
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 
 

Master’s Thesis of Public Health 

 

 

Predicting Coronary Artery 

Disease Risk using Polygenic Risk 

Scores and Clinical Variables in 

the East Asian Population  
 

 

동아시아 인구 집단에서의 다유전자 위험점수와 

임상변수를 이용한 관상동맥질환 위험예측 

 

 

 
February 2023 

 

 

 

Graduate School of Public Health 

Seoul National University 

 Public Health Major 

 

Yuree Chung



 
 

Predicting Coronary Artery 

Disease Risk using Polygenic Risk 

Scores and Clinical Variables in 

the East Asian Population  

  
 

Name of Examiner Sungho Won 

 

Submitting a master’s thesis of 
Public Health 

December 2022 

 

Graduate School of Public Health 

Seoul National University 
Public Health Major 

 

Yuree Chung 

 

 

Confirming the master’s thesis written by 

Yuree Chung 

December 2022 

 

Chair       Joohon Sung     (Seal) 

Vice Chair      Woojoo Lee     (Seal) 

Examiner       Sungho Won    (Seal) 



 

 １ 

Abstract 
 
Background: Coronary Artery Disease (CAD) is a disease in which the 

coronary arteries that supply blood to the heart are narrowed by 

atherosclerosis or blood clots, resulting in myocardial ischemia or 

myocardial infarction due to poor blood supply. CAD has a high 

heritability of 40% to 60%, and multiple investigation has been 

conducted to provide CAD with large-scale genetic data for non-

Hispanic whites. However there have been no studies for the east 

Asian population including the Korean population. 

Objective: In our study, we would like to calculate PRS for CAD in the 

East Asian populations using different PRS calculation methods 

including meta-PRS. Furthermore, through an integrated model that 

considers both PRS and clinical markers, we intend to predict a CAD 

risk considering both genetic and clinical factors. 

Methods: We considered the summary statistics from BioBank of Japan 

(BBJ) as a reference data and those were used to calculate the weights 

of each SNP used for calculating PRS of 71,009 Korean samples from 

KoGES data. Then we calculated the PRSCAD using five different 

method, and the statistical method was chosen with highest AUC in 

predicting CAD. Furthermore, we selected 8 traits related to CAD and 

by using the meta-PRS, and built the prediction model with meta-PRS. 

Results: We found that PRS and meta-PRS had a high odds ratio (OR 

1.32, 95%CI 1.26-1.39), (OR 1.35, 95%CI 1.29-1.42). Net 

reclassification improvement for both were 0.072±0.0127 and 

0.088±0.0135 respectively. The PRS score calculated by the LDpred-

auto had a significant improvement in predictive ability compared to 

the model with only existing clinical variables (AUC: from 0.780 to 

0.785, P=0.0003). 

Conclusion: In this study, the genetic effect in predicting coronary 

artery disease in the East Asian population group was confirmed by 

analyzing the effect of adding PRS to the existing clinical variable 

predicting coronary artery disease risk.  

Keywords: Coronary Artery Disease(CAD), Polygenic Risk 

Scores(PRS), meta-PRS, LDpred, Ridge Regression, Elastic Net 

Regression, East Asian Population  

Student Number: 2021-21804 
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Ⅰ. Introduction 

 

Cardiovascular disease (CVD) which is one of the leading causes of 

death globally (WHO, 2022) has a high heritability of 40% to 60%1, and 

various genetic studies have been conducted to identify the genetic 

factors. Until now, more than 100 genome-wide significant loci 

associated with CAD have been found with GWAS. However, the effect 

size of each risk allele is not large, and which is a characteristic of 

polygenic diseases where several genetic factors affect the specific 

phenotypic outcome in general. Therefore, most of the recent studies 

use polygenic risk scores that can consider the effects of multiple 

SNPs which do not have a significant standard to identify more precise 

genetic risks. 

 It was reported that an integrated risk tool using both genetic risks 

and clinical risks showed a 5.9% net reclassification improvement2. 

Predicting genetic risk for CAD may help develop methods used for 

preventive interventions such as risk reduction, behavior modification, 

or pharmacologic treatment. Previous studies showed that the genetic 

effect summarized through PRS and the environmental effect of 

lifestyle factors contribute independently to CAD and related diseases 

(atrial fibrillation, ischemic stroke, hypertension, etc.)3. The onset of 

CAD is known to be related to traits such as hypertension, dyslipidemia, 

type 2 diabetes, and lifestyle factors including smoking behavior, 

exercising, and eating habits4. According to the GWAS research on the 

Korean population, it was found the leading SNPs of CAD in patients 

having hypertension(17q25.3/CBX8-CBX4 rs1550676), type 2 

diabetes (17q25.3/RPTOR rs139293840), and 

dyslipidemia(rs79166762)5. In the case of lifestyle variables such as 
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smoking initiation, a whole-genome sequencing (WGS)-based GWAS 

performed in a Chinese population has shown thirteen SNPs of the 

RFTN1 gene6. The rs139753473 from RFTN1 and six other 

suggestively significant loci from the CSMD1 gene were also 

associated with cigarettes per day (CPD) in an independent. 

The mainstream CAD risk prediction models are considering a 

combination of clinical risk factors and genetic risk factors, which 

reports a better performance than traditional tools such as PCE alone. 

However, the performance improvement due to polygenic risk is not 

significant enough despite the high heritability7. There might be three 

possible explanations for this: limited genomic scope, limited sample 

sizes, and ancestry-specific differences8.  

Possible explanation for limited genomic scope arises from the fact 

that the CAD outbreak is affected by multiple pathways. Although PRS 

was calculated using all range of SNPs related to CAD in some of the 

previous studies, many genes related to indirect pathological pathway 

of CAD outbreak were excluded from calculating PRS. Therefore, 

these un-optimized models might have lacked in making a precise 

prediction model for subjects having high CAD risks. As an effort to 

seek a solution for this, in 2018, the concept of meta-PRS emerged, 

an approach where multiple PRSs of related traits are combined into 

one meta-score (meta-PRS) to overcome the limitations of the 

previous research7. Meta-PRS has shown a better performance in 

Ischemic Stroke prediction than the previously known method of 

LDpred, and also supported by a meta-analysis of 979,286 participant 

data in predicting CAD (PRSLDpred HR= 1.46, Meta-PRS HR=1.67)9.  

