적·양적 형질을 파키스탄에서 조사하고 SDS-page(Sodium dodecyl sulfatepolyacrylamide gel electrophoresis) 방법으로 유전적 다양성을 밝혔다. Nikoloudakis, Bladenopoulos, and Katsiotis (2016)은 A. sativa 외에도 red oat로 불리는 A. bysantina C. Koch를 포함하여 그리스와 동유럽 지 역의 재래종 55종과 품종 7개의 표현형과 SSR 마커를 이용하여 대상 자 원의 구조적 양상과 유전적 다양성을 밝혔다. 그 결과 그리스 자원은 동 유럽 자원과 다른 군집을 형성하였다. Sheikhehpour, Bahraminejad, and Cheghamirza (2014)는 이란 귀리 품종 43개와 잡초로 여겨지는 A. sterilis 4개의 형태학적 특징과 ISSR 마커를 이용하여 유전 변이를 살펴 보았다. 생체수량, 출수일수, 종실수량 등 22개 형질을 조사하여 WARD 군집분석법으로 귀리의 유전형을 4개 그룹으로 나누었고, 마커 28개로 206개의 밴드를 증폭하여 완전연결법을 이용하여 7개 그룹으로 나누었으

나 이 두 분류 사이의 상관성은 유의하지 않았다. Boczkowska, Lapiński, Kordulasińska, Dostatny, and Czembor (2016)는 91개의 폴란 드 귀리 유전자원을 8개의 형태학적 특징과 ISSR 마커로 다양성을 평가 하고. PowerCore로 21개 자원으로 구성된 핵심집단을 작성한 바 있다. Boczkowska 등(2016)의 연구에서도 표현형 데이터와 유전형 데이터 간 상관성은 유의하지 않았고, 표현형과 지리학적 데이터 간 상관은 0.047로 선형의 상관관계를 갖지 않았다. Arora 등 (2021)은 인도에서 57개의 귀 리 유전형의 양적 형질을 조사하고 SSR 마커를 이용하여 유전적 다양성 을 살피고 교배모부본으로 유망한 자원을 선발한 바 있다.

국내에서 귀리의 유전자원에 관한 연구는 다소 주목받지 못하였다. Rauf 등(2019)에 의해 캐나다 등 10개국 원산의 귀리 유전자원 975점을 한국에서 재배한 뒤 종실의 조섬유, 식이섬유, β-글루칸, 지질 등의 성분 이 분석되었고. 이수경 등(2019)에 의해 한·중·일 원산 142점의 종실에서 베타글루칸, 조단백, 조지방, 조섬유, 식이섬유 등의 영양성분이 분석되고 출수일수, 초장, 성숙일수, 이삭 길이, 백립중 등의 농업 형질이 조사되어 유전자원의 원산지별 다양성이 비교되었다.

Sequencing 기술의 발달로 2019년 Avena 속에서 2배체인 A. atlantica 의 Cc 7277와 A. eriantha의 CN 19328의 유전체가 가장 먼저 조립되었 다(Maughan 등, 2019). 2020년에는 6배체인 A. sativa 중 OT3098의 전 유전체가 해독됨에 따라 귀리의 연구에 더욱 박차를 가하게 되었다. Peng 등(2022)의 연구에서 6배체 쌀귀리인 Sanfensan의 전유전체가 해 독되었을 뿐 아니라, A. sativa의 기원으로 알려진 A. longiglumis (AA, 2n=14)와 A. insularis (CCDD, 2n=4x=28)의 유전체 역시 조립되었다. Kamal 등(2022)의 연구에서도 A. sativa인 Sang 품종이 reference 수준 으로 해독되었으며, A. longiglumis와 A. insularis의 유전체 역시 해독 되었다. 또한, 전 세계의 연구자가 모여 PanOat 프로그램을 통해 Avena 속 30종의 유전체를 해독하고 있어 더욱 귀리 게놈에 관한 연구에 가속 도가 붙을 것으로 예상된다(https://wheat.pw.usda.gov/GG3/PanOat). 국 내에서는 Kim 등(2022)의 연구를 통해 국내 귀리 품종 8개와 캐나다·호 주 품종의 전사체가 해독하고 이 정보가 dCAPS(Derived cleaved amplified polymorphic sequence) 마커 개발에 활용한 바 있다.

분자 마커 중 미세부수체(microsatellite) 또는 SSR(simple sequence repeat) 마커는 적은 양의 DNA를 요구하며 적은 비용으로 짧은 시간에 검정이 가능하다(Wight, Yan, Fetch, Deyl, and Tinker, 2010; Li, Rossnagel, and Scoles, 2000). SSR 마커는 다형성이 높고 공우성 유전 이며 재현성이 높은 특징을 가져서 marker-assisted breeding, genetic mapping, 게놈 분석, 품종 보호, 종자 순도 평가, 유전자원 보존, 다양성 연구, 유전자와 QTL(Quantitative trait locus) 연구, 종내 유전적 관계 연구 등에 쓰인다(Becher, 2007; Wight 등, 2010; Li 등, 2000; Leišová 등, 2007). 이러한 SSR 마커는 개발비용이 많이 들고, 라이브러리가 적 어서 귀리에선 연구가 더뎠다(Li 등, 2000; Wight 등, 2010).

제 3 장 재료 및 방법

제 1 절 귀리 유전자원의 다양성 분석

1. 공시재료

USDA GRIN에서 분양받은 귀리 유전자원 317점과 국내 귀리 품종인 '하이스피드'를 이용하였다(Table 1). 공시재료는 국립식량과학원 중부작 물부 작물연구동 시험 포장에 2019년 3월 8일, 2021년 3월 12일, 2022년 3월 7일에 줄뿌림으로 파종되었고, 파종량은 2019년 10g, 2021년 12g, 2022년 6g이었다. 휴장 2m, 휴폭 40cm로 단반복으로 재식되었고, 시비량 은 N-P₂O₅-K₂O가 각각 6-5-4kg/10a 수준이었다.

2. 표현형 조사

출수일수, 초장, 초형은 농촌진흥청(2012)을 기준으로 2019년, 2021년, 2022년 각각 포장에서 식물체를 대상으로 육안으로 조사되었고 종실 피 과성, 천립중, 종자 길이, 종자 폭은 수확·탈곡 후 2019년, 2022년 종실을 대상으로 조사되었다. 종실 피과성은 육안으로 조사되었고, 천립중은 전 자저울(OHAUS EOf110, Ohaus Co., New Jersey, United States)을 이 용하여 측정되었다. 종자길이, 종자폭은 버니어 캘리퍼스(CD-15APX, Mitutoyo Co., Kanagawa, Japan)를 이용하여 연도별로 5반복 측정되었 다.

3. 통계분석

귀리 유전자원의 표현형 평균값에 대한 상관분석(Correlation analysis), 주성분분석(PCA; Principal component analysis) 및 군집분석(CA; Cluster analysis)은 R version 4.2.1로 수행되었다. 주성분분석은 종실 피과성을 제외한 6개 형질의 표현형을 대상으로 수행되었다. 상관계수 행렬의 고유 벡터(eigenvector)를 제1 주성분(PC1)부터 제6 주성분(PC6) 까지 나타냈으며, 각 주성분별 고유치(eigenvalue) 및 기여율 (contribution)이 표로 나타내었다. 또한, PCA 결과가 그림(biplot)으로 표현되었다. 군집분석은 K-Prototypes 알고리즘을 사용하여 주성분분석 결과와 쌀귀리 집단을 포함하여 수행되었으며, 군집의 개수는 엘보우 (elbow) 및 실루엣(silhouette) 기법으로 결정되었다. 유전자원의 원산지 는 Qgis 3.16.0 프로그램을 사용하여 표기되었다.

No.	Accession list	Accession name	PI number	Origin
1	AS001	Highspeed	_	Korea
2	AS002	Boswell	Clav 480	United Kingdom
3	AS003	Victory	Clav 1461	Sweden
4	AS004	Victory	Clav 1469	Sweden
5	AS005	Victory	Clav 1506	Sweden
6	AS006	Victory	Clav 1654	Sweden
7	AS007	Victory	Clav 1787	Sweden
8	AS008	Triumph	Clav 1793	Netherlands
9	AS009	Black Speckled	PI 50350	Germany
10	AS010	Danish Island Yellow	Clav 1838	Denmark
11	AS011	Victory	Clav 1985	Sweden
12	AS012	Victory	Clav 2207	Sweden
13	AS013	Victory	Clav 2644	Sweden
14	AS014	Victory	Clav 2645	Sweden
15	AS015	Mulga	Clav 3124	Australia
16	AS016	CIav 3456	PI 125172	North Korea
17	AS017	Sorbo	Clav 8232	Sweden
18	AS018	CIav 749	PI 36196	Russian Federation
19	AS019	Chinese Hull-less	PI 40650	China
20	AS020	Gray	PI 51298	Spain
21	AS021	Light Husk	PI 52515	Netherlands

[Table 1] Agronomic traits and orgins of 318 *A. sativa* genetic resources.

No.	Accession list	Accession name	PI number	Origin
22	AS022	Red Oats	PI 59285	Chile
23	AS023	Victory	PI 78588	Sweden
24	AS024	Red Algerian	PI 93283	Germany
25	AS025	Kelsall	PI 93286	Germany
26	AS026	9339	PI 194893	Ethiopia
27	AS027	9488	PI 194894	Ethiopia
28	AS028	9350	PI 194896	Ethiopia
29	AS029	Star	PI 199678	Sweden
30	AS030	Zenith	PI 199680	Belgium
31	AS031	Heines Silber II	PI 209777	Germany
32	AS032	Lohmanns Weender IV	PI 209778	Germany
33	AS033	N.O.S. Nackthafer	PI 209779	Germany
34	AS034	Petkuser Flamingsgold	PI 209780	Germany
35	AS035	Esa	PI 221279	Finland
36	AS036	F-22-257/15	PI 222505	Croatia
37	AS037	Nip	PI 234270	Sweden
38	AS038	16129	PI 235278	France
39	AS039	-	PI 254408	Hungary
40	AS040	WIR 4633	PI 258550	Turkey
41	AS041	WIR 4635	PI 258551	Turkey
42	AS042	WIR 4636	PI 258552	Turkey
43	AS043	WIR 4638	PI 258553	Turkey
44	AS044	WIR 4640	PI 258555	Turkey
45	AS045	WIR 4641	PI 258556	Turkey
46	AS046	WIR 4740	PI 258557	Algeria
47	AS047	WIR 4741	PI 258558	Algeria
48	AS048	WIR 4748	PI 258559	Algeria
49	AS049	WIR 5398	PI 258575	Turkey
50	AS050	WIR 5417	PI 258576	Turkey
51	AS051	WIR 4083	PI 258581	Cyprus

