creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Development of a Stochastic
Convection Parameterization and Its
Application to Climate Modeling

SHE24 g7 258 AT 9 71F 2de o] 48

20234 2



2 A & et i

SECHIL MATICAL LIMNERSTY



Development of a Stochastic

Convection Parameterization and Its

Application to Climate Modeling

20224 10

20234 14

—_—

©)

T

X
)

2 3

_104

f—

©)

—~
ol
oF
il

f—

0

—

3
NH
SH

el

_<I);|

fa—

0

el

‘?;l

—_—

0

<A

o

%

_CH




2 A & et i

SECHIL MATICAL LIMNERSTY



Development of a Stochastic
Convection Parameterization and Its
Application to Climate Modeling

by

Jihoon Shin

A Dissertation Submitted to the Faculty of the
Graduate School of Seoul National University in
Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

February 2023

Advisory Committee:

Professor Seok-Woo Son, Chair
Professor Jong-Jin Baik, Advisor
Professor Junshik Um

Doctor Ji-Young Han

Professor Hwan-Jin Song



2 A & et i

SECHIL MATICAL LIMNERSTY



Abstract

Convection parameterization is about modeling convective turbulence in-
volving scales smaller than the scales resolved by a dynamic model. While there
are many challenges associated with developing convection parameterization,
one major issue that has recently gained attention is stochastic convection
parameterization. As the horizontal grid size of numerical weather prediction
(NWP) models and climate models gets smaller, convection activity within the
grid becomes highly stochastic, and the quasi-equilibrium assumption is not
valid anymore. In this study, we investigate the physical processes that generate
convective cloud variabilities and develop a stochastic parameterization that
simulates the mean and variance of convective tendencies for different grid
sizes based on the unified convection scheme (UNICON).

First of all, the characteristics of the global simulation of original UNICON
is evaluated. Using Community Earth System Model version 1 with UNICON
implemented (Seoul National University Earth Model version 0, SEMO0), we
analyzed the impacts of El Nino-Southern oscillation (ENSO) and Madden-
Julian oscillation (MJO) on the genesis of tropical cyclones (TG). Overall,
SEMO shows much better performance than CESM1 in terms of reproducing
the observed impacts of MJO and combined impacts of ENSO and MJO on TG.
Using long-term coupled global simulations of UNICON, we also developed
a new methodology for ENSO forecast, model-analog (MA) — linear inverse
model (LIM) (MA-LIM). MA-LIM nudges sea surface temperature (SST) and
sea surface height anomalies forecasted by the LIM into the MA. At short (long)
lead month, the LIM (MA) predicts the Nino3.4 SST anomalies better than the

MA (LIM). On the other hand, the MA-LIM shows the best performance at



all lead month. The MA-LIM found to substantially remedies the undesirable
aspects of the MA.

By extending UNICON, we develop a stochastic UNICON for shallow
convection with convective updraft plumes at the surface randomly sampled
from the correlated multivariate Gaussian distribution for updraft vertical
velocity (@) and thermodynamic scalars (¢), of which standard deviations and
inter-variable correlations are derived from the surface layer similarity theory.
The updraft plume radius (]%) at the surface follows a power-law distribution
with a specified scale break radius. To enhance computational efficiency, we
also develop a hybrid stochastic UNICON consisting of n bin plumes and
a single stochastic plume, each of which mainly controls the ensemble mean
and variance of grid-mean convective tendency, respectively. We evaluated the
stochastic UNICON using the Large-Eddy Simulation (LES) of the Barbados
Oceanographic and Meteorological Experiment (BOMEX) shallow convection
case in a single-column mode. Consistent with the assumptions in the stochastic
UNICON;, the LES-simulated w and quS at the surface follow approximately
the half- and full-Gaussian distributions, respectively. LES showed that a
substantial portion of the variability in QAS at the cloud base stems from the
surface, which also supports the concept of stochastic UNICON that simulates
various types of moist convection based on the dry stochastic convection
launched from the surface. Overall, stochastic UNICON adequately reproduces
the LES-simulated grid-mean thermodynamic states as well as the mean and
variance of é, including their dependency on the domain size and R.

In addition to the stochastic initialization at the near-surface, a stochas-

tic mixing model with a machine learning technique is proposed for mass
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flux convection schemes. The model consists of the stochastic differential
equations (SDEs) for the fractional entrainment rate, fractional detrainment
rate, fractional dilution rate, and vertical acceleration. Unknowns in SDEs
are parameterized using a deep neural network with the inputs of cloud and
environment properties. The deep neural network is found to predict entrain-
ment and detrainment rates better than previously proposed parameterizations.
The new mixing model is implemented in stochastic UNICON and tested in
a single-column mode for two marine shallow convection cases. It is shown
that the simulations with the new mixing model produce realistic mean and
variance of various convective updraft properties and that the appropriate
amount of stochasticity is generated. Consistently accurate simulations of
updraft mass fluxes and moist conserved variables reduce model errors in the
original UNICON.

We extended the stochastic UNICON, which was originally formulated
for shallow convection, to deep convection by parameterizing the impact of
mesoscale organized flow on updraft properties. The extended stochastic UNI-
CON parameterizes thermodynamic properties of updrafts at the near-surface
as a multivariate Gaussian distribution, where the variances of the distribution
are the summation of variances from non-organized turbulence and mesoscale
organized flow. The scale break radius is parameterized as a linear function of
the strength of mesoscale organized flow. The free parameters introduced in
the formulation of stochastic UNICON are optimized using ten cases of single-
column model (SCM) simulations over the ocean. Stochastic UNICON with
the optimized parameters significantly reduces the biases of thermodynamic

profiles and precipitation rates simulated in the original UNICON for tropical
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convection cases. The simulation of the variation in anomalies of temperature
and moisture associated with the Madden-Julian oscillation (MJO) is also
improved. An additional simulation of an idealized deep convection case shows
that stochastic UNICON produces enhanced cloud variabilities with depen-
dency on updraft radius, indicating its ability to represent the coexistence of
shallow and deep convection.

The global climate simulation using stochastic UNICON is evaluated and
compared with UNICON, focusing on the simulation of the Madden—Julian
oscillation (MJO). The performances of UNICON and stochastic UNICON on
simulating observed mean climates are comparable, while stochastic UNICON
slightly reduces the mean bias of climate variables. For the simulation of
intraseasonal variabilities, stochastic UNICON outperforms UNICON in many
aspects. Stochastic UNICON improves the simulation of the intensity and
propagation patterns of boreal winter MJO, which is too weakly simulated
in UNICON. The coherency between MJO-related convection and large-scale
circulation is also enhanced, which many climate models underestimate. The
improvement of MJO simulation by stochastic UNICON is related to a better
representation of the relationship between moisture and convection in the
model. The increased frequency of shallow convection in stochastic UNICON
leads to stronger moisture convergence that precedes convection activity peak
and results in the more robust development of organized convection and more
frequent intense precipitation. A precipitation budget analysis reveals that the
moisture tendencies due to horizontal advection and convective process are

consistently enhanced during MJO developing periods by stochastic UNICON.
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1.1  Schematic of two different views of subgrid turbulence parame-
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Vertical red and blue arrows denote convective updrafts and
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The time series of convective tendencies of subdivided grids
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2.1 (Color) Composite TG anomalies during the (top row)
positive and (bottom row) negative phases of ENSO obtained
from (left column) CESM1, (center column) observations, and
(right column) SEMO. Green lines are the composite anomalies
of SST with a contour interval of 0.5 K (£0.25 K lines are also
shown) and black lines are the composite anomalies of OLR
with a contour interval of 5 Wm ™2 (£2.5 Wm ™2 lines are also
shown). Only statistically significant SST and OLR anomalies
above a 95% confidence level based on a two-sided student’s
t-test are shown. The pattern correlations () and rmse values
of SST and TG anomalies in the tropical region (30°N-30°S)
between the simulations and observation are shown in the
upper-left and upper-right corners of the simulation maps,
respectively. ... .. 16
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phases one and two, (second row) MJO phases three and
four, (third row) MJO phases five and six, and (fourth row)
MJO phases seven and eight, as obtained from (left column)
CESM1, (center column) observations, and (right column)
SEMO. Black lines are the composite anomalies of OLR with
a contour interval of 5 Wm™2 (£2.5 Wm™? lines are also
shown). Only statistically significant OLR anomalies above a
95% confidence level based on a two-sided student’s t-test
are shown. The pattern correlations (r) and rmse values
of OLR and TG anomalies in the tropical region (30°N-
30°S) between the simulations and observation are shown
in the upper-left and upper-right corners of the simulation
maps, respectively. Several regions where TC are generated
frequently are shown in Fig 2.2a (NIO: Northern Indian
Ocean, WNP: Western North Pacific, ENP: Eastern North
Pacific, NAT: North Atlantic Ocean, SIO: Southern Indian
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(Color) Composite TG anomalies during the (first row) El-
Nino and MJO phases one and two, (second row) El-Nifo and
MJO phases five and six, (third row) La-Nina and MJO phases
one and two, and (fourth row) La-Nina and MJO phases five
and six obtained from (left column) CESM1, (center column)
observations, and (right column) SEMO. Black lines represent
the composite anomalies of OLR with a contour interval of 5
Wm=2 (£2.5 Wm™2 lines are also shown). Only statistically
significant OLR anomalies above a 95% confidence level
based on a two-sided students t-test are shown. The pattern
correlations and rmse values of OLR and TG anomalies in
the tropical region (30°N-30°S) between the simulations and
observations are shown in the upper-left and upper-right

corners of the simulation maps, respectively. .................. 20

Composite TG values averaged over several of the ocean basins
presented in Fig 2.2a as functions of the ENSO and MJO
phases obtained from the (bars) observations, (closed dots)
SEMO, and (open dots) CESM1. The first set of bars and dots
(denoted as ENSO) represents the composite TG during the
(red) positive, (black) neutral, and (blue) negative phases of
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ENSO. The second set of bars and dots (denoted as MJO)
represents the composite TG during the individual MJO
phases (neutral MJO, phases one and two, phases three and
four, phases five and six, and phases seven and eight from left
to right). The third set of bars and dots (denoted as MJO &
ENSO) represents the composite TG for each of the combined
phases of ENSO and MJO. The correlations and rmse values
between the observed and simulated TG over all combined
phases of ENSO and MJO in each region are shown in the
upper-right portions of individual plots. To compute these
statistics, 27 data points (i.e., three ENSO phases (positive,
neutral, negative) x nine MJO phases (neutral MJO, phases

1-8)) were used for each region. ............. ... ... .. ... ... 22

Diagram illustrating the MA-LIM for the tropical oceans.

The initial monthly SST anomaly used by LIM, SST} (0), is
constructed from the 16/9 EOFs and then a one month LIM
forecast is made to SST7(1). Due to the EOF truncation,
SST;(0) is slightly different from the raw initial monthly
SST anomaly, SST’(0). Then, the MA selects 20 cases from
the population with anomalous SST/SSH fields similar to
SST'(0)/SSH'(0), and computes SST,(0), ... SST(t), which
is the ensemble average of the EOS-reconstructed 20 selected
cases at the forecast time, t. Note that SST,(0) is different
from SST'(0) and SST}(0). The initial conditions of the
MA-LIM are set to be identical to those of the LIM. The
final forecasted monthly SST anomaly at t=1 is obtained
by SSTi(1) = (1 —w) - SSTy(1) + w - SST4(1), where
0 < w < 1 is a weighting factor, and these procedures are
repeated. In summary, by choosing w=0.15, the MA-LIM can
be understood as a LIM slightly nudged by the MA. The same

method is used for predicting SSH as well as SST. ............. 30

The [(a),(c)] anomaly correlation coefficient (ACC) and
[(b),(d)] root-mean-squared error based skill score (RMSSS)
of the Nino3.4 SST anomalies (170°W-120°W, 5°S-5°N) as
a function of the lead month, 7, predicted by the LIM, MA,
and MA-LIM with various weighting factor w, obtained from
the [(a),(b)] perfect model analysis and [(c),(d)] observational
analysis. At 7=0, both ACC and RMSSS are not exactly 1,
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since the initial monthly SST anomaly of the MA is computed
by averaging 20 cases obtained from the GCM simulation
while the initial SST anomaly for the LIM and MA-LIM are
obtained from the EOF reconstruction of 16/9 EOF modes

of tropical SST/SSH anomalies, respectively. ..................

Spatial distributions of [(a),(d)] ACC of the SST anomalies
at the 6 month lead obtained from the (a) perfect model
analysis and (d) observational analysis from LIM. The other
figures show the differences between the MA or MA-LIM with
w=0.15 and LIM. The grid boxes with statistically significant
AACC at the 95% confidence level from the bootstrapping
(or Monte Carlo) method are denoted by the dot. A domain
averaged ACC in the tropical region (25°S-25°N) for the LIM,
MA, and MA-LIM is shown at the top-right of an individual
plot. The solid lines in (a) and (d) are the standard deviations
of monthly SST anomaly obtained from the GCM simulation

and observation, respectively, with a contour interval of 0.5°C.

The solid and dashed pink boxes denote the Nino3.4 and

Ninol.2 regions, respectively... ... ... ... ... i i

(Left) ACC of the Nino3.4 SST anomalies as a function of
the target month and lead month 7 obtained from the (upper
row) perfect model analysis and (lower row) observational
analysis with the LIM. The differences between (center) the
MA and LIM and (right) the MA-LIM with w=0.15 and LIM
are also shown. The domain averaged ACC from the LIM,
MA, and MA-LIM with w=0.15 is shown at the top-right
of an individual plot. Statistically significant AACC at the
95% confidence level from the bootstrapping (or Monte Carlo)
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The joint area PDF between (a) o, and ag,, (b) oy, and
ag,, (¢) ap, and ay,, (d) oy, and ag,, (e) ay and g, and (f)
ay, and o, at the top of the lowest model layer (z = 25m)
obtained from the BOMEX LES simulation. The black and
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from the LES and similarity theory, respectively. Here, o is the
standard deviation and r is the correlation coefficient between

two variables. ...
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from the analysis of 60 snapshots of the BOMEX LES during
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1 Overview

1.1 Parameterization of sub-grid convection

Atmospheric models numerically solve a set of governing equations discretized
in time and space. The physical processes involving scales smaller than the
scales resolved by the dynamic model should be parameterized. This is what
is called sub-grid scale physical parameterizations. Among many physical
processes, the characteristic of unresolved turbulent motion is highly dependent
on the scale of the dynamic model resolves. Below the horizontal grid scale order
of 100 m, which is in the scope of large-eddy simulation (LES), the unresolved
turbulent motion is in inertial sub-range so the sub-grid turbulence fluxes can
be estimated based on Kolmogorov theory. For the larger horizontal grid scales,
convective turbulent motions and clouds are only partially resolved, and those
are the scales where the parameterization of convection is needed. According to
recent LES studies, the minimum LES resolution to simulate realistic statistics
of deep convective clouds is 200 m (Khairoutdinov et al. 2009).

In global atmospheric models, sub-grid turbulence is parameterized with
planetary boundary layer (PBL) schemes and convection schemes. The PBL
schemes usually treat vertical transport by symmetric and local turbulence
based on the local diffusion approach. Currently, many PBL schemes include

the treatment of non-local transport by dry convection. Then the convection



schemes are responsible for the non-local transport above PBL due to moist
convection. During the last half century, the convection parameterization
community has developed various shallow and deep convection schemes, and
now the vast majority of operational convection schemes adopted the mass-
flux formulation. These mass-flux schemes have their own closure to close their
formulation. More specifically, the closure is some vertically integrated quanti-
ties (e.g. convective available potential energy (CAPE), convective inhibition
(CIN), moisture convergence), which is needed to determine the strength of
sub-grid convection in an assumption that convection activity is in equilibrium
with the large-scale processes (the quasi-equilibrium assumption proposed by
Arakawa and Schubert (1974)). Traditionally, operational weather and climate
models have used separate schemes for shallow convection and deep convection
with different closures. This leads to the artificial discontinuity between the
transition of shallow-to-deep convection.

The interesting and also challenging issues for convection parameterization
appear in the weather and climate numerical models operating in the “gray
zone” at horizontal grid spacings in the range of 200 m to 10 km. This is the
range where convective turbulence is partially resolved. For instance, in O(1 km)
resolution, the mesoscale convective system can be resolved, but shallow cumuli
are still on a sub-grid scale. Many weather and climate models do switch off
their convection parameterizations at an arbitrary resolution within the gray
zone. However, previous studies indicate that shallow convection and non-
local turbulence in the convective boundary layer (CBL) are still in gray zone
(= partially resolved) even in 1km resolution (Honnert et al. 2011, 2020).
Furthermore, sub-grid convection is no longer quasi-equilibrium and becomes

highly stochastic in the gray-zone scale. Due to the increase of computational



power, now more operational weather and climate models are operating in
the gray zone. Hence, there is an urgent need for the development of scale-
aware convection parameterizations with a consistent formulation for various

convection regimes.

1.2 A unified convection scheme (UNICON)

A unified convection scheme (UNICON) developed by Park (2014a,b) is one of
the rare convection schemes designed to simulate subgrid mesoscale organized
flow and its impacts on subgrid convection in an explicit way. UNICON
simulates all dry-moist, forced-free, and shallow-deep convection in a seamless,
consistent and unified way, without relying on the quasi-equilibrium assumption
such as the CAPE or CIN closures. UNICON consists of diagnostic multiple
convective updrafts rising from the surface, diagnostic multiple convective
downdrafts generated from convective updrafts, and prognostic subgrid cold
pool and associated mesoscale organized flow within the planetary boundary
layer (PBL).

Parameterizing subgrid mesoscale organized flows driven by various sources
(e.g., subgrid cold pool, orography, and land-sea ice contrasts) and their impacts
on subgrid convection is one major issue in the convection modeling commu-
nity. Traditional convection scheme based on quasi-equilibrium assumption
inevitably lo ses the memory of the plume properties between the model time
steps. This lack of plume memory seems to be one reason that conventional diag-
nostic convection schemes fail to simulate the diurnal cycle of precipitation and
the Madden-Julian oscillation (MJO, Madden and Julian (1971)). In UNICON,

a convective downdraft can penetrate down into the PBL across the inversion



barrier at the PBL top if forced by sufficient evaporative cooling of precipitation.

This generates cold pools which can be characterized by negatively buoyant
density current. UNICON solves prognostic budget equations for fractional
area and properties of the cold pool which produces the memory effect of
convection. The properties of a convective updraft at the surface and the
mixing environmental air within and above the PBL are modulated by the
subgrid mesoscale organized flow driven by the cold pool.

