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Abstract

Background: Coronary Artery Disease (CAD) is a disease in which the
coronary arteries that supply blood to the heart are narrowed by
atherosclerosis or blood clots, resulting in myocardial ischemia or
myocardial infarction due to poor blood supply. CAD has a high
heritability of 40% to 60%, and multiple investigation has been
conducted to provide CAD with large—scale genetic data for non-
Hispanic whites. However there have been no studies for the east
Asian population including the Korean population.

Objective: In our study, we would like to calculate PRS for CAD in the
East Asian populations using different PRS calculation methods
including meta-PRS. Furthermore, through an integrated model that
considers both PRS and clinical markers, we intend to predict a CAD
risk considering both genetic and clinical factors.

Methods: We considered the summary statistics from BioBank of Japan
(BBJ) as a reference data and those were used to calculate the weights
of each SNP used for calculating PRS of 71,009 Korean samples from
KoGES data. Then we calculated the PRScap using five different
method, and the statistical method was chosen with highest AUC in
predicting CAD. Furthermore, we selected 8 traits related to CAD and
by using the meta—PRS, and built the prediction model with meta—-PRS.

Results: We found that PRS and meta—PRS had a high odds ratio (OR
1.32, 95%CI 1.26-1.39), (OR 1.35, 95%CI 1.29-1.42). Net
reclassification improvement for both were 0.072+0.0127 and
0.088%+0.0135 respectively. The PRS score calculated by the LDpred-
auto had a significant improvement in predictive ability compared to
the model with only existing clinical variables (AUC: from 0.780 to
0.785, P=0.0003).

Conclusion: In this study, the genetic effect in predicting coronary
artery disease in the East Asian population group was confirmed by
analyzing the effect of adding PRS to the existing clinical variable
predicting coronary artery disease risk.

Keywords: Coronary Artery Disease(CAD), Polygenic Risk
Scores(PRS), meta-PRS, LDpred, Ridge Regression, Elastic Net
Regression, East Asian Population

Student Numpber: 2021-21804
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I . Introduction

Cardiovascular disease (CVD) which is one of the leading causes of
death globally (WHO, 2022) has a high heritability of 40% to 60%*, and
various genetic studies have been conducted to identify the genetic
factors. Until now, more than 100 genome-wide significant loci
associated with CAD have been found with GWAS. However, the effect
size of each risk allele is not large, and which is a characteristic of
polygenic diseases where several genetic factors affect the specific
phenotypic outcome in general. Therefore, most of the recent studies
use polygenic risk scores that can consider the effects of multiple
SNPs which do not have a significant standard to identify more precise
genetic risks.

It was reported that an integrated risk tool using both genetic risks
and clinical risks showed a 5.9% net reclassification improvement?.
Predicting genetic risk for CAD may help develop methods used for
preventive interventions such as risk reduction, behavior modification,
or pharmacologic treatment. Previous studies showed that the genetic
effect summarized through PRS and the environmental effect of
lifestyle factors contribute independently to CAD and related diseases
(atrial fibrillation, ischemic stroke, hypertension, etc.)®. The onset of
CAD is known to be related to traits such as hypertension, dyslipidemia,
type 2 diabetes, and lifestyle factors including smoking behavior,
exercising, and eating habits®. According to the GWAS research on the
Korean population, it was found the leading SNPs of CAD in patients
having hypertension(17q25.3/CBX8-CBX4 rs1550676), type 2
diabetes (17925.3/RPTOR rs139293840), and

dyslipidemia(rs79166762)°. In the case of lifestyle variables such as



smoking initiation, a whole—genome sequencing (WGS)-based GWAS
performed in a Chinese population has shown thirteen SNPs of the
RFTN1 gene®. The rs139753473 from RFTN1 and six other
suggestively significant loci from the CSMD1 gene were also
associated with cigarettes per day (CPD) in an independent.

The mainstream CAD risk prediction models are considering a
combination of clinical risk factors and genetic risk factors, which
reports a better performance than traditional tools such as PCE alone.
However, the performance improvement due to polygenic risk is not
significant enough despite the high heritability’. There might be three
possible explanations for this: limited genomic scope, limited sample
sizes, and ancestry—specific differences®.

Possible explanation for limited genomic scope arises from the fact
that the CAD outbreak is affected by multiple pathways. Although PRS
was calculated using all range of SNPs related to CAD in some of the
previous studies, many genes related to indirect pathological pathway
of CAD outbreak were excluded from calculating PRS. Therefore,
these un—optimized models might have lacked in making a precise
prediction model for subjects having high CAD risks. As an effort to
seek a solution for this, in 2018, the concept of meta—PRS emerged,
an approach where multiple PRSs of related traits are combined into
one meta-score (meta-PRS) to overcome the limitations of the
previous research’. Meta-PRS has shown a better performance in
Ischemic Stroke prediction than the previously known method of
LDpred, and also supported by a meta—analysis of 979,286 participant
data in predicting CAD (PRS|ppreq HR= 1.46, Meta-PRS HR=1.67)°.

Moreover, in the non—-white population, the quality and quantity of
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prediction based on Caucasian population are significantly low . Here,

in our study, we would like to improve the performance of the
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prediction model in the Korean population by using similar ethnic
origins in the East Asian population (Japanese population) as reference
data for calculating genetic risks. Overall, the objective of this study
is to calculate the PRS for CAD in East Asian populations including
Korean population and use PRS as an indicator for improving the
classification of a high-risk group. Therefore, through an integrated
model including both PRS and clinical markers, we intend to develop a
CAD prediction model that considers both genetic and clinical factors

in the East Asian population.

IT. Materials and methods

1. Study Participants

Prediction model building with PRS and its evaluation require three
different dataset for base(reference), validation, and test dataset
(Figure 1), and we considered the BioBank of Japan (BBJ)!l121314.15
data, the Korean Genome and Epidemiology Study (KoGES) data and
the Gene-environmental interaction and phenotype (GENIE),
respectively.

BBJ project was started at the Institute of Medical Science, the
University of Tokyo in 2003. BBJ data consist of around 212,453
subjects with disease cases consisting of 47 various diseases, and
these subjects were recruited from 12 medical institutes in Japan.
Korean Genome and Epidemiology Study (KoGES) dataset was
collected by the Korean Center for Disease Control and Prevention
based on the Korean population. KoGES data consist of KoGES Ansan
and Ansung study (KARE), the KoGES health examinee (HEXA) study,
and the KoGES cardiovascular disease association study (CAVAS)''.