No.	Accession list	Accession name	PI number	Origin
52	AS052	WIR 4793	PI 258585	Greece
53	AS053	Bizantina 956	PI 258586	Azerbaijan
54	AS054	WIR 7741	PI 258587	Turkey
55	AS055	WIR 7742	PI 258588	Turkey
56	AS056	WIR 7745	PI 258589	Turkey
57	AS057	WIR 2351	PI 258590	Russian Federation
58	AS058	WIR 4075/14	PI 258591	Mongolia
59	AS059	WIR 4075/42	PI 258592	Mongolia
60	AS060	Golozernyi	PI 258593	Russian Federation
61	AS061	Golozernyi Osipova	PI 258594	Russian Federation
62	AS062	Tulunskii Golozernyi	PI 258598	Russian Federation
63	AS063	Istinskii	PI 258599	Russian Federation
64	AS064	Rykhlik Oberek	PI 258600	Poland
65	AS065	WIR 4073	PI 258601	Mongolia
66	AS066	WIR 4074/5	PI 258602	Mongolia
67	AS067	Tululnskij 53	PI 258606	Russian Federation
68	AS068	Stepniak 648	PI 258604	Russian Federation
69	AS069	Vernhiachskij 53	PI 258605	Ukraine
70	AS070	Tulunskij 86/5	PI 258606	Russian Federation
71	AS071	Minskij 92	PI 258607	Belarus
72	AS072	Minskij 25	PI 258608	Belarus
73	AS073	Krasnoiarskii F-272	PI 258609	Russian Federation
74	AS074	Verkhiacskij 41	PI 258611	Ukraine
75	AS075	Khasan	PI 258612	Ukraine
76	AS076	Maganskii	PI 258614	Russian Federation
77	AS077	Kharkovskii 596	PI 258615	Ukraine
78	AS078	Omskij 6922	PI 258616	Russian Federation
79	AS079	Enisei	PI 258617	Russian Federation
80	AS080	Baikal	PI 258618	Russian Federation
81	AS081	Zeleniak	PI 258619	Poland

No.	Accession list	Accession name	PI number	Origin
82	AS082	Teodozila	PI 258620	Poland
83	AS083	Onokhoiskij A-547	PI 258621	Russian Federation
84	AS084	Jogeva Koidu	PI 258622	Estonia
85	AS085	Severnyj 990	PI 258623	Russian Federation
86	AS086	Pokrovskii	PI 258624	Russian Federation
87	AS087	Belorusskii 981/9	PI 258626	Belarus
88	AS088	Sretinskii 1069	PI 258629	Russian Federation
89	AS089	Jakutskij 1708	PI 258630	Russian Federation
90	AS090	WIR 9275	PI 258631	Ukraine
91	AS091	WIR 9143	PI 258632	Russian Federation
92	AS092	Krausei	PI 258634	Russian Federation
93	AS093	WIR 4829	PI 258635	Armenia
94	AS094	WIR 10739	PI 258636	Ukraine
95	AS095	WIR 10743	PI 258637	Ukraine
96	AS096	Jogeva Roste Kipdlam	PI 258638	Estonia
97	AS097	A-315	PI 258639	Russian Federation
98	AS098	Zhemchushina	PI 258640	Russian Federation
99	AS099	WIR 4301	PI 258641	Georgia
100	AS100	WIR 4676	PI 258642	Turkey
101	AS101	WIR 4816	PI 258643	Armenia
102	AS102	Sovetskij	PI 258646	Ukraine
103	AS103	Viatskiy 06522	PI 258647	Russian Federation
104	AS104	Rekord	PI 258648	Russian Federation
105	AS105	WIR 9273	PI 258649	Ukraine
106	AS106	Jogeva Agu	PI 258650	Estonia
107	AS107	Stipryoles	PI 258651	Lithuania
108	AS108	Girunes	PI 258652	Lithuania
109	AS109	Aristata 7	PI 258653	Kazakhstan
110	AS110	Aristata 16	PI 258654	Russian Federation
111	AS111	WIR 1738	PI 258655	Russian Federation

No.	Accession list	Accession name	PI number	Origin
112	AS112	WIR 4079/5	PI 258656	Mongolia
113	AS113	WIR 4516	PI 258657	Georgia
114	AS114	Grivach	PI 258658	Poland
115	AS115	Kizak	PI 258659	Belarus
116	AS116	Odnogrivyi Mestnyi	PI 258660	Russian Federation
117	AS117	WIR 1742	PI 258661	Russian Federation
118	AS118	WIR 1746	PI 258662	Russian Federation
119	AS119	Ozimui Obes	PI 258663	Ukraine
120	AS120	WIR 4074/12	PI 258664	Mongolia
121	AS121	Kabardinec	PI 258665	Russian Federation
122	AS122	WIR 4808	PI 258666	Armenia
123	AS123	Kehra Saa Girikas	PI 258667	Estonia
124	AS124	Samarskii Samyi Rannii	PI 258668	Russian Federation
125	AS125	Shatilovskij 33	PI 258669	Russian Federation
126	AS126	Shatilovskij 56	PI 258670	Russian Federation
127	AS127	WIR 2392	PI 258671	Russian Federation
128	AS128	Seberianin	PI 258672	Russian Federation
129	AS129	WIR 4079	PI 258673	Mongolia
130	AS130	WIR 4538	PI 258674	Russian Federation
131	AS131	WIR 4646	PI 258675	Turkey
132	AS132	WIR 4649	PI 258676	Turkey
133	AS133	WIR 4653	PI 258677	Turkey
134	AS134	WIR 4664	PI 258678	Turkey
135	AS135	WIR 4666	PI 258679	Turkey
136	AS136	WIR 4672	PI 258680	Turkey
137	AS137	Kerkhniaschskii 41	PI 258681	Ukraine
138	AS138	WIR 7006	PI 258682	Russian Federation
139	AS139	WIR 7014	PI 258683	Russian Federation
140	AS140	WIR 7031	PI 258684	Russian Federation
141	AS141	WIR 7759	PI 258685	China

No.	Accession list	Accession name	PI number	Origin
142	AS142	Mutica 145	PI 258686	Russian Federation
143	AS143	Krymskii 75	PI 258687	Ukraine
144	AS144	Minskij 92	PI 258688	Belarus
145	AS145	Minskij 100	PI 258689	Belarus
146	AS146	Vydvizhenets F-194	PI 258690	Russian Federation
147	AS147	Chakinskii 1812	PI 258691	Russian Federation
148	AS148	Rykhlik Kozarovskii	PI 258692	Poland
149	AS149	Mutica 588	PI 258693	Russian Federation
150	AS150	Krymskiii 53	PI 258694	Ukraine
151	AS151	Krymskii 90	PI 258695	Ukraine
152	AS152	Shatilovskij 30-N-15	PI 258696	Russian Federation
153	AS153	Beta 10-H-4	PI 258697	Russian Federation
154	AS154	Khibiny 1	PI 258699	Russian Federation
155	AS155	Khibiny 2	PI 258700	Russian Federation
156	AS156	Stendskij Malyj Rannij	PI 258701	Latvia
157	AS157	Kekhrskii Rannii	PI 258704	Estonia
158	AS158	Onokhoiskij C-213	PI 258705	Russian Federation
159	AS159	WIR 10413	PI 258707	Lithuania
160	AS160	Bolshevik	PI 258711	Ukraine
161	AS161	L′govskij 1026	PI 258715	Russian Federation
162	AS162	Kazanskii 660	PI 258718	Russian Federation
163	AS163	Vologdskii 1	PI 258720	Russian Federation
164	AS164	Nemchinovskij 1	PI 258722	Russian Federation
165	AS165	Magistral	PI 258724	Russian Federation
166	AS166	WIR 10420	PI 258725	Lithuania
167	AS167	Vscred	PI 258726	Russian Federation
168	AS168	WIR 2130	PI 258735	Russian Federation
169	AS169	WIR 2138	PI 258737	Russian Federation
170	AS170	8	PI 259865	Croatia
171	AS171	10	PI 259867	Croatia

No.	Accession list	Accession name	PI number	Origin
172	AS172	15	PI 259872	Croatia
173	AS173	17	PI 259874	Croatia
174	AS174	Sanietski	PI 260049	Soviet
175	AS175	Blenda	PI 260887	Sweden
176	AS176	Pendek	PI 262209	Netherlands
177	AS177	Red Algerian No. 31	PI 263412	Algeria
178	AS178	Brune Mont-Calme	PI 263559	Switzerland
179	AS179	Weibulls 16187	PI 263572	Sweden
180	AS180	Weibulls 16228	PI 263573	Sweden
181	AS181	Nemaha	PI 264206	Libya
182	AS182	Palestine	PI 264207	Libya
183	AS183	Avoine Noire 912	PI 264211	Algeria
184	AS184	Avoine Rouge d'Vulgerie No. 31	PI 264212	Algeria
185	AS185	Altesse Jaune	PI 264633	Belgium
186	AS186	Blanche du Vieux Moulin	PI 264634	Belgium
187	AS187	Confiance	PI 264635	Belgium
188	AS188	Vedette	PI 264637	Belgium
189	AS189	760	PI 264852	Macedonia
190	AS190	788	PI 264853	Macedonia
191	AS191	821	PI 264855	Serbia
192	AS192	830	PI 264856	Serbia
193	AS193	911	PI 264857	Bosnia
194	AS194	917	PI 264858	Croatia
195	AS195	945	PI 264859	Croatia
196	AS196	981	PI 264860	Croatia
197	AS197	1053	PI 264861	Croatia
198	AS198	Juha	PI 265456	Finland
199	AS199	Kyro	PI 265457	Finland
200	AS200	Sisu	PI 265458	Finland
201	AS201	Tammi	PI 265459	Finland

No.	Accession list	Accession name	PI number	Origin
202	AS202	Hafer Erfolg	PI 265910	Germany
203	AS203	Blenda	PI 265958	Sweden
204	AS204	Blixt	PI 265959	Sweden
205	AS205	Solida	PI 266265	Cyprus
206	AS206	WIR 4783/I	PI 266266	Syria
207	AS207	Phoenix	PI 285081	Germany
208	AS208	Vigor	PI 285082	Belgium
209	AS209	Pulawski	PI 285548	Poland
210	AS210	Bartek Udycki	PI 285552	Poland
211	AS211	Dolnoslaski	PI 285556	Poland
212	AS212	Jubileuszowy Wieclawicki	PI 285557	Poland
213	AS213	Kosak	PI 285558	Poland
214	AS214	Najwczesniejszy Niemierczanski	PI 285559	Poland
215	AS215	Pomorski Zloty	PI 285560	Poland
216	AS216	Przeboj II	PI 285562	Poland
217	AS217	Pulawski Sredniorzchly	PI 285563	Poland
218	AS218	Same	PI 285566	Sweden
219	AS219	Udycznowy 96	PI 285567	Poland
220	AS220	Dluzewski	PI 285569	Poland
221	AS221	Gorczanski Bialy	PI 285570	Poland
222	AS222	Koicielecki	PI 285571	Poland
223	AS223	Mlochowski	PI 285573	Poland
224	AS224	Proporczyk	PI 285574	Poland
225	AS225	Zlotniak	PI 285575	Poland
226	AS226	Irbit	PI 285576	Czechoslovakia
227	AS227	Kolumb	PI 285577	Poland
228	AS228	Solacki Wczesny	PI 285581	Poland
229	AS229	Tatry	PI 285584	Poland
230	AS230	Trzebunia	PI 285588	Poland
231	AS231	AVE 274/62	PI 287279	Albania