As explained in Section 1.1, some atmospheric models treat non-local

turbulence with multiple schemes, where dry convection is treated by PBL

schemes and moist convection by (shallow and deep) convection schemes.

However, cumulus growing above the PBL is typically originated from an
underlying dry convective plume. Thus, it appears to be more reasonable to
simulate both the dry and moist convection within a single convection scheme
rather than simulating in separate PBL and convection schemes. An approach
in line with this philosophy is an eddy diffusivity-mass flux (EDMF) model
(Siebesma et al. 2007). Figure 1.1 summarizes the framework of UNICON
compared to the traditional framework.

It was shown that in addition to mean climate, UNICON also successfully

simulates the diurnal cycle of precipitation, MJO, and tropical cyclones, all

of which have been difficult to simulate in GCMs (Park et al. 2019, 2017).

The global simulation results with UNICON are submitted to Coupled Model
Intercomparison Project Phase 6 (CMIP6) (Park et al. 2019) and available

online.



Traditional View UNICON View

Figure 1.1 Schematic of two different views of subgrid turbulence
parameterizations, which are the traditional view and UNICON view. Small
gray circular arrows denote local turbulence, and large gray circular arrows
denote non-local turbulence within PBL. Vertical red and blue arrows denote
convective updrafts and downdrafts, respectively. The horizontal arrow in the
right panel indicates cold pools that can affect the properties of newly formed
updrafts.



1.3 Stochastic convection parameterization

Convective clouds formed in a similar environment tend to have different
thermodynamic properties (Yanai et al. 1973; Esbensen 1978; Arakawa and
Schubert 1974). The goal of convection scheme is to reproduce the observed
tendency induced by multiple convective plumes. Most convection schemes in
general circulation models (GCMs) use an ensemble-mean plume parameter-
ized as a deterministic function of the grid-mean environmental variable (the
bulk plume method), which has a fundamental limitation in simulating the
spatiotemporal variability generated by multiple convective plumes. Craig and
Cohen (2006) noted that the grid-mean convective tendency averaged over
the horizontal grid size, G = AxzAy, where Azr and Ay are the zonal and
meridional width of the model grid, respectively, would fluctuate depending
on how many plumes exist within the grid.

Figure 1.2 displays the fluctuation of grid-mean convective tendency with
different grid sizes. For a grid with Az = 128km, there are a number of
convective plumes within the grid, thus the grid-mean convective tendency
is in a near-equilibrium state. As the grid size gets smaller, the grid-mean
convective tendency becomes more fluctuating because a smaller number of
convective cells are presented with the grid. Parameterizing the stochastic
fluctuation of grid-mean convective tendency is known to influence various
aspects of mean climate and variability simulated by GCMs (Lin and Neelin
2000, 2002).

The goal of a stochastic convection scheme is to adequately parameterize the
distribution of multiple convective plumes and their impacts on the environment

in an equilibrium state. Proper representation of the distribution is important



Az = 128 km
Az = 64 km
Az = 32km
Az = 16km

convective tendency

Figure 1.2 Schematic of explaining the stochastic fluctuation of grid-mean
convective tendency which depends on horizontal grid size. A domain with
size of G = 248 km x 248 km is subdivided into smaller grids with Az =
128 km, 64km, 32km, 16km. The time series of convective tendencies of
subdivided grids are shown in the panel below.



for an accurate simulation of the ensemble mean as well as the variance
(Arakawa and Schubert 1974). A simple approach is to impose stochastic
perturbations directly onto the grid-mean convective tendency generated by
a single deterministic ensemble-mean plume (Buizza et al. 1999; Palmer et al.
2009; Teixeira and Reynolds 2008). This method has a weakness since the
imposed stochastic perturbations are somewhat arbitrary without an explicit
connection with the underlying physical processes.

A more advanced approach is to impose stochastic perturbations on the
physical processes controlling the grid-mean convective tendency. One example
is the stochastic convection scheme of Plant and Craig (2008) which assumes
that the mass flux of the convective updraft plumes follows an exponential
distribution, and a grid-mean convective mass flux over a wide range of G was
calculated by stochastic sampling from the assumed exponential distribution.
The assumed mass-flux distribution method has been a common way to cou-
pling a stochastic convective parameterization with the existing convection
schemes (e.g. Keane et al. (2014), Wang et al. (2016), and Sakradzija et al.
(2016)). Nevertheless, there is still a lack of understanding of the physical
mechanisms that generate the mass-flux distribution. In addition, it is a
more challenging issue to model how the mass-flux distribution assumed in
a stochastic convection scheme varies depending on the grid size, associated

with the gray zone problem.

1.4 Objectives and organization of the dissertation

The objectives of this dissertation can be summarized as follow:
e Assess the physical processes that generate variabilities between convec-

tive plumes.



Formulate a stochastic convection parameterization based on UNICON
scheme (stochastic UNICON), which can simulate the development of
variabilities of individual convective plumes at the fundamental level.
Develop a framework to calculate the mean and variance of convective
tendency generated by multiple convective plumes presented in a grid.
Evaluate the various aspects of the simulation results with the proposed
stochastic convection scheme, including mean climatology, variabilities,

and scale-awareness.

The rest of this dissertation is organized as follows:

In Chapter 2, the performance of UNICON in global simulations is
evaluated regarding the modulation of tropical cyclone activity by ENSO
and MJO.

In Chapter 3, a new methodology for enhancing ENSO predictability is
discussed as an application of global simulations of UNICON.

In Chapter 4, the formulation for stochastic UNICON as stochastic
initialization at the near-surface is derived and tested using a single-
column model.

In Chapter 5, a stochastic mixing model for mass-flux convection scheme
using a machine learning technique is proposed and tested using a single-
column model.

In Chapter 6, stochastic UNICON is extended to deep convection and
tested using a single-column model.

In Chapter 7, a global climate simulation with stochastic UNICON is
evaluated.

Chapter 8 provides summary and conclusions.



2 Global Simulation of UNICON: Modulation
of Tropical Cyclone Activity by ENSO and
MJO

2.1 Introduction

Tropical cyclone (TC) activity is influenced by various atmospheric and oceanic
variation modes at different time scales. The El Nino-Southern oscillation
(ENSO) and Madden-Julian oscillation (MJO; Madden and Julian (1971)),
which are the main modes of natural variability in the tropics on the interannual
and subseasonal time scales, respectively, are known to exert significant effects
on TC activity. Numerous observational studies have documented the impacts
of ENSO (Gray 1984; Chan 1985; Lander 1994; Chu and Wang 1997; Wang and
Chan 2002; Camargo et al. 2007) and MJO (Liebmann et al. 1994; Maloney
and Hartmann 2000b,a; Hall et al. 2001; Camargo et al. 2009) on TC activity
in various ocean basins. Chu (2004) reported that El Nino promotes the
genesis of TCs (TG, hereafter) in the southeast portions of the western North
Pacific (WNP) and central North Pacific, and inhibits TC activity in the
northwest portion of the WNP and northern Atlantic Ocean. In the case of
MJO, TG during convectively active MJO phases is enhanced by up to four
times compared to TG during suppressed MJO phases (Maloney and Hartmann

2000a; Barrett and Leslie 2009; Camargo et al. 2009). Several studies have also
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examined the combined effects of ENSO and MJO on TC activity. The results
revealed that the effects of ENSO and MJO cannot be added linearly because
the modulation of TG by MJO under ENSO conditions is asymmetric (e.g. Li
et al. (2012)).

Additionally, there have been efforts to reproduce and understand observed
ENSO-TC and MJO-TC relationships using dynamical models. Observed
ENSO-TC relationships have been reproduced by various general circulation
models (GCMs), which enables the dynamical seasonal forecasting of TC, at
least qualitatively (Wu and Lau 1992; Vitart and Anderson 2001; lizuka and
Matsuura 2008; Chen and Lin 2011; Li and Wang 2014; Bell et al. 2014;
Chand et al. 2017). However, modeling studies on MJO-TC relationships are
very limited because most GCMs have difficulty in reproducing the observed
amplitude and phase of MJO (Slingo et al. 1996; Lin et al. 2006) and TC
patterns (Vitart 2006), mainly due to the problems in parameterized moist
convection processes. Vitart (2009) documented the impact of MJO on the
statistics of TCs in the ECMWF forecasting model, and Satoh et al. (2012) and
Jiang et al. (2012) conducted similar works based on high-resolution models.
These studies adopted hindcast simulations targeting two to four weeks of
MJO predictability, such that their results can be sensitive to errors in initial
conditions. Kim et al. (2014) examined MJO-TC relationships utilizing a few
atmospheric GCMs, but only over the WNP.

Here, we investigate the impacts of ENSO and MJO on TG using a set
of long-term coupled GCM simulations produced by the Community Earth
System Model version 1 (CESM1; Hurrell et al. (2013)) and Seoul National

University Earth System Model Version 0 with a unified convection scheme
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(SEMO-UNICON; Park et al. (2019)). The results are then compared to obser-
vations. SEMO-UNICON is one of the very few GCMs that simulates observed
ENSO, MJO, and their teleconnections reasonably well (Yoo et al. 2015; Ahn
et al. 2019), as well as TG and the diurnal cycle of precipitation (Park et al.
2019). To the best of our knowledge, our study is the first attempt to investigate
the combined effects of ENSO and MJO on TG utilizing GCMs, which can
contribute to improving short-term TC forecasting and understanding changes

in TC activity in the future.

2.2 Data and analysis methods

For observational analysis, for the period of January of 1979 to December of
2016 (38 years), TG over the eastern North Pacific and Atlantic oceans was
obtained from the TC track data of the National Oceanic and Atmospheric
Administration’s National Hurricane Center. TG in other regions was obtained
from the TC track data of the US Navy’s Joint Typhoon Warning Center (Chu
et al. 2002). The monthly sea surface temperature (SST) used for defining
ENSO came from HadISST/OIL.v2 observations (Rayner et al. 2003). Daily
outgoing longwave radiation (OLR) and horizontal wind vector at levels of
850 and 200 hPa, which are used for defining MJO, came from observations
of the Advanced Very-High-Resolution Radiometer satellite (Liebmann and
Smith 1996) and the NCEP-NCAR reanalysis product (Kalnay et al. 1996),
respectively. In terms of GCMs, we conducted 400 years of coupled simulations
at a 0.95° latitude x 1.25° longitude horizontal resolution (nominally, 1 degree)
in the pre-industrial period with the CESM1 and SEM0O-UNICON (Park et al.

2019) driven by the forcing data obtained from phase six of the Coupled Model
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Intercomparison Project (CMIP6; Eyring et al. (2016)). Although not sufficient
for reproducing the observed strength of TCs, 1 degree GCM simulations
have been used in previous studies to examine the genesis of tropical cyclones
(Murakami and Sugi 2010; Strachan et al. 2013). The atmospheric model of
SEMO is the Seoul National University Atmosphere Model Version 0 with a
UNICON (SAMO-UNICON) and the other components of SEMO (e.g., land,
ocean, and sea ice models) are identical to those of CESM1. SAM(0-UNICON
is one of the international GCMs participating in the CMIP6 and is based
on the Community Atmosphere Model Version 5 (CAMS5; Neale et al. (2010),
Park et al. (2014)), but CAM5’s shallow (Park and Bretherton 2009) and deep
convection schemes (Zhang and McFarlane 1995b) were replaced by UNICON
(Park 2014a,b) with a revised treatment of convective detrainment processes
(Park et al. 2017). Park et al. (2019) demonstrated that the global mean
climate and ENSO simulated by SAMO0/SEMO are similar to those simulated by
CAM5/CESM1. However, SAM0/SEMO substantially improves the simulation
of MJO, the diurnal cycle of precipitation, and TG.

The methods we utilized for defining ENSO, MJO, and TG are similar to
those presented in Park et al. (2019). El Nino, neutral ENSO, and La Nina
events are defined as years in which the standardized detrended monthly SST
anomalies averaged over the NINO34 region (170°W-120°W, 5°S-5°N) during
the months of November to January are greater than 1, between -1 and 1,
and smaller than -1, respectively. To define MJO phases for individual days,
we conducted multivariate empirical orthogonal function analysis using 20 to
100 days bandpass filtered, OLR and zonal winds at levels of 850 and 200
hPa averaged over the range of 15°S-15°N. The first two normalized principal

components were squared and added to define the daily MJO index. The days
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with an MJO index smaller than 1 were defined as “neutral MJO” and the
other days were grouped into eight MJO phases (P1, P2, ... , P7, and P8)
based on the two principal components. Following the method presented in
Park et al. (2019), TG was identified utilizing 6 hourly instantaneous outputs
if the relative vorticity at 850 hPa, denoted &g50, was greater than 12.5 - 1075
s~!, the warm-core strength, denoted &g50 — 250, was greater than 12.5 - 107°
s7!, and the two conditions were satisfied at least for two consecutive days.
The first time step at which these conditions were simultaneously satisfied
was defined as the TC onset time. Due to the short available periods and
infrequent occurrence of TCs, the observed TG anomalies associated with the
combined variations of ENSO and MJO averaged over the 5° latitude x 5°
longitude grid boxes were too noisy to be interpreted. To address this issue,
following the methods presented in Zhao et al. (2010) and Chand et al. (2017),
we computed spatially smoothed T'Gs by partitioning individual TG events
into nearby grid boxes using a two-dimensional Gaussian distribution with a
standard deviation of 5¢ in both the x and y directions to serve as a normalized
probability density function for individual TG events. After defining the ENSO
years and MJO days in different phases, the spatially smoothed TGs defined
for each 5° latitude x 5° longitude grid box were composited onto the phases of
ENSO (Fig 2.1) and MJO (Fig 2.2), as well as the combined phases of ENSO
and MJO over the globe (Fig 2.3) and in several specific regions (Fig 2.4). We

compared the composite results from CESM1 and SEMO to observed data.

2.3 Results

Figure 2.1 presents the composite TG anomalies during the El Nino and La

Nina years obtained from CESM1, SEMO, and observations. During the El
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Nifio years, the observed TG increases in the central and eastern northern-
hemispheric tropical Pacific ocean, where SST (OLR) anomalies are positive
(negative), but decreases in the western Pacific and eastern Indian oceans, where
SST (OLR) anomalies are negative (positive) (Fig 2.1b). TG also decreases
over the far eastern Pacific ocean near the coast of Central America and most
of the tropical North Atlantic ocean, although the anomalies in SST and OLR
are less pronounced. These results are consistent with previous observational
studies (Gray 1984; Chan 1985; Chu and Wang 1997; Ho et al. 2006; Jin
et al. 2014). In La Nina years, the aforementioned anomalies are reversed
(Fig 2.1e). Qualitatively, both CESM1 and SEMO reproduced the observed
anomalies of SST, OLR, and TG in association with ENSO. However, CESM1
generally underestimates the magnitude of observed anomalies. Both models
underestimate the observed TG anomalies over the North Atlantic ocean, where
the climatological TGs simulated by CESM1 and SEMO are lower than the
observed values (Park et al. 2019). Compared to the observations, the simulated
positive SST and negative OLR anomalies during El Nifo years extend too far
westward into the western equatorial Pacific and accordingly, the simulated
positive TG anomalies also extend too far westward. Similar features can be
seen for La Nina years. The pattern correlation (r) between the observed and
CESM1-simulated SST anomalies in the tropical region (30°N-30°S) is 0.84
(0.86) during the El Nifio (La Nifa) years. SEMO produces similar r values of
0.87 (0.88), indicating that both models have similar performance in terms of
simulating the observed ENSO. However, both models produce substantially
lower pattern correlations for TG anomalies (0.15 (0.25) for CESM1 and 0.23

(0.30) for SEMO), although SEMO performs slightly better than CESM1.
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Figure 2.1  (Color) Composite TG anomalies during the (top row) positive
and (bottom row) negative phases of ENSO obtained from (left column)
CESM1, (center column) observations, and (right column) SEMO. Green lines
are the composite anomalies of SST with a contour interval of 0.5 K (£0.25
K lines are also shown) and black lines are the composite anomalies of OLR
with a contour interval of 5 Wm ™2 (+2.5 Wm™2 lines are also shown). Only
statistically significant SST and OLR anomalies above a 95% confidence level
based on a two-sided student’s t-test are shown. The pattern correlations (r)
and rmse values of SST and TG anomalies in the tropical region (30°N-30°S)
between the simulations and observation are shown in the upper-left and upper-
right corners of the simulation maps, respectively.
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Figure 2.2 presents the composite anomalies of TG at different MJO
phases. Similar to ENSO, MJO has a significant impact on the variations
of regional TG around the world. Similar to the results presented in Camargo
et al. (2009), the signs of TG anomalies systematically change depending
on MJO phases in all active TC regions. Most TG anomalies are congruent
with OLR anomalies, indicating that TCs occur more frequently when latent
heat is released by strong mean upward motion (Maloney and Hartmann
2000a). One notable exception is the simultaneous decreases in OLR and
TG over the western North Pacific ocean centered at (15°N, 165°E) during
MJO phases seven and eight (Fig 2.2k), implying that some factors other than
large-scale upward motion also control TG. CESM1 has trouble simulating
the observed MJO, as indicated by the very low spatial correlations (r=0.26-
0.37) between observed and simulated OLR anomalies compared to SEMO
(r=0.76-0.92). Consequently, the simulated TG anomalies from CESM1 are
less realistic (r=0.09~0.54, root mean squared error (rmse)=8.9~10.9x1072)
than those from SEMO (r=0.64~0.87, rmse=>5.0~7.6x10~2) and weaker than
the observations. Similar to the ENSO composite, the simulated TG anomalies
associated with MJO over the North Atlantic ocean for both models are weaker
than the observations.

