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Abstract 

 
Crop production through facility cultivation has developed continuously over the 

past several years by ensuring a year round stable and high-quality productivity. 

Currently, the area and total production of domestic crop cultivation facilities are 

52,571 ha and 2,441,000 tons in 2020, respectively (MAFRA, 2022). Smart farm 

greenhouses with the provision of precise monitoring and regulation of the internal 

environment are rapidly expanding. However, one major problem encountered by 

many farmers is the difficulty to secure installation costs of smart farms. Also, most 

domestic greenhouses are not compatible for the installation of numerous sensors 

and control systems, so an appropriate sensors and control system for monitoring 

and controlling the internal environment of greenhouses are needed. 

The goal of this study was to develop a system that could monitor and predict the 

internal environment of naturally ventilated greenhouses. With this three machine 

learning models have been developed to serve different purpose. The prediction 

current air temperature using optimal sensor machine learning model (PCTO-ML) 

of Chapter 3 selected the optimal sensor location of air temperature. The prediction 

future air temperature using optimal sensor machine learning model (PFTO-ML) of 

Chapter 4 predicted the air temperature inside the greenhouse in the near future for 

preemptive control of the air conditioning system. Additionally, the optimal sensor 

location of PCTO-ML was introduced into the second model to minimize the number 

of sensors required for future air temperature prediction. The prediction local 

ventilation rate by CFD driven machine learning model (PLV-CFD driven ML) 

predicted natural ventilation.  

In Chapter 2, the necessity and direction of this dissertation were presented 
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through comprehensive review and analysis of the methodology and limitations of 

related previous studies. To establish the research methodology, research works 

related to importance of the greenhouse internal growth environment; greenhouse 

ventilation evaluation method; optimal sensor location for monitoring the 

greenhouse internal environment; and application of machine learning techniques in 

agriculture were reviewed. 

In Chapter 3, the optimal sensor location was selected among the nine grid-shaped 

sensor locations for monitoring the internal air temperature of the naturally ventilated 

greenhouse using a machine learning model. To build a dataset of this model, 

environmental factors were collected and were preprocessed through linear 

interpolation to get rid of missing values. The machine learning model for the 

prediction of the internal air temperature of a natural ventilation greenhouse was 

developed from various models such as artificial neural networks (ANN), support 

vector regression (SVR), and long short-term memory (LSTM). Comparing the 

predictive performance of these machine learning models, the LSTM model had the 

highest accuracy (R2 = 0.974, RMSE = 0.024, and P-RMSE = 0.458). The 

environmental data measured at sensor 5 showed the highest accuracy in predicting 

air temperature for each sensor installation location in the greenhouse (R2 = 0.984, 

RMSE = 0.019, and P-RMSE = 0.365). Finally, in order to minimize the kind of 

sensor required for the machine learning model, the simplified LSTM models with 

reduced learning features were developed and it also proposed the optimal sensor as 

sensor 5. 

In Chapter 4, the future air temperature inside the natural ventilation greenhouse 

was predicted using a machine learning model. The process of collecting and 

preprocessing learning data for model development followed the same procedure as 
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in Chapter 3. Therefore, the accuracy of the LSTM model according to the sequence 

length was evaluated, and 30 minutes was evaluated as the optimal sequence length. 

The results of predicting the future air temperature at each location in the greenhouse 

using the LSTM model with a sequence length of 30 minutes showed high prediction 

accuracy of R2 > 0.95, and RMSE < 0.65. In order to minimize the installation of 

sensors in the greenhouse, the predictive accuracy of the LSTM model was evaluated 

by applying the optimal sensor location suggested in Chapter 3. The results showed 

a relatively large decrease in prediction accuracy when one optimal sensor was 

applied (R2=0.918), but the prediction accuracy was similar to that of using all nine 

sensors (R2=0.950) when three optimal sensors were applied (R2=0.939). Therefore, 

it was recommended to apply at least three optimal sensor locations for future air 

temperature prediction. 

In Chapter 5, the ventilation rate in naturally ventilated greenhouses by region was 

predicted using a machine learning model build from the results of Computational 

Fluid Dynamics (CFD) simulation which were used as learning features. In order to 

generate learning data, 210 cases of CFD simulation for 10 wind speeds, 7 wind 

directions, and 3 greenhouse ventilation window types were performed. Multi linear 

regression (MLR), SVR, Random Forest, and deep neural network (DNN) were 

developed for machine learning models, and the optimization of hyper-parameters 

for each machine learning model was performed. For each optimized machine 

learning model, the bootstrapping technique was applied to supplement a relatively 

small number of learning data. The results show that models such as RF, DNN and 

SVR using the rbf kernel function, which have already shown high accuracy (R2 > 

0.9), were less accurate after applying bootstrapping. while MLR and SVR models 

which used poly-kernel functions have improved R2. Finally, in order to minimize 
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the simulation cases, which significant amount of time, the accuracy of the machine 

learning model was evaluated according to the reduction of the CFD simulation. 

Result showed that most machine learning models have high accuracy for the 

learning data considered from 120 cases with only 4 cases of wind direction. The 

RMSE value was also evaluated low for the model indicating the lowest error for the 

predicted value. 

The greenhouse environment prediction and control system proposed in this 

dissertation predicted the current (PCTO-ML) and future (PETO-ML) air 

temperature inside the greenhouse and local ventilation rate (PLV-CFD driven ML). 

When the three models constituting the system are linked, it is of great significance 

that it is possible to predict the internal air temperature of the natural ventilation 

greenhouse and to control the proper ventilation of the predicted air temperature. In 

particular, the optimal sensor location proposed through the PCTO-ML model is 

expected to contribute to improving farmers' income by reducing the initial and 

maintenance costs of the greenhouse. In addition, the PVL-CFD driven ML model 

was able to predict the natural ventilation rate for all wind environment conditions 

because it was possible to learn about environmental conditions that were difficult 

to measure due to the small frequency of occurrence. Since only minimum number 

of sensors are required for the development and operation of the system, it is 

economical to introduce these models and is expected to be applicable to most 

domestic greenhouses where air temperature sensors are installed. 

 

Keyword: Computational fluid dynamics, environmental prediction, greenhouse, 

machine learning, natural ventilation, optimal sensor location 
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Chapter 1. Introduction 
 

1.1. Study Background  
 

Crop production through facility cultivation is continuously developing over the past 

several decades by ensuring a year-round stable and high-quality production. Data 

from the Ministry of Agriculture, Food and Rural Affairs, South Korea (MAFRA) 

indicates that the scale of production is constantly increasing since the 1980s with 

52,444 ha dedicated for domestic vegetable greenhouse in 2020 (MAFRA 2022). 

Meanwhile, the domestic agricultural population is aging and declining, while the 

demand for agricultural products is growing. In addition, there is an increase in 

automation and the number of large-scale greenhouses. The area of multi-span 

greenhouses in Korea increased from 5,227 ha in 2012 to 7,088 ha in 2019 (MAFRA, 

2022). A large greenhouse enables easy automation and improved productivity. 

 

 

Figure 1-1 Installation area of domestic vegetable and horticultural 

greenhouses (MAFRA, 2022) 
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The development of ICT technology and the expansion of investments in smart 

farms are accelerating the demand of smart greenhouses which have many sensors 

and control systems. Smart farm employs the practice of precise management of 

productivity, accurate and timely monitoring of internal environments, analysis of 

big data using artificial intelligence, control of growing environment using ICT 

devices such as smartphone, and enhanced convenience (Yun, Lee et al. 2017). Smart 

farms can increase production by 20-30%, reduce labor, and improve convenience 

due to remote management (김태완 2019). The area of horticultural smart 

greenhouses in South Korea rapidly increased from 405 ha in 2014 to 6,485 ha in 

2021. The global market for smart greenhouse has grown from 1.25 billion USD in 

2020 to 1.85 billion USD in 2025 (MAFRA, 2022). More than 96% of the smart 

farms had been installed with temperature and humidity sensors to monitor the 

environment inside the greenhouse. Whereas, 40% of the smart farms were installed 

with environmental sensors such as carbon dioxide, solar radiation, geo temperature, 

and humidity. Additionally, various equipment and sensors to monitor the smart 

greenhouse such as PC systems, mobile systems, and CCTV were installed for 

further greenhouse management (MAFRA, 2022). These various equipment and 

systems enable precise environmental monitoring and control inside the greenhouse. 

However, it will certainly contribute to an increased installation and management 

costs of smart farms.  
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Figure 1-2 Greenhouse with numerous sensors and ICT equipment for 

greenhouse environment monitoring and control (Oh 2017) 

In smart farms, the installation costs were rated by the respondents as the top most 

problem (38.3%) among the identified problems in installing smart farms as shown 

in Table 1-1 (MAFRA, 2022). In addition, 43.8% of the respondents from the 

horticultural smart greenhouses indicated that they had difficulties in using the smart 

farm. Among the difficulties, frequent failure of sensors and restrictions on 

connectivity in the existing installed equipment were often experienced (Table 1-2). 

It leads to the economic burden of greenhouse farmers. Especially, for application of 

smart greenhouses and advanced ICT technologies, modern greenhouses are 

equipped with several equipment such as various sensors and systems for 

environmental control. Another problem is the introduction large-scale smart farm 

equipment and number of sensors become challenging because most greenhouses in 

South Korea are single-span plastic greenhouses with weak durability (김태완 

2019). Despite the strong and favorable advantages of smart farms such as reduction 
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of labor and improvement of productivity, still, there are several limitations that 

hinder the implementation of smart farms coupled with the use of ICT technologies 

due to the challenge brought by the difficulty in installation and relatively high 

management costs. 

With the abovementioned challenges, it is therefore necessary to monitor the 

growing environment inside the greenhouse while minimizing the installation of 

excessive environmental sensors. For economic purposes, a technology and strategic 

technique for utilizing the sensors that were already installed in the existing 

greenhouse should be observed. Additionally, various sensors and control systems 

were needed to apply technologies to most existing greenhouses as well as 

modernized greenhouses. 

With the recent development of machine learning algorithms and computer 

performance, many machine learning models were developed and are being used for 

industrial applications. Especially, the machine learning model could be applied to 

simple data measured from a general greenhouse and even to various data from a 

smart greenhouse. Machine learning models are generally of high accuracy with the 

capability to predict phenomena by identifying trends and patterns in a given range 

of gathered data without human intervention. In addition, it has an advantage that 

accuracy can be improved according to the accumulation of data. Since the machine 

learning model is a black box model, the physical relationship between the learning 

variable and the predictor is not essential. Therefore, machine learning model is well 

suited for predicting environments such as air temperature, humidity, etc. in 

greenhouses that are affected by various factors and have non-linear characteristics. 

Additionally, if the accuracy of the machine learning model is guaranteed, various 

variables can be predicted using minimal sensors. In other words, one air temperature 
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sensor can predict air temperatures at various locations as well as other types of 

environmental data such as relative humidity. Therefore, it may be used to minimize 

the sensor to be installed in the greenhouse, and as a result, the initial installation 

cost and maintenance cost can be reduced. 
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Table 1-1 Investigation of the common problems experienced in the smart farm introduction process (MAFRA, 2022) (unit : %) 

Problems Total 
Crop 

Tomato Strawberry Paprika Cucumber Citrus Flower Others 

Installation cost 38.3 41.7 26.1 25.3 17.5 100 100 57.1 

Low understanding of smart farm technology 

and equipment 
28.8 22.5 35.9 40.5 66.0 - - 19.2 

Communication with installation company 16.0 15.2 20.7 14.5 - - - 17.4 

Limitations of existing facilities for smart 

farm installation 
8.3 10.6 9.6 5.3 16.5 - - - 

Difficulty in preparing additional 

infrastructure 
6.5 8.5 4.8 9.7 - - - 6.3 

Others 2.1 1.5 3.0 4.7 - - - - 

 

Table 1-2 Investigation of difficulties in smart farm (MAFRA, 2022) (unit : %) 

Type of crops 

Difficulties 

None 

Lack of proactive 

response from 

companies 

Frequent sensor 

and equipment 

failures 

Difficulty in 

using installed 

smart farm 

equipment 

Reduced 

utilization due to 

limited 

connectivity with 

existing facilities 

Others 

Horticulture 56.2 14.5 13.9 8.7 5.9 0.7 

Open-field (fruit) 27.3 24.2 25.7 17.1 4.8 0.9 

Open-field 

(vegetable) 
23.2 29 24.5 8.3 15.1 - 
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1.2. Purpose of Research 
 

The management of the internal environment is crucial to maintain an appropriate 

growing condition inside the greenhouse. The objective of this dissertation was to 

develop ML models for monitoring and predicting the internal environment of a 

greenhouse naturally ventilated. Machine learning model was developed to serve 

three different purposes. First, the model was developed to select the optimal sensor 

location for air temperature, which was one of the most important environmental 

factors inside the greenhouse. Second, the model was developed for preemptive 

control of HVAC systems by predicting the temperature inside the greenhouse as 

well as monitoring the current indoor air temperature. Third, the model was to 

quantitatively predict natural ventilation, which is one of the most basic method to 

control the optimal growing environment in the greenhouse such as air temperature 

and relative humidity. Through these three machine learning models developed in 

this study, the air temperature of a naturally ventilated greenhouse can be monitored 

on a real time basis and likewise can be predicted. The local ventilation rate of the 

naturally ventilated greenhouse according to external weather conditions could be 

predicted using the developed models. Figure 1-3 shows the overall research flow of 

this dissertation. 

The overall background and the purpose of this dissertation were explained in 

Chapter 1. In Chapter 2, comprehensive literature reviews on a) importance of 

growing environment inside greenhouses; b) evaluation methods for ventilation of 

greenhouses; c) optimal sensor location for monitoring the internal environmnets; 

and d) application of machine learning in agricultural field were conducted to build 

the foundation and to establish the appropriateness of the dissertation.  
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In Chapter 3, the machine learning model was developed to suggest the optimal 

sensor location for monitoring the internal air temperature of the naturally ventilated 

greenhouse. The internal and external environmental data of naturally ventilated 8-

span greenhouse such as air temperature, relative humidity, soil temperature, soil 

humidity, UV radiation were measured. Since the experimental greenhouse used in 

this study was naturally ventilated throughout the experimental period, a portable 

weather station was installed to consider the influence of the external environments 

such as external wind direction, wind speed, and air temperature. Meanwhile, since 

it is essential to establish reliable training data to develop a machine learning model 

with good performance data preprocessing such as linear interpolation and 

normalization was performed. Additionally, correlation analysis was conducted to 

select the learning feature of the machine learning models. For the development of 

machine learning models, artificial neural network, long short-term memory, and 

support vector regression were applied. The machine learning model with the best 

performance was selected by comparing the accuracies in predicting the air 

temperature inside the greenhouses according to several kind of machine learning 

models. The simplification of the learning data was analyzed to minimize the sensor 

installation for developing the machine learning model. The simplified model was 

developed by using the learning data selected through correlation analysis. Selection 

of the simplified machine learning model was based on minimum accuracy. Finally, 

the optimal sensor location for the temperature prediction inside the greenhouse was 

evaluated using the selected machine learning model. 

In Chapter 4, the LSTM model for predicting the internal air temperature of 

naturally ventilated greenhouse was developed. The collection of training data for 

experimental greenhouse was conducted like similar with Chapter 3. For an LSTM 
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model that has strengths in processing time series data, the performance of the model 

is calculated differently depending on the sequence length, which is a unit of input 

and output of LSTM model. Therefore, the appropriate sequence length of the LSTM 

model was evaluated. The internal air temperature for the near future of the 

greenhouse was predicted and evaluated using the LSTM model with an appropriate 

sequence length. At this time, the sensor location of measuring the data used as the 

learning data was same with the location of the sensor for the predicted air 

temperature. However, the machine learning model proposed in this study have an 

objective to predict the air temperature inside the greenhouse minimizing the sensor 

installation. As such, the optimal sensor location presented in Chapter 3 was applied 

to the LSTM model of Chapter 4 and was analyzed. Consequently, the measured data 

at the optimum sensor location was used for learning the LSTM model to predict air 

temperatures at other sensor locations. 

In Chapter 5, the machine learning model was developed to predict the local 

ventilation rate of the naturally ventilated greenhouse. CFD simulation, which can 

generate data for several environmental conditions designed by the researcher, was 

used to generate training data for the machine learning model. In this study, the CFD 

model validated in previous studies was used to accumulate the learning data. Using 

the validated CFD model, 10 wind speeds, 7 wind directions, and 3 vent openings 

were considered as training features of the machine learning model. Multiple linear 

regression, support vector regression, random forest, and deep neural network 

models were developed as machine learning models. The training data of the 

machine learning model proposed in this study was generated through CFD 

simulation. With this, it is important to secure the minimum preformance of CFD 

simulation for the machine learning model. Hence, the simplified machine learning 
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model was evaluated by anlayzing the accuracy of the machine learning model 

according to the number of CFD cases and applying the bootstrapping technique. 
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Figure 1-3  Research flowchart of this dissertation for greenhouse environment prediction and control model development
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Chapter 2. Literature review 
 

2.1. Importance of the growing environment inside the 

multi-span greenhouse 
 

Facility agriculture offers the possibility to regulate environmental growing 

parameters such as temperature and relative humidity to meet the desired 

requirements of the crop. It offers the advantage to control the internal environment 

regardless of the external weather unlike field cultivation. The importance of facility 

agriculture has been intensified with its unique feature to allow and maintain supply 

of high quality crops throughout the year. For this reason the area of cultivation 

facilities and agricultural production had increased for the past several years. The 

need of larger facilities is emerging to improve productivity. However, the use of 

large facility is faced with technical problem such as non-uniformity of air 

temperature, humidity, and airflow in large. This can cause a decrease in productivity 

because of adverse effects on the growing environment for the crops (Hernández, 

Morales et al. 2002, Holcman and Sentelhas 2012, Kutta and Hubbart 2014, 

Marković, Pavlović et al. 2014, Costantino, Comba et al. 2019, Jia, Wei et al. 2019, 

Lee, Chung et al. 2019, Cayli 2020). 

The improvement of the environmental growing parameters inside the enlarged 

greenhouse and the provision to maintain a uniform growing environment 

throughout the cropping season are important factors. For instance, the internal 

temperature of the greenhouse has a significant effect on flowering and fruiting 

depending on the growing season of crops. Coherent to the observation in other 

works, productivity differs in the uniformity of the internal environments (유인호, 
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조명환 et al. 2007, Cayli 2020). Additionally, the uniformity of the microclimate 

environment such as humidity and carbon dioxide related to the growth of crops 

affect productivity (Holcman and Sentelhas 2012, Lee, Chung et al. 2019). 

The air temperature in the greenhouse is one of the factors affecting plant growth. 

Several studies were conducted to analyze the ventilation configuration and the 

thermal environment in greenhouses according by considering various 

environmental conditions (Boulard, Meneses et al. 1996, Okushima, Sase et al. 2000, 

Zhao, Teitel et al. 2001, Bartzanas, Boulard et al. 2004, Kacira, Sase et al. 2004, 

Baeza, Pérez-Parra et al. 2009, Fidaros, Baxevanou et al. 2010, Ishii, Okushima et 

al. 2014, 하정수 2015, Boulard, Roy et al. 2017, Fatnassi, Boulard et al. 2017, 

Geng, Zhang et al. 2019, Rasheed, Kwak et al. 2020, 박민정, 최덕규 et al. 2020, 

Cheng, Li et al. 2021, Lin, Zhang et al. 2021, Ogunlowo, Akpenpuun et al. 2021, 

Chauhan and Lunagaria 2022, Xia, Nan et al. 2022). (박민정, 최덕규 et al. 2020) 

investigated the specifications and ventilation windows of multi-span greenhouses 

in South Korea, and analyzed the airflow and temperature distribution inside the 

greenhouse according to the ventilation windows using CFD. In particular, the 

temperature of the height of the crop zone according to the type of roof window was 

analyzed. (Cheng, Li et al. 2021) developed a three-dimensional real-time 

greenhouse temperature simulator based on virtual sensors. Data such as temperature, 

humidity, and wind speed measured in real time inside and outside the greenhouse 

were analyzed, and regression equations were derived. The measured data were 

compared with CFD simulations. Finally, temperature monitoring at various points 

in the greenhouse was presented using the proposed virtual sensor. Fatnassi, Boulard 

et al. (2017) analyzed the thermal environment and airflow patterns in the 
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greenhouse according to the number of spans using CFD (Fatnassi, Boulard et al. 

2017). The thermal environment and airflow patterns in the greenhouse according to 

the height of the greenhouse were also analyzed. The results in previous study 

showed that the heating cost increased exponentially with the height of the 

greenhouse. The internal environment become non-uniform as the span of the 

greenhouse increases. The study concluded that structure design of greenhouse such 

as the number of span and height have to be considered when designing large scales. 

(Ishii, Okushima et al. 2014) worked on the natural ventilation efficiency of an open-

roof design as a mean to increase the natural ventilation efficiency of greenhouses. 

The temperature difference between the inside and the outside during summer was 

comparatively analyzed for an arch roof greenhouse and an open roof greenhouse. 

Likewise, (Baeza, Pérez-Parra et al. 2009) evaluated the ventilation efficiency of 

compared roof ventilation with combined roof and sidewall vents at the conditions 

of buoyancy effect using CFD. The effect on ventilation was analyzed according to 

insect screen on opposing sidewall vents. Ventilation efficiency was evaluated by 

analyzing the distribution of thermal environment in multi-span greenhouse using 

CFD simulation. (Chauhan and Lunagaria 2022) analyzed the thermal environment 

at condition of the open ventilated greenhouse by measuring the temperature at 12 

sampling points. This study presented a regression model for predicting 

microclimate conditions inside a greenhouse relating relative humidity, air 

temperature, and soil temperature in the open ventilated greenhouse. 

Previous studies conducted analysis of the thermal distribution utilizing data from 

specific point such as the central location of the greenhouse or around the ventilation 

openings for monitoring the temperature environment in the greenhouse. The 

analysis was performed based on the air temperature distribution and average 
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temperature for the entire greenhouse. 
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2.2. Estimation methods of ventilation for greenhouse 
 

It is important to monitor the growing environment for proper control because the 

microclimate environment inside the greenhouse has a great effect on the growth of 

crops. Ventilation is the one of the best methods to control the micro-climate such as 

temperature, humidity, and CO2 in the greenhouse. Ventilation in the greenhouse is 

a method for controlling the environment inside the greenhouse by exchanging the 

air inside and outside the greenhouse. 

Generally, insufficient ventilation inside the greenhouse causes high temperature 

stress, diseases due to high humidity, and insufficient air flow near the leaves on the 

crops. As a result, the air exchange of the crop leaves and the concentration of carbon 

dioxide both decreases. It retards the photosyndissertation rate and decrease crop 

productivity (Kitaya, Shibuya et al. 1998, Shibuya and Kozai 2001, Shibuya, 

Tsuruyama et al. 2006, Holcman and Sentelhas 2012, Radojevic, Bjelogrlic et al. 

2012, Kutta and Hubbart 2014, Marković, Pavlović et al. 2014).  

The quantification and evaluation of the ventilation of greenhouse can be done 

through several methods such as field experiments, CFD simulation, and machine 

learning model. A number of  studies were already conducted to quantitatively 

evaluate the ventilation of greenhouses following field experiment method using 

direct measurement and tracer gas method (Sase 1988, Fernandez and Bailey 1992, 

Kittas, Draoui et al. 1995, Boulard, Meneses et al. 1996, Wang, Boulard et al. 2000, 

Molina-Aiz, Valera et al. 2004, Mashonjowa, Ronsse et al. 2010), energy balance 

model (Kozai 1980, Chalabi and Bailey 1989, Fernandez and Bailey 1992, Boulard, 

Baille et al. 1993, Boulard and Draoui 1995, 남상운, 김영식 et al. 2012), and 

pressure difference model (Boulard, Meneses et al. 1996, Kittas, Boulard et al. 1996, 
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Papadakis, Mermier et al. 1996). 