No.	Accession list	Accession name	PI number	Origin
232	AS232	F V Lochows Gelbhafer	PI 287325	Germany
233	AS233	Sachsischer Fruhhafer	PI 287328	Germany
234	AS234	AVE 149/59	PI 287341	Greece
235	AS235	Breustedts Harly	PI 287346	Germany
236	AS236	Weihenstephaner Guntram	PI 287359	Germany
237	AS237	Weihenstephaner Gudrun	PI 287362	Germany
238	AS238	Salzmunder Echo	PI 287375	Germany
239	AS239	AVE 105/59	PI 287378	Afghanistan
240	AS240	Kirsches Edelweiss	PI 287391	Germany
241	AS241	Z-24	PI 287396	Croatia
242	AS242	Heines Silber	PI 287412	Germany
243	AS243	Ebstorfer Kley 181	PI 287425	Germany
244	AS244	Eigene Sorte Alt	PI 287428	Germany
245	AS245	AVE 135/59	PI 287441	Albania
246	AS246	Von Gunther Weiss	PI 287446	Germany
247	AS247	Streckenthiner 9	PI 287459	Germany
248	AS248	Baerwalder	PI 287475	Germany
249	AS249	Viktoria	PI 287478	Germany
250	AS250	Lischower Hedwig	PI 287491	Germany
251	AS251	Flamingsweiss II	PI 287493	Germany
252	AS252	Weibull 16384	PI 292762	Sweden
253	AS253	Nina	PI 292764	Sweden
254	AS254	Weibull 16428	PI 292765	Sweden
255	AS255		PI 293344	Cyprus
256	AS256	Orient	PI 293345	Cyprus
257	AS257	Palestine 1005	PI 293346	Cyprus
258	AS258	Red Algerian	PI 293347	Cyprus
259	AS259	White Algerian	PI 293348	Cyprus
260	AS260	Jubileuszowy Wieclawicki	PI 294664	Poland
261	AS261	Kleinwanzlebener Intensiv	PI 294665	Germany

No.	Accession list	Accession name	PI number	Origin
262	AS262	Peragis	PI 294666	Germany
263	AS263	Pomorski Zloty	PI 294668	Poland
264	AS264	Przeboj I	PI 294669	Poland
265	AS265	Stepnjak	PI 294671	Bulgaria
266	AS266	Beseler II	PI 294672	Denmark
267	AS267	Jezewski	PI 294673	Poland
268	AS268	Ligeva Agu	PI 294675	Bulgaria
269	AS269	Vienauer Weiss	PI 294680	Bulgaria
270	AS270	Wichenblatter No. 16	PI 294682	Bulgaria
271	AS271	Mongolia	PI 294683	Bulgaria
272	AS272	Huzar	PI 294686	Poland
273	AS273	Mongolia	PI 294687	Bulgaria
274	AS274	Cartizv	PI 294689	Bulgaria
275	AS275	Duppauer 851	PI 294690	Czechoslovakia
276	AS276	Flamande Despres	PI 294691	France
277	AS277	Bulgarien	PI 294697	Bulgaria
278	AS278	Bulgarien	PI 294698	Bulgaria
279	AS279	Pfarrkirchner Edel	PI 294700	Germany
280	AS280	Pobeda	PI 294701	Bulgaria
281	AS281	Wisniara Galiz	PI 294704	Poland
282	AS282	Byzantina 602	PI 296140	Azerbaijan
283	AS283	WIR 5103	PI 296146	Ukraine
284	AS284	Verhniacskij 53	PI 296147	Ukraine
285	AS285	Khasan	PI 296149	Ukraine
286	AS286	WIR 4071	PI 296150	Ukraine
287	AS287	WIR 5094	PI 296151	Ukraine
288	AS288	WIR 5096	PI 296152	Ukraine
289	AS289	Sovetskij	PI 296153	Ukraine
290	AS290	WIR 3727	PI 296154	Ukraine
291	AS291	WIR 3713	PI 296156	Ukraine

No	Accession list	Accession name	PI number	Origin
292	AS292	WIR 3715	PI 296157	Ukraine
293	AS293	WIR 3717	PI 296158	Ukraine
294	AS294	WIR 3960	PI 296163	Ukraine
295	AS295	WIR 4056/1	PI 296164	Ukraine
296	AS296	WIR 4062	PI 296165	Ukraine
297	AS297	WIR 4088	PI 296167	Ukraine
298	AS298	WIR 4885	PI 296168	Ukraine
299	AS299	WIR 4891/1	PI 296169	Ukraine
300	AS300	WIR 4894/1	PI 296170	Ukraine
301	AS301	Verhniacskij 54	PI 296172	Ukraine
302	AS302	Krymskij 90	PI 296174	Ukraine
303	AS303	L′govskij 1026	PI 296179	Russian
304	AS304	Artemovskij 107	PI 296181	Ukraine
305	AS305	Nina	PI 313910	Sweden
306	AS306	Weibull 16509	PI 313911	Sweden
307	AS307	Jancco Avena	PI 510523	Peru
308	AS308	Riel	PI 552971	Canada
309	AS309	LAO-474-ISO-01	PI 633779	Canada
310	AS310	LAO-474-ISO-03	PI 633781	Canada
311	AS311	LAO-474-ISO-04	PI 633782	Canada
312	AS312	LAO-474-ISO-05	PI 633783	Canada
313	AS313	LAO-474-ISO-06	PI 633784	Canada
314	AS314	LAO-474-ISO-07	PI 633785	Canada
315	AS315	LAO-474-ISO-09	PI 633787	Canada
316	AS316	LAO-474-ISO-13	PI 633791	Canada
317	AS317	LAO-474-ISO-15	PI 633793	Canada
318	AS318	LAO-474-ISO-16	PI 633794	Canada

제 2 절 국내 귀리 품종 전유전체 재해독을 통한 SSR 후보 마커 개발

1. 공시재료

국내 귀리 품종인 '삼한', '대양', '하이스피드'의 2021년 생산 기본식물 종자를 이용하여 유묘기 어린잎에서 DNA 추출을 위한 샘플을 채취되었 다.

2. 전유전체 재해독

DNA 추출은 DNeasy Plant Mini Kit (Qiagen, Hilden, Germany)와 동 봉된 매뉴얼에 따라 이루어졌다. 추출한 genomic DNA의 정향은 Agilent 2200 TapeStation (Agilent Technologies, California, USA)를 이용하여 수행되었다. TruSeq DNA PCR free kit (Illumina, San Diego, USA)를 이용하여 350bp 크기 이하의 Paired end sequencing 라이브러 리를 제작한 뒤 Illumina NovaSeq 6000(Illumina, San Diego, USA)을 이용하여 sequencing 되었다.

3. Read의 reference genome mapping 및 variation calling

각 귀리 품종에서 생산된 염기서열 정보로부터 phred quality score가 20 이하인 low-quality read와 중복 read를 Trimmomatic (version 0.39, Bolger, Lohse, and Usadel, 2014)을 이용하여 제거한 뒤 Burrows-Wheeler Aligner (BWA) software (version 0.7.17, Li and Durbin, 2009)를 이용하여 OT3098 v2 reference genome에 mapping 되었다. 이 후 SAM tools software (version 1.11, Li 등, 2009)를 이용하여 mapping이 되지 않거나 염색체상 여러 위치에 mapping 된 read들을 제 거하고 BAM 형식으로 변환되었다. Genome Analysis Toolkit (GATK, version 4.2, Mckenna 등, 2010)의 HaplotypeCaller module을 이용하여 variation calling을 진행하고 VCF 파일이 생성되었다. 필터 조건은 GATK hard filter (SNP: QD < 2.0 | FS > 60.0 | MQ < 40.0 | MQRankSum <-12.5 | ReadPosRankSum < -8.0, In/Del : QD < 2.0 | FS > 200.0 | ReadPosRankSum < −20.0)을 적용하여 false-positive SNP가 제거되었다. Multi-allele variants와 모든 품종에서 같은 genotype을 보인 변이를 제거하고 allelic depth 5-100 조건으로 필터링 되었다.

4. Annotaion of variations

SnpEff software (version 5.0, Cingolani 등, 2012)를 이용하여 annotation이 진행되었다. 인트론과 엑손을 포함하여 5' UTR에서 3' UTR에 분포하는 변이가 유전자 영역으로 주석달기 되었다. Coding sequences (CDSs)의 변이는 synonymous와 non-synonymous로 분류되 었다.

5. 프라이머 설계

Phyzen (Seongnam, Korea)의 in-house script로 reference genome 내 의 SSR motif 지역을 탐색한 후 InDel 변이와 reference genome 내 선 발된 SSR 지역의 정보를 통합하여 최종적으로 품종 간 차이 나는 SSR 지역이 탐색 되었다.

프라이머 설계는 Primer3 software (Untergasser 등, 2012)가 이용되었 다. 조건은 PCR 산물 크기 100-250bp, 프라이머 크기 18-26bp, 적정 온 도 55-62℃(최적 58℃), GC 함량 59% 이하로 설정되었다. 디자인된 프 라이머 쌍은 reference에 mapping을 진행하여 unique hit인 것이 확인되 었다.

6. 마커 검정

일차적으로 디자인된 마커 정보를 바탕으로 스크리닝 되었다. 스크리닝 기준은 유전자 영역에 분포할 것, homo-variants일 것, 10bp 이상 차이 날 것, 염색체상의 물리적 거리를 고려할 것 등이었다.

이차적으로 8개의 유전자원을 이용하여 PCR 및 전기영동이 수행되었다.

2차 스크리닝에 사용된 8개의 유전자원은 전유전체 분석을 실시한 3개 품종과 수입의 대표 품종인 '스완'을 포함하고 출수기와 원산지 분포 비 율, 전체 자원 중 쌀귀리 비율을 고려하여 '하이스피드', '삼한', '대양', '스완'. 'Heiness Silber Ⅱ', 'Z-24', 'Istinskii', 'CI2882'로 하였다. 8개 유 전자원의 DNA 추출은 유묘기 잎을 채취하여 DNeasy Plant Mini Kit(Qiagen, Hilden, Germany)와 동봉된 매뉴얼에 따라 이루어졌다. PCR 용액의 조성은 gDNA 10ng, 2X Taq Mix (Dongsheng Biotech, Guangdong, China) 7.5µl, forward primer 10pmol 0.5µl, reverse primer 10pmol 0.5µl, sterile distilled water로 총 용량을 15µl로 맞추었다. PCR 반응은 94℃에서 5분간 incubation 한 뒤, denaturation 94℃ 30초, annealing 57℃ 30초, extention 72℃ 30초로 35 cycle을 수행하고 72℃ 에서 7분간 final incubation을 하였다. PCR 산물은 2.5% agarose gel에 서 전기영동 하여 확인하였다.

제 4 장 결과 및 고찰

제 1 절 귀리 유전자원의 다양성 분석

1. 귀리 유전자원의 표현형 평가

귀리 유전자원 318점의 표현형을 조사하고 그 결과를 다음과 같이 나타 내었다(Fig. 1, Table 2). 귀리 유전자원의 3개년 평균 출수일수는 65-99 일의 범위를 보였으며, 평균은 82.66일이었다(Table 2). 출수일수가 가장 짧은 자원은 AS182로 65일이었고 가장 긴 자원은 AS231로 99일이었다 (Table 2). 초장의 범위는 90(AS182)-152(AS102)cm이었으며, 평균은 127.13cm이었다(Table 2). 초형은 1(직립형), 2(중간형), 3(포복형)으로 나 타내었고 종실 피과성은 0(겉귀리), 1(쌀귀리)로 나타내었다(Table 2). 천 립중의 평균은 26.01g이었으며, 14.78555(AS104)에서 40.1033(AS206)g의 범위를 보였다(Table 2). 귀리 유전자원의 종자 길이는 6.44에서 12.84mm 의 범위를 보였으며, 평균 10.25mm이었다(Table 2). 종자 길이가 가장 긴 자원은 AS281로 12.84mm였으며, AS062가 6.44mm로 가장 짧았다(Table 2). 종자 폭은 평균 2.56mm였으며, 1.95mm(AS026)에서 3.18mm(AS206)의 범위를 보였다(Table 2).