Figure 2.3 presents the composite anomalies of TG and OLR in association
with the combined variations of ENSO and MJO. The observations reveal
that the combined impacts of ENSO and MJO on TG are complicated, which
is expected because the ENSO-related anomalies of TG and OLR (Fig 2.1)
are comparable in magnitude to the MJO-related anomalies (Fig 2.2), but
different in terms of spatial structure. The positive TG anomalies over the

South China Sea in the far western North Pacific ocean during La Nina years

17 :l_-E _'-\.I:_'l'



(OLR)=0.298 1(TG)=0.537 r(OLR)=0.760 (TG)=0.728
rmse(OLR)=4.36 MJO P1+2 rmse(TG)=9.83¢-02 rmse(OLR)=3.09 MJO P1+2 1mse(TG)=7.64¢-02
son ik AL A A PR i AT o\ L S s S e
Z s = T 5
les g ~
aon 0 T ENP aon
0 = [
}(9 =
a0s 127510 Q? 308
60S. = 60S.
WE GE WE I20E ISOE 160 1SOW 120W 9OW O oW 0 WE WE WE I2E IS0E 180 15OW 120W WE GE WE IE ISOE 190 1SOW 120W SOW O W O
r(OLR)=0.302 r(TG)=0.440 r(OLR)=0.919 r(TG)=0.844
rmse(OLR)=4.35 MJO P3+4 rmse(TG)=1.09-01 MJO P3+4 rmse(OLR)=1.90 MJO P3+4 rmse(TG)=6.376-02
aon e . oon e s aon o iy
G§° - )3 e e - - A
aon aon aon
% - L,
o o — o =
e o 9
308 Ll 308 308 Q
J (d) () U

0E GOE  SE 120E 1S0E 180 1SOW 120W SOW 6OW W O 0 60E SOE 120 1S0E 180 1SOW 120W SOW 6OW 30W O 0E 60E SOE 120 1S0E 180 1SOW 120W SOW 6OW 30W O

1(OLR)=0.261 1(TG)=0.328 f(OLR)=0.780 1(TG)=0.874
mse(OLR)-4.77 .MJ.O F:5+§ | Mse(TG)=9.71e-02 X .MJ.O F:5+§ mse(OLR)-3.04 J.O F:5+(.3 | mse(TG)-5.03¢-02

7 14

g° - g -

306 60E  SE 120E 1S0E 180 1SOW 120 SOW GOW SOW O S0E 60E SOE 120 ISOE 180 1SOW 120W SOW 6OW OW O

{(OLR)=0.365 1(7G)=0.091
rmse(OLR)=4.43 MJO P7+8 rmse(TG)=8.92e-02

o )

r(OLR)=0.917 1(TG)=0.637
rmse(OLR)=1.89 MJO P7+8 rmse(TG)=6.75¢-02
e .

0 nf
605 T T T T T T T T T T T 60S = T T T T T T T T T T T 60S =y T T T T T T T T T T T
WE WE WE I20E IS0E 160 1SW f20W W oW oW 0 WE WE WE I20E IS0E 10 1SOW 1200 SOW 0N oW O WE WE WE 120 S0E 10 1SOW 200 W W oW O
T T T TTTTTTTTTTTTTT T
05 -04 03 02 01 0 01 02 03 04 05 05 -04 03 02 01 0 01 02 03 04 05 05 04 03 -02 01 0 01 02 03 04 05
[ #/5x5grid/year ] [ #/5x5grid/year ] [ #/5x5grid/year ]

Figure 2.2 (Color) Composite TG anomalies during (first row) MJO phases
one and two, (second row) MJO phases three and four, (third row) MJO phases
five and six, and (fourth row) MJO phases seven and eight, as obtained from
(left column) CESM1, (center column) observations, and (right column) SEMO.
Black lines are the composite anomalies of OLR with a contour interval of 5
Wm™2 (£2.5 Wm ™2 lines are also shown). Only statistically significant OLR
anomalies above a 95% confidence level based on a two-sided student’s t-test are
shown. The pattern correlations (r) and rmse values of OLR and TG anomalies
in the tropical region (30°N-30°S) between the simulations and observation
are shown in the upper-left and upper-right corners of the simulation maps,
respectively. Several regions where TC are generated frequently are shown in
Fig 2.2a (NIO: Northern Indian Ocean, WNP: Western North Pacific, ENP:
Eastern North Pacific, NAT: North Atlantic Ocean, SIO: Southern Indian
Ocean, SP: South Pacific).
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(Fig 2.1e) are further strengthened during MJO phases five and six (Fig 2.3k),
but are reversed during MJO phases one and two (Fig 2.3h). The well-defined
positive TG anomalies over the eastern North Pacific and western Atlantic
oceans during MJO phases one and two, which are presented in Fig 2.2b, are
modulated by ENSO (Figs 2.3b and 2.3h). Regardless, most TG anomalies
continue to be congruent with OLR anomalies. In general, as indicated by the
higher r values and lower rmse values, SEMO reproduces the observed anomalies
of TG and OLR in association with the combined variations of ENSO and MJO
more accurately than CESM1. We speculate that some of the discrepancies
between the observations and simulations are a result of the short available
period and associated noise in the observational analysis, particularly in the
ENSO composites.

Figure 2.4 presents the composite TG anomalies at different phases of
ENSO and MJO averaged over several regions in which TCs are generated
frequently (see Fig 2.2a). Similar to the previous figures, one can see that the
impacts of ENSO and MJO on TG exhibit strong regional dependencies. Over
the NAT/NIO/SIO, the observed TG is the largest during La Nifia years and
smallest during El Nifio years, while the opposite is true over the ENP. TCs over
the SP (WNP) occur least (most) frequently during neutral ENSO. SEMO0 well
reproduces the observed dependencies of regional TG on different ENSO phases,
at least qualitatively. However, over the WNP, the maximum and minimum
TG values are simulated during the El Nino and La Nifia years, respectively,
instead of during the neutral ENSO. This is due in part to too westward
extension of the simulated SST and OLR anomalies in the western tropical

Pacific ocean, as mentioned previously (see Fig 2.1). SEMO also reproduces
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(Color) Composite TG anomalies during the (first row) El-Nino

and MJO phases one and two, (second row) El-Nifio and MJO phases five
and six, (third row) La-Nina and MJO phases one and two, and (fourth row)
La-Nina and MJO phases five and six obtained from (left column) CESMI,
(center column) observations, and (right column) SEMO. Black lines represent

the composite anomalies of OLR with a contour interval of 5 Wm~=2 (42.5

Wm ™2 lines are also shown). Only statistically significant OLR anomalies above

a 95% confidence level based on a two-sided students t-test are shown. The

pattern correlations and rmse values of OLR and TG anomalies in the tropical

region (30°N-30°S) between the simulations and observations are shown in the

upper-left and upper-right corners of the simulation maps, respectively.
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the MJO-related inter-phase variations of the observed TG in each region with
reasonable accuracy. Overall, CESM1 performs worse than SEMO.

The impact of ENSO (MJO) on regional TG varies in a complex way
depending on the phase of MJO (ENSO). For example, over the ENP and
NIO, La Nina enhances TG during the MJO phases five and six, but suppress
TG during the MJO phases three and four. Over the NAT, MJO phases one
and two enhance TG during La Nina years, but suppress TG during El Nino
years. The maximum (minimum) TG values over the WNP are observed during
neutral ENSO and MJO phases five and six (La Nina and MJO phases three
and four), while the maximum (minimum) TG values over the SIO are observed
during La Nina and MJO phases three and four (El Nino and MJO phases
seven and eight). To quantify how well the models reproduced the observed
dependencies of regional TG on the combined variations of ENSO and MJO,
we computed the correlation coefficients and rmse values between the observed
and simulated TG values over all of the combined phases of ENSO and MJO in
each region (i.e., three ENSO phases multiplied by nine MJO phases, including
the neutral MJO phase, results in a total of 27 combined phases). The results
are presented in the plots in Figure 2.4. From CESM1 to SEMO, the inter-phase
correlation with the observations increases from 0.27 (0.61, 0.25, 0.29, 0.47,
and -0.02) to 0.76 (0.76, 0.54, 0.46, 0.77, and 0.68) over the WNP (ENP, NAT,
NIO, SIO, and SP). Over the WNP, NAT, and SP, the correlations increase
by more than two times. Except over the NIO, the rmse values decrease from
CESM1 to SEMO in all regions. Overall, SEMO0 has much better performance
than CESM1 in terms of reproducing the observed dependency of TG on the

combined variations of ENSO and MJO.
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Figure 2.4 Composite TG values averaged over several of the ocean basins
presented in Fig 2.2a as functions of the ENSO and MJO phases obtained
from the (bars) observations, (closed dots) SEMO, and (open dots) CESMI.
The first set of bars and dots (denoted as ENSO) represents the composite
TG during the (red) positive, (black) neutral, and (blue) negative phases of
ENSO. The second set of bars and dots (denoted as MJO) represents the
composite TG during the individual MJO phases (neutral MJO, phases one
and two, phases three and four, phases five and six, and phases seven and eight
from left to right). The third set of bars and dots (denoted as MJO & ENSO)
represents the composite TG for each of the combined phases of ENSO and
MJO. The correlations and rmse values between the observed and simulated
TG over all combined phases of ENSO and MJO in each region are shown in
the upper-right portions of individual plots. To compute these statistics, 27
data points (i.e., three ENSO phases (positive, neutral, negative) x nine MJO
phases (neutral MJO, phases 1-8)) were used for each region.
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2.4 Discussion

These improvements from CESM1 to SEMO are likely a result of the improved
simulation of interactions between the TG process and controlling environmen-
tal variables, as well as the improved simulations of controlling environmental
variables. Additional studies are planned to analyze the sources of these
improvements at the process level, which will contribute to understanding
the TG processes observed in nature. Finally, SEMO can serve as a useful tool
for studying the interactions between ENSO, MJO, and TCs, as well as their
evolutions in a changing climate and methods for improving short-term TC

forecasting.
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3 Application of Global Simulation of UNI-
CON: Enhancing ENSO Prediction Skill

3.1 Introduction

The El-Nino and Southern Oscillation (ENSO) is the dominant tropical atmosphere-

ocean coupled mode. The impact of ENSO is not confined within the tropical
Pacific but extends into remote tropical areas, subtropics, and midlatitudes
via anomalous Walker and Hadley circulations, equatorial Rossby or Kelvin
waves, and quasi-stationary Rossby wave throughout the year (Rasmusson and
Carpenter 1982; Ropelewski and Halpert 1987; Lau and Nath 1996; Rowell 2001;
Trenberth et al. 1998; Alexander et al. 2002; Park 2004; Park and Leovy 2004;
Alexander et al. 2004). An accurate forecast of ENSO is necessary for a reliable
weather and climate prediction over the globe. Many general circulation models
(GCMs), however, have problems in simulating the basic statistical properties
of ENSO (e.g., Bellenger et al. (2014)) and the ENSO-related tropical SST
anomalies simulated by most GCMs extend too far west (e.g., Zheng et al.
(2012), Li and Xie (2014), Heureux et al. (2019)).

Many statistical methods have been developed to forecast ENSO. Here, we
will focus on two Markovian techniques that predict anomalous sea surface
temperatures (SSTs) and sea surface heights (SSHs) throughout the tropical

Indo-Pacific, linear inverse models (LIMs, Penland and Sardeshmukh (1995))
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and model-analogs (MA, Ding et al. (2018, 2019)). The LIM is an empirical
dynamic model, which assumes that the temporal evolution of the predic-
tand is described by a multivariate linear Markov process plus some noise
that represents rapidly evolving (and hence unpredictable) nonlinearities. MA
forecast ensembles are extracted from preexisting long GCM simulations, by
finding those states that best match each initial observed anomaly and tracking
their subsequent evolution. Newman and Sardeshmukh (2017) showed that the
hindcast skill of the multi-model GCM ensemble-mean (MME, hereafter) is
comparable to the LIM in the central-western Pacific, but is higher in the
eastern Pacific at long lead; generally, however, the LIM had skill that met or
exceeded single model ensemble-means. Ding et al. (2018) showed that MA not
only effectively reproduces the forecast skill of MME throughout the tropics,
but is significantly better in the eastern Pacific despite being based on the
same models used for the MME. These studies suggest that potential forecast
skill is roughly linear in the central Pacific where the LIM works well, but also
has a predictably nonlinear component in the eastern Pacific where the MA
works better. Both techniques are anomaly models that, unlike the MME, are
identically bias-corrected and do not suffer from initialization shock. However,
both also have practical limits due to the need for lengthy observational or
GCM simulation datasets and the choice of the state vector, which may or may
not represent all of the predictive information in the initial climate state. In
our study, we investigate combining them in an model-analog — linear inverse
model (MA-LIM), by nudging the monthly SST and SSH anomalies forecasted

by the LIM to those forecasted by the MA.
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3.2 The Model-Analog-LIM (MA-LIM)

In this section, we briefly summarize the LIM and MA, and explain how we
construct the MA-LIM. As described in Penland and Sardeshmukh (1995),
the LIM approximates the temporal evolution of a state vector x with the

stochastically-forced linear dynamical system,
dx/dt = Lx + &, (3.1)

where L is the linear system matrix and ¢ is a Gaussian white noise forcing
vector. From (3.1), the ensemble mean forecast (and most probable state vector)
x(t+At) at forecast lead At is x(t+At) = exp(LAt)x(t). The matrix L is deter-
mined by an error variance minimization procedure as L = In[C(79)C(0) ] /7o,
where C(79) = (x(t +70) - x(t)T) is the covariance matrix at lag 79 (=1 month
in this study) and the angle bracket denotes the expected mean. Following
Newman and Sardeshmukh (2017), our LIM computes temporal evolution of a
state vector in the EOF space, so x represents the leading 16 and 9 principal
components (PCs) of monthly SST and SSH anomalies, which explain 76%
(80) and 61% (64) of the total variance, respectively, for the GCM simulations
(observations). The number of EOF modes retained was chosen by trial-and-
error to maximize the cross-validated forecast skill, but the skill is relatively
insensitive to this choice.

The MA computes the temporal evolution of SST/SSH anomalies at model
grid points by averaging the cases from a long GCM simulation where the
SST/SSH fields are similar to the target one (Ding et al. 2018, 2019). More
specifically, if the forecast starts from calendar month, t=0, the MA selects the

20 cases with small normalized root-mean-squared error in the tropics, E(i) =
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0.5 . [rmse(SST'(0), SST;(0,4)) /o (SST;) t

rmse(SSH'(0), SSH,(0,i))/o(SSH,)] at the same calendar month in different
years. Here, SST'(0)/SSH'(0) are the monthly anomalies of SST/SSH at
the current time step, SST}(0,4)/SSH,(0,i) are the monthly anomalies of
SST/SSH at the calendar month 0 in the ith year obtained from a certain
population (from now on, the long-term GCM simulation from which the
MA cases are drawn will be referred to as a population), rmse is the spatial
root-mean-squared-error in the tropics, and o(SST)) and o(SSH,) are the
spatiotemporal standard deviations of monthly SST/SSH anomalies averaged
over the tropical oceans in the population. Again, although the ensemble size
was chosen by trial-and-error to optimize the forecast skill, the results are not
too sensitive to this choice (see Ding et al. (2018) for further analysis). In this
paper, we focus only on combining the single LIM forecast with the ensemble
mean MA forecast, although the approach could be employed for individual
ensemble members.

The strategy of the MA-LIM is to combine the state vector x predicted
by the LIM with that predicted by the MA (Fig 3.1). To combine the LIM
in EOF space and MA in model-grid space, the monthly SST/SSH anomalies
obtained by the MA are first projected onto the 16-SST/9-SSH EOF's, and
then combined with the LIM with an appropriate weighting factor, w, defined
so that w = 0 (w = 1) returns the LIM (MA) forecast. We have tested
sensitivity to w and results are shown below. It was found that w ~ 0.15
produced the best forecast skill for the SST anomalies in the Tropics between
25°S and 25°N. Because of the EOF truncation used, the reconstructed initial
monthly anomalies of SST/SSH for the LIM (i.e., SST7(0) in Fig 3.1) are

slightly different from the raw monthly anomalies of SST/SSH (i.e., SST"(0) in
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Fig 3.1). Moreover, the initial monthly anomalies of SST/SSH obtained from
the ensemble mean of the 20 cases for the MA (i.e., SST,(0) in Fig 3.1) are
also different from SST’(0)/SSH’(0) due in part to sampling uncertainty. In
general, SST”(0) is much closer to SST7} (0) than SST,(0), so that our MA-LIM
uses SST}(0)/SSH](0) as initial conditions.

We perform two analyses: one is a “perfect” model analysis, where the initial
target states are drawn from the control run, and the other is an observation
analysis, where the initial target states are obtained from observed condi-
tions during Jan 1961 - Dec 2010. We performed the analyses using monthly
SST/SSH fields at 1° latitude x 1° longitude horizontal resolution in the tropics
(25°S-25°N). For the perfect model analysis, we use 450 years from the pre-
industrial period simulated by the Seoul National University Atmosphere Model
Version 0 with a Unified Convection Scheme (SAMO-UNICON, Park et al.
(2019)). All model analyses are ten-fold cross validation of the 10 subsets of
the simulation data: each subset consists of a 45 year evaluation period (10%
of the entire data) and the remaining 405 year population. The EOF's of SST
and SSH are obtained from the entire 450 year simulation, while the linear
system matrix L and monthly climatologies of SST/SSH are obtained from the
405 year population. For the hindcast observational analysis, we use 50 years
of observed monthly SST (HadISST, Rayner et al. (2003)) and SSH (ECMWF
ocean reanalysis, Balmaseda et al. (2013)). Prior to performing the analysis,
we detrended the observed monthly SST/SSH in each grid box. Similar to the
perfect model analysis, all observational analyses are from the cross-validation
of the 10 subsets of the observation data with a 5 year evaluation period in
each subset. The EOFs of SST/SSH are obtained from the entire observational

record while the linear system matrix L and monthly climatologies of SST /SSH
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at the grid boxes are obtained from the 45 years data excluding the evaluation
period. The LIM approach relies on the assumption that L is independent of
the lag 9. To test the validity of this assumption, we performed the so-called
7 test using the method suggested by Winkler et al. (2001) and verified that
both the observation and GCM simulation data used in our study passed the
T test.

SAMO-UNICON (or simply, SAMO), one of the international coupled GCMs
participating in phase 6 of the Coupled Model Intercomparison Project (CMIPG6;
Eyring et al. (2016)), is based on the Community Atmosphere Model version
5 (CAMS5; Neale et al. (2010), Park et al. (2014)), but CAM5’s shallow (Park
and Bretherton 2009) and deep convection schemes (Zhang and McFarlane
1995b) have been replaced by the unified convection scheme described by Park
(2014a,b), with a revised treatment of the convective detrainment processes
(Park et al. 2017). Park et al. (2019) showed that the global mean climate and
ENSO simulated by SAMO were roughly similar to those of CAM5/Community
Earth System Model version 1 (CESM1, Hurrell et al. (2013)); however, SAMO
substantially improved the simulations of the Madden-Julian Oscillation, diur-
nal cycle of precipitation, and tropical cyclones.