KoGES dataset consisted of 81,902 participants recruited from the
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national health examinee registry, and they aged more than 40-year-
old at the baseline. The baseline years are 2001, 2004, and 2005 for
KARE, HEXA, and CAVAS, respectively. The dataset contains
participants’ medico-pharmacologic history, and physical examination
(weight, height, BMI, BP, etc.), and provided fasting blood samples to
measure blood lipid(TG, TC, HDL-C, etc).

Test data was derived from the Gene-environmental interaction and
phenotype (GENIE) provided by the Gangnam Health Center of Seoul

1'2, The original data provided by the

National University Hospita
hospital was named Health and Prevention Enhancement (H-PEACE),
but around 2,000 samples were added and used for this study. Here,
we will just write the name of the whole data (H-PEACE + GENIE) as
GENIE. It contains longitudinally observed measures of participants’
medico—pharmacologic history, physical examination, and blood lipid
and glucose levels after fasting. GENIE cohorts were followed up
during 2003-2017. For this study, blood samples and the main

covariate data were available for 9,348 participants, independent of

subjects in the KoGES dataset.



Base data Validation set Test set
(BBJ) (KoGES) (H-PEACE +GENIE)
* 212,453 samples 71,009 samples * 3,591 samples
(case=29,319) (case— 1,917, control= 69,092 ) (case= 108, control= 3,483)

4 PRS calculation N

*  PT (pruning + P-value thresholding)

¢ CT (clumping + p-value thresholding)
* LDpred (LD adjustment)

* LASSOsum (Beta shrinkage)

k *  PRS-CS (LD adjustment + Beta shrinkage) j

PRS validation

* Association between PRS and disease (CAD)
* 10-fold cross-validation
* Find the best PRS calculation based on AUC

- J
v
4 . N\
meta-PRS construction
* meta-PRS construction using 8 PRSs from each trait (CAD, T2D, ENS, BMI,
TG, TC, HDL-C, SBP) using the same PRS calculation method
- I J
( Prediction model development and validation w

« Development of prediction for disease using the best PRS and meta PRS on validation set
* Test the performance of prediction model based on AUC using test set

Figure 1. Flowchart of PRS prediction model development and
validation

2. Genotyping, Quality Controls and Imputation

For KoGES and GENIE data, all participants were genotyped using
a Korean Chip and variant calling was conducted with K-medoid

1311 Genotypes were quality—

algorithm to minimize the batch effect
controlled to improve the genotype accuracy via the pipeline shown in
Figure 2. We excluded subjects with missing genotype rate > 0.05,
with 0.2 < homozygosity chrX < 0.8, and heterozygosity rate > mean
+ 3 std. Then, any SNPs were filtered out if missing rates>0.05, or P-
value for Hardy-Weinberg equilibrium < 10™°. With the remaining SNPs
and subjects, genotypes were imputed using the NARD imputation

115

server using 1000 Genomes data as a reference penal ™. Finally, we

eliminated SNPs with low R-squared (Rsg<0.3) and multiallelic SNPs.
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All QC process was performed using PLINK and ONETool'® ', As a
result, 71,686 subjects with 17,527,243 SNPs genotyped and 9,348
subjects with 15,948,813 SNPs genotyped remained for KoGES and
GENIE data, respectively (Figure 2). Additional QC for calculating PRS
was performed by following the process from the previous study:
pruning out SNPs with Rsq >0.5 was conducted through PLINK!®. 10
Principal Components(PCs) from this genotyped data were obtained

for each data set using PLINK.

( Merged K-chip data W
+ 105,008 samples
* 11,123,327 variants

Variant QC

* MAF<0.01

* Duplicated SNP

¢ Missing rs number

Sample QC

« Different heterozygosity rate
* PCoutliers

* Missing phenotype

* Disease history

* No follow-up history

Validation set Test set
(KoGES) (H-PEACE +GENIE)
* 71,686 samples ¢ 9,348 samples
e 279,242 variants

* 448,211 variants
NARD Genotype Imputation

NARD Genotype Imputation

(cr=0.96) (cr=0.94)

Variant QC

* Rsq<0.3

* Multiallelic SNP

Sample QC

* Missing phenotypes (CAD, T2D, ENS)

* Imputed continuous phenotypes with their means

Validation set Test set
(KoGES) (H-PEACE +GENIE)
¢ 71,009 samples * 3,591 samples
e 17,527,243 variants * 15,948,813 variants

Figure 2. Flowchart of Genotyping, Quality Controls and Imputation of
KoGES and GENIE data




3. Ascertainment of the Target Disease, Clinical
Variables, and Lifestyle Variables

Operational definition of outcome

In this study, we have obtained summary statistics of CAD from the
Jenger Riken Institute, which utilized Myocardial Infarction and Angina
Pectoris BBJ summary statistics to get CAD summary statistics.
Following the definition from BBJ, in KoGES and GENIE, CAD cases
are composed of CAD, Myocardial Infarction, Myocardial Ischemia, and
Angina Pectoris. The variables used in the model are coded as follows.
The dependent variable is coded as binary, people with CAD are 1 and
normal people are O.

Clinical and lifestyle variables

Type 2 Diabetes(T2D) and Smoking Behavior(ENS) are regarded as
categorical variables. People with T2D are 1 and normal people are O.
For smoking behavior, BBJ provides two types of GWAS summary
statistics, Cigarettes per day (CPD) and Ever—never smoked (ENS).
Since the criteria of questionnaires for KARE were different from
HEXA and CAVAS cohorts, we have re—defined the smoking status as
“Have you smoked more than 400 cigarettes?” and classified those
who have not smoked more than 400 cigarettes as non—-smokers and
those who have smoked more than 400 cigarettes as smokers. For
hypertension, systolic blood pressure (SBP) and diastolic blood
pressure(DBP) are provided in BBJ summary statistics. For
dyslipidemia, total cholesterol(TC), triglycerides(TG), and high-
density lipoprotein cholesterol(HDL-C) are provided. However, GWAS
summary statistics for hypertension and dyslipidemia are not provided.
Therefore, instead of using binary phenotype data for each symptom,

we have used continuous biochemical data for each variable given. In
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particular, for dyslipidemia, TC = 230 mg/dL, HDL-C< 40 mg/dL, and
TG= 200 mg/dL are criteria for diagnosis in the Korean population.
For AGE is the age of subjects itself, without any transformation, and
SEX is coded as 1 to male and 2 to female. For BMI, we have excluded
4 samples whose height and weight are both missing and imputed the
missing value as the average. After imputation, we calculated BMI as
weight in kilograms divided by height in meters. In addition, samples
with both TC and HDL-C missing are excluded and the missing values

for TG are imputed with its mean.