유전자원의 표현형을 조사한 Peltonen-Sainio (1990)에서는 출수일수 범 위가 49-67(평균 56)일, Boczkowska 등(2016)에서는 60-82(평균 74.8 ±4.5)일, 이수경 등(2019)에서는 74-104(평균 90.5±7.5)일이었다, 반면 Arora 등 (2021)에서는 출수일수 범위가 125-164(평균 145±0.95)일, Canales 등 (2021)에서는 125-181(평균 156.90±9.73)일, Ihsan 등(2021)에 서는 2019년 142-167(평균 152.56±4.67)일, 2020년 144-165(평균 150.55 ±4.54)일이었다. Sheikhehpour 등(2014)에서는 출수일수 범위가 152-184 (평균 163.66)일, Nikoloudakis 등(2016)에서는 161-179(평균 169.88±4.21) 일이었다. Peltonen-Sainio (1990), 이수경 등(2019), Boczkowska 등 (2016)에서는 춘파를 하였으나 다른 연구에서는 추파를 하여 출수일수의 범위가 크게 차이 나는 것으로 보인다. 본 연구의 출수기 범위와 이수경 등(2019)에서 조사한 범위가 차이 나는 것은, 이수경 등(2019)에서는 한· 중·일 자원만을 대상으로 하고, 중국·일본 원산 자원이 한국 자원보다 만 생종인데 본 연구에 사용된 자원 중 이러한 자원이 적기 때문이다.

Peltonen-Sainio (1990)의 연구에서 보고된 초장 범위는 51-129(평균 79)cm,, Ihsan 등(2021)에서는 2019년 59.6-145.2(평균 106.81±18.43)cm, 2020년 69.2-140.0(평균 108.99±19.90)cm, Sheikhehpour 등(2014)에서 61.87-147.84(평균 101.16)cm로 본 연구에서 조사된 범위보다 작은 경향 이었다. 사료용 귀리를 대상으로 조사한 Arora 등(2021)에서는 초장이 91.91-131.11(평균 110.51±0.90)cm 범위였다. 본 연구에서 사용된 유전자 원은 Peltonen-Sainio (1990), Ihsan 등(2021), Sheikhehpour 등(2014)에 서 보고된 것보다 초장이 긴데, 이는 국내에서는 사료용 귀리 품종 개발 에 초점을 맞춰 생체중 및 건물중이 큰 품종을 육성할 목적으로 초장이 큰 자원 위주로 보유하고 있기 때문인 것으로 추정된다.

Nikoloudakis 등(2016)에서는 초형을 본 연구의 조사기준인 농촌진흥청 (2012)과 같이 영양생장기의 분얼 각도에 따라 포복형, 중간형, 직립형으 로 나누었는데 그 결과 전체 자원의 82%가 중간형이었다. Vilaró, Rebuffo, Miranda, Pritsch, and Abadie (2004)에서는 초형을 영양생장기 에 측정한 초장을 식물체의 너비로 나누어 그 비율이 0.5 이하이면 포복 형, 1.5 이상이면 직립형으로 규정하였는데, 재래종, 신품종, Estanzuela 1095a와 RLE 115의 선발계통(이하 선발계통), 수집종 간 차이가 유의하 여 수집종의 초형 평균값은 0.42로 포복형이었고, 재래종은 1.21로 중간 형, 신품종과 선발계통은 각각 1.70과 1.96으로 점차 직립형으로 선발 및 육성된 것으로 보인다.

Diederichsen (2008)에서는 10,105점의 유전자원 중 183점이 쌀귀리로 1.81%를 차지하였고, Nikoloudakis 등(2016)에서는 50점 중 1점이 쌀귀 리로, 2%를 차지하였다.

본 연구에서 조사된 천립중의 범위는 다른 연구들에서 보고된 바와 유 사하였다. Nikoloudakis 등(2016)은 천립중 분포가 13-37(평균 24.84±6.49)g이었고, Ihsan 등(2021)은 2019년 15.4-37.2(평균 20.78±4.93)g, 2020년 15.0-31.8(평균 25.18±4.15)g이었다. Sheikhehpour 등(2014)은 천립중 분포를 17-36.27(25.47)g으로 보고하였고, 이수경 등 (2019)은 백립중으로 1.8-4.2(평균 2.7±0.4)g, Boczkowska 등(2016)은 22.9-35.11(평균 28.4±3.1)g이었다, Peltonen-Sainio (1990)에서는 종자 크 기 범위가 23.1-35.8(평균 29.1)mg이었고, Arora 등(2021)은 백립중 범위 가 2.86-4.83(평균 3.74±0.34)g이었다.

Vilaró 등(2004)에서 우루과이 귀리의 종자 길이를 보고하였는데, 재래 종은 6.90-10.72(평균 9.14±0.736)mm 범위, 신품종은 8.12-10.18(평균 9.19±0.627)mm 범위, 선발계통은 8.69-10.36(평균 9.47±0.502)mm 범위, 수집 종은 7.97-10.28(평균 9.34±0.670)mm 범위로 본 연구보다 적은 다양성을 보였다.

국내외에서 귀리의 종자폭 다양성이 연구된 적은 없어 본 연구가 최초 이다. Tang 등(2014)가 귀리 종자의 plumpness를 shrunken, medium, plump 3단계로 조사한 바 있으나 변수를 범주형으로 설정하는 것보다 연속형으로 설정하는 것이 더욱 정확할 것으로 생각된다. 따라서 종자의 폭과 두께를 측정하는 것이 종자의 plumpness를 측정하는 더욱 정확한 방법일 것으로 생각된다.

[Figure 1] Frequency distribution of 7 agronomic traits of 318 *A. sativa* genetic resources. Red dotted lines indicate the average value for each traits.

Traits	Unit	Mean±SD	Range and parameter code	Evaluation year	
Days to heading date		82.66±4.93	65(AS182) – 99(AS231)	2019, 2021, 2022	
Plant height	CM	127.13±10.60	90(AS182) – 152(AS102)	2019, 2021, 2022	
Plant type	degree	_	1(erect), 2(medium), 3(creeping)	2019, 2022	
Dehulling characteristic	degree	_	0(hulled), 1(hulless)	2019, 2022	
1000 grain weight	g	26.01±4.47	14.7855(AS104) – 40.1033(AS206)	2019, 2021, 2022	
Seed length	mm	10.25±0.83	6.44(AS062) – 12.84(AS281)	2019, 2022	
Seed width	mm	2.56±0.23	1.95(AS026) – 3.18(AS206)	2019, 2022	

[Table 2] Basic statistical information for agronomic traits of 318 *A. sativa* genetic resources.

2, 상관 분석

각 변수들 간의 상관관계를 Figure 2에 나타내었는데, 종자길이-초형을 제외한 모든 관계는 고도로 유의하였다. 천립중과 종자폭이 0.89로 강한 정의 상관관계를 가지고 있고, 출수일수와 초장이 0.51, 천립중과 종자길 이가 0.5로 정의 상관관계를 가졌다(Fig. 2). 이는 초장과 출수일수가 정 의 상관관계를 보였다는 Carlson 등(2022), Boczkowska 등(2016), Peltonen-Sainio (1990)의 연구와 일치한다. 출수일수-천립중 관계 역시 Boczkowska 등(2016)에서는 -0.53으로 부의 상관관계를 보여 본 연구 의 결과와 일치하였고, 초장-천립중 관계도 마찬가지로 Boczkowska 등 (2016)에서 -0.37로 부의 상관관계를 보여 본 연구의 결과와 일치하였 다.

[Figure 2] A heatmap representing the correlation between different agronomic traits of 318 *A. sativa* genetic resources.

3. 귀리 유전자원의 원산지 분포

귀리 유전자원 318점의 원산지는 Table 1와 Figure 3에서 보는 바와 같다. 총 44개국이며 Zeven and Zhukovsky (1975)에서 설명하는 Zhokovsky (1968)의 12개의 지역 구분 중 인도네시아 지역과 인도 지역 을 제외한 10 지역에 해당한다. 이 중 동부 유럽 원산이 155 자원으로 가장 많고, 호주와 뉴질랜드 지역 자원이 1차원으로 가장 적은 분포를 보였다(Fig. 3).

[Figure 3] Geographic distribution and origins of 318 *A. sativa* genetic resources.

4. 주성분분석(Principle component analysis)

종실피과성은 겉귀리 또는 쌀귀리로 나뉘는 명목형 변수이므로 PCA 차원 축소를 위하여 종실피과성을 제외한 나머지 6개 형질만을 대상으로 주성분 분석을 실행하였다. PCA 결과, 제1 주성분(PC1)은 고유치가 2.7334로, 전체 분산 중 45.56%를 설명하였다(Table 3). 제2 주성분(PC2) 은 1.3230에 22.05%, 제3 주성분(PC3)은 0.8087에 13.48%, 제4 주성분 (PC4)은 0.6115에 10.19%, 제5 주성분(PC5)은 0.4191에 6.985%, 제6 주성 분(PC6)은 0.1043에 1.738%를 설명하는 것으로 나타났다(Table 3). 일반 적으로 자료의 변동을 많이 설명하는 몇 개의 주성분만을 선택하는데, Kaiser의 규칙에 따라 분산이 1이 넘은 주성분까지 선택한다. 이에 따라 제2 주성분까지 선택하였을 때, 전체 분산의 67.61%를 설명하는 것으로 나타났다(Table 3). 제1 주성분과 제2 주성분은 모든 변수에 대해 유의 수준 1%에서 유의성을 가졌다(Table 3). 제1 주성분에서는 천립중과 종 자 폭이 높은 비율을 보였으며, 제2 주성분에서는 출수일수와 초형이 높 은 비율을 차지하였다(Table 3).

주성분분석은 변수들 간의 상관관계를 고려하여 서로 유사한 변수들끼 리 묶어주는 통계 방법으로, PCA 결과를 제1 주성분과 제2 주성분으로 2차원으로 나타낸 그림을 보면 출수일수, 초장, 초형이 유사하고 천립중, 종자폭, 종자길이 변수가 유사한 것을 알 수 있다(Fig. 4).

Turit		Eigenvectors ^z							
	PC1	PC2	PC3	PC4	PC5	PC6			
Days to heading date	0.384**	0.510**	-0.063	0.155*	-0.747**	-0.082			
Plant height	0.326**	0.432**	-0.653**	0.056	0.524**	0.055			
1000 grain weight	-0.518**	0.320**	0.005	0.350*	0.101	-0.705**			
Plant type	0.260**	0.481**	0.741**	-0.107	0.374**	0.033			
Seed length	-0.380**	0.337**	-0.142*	-0.840**	-0.128	-0.004			
Seed width	-0.515**	0.326**	0.013	0.365**	-0.045	0.702**			
Eigenvalue	2.7334	1.323	0.8087	0.6115	0.4191	0.1043			
Contribution (%)	45.56	22.05	13.48	10.19	6.99	1.74			
Cumulative contribution (%)	45.56	67.61	81.08	91.28	98.26	100			

[Table 3] Eigenvalues and eigenvectors of agronomic traits of 318 *A. sativa* genetic resources.