To quantify forecast skill, we transformed the EOF forecasts back into
geographic space and computed the anomaly correlation coefficient, ACC =
Cov(SST}, SST') [{o(SS5T})-0(SST")} and the root-mean-squared error based
skill score, RMSSS=1-rmse(SST}, SST")/o(SST") as a function of the lead
month. Here, Cov(SST}, SST') and rmse(SST}, SST') are the covariance
and root-mean-squared error between the forecasted (SST}) and observed (or
simulated by SAMO0) monthly SST anomalies (SST"), respectively, and o is

the standard deviation.
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Figure 3.1 Diagram illustrating the MA-LIM for the tropical oceans. The
initial monthly SST anomaly used by LIM, SST7 (0), is constructed from the
16/9 EOFs and then a one month LIM forecast is made to SST7} (1). Due to
the EOF truncation, SST7 (0) is slightly different from the raw initial monthly
SST anomaly, SST’(0). Then, the MA selects 20 cases from the population
with anomalous SST/SSH fields similar to SST"(0)/SSH'(0), and computes
SST.(0), ... SST,(t), which is the ensemble average of the EOS-reconstructed
20 selected cases at the forecast time, ¢. Note that SST)(0) is different from
SST'(0) and SSTj(0). The initial conditions of the MA-LIM are set to be
identical to those of the LIM. The final forecasted monthly SST anomaly at
t=11is obtained by SST}(1) = (1-w)-SSTy (1)+w-SST,(1), where 0 < w < 1is
a weighting factor, and these procedures are repeated. In summary, by choosing
w=0.15, the MA-LIM can be understood as a LIM slightly nudged by the MA.
The same method is used for predicting SSH as well as SST.
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3.3 Results

Figure 3.2 shows the Nifo3.4 SST prediction skill of the LIM (w=0), MA (w=1),
and MA-LIM (w=0.15), as measured by ACC and RMSSS as a function of the
lead month, 7. In the perfect model analysis, the LIM has higher skill than
the MA for 7 < 4 but the MA is more skillful at longer leads (Fig 3.2a). The
lower skill of the MA than the LIM at short leads could be due to the errors in
the initial condition of the MA: if more accurate initial conditions were used
(possible with a longer control run), the MA would likely have a better skill at
short leads, too. In contrast to the MA, the MA-LIM (0 < w < 1) starts from
the same initial condition as the LIM. The performance of the MA-LIM with
w > 0.5 is roughly between those of the LIM and MA at small 7 but becomes
similar to that of the MA at large T because the effect of nudging to the MA is
accumulated with time. Surprisingly, the MA-LIM with w=0.15 has a better
ACC than the LIM and MA at all 7. The analysis with the RMSSS statistics
shows similar results, except that the overall relative performance of the MA
to that of the LIM is slightly worse than the one measured by ACC and the
crossover 7 at which the performance of the MA is identical to that of the LIM
has shifted from 4 to 5 months (Fig 3.2b).

In the observational hindcast, however, the crossover 7 occurs at ~ 7 months,
indicating that the relative performance of the MA with respect to the LIM
is degraded from the perfect model to the observation analysis. This is an
anticipated result, since the observationally-based LIM also has higher Nino3.4
skill than the MME at short leads (Newman and Sardeshmukh 2017). Also,
apart from effects of initalization shock, which appear small in this region

(Ding et al. 2018), the MA should not have higher skill than a corresponding
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forecast model initialized with the complete climate state. In fact, the SST /SSH
anomaly fields in the model simulation are generally different from observations,
due to model error, so at 7 = 0, the MA in the observational analysis has a
lower ACC and RMSSS than does the perfect model analysis. The MA-LIM
with a small value of w (w=0.15) performs better than either the LIM and
MA for all 7. Since the effect of nugding to the MA is accumulated with time,
a small value of w=0.15 does not imply that the non-linearity captured by the
MA is insignificant.

Figure 3.3 shows the spatial pattern of ACC in monthly SST anomalies
obtained from the LIM at 7=6 and the differences between the MA or MA-LIM
and the LIM. Results are shown for the perfect model and observation analyses.
The forecast skill of tropical SST anomalies has complex spatial variations. In
the perfect model analysis, the overall spatial pattern of ACC from the LIM is
similar to the well-known SST anomaly pattern associated with the positive
phase of ENSO (Fig 3.3a) with a maximum ACC>0.8 in the southern portion
of the central equatorial Pacific Ocean. This is an anticipated result because
ENSO is the dominant mode of tropical SST/SSH anomalies. In this region,
both the LIM and MA have similar skill, demonstrating that ENSO evolution
in the central Pacific in this GCM is well represented by linear dynamics
(Penland and Sardeshmukh 1995; Newman and Sardeshmukh 2017). In the
eastern equatorial Pacific, western Pacific, and Indian Oceans, the LIM skill
is notably worse than the MA skill, suggesting that in these tropical regions,
seasonality and /or predictable nonlinearity is important to state evolution. MA
performance in other regions, such as the subtropics and Atlantic, is degraded
relative to the LIM (Fig 3.3b). The MA-LIM with w=0.15 retains the positive

aspects of the MA and substantially remedies the undesirable aspects of the
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3.2 The [(a),(c)] anomaly correlation coefficient (ACC) and [(b),(d)]

anomalies (170°W-120°W, 5°S-5°N) as a function of the lead month, T,
predicted by the LIM, MA, and MA-LIM with various weighting factor w,

obtained from the [(a),(b)] perfect model analysis and [(c),(d)] observational
analysis. At 7=0, both ACC and RMSSS are not exactly 1, since the initial
monthly SST anomaly of the MA is computed by averaging 20 cases obtained
from the GCM simulation while the initial SST anomaly for the LIM and
MA-LIM are obtained from the EOF reconstruction of 16/9 EOF modes of

tropical SST/SSH anomalies, respectively.

33



MA, resulting in domain averaged ACC=0.544 that is slightly larger than those
of the MA (0.53) and LIM (0.51), with similar improvement seen for RMSSS.

Hindcast skill of the LIM, MA, and MA-LIM in the observational analysis is
generally worse than for the perfect model analysis. While this could reflect the
fewer samples in the shorter observational record and/or errors in the GCM’s
simulation of the tropical Pacific, it could also be that tropical Pacific variations
in nature are inherently less predictable than within the GCM simulation. Still,
the overall spatial patterns of ACC and RMSSS obtained from the LIM in
the observational analysis (Figs 3.3d) are similar to those in the perfect model
analysis (Figs 3.3a). Note the similarity of the standard deviation of monthly
SST anomalies from the SAMO simulation and observations (compare solid
lines in Fig 3.3a and 3.3d). In contrast to the perfect model analysis, except for
the eastern Pacific, the MA are generally less skillful than the LIM; the domain
averaged ACC (0.307) and RMSSS (0.058) from the MA are substantially lower
than those from the LIM (ACC=0.379, RMSSS=0.076). This may be due in
part to model error: ENSO-related tropical SST anomalies simulated by most
GCMs, including SAMO, typically extend too far westward (Park et al. 2019),
and likewise SST skill in the western equatorial Pacific is significantly worse for
both the MME and the GCMs that comprise it than for the LIM (Newman and
Sardeshmukh 2017). Because the analog evolution is drawn from the GCM
simulation, the MA also performs considerably worse than the LIM in the
western equatorial Pacific (Fig 3.3e), where SAMO overestimates the observed
standard deviation of monthly SST anomalies (solid lines in Fig 3.3d). Similar
to the perfect model analysis, the MA-LIM shows a better performance than

the LIM over the eastern equatorial Pacific and Indian Oceans. In addition,
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the overall MA-LIM hindcast skill for 7=6 is better than that of the MA and
LIM almost everywhere throughout the tropical Indo-Pacific.

Figure 3.4 shows ACC hindcast skill of the Nifio3.4 anomalies as a function
of the target month and 7 for the three methods, presented by comparing LIM
skill with the MA minus LIM and MA-LIM minus LIM difference plots. In
all cases, the basic features are similar, with relatively lower prediction skill
for target months in late spring and early summer. Similar to Fig 3.2, perfect
model skill of the MA at short 7 is again poorer than for the LIM, while the MA
performing better than the LIM at longer leads, primarily for seasons where the
performance of the LIM is relatively low. The MA-LIM with w=0.15 retains
the advantages of both the LIM at short 7 and the MA at long 7, resulting in
a better performance than the MA and LIM. The difference is more dramatic
comparing the MA-LIM to the LIM in the Nifiol.2 region (90°W-80°W, 0°-
10°S; not shown), primarily because the MA itself is relatively more skillful at
longer lead there.

The results from the observational analysis are somewhat noisier than those
from the perfect model, but show the same basic picture, with the MA-LIM
improving LIM skill for predictions of boreal spring Nifno3.4 values, where the
LIM had lowest skill. For summer, LIM skill is near its minimum, but the MA
had no better skill than the LIM and likewise the MA-LIM yielded minimal
improvement. On the other hand, for Nifol.2 (not shown), while year-round
skill for the MA-LIM exceeds both the MA and LIM (e.g. Figs 3.3d-f), for
wintertime verifications the MA-LIM is greatly improved relative to the LIM
but is less skillful than the MA itself. The improvements of the SSH forecast
skill by the MA-LIM are similar to those of SST both in terms of the spatial

distribution and the dependency on 7 and target month (not shown). However,
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Perfect Model, t = 6 Month Observation, T = 6 Month
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Figure 3.3  Spatial distributions of [(a),(d)] ACC of the SST anomalies at the
6 month lead obtained from the (a) perfect model analysis and (d) observational
analysis from LIM. The other figures show the differences between the MA or
MA-LIM with w=0.15 and LIM. The grid boxes with statistically significant
AACC at the 95% confidence level from the bootstrapping (or Monte Carlo)
method are denoted by the dot. A domain averaged ACC in the tropical region
(25°S-25°N) for the LIM, MA, and MA-LIM is shown at the top-right of an
individual plot. The solid lines in (a) and (d) are the standard deviations of
monthly SST anomaly obtained from the GCM simulation and observation,
respectively, with a contour interval of 0.5°C. The solid and dashed pink boxes
denote the Nino3.4 and Ninol.2 regions, respectively.
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in the observational analysis, the prediction skill of the MA-LIM in the Atlantic
Ocean was in between those of the LIM and MA, where the MA showed a

relatively poor prediction skill.

3.4 Discussion

Why does the MA-LIM perform better than either the MA or LIM? A major
problem in the MA method is the uncertainty in the initial conditions, which
is due in part to insufficient sampling. Because the MA-LIM is designed to
start from the LIM’s initial condition that is more accurate than that of the
MA, the MA-LIM performs better than the MA. On the other hand, the LIM
used in our study is a stationary model, that is, the linear system matrix L or
the multivariate covariance matrix C does not vary with time. The MA-LIM
brings the implicit seasonal cycle and nonlinear dynamics in the MA into the
LIM in an ad-hoc manner, such that the MA-LIM performs better than the
LIM. Another factor is that ENSO also has nonlinear dynamics (An and Jin
2004), which are especially important in the eastern tropical Pacific and can
be represented by MA but not LIM.

To further improve the performance of the MA-LIM, it may be necessary
to sample more cases from more accurate populations (e.g., more models,
improved models, longer runs); refine the sampling and prediction methods
of the MA (e.g., use SST/SSH tendencies instead of SST/SSH themselves);
and incorporate seasonal cycle directly into C and L (e.g., LIM can have
variability in the evolution of SST and SSH by constructive interference of the
normal modes). We plan to investigate these ways to improve the MA-LIM

methodology in the near future.

37 :l_=-| '-\.I:_'l'



Perfect Model

a) ACC (LIM) (b) AACC (MA minus LIM) (c) AACC (w=0.15 minus LIM)
L 44y 4 ACC=0.779 Ly 444y, ACC=0.798
12 4 J | I Boas 2] " r I Boas
md .- L 1d N L
0.2 0.2
10 1 " [Bors 01 ‘ J [ Bois
o R P -l r L o9 - L
. P PR -B LHot % g4 .. L H ot
£ £ 74 | Hoos £ 7 L Ho.05
2 2 64 - o 2 64 - - 0
3 T 51 FHoos g 59~ - = I H-0.05
3 3 ‘3‘: [Hot 3 ‘;: """" [§ o
PO D [ g5 > [ g5
P [P, 02 1 N EX
od. oo | J-025 0 | 025
L e e e e e e e L T T T T T T T T T
JFMAMJJASOND JFMAMJJASOND JFMAMJJASOND
Target Month Target Month Target Month
Observation
d) ACC (LIM) (e) AACC (MA minus LIM) (f) AACC (w=0.15 minus LIM)
ACC = 0.691 X ACC =0.723
1 0.25 0.25
09 0.2 0.2
0.8 0.15 0.15
k 07 & o1 & 0.1
£ 06 £ 005 £ 0.05
2 05 2 o 2 0
3 04 g 005 -0.05
9 03 9 0109 -0.1
0.2 -0.15 -0.15
0.1 0.2 0.2
0 -0.25 -0.25
LI B B e B e |
JFMAMJJASOND JFMAMJJASOND
Target Month Target Month Target Month

Figure 3.4 (Left) ACC of the Nino3.4 SST anomalies as a function of the
target month and lead month 7 obtained from the (upper row) perfect model
analysis and (lower row) observational analysis with the LIM. The differences
between (center) the MA and LIM and (right) the MA-LIM with w=0.15 and
LIM are also shown. The domain averaged ACC from the LIM, MA, and MA-
LIM with w=0.15 is shown at the top-right of an individual plot. Statistically
significant AACC at the 95% confidence level from the bootstrapping (or Monte
Carlo) method are denoted by the dot.
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4 A Stochastic UNICON with Stochastic Ini-

tialization at the Near-Surface

4.1 Introduction

As explained in Section 1.3, existing stochastic convection schemes are based on
the assumed distribution of a single quantity, usually the grid-mean tendency
or the convective mass flux. A more fundamental approach representing the
impact of multiple stochastic plumes is to impose stochastic perturbations

on the multiple plume properties: number density (NV), radius (R), vertical
velocity (1), and other thermodynamic scalars (¢) of convective updraft plumes.
Particularly, the plume size statistics seems to be one of the key ingredients
necessary for a scale-adaptive convection scheme (e.g. Park (2014a), Neggers
(2015), and Sakradzija et al. (2016)). The radius of a convective updraft
plume, R, is a traditional proxy used for classifying plume types. Many LES
studies have shown that thermodynamic profiles of convective plumes are highly
dependent on R, with stronger updrafts being associated with a larger R (Boing
et al. 2012; Neggers 2015; Khairoutdinov et al. 2009). The plume radius R is
closely associated with the mass flux (M ) and fractional entrainment rate (€),
two main sources of convective variability suggested by previous studies. The

mass flux is M = p - G- W where p is air density, a is updraft fractional area,

and w is the relative vertical velocity of convective updraft plume with respect
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to the grid-mean vertical velocity. The updraft fractional area is a = N - 1R?
where N [# - m~?] is the number density of convective updraft plumes.

In this study, we develop a stochastic UNICON by sampling convective
updraft plumes at the surface in a random way from the correlated multivariate
Gaussian distribution of w and d; constructed on the Monin-Obukhov surface
layer similarity theory (Monin and Obukhov 1954) and a power-law distribution
of R with a specified scale break radius. In contrast to the previous studies,
we compute stochastic variance from various sources influencing convective
activity, rather than from a single source, such that our stochastic UNICON
may better represent the observed stochastic variability. Our approach can
be understood as an implementation of a dispatcher function introduced by

Ooyama (1971) in his theoretical cumulus ensemble model.

4.2 Conceptual framework

4.2.1 Multivariate Gaussian distribution for convective updraft

plumes at the surface

The stochastic UNICON inherits the basic concept of the original UNICON,
which launches multiple convective updraft plumes from the surface. In the orig-
inal UNICON, the inter-variable correlations among various thermodynamic
scalars of the convective updraft plumes at the surface (i.e., radius R, where
the caret denotes updraft plume properties; relative vertical velocity w with
respect to the grid-mean vertical velocity; condensate potential temperature
0. =0— (Ly/Cp/m) -G — (Ls/Cp/7) - §;, where L, and L, are the latent heats
of vaporization and sublimation, respectively, C), is specific heat at constant

pressure, 7 is an Exner function; total specific humidity ¢; = ¢, + ¢; + ¢;; zonal
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and meridional velocity, & and 9, respectively; mass and number concentration
of aerosols and chemical species é) were assumed to be exactly 1.

Our strategy for a stochastic UNICON is to construct a multivariate
Gaussian area PDF P,(«) for a set of six normalized thermodynamic vari-
ables of convective updraft plumes at the surface (ay, Qs Ogys iy O, and
ap, assuming that ap = ag,) using the inter-variable correlations 7;; < 1

derived from the Monin-Obukhov similarity theory (where i, j = 1, ..., 6 denotes

>

W, O, G¢, 4,0, and R, respectively). The normalized thermodynamic variables

are defined as ay = (W(ay) — Awq)/ow, ay = (q@(ag’) — Ao — ¢s) /04, and
ap = (R(ozR) — R,)/or. Here, ¢ = 0., q,u,v; 0w, 04, and o are the standard
deviations of w, gg, and R, respectively; ¢, is the grid-mean value at the surface;
R, is the intercept plume radius at ap = 0; Awg and Agq are the perturbations
associated with the subgrid mesoscale organized flow within the planetary
boundary layer (PBL).