Moreover, in the non-white population, the quality and quantity of 

prediction based on Caucasian population are significantly low10. Here, 

in our study, we would like to improve the performance of the 
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prediction model in the Korean population by using similar ethnic 

origins in the East Asian population (Japanese population) as reference 

data for calculating genetic risks. Overall, the objective of this study 

is to calculate the PRS for CAD in East Asian populations including 

Korean population and use PRS as an indicator for improving the 

classification of a high-risk group. Therefore, through an integrated 

model including both PRS and clinical markers, we intend to develop a 

CAD prediction model that considers both genetic and clinical factors 

in the East Asian population. 

Ⅱ. Materials and methods 

1. Study Participants  

Prediction model building with PRS and its evaluation require three 

different dataset for base(reference), validation, and test dataset 

(Figure 1), and we considered the BioBank of Japan (BBJ)11,12,13,14,15 

data, the Korean Genome and Epidemiology Study (KoGES) data and 

the Gene-environmental interaction and phenotype (GENIE), 

respectively.  

BBJ project was started at the Institute of Medical Science, the 

University of Tokyo in 2003. BBJ data consist of around 212,453 

subjects with disease cases consisting of 47 various diseases, and 

these subjects were recruited from 12 medical institutes in Japan. 

Korean Genome and Epidemiology Study (KoGES) dataset was 

collected by the Korean Center for Disease Control and Prevention 

based on the Korean population. KoGES data consist of KoGES Ansan 

and Ansung study (KARE), the KoGES health examinee (HEXA) study, 

and the KoGES cardiovascular disease association study (CAVAS)11. 

KoGES dataset consisted of 81,902 participants recruited from the 
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national health examinee registry, and they aged more than 40-year-

old at the baseline. The baseline years are 2001, 2004, and 2005 for 

KARE, HEXA, and CAVAS, respectively. The dataset contains 

participants’ medico-pharmacologic history, and physical examination 

(weight, height, BMI, BP, etc.), and provided fasting blood samples to 

measure blood lipid(TG, TC, HDL-C, etc).  

Test data was derived from the Gene-environmental interaction and 

phenotype (GENIE) provided by the Gangnam Health Center of Seoul 

National University Hospital12. The original data provided by the 

hospital was named Health and Prevention Enhancement (H-PEACE), 

but around 2,000 samples were added and used for this study. Here, 

we will just write the name of the whole data (H-PEACE + GENIE) as 

GENIE. It contains longitudinally observed measures of participants’ 

medico-pharmacologic history, physical examination, and blood lipid 

and glucose levels after fasting. GENIE cohorts were followed up 

during 2003–2017. For this study, blood samples and the main 

covariate data were available for 9,348 participants, independent of 

subjects in the KoGES dataset. 
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Figure 1. Flowchart of PRS prediction model development and 

validation 

 

2. Genotyping, Quality Controls and Imputation 
 

  For KoGES and GENIE data, all participants were genotyped using 

a Korean Chip and variant calling was conducted with K-medoid 

algorithm to minimize the batch effect 13, 14.  Genotypes were quality-

controlled to improve the genotype accuracy via the pipeline shown in 

Figure 2. We excluded subjects with missing genotype rate > 0.05, 

with 0.2 < homozygosity chrX < 0.8, and heterozygosity rate > mean 

± 3 std. Then, any SNPs were filtered out if missing rates>0.05, or P-

value for Hardy-Weinberg equilibrium < 10-5. With the remaining SNPs 

and subjects, genotypes were imputed using the NARD imputation 

server using 1000 Genomes data as a reference penal15. Finally, we 

eliminated SNPs with low R-squared (Rsq<0.3) and multiallelic SNPs. 
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All QC process was performed using PLINK and ONETool16, 17. As a 

result, 71,686 subjects with 17,527,243 SNPs genotyped and 9,348 

subjects with 15,948,813 SNPs genotyped remained for KoGES and 

GENIE data, respectively (Figure 2). Additional QC for calculating PRS 

was performed by following the process from the previous study: 

pruning out SNPs with Rsq >0.5 was conducted through PLINK18. 10 

Principal Components(PCs) from this genotyped data were obtained 

for each data set using PLINK.  

 

Figure 2. Flowchart of Genotyping, Quality Controls and Imputation of 

KoGES and GENIE data 

 

 

 

Merged K-chip data

• 105,008 samples

• 11,123,327 variants

Validation set 
(KoGES)

• 71,686 samples

• 448,211  variants

Test set 
(H-PEACE +GENIE)

• 9,348 samples

• 279,242 variants

Variant QC
• MAF < 0.01

• Duplicated SNP 

• Missing rs number

Sample QC
• Different heterozygosity rate

• PC outliers

• Missing phenotype

• Disease history

• No follow-up history

Variant QC
• Rsq < 0.3

• Multiallelic SNP

Sample QC
• Missing phenotypes (CAD, T2D, ENS)
• Imputed continuous phenotypes with their means

Validation set 
(KoGES)

• 71,009 samples

• 17,527,243  variants

Test set 
(H-PEACE +GENIE)

• 3,591 samples

• 15,948,813 variants

NARD Genotype Imputation 
(cr=0.96)

NARD Genotype Imputation 
(cr=0.94)
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3. Ascertainment of the Target Disease, Clinical 

Variables, and Lifestyle Variables 
 

Operational definition of outcome  

In this study, we have obtained summary statistics of CAD from the 

Jenger Riken Institute, which utilized Myocardial Infarction and Angina 

Pectoris BBJ summary statistics to get CAD summary statistics. 

Following the definition from BBJ, in KoGES and GENIE, CAD cases 

are composed of CAD, Myocardial Infarction, Myocardial Ischemia, and 

Angina Pectoris. The variables used in the model are coded as follows. 

The dependent variable is coded as binary, people with CAD are 1 and 

normal people are 0.  

Clinical and lifestyle variables  

Type 2 Diabetes(T2D) and Smoking Behavior(ENS) are regarded as 

categorical variables. People with T2D are 1 and normal people are 0. 

For smoking behavior, BBJ provides two types of GWAS summary 

statistics, Cigarettes per day (CPD) and Ever-never smoked (ENS). 