^z PC1, PC2, PC3, PC4, PC5, PC6, and PC7 of eigenvectors indicate the first, second, third, fourth, fifth, sixth, and seventh components, respectively.

*,** significant at 5 and 1% level of significance.

[Figure 4] PCA biplot of the first two principal components and the percentage of variance explained by each.

5. 군집분석(Cluster analysis)

군집분석의 목적은 서로 유사한 개체들을 몇 개의 군집으로 세분화하여 대상 집단을 정확하게 이해하고, 효율적으로 활용하기 위함이다. 앞서 연 속형 변수의 차원을 축소한 PCA 결과와 명목형 변수인 종실피과성 변 수를 병합하여 군집분석을 실시하였다. K-prototype은 연속형 자료의 군 집분석 방법인 K-means의 개념과 범주형 자료의 군집분석 방법인 K-modes의 개념을 동시에 활용하기 때문에 연속형 자료와 범주형 자료 가 혼합된 데이터에 활용할 수 있는 군집분석이다(Hwang, 1998).

Elbow method의 원리를 이용하여 군집의 개수에 따라 군집 내 총 제 곱합을 나타내었을 때 군집 내 총 제곱합의 감소율이 낮아지는 부분인 7 을 군집의 개수로 결정하였다(Data unknown). 또한, 군집 개수에 따른 실루엣 계수를 살펴보았을 때, 군집 개수 7의 실루엣 계수가 가장 높았 다(Data unknown). 실루엣 계수는 같은 군집 내의 점들과 다른 군집의 점들과의 거리 계산을 통해 구해지며, 1에 가까울수록 군집화가 잘 된 것이다.

군집분석 결과를 3차원으로 나타내었을 때(Fig. 5-A) x축은 제1 주성 분, y축은 제2 주성분, z축은 종실피과성으로 z 값이 1인 쌀귀리는 모두 하나의 군집으로 나누어진 것을 볼 수 있었다.

군집분석 결과를 Table 4와 Figure 6으로 요약하여 나타내었다. 군집1 과 군집 2는 출수일수와 초장이 비교적 큰 값을 가지고 초형 또한 중간 타입과 포복형인 2와 2.5의 비율이 높았다(Table 4). 군집 4는 출수일수 와 초장이 작고 천립중과 종자폭이 컸다(Table 4). 군집 6은 천립중과 종자길이, 종자폭이 비교적 큰 값을 가졌다(Table 4).

군집별로 자세히 살펴보면, 군집 1은 85개 자원으로 구성되어 있으며 출수일수가 다른 군집에 비해 비교적 큰 편이며, 초장은 제일 큰 값을 가졌다(Table 4). 초형은 2의 비율이 가장 높으며, 종자길이와 종자폭은 평균에 가까운 값을 가졌다(Table 4). 유전자원의 원산지는 유럽 동부가 가장 많이 차지하고 있으며, 유럽 중부·남부·북부가 그다음으로 높은 비 율을 가졌다(Table 4).

군집 2는 69개 자원으로 구성되고 출수일수가 가장 크며, 초장은 다른 군집에 비해 비교적 큰 값을 가졌다(Table 4). 초형은 2와 2.5가 동등하 게 높은 비율을 가지며, 천립중, 종자길이와 종자폭은 작은 편에 속한다. 원산지는 유럽 동부가 군집 2의 77%를 차지하였다(Table 4).

군집 3은 63개 자원으로 구성되고 출수일수는 평균과 비슷한 값을 가지 며, 초장 또한 평균과 비슷한 값을 가졌다(Table 4). 초형은 1.5의 비율 이 가장 높고, 천립중과 종자길이, 종자폭 또한 평균과 비슷한 값을 가졌 다(Table 4). 유전자원의 원산지는 유럽 동부가 가장 많이 차지하고 있 으며, 유럽 중부·남부·북부가 그다음으로 높은 비율을 가졌다(Table 4).

군집 4는 21개 자원으로 구성되고 출수일수가 가장 작은 값을 가지며, 초장 또한 가장 작은 값을 가졌다(Table 4). 초형은 1.5의 비율이 가장

높고, 천립중이 가장 큰 값을 가지고 종자길이, 종자폭이 다른 군집에 비 해 큰 값을 가졌다(Table 4). 지중해 지역, 유럽 중부·남부·북부, 서아시 아 원산의 자원들이 포함되어 있었다(Table 4). 군집 4에는 표준품종인 '하이스피드'가 포함되어 있었다.

군집 5는 30개 자원으로 구성되고 출수일수가 비교적 작은 값을 가지 며, 초형은 1.5의 비율이 가장 높고, 천립중은 가장 작은 값을 가졌다 (Table 4). 종자길이와 종자폭이 쌀귀리 군집을 제외하며 가장 작다 (Table 4). 원산지는 유럽 동부가 가장 많고, 동아시아 원산 자원이 다른 군집에 비해 많이 분포하였다(Table 4).

군집 6은 38개 자원으로 구성되며 초형은 2가 높은 비율을 차지하고 있고, 천립중이 가장 크다(Table 4). 종자길이와 종자폭도 가장 큰 값을 가졌다(Table 4). 서아시아가 원산인 자원이 다른 군집에 비해 많이 분포 하였다(Table 4).

군집 7은 13개 자원으로 구성되어 가장 작은 군집을 이루며, 쌀귀리의 특성을 가지고 있다(Table 4). 북미, 유럽 동부, 동아시아 원산인 자원으 로 구성되어 있으며 특히 북미 원산인 자원이 많이 분포하였다(Table 4).

[Figure 5] The results of cluster analysis of 318 *A. sativa* genetic resources. A, 7 clusters including naked oat cluster (cluster 7) which is brown color in three dimensions, B, 6 clusters in two dimensions.

Agronomic tr	aits				Cluster			
-igronomic ti		1	2	3	4	5	6	7
Number of h	ulled oat ^z	85	69	63	21	30	37	0
Number of h	ulless oat ^z	0	0	0	0	0	0	13
Days to head	ing date ^Y	85.51	86.59	81.37	72.19	78.73	80.24	82.23
Plant height ^Y		133.8	131.9	126.5	106.6	121.7	120.3	126.8
1000 grain w	eight ^Y	27.41	22.03	26.02	32.04	21.01	31.99	22.78
	1.0	0	0	6	5	3	1	0
Dlaut tau Z	1.5	5	3	33	10	18	13	7
Plant type-	2.0	47	33	23	6	9	18	5
	2.5	33	33	1	0	0	5	1
Seed length $^{\! \rm Y}$		10.46	9.81	10.30	10.91	9.76	11.08	8.72
Seed width $^{\rm Y}$		2.62	2.36	2.58	2.86	2.27	2.87	2.40
Origin								
Africa ^Z		0	0	0	1	2	0	0
America (Nor	rth) ^Z	1	0	0	0	0	3	7
America (Sou	uth) ^Z	0	0	0	1	0	1	0
Asia (Central) ^Z	1	0	1	0	0	0	0
Asia (East) ^Z		1	1	1	1	5	0	2
Asia (West) ^Z		1	0	7	5	3	10	0
Australia and	New Zealand ^Z	0	0	1	0	0	0	0
Europe (Centra	l, North, West) ^Z	30	10	18	5	1	8	0
Europe (East) ^Z	47	53	29	1	16	5	4
Mediterranear	n ^Z	4	5	6	7	3	10	0

[Table 4] The results of cluster analysis of 318 *A. sativa* genetic resources.

^z The number of genetic resources corresponding to each cell.

 $^{\scriptscriptstyle \rm Y}$ Average value of each cluster and trait.

[Table 5] The A. sativa accessions belonging to each cluster.

Cluster	Accessions								
	AS002,	AS003,	AS004,	AS005,	AS006,	AS007,	AS008,	AS010,	AS011,
	AS012,	AS013,	AS016,	AS021,	AS023,	AS029,	AS030,	AS032,	AS039,
	AS042,	AS081,	AS082,	AS089,	AS095,	AS097,	AS098,	AS102,	AS106,
	AS107,	AS110,	AS123,	AS126,	AS138,	AS139,	AS140,	AS142,	AS147,
1	AS148,	AS150,	AS151,	AS157,	AS162,	AS164,	AS171,	AS174,	AS180,
1	AS185,	AS190,	AS198,	AS200,	AS203,	AS204,	AS209,	AS213,	AS215,
	AS216,	AS220,	AS221,	AS222,	AS226,	AS227,	AS230,	AS231,	AS233,
	AS239,	AS240,	AS241,	AS243,	AS244,	AS247,	AS248,	AS266,	AS267,
	AS270,	AS279,	AS280,	AS286,	AS289,	AS293,	AS296,	AS297,	AS298,
			AS	300, AS	302, AS	303, AS	313		
	AS063,	AS064,	AS068,	AS069,	AS075,	AS076,	AS078,	AS079,	AS080,
	AS084,	AS088,	AS090,	AS091,	AS092,	AS094,	AS096,	AS103,	AS104,
	AS108,	AS114,	AS115,	AS116,	AS117,	AS119,	AS121,	AS130,	AS137,
2	AS141,	AS143,	AS144,	AS145,	AS146,	AS149,	AS152,	AS158,	AS159,
2	AS163,	AS165,	AS172,	AS178,	AS192,	AS193,	AS195,	AS197,	AS210,
	AS211,	AS212,	AS217,	AS219,	AS223,	AS224,	AS225,	AS229,	AS232,
	AS237,	AS238,	AS246,	AS249,	AS250,	AS251,	AS261,	AS262,	AS263,
		AS	264, AS	265, AS	269, AS	272, AS	274, AS	283	
	AS009,	AS015,	AS019,	AS025,	AS034,	AS035,	AS036,	AS038,	AS046,
	AS067,	AS072,	AS073,	AS083,	AS087,	AS100,	AS101,	AS105,	AS109,
	AS111,	AS113,	AS122,	AS131,	AS134,	AS136,	AS153,	AS154,	AS155,
3	AS156,	AS160,	AS161,	AS168,	AS169,	AS170,	AS175,	AS187,	AS196,
	AS199,	AS201,	AS205,	AS207,	AS235,	AS236,	AS242,	AS245,	AS252,
	AS253,	AS254,	AS268,	AS273,	AS275,	AS278,	AS284,	AS285,	AS287,
	AS288,	AS290,	AS291,	AS292,	AS294,	AS299,	AS301,	AS305,	AS306
	AS001,	AS014,	AS027,	AS031,	AS033,	AS037,	AS049,	AS052,	AS053,
4	AS054,	AS055,	AS056,	AS173,	AS176,	AS181,	AS182,	AS255,	AS256,
				AS257,	AS281,	AS307			
	AS018,	AS026,	AS028,	AS065,	AS066,	AS070,	AS071,	AS074,	AS077,
5	AS085,	AS086,	AS093,	AS112,	AS118,	AS120,	AS124,	AS127,	AS128,
-	AS129,	AS132,	AS133,	AS189,	AS191,	AS214,	AS228,	AS234,	AS260,
				AS271,	AS276,	AS277			
	AS017,	AS020,	AS022,	AS024,	AS040,	AS041,	AS043,	AS044,	AS045,
	AS047,	AS048,	AS050,	AS051,	AS099,	AS125,	AS135,	AS166,	AS167,
6	AS177,	AS179,	AS183,	AS184,	AS186,	AS188,	AS194,	AS202,	AS206,
	AS208,	AS218,	AS258,	AS259,	AS282,	AS295,	AS304,	AS308,	AS310,
					AS317				
7	AS057,	AS058,	AS059,	AS060,	AS061,	AS062,	AS309,	AS311,	AS312,
·			AS	<u>314, AS</u>	<u>315, AS</u>	316, AS	318		

[Figure 6] Distribution of 7 clusters of 318 *A. sativa* genetic resources on each agronomic traits. A, plant type,

B, days to heading date, C, plant height, D, 1000 grain weight, E, Seed length, F, Seed width. Black dots indicate outlier, black vertical lines indicate range, yellow boxes indicate interquartile range, black horizontal lines indicate median, and red dots indicate average value for each traits.