4. Calculating Polygenic Risk Scores

PRS is the marginal effects of susceptible SNPs and is calculated as
the weighted sum of risk alleles where the weights are coefficients of
simple logistic regression. To construct PRS, two procedures are
required, variable selection and coefficients of selected SNPs. PRS is
useful for disease prediction because it is computationally efficient.
There are many different methods to calculate PRS considering
different interactive effects of genomic structure on SNPs. However,
since it has been reported that the LDpred method showed the best
performance in CAD prediction!, we have compared the performance
of six methods (LDpred-inf, LDpred—-auto, P+ T, C+ T, lassosum, PRS-
CS) of calculating PRS to see which method has the best performance
in the validation set. Considering the LD structure of our genotype
data, we calculated the LD score from KoGES Kchip data following the
protocol from the previous study’.

Pruning and Thresholding (P+T) refers to the strategy of first
applying informed LD pruning with an R-square threshold of 0.2 and

subsequently applying p-value thresholding, where the p-value
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threshold is optimized over a grid concerning prediction accuracy in
the validation data. Here, we only included SNPs with p-value<10™
for pruning, and the LD threshold for pruning was set to 0.5. Clumping
and thresholding (C+T) is a widely used method to derive polygenic
scores?. The significance threshold for index SNPs and secondary
significance threshold for clumped SNPs is set to 107°, and the LD
threshold for clumping was set to 0.5 as well. Lassosum is a method
for computing LASSO/Elastic-Net estimates of a linear regression
problem given summary statistics from GWAS, accounting for Linkage
Disequilibrium (LLD), via a reference panel?'. PRS-CS utilizes a high-
dimensional Bayesian regression framework, and is distinct from
previous work by placing a continuous shrinkage (CS) prior on SNP
effect sizes, which is robust to varying genetic architectures, provides
substantial computational advantages, and enables multivariate
modeling of local LD patterns®. Lastly, LDpred is a Bayesian PRS that
estimates posterior mean causal effect sizes from GWAS summary
statistics by assuming a prior for the genetic architecture and LD
information from a reference panel. Unlike P+ T, LDpred has the
desirable property that its prediction accuracy converges to the
heritability explained by the SNPs as the sample size grows!’. A key
feature of LDpred is that it relies on GWAS summary statistics, which
are often available even when raw genotypes are not. There are three
options for the LDpred method (inf, grid, and auto). LDpred—inf (using
GWAS summary statistics) is analogous to genomic BLUP (using raw
genotypes) because it assumes the same prior. In LDpred—auto, we
have calculated SNP heritability (h®) from LD score regression, and
then set initial vector p which ranges from 10™* ~ 0.9 divided into
either maximum of 80 or the number of cores. Then, we filtered outlier

predictions and averaged the remaining predicted values of PRS.
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Construction of meta—PRS
Meta-PRS was generated by integrating the eight optimal trait-
specific PRSs following after the results from the previous study of
meta PRS on the Chinese population®. The predictive performance of
meta—PRS scores considering the genetic effects of various traits and
PRS scores calculated by the LDpred method was compared through

two models: logistic regression and ridge regression.

(1) Calculate PRS for each trait using the fixed optimal PRS method
and save the weights of each SNP used for PRS calculation in the
train set.

(2) 10-fold cv Elastic—net regression for the following model to find
the best lambda:
CAD ~ age + sex + PC1~10 + standardized 8 PRS s

(3) Using the optimized hyperparameter (alpha and lambda) in ridge
regression, obtain the beta for each PRS and save the mean, std,
and effect size for each PRS.

(4) Comparing two different models with PRScap and meta—PRS in
AUC

We conducted an elastic—net logistic regression with 10-fold cross—
validation using the R package ‘g/mnet’to fit a parameter lambda for
Ridge regression. Adjusting age, sex, and 10 PC scores, we assessed
the association between the eight optimal PRSs and CAD in the training
set and then obtained the effect size of the eight PRSs, which was used
for the weight of meta—PRS calculation. Finally, the meta—PRS for CAD
was constructed by summing the standardized optimal trait—specific
PRSs weighted by adjusted estimates B4, .., Bg derived from the ridge
regression model. The meta—PRS can be calculated via a weighted sum

by using genotype data,

m
metaPRS; = &xl + -+ &xi
= %
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where m is the total number of traits, o;,"'-, gg are the empirical
standard deviations of each of PRS in the training set, i, --, Bs are
the effect sizes for the i™ PRSs from the regression, and x; is the PRS;
centered to zero with the mean of PRS in i trait. ; was considered
to be zero for the i™ trait if the PRS was not included in the variable
selection. All this standardization information was saved to apply to
the test data. Furthermore, we have considered a different
combination of eight PRSs via penalized regression model to derive
the best meta—-PRS. Ridge regression methods were used to calculate

the weight of each PRS in the meta—-PRS calculation.

Elastic—net and Ridge regression

Elastic—net complements the ridge and lasso by penalizing with both
I, and I, norm®. This has the effect of effectively shrinking the
coefficients and setting some coefficients to zero.

Ridge regression is particularly useful to mitigate the problem of
multicollinearity in linear regression, which commonly occurs in
models with large numbers of parameters. In general, the method
provides improved efficiency in parameter estimation problems in
exchange for a tolerable amount of bias.

In this study, we employed Ridge logistic regression to model the
associations between the 8 PRSs and CAD, adjusting for sex, age, and
10 genetic PCs. Also, we have calculated meta—PRS using selected
PRS as a result of 10-fold CV elastic—net regression. The best model,
in terms of the highest cross—validated AUC (area under receiving—
operating characteristic curve), was selected as the final model and
held fixed for validation in the rest of the data. The final adjusted
coefficients for each PRS in the penalized logistic regression are

compared with the univariate estimates.
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Generation of trait—specific polygenic risk scores

Eight trait-specific PRSs (CAD, SBP, T2D, TC, TG, HDL-C, ENS,
and BMI) were separately constructed by summing the number of
corresponding risk alleles (0, 1, or 2) for each subject, weighted by
the effect size of variants on the corresponding trait. Variants were
chosen among the common SNPs with BBJ to calculate PRS. A detailed
list of studies for CAD GWAS analysis in BBJ is available in Table S1.