Since the criteria of questionnaires for KARE were different from 

HEXA and CAVAS cohorts, we have re-defined the smoking status as 

“Have you smoked more than 400 cigarettes?” and classified those 

who have not smoked more than 400 cigarettes as non-smokers and 

those who have smoked more than 400 cigarettes as smokers. For 

hypertension, systolic blood pressure (SBP) and diastolic blood 

pressure(DBP) are provided in BBJ summary statistics. For 

dyslipidemia, total cholesterol(TC), triglycerides(TG), and high-

density lipoprotein cholesterol(HDL-C) are provided. However, GWAS 

summary statistics for hypertension and dyslipidemia are not provided. 

Therefore, instead of using binary phenotype data for each symptom, 

we have used continuous biochemical data for each variable given. In 
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particular, for dyslipidemia, TC ≥ 230 mg/dL, HDL-C< 40 mg/dL, and 

TG≥ 200 mg/dL are criteria for diagnosis in the Korean population. 

For AGE is the age of subjects itself, without any transformation, and 

SEX is coded as 1 to male and 2 to female. For BMI, we have excluded 

4 samples whose height and weight are both missing and imputed the 

missing value as the average. After imputation, we calculated BMI as 

weight in kilograms divided by height in meters. In addition, samples 

with both TC and HDL-C missing are excluded and the missing values 

for TG are imputed with its mean.  

 

4. Calculating Polygenic Risk Scores 
 

PRS is the marginal effects of susceptible SNPs and is calculated as 

the weighted sum of risk alleles where the weights are coefficients of 

simple logistic regression. To construct PRS, two procedures are 

required, variable selection and coefficients of selected SNPs. PRS is 

useful for disease prediction because it is computationally efficient. 

There are many different methods to calculate PRS considering 

different interactive effects of genomic structure on SNPs. However, 

since it has been reported that the LDpred method showed the best 

performance in CAD prediction1, we have compared the performance 

of six methods (LDpred-inf, LDpred-auto, P+T, C+T, lassosum, PRS-

CS) of calculating PRS to see which method has the best performance 

in the validation set. Considering the LD structure of our genotype 

data, we calculated the LD score from KoGES Kchip data following the 

protocol from the previous study19. 

Pruning and Thresholding (P+T) refers to the strategy of first 

applying informed LD pruning with an R-square threshold of 0.2 and 

subsequently applying p-value thresholding, where the p-value 
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threshold is optimized over a grid concerning prediction accuracy in 

the validation data. Here, we only included SNPs with p-value<10-5 

for pruning, and the LD threshold for pruning was set to 0.5. Clumping 

and thresholding (C+T) is a widely used method to derive polygenic 

scores20. The significance threshold for index SNPs and secondary 

significance threshold for clumped SNPs is set to 10-5, and the LD 

threshold for clumping was set to 0.5 as well. Lassosum is a method 

for computing LASSO/Elastic-Net estimates of a linear regression 

problem given summary statistics from GWAS, accounting for Linkage 

Disequilibrium (LD), via a reference panel21. PRS-CS utilizes a high-

dimensional Bayesian regression framework, and is distinct from 

previous work by placing a continuous shrinkage (CS) prior on SNP 

effect sizes, which is robust to varying genetic architectures, provides 

substantial computational advantages, and enables multivariate 

modeling of local LD patterns22. Lastly, LDpred is a Bayesian PRS that 

estimates posterior mean causal effect sizes from GWAS summary 

statistics by assuming a prior for the genetic architecture and LD 

information from a reference panel. Unlike P+T, LDpred has the 

desirable property that its prediction accuracy converges to the 

heritability explained by the SNPs as the sample size grows19. A key 

feature of LDpred is that it relies on GWAS summary statistics, which 

are often available even when raw genotypes are not. There are three 

options for the LDpred method (inf, grid, and auto). LDpred-inf (using 

GWAS summary statistics) is analogous to genomic BLUP (using raw 

genotypes) because it assumes the same prior. In LDpred-auto, we 

have calculated SNP heritability (h2) from LD score regression, and 

then set initial vector p which ranges from 10-4 ~ 0.9 divided into 

either maximum of 80 or the number of cores. Then, we filtered outlier 

predictions and averaged the remaining predicted values of PRS. 
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Construction of meta-PRS  

Meta-PRS was generated by integrating the eight optimal trait-

specific PRSs following after the results from the previous study of 

meta PRS on the Chinese population8. The predictive performance of 

meta-PRS scores considering the genetic effects of various traits and 

PRS scores calculated by the LDpred method was compared through 

two models: logistic regression and ridge regression. 

(1) Calculate PRS for each trait using the fixed optimal PRS method  

and save the weights of each SNP used for PRS calculation in the 

train set. 

(2)  10-fold cv Elastic-net regression for the following model to find 

the best lambda: 

       CAD ~ age + sex + PC1~10 + standardized 8 PRS s 

(3) Using the optimized hyperparameter (alpha and lambda) in ridge 

regression, obtain the beta for each PRS and save the mean, std, 

and effect size for each PRS. 

(4) Comparing two different models with PRSCAD and meta-PRS in 

AUC 

We conducted an elastic-net logistic regression with 10-fold cross-

validation using the R package ‘glmnet’ to fit a parameter lambda for 

Ridge regression. Adjusting age, sex, and 10 PC scores, we assessed 

the association between the eight optimal PRSs and CAD in the training 

set and then obtained the effect size of the eight PRSs, which was used 

for the weight of meta-PRS calculation. Finally, the meta-PRS for CAD 

was constructed by summing the standardized optimal trait-specific 

PRSs weighted by adjusted estimates 𝛽!, .., 𝛽" derived from the ridge 

regression model. The meta-PRS can be calculated via a weighted sum 

by using genotype data,  

metaPRS#	 =	,
𝛽!
𝜎!
𝑥! +⋯+

𝛽%
𝜎%
𝑥%

&

%'!
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where m is the total number of traits, 𝜎! ,…, 𝜎"  are the empirical 

standard deviations of each of PRS in the training set, 𝛽1, …, 𝛽8 are 

the effect sizes for the ith PRSs from the regression, and xi is the PRSi 

centered to zero with the mean of PRS in ith trait. 𝛽i was considered 

to be zero for the ith trait if the PRS was not included in the variable 

selection. All this standardization information was saved to apply to 

the test data. Furthermore, we have considered a different 

combination of eight PRSs via penalized regression model to derive 

the best meta-PRS. Ridge regression methods were used to calculate 

the weight of each PRS in the meta-PRS calculation. 