The Monin-Obukhov (M-O) similarity theory hypothesizes that any dimen-
sionless characteristic of the turbulence in the surface layer can be described
by the parameter, ( = z/L, where z is the geometric height and L is the
Monin-Obukhov length scale (Monin and Obukhov 1954). Several mass-flux
parameterization schemes have used the M-O similarity theory to initialize the
properties of convective updraft plumes (Cheinet 2003; Siebesma et al. 2007).
The M-O similarity theory has been extended to estimate the standard devi-
ations of various thermodynamic scalars within the surface layer (Wyngaard
et al. 1971; Panofsky et al. 1977; Liu et al. 1998; Andreas et al. 1998; Wilson

2008). Although there are ongoing debates on which formulation is universally

applicable (e.g., see Wilson (2008)), we use the following similarity functions
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suggested by Liu et al. (1998), which were shown to produce similar results to

the recent surface-layer-resolving LES studies (Maronga and Reuder 2017):

z Z\1/3
Tw /s = Go, (Z) - 1.25(1.0 - 35) , (4.1)
. z z\~1/3
0/0" = b, (Z) - —2.0(1.0 - 83) : (4.2)
. z z\~1/3
04/7" = b0, <Z> - —2.4(1.0 - 83) , (4.3)
where z is the geometric height; u, = [(w'u/)? + (w'v')2]'/* is the frictional

velocity; 0% = —(w'0)s/us; ¢* = —(W'q)s/us; and (W'&)s, (W'q)s, (Wu')s, and
(w'v')4 are the kinemetic surface fluxes of sensible heat, water vapor, zonal and
meridional momentum, respectively, by non-organized symmetric turbulent
eddies; and L = —u30,/[gk(w'])s] is the Monin-Obukhov length scale with
a von Karman constant k, a reference virtual potential temperature 6, and
the buoyancy flux at the surface (w'@),. The correlation 7,9 between w and
0 and the correlation r,, between w and ¢ within the surface layer can then

be calculated as
Two = (W)S/(Uwaﬁ) = —1/(boyPop)> (4.4)

Twq = (W)s/(awaq) = _1/(¢0w¢gq)7 (4-5)

where |ry9| and |ry,| are in the range of 0.40-0.56 and 0.33-0.46, respectively,
depending on the stability (—z/L). Based on the analysis of observation data,

Liu et al. (1998) derived the correlation ry, as

70g] = |rwql/rwol = |00/ 00, | = 0.83. (4.6)

In contrast to w, 6, and ¢, there is no generally accepted similarity function

for the standard deviation of horizontal velocity, oy, = (u/2 + v/2)1/2 that can
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be expressed as a function of —z/L within the surface layer (Wilson 2008). We

use the following empirical formulation suggested by Wilson (2008):

4+0.73 <_‘5L> ] 1 (;)0'21 : (4.7)

where ¢ is the PBL height. Assuming that the perturbation of horizontal

J?w/ui =

velocity is aligned along the streamwise wind direction, o, can be partitioned
into o, and o, using the wind vector in the lowest model layer, v, as o, =
owt/|v| and o, = oy,v/|v]. Several surface flux parameterizations have used
this assumption (e.g. Siebesma et al. (2003)), which strictly speaking is valid
only when the non-streamwise component of turbulence momentum is small
(see Wilson (2008)). Under this assumption, the correlation between w and

horizontal wind becomes
Twu = Twy = Uz/(guvaw)' (48)

The correlation between horizontal wind and other scalars cannot be deter-
mined because neither the surface similarity theory nor the PBL scheme we use
provide covariance information among these variables. By simply extending
the method of Liu et al. (1998) used for computing rg, in (4.6), we compute

the inter-variable correlations between horizontal velocity and ¢ = 6, q as
Tug = MAn([Twul/|Twels 1Twel/|Twul), (4.9)

Tvg = min(|[Twol/|Twel, [Twsl/Twol), (4.10)

which admittedly have a large uncertainty. However, our sensitivity tests showed
that the simulation results are not sensitive to 7,4 and 7,4. Because of this,
we could complete the calculation of the inter-variable correlations between w,

0, q, u and v. Because UNICON is formulated in terms of 6. and ¢; which are
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conserved during the phase change, we simply assume that the inter-variable
correlations and standard deviations of # and ¢ within the surface layer are
identical to those of 6. and ¢, respectively.

Another important variable we use as a source of convective variability is the
radius of the convective updraft plume, R. As explained in the introduction, R
affects both the updraft mass flux at the surface and the fractional entrainment
rate, two of the most important factors that control convective activity, such
that stochastic initialization of R at the surface naturally imposes stochastic
properties on the nature and nurture of convective updraft plumes. Unfortu-
nately, it turns out that estimating R at the near surface from observations or
LES is very difficult, because it is hard to define convective updraft plumes in
the initial stage of development at the near surface, and small embryo updraft
plumes merge with each other during the ascent from the surface to the PBL
top and above (see Section 4.4.1). Given that, we simply set 7gw, TRo, TRqs TRu,
and TR, as tunable parameters.

The resulting symmetric cross-correlation matrix for six variables at the
top of the surface layer (w, éc, gt, 0,0, and R), that sets convective variability

in our stochastic UNICON is

S5
>
o

[~}
o~

>
(o33
=

w 1
éc _1/(¢0w¢a’9) 1

G| =1/(bonds,) 0.83 1

, (4.11)
U u2)(CuwOw)  Tup Tug 1
D u2/(Cuwwow)  Tup Tvg 1 1
R T Rw TRO TRg TRu TRv 1
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where ¢5,,, ¢o,, and ¢4, are from (4.1)-(4.3); 0, and oy, are from (4.1) and
(4.7), respectively; ryg, Tuq, Tve, and ry, are from (4.9) and (4.10), respectively;
and TRy, TRE, TRqs TRu, and TR, are specified as tuning parameters. Since the
mid-point of the lowest model layer z, is assumed to be top of the surface
layer, all of o, ¢, and 7;; are computed at z = z,. The cross-correlations of any
aerosol species é are assumed to be identical to those of §;. The above matrix
can be understood as a dispatcher function suggested by Ooyama (1971).

To initialize (or dispatch) a specific convective updraft plume, we obtained
a set of standardized variables for a convective updraft plume (v, Q5,5 Ay, Vi,
ag, and a ) by stochastically sampling one point from the assumed multivariate
Guassian area PDF in the regime of oy > 0 (it should be noted that oy , ag,
g, i, and ap can be either positive or negative). The final thermodynamic

properties of convective updraft plumes at the surface are calculated as

W) = oy - oy + Awg, (4.12)

QZ)(OZ(Z‘S) =0¢- an + Q_Ss + AQSQv d) = qt, eca u, v, ga (413)

and to calculate JA%(aR) at the surface, ap is transformed to a power-law

distribution, as explained in the next section.

4.2.2 Transformation from the Gaussian to power-law distri-

bution for the updraft plume radius

Consistent with Neggers et al. (2003), our LES analysis for the BOMEX case
showed that the updraft plume radius at the cloud base follows a power-law
distribution with a power of -2.0 and a certain scale break radius (see Fig 4.7).
The power-law and scale break characteristics of the cloud size distribution

have been reported for various cloud types (Wood and Field 2011; O’Brien
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et al. 2013; Heus and Seifert 2013), implying that when normalized by an
appropriate scale break radius, the cloud size distributions for various cloud
types can be described by a single distribution. As will be discussed later, our
SCM simulation shows that there is a well-defined linear relationship between
R at the cloud base and R at the surface. Based on this, we parameterize the

number density PDF of R at the surface, P, as
Po(2)/N = 13", / (P, (&)/N)dz = 1, (4.14)
0

where & = ]:2/ Ry is a dimensionless updraft plume radius normalized by the
scale break radius Ry which sets an approximate upper limit for the possible
plume size in a given environment; N is total updraft number density in units
of [# m™2]; b,c > 0 are the distribution factors; and a; is a normalization
constant. In contrast to previous studies, we included an additional power term
—2° to better depict the distribution of large plumes above Ry. If R < Ry,
¢ becomes small and the plume radius approximately follows the previously
suggested power-law distribution with a constant power of —b. We estimated
b, ¢, and Ry at the surface by analyzing the LES-simulated R at the cloud
base for the BOMEX case and then extrapolating to the surface in an ad-hoc
manner using the SCM simulations with UNICON. After b and ¢ are estimated,
a1 is obtained using the normalization condition of [ (P, (2)/N)dz = 1. The

area distribution of the updraft plume radius, P, (%), is

Py(#)/a = apd®"™*

: /0 S (Pu@)fa)di = 1, (4.15)

where & = N 7rf1’§ is the net updraft area fraction, as = a1 R}/R? is a nor-

malization constant, and R, is the number-weighted, effective mean radius of
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convective updraft plumes defined as

fooo 72-b—-2° g4 1/2
0

which becomes Re =047 - Ry when b=2 and ¢ = 1.7.
To calculate z = R/ Ry, from ap that is stochastically sampled from its
multivariate Gaussian area distribution, P,(ap), we use the following inverse

transformation:

i=R/Ry=F"(H(ap)), &>0, (4.17)

where F~! is an inverse of the cumulative density function (CDF) of P,(%) for
2 >0 and H is the CDF of P,(ap) for —oo < ap < co. Strictly speaking, if
rwr 7 0, Pa(ap) does not follow a full Gaussian because only updrafts (a; > 0)
are sampled at the surface. However, regardless of the values of ryr, Pu(ap)
can be fully transformed into P,(#). The method used to calculate the CDF
of ap for any 7, g is explained in Appendix B. In our stochastic UNICON,
the distribution of a has no physical meaning, since R is assumed to follow
a power-law distribution, not a Gaussian distribution: a is merely used to
carry the inter-variable correlations between the updraft plume radius and the
other thermodynamic variables into the power-law distribution for R. Because
(4.17) is a nonlinear transformation, the cross-correlations between ap and a 3

(or o) in (4.11) differ from those between the transformed R and ¢ (or o)

but the difference is small.

4.2.3 Closure for plume number density and updraft fractional

area

To complete the formulation of the radius distribution at the surface, N' should

be determined. Based on the assumption that individual convective events are
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independent of each other, Craig and Cohen (2006) hypothesized that in an
equilibrium state, the number of convective updraft plumes varies across the
grids and also within the grid box over time, and its PDF can be described

with the following Poisson distribution:

(GN,)GN

GN) = efGNﬁ . -
p(GN) an

, / h p(GN)d(GN) = 1, (4.18)
0

where ]\73 is the ensemble-mean number density of convective updraft plumes

at the surface, calculated as

~

N, = A,(Q)/7R?, (4.19)

where A, is the ensemble-mean net updraft fractional area at the surface and
R, is the effective plume radius defined in (4.16). A4(R) is calculated as a
function of the mesoscale convective organization (€2, Egs.(72) and (75) in
Park (2014a)) with an externally specified value for the non-organized state,
AS|Q:0 (our SCM uses a fixed A3|Q:0 = 0.033 for the BOMEX case which is
in a non-organized state. See Table 4.3); R, is computed from (4.16) using b, c,
and Ry; N, is obtained from (4.19); N is stochastically sampled from (4.18) at
each time step; then the net updraft area fraction a = N WRE is calculated. The
net area fraction a can be determined only after integrating the area fraction of
sampled updraft plumes, so @ in (4.15) is unknown before sampling. Thus, the
plume radius is set to the expected value, R., to determine a. This completes
the computation of (4.14) and (4.15). Because stochastic sampling is performed

at each time step in a fully independent way, temporal coherency of stochastic

fluctuations is not taken into account in our stochastic UNICON.
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4.2.4 Sampling of convective updraft plumes: full and hybrid

stochastic methods

In this section, we compare several methods for sampling convective updraft
plumes from the assumed multivariate distribution and discuss how the indi-
vidual sampling method influences the computation of the ensemble-mean and
variance of the grid-mean convective tendency. For this, we simply assume that
the individual launching events of convective updraft plumes are independent of
each other (i.e., Poisson process), and that the entire spatiotemporal variations
of grid-mean convective tendency can be explained by stochastically-sampled
convective updraft plumes within the grid box. We defined three plume types
based on the way how to compute the normalized thermodynamic variable «
from an area PDF P,(«). A stochastic plume has « stochastically sampled
from P,(a), a single bulk plume has a = ffooo aP,(a)da, and a bin plume
has « averaged over a certain interval (see Eq.(B4)). With these three plumes,
we define the following sampling methods: e a full stochastic plume method
(FULL), e a single stochastic plume method, e a bulk plume method (BULK),
and e a hybrid method consisting of n bin plumes and a single stochastic plume
(HYBn).

Consider a grid box with the horizontal grid size, G’ in which GN updraft
plumes exist in an equilibrium state and N is the number of plumes per unit
area in units of [#/m?]. If 5, is the convective tendency generated by a single
stochastic plume (see Appendix A), the ensemble-mean and variance of the
grid-mean convective tendency generated by different GN stochastic plumes
are GNp(ns) and GNo?(n,), respectively, where u(n;) and o2(n,) denote the

ensemble-mean and variance of grid-mean convective tendency generated by a
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single stochastic plume. Although this full stochastic plume method is the most
ideal approach, it is computationally expensive because we need to compute
the convective tendencies of all of the different GN plumes. Our goal is to find
an efficient way to reproduce the ensemble-mean and variance of the grid-mean
convective tendency as generated by the full stochastic method.

The ensemble-mean and variance of grid-mean convective tendency gener-
ated by a single stochastic plume (i.e., identical GN stochastic plumes exist
in the grid column) are u(GNny)=GNu(ns) and o2(GNny)=(GN)2o2(n,),
respectively, which overestimates the true variance (hereafter, “true” refers to
the results from the full stochastic method). On the other hand, the variance
generated by a single bin plume is 0, underestimating the true variance.

Let’s consider a hybrid method consisting of n bin plumes and a single
stochastic plume. If the ensemble-mean of the grid-mean convective tendency
generated by the n bin plumes, n;, is the same as that of a single stochastic
plume, 7 [i.e., u(np) = p(ns)] and the grid-mean convective tendency from this

hybrid method is computed as the following weighted average,
ng = (GN = VGN)-m+ VGN -, (4.20)

then the ensemble-mean and variance of the grid-mean convective tendency
from this hybrid method are pu(ny) = GNu(n,) and o?(ng) = GNo(ns),
respectively, which are identical to those from the full stochastic method. If
n bin plumes are carefully constructed to reproduce the true ensemble-mean
convective tendency, the hybrid method consisting of n bin plumes and a single
stochastic plume can reproduce both the true ensemble-mean and the variance
of grid-mean convective tendency generated by the full stochastic method. The

means of constructing the bin plumes in stochastic UNICON are explained in
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Appendix B. We will test two hybrid methods: one with 3-bin plumes of different
R and the other updraft thermodynamic scalars set to be identical (HYB3),
and the other with 12-bin plumes generated by the combination of three bins
of R, two bins of 6., and two bins of §, at the surface (HYB12). Table 4.1
summarizes the different possible configurations of stochastic UNICON used

in our study. Table 4.2 shows the pseudo-code of stochastic UNICON.

4.3 Simulation setting

4.3.1 Large eddy simulation (LES)

Using the University of California Los Angeles (UCLA) LES model (Stevens et
al. 1999, 2005), we simulated the Barbados Oceanographic and Meteorological
Experiment (BOMEX) (Holland and Rasmusson 1973) shallow convection case
over the ocean following the settings of Siebesma et al. (2003). The UCLA
LES solves a set of anelastic equations with a Smagorinsky subgrid scheme and
has been used to study boundary layer turbulence, and both shallow and deep
convection (Hohenegger and Stevens 2013). In our simulation, radiation and
the production of precipitation are turned-off. The domain size is 6.4 km X
6.4 km x 3.0 km and the grid size is 25 m x 25 m x 25 m. The model was run
for 6 hours and various outputs from time intervals of one minute during the
last hour (a total of 60 instantaneous snapshots) are analyzed. Cloud statistics
at the cloud base are obtained at zp,s. = 612.5 m.

We use the cloud detection algorithm of Dawe and Austin (2012), which
detects clouds by considering the spatiotemporal connectivity of cloudy grid

cells. The core is defined as the grid boxes with positive condensate, vertical

velocity, and buoyancy, while cloud is defined as the grid boxes with condensate.
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Table 4.1 Several possible configurations of stochastic UNICON. The relative
variance is the theoretical spatiotemporal variability of grid-mean convective

tendency in an equilibrium state with respect to that of the FULL method.
Here, GN is obtained from (4.18).

Number of Number of Relative ..
Method Bin Plume | Stochastic Plume | Variance Abbreviation

Single Bulk Plume 1 0 0 BULK
Spectral Bin Plume n 0 0 BINn
Single Stochastic Plume 0 1 GN STO1
Full Stochastic Plume 0 GN FULL
Hybrid Stochastic Plume n 1 HYBn
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Table 4.2 A pseudocode for stochastic UNICON. For a given thermodynamic
scalar ¢, ¢(2) is the grid-mean value; (w'¢/)s is the surface flux; Agq is the
mesoscale perturbation induced by subgrid cold pools (Eq.(73),(74) in Park
(2014a)); ¢ is the plume properties at the surface; a 518 the normalized plume
properties; and oy is the standard deviation of ¢ at the surface. G = AzAy is
the area of the grid box; € is the mesoscale convective organization (Eq.(72) in

Park (2014a)); As is the expected net updraft area fraction at the surface; Ry
is the scale break radius; and 7(z) is the final grid mean convective tendency.

Procedure STOCHASTIC UNICON
Input : 4(2), (W), G, 0 Adg

1. Construction of a multivariate Gaussian area PDF for updraft plumes at the surface
Po(ay)  rij (w'¢)s  Construct a multivariate Gaussian area PDF for o, where é = [0, be, Gy, @, 9, R) [(4.11)].
Ay, Ry + G, Compute A, (Eq.(75) in Park (2014a)) and Ry, as a function of  and G.
F’,,,(R)7 R, < R, Compute an area PDF for R at the surface [(4.15),(4.16)].
]\75 = As / ﬂRf Calculate the expected number density of updraft plumes at the surface [(4.19)].
N« G, Ne Stochastically sample the plume number density at the surface from the Poisson distribution [(4.18)].

2. Computation of the grid mean convective tendency 7(z)
case “FULL": case “HYBn”:
ns=GN;n, =0 ng=1;n,=n
for i =1 to ns; (Loop for the stochastic plumes) :
g 4 Pa(ay)  Stochastically sample o from Py(ay)

QAS Qg0 A¢q; R, Compute updraft thermodynamic scalars at the surface [(4.12),(4.13),(4.17)].
ng(z) — é), Q;(z) Compute convective tendency induced by a single stochastic plume

for i =1 to np (Loop for the bin plumes) :
ag Py (act)) Compute a; for the i*" bin plume from Pu(ay)

gi;k— Qg g, A¢q; Ry Compute updraft thermodynamic scalars at the surface [(4.12),(4.13),(4.17]).
N (2) < ¢,6(z) Compute convective tendency induced by the bin plumes
case "‘FULL"’:A case “HYBn”:
n(z) = S nilz) m(z) = Sty mi(2)/CN
n(z) = (GN = VGN)-my(=) + VGN -nl(z)

3. Update the mesoscale organization variables, 2 and A¢q
Output : 7(z2),Q, Apg
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The algorithm also detects dry updraft plumes as the grid boxes containing
the Couvreux tracer (Couvreux et al. 2010) with a concentration higher than
the horizontal mean value above a certain threshold (i.e., one spatial standard
deviation at each height). The Couvreux tracer is a radioactively decaying
passive tracer emitted from the surface with a decaying time scale 79 = Smin.
Because the detection of dry plumes is made layer by layer without considering
vertical coherency, this method is deficient in detecting the Lagrangian evolu-
tion of individual dry updraft plumes. To address this problem, we imposed
additional Lagrangian tracers using the online Lagrangian Particle Tracking
Module (LPTM; Heus et al. (2008a)). A total number of 308500 particles are
imposed at the midpoint of the lowest model layer, z = 12.5 m at ¢ = 5 hour and
the locations of the individual Lagrangian particles are recorded every minute.
For each core, we identified its embryo dry convective plume by tracing the
Lagrangian particles from the core down to the surface. These Lagrangian
particles will be referred to as conditionally-sampled particles. In this way, we
can track the evolution of individual dry convective updraft plumes from the

surface to its lifting condensation level (LCL) and above.