Previous studies on ventilation evaluation using field experiments were conducted, 

and a ventilation evaluation study was studied through theoretical equations using 

field experiments. (남상운, 김영식 et al. 2012) analyzed the effect of roof 

ventilation and installation standards of a single-span plastic greenhouse by 

quantifying buoyance driven ventilation, wind driven ventilation, and combined 

ventilation using energy balance model. (Kim, Lee et al. 2002) quantified the 

ventilation efficiency associated with side and roof window in a greenhouse with 

folding panel type windows based on an energy balance model. (Bot 1983) analyzed 

effect on ventilation of greenhouse by measuring the internal airflow relative to the 

shape of vent openings, opening angle, wind speed, wind direction, and temperature 

difference. As a result, this study presented that the ventilation of venlo-type 

greenhouse was affected by the change in pressure. (Sase, Takakura et al. 1983) 

conducted experiments to investigate changes in internal air flow and temperature 

distribution following the shape of the ventilation openings and external wind speed 

through a wind tunnel experiment. The study revealed that a wind speed was under 

2 ms-1, buoyancy and wind driven ventilation occur at the same time, and a stagnant 

zone in which the air inside and outside the greenhouse is not completely mixed, 

occurred resulting in an unstable distribution of temperature. Furthermore, wind 

speed above 2 ms-1 was entirely governed by the external wind speed. (Fernandez 

and Bailey 1992) developed the equation for ventilation rate with respect to wind 

speed and angle of vent opening. The internal temperature of greenhouse was 

simulated using the energy balance model. (Boulard, Papadakis et al. 1997) 

investigated the ventilation of two-span greenhouse at the wind condition blowing 

parallel to the side windows. (Lee, Sase et al. 2003) examined the effect of roof vent 
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opening in a venlo-type greenhouse on ventilation efficiency through PIV tests and 

wind tunnels 

The field experiment is one of the best methods to quantitatively analyze the 

ventilation and internal airflow pattern. However, this method may encounter several 

experimental errors because of the invisible air flow. This is especially that it is 

difficult to maintain a constant concentration of the tracer gas in the target space for 

the tracer-gas decay method. There are also inherent experimental difficulties in 

controlling invisible and intangible gases. Additionally, an experimental 

environment suitable for the researcher's experimental plan could not be controlled 

to quantify the ventilation rate because the external wind environment of the 

greenhouse could not be controlled artificially. 

Therefore, simulations using computational fluid dynamics have been conducted 

as a supplement method for field experiment (Brugger, Short et al. 1987, Fatnassi, 

Boulard et al. 2002, 홍세운 and 이인복 2014, 조규정, 김기영 et al. 2015, 

Kwon, Jung et al. 2017, Lee, Lee et al. 2018, Li, Li et al. 2020, Kim, Kim et al. 2021). 

Computational fluid dynamics is a numerical analysis technique that estimates 

phenomena such as fluid flow, heat transfer, and related chemical reactions through 

computer-based simulations. The computational fluid dynamics as it simulates the 

flow of air and gas can eliminate errors that may be caused by experiments dealing 

with gas. Additionally, it is possible to simulate various environmental conditions 

suitable for the research purpose because all the conditions designed by the 

researcher can be adjusted for the simulation. (홍세운 and 이인복 2014) 

simulated the micro-climate inside the greenhouse and the ventilation according to 

various weather conditions and ventilation configuration of the greenhouse using 
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CFD. Finally, a numerical model was presented through sub-regression analysis. 

(조규정, 김기영 et al. 2015) evaluated the ventilation efficiency of the greenhouse 

by simulating the air flow in a single-span greenhouse according to the conditions of 

vent opening and the operation of the fans using CFD. Additionally, the ventilation 

efficiency was evaluated by simulating the temperature profile inside the greenhouse 

according to the insulation curtain. (Kwon, Jung et al. 2017) evaluated the ventilation 

rate of a naturally ventilated multi-span greenhouse using CFD. The ventilation 

efficiency of the greenhouse was evaluated by TGD method and MFR method. The 

results of the study indicated that the height of the side window of the greenhouse 

affects the ventilation rate, and that the most efficient ventilation is achieved at a 

height of 1 m. (Brugger, Short et al. 1987) improved the ventilation configuration of 

the greenhouse by performing CFD simulation in 2D steady state. (Fatnassi, Boulard 

et al. 2002) analyzed the ventilation performance of a large-scale Canarian-type 

greenhouse with insect screens installed on ventilation openings. The actual air 

exchange rate using tracer gas was compared with the predicted values from the CFD 

model. With respect to the wind direction, the ventilation rate increases proportionate 

to the wind speed and the size of the ventilation opening. The chimney effect could 

be neglected when the wind speed is greater than 2 m/s. The insect screen causes an 

additional large pressure drop through the ventilation openings, resulting in decrease 

of the ventilation rate and increase of the temperature in greenhouse. (Lee, Lee et al. 

2018) quantitatively analyzed the ventilation rate of single-span greenhouse built on 

reclaimed land according to greenhouse types, vent openings, wind directions, and 

wind speed based on MFR and TGD methods. The chart for predicting the natural 

ventilation rate of greenhouses built in a reclaimed land was developed using the 

CFD simulation results according to various environmental conditions. (Kim, Kim 
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et al. 2021) analyzed the internal aerodynamic environment of 1-2W type greenhouse 

using CFD simulation. The CFD model was validated using the temperature and 

wind speed measured in the actual greenhouse. The natural ventilation rates were 

calculated according to the shading screen using the validated CFD model. The 

appropriate duct perforations and perforation angles were also suggested using the 

validated CFD model. (Li, Li et al. 2020) used CFD simulation to predict the airflow 

pattern and thermal behavior and to evaluate the ventilation efficiency of the arched 

greenhouse. This research suggested the position angle of the arched greenhouse and 

the arch chord angle, which represent the optimal ventilation efficiency. (Lee, Gwon 

et al. 2022) evaluated the ventilation efficiency of the Venlo-type advanced digital 

greenhouse using CFD. The amount of air inflow through the roof vent opening 

according to the height of the greenhouse was calculated. 

 

 

Figure 2-1 Foreground of Venlo-type advanced digital greenhouse with high 

elevation (Lee et al., 2022) 

 

Previous studies also evaluated the local ventilation by analyzing the air flow 

pattern inside the greenhouse using CFD aside from the optimal ventilation of the 

greenhouse according to various environmental variables. However, in most studies 
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using CFD, the number of CFD cases were limited, and only specific cases for the 

research subject were simulated. Furthermore, it is impossible to simulate 

environmental conditions in the field which are changing in real time using CFD 

simulation. Therefore, the studies of calculating the ventilation rate using CFD have 

been used for designing ventilation structures and presenting standards for 

ventilation control. 

 

 

Figure 2-2 Measurement of air temperature and airflow in greenhouse for 

validation of CFD model (Kim et al., 2021) 

 

Various studies have been conducted with the development of artificial 

intelligence algorithms and the development of various technologies for collecting 

and processing big data. Machine learning is for computer to learn information 
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processing ability by deriving patterns of data. Machine learning generally has the 

advantage of high accuracy and relatively fast computation time compared to several 

numerical analyses. With these advantages, studies were conducted to estimate the 

ventilation rate and internal environment of buildings (김상엽, 박경섭 et al. 2018, 

Tsai, Hsu et al. 2020, Park, Jeong et al. 2021, Saadon, Lazarovitch et al. 2021, Suo, 

Zhang et al. 2021). 

(김상엽, 박경섭 et al. 2018) developed a model to predict the internal 

temperature for environmental control of a venlo-type greenhouse using a machine 

learning model. Several machine learning algorithms such as artificial neural 

network, recurrent neural network, and multiple regression models were developed 

and their prediction accuracy were compared. (Saadon, Lazarovitch et al. 2021) 

developed a machine learning model to estimate net radiation for a naturally 

ventilated greenhouse. Various measuring devices such as infrared gas analyzer 

system, thermocouple, 2D sonic anemometer, and pyrometer were used to measure 

the learning data. (Park, Jeong et al. 2021) estimated the natural ventilation rate of 

office buildings using eight machine learning models. The machine learning models 

were developed by learning the air temperature, relative humidity, wind speed and 

wind pressure difference measured in the office building in summer. The significant 

variable was evaluated for predicting the natural ventilation rate of the office 

building. 
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Figure 2-2 Outside view of the naturally ventilated greenhouse(GH-II) at the 

north position(a), lateral controller, and curtains closed in the semi-closed 

greenhouse(GH-I) at the south position (B). General view of the semi-closed 

greenhouse(GH-I) during an opening event(C) (Saadon et al., 2014) 

 

Most studies that have been conducted, however, were only focused on the 

estimation of the internal air temperature of greenhouses and buildings. There were 

few research works that evaluated the ventilation rate of the greenhouses. 

Furthermore, most of the previous studies used the field measured data to develop 

machine learning model. For sufficient data accumulation in order to develop 

machine learning models, it is necessary to measure data over a considerable period. 

The variables for learning data consisted of the measurable data from the field 

experiments. In several previous studies, missing values and outliers were usually 
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encountered at the field experiments. Data preprocessing was performed to construct 

high-quality learning data. Because the performance of the machine learning model 

is absolutely dependent on the amount of learning data, a lot of effort was needed to 

accumulate the reliable data and preprocess the measured data. 

Based on the results of reviewing various previous studies, the summary and 

characteristics of major studies are summarized and shown in Table 2-1. 
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Table 2-1 Previous researches for estimating the ventilation in greenhouses and the advantages and disadvantages of each method 

Methods Advantages Disadvantages Reference 

Field 

experiment 

and energy 

balance model 

It is the most intuitive and direct 

experimental method 

 

It is the most traditional method 

There is time and economic cost 

required for experiment time and 

equipment 

 

Experimental error inevitably exists 

 

Experimental conditions such as the 

external wind environment cannot be 

artificially adjusted. 

Sase 1988; Fernandez and Bailey 1992; 

Kittas; Draoui et al. 1995; Boulard; 

Meneses et al. 1996; Wang; Boulard et al. 

2000; Molina-Aiz; Valera et al. 2004; 

Mashonjowa; Ronsse et al. 2010; Kozai 

1980; Chalabi and Bailey 1989; 

Fernandez and Bailey 1992; Boulard; 

Baille et al. 1993; Boulard and Draoui 

1995; Nam et al. 2012 

CFD 

simulation 

Experimental conditions can be 

adjusted artificially 

 

There are no errors due to field 

experiments 

Computation time for simulation is 

usually long 

As the number of case operations 

increases, more time is consumed. 

It is impossible to analyze 

environmental conditions that change 

in real time in the field. 

Brugger; Short et al. 1987; Fatnassi; 

Boulard et al. 2002; Hong and Lee 2014; 

Cho et al. 2015; Kwon; Jung et al. 2017; 

Lee et al. 2018; Li et al. 2020; Kim et al. 

2021 

Machine 

learning model 

Computation time is relatively short. 

 

It generally has high accuracy. 

It shows low accuracy on data other 

than the trained data. 

Kim et al. 2018; Tsai; Hsu et al. 2020; 

Park; Jeong et al. 2021; Saadon; 

Lazarovitch et al. 2021; Suo; Zhang et al. 

2021 
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2.3. Optimal sensor location for monitoring the internal 

environment of the greenhouse  
 

Agricultural facilities have the advantage to be controlled so that parameters 

necessary for plant growth such as air temperature, relative humidity, radiation, and 

CO2 concentration will be set to their optimum values (Medela, Cendón et al. , Pang, 

Chen et al. 2015, Vatari, Bakshi et al. , Brewster, Roussaki et al. 2017, Muangprathub, 

Boonnam et al. 2019, Rayhana, Xiao et al. 2020). Especially, the growth, quality, 

and productivity of crops are greatly affected by environmental factors such as air 

temperature and humidity. The growth environment of crops is primarily adjusted 

through natural and mechanical ventilation of greenhouses. The appropriate growing 

environment are also maintained by the heating and cooling systems. Therefore, it is 

important to monitor the environmental factors for the productivity and appropriate 

growing environmental parameters in the greenhouse to improve productivity. For 

this, environmental monitoring in the greenhouse is essential. Recently, smart farm 

greenhouses were integrated with the development of information and 

communication technology (ICT) and various sensors (Arif and Abbas 2015, Kodali, 

Jain et al. 2016, Mittal, Sarangi et al. 2018, Rayhana, Xiao et al. 2020). Many 

technologies and equipment have been applied to attain the appropriate growing 

environment in the greenhouses. Smart greenhouse is an intelligent farm that 

automatically maintains and manages the optimal growth environment without time 

and space restrictions by using ICT and data. The environmental control systems of 

the smart greenhouse can be operated using the measurement date of various 

environments in the greenhouses.  

Previous studies have been conducted to apply ICT and various sensors to smart 
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greenhouse (Kodali, Jain et al. , Mittal, Sarangi et al. , Wu, Liu et al. 2014, Al-

Bahadly and Thompson 2015, Arif and Abbas 2015, Nayyar and Puri 2016, Athani, 

Tejeshwar et al. 2017, Zhang, Zhang et al. 2017, Danita, Mathew et al. 2018, 

Marques and Pitarma 2018, Yimwadsana, Chanthapeth et al. 2018, Rayhana, Xiao et 

al. 2020). Various climate sensors and soil condition sensors were used in smart 

greenhouses (Kodali, Jain et al. , Mittal, Sarangi et al. , Wu, Liu et al. 2014, Al-

Bahadly and Thompson 2015, Zhang, Zhang et al. 2017, Danita, Mathew et al. 2018, 

Marques and Pitarma 2018, Yimwadsana, Chanthapeth et al. 2018, Rayhana, Xiao et 

al. 2020). In addition, Plant growth monitoring systems were installed to manage 

crop field and production in smart greenhouses (Okayasu, Nugroho et al. , Slamet, 

Irham et al. , Hadabas, Hovari et al. 2019). Furthermore, plant diseases monitoring 

systems were established to take preemptive action against the spread of disease 

(Patil and Kale , Jumat, Nazmudeen et al. 2018, Kitpo and Inoue 2018, Materne and 

Inoue 2018). However, the installation of numerous sensors causes an increase in the 

initial installation cost of the greenhouse along with added cost for the maintenance 

of sensors. In fact, compared to low-tech greenhouse, high-tech greenhouse was 

calculated to be 4-8 times higher in construction cost per m2 according to sensor and 

monitoring system installation (Tognoni, Pardossi et al. 1997, Pardossi, Tognoni et 

al. 2004, Rayhana, Xiao et al. 2020). With this, it is important to install minimum 

sensors in the greenhouse in the optimal location to monitor the entire environment 

inside the greenhouse and reduce initial and maintenance costs. 

Related to the optimal sensor installation, the several previous studies were 

conducted to enhance the performance of remote sensor for stable data transmission 

and improvement of durability (Guerriero et al., 2011; Keskin et al., 2014; Toumpis 

& Tassiulas, 2006; Wang et al., 2005), to monitor the structural stability of 
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greenhouses (Hwang et al., 1996; J. Lee et al., 2009; Y. Lee et al., 2016; Yi et al., 

2017; Lee, Kim, & Lee, 2016; Ren, Yan, & Jiang, 2001; Yi, Zhou, Li, & Wang, 2017), 

and to detect abnormal circumstances in the measured values of the sensors (Choi 

and Kim 2019, Ou, Chen et al. 2020). The previous studies, however, have little 

relevance on optimal environmental control in the greenhouses although information 

from the previous studies are important for the stable installation of sensors in the 

greenhouse and monitoring the durability of the greenhouse. 

Several studies were also conducted to determine the optimal sensor locations for 

monitoring the internal air temperature and relative humidity of the greenhouse (C. 

Chen & Gorlé, 2022; Y. L. Chen & Wen, 2010; Feng et al., 2013; Hamel et al., 2006; 

Huang et al., 2014; X. Liu & Zhai, 2009; Y. Liu et al., 2014; Mazumdar & Chen, 

2008; Waeytens et al., 2019; Wijaya et al., 2021; Zhang & Chen, 2007). 

(이민구 and 정경권 2012) simulated the temperature change inside the 

building using CFD. The location with the least temperature change served as basis 

for the optimal sensor location. The optimal sensor location suggested by the CFD 

model was verified by installing 30 actual temperature sensors in the experimental 

building. (Guzmán, Carrera et al. 2018) suggested the development of a model-based 

virtual sensor based on CFD and control. Temperature analysis using CFD was 

performed for a small-scale greenhouse and one virtual sensor was proposed. (Utami, 

Yanti et al. 2021) simulated the heat distribution inside the building for various 

environmental conditions using CFD simulation. Finally, using the simulation results, 

the optimal sensor location was determined based on the thermal characteristics 

inside the building. (Chen and Gorlé 2022) optimized the placement of temperature 

sensors in buildings with buoyancy-driven natural ventilation using CFD simulations. 

By simulating the temperature distribution of the building, the optimal sensor 
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location was determined considering the average value and dispersion of temperature. 

 

Figure 2-3 Three-dimensional (3D) real-time simulator (Guzmán, Carrea et al. 

2018) 

 

The studies concerning optimal sensor placement have also been explored with 

the application of theoretical formulas and algorithms. (Yoganathan, Kondepudi et 

al. 2018) proposed the optimal sensor location in the office building using clustering 

algorithms, information loss approach and paeto principle. Real-time data was 

analyzed for three indoor environmental parameters such as temperature, humidity, 

and luminance. As a result, the optimal sensor locations to minimize the loss of 

sensing data were analyzed and established in which 31 sensors initially used in the 

experiment were optimized to 6 sensors. (Chang, Ha et al. 2012) suggested the 

optimal sensor location to measure the pressure of the water distribution system 

using the entropy theory and genetic algorithm. Based on entropy theory, the sensor 

location that provides the most information from the entire system was selected as 

the optimal sensor location. (Lee, Lee et al. 2019) proposed an error-based and 
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entropy-based sensor placement. The sensor locations which could represent the 

entire environments inside the greenhouse were determined through error based 

method. Whereas, locations to detect the abnormal circumstance were selected 

through entropy based method. By suggesting the optimal sensor locations and 

number of installation points, it further increased the usability of such method. 

 
 

(a) (b) 

Figure 2-4 Optimal sensor locations using error-based method, (a) data 

processing for the error-based method, (b) optimal sensor locations according 

to nmber of sensors for summer season (Lee, Lee et al. 2019) 

 

Referring to the two previous studies, the optimal sensor location was arbitrarily 

chosen, such as the on the basis of location that provides information that can 

represent the entire environments of the greenhouse. The applicability of these 

optimal sensor placements, however, may be affected when the target crops and the 

algorithm for controlling air conditioning system change. It is then necessary to 

select the optimal sensor location for monitoring the environment inside the 

greenhouse not merely by arbitrary decision but on the basis of reliable methods one 

of which could be clustering algorithms, information loss approach and paeto 

principle as proposed by (Yoganathan, Kondepudi et al. 2018) or the application of 
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CFD (Liu Y. et al. 2014; Guzman C. H. et al. 2018) and other proven approaches as 

presented in Table 2-2. 
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Table 2-2 Research on optimal sensor location of greenhouse and building 

Author  Methods 
Experimental 

target 
Summary 

Liu Y. et al. 

(2014) 
CFD Greenhouse 

This study designed a CFD model to analyze the climate and thermal environment of 

greenhouses, simulating temperatures under mechanical ventilation conditions. The 

optimal sensor location proposed based on simulation results was determined to be in 

the center of the greenhouse. 

Guzman C. H. et 

al. (2018) 
CFD Building 

In this study, the optimal temperature sensor arrangement was proposed for a building 

with buoyancy-driven natural ventilation. For this, the air temperature distribution of 

the building was simulated using CFD simulation.  

(Chen and Wen 

2012) 
CFD Building 

In this study, the sensor location was designed to minimize the detection time of 

pollutant concentration or exposure to pollutants in 12 test areas. CFD was used to 

simulate the internal airflow of the building for each scenario. 

(Chen and Wen 

2010) 
CFD Building 

Based on airflow analysis using CFD for small office, large hall, and office suites, this 

paper proposed the optimal sensor location to minimize the diffusion and exposure time 

of pollutants. 
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(McGibney, 

Pusceddu et al. 

2012) 

CFD Office 

Using CFD, the thermal environment was analyzed considering all the heat sources in 

the office space. Finally, the minimum detection score for the temperature of the office 

space was calculated, and the suitability function for evaluating whether the tolerance 

limit was minimized. 

Lee et al. (2019) 

Error-based 

method 

Entropy-

based 

method 

Greenhouse 

This study proposed error-based and entropy-based sensor locations using air 

temperatures measured at nine locations in eight-span greenhouses. Each method 

proposes a sensor location that can represent the air temperature of the entire 

greenhouse and an optimal sensor location for monitoring the areas most affected by 

the external wind environment. 

(Yoganathan, 

Kondepudi et al. 

2018) 

Clustering 

algorithm 

Information 

loss approach 

Paeto 

principle 

Building 

This study showed the optimal sensor locations in office buildings using a clustering 

algorithm to select the optimal sensor locations. For 31 sensor data measured in an 

actual building. The results showed the optimal sensor position that could minimize 

data loss. 

(Papadimitriou, 

Beck et al. 

2000) 

Entropy-

based 

method 

Building 

This paper proposed the optimal sensor location for checking the structural safety of 

buildings. To this end, it proposed an entropy-based optimal sensor location to 

minimize instability based on Bayesian statistical methodology. 

(Fontanini, 

Vaidya et al. 

2016) 

Perron-

Frobenuous 

method 

Building 

This paper used a dynamic system approach for sensor placement in the air flow field. 

The optimal sensor location was proposed by calculating the contaminant tracking 

matrix using the discrete form of the Perron-Frobenius operator. 
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(Suryanarayana, 

Arroyo et al. 

2021) 

Data-driven 

model 
Building 

This research determined the optimal sensor placement for best control and monitoring 

of multi-zone buildings. Through a data-driven methodology, the research provided 

importance ranks for all sensor locations and suggested appropriate sensor placements 

for target buildings. 

(Fu, Sha et al. 

2014) 

Data-driven 

model 
Building 

The control of the HVAC system of the building was optimized using sensor clustering 

and the data-driven simulation model. The environmental data such as air temperature 

were measured for a large space. 
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2.4. Application of machine learning models to 

agriculture 
 

Machine learning was first coined by Samuel in 1959 as the research field that 

provides learning capabilities to computers without being explicitly programmed. 

The method of learning games by defining an evaluation function as the sum of the 

product of a weight and a feature defined as a pattern on a game board and changing 

the weight. 

 Early machine learning models failed to solve the XOR problem, so they failed 

to develop further and entered a period of stagnation. Since then, with the 

development of computer performance and algorithms was explored and is now 

being applied in numerous fields. Machine learning means the field of algorithm 

development that enables computers to infer and analyze phenomena by learning 

from data. Machine learning models could be divided into supervised learning 

models and unsupervised learning models. Supervised learning is further divided 

into classification and regression. Classification algorithm of machine learning is an 

algorithm that classify given data by class and it is used when predicting categorical 

variables. Regression is algorithm that predict variables by estimating the 

relationship between given data and it is used for predicting discrete variables. There 

are other regression models of machine learning to include linear regression, logistic 

regression, k-nearest neighbor regression, and decision tree. 

In greenhouses, several studies using machine learning were conducted for 

predicting crop yield (Sengupta and Lee 2014, Ali, Cawkwell et al. 2016, Senthilnath, 

Dokania et al. 2016, Ramos, Prieto et al. 2017, Kulkarni, Mandal et al. 2018, Cai, 

Guan et al. 2019, Gümüşçü, Tenekeci et al. 2020), disease detection (Chung, Huang 
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et al. 2016, Amara, Bouaziz et al. 2017, Pantazi, Moshou et al. 2017, Pantazi, 

Tamouridou et al. 2017), crop quality analysis (Maione, Batista et al. 2016, Hu, Pan 

et al. 2017), and intelligent harvesting (Horng, Liu et al. 2019, Zhang, Karkee et al. 

2020).  

 

 

Figure 2-5 A graphical depiction of LeNet model (Amara, Bouaziz et al. 2017)  

 

The CNN-based machine learning models and classification models were 

generally used as machine learning models for predicting crop yields. (최호길, 

안희학 et al. 2019) collected farm bio-sensor data and developed a machine 

learning model that diagnoses diseases of crops grown on farms and predicted 

harvests for the year. A neural network model was developed, and accuracy was 

compared with random forest and gradient boosting tree. (Senthilnath, Dokania et al. 

2016) predicted the maximum tomato yield using high-resolution RGB images 

obtained from unmanned aerial vehicles. For image data, k-means, expectation 

maximization, and self-organizing map algorithms were used to distinguish tomatoes 

and non-tomatoes. (Cai, Guan et al. 2019) used LASSO, support vector machine, 

random forest and neural network algorithms to predict wheat yield across Australia. 