제 2 절 국내 귀리 품종 전유전체 재해독을 통한 SSR 후보 마커 개발

1. Sequencing과 OT3098 유전체 서열에 대한 read mapping

'삼한'은 국내 귀리 품종 중 가장 대표적인 추파용 품종이며 내한성이 가장 높다. '대양'은 대표적인 쌀귀리 품종이며 만생종이다. '하이스피드' 는 대표적인 춘·하파용 품종으로 조생종이다. '삼한', '대양', '하이스피드' 의 전유전체를 재해독한 결과 생산된 데이터 양은, 품종별로 각각 2,622,807,312, 2,624,356,466, 2,438,242,898 read에 396,043,904,112, 396,277,826,366, 368,174,677,598bp의 염기서열이었다(Table 5). Quality trimming 이후 '삼한', '대양', '하이스피드'에서 각각 2,408,108,378, 2,416,803,242, 2,297,176,508 read 351,014,754,590, 353,065,566,966, 339,417,602,285bp의 염기서열을 확보하였다(Table 5). 이 read들을 OT3098의 유전체 서열에 mapping 한 결과 '삼한'에서 2,311,944,898 read에 10,329,329,326bp의 염기서열이 mapping 되어 28.30×의 mapping depth를 나타내었으며, '대양'에서 2,328,908,096, read에 10,392,225,953bp 의 염기서열이 mapping 되어 28.31×의 mapping depth를 나타내었으며, '하이스피드'에서는 2,212,807,966 read에 10,383,743,016bp의 염기서열이 mapping 되어 28.81×의 mapping depth를 나타내었다(Table 5).

T T								
	Samhan	Daeyang	Highspeed					
Total reads	2,622,807,312	2,624,356,466	2,438,242,898					
Total bases	396,043,904,112	396,277,826,366	368,174,677,598					
Trimmed reads	2,408,108,378	2,416,803,242	2,297,176,508					
Trimmed bases	351,014,754,590	353,065,566,966	339,417,602,285					
Mapped bases	10,329,329,326	10,392,225,953	10,383,743,016					
Average depth	28.3	28.31	28.81					

[Table 6] Summary of whole genome resequencing data of and detected variants mapped on OT3098 v2.

Total Variants	25,857,533	16,457,189	21,458,820
Homo Variants	19,165,394	10,981,498	14,824,632
Hetero Variants	6,692,139	5,475,691	6,634,188
Genic Variants	935,778	809,899	789,032
Intergenic Variants	24,921,755	15,647,290	20,669,788
SNP Variants	23,632,214	14,892,973	19,566,065
SSR Variants	2,225,319	1,564,216	1,892,755

2. 염기서열 변이 탐색

Variant calling 결과 '삼한', '대양', '하이스피드' 세 품종에서 OT3098의 염기서열 대비 총 86,064,846개의 변이가 탐색 되었다. 이중 multi-allele variants, false-positive SNP를 제거하고 모든 품종에서 genotyping 된 변이만 선발하여 최종적으로 47,951,409개의 변이를 선발하였다. '삼한'의 변이는 OT3098 대비 25,857,533개로 동질 변이가 19,165,394개이며 유전 자 영역에 분포하는 것은 935,778개였다(Table 5). '대양'의 변이는 OT3098 대비 16,457,189개로 동질변이가 10,981,498개이며 유전자 영역에 분포하는 것은 809,899개였다(Table 5). '하이스피드'의 변이는 OT3098 대비 21,458,820개로 동질 변이가 14,824,632개이며 유전자 영역에 분포하 는 것은 789,032개였다(Table 5). 변이 종류별로 살펴보면 '삼한'의 SNP 는 OT3098 대비 23,632,214개, InDel은 2,225,319개가 탐지되었고, '대양' 의 SNP는 14,892,973개, InDel 1,564,216개, '하이스피드'에서는 19,566,065 개의 SNP, 1,892,755개의 InDel이 탐지되었다(Table 5). 이 중 세 품종에 서 공통적으로 OT3098과 대비하여 가진 변이는 SNP 700,634개, InDel 76,626개이었다(Fig, 7).

귀리의 염색체별 유전자 분포와 '삼한', '대양', '하이스피드'와 OT3098간 의 SNP와 InDel 변이의 빈도 분포를 Figure 8에 나타내었다. SNP의 분 포는 품종별·염색체별로 다르게 나타났는데 chr. unassigned를 제외하면 '삼한'의 3A 염색체에서 283,374개로 가장 적은 SNP가 존재하였고, 4C

염색체에서 3.252.316개로 가장 많은 SNP가 존재하였다. '대양'의 경우 2C 염색체에서 169,493개로 가장 적은 SNP를 보유하였고, 5A 염색체에 서 1,483,743개로 가장 많은 SNP를 보유하였다. '하이스피드'는 3C 염색 체에서 246,019개로 가장 적은 SNP가 존재하였고, 1D 염색체에서 2,257,876개로 가장 많은 SNP가 존재하였다. InDel의 분포 역시 품종별· 염색체별로 다르게 나타났는데, chr. unassigned를 제외하고 '삼한'의 3A 염색체에서 가장 적은 InDel (36,586개)이 존재하였고, 4C 염색체에서 가 장 많은 InDel (251,643개)이 존재하였다. '대양'은 2C 염색체에서 18,448 개로 가장 적은 InDel을 보유하였고, 5A 염색체에서 150.184개로 가장 많은 InDel을 보유하였다. '하이스피드'는 3C 염색체에서 32.548개로 가 장 적은 InDel을 보유하였고, 1D 염색체에서 198,015개로 가장 많은 InDel을 보유하였다. 염색체별 변이의 분포양상에 있어서 '삼한'-OT3098, '대양'-OT3098, '하이스피드'-OT3098의 SNP와 InDel 변이 분포 경향은 전반적으로 유사하였으나, '대양'은 '삼한', '하이스피드'와 달리 1D 염색 체의 SNP·InDel 변이가 적었고, '삼한'은 4C와 5D 염색체에서 다른 두 품종과 달리 SNP·InDel 변이가 풍부하였다(Fig. 8). '하이스피드'는 다른 두 품종과 달리 5A 염색체에서 변이가 적었고, 7A 염색체에서 많은 변 이를 나타내었다(Fig. 8).

[Figure 7] The number of shared and private variants among Korean *A. sativa* varieties, Samhan, Daeyang, and Highspeed. Left are SNP and right are InDel.

4C [Figure 8] Genetic diversity of A. sativa along the 21 chromosomes. A, chromosome names and sizes, B, gene density, C, Samhan SNP density, D, Daeyang SNP density, E, Highspeed SNP density, F, Samhan InDel density, G, Daeyang InDel density, H, Highspeed InDel density.

3. SSR 마커 개발 및 선발

OT3098의 염기서열을 reference로 하여 국내 세 품종의 염기서열과 SSR motif를 비교·분석하였다. 그 결과 2-10개의 motif를 가진 2,812,609 개의 SSR 마커를 디자인하였다(Table 6). 이 중 유전자 영역에 분포하 면서 max length difference가 10bp 이상인 프라이머를 *in silico* 방법으 로 염색체별로 고르게 선발하여 AsInD1A-1 등 103개의 마커를 예비 선 발하였다(Table 7, Fig. 9). 이는 A, C, D sub-genome 별로 각 34, 30, 39개이며, 염색체별로는 2-11개씩 분포했다(Table 7, Fig. 9).

예비 선발된 103개의 마커를 대상으로 '하이스피드' 등의 8개의 유전자 원을 이용하여 PCR 및 전기영동으로 다형성을 검정한 결과, PCR 증폭 효율이 높고 다형성을 나타내며 단일 밴드인 마커를 18개 선발하였다 (Table 8-9, Fig. 9-10). 이는 A, C, D sub-genome 별로 각 5, 7, 6개이 며, 염색체별로는 0-2개씩 분포했다(Table 8, Fig. 9-10).

[Table 7] The number of designed *A. sativa* SSR primers according to type of SSR motifs.

Type of SSR motifs	Primer designed SSR No.
2	760,786
3	988,352
4	766,704
5	198,961
6	78,878
7	12,477
8	3,062
9	2,880
10	509
Total	2,812,609

Homologous group Sub-genome	1	2	3	4	5	6	7	Total
A	3	3	11	3	5	5	4	34
С	2	2	8	4	3	8	3	30
D	7	3	9	3	9	5	3	39
Total	12	8	28	10	17	18	10	103

[Table 8] The number of preliminary selection of SSR candidate markers in *A. sativa*.

[Table 9] The number of selected SSR candidate markers in *A. sativa.*

Homologous group Sub-genome	1	2	3	4	5	6	7	Total
A	1	1	1	1	1	0	0	5
С	1	1	0	2	1	1	1	7
D	2	1	1	1	1	0	0	6
Total	4	3	2	4	3	1	1	18

[Figure 9] The expected locations of the developed *A. sativa* SSR candidate markers on the chromosomes. Marker names with light orange background are selected by PCR.

Primer name	Chromosome	Forward sequence	Reverse sequence	Repeat type	Tm (℃)
AsInD1A-3	chr1A	GTGTATGTCCAT CGGCTTTATT	ACTCAGATCTAGA TTCGCAGGA	(CTT) ₁₃	58
AsInD1C-1	chr1C	CGTATGGAGTAT ATTAGACCTGGG	TTTGGATAGGTAT ATCTGAGATGTGT	(TA) ₁₀	58
AsInD1D-5	chr1D	TTCACCAAACTT GAACCCTAAA	GCTTGGAGTCAAA CATGGAGT	(GA) ₁₃	59
AsInD1D-6	chr1D	GCTATTTCAAGC CTTATGTTGG	CCAATGGTAACAC ACCCATTAT	(CA) ₁₀	58
AsInD2A-3	chr2A	ACATGTACTCAC AACACACACG	GAGATTGGCATTG AAGAAACA	(AT) ₁₉	57
AsInD2C-1	chr2C	TGTAGGGATCTC CCAGACG	CAATTTGATTATC ATTCTTTCCG	(TC) ₁₄	58
AsInD2D-1	chr2D	AAATGAGAAATT TCCTCTTCGG	ATGAGCCTACAAA CAGCTTCAT	$(AT)_{22}$	58
AsInD3A-7	chr3A	TATGCTTACCAA GATTGCCTTT	CTGCTAGTGCTAG CTAGGTTCC	(ATAG) ₆	58
AsInD3D-7	chr3D	AAGTTGAAAGGT GAGGAGAATG	CTTAAATCTCTCC AGTCCTCCC	(GAG) ₄	58
AsInD4A-3	chr4A	ATCTAACATCTT GTTTGTGCCC	CTGCAGAAGCTTG TATCACTTG	(CT) ₃₇	58
AsInD4C-1	chr4C	TAACCAATGCAT ATTGTTGTGG	ACATAGTTTCATC ACCTCGCTT	(AT) ₁₃	58
AsInD4C-2	chr4C	AACCGTCATTTA GAGGCAGAC	CTTCTACAAGCTG TGCTTTCCT	(ATAG) ₁₂	58
AsInD4D-3	chr4D	CCTCAAGGAAGC AGAGTACAGT	ATTTGGAAGGGAA ACATTTCTT	(CT) ₂₀	58
AsInD5A-4	chr5A	GAGTCACTGGTA TCGTTTGGAT	ATCTTTCGATCAA CATGGATTC	(CT) ₁₂	58
AsInD5C-2	chr5C	AACAGAAATCCA TCCACAGAGT	GCCCAAGATAGGC AAACC	(TC) ₁₉	58
AsInD5D-6	chr5D	ATTCCCAGAATT TACACACGTC	AGTCACTATAGGT CGATCCGTG	(CT) ₁₂	58
AsInD6C-1	chr6C	AGTAAATCCGAT AATCTCGTGTG	TATAGGTTTCCGT ACTTCCGTG	(CA) ₉	58
AsInD7C-3	chr7C	TGATCTCTATAT CCAACGGTCC	AGGTAATAAGCCA ACAGCTGAG	(AT) ₂₁	58

[Table 10] *A. sativa* SSR candidate markers sequences, repeat types, and average melting temperatures.