4.3.2 Single-column model (SCM)

The single-column model (SCM) used in our study is identical to the one
used by Park (2014b) and Park and Bretherton (2009). It uses a leap-frog
time stepping method with a model integration time step At = 300 [sec]
and a downstream Eulerian space differencing (semi-Lagrangian) method for
computing the vertical advection of temperature and horizontal wind (water
substances and the other tracers) from the specified grid-mean subsidence

rate at the vertical resolution of 80 vertical layers. As for LES, the SCM is
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forced by constant LHF = 153 [Wm™?] and SHF = 9.5 [Wm™2] at SST =
300.4 [K] and P; = 1015 [hPa] for six hours with a specified grid-mean cold
and dry horizontal advection, subsidence and geostrophic wind. Following LES,
radiation and the production of precipitation are turned-off, such that our

SCM does not generate subgrid mesoscale organized flow within the PBL in

association with subgrid cold pools (i.e. Awg = Agpg = 0 in (4.12),(4.13)).

The results from the last hour of the simulation are analyzed.

4.4 Results

4.4.1 Evaluation of the conceptual framework of stochastic

UNICON using LES

A multivariate Gaussian distribution of stochastic updraft plumes

at the surface

Stochastic UNICON assumes a multivariate Gaussian distribution for various
thermodynamic scalars of convective updraft plumes at the surface (w, éc, qt,
U, D, é , and ]:2) with inter-variable correlations estimated from the surface layer
similarity theory and intuition. In this section, we evaluate these assumptions
using the BOMEX LES simulation. Figure 4.1 shows a joint area PDF among
{ow, ag,, ag,, ou, i} at the top of the lowest model layer obtained from the

LES simulation. We assumed that subgrid turbulence is isotropic, and standard

deviations of the subgrid velocities were diagnosed by oy, sub = Ty sub = Op sub =

\/(2/3) -TK Eyy,, where TK Egy, = 0.09 [m?s2] is the mean subgrid TKE
at the surface obtained from the Smagorinsky subgrid scheme. Because the

grid size of the LES is not small enough to resolve entire turbulences in the

surface layer, we included the variance from subgrid turbulences in our analysis.
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Figure 4.1 The joint area PDF between (a) ay, and ag,, (b) ay and ag,, (c)
ag, and ag,, (d) oy, and ay,, (e) o, and ag,, and (f) o, and o, at the top of
the lowest model layer (z = 25m) obtained from the BOMEX LES simulation.
The black and red ellipses show one ¢ range of the joint area PDF derived from

the LES and similarity theory, respectively. Here, o is the standard deviation

and 7 is the correlation coefficient between two variables.
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Using ou sub (Ousubs Tv,sub), We constructed a normalized Gaussian velocity
distribution from which subgrid w (u, v) is sampled in a random way and
added to the grid mean w (u and v), resulting in the total w (u, v) shown
in Fig 4.1. A rough visual comparison of the joint PDF from the LES and
stochastic UNICON indicates that overall, a correlated multivariate Gaussian
distribution is an acceptable assumption, although the joint PDF between

ap, and ay, simulated by the LES has two separated maxima that cannot be

reproduced by the multivariate Gaussian distribution. Compared with LES,
stochastic UNICON tends to overestimate both the standard deviation and
inter-variable correlation. These discrepancies reflect in part the uncertainty
in the assumed similarity functions of (4.1)-(4.3), which were derived from the
analysis of various LES simulations over land.

Only a portion of the near surface air shown in Fig 4.1 can develop into
convective updraft plumes. Stochastic UNICON assumes that these embryo
updraft plumes at the surface (i.e., a portion of symmetric turbulent eddies
within the surface layer parameterized by UNICON) are uniformly distributed
over a range of 0 < ay < oo and their area PDF follows a half Gaussian
distribution with a specified net updraft fractional area at the surface, 0 <
A (Q) <0.5 (e.g., Agla—o = 0.033 for the BOMEX case). This assumption is
different from those used in other studies in that only surface air with strong
positive w (i.e., the air on the right tail of the Gaussian distribution) can develop
into convective updraft plumes (e.g., D’Andrea et al. (2014)). To evaluate
which assumption is more reasonable, we determined that only the Lagrangian
tracers at z = 25 m will eventually grow into the core updraft plumes (i.e.,
conditionally-sampled particles), and the number PDF of these was plotted in

Fig 4.2. Because the Lagrangian tracers were uniformly seeded near the surface,
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Figure 4.2 The LES-simulated [(a),(b),(c)] number PDF of (a) w, (b) 6., (c)
q: and [(d),(e),(f)] joint scatter plots between (d) w and 6., (e) w and ¢;, and
(f) 6. and q; of the all Lagrangian particles at z = 25m (blue) and the core-
embryo (CE) Lagrangian particles that eventually grow into the core updraft
plumes (red). The area PDFs of convective updraft plumes at the surface
parameterized by stochastic UNICON are also shown as black curves. The
scales of the red bar and black curves are arbitrary. The Lagrangian particles
are released at t = 5hr and these plots are from the data at ¢t =5 ~ 6hr.
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the number PDF of the Lagrangian tracers shown in Fig 4.2 can be understood
as an area PDF of the embryo updraft plumes. The fraction of the number of
conditionally-sampled Lagrangian particles to that of total Lagrangian particles
is approximately 0.025, which is smaller than AS\QZO = 0.033. Considering that
stochastic UNICON is designed to simulate forced convection as well as free
convection, this discrepancy is not unreasonable. For comparison, the PDFs
of the entire Lagrangian tracers and convective updraft plumes parameterized

by stochastic UNICON are also plotted. Consistent with Fig 4.1, the number

PDFs of the entire Lagrangian tracers roughly follow a Gaussian distribution.

However, the vertical velocity of the conditionally-sampled embryo updraft
plumes at the surface seems to follow the half-Gaussian distribution more
closely than the truncated-Gaussian distribution, supporting the assumption
used in UNICON. In contrast to w, the distributions of éc and ¢ follow a
Gaussian distribution with a weak negative skewness, which are also similar to
the PDFs assumed in the stochastic UNICON. It should be noted that even
though w follows a half-Gaussian distribution, 0. and g: can follow a Gaussian

distribution, because the assumed inter-variable correlations between w and

0. (also ;) are smaller than 1 in stochastic UNICON (see (4.11) and Fig 4.1).

The joint PDFs of w, éc, and ¢; indicate that the covariance characteristics
between the various thermodynamic scalars of the embryo updraft plumes are
similar to those of the entire symmetric turbulent eddies within the surface
layer. Consistent with the upward sensible and latent heat fluxes at the surface,
the mean values of 6, and G: of the embryo updraft plumes are slightly larger
than those of the layer-mean values with a weak positive slope in their joint

PDFs with w.
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Vertical evolution of stochastic updraft plumes from the surface to

the cumulus base

Figure 4.3 shows several snapshots of vertically-projected Lagrangian tracers
after being released from the surface. As mentioned, the Lagrangian tracers
are segregated (or conditionally-sampled) by individual cores (i.e., the core
index in Fig 4.3) identified with the cloud detection algorithm, which will
be referred to as core-embryo (CE for simplicity) tracers. At t = 0 when all
Lagrangian tracers are at the surface, the CE tracers are spread widely in the
form of scattered air parcels or separated sub-plumes (Fig 4.3a). As a result,
it is somewhat ambiguous to define the radius and area fraction of convective
updraft plumes at the surface. As the positively buoyant air parcels ascend
from the surface, the spread of CE tracers is greatly reduced (Figs 4.3b, c),
indicating the merging of nearby air parcels that is not parameterized in the
current stochastic UNICON. At ¢ = 13 min, the projected air parcels are in
the form of well-organized, nearly circular plumes and the spread of the air
parcels at each height is further reduced (Figs 4.3d, e). Although the merging
of air parcels during the ascent contributes to the vertical profile of the size

distribution of convective updraft plumes, a visual inspection of Fig 4.3 also

indicates that a large portion of the size distribution comes from the surface.

This supports the stochastic UNICON that is constructed with the assumed
size distribution of convective updraft plumes at the surface.

Figure 4.4 shows the vertical profiles of dry and saturated updraft plumes
detected by various methods. The shapes of the vertical profiles of the CE
tracers are roughly similar to those of the Couvreux tracers but the CE tracers

have a stronger w, cooler 6., and moister ¢; than the Couvreux tracers. Above
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Figure 4.3 Snapshots of the conditionally-sampled Lagrangian tracers that

eventually grow into the cores (i.e., core-embryo Lagrangian tracers) at several

different time steps after being released from the surface. The colors denote

the core indices identified by the cloud detection algorithm.
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the LCL, the mean values of f. and G: of the CE tracers are between those of
the cloud and the core, while those of the Couvreux tracers are between those
of the cloud and the environment, indicating that our CE tracer works better
than the Couvreux tracer in detecting dry updraft plumes that are growing
into saturated updraft plumes. Consistent with the similarity theory (Sorbjan
1986), the maximum @ tends to exist in the middle of the PBL at around
z = 300 ~ 400 m, across which the updraft buoyancy changes from positive to
negative, since the environment in the upper PBL is influenced by the warm
free air entrained from above the PBL (Fig 4.4b). Also shown are the mean
thermodynamic profiles of the CE tracers that are segregated by individual
cores below the cloud base. At the near surface, the inter-CE spread of  is
small but becomes large as the plumes rise. On the other hand, the spreads of
6. and G do not change much with height (in fact, the spread slightly decreases
with height for ;) and the high (low) values of ., and g, at the lower PBL
tend to be maintained all the way up to the cloud base. This implies that in

contrast to w, a substantial portion of the variability in éc and §; of convective

updraft plumes at the cloud base stems from the variability at the surface.

Updraft plumes statistics in the cloud layer

We showed that a large proportion of the variability in convective updraft

plumes at the cloud base originates from the variability at the surface layer.

In this section, we examine the variability of saturated updraft plumes in the
cloud layer. The plume statistics in the cloud layer for the BOMEX case has
been documented in many studies (e.g., Siebesma et al. (2003), Romps and

Kuang (2010), Dawe and Austin (2012, 2013)).
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Figure 4.5 shows the number PDFs and joint scatter plots for various
updraft core properties at the cloud base, zpgse = 612.5m. Except for the left
end of the PDF, the number PDF of the updraft plume radius decreases with
R, with a maximum of R = 400 m.

Approximately all 0, 6., and §; follow a Gaussian distribution with a weak
skewness. It is interesting to note that the PDF of @ changes from the near
half-Gaussian at the surface to the full Gaussian at the cloud base due to
the vertical acceleration of convective updraft plumes during ascent, while the
PDFs of 6, and ¢, do not significantly change from the surface to the cloud
base. Consistent with the hypothesis suggested by Craig and Cohen (2006), the
sub-domain distribution of updraft mass flux M at the cloud base follows an
exponential distribution. The magnitudes of the inter-variable correlations, r,
are slightly different from those of Dawe and Austin (2012), although the signs
are similar. A couple of notable aspects are a very strong positive correlation
between R and M (r = 0.93); a strong positive correlation between R and g
(r = 0.68), which reflects a weaker entrainment dilution of larger plumes during
ascent; and a strong positive correlation between ¢; and M, which is due in
part to the strong T(R,M) and T(R,cjt). On the other hand, 6, is very weakly
or even negatively correlated with R and g, probably due to the buoyancy
reversal across the mid-PBL at around z = 400m (see Fig 4.4e), above which
entrainment mixing increases 0. but decreases dc in proportion to the inverse
R. At the surface, r(éc,(jt) = 0.3, which decreases down to r(éc,(jt) = —0.1 at
the cloud base and gradually approaches r = —1 as the updraft rises in the
cloud layer (not shown).

Figure 4.6 shows the composited vertical profiles of updraft core properties

classified by the plume radius at the cloud base, Rigse. Our analysis is slightly
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Figure 4.6 Composite vertical profiles of the updraft core properties as a
function of the updraft plume radius R at Zpase (shown at the bottom in unit of
[m]) obtained from the analysis of 60 snapshots of the BOMEX LES simulations
during ¢t = 5 ~ 6hr. In the bottom row, € and § are the fractional entrainment
and detrainment rates, respectively, estimated by assuming a steady-state
plume for the conservative scalars, 6. and ¢;.
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different from Neggers (2015), which used the radius of vertically-projected
plumes instead of the radius at each level as a compositing basis. As shown,
the thermodynamic properties of the core plumes in the cloud layer are well
classified by Rbase. Similar composite analysis using Wygse, éc,base, Or Gt pase
instead of Rpqse showed weaker distinction among the composited thermody-
namic profiles than those shown in Fig 4.6 (not shown). This indicates that
consistent with previous studies (Dawe and Austin 2012; Romps and Kuang
2010), the variability of convective plumes in the cloud layer is controlled more
effectively by Ripase than by other thermodynamic variables, supporting the
validity of spectral-binning convection schemes based on plume radius such as
Neggers (2015) and stochastic UNICON. Larger Rbase tends to be associated
with larger (smaller) w, ¢, and ¢ (N and éc) but @ and M seem to show
non-monotonic dependency on Rigse. The plume radius decreases with height
but the biggest plumes (Rbase > 300 m) maintain their sizes at up to z = 1300
m where a strong inversion exists. In the lower cloud layer, small plumes have
a larger number density (V) than large plumes but their N decreases rapidly
with height, implying a more efficient entrainment dilution and buoyancy loss
of smaller plumes. The fractional entrainment (¢) and detrainment rates (4)
estimated by assuming a steady-state plume (Betts 1975) are much noisier
than other thermodynamic variables with a tendency of larger plumes to be
associated with a smaller ¢ and 6. Dawe and Austin (2013) noted that € and
& estimated from the direct measurement method instead of the bulk plume
method have a functional dependency on é(B ,df,/dz) and ) (W, Xc), where B is
the updraft buoyancy and Y. is the critical mixing fraction. Given that B and

w are strongly dependent on R, our results do not contradict these findings.
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Figure 4.7 Number PDF of normalized updraft plume radius (z = R/ Ry)
and the best fitting line with (4.14) at various heights obtained from the analysis
of 60 snapshots of the BOMEX LES during ¢t = 5 ~ 6hr. In (a), the updraft
plume is defined as the core grids (i.e., w > 0, ¢g > 0, and B > 0) identified
by the cloud detection algorithm by considering spatiotemporal connectivity.
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Figure 4.7 shows the number PDFs of the normalized plume radius, & =
R/ Ry, at three different heights and with the best fitting lines for (4.14). The
fitting parameters of b = 0, ¢ = 1.7, and Ry = 160 m well capture the size
distribution of core plumes at all heights (Fig 4.7a) but b = 0 is smaller than the
value suggested by previous studies (e.g., Neggers et al. (2019)). This is due in
part to the cloud detection algorithm we use, which is known to underestimate
(overestimate) the number of small (large) plumes, since it does not detect
clouds that exist for only one time step and treats small plumes detached from
their larger parent plumes as parts of the parent plumes for a certain amount
of time (Dawe and Austin 2012). Stochastic UNICON is designed to simulate
dry and forced convection as well as free and moist convection. To be more
consistent with the plumes parameterized by stochastic UNICON, we re-defined
the plumes as horizontally consecutive grid cells with w > 0.1 ms~! and plotted
their number PDF at the cloud base in Fig 4.7b. The resulting number PDF
follows a well-defined power-law distribution with b = 2 and a smaller scale
break radius of Ry = 120 m. Previous studies derived the power-law distribution
using the vertically-projected (i.e., a two-dimensional projection of cloud fields
taken from high altitudes) cloud size (Neggers et al. 2003), which, as shown in
Fig 4.7b, seems to also be applicable for the size distribution at a specific height.
We also examined a deep convection case in a radiative-convective equilibrium
over the ocean and found that the same power-law distribution with b = 2 and
¢ = 1.7 reasonably represents the size distribution of deep convective clouds
with a larger Rp. To simulate both shallow and deep convection in a seamless
way, Ry needs to be parameterized as a function of appropriate variables (e.g.,
self-aggregation or mesoscale convective organization in our UNICON, Eq.(72)

in Park (2014a)). Although it is not clear whether the scale break radius is the
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result of real physical processes or an artificial quantity depending on the size

of the sampling domain (e.g., Yuan (2011)), it seems to be a useful parameter

for any subgrid convection scheme that is designed to simulate subgrid plumes.

The detailed parameterization of R that is applicable to both shallow and

deep convection will be reported in a separate paper.

4.4.2 Single-column model (SCM) simulation of the BOMEX

case
Vertical profiles of grid-mean and updraft thermodynamic properties

Figure 4.8 shows the vertical profiles of various thermodynamic scalars obtained
from the LES and various configurations of SCM simulations of the BOMEX
case described in Section 4.2.4 (i.e., a full stochastic plume method, a single bulk
plume method, and a hybrid method with three bin-plumes and one stochastic
plume). The model parameters used in our simulations are identical to the
ones used in Park et al. (2017, 2019) but we adjusted two tuning parameters,
as (a moist mixing coefficient, Eq.(31) of Park (2014a)) from 1 to 4 and A,|g—g
(updraft fractional area at the surface for a non-organized state, Eq.(19) of Park
(2014a)) from 0.04 to 0.033. The model parameters used for SCM simulations
are summarized in Table 4.3. Theoretically, if combined with a perfect plume
model, a full stochastic plume method with GN different stochastic plumes
can reproduce both the observed ensemble-mean and variance of grid-mean
convective tendency in an equilibrium state, such that it can serve as a reference
configuration to evaluate the performance of the bulk plume method employed
in most convection schemes and the hybrid method developed in our study.
All three SCM configurations adequately reproduce the LES-simulated

vertical profiles of grid-mean 6. and G. The full stochastic method shows the
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Figure 4.8 Vertical profiles of [(a),(b)] grid-mean 6, and ¢; and [(c)-(h)]
various updraft plume properties averaged over t = 3 ~ 6hr simulated by
stochastic UNICON in various configurations (BULK, FULL, and HYB3)
compared with those from the multimodel LES ensemble and UCLA-LES for
the BOMEX case. Both LES and SCM have a domain size of G = 6.4 x 6.4 km?.
In (a)-(b), SCM errors with respect to the LES ensemble are also shown on the
right side. In (c)-(h), the red and orange solid (dotted) lines denote the core
updraft (cloudy updraft). In each panel, the blue horizontal line is the PBL

height and the black line is the level of neutral buoyancy (LNB) of a single

bulk plume.