Wheat yield was predicted using satellite data, and the performance of wheat yield 

prediction was improved during the learning phase of the data by integrating climate 
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data. (Gümüşçü, Tenekeci et al. 2020) estimated the seeding date of agricultural 

products using kNN, SVM, and decision tree algorithms. The machine learning 

model was trained using climate data for the past 300 days, and the kNN model 

showed the highest prediction accuracy. 

Several studies have also been conducted to develop the machine learning models 

for detecting diseases in crops. Diseases were detected by learning the leaf images 

of crops. (우현준, 조주연 et al. 2017) used CNN to determine whether a crop was 

infected with a disease. A model for classifying disease and non-disease and disease 

was provided using the disease sign model. (Amara, Bouaziz et al. 2017) came up 

with machine learning model to classify diseases by learning the leaf images of 

bananas in advance. The machine learning model proposed in this study was highly 

accurate but at challenging conditions such as illumination, complex background, 

and different resolution conditions. Red, green, and blue color represent information 

of healthy and infected leaves. Red, green, and blue color information was extracted 

and preprocessed to resize pixels and convert to grayscale. (Horng, Liu et al. 2019) 

proposed a harvesting system by developing an algorithm for a robot arm using 

internet of things technology and smart image recognition. The robot arm was trained 

to recognize crops using a neural network model, and the accuracy was 84%. 

Machine learning models have been applied in various agricultural fields. Especially, 

many studies on the cognitive and classification models have been performed by 

learning the image data. Despite numerous studies about machine learning, only few 

studies are available relative to monitoring or predicting the internal environment 

such as air flow, temperature, and humidity related to the growing environment that 

has a great influence on the crop production in the greenhouse. 
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Figure 2-6 Model of designed remote harvesting system (Horng, Liu et al. 

2019) 

 

From the results of previous studies, various machine learning models predicted 

several variables for agricultural facilities and crops. Especially, the regression 

models of machine learning were expected to be applied for estimating internal 

environments such as air temperature and humidity because it is possible to predict 

the environmental variables in the future or in other locations within the agricultural 

facility under the specific conditions by learning data.  
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Table 2-3 Previous research on greenhouse industry using machine learning algorithms. 

Author  
Machine learning 

algorithm 
Aim 

(문태원, 

박준영 et al. 

2020) 

CNN 
In this study, the weight of paprika was estimated by learning the paprika image at a specific 

time in the raw data state using a convolutional neural network. 

(홍성은, 

박태주 et al. 

2020) 

Multi Linear 

Regression 

Random Forest 

ConvLSTM 

Measurement date, specimen number, growth, flower cluster height, stem diameter, leaf length, 

leaf width, number of leaves, flowering group, fruit-bearing group, number of fruits, harvest 

group growth-related information was collected, and the amount of tomato growth and 

production was collected. 

(오정원, 

김행곤 et al. 

2019) 

LinearRegression 

ML 

Machine learning was applied to the harvest season to ensure that the fruit was harvested at the 

highest quality and shipped at a higher price. 

The harvest time is predicted by the hour, and FPSML is used to make it possible to check on 

PCs and smartphones. 

(최강인, 

노혜민 et al. 

2019) 

DNN 

Hyperspectral images used for analytical studies of plant growth states were applied with DNN 

to resolve the limit points affected by factors such as physical factors and data complexity. The 

leaves were classified into 4 types, including normal leaves and leaves damaged by pests, and the 

background. 

(김근식, 

구종회 et al. 

2020) 

YOLO 
This study designed a system that could monitor mushroom growth using deep learning and 

sensor networks. The system automatically measured the size and growth rate of mushrooms. 
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(나명환, 

조완현 et al. 

2020) 

CNN Tomatoes' pests were detected using CNN and developed as a web application platform. 

(최호길, 

안희학 et al. 

2019) 

CNN, ANN The crop yield was predicted using the current weather and soil microbial content. 

(김예슬, 

곽근호 et al. 

2018) 

SVM,  

2D-CNN,  

3D-CNN 

This research compared the hyperparameters of the machine learning model and the accuracy of 

the model according to the size of the training data. The machine learning model was a model for 

classifying crops. 

(우현준, 

조주연 et al. 

2017) 

CNN 
For the diagnosis of pests of crops, a CNN model using image processing was used. Information 

was acquired using an app or web in a smartphone environment. 

(Fuentes, Yoon 

et al. 2017) 

Faster R-CNN, SSD, 

R-FCN 

This study uses technology-based data annotation and augmentation methods to provide better 

performance of deep learning-based detectors for real-time tomato disease and pest recognition. 

(Rustia, Chao et 

al. 2021) 
CNN 

This study used insect-adhesive paper traps and wireless imaging devices to construct a 

greenhouse data set for detecting and recognizing pests in a stationary environment. 
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(Zhang, Xu et 

al. 2020) 
CNN 

This study achieves accurate estimation of growth-related traits for greenhouse lettuce. CNNs are 

used to model the relationship between RGB images of greenhouse lettuce and their growth-

related characteristics (LFW, LDW, and LA). 

(Durmuş, Güneş 

et al. 2017) 
CNN 

This research uses Raspberry Pi deep learning to achieve disease detection and automatic 

irrigation, and uses NB-IoT technology to connect the two information to Alibaba IoT cloud for 

real-time monitoring, automation and intelligent realize the transformation. 

(Cao, Cui et al. 

2020) 
AlexNet, SqueezeNet 

Deep learning was used to detect leaf diseases in tomato plants. Two different deep learning 

network architectures, AlexNet and SqueezeNet, have been trained and tested on tomato images 

from the Plant Village dataset. 

(Afonso, Barth 

et al. 2019) 
MaskRCNN Development of deep learning model that distinguishes sweet pepper fruits from other parts 

(López-Aguilar, 

Benavides-

Mendoza et al. 

2020) 

ANN 
This study used ANN to simulate the accumulated aerial dry matter (leaf, stem and fruit) 

and fresh fruit yield of a tomato crop 

(Alhnaity, 

Pearson et al. 

2019) 

SVR, 

Random forest, 

LSTM 

Variable parameter such as CO2, humidity, radiation, outside temperature, inside temperature, 

actual yield, stem diameter variation measurements were used to predict ficus stem diameter or 

tomato yield problems 



 

 42 

(Bakay and 

Ağbulut 2021) 

Deep learning, 

SVM, 

ANN 

This study forecasted GHG emissions (CO2, CH4, N2O, F-gases and total GHG) by machine 

learning models which was trained on electricity production shares of energy resources by years 

(year, coal, liquid fuels, natural gas, renewable energy and wastes, and total) 

(Flores, Zhang 

et al. 2021) 

SVM, 

Random forest 

Corn and soybean seedlying images in greenhouse were collected for successive five days after 

germination and dataset was generated after image segmentation and noise removal 

(Guo, Juan et al. 

2017) 

Random forest, 

SVM, 

Neural network 

A machine learning model was developed to determine the moisture state of the plant root zone 

in the greenhouse. The prediction accuracy and calculation time of each model were compared. 

(Hamrani, 

Akbarzadeh et 

al. 2020) 

SVM, 

LASSO, 

FNN, 

CNN, 

LSTM, 

etc. 

Nine ML models were compared to predict soil greenhouse gas (GHG) emissions in the 

agricultural sector. The accuracy and calculation time of all models were compared, and the 

advantages and disadvantages of each model were analyzed. 

(Lee, 

Gottschlich et 

al. 2018) 

LSTM 

describe a novel time-series anomaly detection system called Greenhouse. Our key goal in 

Greenhouse is to combine state-of-the-art machine learning and data management techniques for 

efficient and accurate prediction of anomalous patterns over 

high volumes of time-series data. 

(Ge, Zhao et al. 

2022) 

Linear regression, 

SVR, 

K neighbor 

regression, 

Random forest, 

etc. 

Machine learning models were developed for the evapotranspiration of crops by using 

meteorological factors such as net solar radiation, daily average temperature, daily minimum 

temperature, and daily maximum temperature. 
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Chapter 3. Optimal sensor location for 

predicting air temperature inside 

greenhouse based on machine 

learning models: Sensing 
 

3.1. Introduction 
 

Since the internal environment of the facility in protected agriculture can be 

arbitrarily adjusted, it can provide stable production all year round. Hence, its 

importance was amplified and increased due to climate change and an increase in 

natural disasters. The greenhouse horticulture area in South Korea has increased 

from 700 ha in 1970 to 52,444 ha in 2020 (MAFRA 2022). Large-sized greenhouses 

have advantages in automating production facilities and increasing productivity, but 

failure to maintain a uniform and optimum growing environment inside leads to low 

productivity. The development of ICT technology has introduced systems to 

precisely monitor the internal environment of greenhouses and control the 

appropriate growth environment of crops. However, for large-sized greenhouses, it 

is necessary to install a large number of sensors to monitor the environment inside 

the greenhouse for maintaining uniformly optimum growing environment. As a 

result, it is true that it acts as a heavy burden on the part of farmers due to the 

increased initial and maintenance costs relative to the installation cost of sensors.  

Therefore, it is important to install a minimum sensor in a place that represents the 

entire greenhouse environment. In general, sensor location is determined by the 

subjective experience of the greenhouse designer. Typically, many studies presented 
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center of facilities as monitoring locations for environmental factors such as air 

temperature and humidity (Kittas, Karamanis et al. 2005, Feng, Li et al. 2013, Park, 

Lee et al. 2022). However, the internal environment of a greenhouse is generally not 

uniform, and environmental factors at the center of the greenhouse may not be 

representative of the entire greenhouse. Consequently, optimal sensor installation for 

minimal sensor installation and proper monitoring is extremely important in terms 

of increasing farmers' profits. 

Previous studies for optimal sensor location selection have focused on the security 

of wireless sensor communication networks or the lifetime of wireless sensors (Wang, 

Basagni et al. 2005, Toumpis and Tassiulas 2006, Guerriero, Violi et al. 2011, Keskin, 

Altınel et al. 2014) and on monitoring the structural stability of buildings (Hwang, 

Kim et al. 1996, Lee, Kim et al. 2009, Lee, Kim et al. 2016, Yi, Zhou et al. 2017). 

Research using theoretical formulas (Papadimitriou, Beck et al. 2000, Fontanini, 

Vaidya et al. 2016, Yoganathan, Kondepudi et al. 2018, Lee, Lee et al. 2019, 

Suryanarayana, Arroyo et al. 2021) and CFD (Hamel, Chwastek et al. 2006, Zhang 

and Chen 2007, Mazumdar and Chen 2008, Liu and Zhai 2009, Chen and Wen 2010, 

Feng, Li et al. 2013, Huang, Zhou et al. 2014, Liu, Chen et al. 2014, Waeytens, 

Durand et al. 2019, Wijaya, Utami et al. 2021, Chen and Gorlé 2022) was conducted 

to select the optimum sensor position for internal environmental monitoring of the 

facility. 

Studies on selecting the optimal sensor location using theoretical formulas and 

algorithms suggested a location representing the average value or minimizing the 

error value as the optimal sensor location using the field measured data. (Yoganathan, 

Kondepudi et al. 2018) proposed the optimal sensor location of the building using 

the clustering algorithm, information loss approach, and paeto principal. The optimal 
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sensor location was designed to minimize the loss of sensing data, and as a result, 31 

sensors were optimized with 6 sensors. In (Lee, Lee et al. 2019)’s research, two 

method : error-based and entropy-based sensor location were introduced to select the 

optimal sensor location for monitoring the internal air temperature of a greenhouse. 

Both methods were quantitative methods that suggested optimal sensor locations 

based on average or highly variable regions of greenhouse air temperature. However, 

these studies also applied researchers' subjective judgments and criteria of optimal 

sensor location, which may not apply well when new conditions for greenhouse 

control were presented. 

Studies related to optimal sensor positioning using CFD have also been conducted.  

In (Chen and Wen 2010)’s study, three test environments such as small office, large 

hall and office suite were simulated for sensor system design to detect pollutant 

dispersion using multi-zonal, zonal, and CFD models. After investigating a variety 

of models, CFD was proposed as the most accurate model. A CFD that considers the 

factors affecting greenhouse microclimate such as wet curtain, inner fan was also 

used to simulate air temperature and flow distributions in greenhouses (Feng, Li et 

al. 2013). As a result, the optimum sensor location was presented as the point where 

there was no significant change in air temperature and flow. On the other hand, (Liu, 

Chen et al. 2014) designed a CFD model that could analyze the climatic and thermal 

environments of a greenhouse, and simulated the temperature under mechanical 

ventilation conditions. Based on the simulation results, proposed optimal sensor 

location was determined to be at the center of the greenhouse. CFD-based optimal 

sensor location selection research has the advantage of being able to visualize and 

quantitatively analyze invisible air temperature, humidity, and flow distributions 

because it uses a simulation model. It has the limitation of requiring a lot of 
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computing time due to additional environmental conditions such as changing 

ventilation conditions, and pollutant generation.  

However, most previous studies selected one or several sensors as representative 

sensors for the entire facility in terms of optimal sensor location selection. Also, in 

the selection of the optimal sensor location, the place representing the average value 

or the place with the smallest or greatest environmental change was selected as the 

representative point according to the researcher's judgment without quantitative 

criteria. In this case, for spaces with relatively large environmental changes, single 

or several sensors have a limit in accurately monitoring the internally entire space. 

Especially in naturally ventilated greenhouses, there are internally regional 

differences on local ventilation rate due to various external wind speeds and 

directions during natural ventilation resulting in that the air temperature distribution 

within the greenhouse may vary widely. As a result, there is concern about 

performance degradation with respect to the optimum sensor position.  

Meanwhile, with the recent development of artificial intelligence and machine 

learning (ML) models, various applications are being made in the agricultural field 

(Zou, Yao et al. 2017, Hongkang, Li et al. 2018, Molano-Jimenez, Orjuela-Cañón et 

al. 2018, Gorczyca 2019, López-Aguilar, Benavides-Mendoza et al. 2020). In 

particular, various studies have been conducted for monitoring and predicting the 

internal environment, which can be a solution for controlling the internal 

environment of a large greenhouse. ML models generally have the advantage of not 

only showing high prediction accuracy, but also being able to learn from data alone 

without human subjective intervention. In addition, since it is easy to continuously 

improve the model by adding learning data, it has the advantage of being easy to 

learn and respond to new environmental conditions (Dahiya, Gupta et al. 2022). 
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Since the machine learning model is a black box model, it is not necessary to select 

the optimal sensor location based on a specific standard, and it is possible to directly 

estimate the optimal sensor location through the estimation of environmental data at 

a specific location. 

The purpose of this study was to develop the Prediction Current Temperature using 

Optimal sensor Machine Learning model (PCTO-ML) for selecting the optimal 

sensor location that provided learning data for ML models with the highest accuracy. 

The PCTO-ML predicted the air temperature at different points inside a naturally 

ventilated multi-span greenhouse. For this purpose, artificial neural network (ANN), 

long short-term memory (LSTM), and support vector regression (SVR) ML models 

were developed and compared its accuracy of predicting point-wise air temperature 

in the greenhouse. Then, the environmental data measured at each sensor location in 

the greenhouse was used to learn the selected ML model that showed the highest 

accuracy and air temperatures at other points in the greenhouse were predicted. As a 

result, the sensor location that provided learning data for the ML model with the 

highest accuracy was evaluated as the optimal sensor location. This means that the 

point-by-point air temperature in the greenhouse could be estimated by installing 

environmental sensors at a minimum number of locations. However, many learning 

features of ML models mean installing a large number of sensors such as air 

temperature and humidity, CO2, etc. Therefore, in this study, a simplified ML model 

which was defined as PCTO-ML was developed to reduce kind of learning features 

and evaluate the optimal sensor location. 
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3.2. Materials and methods 
 

The study flowchart is illustrated in Figure 3-1. A machine learning (ML) model 

was developed to enable optimal sensor location for the air temperature prediction 

at nine points inside naturally ventilated greenhouse. First, the data on greenhouse 

indoor and outdoor conditions were collected for the modelling. The data for 

environmental factors including air temperature and relative humidity were collected 

from nine sites inside the naturally ventilated greenhouse for the indoor conditions. 

To reflect the changes in indoor conditions caused by the outdoor conditions, the 

data on factors including air temperature, relative humidity, and wind direction and 

speed were collected outside the greenhouse. The collected data were pre-processed 

to ensure a high level of performance by the developed ML model. Linear 

interpolation was performed on the missing values during the data collection period 

and outliers in the collected data, and normalization was performed on each feature 

to prevent potential bias of a specific feature in ML model training. In addition, a 

correlation analysis was performed on the collected data for the prediction of 

experimental greenhouse indoor air temperature, and a training set prepared using 

features exhibiting a high correlation. Three ML models which were ANN, LSTM 

and SVR were constructed, and the one with the most outstanding performance of 

predicting the greenhouse indoor air temperature was selected. The final selected ML 

model used training data measured at each point in the naturally ventilated 

greenhouse to predict air temperatures at other points. As a result, the sensor location 

that provided the learning data of the ML model that showed the best prediction 

performance was evaluated as the optimal sensor location. Nevertheless, the final 

selected ML model required a large number of sensors because it required many 
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kinds of learning features. Subsequently, to minimize the kind of sensor installations, 

three simple ML models were suggested by gradually excluding the features of the 

final selected ML model which was PCTO-ML. 
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Figure 3-1 Flowchart of developing a machine learning model for selecting the optimal sensor location for experimental greenhouse 
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3.2.1. Experimental greenhouse 
 

The target greenhouse was a 1-2W type, 8-span plastic film greenhouse, located 

approximately 1 km to the south of the Boryeong Thermal Power Plant in Gojeong-

ri, Jugyo-myeon, Boryeong-si, Chungcheongnam-do, South Korea (126°29'E, 

36°23'N). The greenhouse structure was 4.0 m in width and 30.0 m in length with 

eaves and ridges at a height of 4.5 m and 5.7 m, respectively. The interior of the 

greenhouse was divided into work and cultivation spaces (Figure 3-2). The 

workspace, which was at a 4.0 m distance from the entrance, is a place for simple 

tasks inside the greenhouse and the control of indoor mechanical systems. The 

cultivation space is 768 m2 in floor area with a single cover of agricultural polyolefin 

film of 0.15 mm thickness on all sides from the floor to the walls and the front and 

back sides (Figure 3-2). One hundred trees of Irwin mango were being cultivated 

inside the greenhouse (Figure 3-3(a)). The Irwin mango trees were cultivated in pots, 

each of which had a diameter of 0.8 m, and there were 13 lines of pots in total. Irwin 

mango trees in the experimental greenhouse have a canopy of 0.4 to 0.9 m. 

Natural ventilation was performed in the target greenhouse through the side and 

roof vents, and a heat pump (ADF-SLX12WHB, A-San Inc., Korea) was used to run 

the heating and cooling system. The side vents of the greenhouse were located at a 

height of 0.5 ~ 2.1 m and 2.7 ~ 3.5 m from the floor. The roof vents were located 

vertically on the uppermost part of the greenhouse roof, each approximately 0.6 m 

in width, to be opened and closed using a cover. The capacity of the heat pump inside 

the greenhouse was 43,276W for cooling and 36,786W for heating, and a duct of 

approximately 60 cm diameter was used to ensure uniform heating and cooling 

inside the greenhouse. 
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Figure 3-2 Schematic diagram of the target greenhouse 

 

(a) Irwin mangoes 

 

(b) Roof vents 

 

(c) Side vents 

 

(d) Workspace 

 

(e) Heat pump 

 

(f) Air duct 

Figure 3-3 Crop and components of experimental greenhouse located on the 

west coast of South Korean in Jugyo-myeon, Boryeong-si, Chungcheongnam-

do Province (126˚29'E, 36˚23'N). (Irwin mangoes, windows, heat pump, air 

duct and workspace) 
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3.2.2. Machine learning models 
 

3.2.1.1. Artificial neural network (ANN)  
 

The ANN is a model created to resemble the human brain. The basic principle of 

operation is to connect several neurons in a mutually complementary manner, with 

an optimal output produced and predicted for an input. As with neurons, each node 

is divided into an input, a hidden, and an output layer (Figure 3-4(a)). When a value 

is supplied to the input layer at the anterior most part among the circular nodes, that 

value gets transferred to the hidden and output layers. The ANN receives an input, 

modifies the internal state according to that input, and produces an output according 

to that input and the level of activation. As a non-linear structure of statistical data 

comprising the modelling tools, the ANN is characterized by its applicability in 

simulating the complex relationship between the input and output that cannot be 

expressed via other functions. The output of each node is referred to as the activation 

or node value, and the system output is produced at the final step of computation. 

ANN has been studied in various fields due to its ability to learn all nonlinear 

functions (Wanjawa and Muchemi 2014, Al-Shawwa, Al-Absi et al. 2018, Cabaneros, 

Calautit et al. 2019). As shown in eq.3-1, ANN calculates the output(y) by 

multiplying the input layer X(𝑥1, 𝑥2,⋯ , 𝑥𝑛)  and the weight of each layer 

W(𝑤1, 𝑤2,⋯ , 𝑤𝑛) and adding constant b. 

y =∑𝑥𝑖𝑤𝑖 + 𝑏

𝑛

𝑖=1

  (Eq. 3-1) 
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3.2.1.2 Support vector regression (SVR) 
 

The support vector machine was proposed by Vapnik in 1979 as a statistical 

learning theory whereby the entities of two different categories are classified through 

the detection of the hyperplane (Figure 3-4(b)). In contrast to conventional methods 

based on the principle of empirical risk minimization, the SVR is based on structural 

risk minimization to reduce the upper bounds of the generalization error to the lowest 

level and thus exhibit an outstanding performance (Smola and Schölkopf 2004). The 

SVR can be applied in regression prediction models through the use of a training set. 

An SVR model enables prediction by converting a non-linear regression problem 

than cannot be solved at the input data using the Kernel function to a linear regression 

problem through mapping (Dibike, Velickov et al. 2001). SVR with radial basis 

kernel functions (𝑆𝑉𝑅𝑟𝑏𝑓) uses following equation : 

𝑆𝑉𝑅𝑟𝑏𝑓 = exp (−𝑦{𝑥𝑖 − 𝑥𝑗}
2
) (Eq. 3-2) 

 

Where y is a constant value according to the radial basis function. The advantage 

of SVR models, therefore, lies in preventing overloading by controlling the error 

range through the use of the loss function to boost up the generalization performance 

(Vapnik 1995). SVR has been actively used in remote sensing, hydrology, agriculture, 

etc., due to its rapid and accurate prediction performance (Chevalier, Hoogenboom 

et al. 2011, Mountrakis, Im et al. 2011, Deka 2014, Ichii, Ueyama et al. 2017). 

 

3.2.1.3 Long short-term memory (LSTM) 
 

Long short-term memory is a recurrent neural network (RNN) structure proposed 

by Hochreiter and Schmidhuber in 1997. It is an RNN model capable of learning the 
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long-term dependency of data, which was proposed to overcome the vanishing 

gradient problem of conventional RNN models. As shown in figure 3-4(c), an LSTM 

model has an input, a forget, and an output gate for maintaining the cell state. The 

forget gate functions to determine which data to exclude from the input data and the 

output of the previous cell, whereas the input gate determines which among the 

newly supplied data to store or memorize in the cell state, and the output gate 

determines which between the input and the memory to transfer to the output. 