Elastic-net and Ridge regression  

Elastic-net complements the ridge and lasso by penalizing with both 

𝑙!  and 𝑙(  norm23. This has the effect of effectively shrinking the 

coefficients and setting some coefficients to zero.  

Ridge regression is particularly useful to mitigate the problem of 

multicollinearity in linear regression, which commonly occurs in 

models with large numbers of parameters. In general, the method 

provides improved efficiency in parameter estimation problems in 

exchange for a tolerable amount of bias.  

In this study, we employed Ridge logistic regression to model the 

associations between the 8 PRSs and CAD, adjusting for sex, age, and 

10 genetic PCs. Also, we have calculated meta-PRS using selected 

PRS as a result of 10-fold CV elastic-net regression. The best model, 

in terms of the highest cross-validated AUC (area under receiving-

operating characteristic curve), was selected as the final model and 

held fixed for validation in the rest of the data. The final adjusted 

coefficients for each PRS in the penalized logistic regression are 

compared with the univariate estimates. 
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Generation of trait-specific polygenic risk scores 

Eight trait-specific PRSs (CAD, SBP, T2D, TC, TG, HDL-C, ENS, 

and BMI) were separately constructed by summing the number of 

corresponding risk alleles (0, 1, or 2) for each subject, weighted by 

the effect size of variants on the corresponding trait. Variants were 

chosen among the common SNPs with BBJ to calculate PRS. A detailed 

list of studies for CAD GWAS analysis in BBJ is available in Table S1.  

Assuming the effect size of optimal PRSCAD should be the largest in 

meta-PRS for CAD, we have fixed the PRS calculation method to one 

that showed the best AUC for predicting CAD. Therefore, optimized 

PRS for each trait was calculated based on trait-specific summary 

statistics from the large-scale BBJ GWAS in East Asian ancestry. The 

distribution of eight PRS is shown as a boxplot in Figure S1. Each 

optimal PRS was standardized by calculating the z-score (zero mean, 

unit standard deviation). 

5. Statistical analysis 
 

To compare the prediction accuracy, we first used PRS(PRSCAD) 

which was calculated through the LDpred-auto in KoGES data using 

BBJ as reference data. Figure 3 illustrates the whole model 

comparisons. Model I (M1) is a null model which has age and sex as 

variables. Model II (M2) is a model to show the effect of PRSCAD and 

Model II-prime (M2’) shows the pure effect of PRSCAD without age and 

sex. Model III (M3) checks whether PC scores should be included in 

the model to obtain a better performance or not. Model IV (M4) shows 

the effect of meta-PRS and Model IV-prime (M4’) shows the pure 

effect of meta-PRS without age and sex. In addition, the final models 

contain PRS, seven CAD-related traits (BMI, T2D, ENS, SBP, TG, TC, 
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HDL-C), and other covariates (age, sex, PC1,…, PC10). PRS is put into 

the CAD prediction model as the main variable, and the logistic 

regression analysis method is used to analyze and test the significance 

of genetic risk factors in CAD. Accuracies of the disease prediction 

models were assessed via 10-fold cross-validated AUC. The final 

models were evaluated in the test data.  

To compare the clinical usefulness of PRS, we have divided the 

study population into three risk groups (high, medium, and low) and 

compared the AUC of the integrated model and the p-value of PRS in 

each group. Moreover, we have calculated Net Reclassification 

Improvements(NRI)24 in the total population of KoGES and GENIE using 

the R package ‘nricens’. For the risk difference-based NRI calculation, 

the cutoff value of risk difference was specified as 0.02, where UP and 

DOWN are defined as pnew − pstandard > δ and pstandard − pnew > δ, 

respectively. pstandard and pnew are predicted individual risks from a 

standard and a new prediction model, respectively, and δ corresponds 

to the cutoff. Interval estimation is based on the percentile bootstrap 

method. 

Simple Models (without clinical variables) 

M1 : CAD ~ age + sex  

M2 : CAD ~ age + sex + PRSCAD  

M2’: CAD ~ PRSCAD 

M3 : CAD ~ age + sex + PC1+…+PC10 + PRSCAD  

M4 : CAD ~ age + sex + metaPRS  

M4’: CAD ~ metaPRS 

Integrated Models (with scaled clinical variables) 

M5 : CAD ~ age + sex + metaPRS + traditional clinical variables 

M6 : CAD ~ age + sex + PRSCAD + traditional clinical variables 

Figure 3. Model Comparison simple models and integrated models 
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Ⅲ. Results 

1. Descriptive Statistics 

Descriptive statistics analysis for each population was done after the 

final subject QC. We excluded samples with either one of the binomial 

variables(CAD, T2D, ENS) missing, and then imputed the missing 

values for the continuous variables(TC, TG, HDL-C, BMI, SBP) with 

their means. Along with QCed genotype data, we had 71,686 samples 

in KoGES with 4,008,884 SNPs, and 9,847 samples in GENIE with 

3,708,789 SNPs as final data for analysis. 

Descriptive characteristics of KoGES were calculated in CAD case 

and control groups (Table 1). CAD cases are 1917 (2.7%) among 

71,009 samples. Among CAD case groups, 52.1% were men and there 

was more percentage of people who have Type 2 diabetes (17.8%) and 

have smoked more than 400 cigarettes(38.9%) than control 

groups(6.7% and 25.9% respectively). The case group had a lower 

level of HDL-cholesterol (mean: 48.2, std: 11.9) than the control 

group. Descriptive characteristics for GENIE are attached in Table S2.  