71



Table 4.3 The model parameters used for the SCM simulations of the
BOMEX case with stochastic UNICON. The specified power-law distribution
for the radius of convective updraft plumes corresponds to the effective updraft
radius, R, = 79.9m ((4.16)) and the ensemble-mean plume number density of
Ne = Agg—o/mR2 =1.64 x 1076 # m~2 ((4.19)).

Parameter Description Original | New Possible
Value Value Range
as Moist mixing coefficient 1.0 4.0 0<as
A5|Q:0 Updraft fractional area at the surface 0.040 0.033 | 0< A5|Q:0 < Aglmaz
when Q = 0 (no mesoscale organization)
Ry Scale break radius - 170 m 0< Ry
b Power-law exponent of the updraft - 2.0 0<b
radius distribution
TRw Correlation between ap and oy - 0.0 —1.0<rgw <1.0
T'RO. Correlation between ap and ag, - 0.0 —1.0 <rpp, <1.0
TRq Correlation between ap and ayg, - 0.0 —1.0< 1Ry, £1.0
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best performance, the bulk method suffers from warm and dry biases in the
lower and uppermost cloud layer just below the level of neutral buoyancy (LNB,
located at around z ~ 1700 m), and the hybrid method has warm and dry biases
in the lower cloud layer. Ideally, the mean thermodynamic states simulated by
the three SCM configurations should be identical. Imperfect selection of the
bulk and n-bin plumes as well as insufficient sampling in a non-equilibrium state
are responsible for the discrepancies in the simulated mean thermodynamic
state by the three SCM methods. A successful simulation of the mean state by
the full stochastic method implies that stochastic UNICON is appropriately
tuned and the assumed multivariate Gaussian distribution of stochastic updraft
plumes at the surface is working well.

The properties of convective updraft plumes simulated by UNICON are
roughly similar to those of LES. In-cloud liquid water content (LWC, ¢g;, Fig 4.8¢)
simulated by SCM is similar to that of the LES cores with a maximum in-cloud
LWC of higher than 1 [g kg~!] near the LNB. The updraft mass flux simulated
by the SCM (M, Fig 4.8d) is slightly larger than that of the LES cores which
are known to represent only 80~90% of turbulent fluxes in the cloud layer
(Siebesma et al. 2003). The updraft mass flux simulated by the full stochastic
method is very similar to that of cloudy updrafts in the LES ensemble. Our
SCM slightly overestimates the LES-simulated updraft vertical velocity (i,
Fig 4.8e) and underestimates the updraft fractional area (a, Fig 4.8f) in the
lower and mid cloud layer but the overall vertical patterns are similar. The
number density of convective updraft plumes simulated by the full stochastic
method (N , Fig 4.8g) decreases rapidly in the upper cloud layer where a trade
inversion layer exists, and also near the surface where stochastic sampling

from the multivariate Gaussian distribution occasionally produces negatively
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buoyant updraft plumes of a very small size, which are immediately detrained
into the environment. The hybrid method shows a qualitatively similar feature

as the full stochastic method but the layer with a constant N extends upward

above because only one stochastic plume is used in the hybrid simulation.

The radius of convective updraft plumes simulated by the SCM (R, Fig 4.8h)
has a peak just above the PBL top and another peak slightly above LNB,
indicating that the largest plume survived up to this level. Compared to the
SCM, the UCLA-LES simulates smaller N and larger R, which is due in part to
the LES cloud detection algorithm treating small plumes detached from their
larger parent plumes as parts of the parent plumes for a certain amount of
times, as previously mentioned. We note that compared to LES, our stochastic
SCM simulates N to be too persistent with height. Consequently, the vertical
variation of SCM-simulated & is mainly controlled by R, although the vertical
variation of LES-simulated a is largely controlled by N. This feature might be
addressed by implementing a stochastic entrainment parameterization for the
convective updraft plume, which is a future research subject.

We also tested the hybrid method with 12 bin plumes generated by the
combination of three bins of R, two bins of éc, and two bins of §; at the

surface (HYB12), which produced more realistic grid-mean profiles of 6. and

¢¢ than HYB3, more similar to those of the full stochastic method (not shown).

Overall, both the full stochastic and hybrid methods reproduce the LES results

reasonably well.

PDFs of updraft properties at the cloud base

Figure 4.9 shows the number PDFs and joint scatter plots of the updraft

plume properties at the cloud base obtained from the full stochastic SCM.
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Compared to LES, the full stochastic SCM simulates more small plumes and
less large plumes (Fig 4.9a), which are speculated to be associated with the
aforementioned problem in the LES cloud detection algorithm and entrainment
merging of the updraft plumes in LES that is not parameterized in current
stochastic UNICON. We found that there is a strong linear relationship between
the SCM-simulated plume radii at the cloud base and surface, Rpuse = 0.57 -
Rsfc + 50 [m], implying that the distribution of R at the surface is well
maintained up to the cloud base. Because it is hard to compute R, fe from
the LES simulation, it is uncertain whether the LES portrays a similar strong
relationship between Rs fe and ﬁbase. Due to the entrainment merging of air
parcels during ascent (see Fig 4.3), the strength of the LES-simulated linear
relationship, if any, is likely to be weaker than that of SCM. The distribution
patterns of individual w, éc, and ¢; from the full stochastic SCM are roughly
similar to those of LES, although SCM simulates slightly drier mean ¢; than
SCM at the cloud base. Both the full stochastic SCM and LES have an
approximate exponential distribution of subgrid M but SCM has a steeper slope
than LES because SCM has more small plumes with a weak vertical velocity
than LES (see Fig 4.9a and Figs 4.10a,b). Stochastic UNICON reproduces the
theoretical exponential distribution of subgrid M hypothesized by Craig and
Cohen (2006).

The joint scatter plots simulated by stochastic UNICON have common
and contrasting aspects with those of LES as shown in Fig 4.5. Both the
full stochastic SCM and LES simulate strong positive ’I”(M, ]A%), T(R, Gt), and
(M, G;), which can be easily understood from the definition of M = j-(7R?/G)-
w for a single plume and the property that a large (small) plume can maintain

a high (small) ¢ with weak (strong) entrainment dilution during ascent in the
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sub-cloud layer (see Fig 4.5 and Fig 4.10). However, @ in the SCM has stronger
positive correlations with other variables than in LES. In addition, the positive
correlations between 6, and other variables are stronger than those in LES,
which produces a negative r(éc, Gr) and r(éc, ]A%) We speculate that the latter
is in part associated with too strong positive rg, = 0.83 at the surface assumed
for the multivariate Gaussian distribution [(4.6)]: LES indicates a smaller 7y,
at the near surface (compare Fig 4.4e and 4.4f) and a sensitivity simulation
with rg, = 0.1 reduced r(w, 0.) from 0.48 to 0.25 and 7(gy, 6..) from 0.23 to 0.02,
approaching that of LES (not shown). The former is speculated to be associated
with various stochastic processes in LES, which are not fully parameterized
in current stochastic UNICON. As shown in Fig 4.4, @ shows more complex
vertical variations than 6, and Gt The merging of small plumes during ascent
and the associated fluctuations of entrainment drag, detrainment thrust, or
other stochastic processes (e.g., fluctuations of environmental properties) may
contribute to this complex variation of w.

Stochastic UNICON parameterizes ¢ as a function of B, w, ¢;, and en-
vironmental relative humidity using a buoyancy sorting, which adds more
variation to € parameterized as an inverse function of R. Some inter-variable
correlations (e.g., (1, 8,), (b, R), (g, R), and r(dt, 8.)) tend to be suppressed
by variability in the critical mixing fraction x. (we note that the mixture with
the mixing fraction y between 0 (updraft air) and y. is entrained). Future
parameterizations of additional stochastic processes (e.g., plume merging and
the stochastic mixing of updraft plumes, and the stochastic fluctuation of
environmental air) with a more realistic specification of ry, in the multivariate
Gaussian distribution at the surface may improve the characteristics of the

inter-variable correlations.
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Updraft profiles composited by the plume radius at the cloud base

Figure 4.10 shows the composite vertical profiles of the updraft properties as a
function of the plume radius at the cloud base, simulated by the full stochastic
SCM. Stochastic UNICON simulates R smaller than the LES. However, similar
to the LES, the plumes with larger R ascend to a higher level and have larger
w, §t, and §¢; and smaller N and 6, in the cloud layer. The updraft fractional
area @ = 7R2N and mass flux M = paw do not show monotonic variations
with R due to the decrease of N with R, which are also similar to LES. In
UNICON, the fractional mixing rate €y (also the fractional entrainment rate, €,
and the fractional detrainment rate, 5) is parameterized as an inverse function
of R, such that larger plumes have small ¢ (é and 5) Due to higher B and
w, large plumes in the cloud layer have higher y. than small plumes, which
increases (decreases) € (9). This buoyancy sorting competes with the effect of R
on €, resulting in an unexpected stronger € for larger plumes in the lower cloud
layer (Fig 4.10j). From the cloud base to z = 750 ~ 800 m, the accumulated
entrainment in large plumes is roughly similar to that of small plumes. Further
above, large plumes experience much weaker entrainment dilution, resulting in
more rapid increases of w and §; with height than small plumes. These features,
however, are not evident in LES, implying a need to refine the buoyancy sorting
in stochastic UNICON. In contrast to LES (Fig 4.6b), the number concentration
of small plumes in the lower and mid cloud layer does not decrease with height,
presumably due in part to the absence of the parameterization of merging
plumes in the current stochastic UNICON. Due to stochastic sampling of
the negatively buoyant updrafts at the surface, x. is smaller than 1 and 5 is

positive near the surface. Overall, stochastic UNICON adequately reproduces
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Figure 4.10 Composite vertical profiles of updraft plume properties as a
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simulations of the full stochastic UNICON.
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the dependency of updraft properties on the plume radius simulated by LES,

at least on a qualitative basis.

Variance statistics simulated by the full and hybrid stochastic UNI-

CON

Figure 4.11 shows the time evolution of grid-mean M (which controls grid-mean
convective tendency) simulated by the full and hybrid stochastic methods at
various horizontal resolutions. As explained in Section 4.2, the hybrid method is
designed to reproduce the mean and variance of grid-mean convective tendency
simulated by the full stochastic method in a computationally efficient way. In an
equilibrium state, temporal fluctuations of grid-mean M in stochastic UNICON
can be generated by three processes: a stochastic sampling of the plume number
(GN) from the Poisson distribution, p(GN) [(4.18)]; a stochastic sampling
of R from the correlated multivariate Gaussian distribution of « 4 Which is
transformed into the power-law distribution of R [(4.15)]; and a stochastic
sampling of @& and ¢ from the half- and full-Gaussian distributions of oy and
g, respectively. The variability shown in Fig 4.11 is a combined result of these
processes. As expected, the decrease with G of expected temporal variance
(e.g., (M) /(M) on the top-right of the individual plot) is simulated by the
full stochastic method and successfully reproduced by the hybrid method. The
grid-mean M simulated by the hybrid method is slightly higher than that of
the full stochastic method, reflecting the deficiency of using three bin plumes
in simulating the true grid-mean tendency. When 12 bin plumes were used
(HYB12), the simulated temporal variability became more similar to that of
the full stochastic method (not shown). At G = 1.6 x 1.6km?, the expected

plume number is GN, = GA,/(rR?) = 4.46 and the plume number GN as
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sampled from the Poisson distribution and the associated M can be zero at
some time steps. The PBL top height simulated by the SCM changes in a
discontinuous way, which adds additional variance to Fig 4.11. In the cloud
layer, both methods simulate smaller variance than the LES (see the line plots
on the right side), which is presumably because SCM simulates too persistent
N with height as mentioned before (Fig 4.8g).

Figure 4.12 shows the PDF of the grid-mean M at the cloud base simulated
by the hybrid SCM and LES at various G along with the theoretically-predicted
PDFs. This figure shows the distribution of grid-mean M, while Fig 4.9e shows
the distribution of M for individual updraft plumes within the grid box. At

various values of GG, the distribution of grid-mean M simulated by the hybrid

stochastic UNICON is similar to that from theory (solid vs. dash on Fig 4.12a).

To sample the grid-mean M at various values of G, we divided the default
LES simulation results at G = 6.4 x 6.4km? into 2 x 2 (4 x 4) sub-domains
for computing the LES-simulated PDF in the grid size of G = 3.2 x 3.2km?

(G = 1.6 x 1.6km?). Due to the small number of samples, the LES results

are somewhat noisy but the overall distributions are similar to those of SCM.

The hybrid method with 12 bin plumes (HYB12) and full stochastic method
produced results very similar to HYB3 (not shown). In summary, our stochastic

UNICON successfully reproduces the expected distribution of grid-mean M at

various GG, enhancing the scale-adaptive characteristics of the original UNICON.

Sensitivity simulations

Figure 4.13 shows the sensitivities of stochastic UNICON to the grid size G,
number of bin plumes n, and stochastic perturbations imposed on the updraft

plumes at the surface. The full stochastic method launches (or dispatches) more
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at the surface during stochastic sampling (both R and other thermodynamic
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(cloudy updraft) obtained from the multimodel LES ensemble.
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updraft plumes (GN) as G increases. At G = 6.4 x 6.4km? and G = 3.2 x
3.2km?, the expected number of updraft plumes are GN, = GA,/(rR?) = 67.4
and 16.8, respectively. If averaged over a long time, the ensemble mean of the
grid-mean convective tendency will be insensitive to G, but the variance of
grid-mean convective tendency is likely to increase as G decreases. As shown
in Figs 4.13a-c, this anticipated behavior is reproduced by stochastic UNICON:
the ensemble means of ., §;, and grid-mean M simulated by the full stochastic
SCM at G = 6.4 x 6.4km? are very similar to those at G = 3.2 x 3.2km?,
while the variance of the grid-mean M increases from G = 6.4 x 6.4km? to
G = 3.2 x 3.2km?.

The hybrid method (HYBn) consists of n bin plumes mainly controlling the
ensemble mean and a single stochastic plume controlling the variance of the
grid-mean convective tendency. The relative contributions of the n bin plumes

and one stochastic plume to the grid-mean convective tendency at G = 6.4 x

6.4km? are v, = (GN, — VGN.)/GN, = 88% and v, = VGN./GN, = 12 %,

respectively [(4.19),(4.20)], and 73 (ys) decreases (increases) as G decreases.

As a result, the hybrid method becomes more similar to the full stochastic
method as G decreases. At the default G = 6.4 x 6.4km?, the grid-mean
convective tendency is thus mainly determined by the bin plumes and the
mean profiles simulated by the hybrid methods shown in Figs 4.13d-f are
very similar to those from the spectral bin method with the same number of
bin plumes (BIN7, not shown). The mass flux profile from HYB1 does not
change much with height in the layers between z = 850 and z = 1250 [m)]
but decreases rapidly at greater heights, resulting in a positive bias of q; at
approximately z = 1300 [m] due to the excessive moisture convergence at this

height (Fig 4.13f). Compared to HYB1, HYB3 simulates more realistic and
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smooth vertical profiles for M, 6., and G, which are further improved in HYB12,
which produces very similar results to the full stochastic method. Note that
the spread of the grid-mean M simulated by HYB3 and HYB12 is very similar
to that of HYBI1, because all hybrid methods use a single stochastic plume
that controls the variance of the grid-mean convective tendency. In summary,
if the bins are chosen appropriately, the HYBn method can reproduce the
ensemble-mean and variance of convective tendency simulated by the FULL
method.

The fluctuation of the plume radius is an important source of variability
but other thermodynamic variables may also contribute substantially. We ran
two additional full stochastic SCMs by with only the stochastic perturbations
of the updraft thermodynamic properties activated (@ and b = éc,qt,a,@)
(FULL-TV) and only the stochastic perturbations of R activated (FULL-RV)
at the surface, respectively. The default full stochastic method (FULL) includes
all types of stochastic perturbations. As shown in Figs 4.13g-i, the stochastic
perturbations of w and QAS are as important as those of R in correctly simulating
the mean thermodynamic state, although R has a slightly larger impact than
w and gZ;, as indicated by the smaller rmse errors in FULL-RV than FULL-TV.
When all stochastic perturbations are included, the rmse errors are minimized,
implying that a successful stochastic convection scheme needs to parameterize

various sources of variability.

4.5 Discussion

There are several important aspects that have not been examined in our

study. Since the updraft fractional area at the surface for a non-organized
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state is fixed as a constant, our model does not simulate the feedback between
stochastic fluctuations and the closure (Plant and Craig 2008; Keane and
Plant 2012). Because we performed stochastic sampling at each time step
in a fully independent way, temporal coherency of stochastic fluctuations is
not taken into account. Although our HYBn method is carefully designed to
reproduce both the ensemble mean and variance of the full stochastic method,
the reproduction of higher-order statistics (e.g., skewness) is not guaranteed,
particularly, when only a few plumes exist in the grid box. In the near future, we
have a plan to explore these aspects. To further improve stochastic UNICON,
we are also planning to revise the similarity function to build a more realistic
multivariate Gaussian distribution at the surface; refine buoyancy sorting;
parameterize other stochastic processes, such as the stochastic entrainment
and merging of updraft plumes; and generalize stochastic UNICON to handle
deep convection as well as shallow convection, which will presumably involve
appropriate parameterizations of the scale break radius Ry as a function of the

mesoscale convective organization and the size of the grid box.
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5 Parameterization of Stochastically Entrain-

ing Convection using Machine Learning Tech-

nique

5.1 Introduction

The mass flux schemes compute changes in the mass flux and properties of
convection, where the key process is the mixing between cumulus and nearby
environment by entrainment and detrainment. The convective entrainment
and detrainment are complex turbulent mixing processes involving the phase
change of hydrometeors, so constitute one of the largest sources of uncertainty
in GCMs (Murphy et al. 2004; Klocke et al. 2011).

Entrainment and detrainment are also important in that they are the
main sources of variabilities among convective clouds. The main challenge in
modern convection parameterizations is to represent a realistic distribution
of clouds in a given environment. Many stochastic convection schemes are
based on assumed mass flux distribution. However, there were also attempts to
understand underlying physical processes responsible for developing the cloud
variabilities. The variabilities among convective clouds can be generated from
the variabilities from the near-surface or cloud base, or by the stochastic mixing

process (Romps and Kuang 2010).
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Entrainment and detrainment of mass are defined as the mass flux crosses
into (entrainment) or out of (detrainment) cloud volume. The entrainment
and detrainment rates of a cloud at a given height can be formally defined as
(Siebesma 1998)

E=-— % pi - (u —w;)dl, (5.1)

- (u—u;)<0

D=_ 7{ ot (u— wi)dl, (5.2)
- (u—u;)>0

where E and D are the entrainment and detrainment rates [kgm™!s7!