Although the LSTM uses the same methods as the RNN, whereby the final output is 

computed through hidden variables, the appropriate use of the gates in the process 

of dealing with the hidden variables to control the flow of data, is what makes the 

LSTM applicable to the learning and prediction of sequential or time-series data such 

as in text generation, voice recognition, and text translation. The principle of an LST 

M layer can be described as following equations: 

 
𝑓𝑡 = 𝜎𝑡(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

 

(Eq. 3-3) 

𝑖𝑡 = 𝜎𝑖(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 
 

(Eq. 3-4) 

𝑜𝑡 = 𝜎𝑜(𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 
 

(Eq. 3-5) 

𝐶𝑡 = 𝑓𝑡⨀𝐶𝑡−1 + 𝑖𝑡⨀𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 
 

(Eq. 3-6) 

ℎ𝑡 = 𝑜𝑡⨀𝑡𝑎𝑛ℎ(𝐶𝑡) 
 

(Eq. 3-7) 

 
The model has a concept of cell status 𝐶𝑡 in accordance of time t, where 𝑓𝑡, 𝑖𝑡, 

𝑜𝑡 are forget gate, input gate and output gate at time t respectively. 𝜎𝑡, 𝜎𝑖, 𝜎𝑜 are 

sigmoid function of each gate, ⨀ indicates the Hadamard product, ℎ𝑡 is the hidden 

layers and W, U and b are the model parameters that is learned each step (Lippi, 

Montemurro et al. 2019, Li, Ding et al. 2021, Lee, Lee et al. 2022). 
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(a) ANN 

 

(b) SVR 

 

(c) LSTM 

Figure 3-4 Conceptual diagram of machine learning models (ANN, SVR, 

LSTM) 
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3.2.3. Experimental procedure 
 

3.2.3.1. Data acquisition for modelling machine learning models 
 

In this study, a ML model to estimate the indoor air temperature at each site inside 

the naturally ventilated greenhouse was developed towards optimal sensor location 

for the greenhouse indoor air temperature monitoring. Regarding thermodynamics 

of the thermal conditions of the experimental greenhouse, factors such as the 

greenhouse indoor and outdoor air temperatures and the heat exchange owing to crop, 

soil, and solar radiation are critical (Vanthoor, Stanghellini et al. 2011, Choab, 

Allouhi et al. 2019, Cai, Wei et al. 2022). Moreover, as natural ventilation has a direct 

effect on the micro-climate inside the greenhouse (Villagrán, Gil et al. 2012), the 

outdoor wind direction and speed should also be considered in the estimation of the 

greenhouse indoor conditions. Therefore, sensors were installed at nine sites inside 

the greenhouse as shown in figure 3-5, to collect the data on greenhouse indoor 

conditions. Each sensor was installed at a height of 0.9 m from the floor, which is 

the height of the crop zone. The measurements taken by each sensor included the air 

temperature, relative humidity, soil temperature, soil humidity, soil electrical 

conductivity (EC), CO2, atmospheric pressure, and ultraviolet (UV radiation) and 

illuminances. A temporary weather station was also installed outside the greenhouse 

to measure outdoor air temperature, relative humidity, UV radiation, wind direction, 

wind speed, and atmospheric pressure. The data were collected in July 2017 for the 

summer season with the high temperature, all vents of the greenhouse were opened. 

Each measurement was taken at 1-s intervals, and the mean of 10 min data was 

recorded. 
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Figure 3-5 Measuring points to acquire learning dataset of machine learning 

models 

3.2.3.2. Pre-processing of the dataset 
 

In general, data pre-processing is critical to ensure a high level of performance of 

an ML model (Setiawan, Djanali et al. 2019, Singh and Singh 2020). Based on the 

quality of training data, the performance and prediction accuracy of the model can 

vary significantly. In the presence of multiple outliers and missing values in the 

training set or coexistence of textual and numerical data, a moderate level of 

performance cannot be expected of the ML model. Moreover, data normalization is 

an essential step in data pre-processing, which includes feature scaling within a 

shared range to prevent the dominance of a larger number feature over a smaller one. 

When the range of a specific training feature is relatively large compared to that of 

other training features, the contribution of the feature regarding the ML model may 

be biased. Among the features used in the training set in this study, the range of air 

temperature was approximately 24 ~ 40 °C, whereas radiation ranged between 0 and 
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several tens of thousands in w ∙ m−2. Hence, as shown in Eq. 3-8, the Min Max 

normalization scale was used to set the range of [0, 1] for all measured environmental 

factors, to ensure equal contribution of each feature in the data through the process 

of learning. 

 

𝑥′ =  
𝑥 − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

(Eq. 3-8) 

 

where, 𝑥′ is the normalized sample data, 𝑥 is each individual sample data, 𝑥𝑚𝑖𝑛 

is the minimum value of sample data, and 𝑥𝑚𝑎𝑥 is the maximum value of sample 

data. 

As the Min Max normalization is based on the minimum and maximum values, 

there is a drawback in which the outliers in the data are not adequately treated. In 

addition, missing values and outliers were intermittently observed in the data of each 

sensor installed at the target greenhouse. Hence, to resolve this, linear interpolation 

was performed on the outliers and missing values. 

The selection of appropriate learning data in the design of a machine learning 

model can increase the accuracy of the model. Furthermore, eliminating learning 

data that can reduce the accuracy of the model not only improves the accuracy of the 

model, but also minimizes the kind of sensors for collecting the learning data. 

Therefore, in this dissertation, correlation analysis was performed between the data 

processed with normalization and linear interpolation and the internal air 

temperature which would be predicted by the machine learning model. The 

correlation analysis is a method of analyzing the relationship between two variables. 

Two variables can be related or correlated independently of each other, where the 

strength of the relationship between the two variables is defined as correlation. In 
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correlation analysis, ρ is used as a population correlation coefficient and r is used as 

a sample correlation coefficient as a unit representing the degree of correlation. In 

this study, correlation analysis of learning data with predictor variable was 

performed to select learning data and improve the accuracy of the prediction model, 

and Pearson's correlation coefficient was used for the correlation analysis of learning 

data. The Pearson correlation coefficient is commonly used in bivariate correlation 

analysis to find associations between variables. The value of the correlation 

coefficient represents +1 if X and Y are exactly equal, 0 if they are completely 

different, and -1 if they are exactly equal in opposite directions. Therefore, in this 

study, a correlation analysis was performed using the Pearson correlation coefficient 

as an index for air temperature, humidity, soil temperature, soil humidity, EC, CO2, 

atmospheric pressure, UV radiation, and illuminance at each point in the naturally 

ventilated greenhouse. The performance of machine learning models was improved 

by using variables that show high positive or negative correlations in machine 

learning models. 

 

3.2.3.3. Design of machine learning models 
 

Towards optimal sensor location inside the naturally ventilated greenhouse, an ML 

model was developed in this study to estimate the greenhouse indoor air temperature. 

For this, the data of each sensor inside the greenhouse were used as the training set 

in developing an ML model to predict the air temperature at all other sensors. To 

illustrate, the ML model trained on the data of Sensor #1 was used to predict the 

temperatures at Sensors #2 to #9. To ensure that the developed ML model exhibits a 

high level of performance, the ANN, LSTM, and SVR that are widely applied in the 
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prediction of building indoor conditions were used in developing the ML model in 

this study (Singh and Tiwari 2017, Glad 2020, Jung, Kim et al. 2020, Fan, Ji et al. 

2021). 

Optimization of hyper-parameters used in the algorithm is extremely important in 

enhancing the level of ML model performance. There is no set method of hyper-

parameter optimization in general, and repeated designing and trial and error are 

necessary to define the optimal hyper-parameters. Although there is no absolute best 

hyper-parameter value, suitable values can be identified for each type of data and 

model (Reimers and Gurevych 2017, Raschka 2018). Thus, to ensure efficient and 

accurate model computations, in this study, the hyper-parameters were defined for 

each ML model through repeated designing and trial and error. 

The main hyper-parameters constituting an ANN model include the Loss Function 

to evaluate the model performance and the Optimizer, a function to reduce the Loss 

Function. In this study, the mean squared error (MSE) for the Loss Function was 

used in evaluating the model performance, and Adam was used for the Optimizer for 

efficient training. In addition, the tanh function was used as the model activation 

function, and the batch size and epoch were set to 64 and 200, respectively, for 

adequate computations. The main hyper-parameters constituting an LSTM model 

include the Sequence Length as the length of the data to be used in a single training, 

the number of hidden units in the cell, Loss Function, and Optimizer. In this study, 

the Sequence Length was set to 1, and the hidden units were set to 32 and 16 in the 

first and second layers, respectively. For the Loss Function, Optimizer, activation 

function, batch size, and epoch, the same values as those in the ANN model were 

used. The main hyper-parameters constituting an SVR model include the kernel 

function, degree, gamma, and C-value. The kernel function allows the linear 
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classification of non-linear data as it is a function where the data of low-dimension 

are mapped to the high-dimension. The degree determines the order of the 

polynomial kernel, whereas gamma determines the flexibility of the decision 

boundary, and the C-value indicates the acceptable limit of errors. If gamma or C-

value are excessively high, overfitting may result. In this study, the poly function 

was used as the kernel function, and the degree was set to 2, gamma to 1, and C-

value to 10,000. For the data used in designing the ML model, a training set of 70% 

and test set of 10% were applied, and the remaining 20% was the validation set 

during the training to increase the reliability of the developed model. 

 

3.2.3.4. Evaluation of optimal sensor location 
 

The PCTO-ML model developed in this study is applicable to the management of 

greenhouse indoor conditions through the prediction of temperatures at different 

sites inside the greenhouse. Here, an adequate control of temperature for crop growth 

could be the basis of greenhouse management. It is thus important to reliably predict 

the temperature at each sensor site inside the greenhouse, especially for the 

monitoring of the peak value of high or low temperature, so as to control the heating, 

ventilation, air conditioning (HVAC) system to ensure adequate temperature for crop 

growth. Thus, in this study, the R2 for the trend of indoor air temperature prediction 

and RMSE to test the errors in prediction values were used as the indicators of ML 

model evaluation. In addition, the prediction performance for the peak values 

representing the maximum and minimum values was evaluated using the peak-

weighted RMSE (P-RMSE) that assigns weights on simulated peak values. The P-

RMSE is an objective function developed by the United States Army Corps of 
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Engineers, Hydrologic Engineering Centre (USACE-HEC) for use in the HEC-1, 

whereby a simulated value greater than the mean of observed values is given a weight 

>1 and a simulated value lower than the mean of observed values is given a weight 

<1.  

 

R2 =

(
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 (Eq. 3-11) 

 

where, O and P are the observed and simulated values, respectively, and �̅� and 

�̅� indicate the mean of observed and simulated values, respectively. 

In this study, the ML models to predict the naturally ventilated greenhouse indoor 

air temperature at each defined site were developed for optimal sensor location. The 

ML models learned the previously selected learning features among the 

environmental data measured by each sensor. First, ANN, LSTM, SVR models were 

developed and the model with the highest prediction accuracy was selected. To select 

the optimal model, the aforementioned three kind of statistical indicators were used 

to evaluate the air temperature inside the greenhouse to determine the level of 

prediction. Developed ML models predicted the air temperature at nine locations 

inside greenhouse per sensor used as learning data. As a result, nine statistical index 

values were calculated per sensor for the evaluation of the optimal sensor location. 

Therefore, the mean values were estimated and compared with the result of 
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predicting the air temperatures at other sensor sites based on the learning of data at 

a given sensor site. The sensor site allowing the most accurate prediction of the air 

temperature at each of the remaining sites was determined using the final selected 

ML model. 

 

 

Figure 3-6 Brief description of optimal sensor location selection for air 

temperature prediction inside naturally ventilated greenhouse using machine 

learning model (Data means selected learning features such as air 

temperature, relative humidity and UV radiation) 

 

3.2.3.5. Design of simplified machine learning models for optimal 

sensor location 
 

When there are many learning features of the machine learning model, the type of 

sensor required for data collection increases. Therefore, in this study, correlation 

analysis was performed and a simplified model was developed to reduce the number 

of sensors installed.  

A correlation analysis was performed on the data collected for naturally ventilated 

greenhouse indoor and outdoor conditions, and the variables with a high correlation 

for the estimation of greenhouse indoor air temperature were used in the training set. 

As a result, the training set included the air temperature, relative humidity, and UV 
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radiation and illuminances at each sensor site inside the greenhouse as well as the air 

temperature, relative humidity, and wind direction and speed outside the greenhouse. 

However, applying all these variables in an actual farm would necessitate the 

installation of too many sensors, which would increase the installation and 

maintenance costs. Thus, to improve the practical application of the model proposed 

in this study, a goal was set to minimize the required sensors, and to simplify the 

model, an attempt was made to reduce the training features to a minimum. Hence, a 

baseline model was designed to incorporate solely the temperature sensors inside the 

greenhouse, and with the sequential addition of a training feature displaying a high 

correlation coefficient, a total of four steps were designed (Table 3-1). For the model 

of each step, the air temperature prediction accuracy at each site inside the 

greenhouse was evaluated, and the proposed model was the one with an optimal level 

of accuracy. 

 

Table 3-1 Training features of the simplified model to reduce the kind of 

installed sensor 

Simplified 

model 
Training features 

Simple LSTM-1 Internal air temperatures 

Simple LSTM-2 
Internal air temperatures, external air temperatures, wind direction, 

wind speed 

Simple LSTM-3 
Internal air temperatures and relative humidity, external air 

temperatures and relative humidity, wind direction, wind speed 

Basic LSTM 

Internal air temperatures, relative humidity, UV radiation and 

illuminance, external air temperatures, relative humidity and UV 

radiation, wind direction, wind speed 
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3.3. Results and discussion 
 

3.3.1. Statistical analysis of measured environmental data  
 

Air temperature data measured in summer season (July 2017) at nine locations 

inside the naturally ventilated greenhouse and 1 location outside the greenhouse are 

shown in figure 3-7 as highest, lowest, average, 1st and 3nd quantile values. The 

average air temperatures at the nine locations inside the greenhouse were similar to 

the outside air temperature, which may be affected to continuous natural ventilation 

during the summer. However, due to the illuminance in summer, the highest air 

temperature inside the greenhouse was 41.6℃, which was higher than the highest air 

temperature outside, which is 33.3℃. Considering that the optimum growing 

temperature range for Irwin mango was 22 ~ 30°C, it was necessary to introduce an 

additional cooling system in the daytime. The mean air temperature values of nine 

locations in the greenhouse showed a maximum difference of 1°C, but the maximum 

difference was 1.8°C in the case of tertiles. The average soil temperature in the 

greenhouse was 29.4°C, which was similar to the average air temperature in the 

greenhouse of 28.4°C. Average, maximum, minimum and standard deviation values 

for other soil relative humidity, UV radiation and illuminance are shown in the Table 

3-2. On the other hand, the collected data were greatly affected by the external wind 

environment because the target greenhouse was constantly in natural ventilation 

during the measurement period. Therefore, the external wind environment was 

analyzed and described as wind rose (Figure 3-8). The average wind speed in the 

area where the greenhouse was located was 43.1% for 2.71 m·s-1, and 0 to 2 m·s-1 

and 22.0% for over 4 m·s-1. Wind directions were mainly analyzed in north-northeast 

(NNE), northeast (NE), east-northeast (ENE) and east (E). Since the average wind 
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speed in the study area was relatively high, the influence of natural ventilation was 

relatively large, and it was judged that the sensors at positions #7 to #9 were greatly 

affected by the outside air temperature. 
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Figure 3-7 The boxplot for the temperature measured at each sensor location 

containing average, highest, lowest, 1st quartile, 3nd quartile value in July 

2017 

 
Figure 3-8 Wind rose of the wind conditions outside the greenhouse in July 

2017 
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Table 3-2 Statistical analysis of measured environmental factors inside and 

outside the greenhouse (Air temp. : air temperature; Air RH: air 

relative humidity; Soil temp.: soil temperature; Soil RH: soil relative 

humidity; UV rad. : UV radiation; Illum.: illuminance) 

 

Air temp. 

(℃) 

Air RH 

(%) 

Soil temp. 

(℃) 

Soil RH 

(%) 

UV rad. 

(W·m2) 

Illum. 

(lux) 

Ave. 

inside 28.4 80.3 29.4 18.6 26.9 7337.0 

outside 28.0 67.4 - - 10.1 - 

Max. 

inside 41.6 100.0 34.2 43.6 511.0 65535.0 

outside 33.3 77.0 - - 73.0 - 

Min. 

inside 22.8 41.9 26.3 2.5 0 0 

outside 23.3 44.0 - - 0 - 

Std. 

inside 2.8 9.7 1.5 9.4 45.2 16.9 

outside 1.8 5.9 - - 16.9 - 

 

3.3.2. Correlation analysis of the dataset 
 

The appropriate configuration of learning data is good for efficient computation 

and accuracy improvement of machine learning models, as well as minimizing the 

kind of sensors for collecting learning data. A typical appropriate feature selection 

method is correlation analysis. Through correlation analysis, a machine learning 

model can be designed by selecting learning data showing a high correlation with 

the predicted factor. 

In this dissertation, for minimum sensor installation and maximum efficiency of 

the ML model computation, a correlation analysis was performed to select the 

learning feature. The analysis focused on the correlation of the air temperature at 

each sensor site inside the naturally ventilated greenhouse with the environmental 



 

 70 

factors (indoor air temperature, relative humidity, soil temperature, soil humidity, EC, 

CO2, atmospheric pressure, and UV radiation and illuminances). The values of the 

environmental factors at all sensor sites and the temperature at each sensor site were 

used in the correlation analysis (Figure 3-9). This means that environmental data 

with high correlation coefficient (p) should be considered first in the design of 

machine learning models. 

The estimated correlation coefficient for the greenhouse indoor air temperature 

was 0.883, with a strong positive correlation. In most cases, the correlation was 

strong at p ≥ 0.85. The correlation coefficient for the indoor relative humidity was -

0.765, with a strong negative correlation. This is presumed to be because the relative 

humidity decreases as the temperature increases during summer. In addition, the 

correlation coefficients for UV radiation and illuminances were 0.659 and 0.644, 

respectively, with a strong positive correlation. Thus, the data on air temperature, 

relative humidity, and UV radiation and illuminances were selected for the training 

set in the ML model development. 
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Figure 3-9 Correlation analysis between internal air temperature of greenhouse and each environmental factors (Air temperature, 

Relative humidity, UV radiation, Illuminance, Soil temperature, Soil humidity, EC of soil, CO2 concentration, Atmospheric pressure) 
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3.3.3. Evaluation of machine learning models and selection of 

best performing model 
 

The ANN, LSTM, and SVR models were developed as the ML models for optimal 

sensor location to predict the naturally ventilated greenhouse indoor air temperature, 

and the prediction accuracy of each model was evaluated to select the one with the 

highest performance level. The data collected at each sensor site were used as the 

training set and the air temperature at all other sensor sites was predicted, with the 

evaluation based on R2, RMSE, and P-RMSE. In other words, the data at Sensor #1 

as the training set were used to predict the indoor air temperatures at Sensors #2 to 

#9 through eight models, and so on for all nine sensors, to obtain statistical indicators 

for the prediction models. Thus, by estimating the mean of these indicators for each 

model, the performance of greenhouse indoor air temperature prediction was 

compared across the ML models (Table 3-3). 

First, based on R2, the value of which was 0.955, 0.974, and 0.943 for ANN, 

LSTM, and SVR, respectively, the LSTM model was evaluated as the one with the 

highest prediction accuracy for the trend in indoor air temperature. Next, the RMSE 

values were 0.031, 0.024, and 0.034 for ANN, LSTM, and SVR, respectively, and 

the LSTM model was evaluated as the one producing the least errors. Next, the P-

RMSE values, which allow the analysis of prediction errors on maximum or 

minimum values, were 0.599, 0.458, and 0.649 for ANN, LSTM, and SVR, 

respectively, and the LSTM model was again the model producing the least errors. 

The results thus indicated that the LSTM model was the one with the highest 

prediction accuracy on peak values. This is presumed to be because the training set 

used in this study was a time-series data so that each dataset was under the influence 
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of temporal order, and as the LSTM model most adequately reflects such aspects of 

the data, the performance could have been the highest. 

 

Table 3-3 Prediction accuracy of air temperature inside greenhouse according 

to the machine learning models 

Statistical index ANN LSTM SVR 

R2 0.955 0.974 0.943 

RMSE 0.031 0.024 0.034 

P-RMSE 0.599 0.458 0.649 

 

3.3.4. Evaluation of predicting internal air temperature according 

to sensor location 
 

A machine learning model was developed for predicting the air temperature inside 

the naturally ventilated greenhouse, and LSTM was selected as the model that 

showed the best performance. The LSTM model predicted the air temperature at the 

other 8 sensor locations using the measured data from sensors at each location inside 

the greenhouse. For example, an LSTM model trained on data measured by sensor 

#1 predicts air temperatures at sensor locations 2 through 9. In this study, the average 

accuracy of predicting the air temperature at sensor location #2 to #9 was calculated 

in order to evaluate the sensor #1 as the optimal sensor location. In this way, the 

optimum sensor location was evaluated using each statistical index for sensor 

positions #1 to #9 (Figure 3-10). 

First, the #5 sensor location, which was the center position of the experimental 

greenhouse, was evaluated as the optimal sensor location about all statistical 

indicators. On the other hand, sensors #7 and #8 showed relatively low prediction 

trends (R2) and high error levels (RMSE, P-RMSE). This was because the main wind 



 

 74 

direction in the target greenhouse was the northwest wind, and sensors #7 and #8 

were greatly affected by the outside air. Therefore, it was found that the prediction 

performance of the greenhouse air was degraded. Therefore, it was interpreted that 

the prediction performance for the indoor air of the greenhouse has deteriorated. In 

the case of #1 sensor location, when the northwest wind that was the main wind 

direction blows, it corresponded to an area where the air flow was relatively weak 

compared to the other sensor locations. Therefore, due to insufficient exchange with 

greenhouse air, it also showed low prediction performance. So, when selecting the 

optimal sensor location, it was judged that an area mainly affected by external air or 

an area with stagnant airflow inside the greenhouse should be excluded. 
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(a) Predictive accuracy based on 

R2 

(b) Predictive accuracy based on 

RMSE 

  

(c) Predictive accuracy based on 

P-RMSE 

(d) Top view of greenhouse and 

sensor locations 

Figure 3-10 (a), (b), (c) accuracy of the LSTM model that learned data from 

each sensor location and predicted air temperatures at eight different 

locations according to the statistical indices and (d) the distribution of each 

sensor 

 

3.3.5. Evaluation of optimal sensor location in the LSTM and 

simplified LSTM models 
 

In this study, an ML model was developed towards optimal sensor location for 

predicting the naturally ventilated greenhouse indoor air temperature. Among the 

three ML models developed, the LSTM model with the highest accuracy was 

selected as the final model. The training set for the selected model included the 
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air temperature, relative humidity, and UV radiation and illuminances at each sensor 

site inside the greenhouse that had been identified in a correlation analysis for the 

respective measurements and the greenhouse indoor air temperature data. Although 

a training set including numerous features could increase the model accuracy, when 

considering the application of the model in practice, it could result in high sensor 

installation and maintenance costs. Thus, a simplified LSTM model was designed 

with an aim to minimize the sensor installation and the model accuracy was 

evaluated at each step of reducing the learning features. Table 3-4 lists the optimal 

sensor location indicated by the model at each step of simplification with the 

respective statistical indicators, which were mean values of the estimated air 

temperatures at eight sensor sites using the data of air temperature measured at the 

selected site in the training set. 

For the simple LSTM-1 model using the training set including solely the air 

temperature at each indoor sensor site and for the simple LSTM-2 model using the 

training set including the air temperature at each indoor sensor site as well as the 

outdoor air temperature, and wind direction and speed, the R2 was 0.856 and 0.863, 

RMSE was 0.057 and 0.049, and P-RMSE was 0.664 and 0.945. In contrast, for the 

simple LSTM-3 model using the training set to which the data on indoor and outdoor 

relative humidity were added, the R2, RMSE, and P-RMSE were 0.982, 0.020, and 

0.380, respectively, and for the basic LSTM model using the training set to which 

the data on indoor and outdoor UV radiation and illuminances were added, the R2, 

RMSE, and P-RMSE were similar to those of the simple LSTM-3 model. It was thus 

determined that the simple LSTM-3 model using the training set including the indoor 

and outdoor air temperature and relative humidity and the outdoor wind direction 

and speed led to an adequately high accuracy. 
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The optimal sensor location after training set minimization mostly led to the 

selection of Sensor #5. In the case of applying the P-RMSE of the simple LSTM-2 

model, Sensor #9 was selected as the optimal sensor site. In addition, the simple 

LSTM-1 model indicated Sensor #6 or #9 as the optimal sensor site based on the 

statistical indicators. Thus, if a limited set of sensors can be installed, it would be 

appropriate to install the sensors at sites #6 or #9, but in consideration of the model 

prediction accuracy, site #5 was determined to be appropriate based on the simple 

LSTM-3 model. These findings may prove valuable in optimal sensor location 

according to the sensor being applied and the target levels and values of statistical 

indicators. 

Additionally, the optimal sensor locations for using two or three sensors were 

evaluated using the same method. This is because even though a single optimal 

sensor has the advantage of requiring minimal cost, it poses the risk that monitoring 

of the entire interior of the greenhouse is not possible in the event of a sensor failure. 