Assuming the effect size of optimal PRScap should be the largest in
meta—-PRS for CAD, we have fixed the PRS calculation method to one
that showed the best AUC for predicting CAD. Therefore, optimized
PRS for each trait was calculated based on trait—-specific summary
statistics from the large—scale BBJ GWAS in East Asian ancestry. The
distribution of eight PRS is shown as a boxplot in Figure S1. Each
optimal PRS was standardized by calculating the z-score (zero mean,

unit standard deviation).
5. Statistical analysis

To compare the prediction accuracy, we first used PRS(PRScap)
which was calculated through the LDpred-auto in KoGES data using
BBJ as reference data. Figure 3 illustrates the whole model
comparisons. Model I (M1) is a null model which has age and sex as
variables. Model IT (M2) is a model to show the effect of PRScsp and
Model [I-prime (M2’) shows the pure effect of PRScap without age and
sex. Model IIT (M3) checks whether PC scores should be included in
the model to obtain a better performance or not. Model IV (M4) shows
the effect of meta—PRS and Model IV-prime (M4’) shows the pure
effect of meta—PRS without age and sex. In addition, the final models

contain PRS, seven CAD-related traits (BMI, T2D, ENS, SBP, TG, TC,
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HDL-C), and other covariates (age, sex, PCy, -, PC10). PRS is put into
the CAD prediction model as the main variable, and the logistic
regression analysis method is used to analyze and test the significance
of genetic risk factors in CAD. Accuracies of the disease prediction
models were assessed via 10-fold cross—-validated AUC. The final
models were evaluated in the test data.

To compare the clinical usefulness of PRS, we have divided the
study population into three risk groups (high, medium, and low) and
compared the AUC of the integrated model and the p-value of PRS in
each group. Moreover, we have calculated Net Reclassification
Improvements(NRD?! in the total population of KoGES and GENIE using
the R package nricens’ For the risk difference—based NRI calculation,
the cutoff value of risk difference was specified as 0.02, where UP and
DOWN are defined as Prew — DPstandard > © and DPstandard — Prew > O,
respectively. Dsundara and Drew are predicted individual risks from a
standard and a new prediction model, respectively, and § corresponds
to the cutoff. Interval estimation is based on the percentile bootstrap

method.

Simple Models (without clinical variables)
M1 : CAD ~ age + sex
M2 : CAD ~ age + sex + PRScap
M2’: CAD ~ PRScap
M3 : CAD ~age + sex + PC;+...4+PCyo + PRScap
M4 : CAD ~ age + sex + metaPRS
M4’: CAD ~ metaPRS
Integrated Models (with scaled clinical variables)
MS5 : CAD ~ age + sex + metaPRS + traditional clinical variables

M6 : CAD ~ age + sex + PRScap + traditional clinical variables

Figure 3. Model Comparison simple models and integrated models
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III. Results

1. Descriptive Statistics

Descriptive statistics analysis for each population was done after the
final subject QC. We excluded samples with either one of the binomial
variables(CAD, T2D, ENS) missing, and then imputed the missing
values for the continuous variables(TC, TG, HDL-C, BMI, SBP) with
their means. Along with QCed genotype data, we had 71,686 samples
in KoGES with 4,008,884 SNPs, and 9,847 samples in GENIE with
3,708,789 SNPs as final data for analysis.

Descriptive characteristics of KoGES were calculated in CAD case
and control groups (Table 1). CAD cases are 1917 (2.7%) among
71,009 samples. Among CAD case groups, 52.1% were men and there
was more percentage of people who have Type 2 diabetes (17.8%) and
have smoked more than 400 cigarettes(38.9%) than control
groups(6.7% and 25.9% respectively). The case group had a lower
level of HDL-cholesterol (mean: 48.2, std: 11.9) than the control
group. Descriptive characteristics for GENIE are attached in Table S2.
Pearson correlation tests among different clinical variables were
conducted in KoGES. Figure S2 shows the correlation plot of 11
variables in KoGES and Figure S3 shows the result plot of the
correlation coefficient with p-value<0.05 using /. As a result, mean
blood pressure(MBP) and DBP were excluded for the further analysis
because the correlation coefficients with SBP were larger than 0.7

(0.962 and 0.764 respectively).
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Table 1. Descriptive characteristics of KoGES

Risk factor Controls Cases
Sample size, N 69092 (97.3) 1917 (2.7)
Male, (%) 24522 (35.5) 998 (52.1)
Body mass index, kg/m’ 24 (2.9) 249 (2.9)
Total cholesterol, mg/dl 197.5 (35.3) 175.3 (37.7)
High-density lipoprotein cholesterol, 52.2(13.2) 48.2 (11.9)
mg/dl
Triglycerides, mg/dl 130 (88.8) 131.5 (80.6)
Systolic blood pressure, mmHg 122.7 (15.4) 125.1 (15)
Diastolic blood pressure, mmHg 76.5 (10.1) 76.6 (9.8)
Type 2 diabetes (%) 4607 (6.7) 358 (18.7)
Ever smokers(>400 cigarettes), (%) 17888 (25.9) 745 (38.9)

Values are mean (Standard deviation) or N (%)

2. Selection of PRS calculation method

In this study, we have calculated performance accuracy among
different PRS toward CAD. LDpred showed the best performance in
the simple logistic regression. Therefore, we have compared the AUC
between two LDpred methods in a null model(M1) and M5. The M1
performance in the train set is compared with a null model which has
all the covariates and clinical variables for logistic regression. As a
result, the LDpred—auto method has the best significant improvement
in predicting CAD in the logistic model from AUC: 0.780 to AUC: 0.785
(p—value<0.000) (Table 2 and Table 3). Therefore, we have selected
the LDpred—auto method to calculate PRS for the other 7 traits to

calculate meta-PRS.



Table 2. Results of simple logistic regression of CAD ~ PRScap

method beta p-value AIC AUC
C+T 0.053 0.000 16302 0.545
P+T 0.041 0.28 16335 0.505
lassosum 1.159 0.000 16235 0.567
LDpred-inf 0.648 0.000 16257 0.545
LDpred-auto 0.572 0.000 16206 0.578
PRS-CS 0.620 0.000 16246 0.564

Table 3. Comparing the AUC of Integrated model with PRScap

method Null AUC Model AUC p-value of
PRS

LDpred-auto 0.780 0.785 0.000

LDpred-inf 0.780 0.782 0.000

P+T 0.780 0.780 0.726

3. Construction of meta—PRS for CAD

Genetic correlations

The results of simple logistic regression from six different PRS
calculation methods are provided in Table 4. This presents genetic and
environmental correlations between the PRSs of CAD-related traits
using LDpred—auto in univariate CAD analysis. Significantly positive
genetic correlations were found between PRScap and CAD (8=0.552,
p-value<0.000), between PRSsgp and CAD (=0.741, p-value<0.000),
and between PRStc and CAD (8=0.361, p—value<0.005). In addition,
Pearson correlation test was done among 9 different PRS calculated
through LDpred—auto and excluded one of the variables which have
the correlation coefficient larger than 0.7. Figure S4 shows the result

plot from the test and Figure S5 shows the results with p—value<0.05.
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As a result, we have excluded PRS for DBP because the correlation
with SBP was 0.728. Furthermore, the results for correlation test

among clinical variables and PRSs are in Figure S6.