[Figure 10] Agarose gel electrophoresis results of the PCR products amplified with 18 markers, respectively. Lane 1; Highspeed, Lane 2; Heiness silber II, Lane 3; Istinskii, Lane 4; Z-24, Lane 5; Swan, Lane 6; Daeyang, Lane 7; Samhan, Lane 8; Cl2882, Ladder; Ladder is 1Kb DNA.

제 5 장 종합 고찰

제 1 절 귀리 유전자원의 다양성 분석

Diederichsen (2009), Tang 등(2014) 등은 호영 색, 까락 등의 표현형을 평가하였는데, 이러한 질적 형질은 품종 판별 등에는 유용하지만 농업적 으로 주요한 형질은 아니다. 육종 목표가 되는 농업 형질은 양적 형질이 다수이므로(고희종 등, 2010) 육종에 이용하기 위해선 유전자원을 국내 환경에서 다년간의 평가한 자료가 필수적이다. 육종에 이용할 목적뿐 아 니라 유전자원을 효율적으로 관리하기 위해 표현형을 평가하는 것은 매 우 중요하다. 국내에서는 이수경 등(2019)이 한중일 귀리 유전자원을 평 가하였고, 김경민 등(2018)·Rauf 등(2019)이 귀리의 영양성분을 평가하였 다. 국외에선 Ahmed 등(2011), Krishna 등(2014), Ihsan 등(2021), Nikoloudakis 등(2016) 등 많은 연구에서 다양한 유전자원의 표현형을 조사한 바 있다. 그러나 국내에서 다양한 원산지의 유전자원 표현형을 평가한 사례가 없어 본 연구를 통해 조사하고자 하였다.

3개년간 국내 환경에서 귀리 유전자원 318점의 표현형을 조사한 결과, 다른 연구(이수경 등, 2019; Arora 등, 2021; Boczkowska 등, 2016; Canales 등, 2021; Ihsan 등, 2021; Nikoloudakis 등, 2016; Sheikhehpour 등, 2014; Peltonen-Sainio, 1990; Vilaró 등, 2004)에서 보인 바와 같이 다양성을 확보한 것으로 나타났다(Table 2). 조사한 형질의 평균값으로 상관분석, 주성분분석을 실시한 결과 출수일수-초장-초형이 유사하고 천 립중-종자폭-종자 길이 변수가 유사한 것을 알 수 있었다(Fig. 2, 4). 군 집분석 결과 318점의 귀리 유전자원은 K-prototype 방법을 이용하여 7 개 군집으로 나눌 수 있었다(Table 4, Figure 5-6).

이러한 유전자원의 다양성을 바탕으로 귀리의 핵심집단을 작성하면 유 전자원의 관리 및 이용을 더욱 효과적으로 할 수 있을 뿐 아니라 육종에 도 많은 도움이 될 것으로 예상된다. 핵심집단을 작성하기 위해서는 더 욱 많은 자원과 이의 표현형, 유전형 형질 조사가 필요할 것이다.

제 2 절 국내 귀리 품종 전유전체 재해독을 통한 SSR 마커 선발

2020년 6배체인 *A. sativa*의 전장유전체가 공개됨에 따라 귀리의 분자 유전학적 연구가 활기를 띄게 되었다. 이에 발맞추어 국내 대표 귀리 품 종의 전유전체를 재해독하고 SSR 후보 마커를 개발하여 유전형 분석 기 반을 마련하고자 하였다.

국내 귀리 품종 중 추파용으로 가장 널리 재배되는 '삼한'과 춘·하파용 보급 품종인 '하이스피드', 종실의 아베난쓰라마이드 함량이 가장 높으며 만생종인 쌀귀리 '대양'을 sequencing 한 뒤 OT3098 reference genome v2에 mapping하였다. Annotation 후 세 국내 품종과 OT3098의 염기서 열을 비교하여 SSR 및 SNP 다형성 후보군들을 확인하고 이를 바탕으 로 SSR 마커를 디자인하였다.

특정 영역을 탐지하는 분자마커는 품종의 지문분석, 유전적 다양성 평 가, 분자 육종에 도움이 된다(Wu, Zhang, Chen, and He, 2012). 신명재 등(2022)의 연구에서 유전자원의 다양성 평가 시 표현형은 기상이나 재 배법 등에 영향을 많이 받기 때문에 표현형만으로 다양성을 분석할 시 분석 결과에 대한 정확도가 떨어질 수 있다고 하였다. 따라서 유전자원 의 다양성을 평가할 때 표현형뿐 아니라 유전형을 이용하면 더욱 심도 있는 연구가 가능할 것이다.

또한, 분자마커는 계통의 변이가 residual heterozygosity에 의한 것인 지, 오염에 의한 것인지를 판별하거나 교배가 잘 이루어졌는지 확인하는 용도로도 사용할 수 있다(Wight 등, 2010). 그러나 귀리 육종가들은 마 커를 이용한 선발(Marker assisted selection)을 활용하기 어려웠는데, 이 는 관심 있는 형질과 연관된, 실용성 있는 분자 마커가 적었기 때문이다 (Wight 등, 2010; Becher, 2007).

그러나 귀리의 유전체 정보 공개로 인해 귀리의 유전 연구 및 육종 분 야에 reference genome을 이용할 수 있게 되었다. 그리고 reference genome 정보는 유전체 분석, 유전적 다양성 조사, 비교 유전제 및 진화 분야에 앞으로 이용될 수 있다(김태헌, 김양길, 손재한, 전재범, 윤영미, 2021). 그리고 최근 sequencing 기술의 발달과 더불어 차세대 염기서열 분석(next generation sequencing, NGS)은 낮은 비용으로 빠른 시간에 유전자원 간의 염기서열 변이를 탐색할 수 있으며 이를 분자 마커 개발 에 이용 할 수 있게 하였다(김태헌 등, 2021).

DNA 표지 인자 중 SSR는 genome 상에 존재하는 단순 반복 염기서열 의 반복 횟수의 차이로 인해 다형성이 나타난다(길진수 등, 2017). 이를 이용한 SSR 마커는 높은 재현성을 보이고 분석이 비교적 간편하며 근연 종 내에서의 호환성을 갖는다. 이로 인해 종 내에서의 품종, 개체에 대한 유전적 다양성과 유연관계를 평가하는 데 많이 이용되고 있다 (Li, Korol, Fahima, Beiles, and Nevo, 2002; Um 등, 2016). 염기서열 변이 중 SNP를 이용한 유전형 분석은 이를 위한 다소 복잡한 플랫폼과 고가 의 장비가 필요하므로 agarose에서 유전형을 쉽게 확인할 수 있는 PCR 기반의 SSR 마커는 육종 및 연구분야에서 매우 유용하다(김태헌 등, 2021).

본 연구에서는 SSR 마커 중 밴드가 하나씩 뜨는 specificity가 높은 마 커를 선발하였는데, 그 이유는 scoring의 편의성과 비특이적 결합을 제 외하기 위함이다. 선발되지 못한 다른 마커들은 다형성을 보이지 않았거 나 비특이적 결합을 보인 것들이었다.

본 연구에서는 국내 품종 3개를 re sequencing 하여 18개의 SSR 후보 마커를 확보했다. 그러나 염색체별로 충분한 마커를 확보하지 못했기 때 문에 추가적인 SSR 마커를 개발하는 것이 필요하다.

제 6 장 적요

본 연구는 세계 각지에서 수집된 귀리(Avena sativa L.) 유전자원 318 점의 농업 형질을 조사함으로써 다양성을 검정하고, 대표적인 3개 품종 의 전유전체 염기서열 분석 자료를 활용하여 귀리의 분자 육종에 유용한 SSR 후보 마커들을 개발한 것으로, 그 결과를 요약하면 다음과 같다.

- 318점의 귀리 유전자원은 원산지, 출수일수, 초장, 종자 형질 등에서 매우 다양하였고, 주성분분석·군집분석을 토대로 7개의 군집으로 나눌 수 있었다.
- 2. 3품종의 염기서열 분석을 토대로 염기 2-10개의 SSR motif 280만 개
 에 대한 프라이머를 제작하여 *in silico* 방법으로 검정한 결과 103개의
 유용한 SSR 마커를 예비 선발하였다.
- 예비선발된 마커를 대상으로 8개의 귀리 품종에 검정하여 최종적으로 18개의 마커를 선발하였다.

참 고 문 헌

- 고희종, 김광호, 박의호, 서용원, 안상낙, & 정승근. (2010). 신고 식물육 종학(p. 1-517, pp. 75, 203). 서울: 향문사.
- 길진수, 엄유리, 변재경, 정종욱, 이이, & 정찬문. (2017). SSR 마커를 이 용한 산양삼의 유전적 다양성 분석. 한국약용작물학회지, 25:6, 389-396.
- 김경민, 신동진, 김경훈, 권유리, 박효진, 현종내, ... & 박영훈. (2018). 국 내 귀리품종 탈부특성에 따른 품질 및 유연관계 분석. Journal of Plant Biotechnology, 45:4, 375-381.
- 김태헌, 김양길, 손재한, 전재범, & 윤영미. (2021). 맥주보리의 Large-InDel 마커 개발을 위한 Whole Genome Re-Sequencing 의 이용. Korean Journal of Breeding Science, 53:3.
- 농촌진흥청. (2012). 농업과학기술 연구조사분석기준. 수원: 동 청.
- 신명재, 오미애, 김경민, 김성훈, 한세희, 최유미, ... & 이수경. (2022). 밀 유전자원의 농업형질과 SSR 마커를 이용한 다양성 분석. Korean Journal of Breeding Science, 54:4.
- 이수경, 윤혜명, 이명철, 오세종, 허온숙, 노나영, ... & 최유미. (2019). 주 요영양성분과 농업적 특성 분석을 통한 한중일 귀리 (*Avena sativa* L.) 유전자원의 원 산지별 다양성 비교. Korean Journal of Breeding Science, 51:1.
- Ahmed, S., Roy, A., & Majumdar, A. (2011). Genetic diversity and variability analysis in oat (*Avena sativa* L.). Range Management and Agroforestry, 32:2, 96–99.
- Arora, A., Sood, V. K., Chaudhary, H. K., Banyal, D. K., Kumar, S., Devi, R., Kumari, A., & Yograj, S. (2021). Genetic diversity analysis of oat (*Avena sativa* L.) germplasm revealed by

agro-morphological and SSR markers. Range Management and Agroforestry, 42:1, 38-48.