When using two sensors, sensors at sites #3 and #9 were used as learning sensors 

showed the best prediction accuracy for all statistical indicators (R2=0.977, 

RMSE=0.022 and P-RMSE = 0.424). Sensors #3 and #9 were sensors located in both 

side windows of the greenhouse, respectively, and had the advantage of considering 

both the air temperature that was inflow and outflow during natural ventilation. 

When using three sensors, sensors at sites #3, #4, and #7 showed the highest R2 

(0.980) and the second lowest RMSE (0.024) and P-RMSE (0.464), respectively. 

Sensors at sites #1, # 2, and #7 showed the second highest R2 (0.979), while showing 

the lowest RMSE (0.022) and P-RMSE (0.428). Therefore, sensors #1, #2, and #7 

were selected as optimal sensor locations based on RMSE and P-RMSE, which 

showed significant differences. Sensors #1, #2, and #7 included both congested areas 
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of the experimental greenhouse and locations mainly affected by the external wind 

environment. Therefore, it was judged that the environment of various locations in 

the greenhouse could be considered.  
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Table 3-4 Optimal sensor location selection result of basic LSTM model and simple LSTM models according to statistical indicators 

(The basic LSTM model was the model that has learned all features with high correlation, and the simple LSTM models were 

the models that has reduced train features according to the correlation) 

ML model Simple LSTM-1 Simple LSTM-2 Simple LSTM-3 Basic LSTM 

Statistical 

index 
R2 RMSE 

P-

RMSE 
R2 RMSE 

P-

RMSE 
R2 RMSE 

P-

RMSE 
R2 RMSE 

P-

RMSE 

Optimal value 0.863 0.057 0.664 0.863 0.049 0.945 0.982 0.020 0.380 0.984 0.019 0.365 

S
en

so
r 

lo
ca

ti
o

n
 

1 0.790 0.070 1.363 0.856 0.058 1.118 0.973 0.024 0.459 0.969 0.026 0.504 

2 0.380 0.113 1.993 0.762 0.080 1.533 0.980 0.022 0.429 0.977 0.024 0.463 

3 0.822 0.066 1.073 0.840 0.059 1.137 0.977 0.023 0.447 0.974 0.025 0.472 

4 0.835 0.066 0.926 0.821 0.055 1.062 0.972 0.024 0.455 0.976 0.022 0.430 

5 0.848 0.060 0.862 0.863 0.049 0.951 0.982 0.020 0.380 0.984 0.019 0.365 

6 0.856 0.057 0.863 0.856 0.051 0.991 0.978 0.022 0.425 0.979 0.022 0.425 

7 0.843 0.058 1.013 0.853 0.052 0.996 0.969 0.026 0.492 0.969 0.026 0.504 

8 0.732 0.092 0.792 0.764 0.067 1.296 0.966 0.027 0.512 0.965 0.027 0.527 

9 0.841 0.068 0.664 0.851 0.049 0.945 0.978 0.022 0.414 0.976 0.022 0.431 
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3.4. Conclusion 
 

In this study, ML modelling was applied to determine optimal sensor location for 

predicting the air temperature at each site inside the naturally ventilated greenhouse. 

For this, linear interpolation was performed on missing values and outliers followed 

by normalization of the training set, and ANN, LSTM, and SVR models were 

developed for comparing the respective accuracy of predicting the greenhouse 

indoor air temperature. The results indicated that the LSTM model had the highest 

level of prediction accuracy based on R2 = 0.974, RMSE = 0.024, and P-RMSE = 

0.458. The LSTM model was selected as the PCTO-ML, and the consequent optimal 

sensor location was evaluated for the prediction of greenhouse indoor air temperature. 

As a result, when using one sensor, sensor #5 was shown to be the optimal sensor 

site. In addition, by evaluating the prediction accuracy of the PCTO-ML in line with 

the reduction in the training set, the number and type of required sensors were 

minimized. As a result, the use of the indoor and outdoor air temperature and relative 

humidity and the outdoor wind direction and speed were shown to be the minimum 

required set to ensure an adequate accuracy (R2 = 0.982, RMSE = 0.0.020, and P-

RMSE = 0.380). Additionally, the optimal sensor locations when using two sensors 

were sensors #3 and #9, and the optimal sensor locations when using three sensors 

were evaluated as sensors #1, #2, and #7. 

The optimal sensor location based on the PCTO-ML proposed in this study will 

allow the prediction of the air temperature at each site inside the greenhouse using a 

minimum number of sensors and to a high level of accuracy. Thus, the reduction in 

sensor installation and maintenance costs can be expected. This positive effect is 

predicted to be maximized when the model is applied to a large-scale greenhouse 
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requiring numerous monitoring sensors. In addition, as an PCTO-ML is 

characterized by a continuous improvement through additional learning of data, the 

prediction accuracy could likely be continuously increased regarding different 

environmental conditions. The PCTO-ML proposed in this study allows not only 

optimal sensor location but also the prediction of air temperature at each site inside 

the greenhouse, and with the advancement of an information and communication 

technology (ICT), the real-time data of greenhouse indoor conditions at each optimal 

sensor site are anticipated to contribute to the real-time monitoring at each site inside 

the greenhouse. 
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Chapter 4. Time series forecasting 

for air temperature inside a naturally 

ventilated greenhouse with optimal 

sensor location based on LSTM: 

Prediction 
 

4.1. Introduction 
 

Crop cultivation under greenhouse technologies offers the advantage and 

convenience to artificially and even remotely control and adjust the internal 

environmental conditions to meet and maintain an appropriate growing environment 

favourable for crops toward an improved productivity. Environmental factors such 

as air temperature, relative humidity, and CO2 greatly affect plant growth and quality 

of produce. This justifies the importance of proper control and management of the 

growing environment.  

Controlling the internal environment of the greenhouse could be challenging due 

to complex environmental systems, including nonlinearity of response variables, 

time variation, and uncertainty (Wang, Wang et al. 2009, Hamza and Ramdani 2020). 

It is therefore important to understand and manage the complexity of the internal 

environment of the greenhouse. The greenhouse consists of crops that perform 

photosynthetic activities that biologically breathe inside. Also, it consists of several 

components such as floors which may interact with plants by either diffusing or 

absorbing solar radiations. The greenhouse is then comprised of various components 

and processes that perform heat exchange in the form of sensible and latent heat 

(Singh, Singh et al. 2006, Sethi, Sumathy et al. 2013, Yeo, Lee et al. 2022). During 
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summer, the air temperature inside the greenhouse is relatively high, so even when 

ventilation is started, heat is emitted into the greenhouse by various latent heat 

elements, including the floor that absorbs solar radiation. This phenomenon will 

result to temporal rise in the air temperature inside the greenhouse especially during 

day time even though ventilation has started. If the rise of air temperature inside the 

greenhouse is predicted efficiently by available models, then natural ventilation may 

be performed in advance to avoid extreme rise of air temperature inside. Compared 

to traditional ventilation where it only starts to operate the moment the air 

temperature reached its peak or level depending on the setting of the ventilation. The 

former way of ventilation can be more efficient as compared to the later one. 

Therefore, it is deemed necessary to have a pre-emptive environmental control of the 

internal environment of the greenhouse. This way, the energy input for managing the 

internal environment can be reduced, which can lead to improved productivity and 

sustainability of the overall setup.  

Research methods for predicting future situations using time series data include 

method using a statistical model and a method using machine learning. The use of 

various statistical models that included regression analysis method (Okamoto and 

Koshi 1989, Amral, Ozveren et al. 2007); Kalman filtering method(Heemink and 

Segers 2002, Louka, Galanis et al. 2008, Nobrega and Oliveira 2019, Zhou, Guo et 

al. 2020); and Box-Jenkins’s autoregressive integrated moving average (ARIMA) 

(Ho, Xie et al. 2002, Cadenas, Rivera et al. 2016, Sen, Roy et al. 2016, Alsharif, 

Younes et al. 2019, Shadab, Said et al. 2019, Lai and Dzombak 2020) were explored 

in previous works. ARIMA, the most common in particular, is a model that considers 

both autoregression and moving average as methods of statistical analysis of 

traditional time series data. Statistical models, including ARIMA, have great 
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strengths in predicting regular data, but generally have limitations in predicting 

environmental data measured in natural environments with nonlinearity 

characteristics (Nie, Liu et al. 2012). Furthermore, the ARIMA model should have 

the attribute of stationary for time series data or be converted into data with stationary.  

Since the machine learning model is a black box model, there is no need to 

consider the physical relationship between the data, and the stationary of the data is 

not guaranteed like statistical models such as ARIMA. With the recent development 

of algorithms and the sustained growth of computer performance, prediction research 

is being conducted using machine learning, which has strength in nonlinear data 

prediction (Bontempi, Ben Taieb et al. 2012, Guo, Juan et al. 2017, Khosravi, 

Machado et al. 2018, Alhnaity, Pearson et al. 2019, Liu, Wang et al. 2019, 오정원, 

김행곤 et al. 2019, Hutapea, Pratiwi et al. 2020, 홍성은, 박태주 et al. 2020, 

Gong, Yu et al. 2021, Ozbek, Sekertekin et al. 2021, Seng, Zhang et al. 2021, 

Zarinkamar and Mayorga 2021, Ge, Zhao et al. 2022, Lee, Lee et al. 2022). (Gong, 

Yu et al. 2021) predicted tomato yields in greenhouses using the temporary 

convolutional network (TCN) and recurrent neural network (RNN). Tomato yields 

were predicted based on time series environmental data such as air temperature, 

relative humidity, carbon dioxide, and radiation in the target greenhouse. (Lee, Lee 

et al. 2022) predicted the internal air temperature and relative humidity of naturally-

ventilated duck house using the RNN model. The RNN model was designed by 

learning time series data on the air temperature and humidity inside the duck house 

and information such as the type of duck houses. The appropriate sequence length of 

the RNN model was evaluated, and finally, an RNN model with less than 1% was 

presented. Despite numerous studies about machine learning, only few studies are 
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available relative to monitoring or predicting the internal environment such as air 

flow, temperature, and humidity related to the growing environment that has a great 

influence on the crop production in the greenhouse.  

Machine learning models are expected to perform well in predicting the internal 

environment of the greenhouse, but various kinds of learning data are needed for the 

development of machine learning models with high predictive performance. In 

addition, for the internal uniformity of greenhouses, data collection at various points 

is essential for predicting the internal environment of each location inside the 

greenhouse. As a result, it may be necessary to install a large number of sensors to 

introduce a machine learning model. Especially, one of the biggest challenges of 

smart greenhouses with many sensors and control systems has been pointed out as 

initial and maintenance costs (MAFRA, 2022). Therefore, it is important to install 

an efficient monitoring sensor and to consider the optimum number of the sensors. 

The optimum number of sensors can be determined when the appropriate sensor 

locations in the greenhouse were already determined. 

The purpose of this study was to develop the prediction future air temperature 

using optimal sensor machine learning model (PFTO-ML) for predicting the future 

air temperature of each of the nine sampling locations in the greenhouse considering 

the optimized (minimum) number of sensors using the PCTO-ML. Specifically, an 

PFTO-ML was developed to predict the air temperature of the sensor in advance by 

learning the environmental data and external environmental data measured from one 

of the sensors installed in the greenhouse. Furthermore, in order to minimize the 

number of sensors to be installed in the greenhouse, the future air temperature for 

the nine locations in the greenhouse was predicted by learning environmental data 

and external environmental data measured at the optimal sensor location. For the 
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development of the PFTO-ML, various environmental data such as air temperature, 

relative humidity, and CO2 inside the experimental greenhouse were collected. 

Missing and outliers were corrected through data pre-processing, and it was selected 

as a feature of the PFTO-ML through correlation analysis. The PFTO-ML, which is 

a prediction model using time series data, is affected by prediction accuracy 

according to the sequence length, which is a unit of input data. The appropriate 

sequence length was evaluated through a test for the sequence length. Future air 

temperature prediction for each sensor location inside the greenhouse was performed 

using the developed PFTO-ML, and the derived results were evaluated. Additionally, 

for minimizing sensor installation, future air temperatures for the nine locations 

inside the greenhouse were predicted using only the data measured at the optimal 

sensor location which was suggested by PCTO-ML. 
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4.2. Materials and methods 
 

This study followed the flow chart presented in Figure 4-1. The main purposes of 

this study were 1) development of prediction model for future air temperature inside 

naturally ventilated greenhouse 2) application of optimal sensor location on the 

prediction model. The temperature of each location inside the naturally ventilated 

greenhouse was predicted using environmental data measured from the sampling 

points inside the greenhouse. The environmental data such as air temperature and 

relative humidity, electrical conductivity (EC) and illuminance were collected from 

the nine locations in the target greenhouse during summer. In order to consider the 

effect of natural ventilation, a portable weather station was installed to collect 

external air temperature, relative humidity, wind direction, and wind speed data. An 

LSTM model with strengths in prediction using time series data was developed in 

this study. First, data pre-processing was performed to develop a high-performance 

LSTM model. Linear interpolation of missing and outliers was performed on the 

environmental data collected for a month of July in 2017. Various data such as air 

temperature, relative humidity, EC, illuminance, etc. inside the greenhouse were 

collected. Normalization was performed among the data, since the units of the 

environmental data were different, in order to avoid bias in the specific learning 

features and was reflected in LSTM model learning. By using the min max 

normalization scale, the range of all environmental data was normalized to [0, 1]. 

After which, upon pre-processing the learning data the LSTM model was developed 

to predict the air temperature for the near future of each location inside the 

greenhouse. At this time, the main hyper-parameter of the LSTM model used the 

design information of previous studies that predicted the internal air temperature of 
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the greenhouse while using the same data. Meanwhile, the sequence length which is 

the hyper-parameter of the LSTM model means the time unit of future prediction 

and affects the accuracy of the model. Therefore, the appropriate sequence length 

was calculated by evaluating the model accuracy for the sequence length values of 

30, 60, 120, and 240 min. The final developed PFTO-ML could predict the future air 

temperature for the sensor locations used as training data among the data collected 

from the nine different locations in the greenhouse. In this study, the optimal sensor 

location from PCTO-ML was applied to minimize the installation of sensors in large 

greenhouses. Finally, the PFTO-ML was developed using the environmental data of 

the optimal sensor location proposed by PCTO-ML, and compared with the basic 

LSTM model.
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Figure 4-1 Flowchart of the experimental procedure 
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4.2.1. Target greenhouse 
 

The target greenhouse was a 1-2W type, 8-span plastic film greenhouse, located 

approximately 1.0 km to the south of the Boryeong Thermal Power Plant in Gojeong-

ri, Jugyo-myeon, Boryeong-si, Chungcheongnam-do, South Korea (126°29'E, 

36°23'N). The greenhouse structure was designed with a width of 4.0 m, a length of 

30.0 m, a ridge height of 4.5 m, and an eave height of 5.7 m. The interior space of 

the greenhouse was largely divided into work space and cultivation space. The work 

space was 4.0 m from the entrance for the purpose of simple work and mechanical 

system control inside the facility, and the other area consisted of a crop growth space 

(Figure 4-2). The cultivation area had a floor area of 768.0 m2. The cultivation space 

was covered with a single 0.15 mm thick agricultural polyolefin film on the ceiling, 

sides, front and rear. Inside the greenhouse, 100.0 Irwin mangoes were grown in a 

total of 13.0 rows as shown in Figure 4-2. The air environment inside the greenhouse 

was controlled by natural ventilation and heat pumps (ADF-SLX12WHB, A-San Inc., 

Korea) through side and roof vent openings. The side window of the greenhouse was 

installed at a vertical height and was located at a height of 0.5 to 2.1 m and 2.7 to 3.5 

m from the floor. The roof vent opening was opened and closed by a cover of about 

0.6 m in the vertical direction at the top of the greenhouse roof. The heat pump 

capacity in the greenhouse was 43, 276.0 W for cooling and 36,786.0 W for heating, 

respectively, and supplies uniform cooling and heating inside the greenhouse through 

a duct with a diameter of approximately 60.0 cm 
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Figure 4-2 Schematic drawing of target greenhouse  

  

(a) Irwin mangoes (b) heat pump 

  

(c) roof vent opening (d) side vent opening 

Figure 4-3 Crops and air conditioning facilities in the experimental 

greenhouse located on the west coast of South Korean in Jugyo-myeon, 

Boryeong-si, Chungcheongnam-do Province (126˚29'E, 36˚23'N). (Irwin 

mangoes, roof and side vent opening and heat pump) 
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4.2.2. Long Short-Term Memory (LSTM) 
 

A Recurrent Neural Network (RNN) is a type of neural network that contains loops, 

allowing information to be stored within the network (Rumelhart, Hinton et al. 1986, 

Werbos 1990). RNN is an artificial neural network that is suitable for handling time 

series data, and unlike general neural networks, repetitive learning is possible 

through the memory inside the neural network. Memory is a suitable algorithm for 

the field of processing time series data because it can save information obtained from 

previous steps of learning and provides feedback with this information to consider 

previous steps of input data. RNN is optimized for training and forecasting time 

series data, but have poor long-term predictability due to long-term dependency 

problems that make it difficult to connect past information to current tasks. This 

problem was addressed through the development of an LSTM model with improved 

long-term dependence through memory cells (Hochreiter and Schmidhuber 1997). 

In this study, time series environmental data were collected at nine sensor locations 

in the experimental greenhouse. Therefore, it was judged that LSTM was suitable as 

a machine learning model that showed excellent performance in prediction using 

time series data. 

The memory cell computes the input state (i) with the input data (x) at the current 

time step (t) and the hidden state (h) at the previous step (t-1) (Eq. 4-1). Through the 

input state, input gate (g) (Eq. 4-2), forget gate (f) (Eq. 4-3), and output gate (o) (Eq. 

4-4) are calculated, and the internal state (m) (Eq. 4-5) of the current time step (t) is 

updated using these values and the internal state value of the previous time step (t - 

1). This is followed by calculation of the hidden state (h) (Eq. 4-6) of the current step 

to be used in the next step (t + 1) (Wang and Raj 2017). LSTM has the advantage of 
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being able to make longer-term predictions by considering short-term information 

and old past information. 

 

𝑖t = 𝜎(𝑊𝑖𝑥𝑥
𝑡 +𝑊𝑖ℎℎ

𝑡−1) (Eq. 4-1) 

gt = 𝜎(𝑊𝑔𝑖𝑖
𝑡) (Eq. 4-2) 

f t = 𝜎(𝑊𝑓𝑖𝑖
𝑡) (Eq. 4-3) 

ot = 𝜎(𝑊𝑜𝑖𝑖
𝑡) (Eq. 4-4) 

mt = 𝑔⊙ 𝑖𝑡 + f t𝑚𝑡−1 (Eq. 4-5) 

ht = 𝑜𝑡⊙𝑚𝑡 (Eq. 4-6) 

 

where, 𝜎 is activation function, 𝑊𝑖𝑥 is the weight of the input data in the input 

state, 𝑊𝑖ℎ is the weight for the hidden state in the input state, ⊙ is wise-element 

product. 

 

 

Figure 4-4 Conceptual diagram of LSTM model 
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4.2.3. Experimental procedure 
 

4.2.3.1. Data collection for modelling PFTO-ML 
 

Microclimate factors in greenhouses, such as the internal airflow, air temperature, 

relative humidity, CO2 concentration, and illuminance, have an important influence 

on the growth and quality of crops. Therefore, microclimate factors within the 

greenhouse need to be monitored and conditioned through the air conditioning 

system. In this study, the internal microclimate factors were monitored at 1-s interval 

from the nine sampling points, as shown in Figure 4-5. Each sensor was installed at 

a height of 0.9 m from the floor. The observed data was processed into 10-minute 

average data and used as learning data for the machine learning model, and used to 

predict future air temperatures for each sensor location. The data was measured from 

a month of July in 2017 with all ventilation windows fully open for the target period. 

This means that it had a great influence on the microclimate factors inside the 

greenhouse depending on the external wind environment. A portable weather station 

was installed outside the greenhouse to monitor the external environment such as 

wind direction, wind speed, relative humidity, and air temperature every 10 minutes. 
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Figure 4-5 Location of installed sensors to measure environmental factors 

inside target greenhouse. The sensors were installed at the height of 0.9m 

above the floor 

 

4.2.3.2. Pre-processing for dataset 
 

When multidimensional values are considered in designing a machine learning 

model, the contribution to the machine learning model may be biased for specific 

learning data. The variables considered for developing the PFTO-ML in this study 

are air temperature, air relative humidity, soil temperature, soil humidity, EC, CO2, 

atmospheric pressure, UV, and illuminance at different sensor locations in the 

naturally ventilated greenhouse. These variables were multidimensional values of 

varied characteristics and ranges. Among the features used as learning data in this 

study, the air temperature has a range of 24 to 40 degrees, while the radiation has a 

range of zero to tens of thousands of Wm-2. At this time, the contribution of radiation 

with a large unit may be biased toward the machine learning model compared to 

other features. To prevent the occurrence of bias, the dimensions of the measured 

dataset among independent variables were normalized before designing the PFTO-
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ML. Hence, as shown in Eq. 4-7, the min max normalization scale, a technique for 

normalizing all datasets for training machine learning models, was applied by 

normalizing all values in the data to the range of [0, 1]. 

  

𝑥′ = 
𝑥 − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

(Eq. 4-7) 

 

where, 𝑥′ is the normalized sample data, 𝑥 is each individual sample data, 𝑥𝑚𝑖𝑛 

is the minimum value of sample data, and 𝑥𝑚𝑎𝑥 is the maximum value of sample 

data. 

The learning data used in this study were measured values obtained by installing 

sensors inside and outside the target greenhouse. There was a missing value 

according to the abnormal malfunction of the sensor, and linear interpolation was 

performed through interpolation. Linear interpolation is an interpolation method that 

assumes that two points on a one-dimensional straight line are linearly proportional 

to the straight distance to estimate the value between them. 

 

4.2.3.3. Design of PFTO-ML 
 

Machine learning models can improve their predictive performance when trained 

on many types of data, but the performance of machine learning models can decrease 

if they learning features with low data quality or low correlation with predictors. In 

addition, indiscriminately many kinds of learning data require many sensors for the 

field application of machine learning models, resulting in a decrease in the usability 

of machine learning models. Therefore, proper selection of learning data is important. 

Therefore, this study referred to the results of previous studies that completed the 
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correlation analysis between the data measured in the experimental greenhouse for 

the predicted air temperature inside the greenhouse in Chapter 3. As a result, the air 

temperature and relative humidity inside the greenhouse with the highest Pearson 

correlation coefficient were considered as learning feature, and the external air 

temperature, relative humidity, wind direction, and wind speed were also used as 

learning feature for the PFTO-ML to consider the effect of natural ventilation (Table 

4-1). 

 

Table 4-1 Correlation analysis between internal air temperature of greenhouse 

and each environmental factors from Chapter 3 (Air temperature, 

Relative humidity, UV radiation, Illuminance, Soil temperature, Soil 

humidity, EC of soil, CO2 concentration, Atmospheric pressure) 

Parameters 
Correlation 

coefficient 
Parameters 

Correlation 

coefficient 

Air temperature 0.883 Soil temperature 0.222 

Relative 

humidity 
-0.765 Soil humidity 0.031 

UV radiation 0.659 EC of soil -0.037 

Illuminance 0.644 
Atmospheric 

pressure 
-0.047 

CO2 

concentration 
-0.395   

 

The main hyper-parameters constituting an LSTM model include the Sequence 

Length as the length of the data to be used in a single training, the number of hidden 

units present in the LSTM cell, loss function to evaluate the model's performance, 

and optimizer which is a function to reduce loss function. For the design of the LSTM 

model in this study, the design information of the LSTM model in Chapter 3, which 

used the same data and showed high accuracy in predicting the internal air 

temperature of the naturally ventilated greenhouse, was used. In previous studies, 
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the same environmental factors were measured in the same experimental greenhouse 

as this study. Previous studies used hyper-parameters optimized through iterative 

design and trial-and-error for hyper-parameters of LSTM models as design 

information (Table 4-2). 

Meanwhile, sequence length, which is one of the main hyper-parameters of LSTM, 

which has strengths in predicting time series data, means the size of the input and 

output of the LSTM model. In other words, it is the unit of learning for LSTM models, 

and is generally known to affect the predictive performance of the machine learning 

model (Lee, Jun et al. 2019, Lee, Lee et al. 2022). Therefore, in this study, the 

appropriate sequence length was calculated by evaluating the accuracy of the future 

air temperature prediction of the PFTO-ML according to the sequence length. 