Pearson correlation tests among different clinical variables were 

conducted in KoGES. Figure S2 shows the correlation plot of 11 

variables in KoGES and Figure S3 shows the result plot of the 

correlation coefficient with p-value<0.05 using R. As a result, mean 

blood pressure(MBP) and DBP were excluded for the further analysis 

because the correlation coefficients with SBP were larger than 0.7 

(0.962 and 0.764 respectively).  
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Table 1. Descriptive characteristics of KoGES 

Risk factor Controls Cases 

Sample size, N 69092 (97.3) 1917 (2.7)  

Male, (%) 24522 (35.5) 998 (52.1) 

Body mass index, kg/m2 24 (2.9) 24.9 (2.9) 

Total cholesterol, mg/dl 197.5 (35.3) 175.3 (37.7) 

High-density lipoprotein cholesterol, 

mg/dl 

52.2 (13.2) 48.2 (11.9) 

Triglycerides, mg/dl 130 (88.8) 131.5 (80.6) 

Systolic blood pressure, mmHg 122.7 (15.4) 125.1 (15) 

Diastolic blood pressure, mmHg 76.5 (10.1) 76.6 (9.8) 

Type 2 diabetes (%) 4607 (6.7) 358 (18.7) 

Ever smokers(>400 cigarettes), (%) 17888 (25.9) 745 (38.9) 

Values are mean (Standard deviation) or N (%)  

 

2. Selection of PRS calculation method 

In this study, we have calculated performance accuracy among 

different PRS toward CAD. LDpred showed the best performance in 

the simple logistic regression. Therefore, we have compared the AUC 

between two LDpred methods in a null model(M1) and M5. The M1 

performance in the train set is compared with a null model which has 

all the covariates and clinical variables for logistic regression. As a 

result, the LDpred-auto method has the best significant improvement 

in predicting CAD in the logistic model from AUC: 0.780 to AUC: 0.785 

(p-value<0.000) (Table 2 and Table 3). Therefore, we have selected 

the LDpred-auto method to calculate PRS for the other 7 traits to 

calculate meta-PRS. 
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Table 2. Results of simple logistic regression of CAD ~ PRSCAD  

method beta p-value AIC AUC 

C+T 0.053 0.000 16302 0.545 
P+T 0.041 0.28 16335 0.505 
lassosum 1.159 0.000 16235 0.567 
LDpred-inf 0.648 0.000 16257 0.545 
LDpred-auto 0.572 0.000 16206 0.578 
PRS-CS 0.620 0.000 16246 0.564 
 
 
 
Table 3. Comparing the AUC of Integrated model with PRSCAD  

method Null AUC Model AUC p-value of 
PRS 

LDpred-auto 0.780 0.785 0.000 

LDpred-inf 0.780 0.782 0.000 

P+T 0.780 0.780 0.726 

 

 

3. Construction of meta-PRS for CAD 
 

Genetic correlations  

The results of simple logistic regression from six different PRS 

calculation methods are provided in Table 4. This presents genetic and 

environmental correlations between the PRSs of CAD-related traits 

using LDpred-auto in univariate CAD analysis. Significantly positive 

genetic correlations were found between PRSCAD and CAD (𝛽=0.552, 

p-value<0.000), between PRSSBP and CAD (𝛽=0.741, p-value<0.000), 

and between PRSTC and CAD (𝛽=0.361, p-value<0.005). In addition, 

Pearson correlation test was done among 9 different PRS calculated 

through LDpred-auto and excluded one of the variables which have 

the correlation coefficient larger than 0.7. Figure S4 shows the result 

plot from the test and Figure S5 shows the results with p-value<0.05. 
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As a result, we have excluded PRS for DBP because the correlation 

with SBP was 0.728. Furthermore, the results for correlation test 

among clinical variables and PRSs are in Figure S6.  

Table 4. Simple logistic regression model for each PRS 

Logistic regression model 
Y(CAD) PRSi only 

PRSi beta p-value 

PRS.CAD 0.552 0.000  

PRS.BMI 0.161 0.081 

PRS.T2D -0.099 0.014 

PRS.SBP 0.741 0.000 

PRS.ENS 0.846 0.165 

PRS.TG -0.021 0.797 

PRS.TC 0.361 0.004 

PRS.HDL -0.621 0.35 

 

Results of penalized regression for meta-PRS construction 

We calculated two meta-PRS from the results of Ridge regression 

and elastic net regression. As a result of 10-fold CV elastic-net 

regression, minimum lambda which had the highest AUC was chosen 

for the ridge regression. 8 PRSs (PRSCAD, PRSBMI, PRSSBP, PRSENS, 

PRST2D, PRSTC, PRSTG, PRSHDL) were used for the construction of 

metaPRS8 in the ridge regression, and 3 PRSs (PRSCAD, PRSSBP, PRST2D) 

were chosen for the construction of metaPRS3 as a result of elastic-

net regression.  

The effect sizes of each PRS are in Table 5 and Table 6. The same 

effect size for each PRS was used for the construction of PRS in the 

test data. For unmatching SNPs from the train data in the test 

data(~10,000), we have substituted the risk alleles as the expected 

value ( 2*MAF of each SNP) in the KoGES data. 



 

 ２１ 

Table 5. Result of Ridge regression model with all 8 PRS  

Y(CAD) ~ Age + sex + PC1~10 + 8 PRS 

PRS for each trait 
beta (weight for meta-

PRS) 
p-value 

PRS.CAD 0.241 0.000 

PRS.BMI 0.021 0.439 

PRS.T2D -0.040 0.249 

PRS.SBP 0.091 0.000 

PRS.ENS 0.034 0.278 

PRS.TG -0.027 0.255 

PRS.TC 0.043 0.082 

PRS.HDL -0.019 0.463 

Each PRS is standardized with its mean and std. regression model is adjusted with 
age, sex, and pc scores. 
 
 
Table 6. Result of 10-fold CV elastic-net regression model 

PRS for each trait beta (weight for meta-PRS) 

PRS.CAD 0.2216 

PRS.BMI 0.0000 

PRS.T2D -0.0002 

PRS.SBP 0.0565 

PRS.ENS 0 

PRS.TG 0 

PRS.TC 0 

PRS.HDL 0 

Each PRS is standardized with its mean and std. Regression model is adjusted with 
age, sex, and pc scores. (Lambda=0.001186663) 
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4. Integrated model using PRS and clinical variables 

As a result of comparing the prediction accuracy between the 

traditional model with clinical variables and the integrated model with 

an additional genetic effect (Figure 3), the model with meta-PRS and 

clinical variables showed the best performance (AUC: 0.785). Though 

the simple model with meta-PRS showed better performance than the 

simple model with PRSCAD (M2 AUC: 0.733, M4 AUC: 0.735, Delong 

test p-value<0.05), the integrated model with PRSCAD showed 

comparable performance(AUC: 0.784, Delong-test p-value>0.05) with 

the integrated model with meta-PRS. Therefore, both integrated 

models with PRSCAD and meta-PRS were selected as the final model. 