Table 4. Simple logistic regression model for each PRS

Logistic regression model

Y(CAD) PRSi only
PRS; beta p-value

PRS.CAD 0.552 0.000
PRS.BMI 0.161 0.081
PRS.T2D -0.099 0.014
PRS.SBP 0.741 0.000
PRS.ENS 0.846 0.165
PRS.TG -0.021 0.797

PRS.TC 0.361 0.004
PRS.HDL -0.621 0.35

Results of penalized regression for meta—PRS construction

We calculated two meta—PRS from the results of Ridge regression
and elastic net regression. As a result of 10-fold CV elastic—net
regression, minimum lambda which had the highest AUC was chosen
for the ridge regression. 8 PRSs (PRScap, PRSgmi, PRSsgp, PRSgns,
PRStop, PRSte, PRStg, PRSup) were used for the construction of
metaPRSy in the ridge regression, and 3 PRSs (PRSc¢ap, PRSsgp, PRStap)
were chosen for the construction of metaPRS; as a result of elastic—
net regression.

The effect sizes of each PRS are in Table 5 and Table 6. The same
effect size for each PRS was used for the construction of PRS in the
test data. For unmatching SNPs from the train data in the test
data(~10,000), we have substituted the risk alleles as the expected

value ( 2+*MAF of each SNP) in the KoGES data.
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Table 5. Result of Ridge regression model with all 8 PRS

Y(CAD) ~ Age +sex + PC1~10 + 8 PRS

beta (weight for meta-

PRS for each trait PRS) p-value
PRS.CAD 0.241 0.000
PRS.BMI 0.021 0.439
PRS.T2D -0.040 0.249
PRS.SBP 0.091 0.000
PRS.ENS 0.034 0.278

PRS.TG -0.027 0.255
PRS.TC 0.043 0.082
PRS.HDL -0.019 0.463

Each PRS is standardized with its mean and std. regression model is adjusted with
age, sex, and pc scores.

Table 6. Result of 10-fold CV elastic—net regression model

PRS for each trait beta (weight for meta-PRS)
PRS.CAD 0.2216
PRS.BMI 0.0000
PRS.T2D -0.0002
PRS.SBP 0.0565
PRS.ENS 0
PRS.TG 0
PRS.TC 0
PRS.HDL 0

Each PRS is standardized with its mean and std. Regression model is adjusted with
age, sex, and pc scores. (Lambda=0.001186663)
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4, Integrated model using PRS and clinical variables

As a result of comparing the prediction accuracy between the
traditional model with clinical variables and the integrated model with
an additional genetic effect (Figure 3), the model with meta-PRS and
clinical variables showed the best performance (AUC: 0.785). Though
the simple model with meta—-PRS showed better performance than the
simple model with PRScap (M2 AUC: 0.733, M4 AUC: 0.735, Delong
test p-value<0.05), the integrated model with PRScap showed
comparable performance(AUC: 0.784, Delong—-test p—value>0.05) with
the integrated model with meta-PRS. Therefore, both integrated
models with PRScap and meta—-PRS were selected as the final model.
The comparison of the model performance with PRScap, metaPRS; and
metaPRSg in KoGES is summarized in Table 7, Table 8, and Table 9.

In detail, the final model with PRScap (M6) showed a significant
effect on predicting CAD in KoGES data. Figure S7 is a forest plot that
represents the Odds Ratio(OR) and the 95% Confidence Interval(95%
CDof each variable used in the logistic regression. Type 2
Diabetes(T2D) and Smoking Behavior(more than 400 cigarettes) also
showed significant OR larger than 1 in predicting CAD(OR: 1.46,
95%CIL: [1.28, 1.66], p-value<0.000, and OR: 1.23, 95%CI: [1.08,
1.41], p-value=0.005, respectively). Moreover, BMI has OR larger
than 1 (OR: 1.37, 95%CI: [1.30, 1.43], p—value<0.000). In addition,
females had less likelihood of CAD outbreak than males(OR: 0.85,
95%CI: [0.75, 0.98], p—value<0.05), and AGE has OR slightly larger
than 1 (OR: 1.09, 95%CI: [1.08,1.10], p—value<0.000). Finally, Figure
4 shows the ROC curve for M1, M2, M4, and M5.

Further, the final model was tested in the GENIE data for validation,
AUC: 0.732 and 0.731, respectively PRScap and meta—PRS (Table 10).
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Unlike in the KoGES data, the increment due to PRS was not

statistically significant in the test data.

Table 7. Model Comparison(AUC) of PRScap and metaPRSg (ridge)

Model AUC De Long test
p-value
M2’ vs M1 0.576 0.724 0.000
M4’ vs M1 0.580 0.724 0.000
M1 vs M2 0.724 0.733 0.000
M1 vs M4 0.724 0.735 0.000
M2 vs M3 0.733 0.734 0.446
M2 vs M4 0.733 0.735 0.048
M4 vs M5 0.735 0.785 0.000

Table 8. Model Comparison(AUC) of PRScap and metaPRS; (elastic—net)

Model AUC De Long test
p-value
M2’ vs M1 0.579 0.724 0.000
M1 vs M2 0.724 0.733 0.000
M2 vs M3 0.733 0.734 0.446
M2 vs M4 0.733 0.735 0.014
M2 vs M5 0.733 0.784 0.000
M4 vs M5 0.735 0.785 0.000

Table 9. Final Model CAD ~ optimal PRS + age + sex + BMI + T2D +
SBP + TC + TG + HDL

M6 (PRScap) M5 (meta-PRS)

metaPRS; p-value OR AUC p-value OR AUC

metaPRS; 0.000 1.323 0.784 0.000 1.340 0.785
metaPRSs 0.000 1.321 0.784 0.000 1.348 0.785
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Table 10. AUC of the final models in the test data(GENIE)

Model AUC
M1l vs M2 0.7047 0.7052
MC vs M5 0.7310 0.7318
MC vs Mé6 0.7310 0.7311
AUC: 0.733
o | AUC:(.735
-‘E c AUC:0.724
1f0 ois ofe oT4 072 ofo

Specificity

Figure 4. ROC curve for M1, M2, M4, and M5 in KoGES M1(CAD ~ age +
sex) had AUC of 0.724, M2(CAD ~ PRScap + age + sex) had AUC of
0.735, M4(CAD ~ metaPRSg+ age + sex) had AUC of 0.733, and M5(CAD
~ metaPRSg + age + sex + BMI + T2D + SBP + TC + TG + HDL)
showed the highest AUC of 0.785. Note: All continuous variables were
scaled using their SD.
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5. Classification of CAD risks