Sequence length was tested for 30, 60, 120, and 240 min (Table 4-2). 

 

Table 4-2 Hyper-parameter of LSTM model from Chapter 3 and design of 

sequence length 

Hyper-parameter Value Hyper-parameter Value 

number of layer 2 
activation 

function 
tanh 

layer node 
first layer: 32 

second layer : 16 

optimizer adam 

batch size 64 

loss function MSE epoch 200 

Sequence length 
30, 60, 120, 240 

min 
  

 

4.2.3.4. Statistical indices for evaluating LSTM model 
 

In this study, an LSTM model was used to predict point-wise air temperature 

inside a naturally ventilated greenhouse in the near future. Time series-type learning 
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data were used for various environmental variables measured in the experimental 

greenhouse during the LSTM model development. The predicted trend of air 

temperature inside the greenhouse was evaluated, and the error of the predicted value 

was evaluated. The correlation coefficient (R2) value that identifies the tendency of 

internal air temperature prediction as an evaluation index of the LSTM and the 

RMSE was used to evaluate the error of the prediction value. 

  

R2 =

(

 
∑ (𝑂𝑖 − �̅�)(𝑃𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑂𝑖 − �̅�)
2𝑛

𝑖=1 √∑ (𝑃𝑖 − �̅�)
2𝑛

𝑖=1 )

 

2

 (Eq. 4-8) 

RMSE = √
1

𝑛
∑[𝑂𝑖 − 𝑃𝑖]

2

𝑛

𝑖=1

 (Eq. 4-9) 

 

where, O and P are the observed and simulated values, respectively, and �̅� and 

�̅� indicate the mean of observed and simulated values, respectively. 

 

4.2.3.5. Application of optimal sensor location to minimize sensor 

installation 
 

In this study, an PFTO-ML was designed to predict the future air temperature for 

the location inside the naturally ventilated greenhouse using time series environment 

data measured in the target greenhouse. The developed PFTO-ML can predict future 

air temperatures inside the greenhouse. However, to predict the air temperature 

distribution inside the greenhouse, a number of sensors were inevitable, which leads 

to an increase in the number of sensor installations and cost. Thus, to minimize the 

number of sensors, an LSTM-basic model was developed using the environmental 
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data measured at the optimal sensor location proposed by PCTO-ML as a learning 

data. Then, the air temperature at other sensor locations in the greenhouse was 

predicted using the Simple LSTM-3 model. PCTO-ML proposed sensor #5 in the 

center of the greenhouse as the optimal sensor location when one sensor was installed. 

In addition, #3 and #9 sensors were proposed as optimal sensor locations when two 

sensors were installed, and #1, #2, and #7 sensors were proposed as optimal sensor 

locations when three sensors were installed. With this, the PFTO-ML(#5), PFTO-

ML(#3#9) and PFTO-ML(#1#2#7) models were developed using the environmental 

data measured by the optimal sensors as the learning data was used in this study. 

Finally, the accuracy of LSTM-basic and PFTO-MLs for predicting the future air 

temperature inside the greenhouse were compared.  

 

 

Figure 4-6 Brief description for predicting the future air temperature of a 

naturally ventilated greenhouse using LSTM, 1) Predictions using individual 

sensors 2) Predictions using optimal sensors 
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(a) Predictive accuracy based on R2 (b) Top view of greenhouse and sensor 

location 

Figure 4-7 The optimal sensor location for predicting the internal air 

temperature of the naturally-ventilated greenhouse using the LSTM-basic 

model from PCTO-ML (R2 value at each point represents the accuracy in 

predicting the air temperature at other points using the sensor data at the 

corresponding location).  
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4.3. Results and discussion 
 

4.3.1. Descriptive analysis of air temperature and wind 

environment in measured time series data 
 

The LSTM model was designed in this study to predict the future air temperature 

for the location inside the naturally ventilated greenhouse. The characteristics of the 

air temperature inside the greenhouse, which was a predictor, was analysed through 

descriptive analysis by considering the measured air temperature data. The highest 

air temperature inside the greenhouse during the daytime was higher than the 

external highest air temperature due to the warming effect by the greenhouse cover, 

and the daily temperature difference was also greater than that outside. The highest 

air temperature inside the greenhouse was 41.6℃, which was higher than the highest 

air temperature outside, which is 33.3℃. The average air temperature inside the 

greenhouse was 28.4℃, but it often exceeded 30℃. 

During the experimental period, the greenhouse remained naturally ventilated, so 

the external wind environment had a great influence on the inside air temperature. 

Therefore, wind roses describing the external wind environment were analyzed. 

(Figure 4-9). The average wind speed in the area where the greenhouse was located 

was 43.1% for 2.71 m·s-1, and 0 to 2 m·s-1 and 22.0% for over 4 m·s-1. The main 

wind direction was analyzed to the northeast. Since the average wind speed in the 

study area was relatively high, the influence of natural ventilation was relatively 

large, and it was determined that the sensors at positions #7 to #9 were greatly 

affected by the outside air temperature. 
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Figure 4-8 Air temperature collected inside and outside the experimental 

greenhouse during July, 2017 

 

 

Figure 4-9 Wind rose of the wind conditions outside the experimental 

greenhouse in July, 2017 
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4.3.2. Model performance of LSTM according to sequence length 
 

The sequence length means a unit of input data of the LSTM model, and the 

prediction accuracy of the model can be evaluated differently depending on the 

sequence length. This study attempted to calculate the appropriate sequence length 

by evaluating the accuracy of the LSTM model according to the sequence length, 

and a sequence length test was conducted on 30, 60, 120, and 240 min (Table 4-3). 

The accuracy of the LSTM model according to the sequence length was evaluated 

by averaging the static indexes of nine LSTM models that predicted future air 

temperatures with data measured at each sensor location. Result revealed that as the 

sequence length was increased, the prediction accuracy, indicated by R2 decreased 

and the RMSE, which corresponds to the degree of error in the predicted air 

temperature, increased. Furthermore, when the sequence length was increased, the 

input data at distant locations on the time series data had fewer chances to learn, and 

the prediction accuracy decreased. On the other hand, from the results of this study, 

the shorter the sequence length, the higher the prediction accuracy, but the future 

situation of the short unit was predicted. Therefore, a sequence length that was too 

short might not be suitable from a prediction point of view. From this, the optimal 

sequence length was evaluated at 30 min.  

Table 4-3 Air temperature prediction accuracy (R2, RMSE) of LSTM 

according to sequence length 

Statistical 

index 

Sequence length 

30 min 60 min 120 min 240 min 

R2 0.950 0.944 0.931 0.901 

RMSE 0.642 0.691 0.795 0.929 

4.3.3. Evaluation of air temperature prediction performance for 
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each sensor location in the greenhouse 
 

The air temperature of each sensor location of the naturally ventilated greenhouse 

was predicted using the LSTM model with a sequence length of 30 min calculated 

earlier, and average prediction accuracy of LSTM models in each sensor location 

was shown in Table 4-4. Overall, the prediction of future air temperatures inside the 

greenhouse using the LSTM model showed high accuracy for most sensor locations 

(R2 > 0.95, RMSE < 0.65). However, it showed relatively low prediction accuracy 

for some sensor locations, such as sensor 7 and sensor 2. This can be explained by 

the main wind direction in the target greenhouse which was formed in the northeast 

during the data measurement period. The experimental greenhouse was naturally 

ventilated through side and roof vent openings, and since the data measurement 

period was during hot and humid season, natural ventilation was always performed. 

Therefore, the location of sensor 7 was greatly affected by the external wind 

environment, and it was believed that the complexity of the time series data had been 

increased by the external wind occurring at irregular intervals (Fig. 4-7). For the 

same reason, the RMSE value at the location of sensor 8 was relatively high. The 

sensor 2 was located at exit point where the air in the greenhouse escapes to the 

outside. Given the wind direction of the warm air in the lab, and although R2 is 

underestimated, the RMSE values in sensor 2 were similar to other sensor locations. 

R2 was evaluated low, but the value of RMSE, which indicates the degree of error in 

the predicted value, was evaluated at a level similar to the result of other sensor 

locations. 

 

Table 4-4 Prediction accuracy (R2, RMSE) of LSTM models in each sensor 
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location 

Sensor 

location 
#1 #2 #3 #4 #5 #6 #7 #8 #9 

R2 0.935 0.887 0.959 0.964 0.967 0.970 0.940 0.957 0.976 

RMSE 0.607 0.643 0.592 0.638 0.640 0.579 0.701 0.755 0.624 

 

 
(a) Time series prediction results for LSTM models : sensor #2 

 
(b) Time series prediction results for LSTM models : sensor #7 

Figure 4-10 Time series prediction results for LSTM models by sensor location 

(measured means collected data for experimental greenhouse, and predicted 

means of value predicted from the LSTM; #2 and #7 mean sensors 2 and 7, 

respectively) 
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4.3.4. Applying optimal sensor location to predicting air 

temperature inside naturally ventilated greenhouse 
 

In this study, the future air temperature inside the naturally ventilated greenhouse 

was predicted by learning the internal environmental data and external weather data 

of the natural ventilation greenhouse measured in time series data. At this time, each 

sensor was required to predict the air temperature at nine locations inside the 

greenhouse. An important objective of this research was to reduce the initial 

installation and maintenance costs by minimizing the installation of sensors. 

Therefore, the future air temperatures inside the greenhouse were predicted using the 

optimal sensor location presented in the study of Chapter 3. Chapter 3 presented 

sensor 5 position, which was the center location of the greenhouse as the optimal 

sensor location of the experimental greenhouse, and thus predicted future air 

temperatures for nine points inside the greenhouse by learning environmental data 

measured from sensor 5 location. As a result, the prediction result of the future air 

temperature for each sensor location was shown in Table 4-5.  
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When sensor location 5, which was the optimal sensor location when using one 

sensor, was applied as learning data of the LSTM prediction model, the future air 

temperature prediction performance was relatively reduced at most sensor locations. 

Although, most of the values of R2 calculated was 0.9 or higher which indicates 

that the trend toward future temperatures was well predicted, the prediction results 

at sensors 1 and 2 still showed a big difference. However, this trend had improved 

as the number of optimal sensors increases. When two optimal sensors (#3 and #9) 

were applied to the LSTM prediction model, the average prediction accuracy for all 

sensor locations was R2=0.915, RMSE=0.793, and when three optimal sensors were 

applied, the average prediction accuracy for all sensor locations was R2=0.939, and 

RMSE=0.772. According to Chapter 3, when predicting the current air temperature 

of the naturally ventilated greenhouse, only one optimal sensor showed excellent 

prediction performance, but it was recommended to use at least three optimal sensor 

locations for future air temperature prediction. 
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Table 4-5 Predictive accuracy for each sensor location in the LSTM model 

with data from the optimal sensor location (#5) 

Sensor 

location 
#1 #2 #3 #4 #5 #6 #7 #8 #9 

R2 0.832 0.563 0.879 0.932 0.974 0.953 0.929 0.890 0.960 

RMSE 1.028 1.295 1.059 1.070 0.514 0.651 0.869 1.318 0.793 

 

Table 4-6 Predictive accuracy for each sensor location in the LSTM model 

with data from the optimal sensor location (#3 and #9) 

Sensor 

location 
#1 #2 #3 #4 #5 #6 #7 #8 #9 

R2 0.905 0.714 0.954 0.946 0.958 0.960 0.928 0.899 0.976 

RMSE 0.765 1.027 0.595 0.862 0.801 0.628 0.778 1.129 0.552 

 

Table 4-7 Predictive accuracy for each sensor location in the LSTM model 

with data from the optimal sensor location (#1, #2 and #7) 

Sensor 

location 
#1 #2 #3 #4 #5 #6 #7 #8 #9 

R2 0.938 0.897 0.931 0.944 0.960 0.953 0.950 0.922 0.960 

RMSE 0.602 0.611 0.766 0.854 0.914 0.869 0.627 0.969 0.739 
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(a) Prediction of future air temperature at sensor 2 location 

 

(b) Prediction of future air temperature at sensor 7 location 

Figure 4-11 Prediction of future air temperature at sensor locations 2 and 7 

using LSTM with data from optimal sensor locations 
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4.4. Conclusion 
 

In this study, the future air temperature for each location inside the naturally-

ventilated greenhouse was predicted using the PFTO-ML using time series data. For 

this, environmental data such as air temperature, relative humidity, and soil 

temperature for each internal location were collected in the experimental greenhouse. 

The collected environmental data were interpolated with outliers and missing values 

through data preprocessing, and highly correlated data were selected as learning 

feature. A sequence length test was performed that affects the accuracy of the PFTO-

ML that learned the time series data, and 30 min was calculated as an appropriate 

value. The sequence length test, which affects the accuracy of the PFTO-ML, was 

performed, and 30 min was evaluated as an appropriate value. As a result of 

predicting future air temperature by location inside the greenhouse using the finally 

developed LSTM model, high accuracy (R2>0.95, RMSE<0.65) was obtained for 

most locations. In addition, for economical sensor installation, the optimal sensor 

location suggested by PCTO-ML was applied. The prediction of future air 

temperatures by location inside the greenhouse using data collected from optimal 

sensor locations showed that the prediction accuracy was reduced in most locations. 

However, the accuracy was improved when multiple optimal sensor locations were 

applied. The results showed a relatively large decrease in prediction accuracy when 

one optimal sensor was applied (R2=0.918), but the prediction accuracy was similar 

to that of using all nine sensors (R2=0.950) when three optimal sensors were applied 

(R2=0.939). Therefore, it was recommended to apply at least three optimal sensor 

locations for future air temperature prediction. 
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Chapter 5. Ventilation Rate Prediction 

in Naturally Ventilated Greenhouses 

Using a CFD-Driven Machine 

Learning Model: Control 
 

5.1. Introduction 
 

  Crop production through greenhouse cultivation has been increasing over 

several years by securing stable productivity and producing high-quality crops 

throughout the year. The greenhouse cultivation area and total production of 

vegetables in Korea have consistently increased since the 1970s and reached 82,810 

ha and 2,312,000 tons in 2021 (MAFRA 2022). In particular, the area of single-span 

greenhouses is close to 86% of the total domestic greenhouse area, and most of single 

span greenhouse adopt natural ventilation (Lee, Lee et al. 2018). Ventilation in a 

greenhouse not only controls the internal air temperature rise in summer season by 

exchanging indoor and outdoor air, but also maintains appropriate environmental 

conditions such as proper humidity, carbon dioxide concentration, and constant air 

flow. Therefore, ventilation has a great influence on the growing environment of 

crops. If proper greenhouse ventilation is not performed in summer, crops are 

subjected to high-temperature injury and high humidity causes diseases and insect 

pests and the air flow near the leaves of the crop is insufficiently formed. As a result, 

the gas exchange of crop leaves is reduced, and the concentration of carbon dioxide 

decreases, leading to a decrease in the rate of photosynthesis, which leads to a 

decrease in crop productivity (Kitaya, Shibuya et al. 1998, Shibuya and Kozai 2001, 

Shibuya, Tsuruyama et al. 2006, Holcman and Sentelhas 2012, Radojevic, Bjelogrlic 
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et al. 2012, Kutta and Hubbart 2014, Marković, Pavlović et al. 2014). Therefore, it 

is important to maintain proper growth environment through ventilation. In particular, 

natural ventilation is very important for energy saving in farms because it requires 

no additional energy. 

Field experiments concerning analysis of internal airflow in greenhouses 

including quantification of ventilation rates have already been given emphasis in 

many research works (Sase 1988, Fernandez and Bailey 1992, Kittas, Draoui et al. 

1995, Boulard, Meneses et al. 1996, Wang, Boulard et al. 2000, Molina-Aiz, Valera 

et al. 2004, Mashonjowa, Ronsse et al. 2010, He, Chen et al. 2015). Most of the 

previous studies have used tracer decay method to measure airflow in greenhouses 

through field experiments and at the same time to quantify ventilation rates. However, 

although ventilation rate measurement research by field experiments is the most 

intuitive method, still, it faced with certain degree of challenge as it has to deal with 

the invisible air flow. Besides, air flow regulation is associated with several 

difficulties in addition to the limitations brought by the uncontrollable external wind 

environment.  

Recent studies have used CFD simulations to evaluate the ventilation rate with the 

aim to overcome the aforementioned challenges and limitations concerning air flow 

measurement and regulation (Kacira, Sase et al. 2004, Baeza, Pérez-Parra et al. 2006, 

Campen 2006, Lee, Hong et al. 2006, Hong, Lee et al. 2008, Baeza, Pérez-Parra et 

al. 2009, Romero-Gómez, Choi et al. 2010, He, Chen et al. 2015, Benni, Tassinari et 

al. 2016, Akrami, Javadi et al. 2019, Villagran, Romero et al. 2019, Li, Li et al. 2020, 

Villagrán and Bojacá 2020, Park, Lee et al. 2022). (Park, Lee et al. 2022) evaluated 

the ventilation efficiency according to the eave height of the Korean venlo-type 

greenhouse. Simulations with the aid of CFD were used to analyze the temperature 
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at crop height and the airflow inside the greenhouse with external wind direction and 

speed factored in. (Li, Li et al. 2020) used CFD simulation to optimize the ventilation 

structure of an arch shape greenhouse. The study evaluated the natural ventilation 

rate of the structural elements such as ventilation structures and arch chord angles. 

(Hong, Lee et al. 2008) evaluated the TGD ventilation rate inside the greenhouse 

according to the structural type and natural climate factors such as wind direction of 

a multi-span greenhouse using CFD. Thus, CFD simulations were used to evaluate 

the ventilation rate of various variables and to optimize the ventilation structure. 

However, although research on ventilation using CFD can analyze the conditions 

desired by researchers, it requires specialized simulation knowledge and technology, 

high-end computer and significant amount of time for model computation. Therefore, 

studies using CFD are costly and time-intensive, and the number of simulation cases 

can be limited when considering model computation time. 

On the other hand, with the recent development of big data and computer science, 

application of machine learning has been expanded. Machine learning refers to 

algorithms and statistical models that allow machines to learn on their own from data. 

Generally, it has high accuracy and requires relatively short computation time 

compared to CFD simulation. With this, in the field of agriculture, many studies have 

been conducted relevant to production prediction, environmental monitoring, animal 

welfare, disease detection, and so on (Sengupta and Lee 2014, Pantazi, Moshou et 

al. 2017, Ramos, Prieto et al. 2017, Çerçi and Daş 2019, Moon, Hong et al. 2019, 

Allouhi, Choab et al. 2021, Sujatha, Chatterjee et al. 2021, Fuentes, Viejo et al. 2022). 

Since the machine learning model learns the data measured in the field, the learning 

rate is low for conditions with low frequency of occurrence. That is, the predictive 

performance of the machine learning model sharply decreases for the untrained 
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condition. Hence, it is essential to acquire a sufficient range of training data for good 

prediction performance of machine learning models and application to various 

environmental conditions. 

In this study, the prediction local ventilation rate CFD-driven machine learning 

model (PLV-CFD driven ML) was developed for predicting the local ventilation rate 

of a naturally-ventilated greenhouse by learning the results of CFD simulation. Data 

on the wind direction, wind speed, and vent opening of greenhouse were used for the 

calculation of the CFD models and for the generation of learning data for CFD-

driven machine learning models. In this case, the verified CFD model of previous 

studies was used to generate reliable learning data (Lee, Lee et al. 2018). The tracer 

gas decay method was used to estimate the local ventilation rate of the greenhouse, 

and the TGD ventilation rate was calculated for 27 regions of crop height in the 

greenhouse. The training data generated from CFD simulations were used to train 

machine learning models such as multiple linear regression, support vector machine, 

random forest and deep neural network after data pre-processing. Each machine 

learning model has optimized hyper-parameters to improve prediction accuracy. 

The CFD-driven machine learning models presented in this research require CFD 

results to generate learning data, but there are many difficulties in calculating 

numerous cases. Therefore, in order to supplement the limited number of training 

data, the prediction accuracy of the ML model by applying the bootstrapping 

technique was evaluated. Next, the minimum CFD case calculations for training data 

generation were evaluated by evaluating the prediction accuracy of the ML model 

by reducing the CFD case calculations for training data generation. As a result, the 

ML model with the highest prediction accuracy was defined as PLV-CFD driven ML. 
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5.2. Materials and Methods 
 

Figure 5-1 shows the flowchart of this study. In this study, machine learning (ML) 

models were developed to predict the ventilation rate of a naturally ventilated 

greenhouse by zone. CFD simulation, which enables the analysis of arbitrary 

environmental conditions designed by researchers, was used to create training data 

for the ML models. To this end, case operations to create training data for the ML 

models were performed using a CFD model from a previous study (Lee et al.), which 

was verified by conducting the wind tunnel test and PIV test. The case operations of 

the CFD model were performed using the external wind speed, wind direction, and 

vent type in greenhouses as variables. In addition, the ventilation rate at the height 

of the crop group in the greenhouse was calculated by zone. The created CFD model 

simulation results were subjected to data preprocessing to be used as training data 

for ML models based on regression models. Multiple linear regression (MLR), 

support vector machine (SVM), random forest (RF), and deep neural network (DNN) 

models were developed as ML models to predict the ventilation rate of naturally-

ventilated greenhouses, and hyper-parameter optimization was performed for each 

model to improve prediction accuracy. The bootstrapping technique was applied to 

the training data to supplement the limited number of CFD simulation cases. To 

minimize the number of CFD simulation cases, the prediction accuracy of the ML 

models was evaluated according to the training data reduction. Finally, the ML model 

with the highest prediction accuracy was defined as PLV-CFD driven ML. 
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Figure 5-1 Flowchart of the experimental procedure 
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5.2.1. Target greenhouse 
 

In this study, the naturally-ventilated even-span greenhouse (RDA 3-1 S Type, 

2001) developed in Korea for dissemination to farms was selected as the target model. 

This model has been commonly used in Korea to overcome high temperature as a 

greenhouse model with the ventilation area ratio increased from 13 to 21% through 

structural improvement (RDA, 2014), and it has a structure that facilitates analysis 

according to various ventilation methods. Figure 5-2 shows the specifications and 

geometry of the greenhouse. The widths of the side and roof vents are 1.35 and 1.68 

m, respectively, and a high natural ventilation rate can be expected due to the use of 

a large vent area. In this study, the natural ventilation rate of the target greenhouse 

was calculated for ventilation structures that use side vents, roof vents, and both side 

and roof vents. Internal crops were not considered to predict the natural ventilation 

rate according to the greenhouse structure as well as the external wind direction and 

wind speed. 

 
Figure 5-2 Schematic diagram of Even-span type greenhouse model for 

ventilation analysis (Lee et al., 2018) 
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5.2.2. Computational Fluid Dynamics  
 

CFD is a numerical analysis tool that can interpret fluid flow, heat transfer, and 

chemical reactions in a system containing fluids through computer simulations. CFD 

uses Navier-Stokes equations, which are nonlinear differential equations, as 

governing equations and conducts numerical analysis using the finite difference 

method. The spatial domain is transformed into a small-volume mesh logarithmic 

equation, and a numerical algorithm is applied to qualitatively and quantitatively 

analyze the fluid flow phenomenon. It has been actively used in various fields, 

including machinery, aviation, chemical engineering, manufacturing, civil 

engineering, architecture, and environment, and active research has also been 

conducted in the agricultural field, such as livestock facility and greenhouse 

environment analysis (Bournet and Boulard 2010, Bjerg 2011, Hong, Lee et al. 2011, 

Ramponi and Blocken 2012, Boulard, Roy et al. 2017, Kim, Lee et al. 2022, Park, 

Lee et al. 2022, Yeo, Lee et al. 2022). 

In this study, a three-dimensional (3D) grid network was designed using 

commercial CFD software (ver. 18.2, ANSYSInc, PA, USA) to analyze the local 

ventilation rate of naturally-ventilated even-span greenhouse. In addition, boundary 

conditions were set and computations were performed for the designed target space. 