The comparison of the model performance with PRSCAD, metaPRS3, and 

metaPRS8 in KoGES is summarized in Table 7, Table 8, and Table 9. 

In detail, the final model with PRSCAD (M6) showed a significant 

effect on predicting CAD in KoGES data. Figure S7 is a forest plot that 

represents the Odds Ratio(OR) and the 95% Confidence Interval(95% 

CI)of each variable used in the logistic regression. Type 2 

Diabetes(T2D) and Smoking Behavior(more than 400 cigarettes) also 

showed significant OR larger than 1 in predicting CAD(OR: 1.46, 

95%CI: [1.28, 1.66], p-value<0.000, and OR: 1.23, 95%CI: [1.08, 

1.41], p-value=0.005, respectively). Moreover, BMI has OR larger 

than 1 (OR: 1.37, 95%CI: [1.30, 1.43], p-value<0.000). In addition, 

females had less likelihood of CAD outbreak than males(OR: 0.85, 

95%CI: [0.75, 0.98], p-value<0.05), and AGE has OR slightly larger 

than 1 (OR: 1.09, 95%CI: [1.08,1.10], p-value<0.000). Finally, Figure 

4 shows the ROC curve for M1, M2, M4, and M5. 

Further, the final model was tested in the GENIE data for validation, 

AUC: 0.732 and 0.731, respectively PRSCAD and meta-PRS (Table 10). 
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Unlike in the KoGES data, the increment due to PRS was not 

statistically significant in the test data. 

 

Table 7. Model Comparison(AUC) of PRSCAD and metaPRS8 (ridge) 

 Model AUC De Long test 
p-value 

M2’ vs M1 0.576 0.724 0.000 

M4’ vs M1 0.580 0.724 0.000 

M1 vs M2 0.724 0.733 0.000  

M1 vs M4 0.724 0.735 0.000 

M2 vs M3 0.733 0.734 0.446 

M2 vs M4 0.733 0.735 0.048  

M4 vs M5 0.735 0.785 0.000  

 

Table 8. Model Comparison(AUC) of PRSCAD and metaPRS3 (elastic-net) 

 Model AUC De Long test 
p-value 

M2’ vs M1 0.579 0.724 0.000 

M1 vs M2 0.724 0.733 0.000 

M2 vs M3 0.733 0.734 0.446 

M2 vs M4 0.733 0.735 0.014 

M2 vs M5 0.733 0.784 0.000 

M4 vs M5 0.735 0.785 0.000 

 

Table 9. Final Model CAD ~ optimal PRS + age + sex + BMI + T2D + 

SBP + TC + TG + HDL 

 M6 (PRSCAD) M5 (meta-PRS) 

metaPRSi p-value OR AUC p-value OR AUC 

metaPRS3 0.000 1.323 0.784 0.000 1.340 0.785 

metaPRS8 0.000 1.321 0.784 0.000 1.348 0.785 
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Table 10. AUC of the final models in the test data(GENIE) 

 Model AUC 

M1   vs   M2 0.7047 0.7052 

MC   vs   M5 0.7310 0.7318 

MC   vs   M6 0.7310 0.7311 

 

 
Figure 4. ROC curve for M1, M2, M4, and M5 in KoGES M1(CAD ~ age + 

sex) had AUC of 0.724, M2(CAD ~ PRSCAD + age + sex) had AUC of 

0.735, M4(CAD ~ metaPRS8+ age + sex) had AUC of 0.733, and M5(CAD 

~ metaPRS8 + age + sex + BMI + T2D + SBP + TC + TG + HDL) 

showed the highest AUC of 0.785. Note: All continuous variables were 

scaled using their SD. 
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5. Classification of CAD risks 

The AUC of the integrated model and p-value of PRS in three risk 

groups(high, medium, and low) are in Table 11. Instead of only 

comparing AUC in different risk groups, we also compared NRI in the 

total study population (KoGES + GENIE). NRI of the integrated model 

with PRSCAD compared to the traditional model was 0.072±0.0127 and 

NRI of the integrated model with meta-PRS was 0.088±0.0135. Both 

were positive values which means PRS helped classify CAD cases into 

a high-risk group. Between the two models, NRI is 0.0179 which 

means adding meta-PRS had a more effect on classification than 

PRSCAD. 

Table 11. Results of risk classification of PRS in KoGES  

 PRS risk-group AUC OR of PRS p-value 

PRSCAD low 0.750 1.184  0.883 
medium 0.777 1.190  0.320 
high 0.805 1.625  0.000 

metaPRS8 low 0.751 1.017  0.137 
medium 0.777 1.101  0.073 
high 0.807 1.381  0.000 
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Ⅳ. Discussion 

This study supports that PRS as a genotypic effect can be used as a 

useful tool to predict CAD outbreaks in accordance with traditional 

clinical variables such as hypertension, obesity, diabetes, 

dyslipidemia, smoking status, etc. Furthermore, we were able to see 

the difference in the effect of integrated risks on CAD by risk group 

according to the level of PRS score. Through this study, it was found 

that the PRS score calculated by the LDpred-auto method had a 

statistically significant improvement in predictive ability compared to 

the model with only existing clinical variables in KoGES.  

The major strengths of the current study include our PRS and meta-

PRS included most of the variants that underlay CAD risk capturing 

the full spectrum of genomic variants. Here, to derive a PRS for CAD, 

we used the current large GWAS not only of CAD but also of CAD-

related traits from BBJ. Finally, it was the first attempt to construct 

meta-PRS in the Korean population, which enabled us to 

comprehensively evaluate the combination of polygenic risk and 

traditional clinical risk. Several studies examined whether the 

genome-wide CAD PRSs improved risk prediction beyond the PCE in 

European ancestry populations25. Using a risk threshold of 7.5%, the 

addition of the polygenic risk score to pooled cohort equations 

resulted in an overall net reclassification improvement of 4.0% [95% 

CI, 3.1% to 4.9%]) in the UK biobank. In our study, adding the PRS to 

the traditional model yielded an increment of about 0.005 in AUC and 

an NRI of 0.0772 at a risk threshold of 2% in the KoGES data. We also 

demonstrated that the meta-PRS provided statistically significant yet 

modest discrimination. In our analysis, we observed a comparable 
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level of risk (OR 1.32, 95% CI 1.26-1.39), supporting that the meta-

PRS may serve as a risk-enhancing factor for CAD.  