- *Avena sativa* OT3098 v2, PepsiCo, https://wheat.pw.usda.gov/jb?data=/ggds/oat-ot3098v2-pepsico.
- Becher, R. (2007). EST derived microsatellites as a rich source of molecular markers for oats. Plant Breeding, 126:3, 274–278.
- Boczkowska, M., Łapiński, B., Kordulasińska, I., Dostatny, D. F., & Czembor, J. H. (2016). Promoting the use of common oat genetic resources through diversity analysis and core collection construction. PloS one, 11:12, e0167855.
- Boczkowska, M., & Tarczyk, E. (2013). Genetic diversity among Polish landraces of common oat (*Avena sativa* L.). Genetic Resources and Crop Evolution, 60:7, 2157–2169.
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30:15, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Canales, F. J., Montilla-Bascón, G., Bekele, W., Howarth, C., Langdon, T., Rispail, N., Tinker, N. A., & Prats, E. (2021). Population genomics of Mediterranean oat (*A. sativa*) reveals high genetic diversity and three loci for heading date. Theoretical and Applied Genetics, 134:7, 2063–2077.
- Carlson, C. H., Fiedler, J. D., Naraghi, S. M., Nazareno, E. S., Ardayfio, N. K., McMullen, M. S., & Kianian, S. F. (2022). Archetypes of inflorescence: genome-wide association networks of panicle morphometric, growth, and disease variables in а multiparent oat population. Genetics. https://doi.org/10.1093/genetics/iyac128
- Cieplak, M., Okoń, S., & Werwińska, K. (2021). Genetic similarity of *Avena sativa* L. varieties as an example of a narrow genetic

pool of contemporary cereal species. Plants, 10:7, 1424.

- Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 6:2, 80-92. https://doi.org/10.4161/fly.19695
- Diederichsen, A. (2008). Assessments of genetic diversity within a world collection of cultivated hexaploid oat (*Avena sativa* L.) based on qualitative morphological characters. Genetic Resources and Crop Evolution, 55, 419–440.
- Diederichsen, A. (2009). Duplication assessments in Nordic Avena sativa accessions at the Canadian national genebank. Genetic Resources and Crop Evolution, 56:4, 587–597.
- Huang, Z. (1998). Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values. Data Mining and Knowledge Discovery, 2:3, 283-304. https://doi.org/10.1023/A:1009769707641
- Ihsan, M., Nazir, N., Ghafoor, A., Khalil, A. A. K., Zahoor, M., Nisar, M., Khames, A., Ullah, R., & Shah, A. B. (2021). Genetic Diversity in Local and Exotic Avena sativa L. (Oat) Germplasm Using Multivariate Analysis. Agronomy, 11:9, 1713. https://www.mdpi.com/2073-4395/11/9/1713
- Kamal, N., Tsardakas Renhuldt, N., Bentzer, J., Gundlach, H., Haberer, G., Juhász, A., Lux, T., Bose, U., Tye-Din, J. A., Lang, D., van Gessel, N., Reski, R., Fu, Y. B., Spégel, P., Ceplitis, A., Himmelbach, A., Waters, A. J., Bekele, W. A., Colgrave, M. L., . . . Sirijovski, N. (2022). The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 606:7912,

113-119. https://doi.org/10.1038/s41586-022-04732-y

- Kapoor, R., & Singh, G. (2017). Estimation of Heterosis and Combining Ability in Oats (*Avena sativa* L.) for Green Fodder Yield and Attributing Traits using Line X Tester Design. Int. J. Pure App. Biosci, 5:3, 863–870.
- Kaur, R., Kapoor, R., Vikal, Y., & Kaur, K. (2018). Assessing genetic diversity in dual purpose oat (*Avena sativa* L.) cultivars based on morphological and quality traits. International Journal of Current Microbiology and Applied Sciences, 7:5, 1574–1586.
- Kim, T.-H., Yoon, Y.-M., Park, J.-C., Park, J.-H., Kim, K.-H., Kim, Y.-K., Son. I.-H., & Park. T.-I. (2022).De Novo Transcriptome Assembly and SNP Discovery for the Development of dCAPS Markers in Oat. Agronomy, 12:1, 184. https://www.mdpi.com/2073-4395/12/1/184
- Krishna, A., Ahmed, S., Pandey, H., & Kumar, V. (2014). Correlation, path and diversity analysis of oat (*Avena sativa* L.) genotypes for grain and fodder yield. Journal of Plant Science & Research, 1:2, 1–9.
- Kulcheski, F. R., Graichen, F. A., Martinelli, J. A., Locatelli, A. B., Federizzi, L. C., & Delatorre, C. A. (2010). Molecular mapping of Pc68, a crown rust resistance gene in *Avena sativa*. Euphytica, 175:3, 423–432.
- Leišová, L., Kučera, L., & DotLačiL, L. (2007). Genetic resources of barley and oat characterised by microsatellites. Czech J Genet Plant Breed, 43, 97–104.
- Li, C. D., Rossnagel, B. G., & Scoles, G. J. (2000). The development of oat microsatellite markers and their use in identifying relationships among *Avena* species and oat cultivars. Theoretical and Applied Genetics, 101:8, 1259–1268.

https://doi.org/10.1007/s001220051605

- Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25:14, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25:16, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
- Li, Y. C., Korol, A. B., Fahima, T., Beiles, A., & Nevo, E. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular ecology, 11:12, 2453–2465.
- Maughan, P. J., Lee, R., Walstead, R., Vickerstaff, R. J., Fogarty, M. C., Brouwer, C. R., Reid, R. R., Jay, J. J., Bekele, W. A., & Jackson, E. W. (2019). Genomic insights from the first chromosome-scale assemblies of oat (*Avena spp.*) diploid species. BMC biology, 17:1, 1–19.
- McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20:9, 1297-1303. https://doi.org/10.1101/gr.107524.110
- Nikoloudakis, N., Bladenopoulos, K., & Katsiotis, A. (2016). Structural patterns and genetic diversity among oat (*Avena*) landraces assessed by microsatellite markers and morphological analysis. Genetic Resources and Crop Evolution, 63, 801–811.
- Peltonen-Sainio, P. (1990). Morphological and physiological characters behind high-yielding ability of oats (*Avena sativa*), and their

implications for breeding. Field Crops Research, 25:3-4, 247-252.

- Peng, Y., Yan, H., Guo, L., Deng, C., Wang, C., Wang, Y., Kang, L., Zhou, P., Yu, K., & Dong, X. (2022). Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics, 54:8, 1248–1258.
- Rauf, M., Yoon, H., Lee, S., Shin, M.-J., Ko, H.-C., Lee, M.-C., Oh, S., Hyun, D.-Y., Hur, O., & Choi, Y. M. (2019). Evaluation of Major Dietary Ingredients in Diverse Oats (*Avena sativa* L.) Germplasm. Journal of Crop Science and Biotechnology, 22:5, 495–507. https://doi.org/10.1007/s12892-019-0274-0
- Rio, S., Gallego-Sánchez, L., Montilla-Bascón, G., Canales, F. J., Isidro, Y. S. J., & Prats, E. (2021). Genomic prediction and training set optimization in a structured Mediterranean oat population. Theor Appl Genet, 134:11, 3595–3609. https://doi.org/10.1007/s00122-021-03916-w
- Sheikhehpour, S., Bahraminejad, S., & Cheghamirza, K. (2014). Morphological and molecular genetic variations of oat genotypes grown in Kermanshah, Iran. Molecular biology reports, 41, 4023–4030.
- Tang, X.-Q., Yan, H.-H., Wang, Z.-Y., Li, W., Wei, Y.-M., Ren, C.-Z., Zhao, G., & Peng, Y.-Y. (2014). Evaluation of Diversity and the Relationship of *Avena* Species Based on Agronomic Characters. International Journal of Agriculture & Biology, 16:1.
- Um, Y., Jin, M.-L., Kim, O.-T., Kim, Y.-C., Kim, S.-C., Cha, S.-W., Chung, K.-W., Kim, S., Chung, C.-M., & Lee, Y. (2016). Identification of Korean ginseng (*Panax ginseng*) cultivars using simple sequence repeat markers. Plant Breeding and

Biotechnology, 4:1, 71-78.

- Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3--new capabilities and interfaces. Nucleic Acids Res, 40(15), e115. https://doi.org/10.1093/nar/gks596
- Vilaró, M., Rebuffo, M., Miranda, C., Pritsch, C., & Abadie, T. (2004).Characterization and analysis of a collection of *Avena sativa*L. from Uruguay. Plant Genetic Resources Newsletter.
- Wight, C. P., Yan, W., Fetch, J. M., Deyl, J., & Tinker, N. A. (2010). A Set of New Simple Sequence Repeat and Avenin DNA Markers Suitable for Mapping and Fingerprinting Studies in Oat (*Avena spp.*). Crop Science, 50:4, 1207-1218. https://doi.org/https://doi.org/10.2135/cropsci2009.09.0474
- Wu, B., Zhang, Z., Chen, L., & He, M. (2012). Isolation and characterization of novel microsatellite markers for Avena sativa (Poaceae) (oat). Am J Bot, 99:2, e69–71. https://doi.org/10.3732/ajb.1100404
- Zeven, A., & Zhukovsky, P. (1975). Dictionary of Cultivated Plants and Their Centres of Diversity-Excluding Ornamentals. Forest Trees and Lower Plants.

Abstract Diversity of genetic resources and development of SSR candidate markers for genotyping in hexaploid oat (*Avena sativa* L.)

Kyungyoon Ra

Major in Crop Science and Biotechnology The Graduate School of Agriculture and Life Sciences Seoul National University

Hexaploid oat (*Avena sativa* L.), also known as common oat, is a widely cultivated cereal crop that serves as a significant source of forage, food, and cosmetics ingredients. However, a scarcity of information exits on the agronomic traits of oat genetic resources in Korea. The large and polyploid genome of oat has been a major obstacle to the advancement of genome analysis and the development of molecular markers.

For effective use in breeding and efficient management 7 agronomic

traits of 318 oat genetic resources were evaluated and categorized over a three-year period (2019-2022) using statistical techniques such as correlation analysis, principal component analysis, and cluster analysis. The results showed that two principal components accounted for 67.61% of the variance. Days to heading date, plant height. and plant type were related and contributed highly the fisrt component. 1000 grain weight, seed length, and seed width were related and contributed highly the second component. Phenotype was divided into 7 clusters, displaying a high level of diversity compared to previous studies.

Through whole genome resequencing of 3 Korean oat varieties, SSR and SNP variants were detected and 2,812,609 SSR primers were designed. 18 SSR candidate markers were selected *in silico* and PCR using 8 oat varieties. These newly developed SSR markers and genome analysis would be beneficial for molecular breeding and additional development of molecular marker in oat.

Keywords: Oat, Genetic resource, Diversity, Whole genome resequencing, SSR marker

Student Number: 2021-25281