The AUC of the integrated model and p-value of PRS in three risk
groups(high, medium, and low) are in Table 11. Instead of only
comparing AUC in different risk groups, we also compared NRI in the
total study population (KoGES + GENIE). NRI of the integrated model
with PRScap compared to the traditional model was 0.072+0.0127 and
NRI of the integrated model with meta-PRS was 0.088+0.0135. Both
were positive values which means PRS helped classify CAD cases into
a high-risk group. Between the two models, NRI is 0.0179 which

means adding meta—-PRS had a more effect on classification than

PRScap.
Table 11. Results of risk classification of PRS in KoGES
PRS risk-group AUC OR of PRS p-value
PRScap low 0.750 1.184 0.883
medium 0.777 1.190 0.320
high 0.805 1.625 0.000
metaPRS;  low 0.751 1.017 0.137
medium 0.777 1.101 0.073
high 0.807 1.381 0.000
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IV. Discussion

This study supports that PRS as a genotypic effect can be used as a
useful tool to predict CAD outbreaks in accordance with traditional
clinical wvariables such as hypertension, obesity, diabetes,
dyslipidemia, smoking status, etc. Furthermore, we were able to see
the difference in the effect of integrated risks on CAD by risk group
according to the level of PRS score. Through this study, it was found
that the PRS score calculated by the LDpred-auto method had a
statistically significant improvement in predictive ability compared to

the model with only existing clinical variables in KoGES.

The major strengths of the current study include our PRS and meta—
PRS included most of the variants that underlay CAD risk capturing
the full spectrum of genomic variants. Here, to derive a PRS for CAD,
we used the current large GWAS not only of CAD but also of CAD-
related traits from BBJ. Finally, it was the first attempt to construct
meta—PRS in the Korean population, which enabled us to
comprehensively evaluate the combination of polygenic risk and
traditional clinical risk. Several studies examined whether the
genome-wide CAD PRSs improved risk prediction beyond the PCE in
European ancestry populations®. Using a risk threshold of 7.5%, the
addition of the polygenic risk score to pooled cohort equations
resulted in an overall net reclassification improvement of 4.0% [95%
CI, 3.1% to 4.9%]) in the UK biobank. In our study, adding the PRS to
the traditional model yielded an increment of about 0.005 in AUC and
an NRI of 0.0772 at a risk threshold of 2% in the KoGES data. We also
demonstrated that the meta—PRS provided statistically significant yet

modest discrimination. In our analysis, we observed a comparable
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level of risk (OR 1.32, 95% CI 1.26-1.39), supporting that the meta-—

PRS may serve as a risk—enhancing factor for CAD.

However, the general clinical utility of PRS and meta-PRS in CAD
risk reclassification was uncertain in the test data, which contained OR
of 1 in 1its 95%CI. This infers that there might have been several
limitations in our study. The main reason might be originated from the
discrepancies among three different groups used for PRS calculation,
BBJ(Japanese origin), train data (KoGES, Korean origin), and test data
(GENIE, Korean origin). Therefore, in further studies, meta-GWAS of
the East Asian population for the reference data can be used to

calculate PRS.

The result implies that M2 which only has age and sex as its
explanatory variables has a pretty high AUC compared to other models
with more variables. As we can see here, age is the most important
risk driver in the risk prediction model. The effect of age might has
resulted in overestimation or underestimation of risk of CAD, whereas
genetic risk is age—independent and can be determined early in life.
Our findings highlight the concept that PRS may provide
complementary information to better stratify CAD risks and inform
clinical decision—making for primary prevention. Further research on

the models without age will be done to support this idea.

In this model, PRS for CAD had a high odds ratio compared to other
well-known clinical variables. However, PRSs for other variables did
not show significant OR for CAD outcomes. In particular, all three
phenotypes related to dyslipidemia did not show consistent effect

signs in different combinations of variables.
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There might be possible explanations for this. First, this might be
due to the high percentage of medication for hyperlipidemia in the
Korean population. Causal association between low-density
lipoprotein—cholesterol (LDL-C) and Ischemic Heart Disease(IHD) was
observed in the previous Mendelian Randomization analysis, but high-
density lipoprotein—cholesterol (HDL-C) and triglyceride (TG) did not
show causal association with IHD?*. However, a direct measure of
LDL-C was not obtained in some subgroups of KoGES, and Friedewald
formula® to calculate LDL-C from TG, TC, and HDL-C is known to be
inaccurate in case of high triglyceride (>400 mg/dL). Another
explanation might be that dyslipidemia has a long—term pathology
throughout one’s lifetime®®. Hence, considering the time effect of each

variable might have been crucial in this type of follow—up cohort data.

Secondly, in the case of smoking behavior, PRSgns showed
consistently significant and high OR as the phenotype of smoking
behavior itself also showed the same direction of effect size. However,
this effect might be overstated due to the misclassification followed
by different definitions of current smokers in BBJ and three KoGES
cohorts. Some past smokers who have smoked more than 400
cigarettes might be classified as current smokers or current smokers

who have not smoked more than 400 cigarettes yet as non—smokers.

Overall, it has been demonstrated that the high genetic risk of CAD
may be mitigated by statin use and healthy lifestyle in both primary
and secondary prevention and that individuals at high genetic risk were
found to derive the greatest benefit from the therapeutic
intervention?’. The randomized controlled trials focusing on individuals

at intermediate or high clinical risk, especially Korean, are required to
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confirm the clinically meaningful benefit and the cost—effectiveness of

polygenic risk stratification for CAD.

Additionally, some other limitations should also be noted. First of all,
though the sample size for the PRS calculation was large enough, the
sample size of the test was not large. Next, baseline phenotyping
according to a well-defined and standardized protocol was lacking due
to different definitions of some traits. Accordingly, a more complex
consideration of the relationship between clinical variables was
unavailable, possibly resulting in the inconsistent effect of well-known

risk factors on CAD.

In further studies, we would like to supplement the integrated model
by using the Cox survival regression method. Since both train and test
data used for this study are composed of follow-up cohort data, further
study can examine the risk of development over time. This way, we
can also consider the time effect of disease outbreak with respect to
the genotype data and utilized the follow—up data for a more precise

phenotype of the sample population.
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V. Conclusion

This study has shown that adding PRS to the traditional prediction
model has a significant impact on improving prediction accuracy.
Moreover, the predictive performance of meta-PRS considering the
genetic effects of various traits and PRS scores calculated by the
existing LDpred method was compared through logistic regression. In
addition, CAD risk group classification according to PRS calculated by
each method was conducted. However, in this study, the validation was
not successful to show the additive effect on the performance of PRS
in test data. This might be because the two population have different
features. In particular, calculating PRS is affected by the characteristic
of the population such as MAF, so considering a more general feature

of the Korean population is needed.