Fluent, a numerical analysis software program for fluid flow in an analysis space 

designed with a two-dimensional or 3D grid network, was created based on mass, 

energy, and momentum conservation laws. The mass, momentum, and energy 

conservation equations used in calculations are as follows. 
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𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌�⃗�) = 𝑆𝑚 (Eq.5-1) 

𝜕

𝜕𝑡
(𝜌�⃗�) + ∇ ∙ (𝜌�⃗��⃗�) = −∇P + ∇𝜏 + ρ�⃗� + �⃗� (Eq.5-2) 

𝜕 

𝜕𝑡
(𝜌ℎ) + 𝛻 ∙ (�⃗�(𝜌ℎ + 𝑃 )) = 𝛻 (𝑘𝑒𝑓𝑓𝛻𝑇 −∑ℎ𝑗𝐽𝑗⃗⃗⃗

𝑗

+ (𝜏̅�⃗� )) + 𝑆ℎ (Eq.5-3) 

  

Where, ρ is the density of the fluid (kg·m-3), �⃗� is the flow velocity of the fluid 

(m·s-1), P is the static pressure (Pa),  𝜏  is the stress tensor (Pa), and �⃗�  is the 

acceleration due to gravity. (m·s-2), �⃗� is the external force (N·m-3), 𝑆𝑚 is the mass 

source term of the mass (kg·m-3), 𝑘𝑒𝑓𝑓 is the effective conductivity (kg·m-2·s-1), 𝑇 

is the temperature (K), E is the specific enthalpy indicating the enthalpy per unit 

mass (J·kg-1), 𝑡 is the time (s), 𝐽𝑖⃗⃗⃗ is the diffusion flux of i type (kg·m-1·s-1), 𝑆ℎ is 

the enthalpy rise based on the chemical reaction or radiation (kg·m-1·s-3). 

 

5.2.3. Machine learning models 
 

5.2.3.1. Multiple Linear Regression 
 

MLR is a linear regression model for predicting the dependent variable by 

modeling the linear relationship between several independent variables and one 

dependent variable. As it predicts the dependent variable using several features, 

better performance than conventional linear regression can be expected. 

 

y = β0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜖 (Eq.5-4) 
 

where y is the dependent variable and 𝑥 represents independent variables. β is 

the coefficient of each independent variable and ϵ is the residual. 

MLR models have relatively faster learning speed and prediction than other ML 
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models, and they operate relatively well even with very large datasets and sparse 

datasets. They may, however, exhibit low prediction accuracy in some cases and are 

sensitive to outliers because the relationship between dependent and independent 

variables is limited to a linear relationship. 

 

5.2.3.2. Support Vector Regression (SVR) 
 

SVM is an ML model proposed by Vapnik in 1979. It is a classifier for finding 

decision boundaries that are as far apart as possible for objects in two different 

categories, and classifies classes while satisfying specific conditions. (Figure 5-3). 

Data and SVM training algorithms aim to get a hyperplane that divides the dataset 

into a predefined number of individual classes in a manner consistent with the 

training examples (Mountrakis, Im et al. 2011). It determines classes through 

decision boundaries, and it is a supervised learning model with powerful 

performance that can also be used for linear or nonlinear classification, regression, 

and outlier detection. It is particularly appropriate for complex classification and 

suitable for small or medium-sized datasets. SVR is a generalized method to predict 

random real values by introducing the ε-insensitivity loss function to SVM that is 

used for the classification prediction of training data (Vapnik 1999). The nonlinear 

expansion of SVR is performed by converting the original feature space that is not 

linearly separable to a new space with a higher dimension as with SVM. In other 

words, the SVR model enables prediction by using the kernel function and 

converting a low-dimensional nonlinear regression problem in the input space into a 

high-dimensional linear regression problem through mapping (Dibike, Velickov et 

al. 2001). SVR has been actively used in remote sensing, hydrology, agriculture, etc., 

due to its rapid and accurate prediction performance (Chevalier, Hoogenboom et al. 
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2011, Mountrakis, Im et al. 2011, Deka 2014, Ichii, Ueyama et al. 2017). 

 

 
Figure 5-3 Conceptual diagram of support vector regression 

 

5.2.3.3. Random forest 
 

The RF algorithm creates several decision trees by randomly sampling n data from 

a given dataset and then determines the final prediction by a majority vote based on 

the prediction results of each decision tree. When each decision tree model is trained, 

the bagging method, which trains individual decision tree models with the dataset 

sampled from the entire train dataset by allowing overlapping, is used. Random 

forest uses the ensemble learning method, so it has the advantage of preventing the 

overfitting problem in which the accuracy drops sharply when other data other than 

the training data comes. RF has an algorithm suitable for regression analysis as well 

as classification. As the number of the decision trees generated in RF increases, the 

accuracy of the prediction result by a majority vote increases with excellent 

generalization performance. As the number of generated decision trees increases, 

however, the space required for analysis increases and higher performance is 
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required for analysis equipment. It also solves the problem of overfitting, but has the 

disadvantage of not explaining the process by which the results are derived. Random 

forest has the disadvantage of consuming a large amount of memory, but it is used 

in various fields as an advantage of being effective in large-capacity data processing 

(Philibert, Loyce et al. 2013, Abuella and Chowdhury 2017, Lin, Wu et al. 2017, 

Senagi, Jouandeau et al. 2017, Varma and Anand 2021). 

 

𝑛𝑖𝑗 = 𝑤𝑗𝐶𝑗 −𝑤𝑙𝑒𝑓𝑡(𝑗)𝐶𝑙𝑒𝑓𝑡(𝑗) −𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝐶𝑟𝑖𝑔ℎ𝑡(𝑗)  (Eq.5-5) 

 

In a binary tree, in which a decision tree has two nodes, the nodes importance is 

calculated using Gini importance as show in eq.5-5. 𝑛𝑖𝑗 is the importance of node 

j, while 𝑤𝑗, 𝑐𝑗 is weighted number of samples and the impurity value of node j. 

 
Figure 5-4 Conceptual diagram of random forest 
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5.2.3.4. Deep Neural Network 
 

Artificial neural network has recently been used in many industrial fields, based 

on hypotheses and mathematical models of how the human brain solves given 

problems (Philemon, Ismail et al. 2019, Shahid, Rappon et al. 2019, Escamilla-

García, Soto-Zarazúa et al. 2020, Abdolrasol, Hussain et al. 2021, Kola, Bojja et al. 

2021, Li, Delpha et al. 2021, Lee, Lee et al. 2022). Deep neural network (DNN) is 

an artificial neural network (ANN) with a certain level of complexity that contains 

hidden layers between the input layer and output layer. ANN is an algorithm that 

imitates the way the human brain recognizes patterns. The algorithm makes it 

possible to classify various input data, interpret clusters, and recognize specific 

patterns from data. As with conventional ANN, DNN can model complex nonlinear 

relationships. A deep neural network can have a deeper network structure than a 

single neural network and can utilize more complex structures, so it can handle 

complex nonlinear relationships between input and output data more efficiently 

(Bengio, Courville et al. 2013). DNN can identify the potential structure of data 

because it can learn the features of different levels for each layer with multiple depths. 

Therefore, when appropriate structures are used in combination in the learning stage, 

higher performance can be expected compared to a neural network with a single 

structure. DNN can learn various nonlinear relationships as it includes multiple 

hidden layers, but it may cause such problems as overfitting, which increases the 

error for actual data, and high time complexity due to a large amount of computation 

for learning and excessive learning. Various studies have also been conducted in the 

agricultural field (Gorczyca, Milan et al. 2018, Choi, Park et al. 2021, Grimberg, 

Teitel et al. 2022). 



 

 125 

 

 
Figure 5-5 Conceptual diagram of deep neural network 

In the stage of DNN, the activation function, a function for deciding each node to 

be activated or not, were variously developed such as sigmoid, tanh, ELU and etc. 

The most commonly used activation function is RELU, and the equation is as follows: 

f(x) =  {
0 (𝑥 < 0)
𝑥 (𝑥 ≥ 0)

 (Eq.5-6) 

 

5.2.4. Estimation method of natural ventilation rate 
 

In order to prompt an appropriate growing environment in the greenhouse, it is 

essential to consider the appropriate air conditioning system design, and for that 

purpose it is important to quantitatively evaluate ventilation. In most studies on 

ventilation analysis, the amount of air exchange inside the target facility has been 

calculated with respect to the volume replacement based on the mass conservation 

law. The equation to calculate the ventilation rate is as follows: 

 

AERMFR = 
𝑣𝑖𝐴𝑖
𝑉
× 60 =  

𝑣0𝐴0
𝑉

× 60 (Eq. 5-7) 
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where AERMFR is the air exchange rate of MFR per minute (AER·min-1), vi,0 

are the air velocity of inflow and outflow, Ai,0 are the area of the inflow and outflow 

vents (m2) and V is the volume of the greenhouse (m3). In this case, a value for the 

entire facility is presented, but the local ventilation effect cannot be considered. In 

addition, when calculation is performed based on the mass conservation law, the fact 

that ventilation performance varies depending on the characteristics and geometry of 

inflow and outflow vents even for facilities with the same volume cannot be reflected. 

To supplement these shortcomings, the ventilation rate calculation method by the 

tracer gas concentration method, which can calculate overall and local ventilation 

rates by injecting tracer gas into the target facility and calculating real-time changes 

in tracer gas concentration, has been used. The trace gas concentration decay method 

is an experimental method to calculate the ventilation rate by quantitatively 

analyzing the trace gas concentration decrease in the facility with time from the start 

of ventilation after uniformly filling the greenhouse with trace gas. It can consider 

not only the external wind environment but also the structural characteristics of the 

greenhouse, the ventilation form, etc., and can analyze the local ventilation rate 

inside the greenhouse. It is mainly classified into the following methods depending 

on the tracer gas injection method: the step-up method in which tracer gas is injected 

with the start of ventilation until a certain concentration (i.e. the time that can be 

assumed as a steady state) is reached, the step-down method in which ventilation is 

started when the injection of tracer gas is complete and the degree of attenuation of 

the tracer gas concentration is used, and the pulse method in which tracer gas is 

injected into the target area where ventilation is performed within a short period of 

time and then injection is interrupted again (Sandberg and Sjöberg 1983). After 

determining the tracer gas injection method, the age of air can be obtained by 
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creating a time-concentration trend curve and calculating the first moment of the 

concentration curve based on the tracer gas data measured during the experiment. 

Depending on the tracer gas injection method, the local average age and local 

residual residence time at any point P in indoor space can be calculated using the 

step-up method, step-down method, and pulse method. In this study, the step-up 

method was used as follows. 

 

AERTGD = ∫ (1 −
𝐶𝑝
𝑠𝑢𝑝(𝑡)

𝐶(∞)
)

∞

0

dt  (Eq. 5-8) 

 

where, AERTGD  is air exchange rate computed using the TGD method 

(AER·min-1) C  is concentration of tracer gas (ppm), C𝑠𝑢𝑝(t)  is the tracer gas 

concentration at time t, and C(∞)  is the concentration at the exhaust vent after 

reaching the steady state. 

 

5.2.5. Experimental procedure 
 

5.2.5.1. Training data generation using CFD model verified from 

previous research (Lee et al., 2018) 
 

In this study, ML models were developed to predict the natural ventilation rate of 

naturally-ventilated even-span greenhouses, and training data for the ML models 

were generated through CFD simulation. A CFD simulation model enables model 

computations and analysis under the conditions desired by the researcher, but special 

efforts are required to secure the reliability of the model. The grid design of a CFD 

model can affect the accuracy of the simulation results (Rong, Nielsen et al. 2016, 

Hong, Exadaktylos et al. 2017, Yeo, Decano-Valentin et al. 2020), and selection of a 
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turbulence model also significantly affects the model results (Norton, Sun et al. 2007, 

Ramponi and Blocken 2012, Bjerg, Norton et al. 2013, Kwon, Lee et al. 2016). 

Therefore, it is very important to select a proper grid size and a turbulence model. 

Since the natural ventilation of a greenhouse is directly affected by the external wind 

environment, consideration of the external wind environment is essential for natural 

ventilation analysis and the proper design of the flow area outside the greenhouse is 

required (Bournet, Khaoua et al. 2007, Kim, Lee et al. 2017, Lee, Lee et al. 2018). 

Therefore, in this study, the CFD model of (Lee, Lee et al. 2018) which secured 

sufficient reliability for the analysis of natural ventilation in greenhouses through 

proper grid and turbulence model design, external wind environment consideration, 

and external flow area design, was used (Figure 5-6). The information on CFD 

domain design, grid design, turbulence model, and boundary conditions was used as 

shown in Table 5-1. 
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(a) Overall view of the PIV test in the wind tunnel 

 

 

(b) CFD simulation design of the external domain and 

greenhouse 

(c) Validation results of 

turbulence model 

Figure 5- 6 Design and validation process of previous CFD models for 

estimating natural ventilation rates in greenhouses; PIV test, external zone 

design and turbulence model validation results (Lee et al., 2018) 
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Table 5-1 Design factors of the naturally ventilated greenhouse CFD model 

(Lee et al. 2018) 

Design factor Value 

Turbulence model RNG 𝐤 − 𝛜 

Grid size 0.2 m 

Solver Pressure-based solver 

Numerical algorithm SIMPLE algorithm 

Discretization Second-order 

Time condition Steady-stated, and transient state 

Dimension Tree-dimensional simulation 

Operating pressure 101,325 Pa 

Gravitational acceleration 9.81 m·s-1 

Air density 1.225 kg·m-3 

Air viscosity 1.7894×10-5 kg·m-1·s-1 

 

The CFD technique can simulate arbitrary environmental conditions and calculate 

results for arbitrary physical quantities. In the case of such physical quantities as the 

amount of natural ventilation, in particular, it is difficult to measure stable values due 

to wind environment conditions that vary in real time during field experiments. 

Therefore, the CFD technique that can calculate the amount of natural ventilation 

under arbitrary environmental conditions, such as the wind direction and wind speed, 

was utilized to construct training data for ML. Simulation was performed on 

important influence factors, i.e. the wind direction (WD), wind speed (WS), and vent 

opening conditions of the target greenhouse, to predict the amount of natural 

ventilation. Seven cases (0, 15, 30, 45, 60, 75, and 90°) were analyzed for the wind 

direction and ten cases (1,.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 5.5 m·s-1) for 

the wind speed. In the case of vent opening conditions of the greenhouse, three cases 
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(a case of opening only roof vents, a case of opening only side vents, and a case of 

opening both side and roof vents) were analyzed. The mass flow rate (MFR) for the 

total amount of ventilation in the greenhouse was calculated through simulation, and 

the TGD-computed ventilation rate was calculated for the ventilation rate by zone. 

As for the ventilation rate by zone, the greenhouse was divided into 27 areas with a 

width of 3 m and a length of 5 m and the ventilation rate by zone was calculated at 

the height of the crop group (0 to 1 m) (Figure 5-7). Coordinate values with respect 

to the center of the greenhouse as the origin were provided to each calculated local 

ventilation rate. 80% of the training data were used for the development of ML 

models and 20% for the verification of the developed models. 

 
Figure 5-7 Defining the compartment design and x, y-coordinates inside the 

greenhouse to calculate the local ventilation rate computed by TGD method 
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5.2.5.2. Pre-processing for dataset of machine learning models 
 

In this study, training data for ML models that predict the ventilation rate of a 

naturally-ventilated greenhouse were created through CFD simulation. Among the 

CFD simulation results, the factors considered as learning features for ML models 

were the external wind direction, wind speed, vent type, MFR, TGD, and x and y 

coordinates. Here, the x and y coordinates were given in the width direction and the 

length direction with reference to the center of the greenhouse in order to reflect the 

positional information of the local ventilation rate computed by TGD method. The 

coordinate means the center position of each section. Meanwhile, the types of the 

data used for the training of ML models can be divided into numerical data that have 

discreet or continuous values and categorical data that have such values as names 

and sequence. Numerical data can be used for regression analysis as they have 

numerical values while categorical data can be used for classification models. For 

utilizing categorical data in a regression model, preprocessing that assign numbers 

to variables with the meaning of letters is required. One-Hot encoding, one of the 

techniques to process letters as numbers for natural language processing, is a data 

preprocessing technique that can be applied to only categorical data. It expresses n 

categorical data as n sparse vectors by adding a new feature according to the type of 

the feature value, assigning 1 only to the column corresponding to the eigenvalue, 

and assigning 0 to the remaining columns. In this study, the feature for the vent type 

of the naturally-ventilated greenhouse has values that correspond to the opening of 

side vents, roof vents, and both side and roof vents and these values correspond to 

categorical variables. Therefore, label encoding was performed for the use of 

categorical data in ML models, and values of 1, 2, and 3 were assigned to the opening 
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of side vents, the opening of both side and roof vents, and the opening of roof vents 

(Table 5-2). Since this cannot be applied to ML models designed based on a 

regression model, however, One-Hot encoding was performed as a data 

preprocessing process for this and the results are shown in Table 5-3. 
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Table 5-2 Label encoding applied data preprocessing results for use in regression ML models of categorical data (WD: wind direction; 

WS: wind speed; WT: vent opening type of greenhouse such as side open(1), both side and roof open (2) and roof  open(3); x, 

y-coordinate: x, y coordinates of TGD which is the local ventilation rate; MFR: ventilation rate computed MFR method; TGD: 

ventilation rate computed TGD method) 

WD WS WT x-coordinate y-coordinate MFR TGD 

0 1.0 1 -3 -20 0.13 0.23 

0 1.0 2 -3 -20 0.38 0.25 

0 1.0 3 -3 -20 0.29 0.23 

0 1.5 1 -3 -20 0.44 0.33 

︙ ︙ ︙ ︙ ︙ ︙ ︙ 

90 5.5 1 3 20 6.73 0.67 

90 5.5 2 3 20 14.46 8.99 

90 5.5 3 3 20 6.98 3.09 
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Table 5-3 One-hot encoding applied data preprocessing results for use in regression ML models of categorical data 

WD WS 

Type 

Window 

_Side 

Type 

Window 

_SideRoof 

Type 

Window 

_Roof 

x-coordinate y-coordinate MFR TGD 

0 1.0 1 0 0 -3 -20 0.13 0.23 

0 1.0 0 1 0 -3 -20 0.38 0.25 

0 1.0 0 0 1 -3 -20 0.29 0.23 

0 1.5 1 0 0 -3 -20 0.44 0.33 

︙ ︙   ︙ ︙ ︙ ︙ ︙ 

90 5.5 1 0 0 3 20 6.73 0.67 

90 5.5 0 1 0 3 20 14.46 8.99 

90 5.5 0 0 1 3 20 6.98 3.09 
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5.2.5.3. Design of machine learning models 
 

The prediction accuracy of an ML model is significantly affected by the design of 

the model’s hyper-parameters. There is no absolutely best value for hyper-

parameters and the optimization method is not determined, but the optimal hyper-

parameter values can be found through iterative design and trial and error (Reimers 

and Gurevych 2017, Raschka 2018). Therefore, the hyper-parameters of the SVR, 

RF, and DNN models developed in this study were optimized to improve the 

prediction accuracy of the models. First, the main hyper-parameters of the SVR 

model are techniques that enable linear classification of nonlinear data, including the 

kernel function that performs linear classification by mapping low-dimensional data 

to a higher dimension, degree that determines the order of the polynomial kernel 

function, gamma that determines the curvature of decision boundaries, and C that 

determines the degree of allowing data samples to be placed in different classes. In 

this instance, overfitting may occur if the values of gamma and C are set to be 

excessively large. In this study, rbf and poly were considered as the kernel functions 

of SVR, and hyper-parameter tuning was performed for the values of C and gamma. 

The main hyper-parameters of the DNN model are each layer and node that 

constitute the neural network, the loss function that evaluates the performance of the 

model, the optimizer that is a function to reduce the loss function, and the activation 

function that applies the input values to each node of DNN for output to the next 

layer. In this study, the performance of the model was evaluated using MSE for Loss 

function, and Adam was used as Optimizer for efficient learning. relu, which is 

commonly used due to fast learning and low computation cost, was used as the 

activation function. For an improvement in the performance of the DNN model, an 
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attempt was made to derive the optimal neural network structure by tuning the 

number of layers and the number of nodes. The main hyper-parameters of the RF 

model are n-estimators, which is the number of decision trees, and 

min_samples_split, which is the minimum number of sample data for splitting nodes. 

In this study, the tuning of the two hyper-parameters was performed to improve the 

prediction accuracy of the RF model. 

 

Table 5-4 Hyper-parameters of machine learning models and tuning range 

design for hyper-parameter optimization 

Model Hyper-parameter Range 

SVR 

(kernel = rbf) 
C 10n (n=0-4) 

SVR 

(kernel = poly) 

C 10n (n=0-4) 

gamma 10-n (n=0-5) 

degree 2 

RF 
n-estimators 5-11 

min samples split 2-6 

DNN 

layer node 2n (n=1-7) 

number of layer 1-4 

loss function MSE 

activation function relu 

optimizer adam 

 

5.2.5.4. Bootstrapping training data 
 

In this study, data were created using CFD simulation to calculate the ventilation 

rate of the naturally-ventilated greenhouse, which is the training data for the ML 

models. CFD simulation enables computations and analysis under the environmental 

conditions desired by researchers. Therefore, when the training data of an ML model 
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are created using CFD simulation, the limitation of the ML model that the prediction 

performance decreases for data that exceeded the range of the training data can be 

supplemented. The computations of the CFD simulation model, however, may 

involve an increase in the number of grids or an increase in the complexity of model 

computations to improve the accuracy of numerical analysis, which requires high-

performance computation equipment and long computation time. Since absolute 

time is required for simulation model computations, a limited number of 

computations are possible in reality. Therefore, it is important to create an 

appropriate number of training data for training the ML model. 

Meanwhile, bootstrapping, a technique used in statistics, is a method of applying 

random sampling before hypodissertation testing or the calculation of evaluation 

indicators (Eforn 1979). In other words, it is a procedure to obtain statistics and 

construct a model using the samples generated from given samples through random 

sampling. The average of N data randomly sampled from the existing data is created 

as new data, and this process is repeated several time to amplify the existing data M 

times. Assuming that separate samples are yn = (𝑦1, 𝑦2, 𝑦𝑛), the resampled units of 

yn
∗ = (𝑦1

∗, 𝑦2
∗, 𝑦𝑛

∗)  can be obtained in large quantities using the Monte Carlo 

bootstrap approximation for the mean and variance of the given parameters. 

Therefore, in this study, the bootstrapping technique was used to supplement the 

generation of training data using CFD simulation, which enables only a limited 

number of case operations. For the data generated by CFD simulation, ten data were 

randomly extracted, and the existing data were amplified by 2, 3, 5, and 10 times to 

select the optimal number of restoration extractions. 
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5.2.5.5. Reducing data set 
 

CFD simulation can arbitrarily adjust the range of the training data of an ML 

model because it enables the simulation and analysis of the model under the 

environmental conditions desired by the researcher. Depending on the simulation 

model design, however, computation time from several hours to several days can be 

required even for one case. Therefore, it is important to design the minimum number 

of simulation model case operations that secures the appropriate prediction accuracy 

of the ML model. Therefore, in this study, the prediction accuracy of the developed 

ML models was evaluated while the number of CFD simulation cases was reduced 

(Table 5-5). Under the condition of maintaining the maximum and minimum ranges 

for the external wind direction and wind speed, which were considered as CFD 

simulation cases, a reduction in the number of cases was considered. For the external 

wind speed, ten cases (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 5.5 m·s-1) were 

considered in the existing model while five cases (1.0, 2.0, 3.0, 4.0, and 5.5 m·s-1) 

were considered in the reduced model. In the case of the external wind direction, 

seven cases (0, 15, 30, 45, 60, 75, and 90°) were considered in the existing model 

while four cases (0, 30, 60, and 90°) were considered in the reduced model. 
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Table 5-5 Reduction of CFD-driven learning data for designing a simple 

machine learning model for predicting local ventilation rate in 

naturally ventilated greenhouses (WS : wind speed; WD : wind 

direction; WT : vent opening type of greenhouse) 

CFD simulation cases for training data of simple machine learning 

models 
Total case 

WS: 10 case (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 m·s-1) 

WD: 7 case (0, 15, 30, 45, 60, 75, 90°) 

WT: 3 case (Side, roof, side and roof vents) 

210 

WS: 10 case (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 m·s-1) 

WD: 4 case (0, 30, 60, 90°) 

WT: 3 case (Side, roof, side and roof vents) 

120 

WS: 5 case (1.0, 2.0, 3.0, 4.0, 5.5 m·s-1) 

WD: 7 case (0, 15, 30, 45, 60, 75, 90°) 

WT: 3 case (Side, roof, side and roof vents) 

105 

WS: 5 case (1.0, 2.0, 3.0, 4.0, 5.5 m·s-1) 

WD: 4 case (0, 30, 60, 90°) 

WT: 3 case (Side, roof, side and roof vents) 

60 
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5.3. Results and discussion 
 

5.3.1. Dataset from CFD simulation results 
 

CFD simulation was performed to develop ML models for predicting the 

ventilation rate of the naturally-ventilated greenhouse by zone. The ventilation rate 

computed by the TGD method and the ventilation rate computed by the MFR method 

were calculated for ten external wind speed cases ranging from 1.0 to 5.5 m·s-1, seven 

external wind direction cases ranging from 0 to 90°, and three greenhouse vent type 

cases. Their averages were found to linearly increase with the external wind speed. 