However, the general clinical utility of PRS and meta-PRS in CAD 

risk reclassification was uncertain in the test data, which contained OR 

of 1 in its 95%CI. This infers that there might have been several 

limitations in our study. The main reason might be originated from the 

discrepancies among three different groups used for PRS calculation, 

BBJ(Japanese origin), train data (KoGES, Korean origin), and test data 

(GENIE, Korean origin). Therefore, in further studies, meta-GWAS of 

the East Asian population for the reference data can be used to 

calculate PRS. 

 The result implies that M2 which only has age and sex as its 

explanatory variables has a pretty high AUC compared to other models 

with more variables. As we can see here, age is the most important 

risk driver in the risk prediction model. The effect of age might has 

resulted in overestimation or underestimation of risk of CAD, whereas 

genetic risk is age-independent and can be determined early in life. 

Our findings highlight the concept that PRS may provide 

complementary information to better stratify CAD risks and inform 

clinical decision-making for primary prevention. Further research on 

the models without age will be done to support this idea. 

In this model, PRS for CAD had a high odds ratio compared to other 

well-known clinical variables. However, PRSs for other variables did 

not show significant OR for CAD outcomes. In particular, all three 

phenotypes related to dyslipidemia did not show consistent effect 

signs in different combinations of variables.  
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There might be possible explanations for this. First, this might be 

due to the high percentage of medication for hyperlipidemia in the 

Korean population. Causal association between low-density 

lipoprotein-cholesterol (LDL-C) and Ischemic Heart Disease(IHD) was 

observed in the previous Mendelian Randomization analysis, but high-

density lipoprotein-cholesterol (HDL-C) and triglyceride (TG) did not 

show causal association with IHD26. However, a direct measure of 

LDL-C was not obtained in some subgroups of KoGES, and Friedewald 

formula27 to calculate LDL-C from TG, TC, and HDL-C is known to be 

inaccurate in case of high triglyceride (>400 mg/dL). Another 

explanation might be that dyslipidemia has a long-term pathology 

throughout one’s lifetime28. Hence, considering the time effect of each 

variable might have been crucial in this type of follow-up cohort data. 

 Secondly, in the case of smoking behavior, PRSENS showed 

consistently significant and high OR as the phenotype of smoking 

behavior itself also showed the same direction of effect size. However, 

this effect might be overstated due to the misclassification followed 

by different definitions of current smokers in BBJ and three KoGES 

cohorts. Some past smokers who have smoked more than 400 

cigarettes might be classified as current smokers or current smokers 

who have not smoked more than 400 cigarettes yet as non-smokers.  

Overall, it has been demonstrated that the high genetic risk of CAD 

may be mitigated by statin use and healthy lifestyle in both primary 

and secondary prevention and that individuals at high genetic risk were 

found to derive the greatest benefit from the therapeutic 

intervention29. The randomized controlled trials focusing on individuals 

at intermediate or high clinical risk, especially Korean, are required to 
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confirm the clinically meaningful benefit and the cost-effectiveness of 

polygenic risk stratification for CAD. 

Additionally, some other limitations should also be noted. First of all, 

though the sample size for the PRS calculation was large enough, the 

sample size of the test was not large. Next, baseline phenotyping 

according to a well-defined and standardized protocol was lacking due 

to different definitions of some traits. Accordingly, a more complex 

consideration of the relationship between clinical variables was 

unavailable, possibly resulting in the inconsistent effect of well-known 

risk factors on CAD. 

In further studies, we would like to supplement the integrated model 

by using the Cox survival regression method. Since both train and test 

data used for this study are composed of follow-up cohort data, further 

study can examine the risk of development over time. This way, we 

can also consider the time effect of disease outbreak with respect to 

the genotype data and utilized the follow-up data for a more precise 

phenotype of the sample population. 
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Ⅴ. Conclusion 

This study has shown that adding PRS to the traditional prediction 

model has a significant impact on improving prediction accuracy. 

Moreover, the predictive performance of meta-PRS considering the 

genetic effects of various traits and PRS scores calculated by the 

existing LDpred method was compared through logistic regression. In 

addition, CAD risk group classification according to PRS calculated by 

each method was conducted. However, in this study, the validation was 

not successful to show the additive effect on the performance of PRS 

in test data. This might be because the two population have different 

features. In particular, calculating PRS is affected by the characteristic 

of the population such as MAF, so considering a more general feature 

of the Korean population is needed. 

On top of that, we assessed the various models to KoGES data 

consisting of all Koreans. The optimal PRS for CAD risk is calculated, 

and the genetic effect in CAD is investigated by using it as a risk 

predictor. In addition, a disease prediction model including clinical 

variables related to the disease is created to confirm the acquired 

effects of clinical variables. Finally, we have presented a CAD 

prediction model using these variables to model a more accurate 

prediction system for CAD risk. 

The expected effect of this study is to compare the performance of 

the CAD prediction model using only existing clinical variables and the 

PRS-added model to confirm the clinical usefulness of PRS in CAD 

prediction in the East Asian population. 
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Supplementary Figures and Tables 

 

Table S1. Sources of BBJ summary statistics used for PRS calculation 

Sources of summary statistics used for each trait-specific PRS 

construction and matched SNPs of KoGES used for PRS LDpred-auto 

calculation  

PRS, polygenic risk score; GWAS, genome-wide association study; BP, blood pressure; 
SBP, systolic BP; DBP, diastolic BP; T2D, type 2 diabetes; BMI, body mass index; HDL-
C, high density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride; ENS, ever-
never smoked; Common SNPs are used for PRS calculation. 
 