On top of that, we assessed the various models to KoGES data
consisting of all Koreans. The optimal PRS for CAD risk is calculated,
and the genetic effect in CAD is investigated by using it as a risk
predictor. In addition, a disease prediction model including clinical
variables related to the disease is created to confirm the acquired
effects of clinical variables. Finally, we have presented a CAD
prediction model using these variables to model a more accurate

prediction system for CAD risk.

The expected effect of this study is to compare the performance of
the CAD prediction model using only existing clinical variables and the
PRS-added model to confirm the clinical usefulness of PRS in CAD

prediction in the East Asian population.

3 O "':l"\-_s _'k.::-'._ 1'_



Reference

1.  Vinkhuyzen AA, Wray NR, Yang J, Goddard ME, Visscher PM. Estimation
and partition of heritability in human populations using whole—genome
analysis methods. Annu Rev Genet. 2013;47:75-95. doi:10.1146/annurev-
genet—-111212-133258

2.  Riveros—Mckay F, Weale ME, Moore R, et al. Integrated Polygenic Tool
Substantially Enhances Coronary Artery Disease Prediction. Circ Genom
Precis Med. Apr 2021;14(2):e003304. doi:10.1161/CIRCGEN.120.003304

3. Said MA, Verwelj N, van der Harst P. Associations of Combined Genetic
and Lifestyle Risks With Incident Cardiovascular Disease and Diabetes in the
UK Biobank Study. JAMA Cardiology. 2018;3(8):693-702.
doi:10.1001/jamacardio.2018.1717

4. Hajar R. Risk Factors for Coronary Artery Disease: Historical
Perspectives. Heart Views. Jul-Sep 2017;18(3):109-114.
doi:10.4103/heartviews.Heartviews_106_17

5. Song Y, Choi JE, Kwon YJ, et al. Identification of susceptibility loci for
cardiovascular disease in adults with hypertension, diabetes, and
dyslipidemia. J 7rans/ Med. Feb 25 2021;19(1):85. doi:10.1186/s12967-021-
02751-3

6. LiM, ChenY, Yao J, et al. Genome—-Wide Association Study of Smoking
Behavior Traits in a Chinese Han Population. Front Psychiatry.
2020;11:564239. doi:10.3389/fpsyt.2020.564239

7. Inouye M, Abraham G, Nelson CP, et al. Genomic Risk Prediction of
Coronary Artery Disease in 480,000 Adults: Implications for Primary
Prevention. J Am Coll Cardiol. Oct 16 2018;72(16):1883-1893.
doi:10.1016/j.jacc.2018.07.079

8. Lu X, Liu Z, Cui Q, et al. A polygenic risk score improves risk
stratification of coronary artery disease: a large—scale prospective Chinese
cohort study. FEur Heart J May 7 2022;43(18):1702-1711.
doi:10.1093/eurheartj/ehac093

9. Agbaedeng TA, Noubiap JJ, Mofo Mato EP, et al. Polygenic risk score
and coronary artery disease: A meta—analysis of 979,286 participant data.
Atherosclerosis. Sep 2021;333:48-55.
doi:10.1016/j.atherosclerosis.2021.08.020

10. Dikilitas O, Schaid DJ, Kosel ML, et al. Predictive Utility of Polygenic
Risk Scores for Coronary Heart Disease in Three Major Racial and Ethnic
Groups. Am J Hum Genet. May 7 2020;106(5):707-716.
doi:10.1016/j.ajhg.2020.04.002

3 1 -':r-\.i '\':i' 1:“



11. Kim Y, Han BG. Cohort Profile: The Korean Genome and Epidemiology
Study (KoGES) Consortium. /nt J Epidemiol Apr 1 2017;46(2):e20.
doi:10.1093/ije/dyv316

12. Lee C, Choe EK, Choi JM, et al. Health and Prevention Enhancement (H-
PEACE): a retrospective, population—based cohort study conducted at the
Seoul National University Hospital Gangnam Center, Korea. BMJ Open. Apr
19 2018;8(4):e019327. doi:10.1136/bmjopen-2017-019327

13. Moon S, Kim YJ, Han S, et al. The Korea Biobank Array: Design and
Identification of Coding Variants Associated with Blood Biochemical Traits.
Sci Rep. Feb 4 2019;9(1):1382. doi:10.1038/s41598-018-37832-9

14. Seo S, Park K, Lee JJ, Choi KY, Lee KH, Won S. SNP genotype calling
and quality control for multi-batch—-based studies. Genes Genomics. Aug
2019;41(8):927-939. doi:10.1007/s13258-019-00827-5

15. Yoo S-K, Kim C-U, Kim HL, et al. NARD: whole-genome reference
panel of 1779 Northeast Asians improves imputation accuracy of rare and
low—-frequency variants. Genome Medicine. 2019/10/22 2019;11(1):64.
doi:10.1186/s13073-019-0677-z

16. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-
genome association and population—-based linkage analyses. Am J Hum Genet.
Sep 2007;81(3):559-75. doi:10.1086/519795

17. Song YE, Lee S, Park K, Elston RC, Yang HJ, Won S. ONETOOL for the
analysis of family-based big data. Bioinformatics. Aug 15 2018;34(16):2851-
2853. doi:10.1093/bioinformatics/bty 180

18. Ye Y, Chen X, Han J, Jiang W, Natarajan P, Zhao H. Interactions Between
Enhanced Polygenic Risk Scores and Lifestyle for Cardiovascular Disease,
Diabetes, and Lipid Levels. Circ Genom Precis Med. Feb 2021;14(1):e003128.
doi:10.1161/circgen.120.003128

19. Vilhjalmsson BJ, Yang J, Finucane HK, et al. Modeling Linkage
Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am J Hum
Genet. Oct 1 2015;97(4):576-92. doi:10.1016/j.ajhg.2015.09.001

20. Priveée F, Vilhjalmsson BJ, Aschard H, Blum MGB. Making the Most of
Clumping and Thresholding for Polygenic Scores. The American Journal of
Human Genetics. 2019/12/05/ 2019;105(6):1213-1221.
doi:https://doi.org/10.1016/j.ajhg.2019.11.001

21. Mak TSH, Porsch RM, Choi SW, Zhou X, Sham PC. Polygenic scores via
penalized regression on summary statistics. Genet Epidemiol. Sep
2017;41(6):469-480. doi:10.1002/gepi.22050

32 -':r-\.i '\':i' 1:“



22. Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic prediction via
Bayesian regression and continuous shrinkage priors. Nat Commun. Apr 16
2019;10(1):1776. doi:10.1038/s41467-019-09718-5

23. Zou H, Hastie T. Regularization and Variable Selection via the Elastic
Net. Journal of the Royal Statistical Society Series B (Statistical
Methodology). 2005;67(2):301-320.

24. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., Vasan RS. Evaluating
the added predictive ability of a new marker: from area under the ROC curve
to reclassification and beyond. Stat Med Jan 30 2008;27(2):157-72;
discussion 207-12. doi:10.1002/sim.2929

25. Elliott J, Bodinier B, Bond TA, et al. Predictive Accuracy of a Polygenic
Risk Score—Enhanced Prediction Model vs a Clinical Risk Score for Coronary
Artery Disease. JAMA. Feb 18 2020;323(7):636-645.
doi:10.1001/jama.2019.22241

26. Lee SH, Lee JY, Kim GH, et al. Two-Sample Mendelian Randomization
Study of Lipid levels and Ischemic Heart Disease. Korean Circ J. Oct
2020;50(10):940-948. doi:10.4070/kcj.2020.0131

27. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the
concentration of low—density lipoprotein cholesterol in plasma, without use
of the preparative ultracentrifuge. Clin Chem. Jun 1972;18(6):499-502.

28. Brunner FJ, Waldeyer C, Ojeda F, et al. Application of non-HDL
cholesterol for population-based cardiovascular risk stratification: results

from the Multinational Cardiovascular Risk Consortium. Lancet. Dec 14
2019;394(10215):2173-2183. doi:10.1016/S0140-6736(19)32519-X

29. Whayne TF, Jr., Saha SP. Genetic Risk, Adherence to a Healthy Lifestyle,
and Ischemic Heart Disease. Cwrr Cardiol Rep. Jan 10 2019;21(1):1.
doi:10.1007/s11886-019-1086-2

30. Koyama S, Ito K, Terao C, et al. Population-specific and trans—ancestry
genome-wide analyses identify distinct and shared genetic risk loci for
coronary artery disease. Nat Genet. Nov 2020;52(11):1169-1177.
doi:10.1038/s41588-020-0705-3

31. Kanai M, Akiyama M, Takahashi A, et al. Genetic analysis of quantitative
traits in the Japanese population links cell types to complex human diseases.
Nat Genet. Mar 2018;50(3):390-400. doi:10.1038/s41588-018-0047-6

32. Suzuki K, Akiyama M, Ishigaki K, et al. Identification of 28 new
susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet.
Mar 2019;51(3):379-386. doi:10.1038/s41588-018-0332-4

33 '}“5 ui 1—l|



33. Akiyama M, Okada Y, Kanai M, et al. Genome-wide association study
identifies 112 new loci for body mass index in the Japanese population. Nat
Genet. Oct 2017;49(10):1458-1467. doi:10.1038/ng.3951

34. Kanai M, Ulirsch J, Karjalainen J, et al. Insights from complex trait fine—
mapping across diverse populations. 2021.

34 . _H _ 1_'_]'| B

1

I

11



Supplementary Figures and Tables

Table S1. Sources of BBJ summary statistics used for PRS calculation
Sources of summary statistics used for each trait—specific PRS
construction and matched SNPs of KoGES used for PRS rppred-auto
calculation

. Commo

Trait Source Types Ancestr Sal(ngle jlze Metho  Referen  n SNPs

" yp cestry case d ce (KoGE
control)
S)
212,453 Meta-
CAD BBJ ' GWAS  Japanese  (29.319/183, analysi <YM 510458
(Riken) et al.
134) s
SBP BBl  GWAS  Japanese 145,505  GWAS Kz‘;iﬁ t 510462
DBP BB]  GWAS Japanese 145515  GWAS Ki‘;iﬁ t 510462
177,415 Meta- Suzuki
T2D BBJ GWAS  Japanese  (45,383/132, analysi ot al 2 526,674
032) s '

BMI BBl  GWAS  Japanese 163,835  GWAS Aektlzla?;a 510,562
TC BBl  GWAS  Japanese 135808  GWAS Kz‘;iﬁ 513,041
TG BBl  GWAS  Japanese 111,667  GWAS Kz‘;iﬁ 513,041

HDL-C BBl  GWAS  Japanese 74,970 GWAS Kz‘;iﬁ 513,041
S?é‘;l]‘él;g BB]  GWAS  Japanese 88,277 GWAS M:Eiet 510,462

PRS, polygenic risk score; GWAS, genome-wide association study; BP, blood pressure;
SBP, systolic BP; DBP, diastolic BP; T2D, type 2 diabetes; BMI, body mass index; HDL-
C, high density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride; ENS, ever-
never smoked; Common SNPs are used for PRS calculation.
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Table S2. Descriptive characteristics

of GENIE

Characteristics (N=3,591)

Mean (SD) or n (%)

Demographic data
Age
Sex
Female
Male
Disease history
CAD
T2D
ENS
Anthropometric data
BMI
SBP
Blood Lipid levels
TC
TG
HDL-C

46.26 (10.43)

1526 (42.5)
2065 (57.5)

108 (3.0)
119 (3.3)
1357 (37.8)

23.15 (3.15)
115.35(13.34)

193.47 (31.46)
109.17 (75.44)
53.34 (11.33)
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Figure S1. Boxplot for PRS of 9 traits in KoGES
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Figure S2. Correlation Plot of 11 variables in KoGES This figure
represents the sign and size of the correlation coefficient calculated through
Pearson’s correlation test. Since MBP, SBP, and DBP have high correlation
coefficients and the sign is positive, we only included SBP in our model
which is clinically more important and useful. Also, SEX and ENS have a
correlation of —0.714; however, since both variables are crucial in their
relationship with CAD in previous studies, we included both variables in our
model.
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Figure S3. Pearson correlation coefficients(p—value<0.05) of clinical
variables in KoGES

005 0057 002 0013 0048 013 0088

oy 4 o0 s " P 0008
,..' o PRrs 30_fixed
< 007 s 00t 0ot 00t
A3
%
Peflsse
o 00z 00 0008 00

Q’il

Figure S4. Correlation plot of trait—specific PRSs in KoGES Correlation
coefficients and p—values were estimated from the Pearson correlation test
for each pair of PRSs. Likely, SBP and DBP have a correlation coefficient of
0.726. PRS, polygenic risk score; CAD, coronary artery disease; BP, blood
pressure; BMI, body mass index; T2D, type 2 diabetes; TC, total
cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides.
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Figure S5. Pearson correlation coefficients(p—value<0.05) of PRSs in
KoGES PRSs include 9 PRS, and metaPRSg
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Figure S6. Pearson correlation test (A) Correlation test of 8 PRS,
metaPRSg, and CAD in GENIE (B) Correlation test of clinical variables in
GENIE
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Figure S7. Forest Plot for Integrated Model (metaPRSg and PRScap) in
KoGES The forest plot represents the Odds Ratio and the 95% Confidence
Interval of each component used in the logistic regression model.
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