The MFR-computed ventilation rate was calculated to be between 1.17 and 6.46 

AER·min-1 according to the external wind speed and the TGD-computed ventilation 

rate ranged from 0.45 to 4.36 AER·min-1. Since the MFR-computed ventilation rate 

considers only the flow rates at the inflow and outflow vents of the greenhouse and 

the TGD-computed ventilation rate considers the flow inside the greenhouse, the 

former is generally calculated to be higher than the latter under the same 

environmental conditions (Lee, Lee et al. 2018).  

 
Figure 5-8 Natural ventilation rate based on the MFR and TGD method 

according to external wind velocity 
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Figure 5-9 showed the airflow distribution at a height of 1m inside the greenhouse 

according to the external wind direction when only the side windows are open and 

the outside wind speed is 5.5 ms-1. In the case of 0 degree wind parallel to the length 

of the greenhouse, the external wind blowing parallel to the side windows of the 

greenhouse did not flow into the greenhouse. As a result, the overall air flow was 

low inside the greenhouse.  

When the external wind direction was 45 degrees, the strongest flow velocity was 

formed at the end of the greenhouse where the external air entered, and the relatively 

low flow velocity was formed at the opposite greenhouse end. When the outside 

wind direction was 90 degrees perpendicular to the side windows of the greenhouse, 

a uniform and strong airflow was formed throughout the greenhouse. Due to the even 

distribution of wind to the side windows of the greenhouse, it is expected that the 

local ventilation rate of the greenhouse will also be calculated equally. 

 

   
(a) WD: 0° (b) WD: 45° (c) WD: 90° 

 
Figure 5-9 CFD computed airflow distribution in greenhouse with side vents 

opening according to wind direction (WD) when the external wind speed was 

5.5 m·s-1 
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Figure 5-10 shows the airflow inside the greenhouse according to the vent type 

when the external wind speed was 2.5 m·s-1. When ventilation is performed through 

side vents, the airflow introduced from the windward side forms the main airflow in 

the lower part of the greenhouse and is discharged through the vent on the opposite 

side. A clockwise backward flow is observed in the upper part of the greenhouse, but 

it is relatively weak compared to the main airflow. When ventilation is performed 

through roof vents, the air introduced from a roof vent is discharged through the 

opposite vent, and some of the introduced air forms weak airflow in the 

counterclockwise direction inside the greenhouse. Finally, when ventilation is 

performed through both side and roof vents, the airflow introduced from the 

windward side forms the main airflow in the lower part of the greenhouse as with 

ventilation through side vents, and the air introduced from a roof vent forms airflow 

that presses the counterclockwise airflow formed in the upper part of the greenhouse.  

   

 (a) Side vents (b) Roof vent (c) Side and Roof vent 

Figure 5-10 Airflow inside the greenhouse according to the vents opening 

when the external wind speed was 2.5m·s-1 

 

5.3.2. Hyper-parameter optimization of machine learning 

models 
 

To improve the prediction accuracy of the ML models, the hyper-parameters of 

each ML model were optimized through the trial-and-error method (Table 5-6). The 
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kernel function of the SVR model enables linear classification by mapping low-

dimensional data to a higher dimension. Thus, an appropriate kernel function must 

be selected according to the training data. Therefore, in this study, the RBF and poly 

functions, which are the representative kernel functions of SVR, were used and the 

hyper-parameters for each were optimized. As for C and gamma, which are used in 

the two kernel functions, C means the degree of tolerance for the error and gamma 

determines the flexibility of decision boundaries. In general, the complexity of the 

algorithm increases as these two values increase and the complexity decreases as the 

value decrease. First, when the rbf kernel function was used and the prediction 

accuracy for the local ventilation rate of the naturally-ventilated greenhouse 

according to the C value was evaluated, the highest prediction accuracy of R2=0.90 

and RMSE = 0.643 AER·min-1 was observed at C=10 (Figure 5-11(a)). When the 

poly kernel function was used, the prediction accuracy showed a tendency to increase 

as the values of C and gamma increased. The highest prediction accuracy of R2=0.76 

and RMSE = 0.963 AER·min-1 was observed at C=10000 and gamma = 10-3. The RF 

model is an ensemble model that performs prediction by training multiple decision 

trees and analyzing the results. The hyper-parameters of the model are n-estimator, 

which is the number of decision trees, and min samples split, which is the minimum 

number of sample data for splitting nodes. The tuning results for the two hyper-

parameters exhibited high accuracy for most design values (R2 > 0.93, RMSE < 0.51 

AER·min-1), and the hyper-parameter values that showed the highest accuracy were 

n-estimator = 11 and min sample split = 2 (R2=0.95, RMSE = 0.43 AER·min-1). 

Finally, the prediction accuracy of DNN was evaluated according to the number of 

layers and the node design of each layer. The accuracy was found to increase as the 

number of layers increased, and the highest accuracy was observed when the layer 
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nodes from the first layer to the last layer were set to 64, 128, 128, and 1 at Layer = 

4 (R2 = 985, RMSE = 0.242 AER·min-1). 
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(a) SVR (rbf) (b) SVR (poly) 

  

(c) RF (d) DNN 

Figure 5-11 Prediction accuracy (R2) results according to hyper-parameter tuning test for each machine learning mode
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Table 5-6 Hyper-parameter optimization values for each machine learning 

model 

Model Target hyper-parameter Optimal hyper-parameter 

SVR 

(kernel = rbf) 
C 10 

SVR 

(kernel = poly) 

C 10000 

gamma 10-3 

RF 
n-estimators 11 

min samples split 2 

DNN 
layer node 64 / 128 / 128 / 1 

Number of layer 4 

 

5.3.3. Evaluation of prediction accuracy of machine learning 

model by applying bootstrapping 
 

The proposed ML models that use the CFD simulation results as training data can 

artificially adjust their learning range because CFD simulation can be performed 

under arbitrary environmental conditions set by the researcher. The creation of 

training data, however, is limited due to the CFD case simulation time. Therefore, 

the bootstrapping technique, which can supplement the number of training data by 

regenerating samples from the given samples for the CFD simulation results through 

random sampling, was applied. 

When the bootstrapping technique was applied to each ML model, R2 decreased 

for the RF and DNN models as well as the SVR model that uses the rbf kernel 

function, which exhibited high prediction performance (R2>0.9) before the 

application of the technique, and it increased for the MLR model and the SVR model 

that uses the poly kernel function, which showed relatively low prediction 

performance (R2<0.9). This appears to be because the models that exhibited 
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sufficiently high prediction accuracy showed overfitting for a relatively small 

number of training data but the overfitting was mitigated through the application of 

the bootstrapping technique. The RMSE value was found to decrease for all of the 

ML models except for the DNN model. While the RMSE value significantly 

decreased by more than 0.2 for the SVR model that uses the poly kernel function and 

MLR, there was no significant change in RMSE for the RF model that had already 

applied the ensemble model technique. 

On the other hand, in the case of the remaining ML models except for the MLR 

model, there was no significant improvement when 10 times restoration extraction 

was performed. A lot of restoration extraction has the disadvantage that the 

complexity of the model increases and the bias of prediction may increase. Therefore, 

in this study, five times was suggested as the number of appropriate restoration 

extractions. 
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Figure 5-12 R2 calculation results for each machine learning model by 

applying bootstrapping 

 

 
Figure 5-13 RMSE calculation results for each machine learning model by 

applying bootstrapping 
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5.3.4. Optimize the machine learning models for reducing data 

set 
 

In this study, CFD-driven ML models were developed to predict the local 

ventilation rate of a naturally-ventilated greenhouse. To this end, CFD case 

operations were performed for ten external wind speed cases, seven external wind 

direction cases, and three greenhouse vent type cases. Since computations for 210 

cases are required, however, much time is needed to construct training data for the 

ML models. It took about 12 hr using a computational computer (Intel(R) Xeon(R) 

CPU E5-2620 v3 @ 2.40GHz, RAM 32.0 GB) to calculate the CFD model of 1 case, 

and it took 105 days to calculate when using one computational computer. Therefore, 

in this study, the prediction accuracy of the CFD-driven ML models was evaluated 

by reducing the number of cases for the external wind speed and wind direction 

(Figure 5-14). Consequently, most of the ML models exhibited the highest accuracy 

for the training data created from 120 cases that considered only four wind direction 

cases. The error for the predicted value was also found to be lowest because the 

RMSE value was evaluated to be low. The DNN and RF models exhibited high R2 

and the change in R2 depending on the number of CFD simulation cases was not 

relatively significant, but the RMSE value decreased by 0.07 to 0.13 and 0.11 to 0.16 

AER·min-1 depending on the number of cases, respectively. All of the SVR, RF, and 

DNN models showed low R2 values and high RMSE values for the training data 

created from 210 cases that considered ten wind speed cases and seven wind 

direction cases. This indicates that the prediction accuracy of the ML models 

decreased when all cases were considered because the model complexity relatively 

increased. Finally, the RF model trained on 120 cases of CFD results showed the 
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highest accuracy. This was because the RF model was an Ensemble model, which 

was a method of deriving the final result by synthesizing the results of various 

decision tree algorithms. In addition, the RF model did not require normalization of 

data, and bootstrap were applied by default. As a result, RF model has been generally 

known to have high performance and minimize the overfitting problem. Therefore, 

it was judged that the RF model showed the highest accuracy as the final model for 

CFD-driven ML with a relatively small amount of data and the risk of overfitting. 

However, when building a PLV-CFD driven ML model for other facility, careful 

consideration of CFD case for generating learning data should be made. 

 

 

Figure 5-14 Calculation of prediction accuracy for each machine learning 

model according to the number of CFD simulation cases (line graph means R2, 

bar graph means RMSE) 
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5.4. Conclusions 
 

In this study, machine learning (ML) models that predict the local ventilation rate 

of a naturally-ventilated greenhouse using the computational fluid dynamics (CFD) 

simulation results were developed. First, a verified CFD model (Lee, Lee et al. 2018) 

was used to create reliable training data, and CFD simulation was performed for ten 

external wind speed cases, seven external wind direction cases, and three greenhouse 

vent type cases. For the simulation results, the ventilation rate by zone at the height 

of the crop group in the greenhouse was calculated, and training data for the ML 

models were created through the preprocessing process. Multiple linear regression 

(MLR), support vector regression (SVR), random forest (RF), and deep neural 

network (DNN) models were designed using the created training data, and hyper-

parameter tuning was performed to improve the prediction accuracy of each model. 

Consequently, the DNN model exhibited the highest accuracy (R2 = 985, RMSE = 

0.242 AER·min-1). Since the CFD-driven ML models proposed in this study require 

considerable cost and time for the creation of training data, a relatively small number 

of training data were supplemented by applying the bootstrapping technique. 

Consequently, R2 was improved for ML models (MLR and SVR (poly)) that 

exhibited relatively low accuracy (R2 < 0.9), and the RMSE value decreased for most 

of the ML models. Ten external wind speed cases and seven external wind direction 

cases, which were considered for the creation of training data, were reduced to five 

and four cases, respectively, to minimize CFD simulation cases, and the created 

training data were used for the ML models. It was found that most of the ML models 

exhibited the highest prediction accuracy when five external wind speed cases and 

seven external wind direction cases were considered. Finally, the ML model with the 
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highest prediction accuracy was defined as PLV-CFD driven ML. The proposed PLV-

CFD driven ML that use the CFD simulation results are expected to supplement the 

limitations of ML models that can perform prediction only in the range of training 

data and have very low prediction accuracy for outliers that exceed the range. 
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Chapter 6. Conclusions 
 

 

In this study, the of greenhouse environment prediction and control system was 

developed to monitor and predict the internal environment and local ventilation rate 

of the naturally ventilated greenhouse. In particular, this work proposed the optimal 

sensor location for monitoring the air temperature at the greenhouse and used it in 

the machine learning model to minimize the number of sensors required for the 

application of the machine learning models. 

Machine learning models in the greenhouse environment prediction and cotrol 

system according following three purposes as previously discussed were developed. 

In Chapter 4, the PCTO-ML was developed for monitoring the internal air 

temperature of the natural ventilation greenhouse, and the optimal sensor location 

was selected through the model. Internal environment data were collected from nine 

different sampling points from a naturally ventilated greenhouse, and missing values 

and outliers were resolved through interpolation during the data preprocessing 

process. In addition, the training feature of the machine learning model was selected 

by analyzing the correlation between the measured and predicted air temperature 

inside the greenhouse, which is a predictor of the machine learning model. Machine 

learning models of ANN, SVR, and LSTM were developed, and LSTM was 

evaluated to show the highest accuracy (R2 = 0.974, RMSE = 0.024, and P-RMSE = 

0.458). So, final LSTM model was defined as the PCTO-ML. Therefore, the optimal 

sensor location for monitoring air temperature in the greenhouse was evaluated using 

the LSTM model, and sensor 5, which was the center location of the greenhouse, 

was selected as the optimal sensor location (R2 = 0.984, RMSE = 0.019, and P-
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RMSE = 0.365) in case of using one sensor. In order to minimize the type of sensor 

required for the machine learning model, the Simplified LSTM model with reduced 

learning features was developed as the PCTO-ML, and the optimal sensor locations 

were evaluated as sensor 5. The optimal sensor locations when using two sensors 

were evaluated as sensors 3 and 9, and the optimal sensor locations of the places to 

use three sensors were evaluated as sensors 1, 2, and 7. 

In Chapter 4, the future air temperature inside the naturally ventilated greenhouse 

was predicted using PFTO-ML. The PFTO-ML was developed, and the process of 

collecting and preprocessing learning data for model development was the same as 

in Chapter 3. The highest prediction accuracy of the PFTO-ML, sequence length, 

was evaluated at 30 min. The results of predicting the future air temperature at each 

location in the greenhouse using the PFTO-ML showed high prediction accuracy of 

R2 > 0.95, and RMSE < 0.65. In order to minimize the installation of sensors in the 

greenhouse, the predictive accuracy of the PFTO-ML was evaluated by applying the 

optimal sensor location suggested in PCTO-ML. As a result, the prediction accuracy 

was calculated relatively low when using one optimal sensor, but when the number 

of optimal sensors increased, the prediction accuracy improved.  

In Chapter 5, the PLV-CFD driven ML was developed for predicting the 

ventilation rate in naturally ventilated greenhouses by region through learning the 

results of CFD simulation. To compensate for the limitations of machine learning 

models that prediction range was determined by the range of learned data, CFD 

simulation results that can be calculated for arbitrary environmental conditions were 

used as learning data for machine learning models. In order to generate learning data, 

210 CFD cases of 10 wind speeds, 7 wind directions, and 3 greenhouse ventilation 

window types were performed. MLR, SVR, Random Forest, and DNN were 
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developed for PLV-CFD driven ML, and the optimization of hyper-parameters for 

each machine learning model was performed. For each optimized machine learning 

model, the bootstrapping technique was applied to supplement a relatively small 

number of learning data. Finally, the accuracy of the machine learning model 

according to the decrease in the case of the CFD simulation used as learning data 

was evaluated.  

The greenhouse environment prediction and control system proposed in this 

dissertation predicted the current (PCTO-ML) and future (PETO-ML) air 

temperature inside the greenhouse and local ventilation rate (PLV-CFD driven ML). 

When the three models constituting the system are linked, it is of great significance 

that it is possible to predict the internal air temperature of the natural ventilation 

greenhouse and to control the proper ventilation of the predicted air temperature. In 

addition, since only minimum number of sensors are required for the development 

and operation of the model, it is economical to introduce this system for domestic 

greenhouses application where air temperature sensors are installed. In addition, it is 

expected that it can be applied to other agricultural facilities if the model design 

pipeline proposed in this study is used in consideration of additional factors that can 

consider the ventilation characteristics of facilities. 
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국 문 초 록 
 

 

시설 재배를 통한 작물 생산은 연중 안정된 생산성과 고품질의 작물을 

생산함으로써 지난 수년간 지속적으로 발전해오고 있다. 현재 국내 채소 

재배 시설 면적과 총 생산량은 각각 2020년 52,571 ha와 2,441,000 ton으로 

1970년대부터 현재까지 그 규모가 꾸준히 증가해 오고 있는 추세이다 

(MAFRA, 2022). 또한 ICT 기술의 발전과 각종 센서 및 제어 시스템의 

개발로 인해 온실 내부 환경에 대해 정밀한 모니터링과 제어가 가능한 

스마트팜 온실이 빠르게 보급되고 있다. 하지만 스마트팜을 도입한 많은 

농가에서 설치비용의 확보에 어려움을 느끼고 있으며, 센서 및 장비의 

잦은 고장과 스마트팜 활용의 어려움을 가지고 있는 것으로 나타났다.  

본 논문의 최종 목표는 자연환기 온실의 내부 환경을 모니터링하고 

예측할 수 있는 모델을 개발하는 것이다. 따라서 온실 내부의 가장 

중요한 환경 요소인 공기 온도의 최적 센서 위치를 선정하기 위한 

기계학습 모델을 개발하였다. 현재의 온실 내부 공기 온도를 

모니터링하는 것 뿐만 아니라 가까운 미래의 온실 내부 공기 온도를 

예측하여 공조시스템의 선제적 제어에 활용될 수 있는 기계학습 모델을 

개발하였다. 또한 예측된 온실 내부 공기 온도를 작물의 적정 생육 

환경으로 조절할 수 있는 가장 기본적인 방법인 자연환기를 예측한 

기계학습 모델을 개발하였다.  

2장에서는, 선행 연구의 방법론, 한계점의 분석을 통해 연구의 

필요성과 연구 방향성의 기틀을 다지고, 연구 방법론의 적립을 위해 
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“온실 내부 생육 환경의 중요성”, “온실 환기 평가 방법”, “온실의 내부 

환경 모니터링을 위한 최적 센서 위치”, “농업 분야에서의 기계학습 기법 

적용”에 대한 연구사를 검토하였다.  

3장에서는 기계학습 모델을 이용하여 자연환기 온실의 내부 공기 온도 

모니터링을 위한 최적 센서 위치를 선정하였다. 이를 위하여 현장 

실험을 통해 자연환기식 온실 내부의 환경 요소들을 수집하였으며, 

기계학습 모델의 예측 정확도를 높이기 위하여 일련의 전처리 과정을 

수행하였다. 자연환기 온실의 내부 공기 온도 예측을 위한 기계학습 

모델은 ANN, SVR, LSTM을 개발하였다. 기계학습 모델들의 예측 성능을 

비교한 결과 LSTM이 가장 높은 정확도(R2 = 0.974, RMSE = 0.024, P-RMSE 

= 0.458)를 보이는 것으로 평가되었다. 따라서 LSTM 모델을 이용하여 

온실 내 공기 온도 모니터링을 위한 최적 센서 위치를 평가하였으며, 

온실 중앙 위치인 5번 센서 위치에서 측정한 환경데이터를 학습할 경우, 

온실 내부의 각 센서 설치 위치에 대한 공기 온도 예측에 가장 높은 

정확도를 보였다 (R2 = 0.984, RMSE = 0.019, P-RMSE = 0.365). 마지막으로 

기계학습 모델에 필요한 센서의 종류를 최소화하기 위하여 학습 인자를 

줄인 Simplified LSTM 모델을 개발하였으며, 이때의 최적 센서 위치는 

5번으로 평가되었다. 

4장에서는 기계학습 모델을 이용하여 자연환기 온실 내부의 미래 공기 

온도를 예측하였다. LSTM 모델이 개발되었으며, 모델 개발을 위한 학습 

데이터의 수집과 전처리 과정은 3장과 동일하다. 단, LSTM 모델의 미래 

상황 예측 시 입력값의 단위에 해당하는 시퀀스 길이에 따른 LSTM 
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모델의 정확도를 평가하였으며, 30 분이 최적 시퀀스 길이로 산정되었다. 

LSTM 모델을 이용하여 온실 내 각 위치에서의 미래 공기 온도를 

예측한 결과 대부분 R2 > 0.85, RMSE < 0.65의 높은 예측 정확도를 

나타내었다. Chapter 3에서 제시한 최적 센서 위치를 적용하여 LSTM 

모델의 예측 정확도를 평가하였다. 그 결과 1개의 최적 센서를 적용할 

경우 예측 정확도 (R2=0.918)의 상대적으로 큰 감소가 나타났지만, 3개의 

최적 센서를 적용할 경우 (R2=0.939) 센서 9개를 모두 이용한 경우 

(R2=0.950)와 유사한 예측 정확도를 나타냈다. 따라서 미래 공기 온기 

예측을 위해 최소 3개의 최적 센서 위치를 적용할 것이 추천된다. 

5장에서는 CFD 시뮬레이션의 연산 결과를 학습한 기계학습 모델을 

이용하여 자연환기 온실의 지역별 환기량을 예측하였다. 학습 데이터의 

생성을 위하여 10 가지 풍속, 7 가지 풍향, 3 가지 온실 환기창 타입에 

대한 CFD 시뮬레이션을 수행하였다. 기계학습 모델은 MLR, SVR, 

Random forest, DNN이 개발되었으며, 각각의 기계학습 모델에 대한 hyper-

parameter의 최적화를 수행하였다. 그 후 상대적으로 적은 수의 학습 

데이터를 보완하기 위하여 Bootstrapping 기법을 적용하여 학습하였다. 그 

결과 Bootstrapping 기법 적용 전 높은 예측 성능(R2>0.9)을 나타내었던 

RF, DNN, rbf kernel 함수를 이용하는 SVR 모델은 R2가 감소한 반면, 

상대적으로 예측 성능이 낮은(R2<0.9) 모델인 MLR과 poly kernel 함수를 

이용하는 SVR 모델의 경우 R2가 개선되는 것으로 나타났다. 최종적으로 

상대적으로 연산에 많은 시간을 필요로하는 CFD 시뮬레이션의 연산 

case의 최소화를 위하여 CFD 시뮬레이션 case의 감소에 따른 기계학습 
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모델의 정확도를 평가하였다. 그 결과 대부분의 기계학습모델에서 

풍향을 4 case만을 고려하여 총 120 case가 고려된 학습데이터에 대하여 

가장 높은 정확도를 나타냈다. 뿐만 아니라 RMSE 값 또한 낮게 

평가되어 예측값에 대한 오차가 가장 낮은 것으로 나타났다.  

본 논문은 3가지 기계학습 모델(PCTO-ML, PETO-ML, PLV-CFD driven 

ML)로 구성된 온실 내부환경 예측 및 제어 시스템을 통하여 온실 

내부의 현재 (PCTO-ML)와 미래 공기온도(PETO-ML)를 예측하며, 온실 

내부의 지역적 환기율을 예측(PVL-CFD driven ML)함으로써 예측한 공기 

온도의 적절한 제어가 가능하다는 것에 큰 의의가 있다고 판단된다. 

특히 PCTO-ML 모델을 통하여 제안한 온실 내부 공기 온도 예측에 

필요한 최적 센서 위치는 온실의 초기비용 및 유지보수 비용을 

줄이므로써 농가의 소득 향상에 기여할 수 있을 것으로 기대된다. 또한 

PVL-CFD driven ML 모델은 발생 빈도가 작아 실측이 어려운 환경조건에 

대해서도 학습이 가능했기 때문에 모든 풍환경 조건에 대한 

자연환기율을 예측할 수 있었다. 본 논문에서 제안한 온실 내부환경 

예측 및 제어 시스템은 시스템의 개발과 운영을 위해 최소한의 온도 

센서만을 필요로 하기 때문에 시스템 도입에 경제성을 가지며, 온도 

센서가 설치되어 있는 국내 대부분의 온실에도 적용이 가능할 것으로 

판단된다. 
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