 

 

 

 

 

 

 

Trait Source Types Ancestry 
Sample size 

(case / 
control) 

Metho
d 

Referen
ce 

Commo
n SNPs 
(KoGE

S) 

CAD BBJ 
(Riken) GWAS Japanese 

212,453 
(29,319/183,

134) 

Meta-
analysi

s 

Koyama 
et al.30 510,458 

SBP BBJ GWAS Japanese 145,505 GWAS Kanai et 
al.31 510,462 

DBP BBJ GWAS Japanese 145,515 GWAS Kanai et 
al.31 510,462 

T2D BBJ GWAS Japanese 
177,415 

(45,383/132,
032) 

Meta-
analysi

s 

Suzuki 
et al.32 526,674 

BMI BBJ GWAS Japanese 163,835 GWAS Akiyama 
et al.33 510,562 

TC BBJ GWAS Japanese 135,808 GWAS Kanai et 
al.31 513,041 

TG BBJ GWAS Japanese 111,667 GWAS Kanai et 
al.31 513,041 

HDL-C BBJ GWAS Japanese 74,970 GWAS Kanai et 
al.31 513,041 

Smoking 
(ENS) BBJ GWAS Japanese 88,277 GWAS Malik et 

al.34 510,462 
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Table S2. Descriptive characteristics of GENIE 

Characteristics (N=3,591) Mean (SD) or n (%) 

Demographic data  

 Age 46.26 (10.43) 

 Sex  

    Female 1526 (42.5) 

    Male 2065 (57.5) 

 Disease history   

    CAD 108 (3.0) 

    T2D 119 (3.3) 

    ENS 1357 (37.8) 

Anthropometric data  
 

BMI 23.15 (3.15) 
 

SBP 115.35(13.34) 

Blood Lipid levels  
 

TC 193.47 (31.46) 
 

TG 109.17 (75.44) 
 

HDL-C 53.34 (11.33) 
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Figure S1. Boxplot for PRS of 9 traits in KoGES 
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Figure S2. Correlation Plot of 11 variables in KoGES This figure 

represents the sign and size of the correlation coefficient calculated through 

Pearson’s correlation test. Since MBP, SBP, and DBP have high correlation 

coefficients and the sign is positive, we only included SBP in our model 

which is clinically more important and useful. Also, SEX and ENS have a 

correlation of -0.714; however, since both variables are crucial in their 

relationship with CAD in previous studies, we included both variables in our 

model. 
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Figure S3. Pearson correlation coefficients(p-value<0.05) of clinical 

variables in KoGES 

 
 

 
Figure S4. Correlation plot of trait-specific PRSs in KoGES Correlation 

coefficients and p-values were estimated from the Pearson correlation test 

for each pair of PRSs. Likely, SBP and DBP have a correlation coefficient of 

0.726. PRS, polygenic risk score; CAD, coronary artery disease; BP, blood 

pressure; BMI, body mass index; T2D, type 2 diabetes; TC, total 

cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides. 
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Figure S5. Pearson correlation coefficients(p-value<0.05) of PRSs in 

KoGES PRSs include 9 PRS, and metaPRS8  

 
 

 
Figure S6. Pearson correlation test (A) Correlation test of 8 PRS, 

metaPRS8, and CAD in GENIE (B) Correlation test of clinical variables in 

GENIE 

 

 

A. B.
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Figure S7. Forest Plot for Integrated Model (metaPRS8 and PRSCAD) in 

KoGES The forest plot represents the Odds Ratio and the 95% Confidence 

Interval of each component used in the logistic regression model. 
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국문초록 

동아시아 인구집단에서의  

다유전자 위험점수와 임상변수를  

이용한 관상동맥질환 위험예측 
 

정유리 

서울대학교 보건대학원 

보건학과 보건학전공 
 

연구배경: 관상동맥질환(Coronary Artery Disease, CAD)은 심장에 

혈액을 공급하는 관상동맥이 동맥경화증이나 혈전으로 좁아져 혈액 

공급이 원활하지 않게 되어 심근허혈이나 심근경색이 발생하는 

질환이다. CAD 는 유전율이 40%~60%로 높기 때문에 위험을 

예측하는데 있어 유전적 요인을 고려하는 것이 중요하다. 연구자들은 

이전 연구들의 다유전적 형질 질병의 성질을 고려하지 않은 한계를 

극복하기 위해 메타 PRS 를 고안했으며 이는 LDpred 에 의해 계산된 

단일 PRS 보다 CAD 예측에서 더 나은 성능을 보였다. 그러나 대부분의 

연구는 백인 대상으로 진행되었으며, 특히 한국인을 포함한 동아시아 

인구에 대한 연구는 불충분한 실정이다. 

연구목표: 본 연구에서는 메타 PRS 방법을 포함한 다양한 PRS 계산 

방법을 이용하여 동아시아 인구에서 CAD 에 대한 PRS 를 계산하고자 

한다. 또한 PRS 와 임상 마커를 모두 고려한 통합 모델을 통해 유전적 

요인과 임상적 요인을 모두 고려한 CAD 위험을 예측하고자 한다. 

연구방법: 일본 바이오뱅크(BBJ)의 일본인에 대한 GWAS 결과 요약 

통계량을 참고자료로 활용하여 KoGES 데이터의 한국인 71,009 명에 

대한 PRS 를 계산하기 위한 각 SNP 에 대한 가중치를 계산하였다. 

그리고 나서 5 가지 계산 방법을 통해 CAD 에 대한 PRS 를 

계산하였으며, 제일 높은 AUC 를 보인 방법을 채택하였다. 여기에 더해, 

CAD 를 포함한 관련 형질 8 개를 선정하여 메타 PRS 를 산출하여 

예측모형을 구축하였다.  

결과: PRS 와 메타 PRS가 높은 오즈비(OR 1.32, 95% CI 1.26-1.39), (OR 

1.35, 95% CI 1.29-1.42)를 가지고 있다는 것을 보였으며, 두 가지 

모두에 대한 순재분류 개선은 각각 0.072±0.0127 과 

0.088±0.0135 였다. LDpred-auto 로 계산한 PRS 점수는 기존 
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임상변수만 있는 모형에 비해 유의미한 예측능력 향상을 보였다(AUC: 

0.780~0.785, P=0.0003).  

결론: 본 연구에서는 기존의 관상동맥질환 위험예측 임상 변수에 PRS 를 

추가한 효과를 분석함으로써 동아시아 인구집단에서 관상동맥질환 

예측에 있어 유전적 효과를 확인하였다.  

핵심어 : 관상동맥질환, 심혈관질환 위험 예측모형, 메타 다유전자 

위험점수, 연관불균형 예측, 릿지 회귀, 엘라스틱넷 회귀 

학번 : 2021-21804 
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