, respec-
tively, p is the density of air, n is an outward unit vector perpendicular to the
interface, u is the velocity of air at the cloud interface, and wu; is the velocity of
the cloud interface. Entrainment and detrainment are often represented as the
fractional entrainment and detrainment rates ¢ = E/M and § = D/M [m™!],
where M = pwa is the convective mass flux, w is the vertical velocity, and a
is the cross-sectional area of the cloud.

Due to their importance on weather and climate models, many studies have
been conducted to parameterize the entrainment and detrainment in the last
several decades. Many of them are in a form of deterministic formulas as a
function of cloud and environment properties. Neggers et al. (2002) proposed
€ x 1/w assuming a constant mixing timescale. Gregory (2001) proposed
€ < B/w? and Salzen and McFarlane (2002) proposed € o< dB/dz, where B is
the buoyancy of the cloud. Lu et al. (2016) suggested a parameterization based
on fitting a power-law equation of w, B, and turbulent dissipation rate on e.
Dawe and Austin (2013) suggested power law fits of B9, /0z on € and wx. on

§, where 0, is the environmental virtual potential temperature and Y. is the

critical mixing fraction. Another notable way of parameterizing ¢ and J is the
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buoyancy sorting scheme (Raymond and Blyth 1986; Kain and Fritsch 1990).
Buoyancy sorting schemes assume a spectrum of mixed air between clouds and
the environment, and then the mixtures with positive (negative) buoyancy are
entrained (detrained). However, some deficiencies are reported for the original
Kain-Fritsch buoyancy sorting scheme, so improvements to the Kain-Fritsch
scheme were developed for practical use (Bretherton et al. 2004a; Rooy and
Siebesma 2008; Park 2014a).

Another view of mixing of convection is as a purely stochastic process
(Romps and Kuang 2010). Romps and Kuang (2010) modeled entrainment
as discrete events which may be described as a stochastic Poisson process.
The model is motivated by the observation that cloud-base properties are
uncorrelated with upper-level cloud properties (i.e. cloud variabilities are gen-
erated by the mixing process). However, subsequent studies suggest that the
stochastic mixing model also needs to include some kind of dependency on
cloud properties to simulate various regimes of convection (Romps 2016; Suselj
et al. 2019). In summary, the modern view of entrainment and detrainment
processes is that they are strongly dependent on cloud properties and also
exhibit a considerable randomness (Dawe and Austin 2013).

Another important issue about the mixing process is the role of the moist
cloud shell which is a subsiding or negatively buoyant region around the cloud
core. Traditionally entrainment and detrainment rates are diagnosed using the
budget equations of conservative scalars between updrafts and environment,
without considering the cloud shell. After Romps (2010), several methods have
been developed to calculate entrainment and detrainment rates directly from
large-eddy simulations (LESs) (Dawe and Austin 2011a; Yeo and Romps 2013;

Wang 2020). These studies revealed that the presence of a cloud shell biases
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the budget calculations. In addition, Hannah (2017) showed that entrainment
and dilution of scalars are not well correlated, suggesting a need for the explicit
consideration of cloud heterogeneity.

In this study, we will introduce neural stochastic differential equations
(SDEs) for the mixing process of convective clouds. The stochastic differential
equations have been extensively used in dynamic systems with random pro-
cesses and are a very useful tool to describe the Lagrangian motion of turbulent
flows. The neural SDEs, also called the latent SDEs, are the SDEs that their
drift and diffusion are modeled by neural network (Tzen and Raginsky 2019;
Li et al. 2020). Use of the machine learning (ML) model helps to explain
the complex non-linear system that is hard to be physically modeled. Four
uncertain parameters in the governing equations of mass flux schemes are
modeled using neural SDEs: €, §, fractional dilution rate of scalars, and vertical
acceleration. In this framework, the dependence of the mixing process on cloud
properties and also the stochasticity in the mixing process can be modeled

realistically. Also, the effect of cloud shells in the mixing process is considered.

5.2 Conceptual framework

5.2.1 Stochastic equations for vertical evolution

Following Siebesma (1998), the governing equations for individual updrafts
can be formulated using the conservation law of mass and a scalar variable
b (superscript hat denotes updraft and overline denotes grid mean) with a
steady-state plume approximation (9v/0t = 0, where v is any convection
properties):

oM -
5 = M(e—9), (5.3)
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(M)

o = M(¢pee — ¢56) + MSy, (5.4)

where 5’¢ is the source of ¢ within an updraft and ¢, (qgg) is average ¢ of

entraining (detraining) air. Combining (5.3) and (5.4),
9 » s F a4
20 = (b= b + (5 d5) + 5. 55
In most bulk plume schemes, the entraining air is assumed to have same
properties as the environmental air (gﬁe = ¢) and the detraining air is assumed
to have same properties as the mean updraft air ((;35 = qg), which reduce (5.5) to
3(25/ 0z = —e(gZ; — @)+ S¢. However, previous studies found that the entraining
air does not have properties of the environment because of the existence of
subsiding cloud shell that includes the recently detrained air from the cloud
core (Dawe and Austin 2011b; Hannah 2017).
Directly modeling qASG and gZA)(; is hard since it might need additional prognostic
equations for the cloud shell. As an alternative, we define the fractional dilution

rate €4 as the tendency of qg by the mixing process divided by the anomaly of

gg. In a steady state, €4 can be formulated as

_96/02= 8, _ (6= ) = (6~ 6)

- . 5.6
¢—¢ ¢—¢ (56)

6¢:

The fractional dilution rate can be understood as a diagnosed fractional
entrainment rate obtained using the scalar budget equation. As explained
in the introduction, the use of wrong diagnoses for the entrainment rate (not
considering the effect of cloud shells) might prevent the accurate calculation
of mass fluxes and scalars simultaneously. As so, we will use different mixing
rates for mass flux (e and 0) and scalars (€4), while the identical e, is used for

all scalars.
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The vertical velocity of updraft also can be described by (5.5) with the
source term of buoyancy, vertical pressure gradient force , and the Coriolis
force (which is typically neglected). Since the vertical pressure gradient force
term is hard to be parameterized, most parameterizations of vertical velocity
equation partition the vertical pressure gradient force term into buoyancy and

entrainment terms and use the form of

oW

wEZ::aB-mw% (5.7)

where a and b are constants. a and b are found to be highly case-dependent
(Roode et al. 2012) and sensitive to how the convective updrafts are defined
(Wang and Zhang 2014). This is due to the fact that the pressure gradient
force term, which is hard to be physically parameterized, is the dominant sink
term in the vertical velocity budget (Roode et al. 2012). This motivates the
use of machine learning for the total vertical acceleration dw/dt = w, rather
than modeling each term.

The strategy of our stochastic mixing model is to set stochastic differential
equations (SDEs) using a neural network for the most uncertain parameters:
€, 0, €g, and w. Since SDE is usually used to explain the time evolution, the
fractional mixing rates are expressed as mixing time scales in the unit of [s~!].

They can be converted from the fractional mixing rates in unit height, as

' = e, (5.8)
5t = wo, (5.9)
€, = Wey. (5.10)

The final governing equations for the vertical evolution of the mass flux

and scalars of individual convective updrafts are expressed as total derivatives,

93 ¥ [, -1 =1 —
= L &7 1



following the convention of Lagrangian models of turbulent flows:

t t

o €70
do
“ .
dw .
= w

Cdt

G-+ 8, (5.11)

where S’gﬁ is the source of (;AS in unit time. Note that the equations are written
in total derivative, but M , qg, and w are time-invariant in a given environment
due to the steady-state assumption. Here, €', &, efﬁ, and w are determined by

the following stochastic differential equations:

dlog(e") = _log(et)exp—log(et)] dt + o1dWh, (5.12)
dlog(8t) = po _log((st)exp—log(ét)} dt + oodWs, (5.13)
dlog(e) = s _log(efb)exp—log(efb)} dt + o3dWs, (5.14)

dir = pg [thexp — W] dt + o4dWy. (5.15)

For the variables of x; = {log(¢?), log(6?), log(el), w}, the four equations
[

can be summarized as
dxi = i [Xiexp — Xi] dt + 0idW;, (5.16)

where o; is the diffusion coefficient, dW; is the increment of Wiener process,
Xiexp i the expected value at a given state. f;, Xjexp, and o; in (5.16) are
machine learned as described in Section 5.2.2. From those, the stochastic
differential equations are solved to get x;, and x; is then inserted into the
final governing equations ((5.11)). The equations can be understood as the
continuous time limit of the first-order autoregressive model (AR(1)) (Brockwell

et al. 1991; Stramer et al. 1996). The drift terms of the equations indicate that
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Xi approach to X;exp, Where the speed of the drift is determined by ;. The
use of log for the mixing rates of €, §*, and 625 guarantees that those mixing
rates are always positive. Also, LES (Dawe and Austin 2013) and aircraft
observation (Cheng et al. 2015) studies show that the fractional entrainment
and detrainment rates are well modeled by log-normal distributions.

The proposed framework allows us to account for the time coherency of
the mixing rates, in contrast to the model of Romps (2010) that assumes
independent discrete entrainment events. This is a more realistic approach
since turbulent eddies of various spatiotemporal scales experience non-linear
interactions. The time series of logyy(e!) derived from the BOMEX LES (Fig-
ure 5.1) clearly show that the entrainment is an autocorrelated process. The lag-
1 autocorrelations of log(e!), log(8?), log(efb), and w with At = 60s calculated
using our dataset are found to be 0.529, 0.582, 0.376, and 0.555, respectively.

In numerical implementations, the SDEs are used as discretized form:

Xl; - Xtil = Mi | Xiexp — X;il] At + o;V Atfi, (517)

i

where &; is the white Gaussian noise N (0, 1), At is the time step size, and x!

and X’fl are y; at times of ¢ and ¢t — At, respectively.

5.2.2 Machine learning model configuration

The unknown parameters in SDEs, 1, Xiexp, and o;, are modeled using a
deterministic feed-forward neural network. The network accepts properties
of a convective updraft and environment at a given height as inputs. The
selection of the input variables will be discussed in Section 5.4. The feed-
forward neural network has three hidden layers with 16 neurons in each layer.

Scaled exponential linear unit (SELU) activation functions (Klambauer et al.
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Time series of log,o(e') in BOMEX

log;o(€") [logio(s™)]

time [min]

Figure 5.1 Time series of log; (') measured in the BOMEX LES. 9 time
series are derived from randomly selected updrafts starting from the height
of 600 m and lasting more than 12 minutes. The updrafts are tracked in a

Lagrangian way as described in Appendix C. The simulation setup for the
BOMEX LES is described in Section 5.3.1.
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2017) follow each hidden layer. SELU helps the output distribution to retain
a mean of 0 and a standard deviation of 1 which in turn avoids exploding
and vanishing gradients. Before the final output layer, a dropout layer with
a rate of 0.2 is added to reduce the risk of overfitting. The structure of the
feed-forward network is optimized to give the best performance.

The unknown parameters in SDEs, 1, Xiexp, and o;, cannot be directly
measured from the LES dataset. Then how is the neural network trained for
i, 04, and X;exp Which can not be directly obtained from the LES dataset?
From (5.17), it can be derived that the distribution of x%, P(x!), is a normal
distribution with mean of Xﬁ_l + i [XLeXp — X';_l At and standard deviation
of o;v/At. At corresponds to the LES output frequency of 60s. While training
the network, a probabilistic layer is embedded as a final layer so that the
outputs are probability distributions of P(x%). The training network is trained
such that the modeled P(x!) is the best fit to LES data samples by minimizing

the loss function ! which is defined as

1= —iglogﬂxiw), (5.18)

where n is the number of training samples, f is the probability density func-
tion (pdf), z; is training samples, and 6 is parameters of the pdf. The data
samples are trained altogether regardless of height and time of sampling. The

configuration of the deep learning network is depicted in Figure 5.2.

5.2.3 Stochastic initialization of convective updrafts at the

near-surface

To fully represent the variabilities between convective updrafts, near-surface

variabilities should also be realistic. For the stochastic initialization of convec-
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Deterministic feed-forward network

x

15

‘ Dense: 16 neurons ‘

Activation: SELU :

% Dense: 16 neurons

Activation: SELU ‘

i Output: {Auila'i‘)(i,exp} :

Probabilistic Layer: Xi= . . i
{P(Xf)} {log(e%),10g(6%), log(eg), W}

Figure 5.2 A diagram of how the probabilistic deep learning network is
connected for training. The network is trained to minimize negative log-
likelihood. After the training, the deterministic feed-forward network part is
used to determine the parameters of the stochastic differential equations.
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tive updrafts at the near-surface, we follow the method specified in Section 4.2.
Vertical velocity and thermodynamic scalars of convective updrafts at the near-
surface are randomly sampled from the multivariate Gaussian distribution with
a constraint of w > 0, where standard deviations and inter-variable correlations
are derived from the surface-layer similarity theory. The number density PDF
of updraft radius R at the surface is parameterized as (4.15). In this study,
Ry is set to 170 m, which represents the typical size of shallow convection. We
assume that correlations between updraft radius and other updraft variables

are zero at the surface.

5.3 Experimental setting

5.3.1 Large-eddy simulations

The University of California, Los Angeles large-eddy simulation (UCLA-LES)
model (Stevens et al. 1999, 2005) is used to simulate two shallow convection
cases. The UCLA-LES solves a set of anelastic equations with the turbulence
model of Smagorinsky-Lilly. Cloud microphysical processes are parameterized
based on the two-moment warm rain scheme of Seifert and Beheng (2001) with
modifications detailed in Stevens and Seifert (2008).

The first case is the Barbados Oceanographic and Meteorological Exper-
iment (BOMEX) (Holland and Rasmusson 1973) following the settings of
Siebesma et al. (2003). In this simulation, radiation and the production of
precipitation are turned off. The domain size is 6.4 km x 6.4 km x 3.0 km,
and the grid size is 25 m x 25 m x 25 m. The model is run for 6 h, and
outputs from time intervals of one minute during the last 2 hours (a total of

120 instantaneous snapshots) are analyzed.
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The second case is the Rain in Cumulus over the Ocean (RICO) field
campaign following the settings of vanZanten et al. (2011). The domain size is
12.8 km x 12.8 km x 4.0 km, and the grid size is 40 m x 40 m x 40 m. The
model is run for 24 h, and outputs from time intervals of one minute during
the last 4 hours (a total of 240 instantaneous snapshots) are analyzed. For the
RICO case, the production of precipitation is allowed and the number density
of cloud droplets is set to a fixed value of 70 cm™3.

Individual clouds are detected using the cloud tracking algorithm of Dawe
and Austin (2012) which tracks clouds by considering the spatiotemporal
connectivity of cloudy grid cells. The algorithm categorizes cloudy grid cells
into three types. The “core” region is defined as the grid boxes with positive
condensate, vertical velocity, and buoyancy, and the “condensed” region is
defined as the grid boxes with condensate. The “plume” region is defined as
the grid boxes having positive vertical velocity and containing radioactively
decaying passive tracer emitted continuously from the surface with a concen-
tration higher than one spatial standard deviation at each height (Couvreux
et al. 2010). Additionally, all condensed points are also flagged as plume points,
so that the condensed region is always a subset of the plume. The decaying
time scale of the passive tracer is set to 15 minutes in the BOMEX case and
30 minutes in the RICO case.

It is important to determine the cloud type that corresponds to convective
updrafts in a convection scheme when developing the convection scheme
using LES data. Typically, convection schemes are designed to represent the
properties of the cloud core region. In our study, we focus on the analysis
of plume regions with positive vertical velocity (hereinafter referred to as

convective updrafts). This is for two reasons, first to include dry convection in
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the sub-cloud layer, and second to allow forced convection (negatively buoyant
but have positive vertical velocity). We add a constraint that vertical velocity
should be greater than zero, to exclude cloud shell or convective downdraft.

The entrainment and detrainment rates of convective updrafts are measured
using the method of Yeo and Romps (2013). The entrainment and detrainment
rates are calculated by counting the number of Lagrangian particles that go
into or out of the cloud interface in finite time and height intervals. In our
LES simulations, Lagrangian particles are imposed using the online Lagrangian
Particle Tracking Module (LPTM; Heus et al. (2008a)). A total number of
2031297 particles for the BOMEX case and 1605133 particles for the RICO case
are imposed, and the properties of individual Lagrangian particles are recorded
every 30 seconds. The entrainment and detrainment rates are calculated for
each convective updraft using a time interval of 30s and a height interval of
50 m.

Finally, the fractional dilution rate efz) and vertical acceleration w of indi-
vidual convective updrafts are calculated. Also, our framework needs mixing
rates at current time step (x!) and previous time step (x!~'). The method of
calculating these variables is explained in Appendix C. For every model layer
and sampling time, input and output variables for training the neural network
are obtained. We exclude the samples at the time steps when a convective
updraft merges with other updrafts or is split into multiple updrafts. We also
exclude the samples at the lowest model layer. This results in a total of 48845

samples for the BOMEX case and 238606 samples for the RICO case.
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5.3.2 Single-column model

The single-column model (SCM) used in our study is the single-column version
of Community Atmospheric Model version 5 (CAMS5) with the unified convec-
tion scheme (UNICON; Park (2014a)) implemented, identical to the one used
by (Park et al. 2019). The model has 80 vertical layers and uses the leap-frog
time stepping method with a time step of 300s. SCM is driven by same forcing
specified in LES simulations, each for the BOMEX and RICO cases. UNICON
computes the vertical evolution of conservative scalars ¢ = {0, q,u,v,(}
within convective updrafts and downdrafts.

Our mixing model is implemented in the UNICON scheme and substitutes
the existing mixing model which is a modified version of the buoyancy sorting
algorithm. The vertical velocity equation is also replaced. The trained neural
network is converted to a Fortran code using the Fortran-Keras Bridge (FKB)
library (Ott et al. 2020). Original UNICON simulates convective downdrafts,
associated mesoscale organized flow, and its effect on convection. In our SCM
experiments, we disable convective downdrafts and associated mesoscale orga-
nization flow since the distribution of near-surface thermodynamic variables
in the presence of mesoscale organization has not yet been studied. The
standard RICO case simulated by UCLA-LES does not show notable mesoscale
organization for the first 24 hours (Seifert and Heus 2013; Seifert et al. 2015).
However, we note that transport due to convective downdrafts in the RICO
case is relatively small compared to updrafts but not negligible (Heus et al.
2008b; Suselj et al. 2019).

The conversion rate of cloud water to rain, the autoconversion rate, in the

original UNICON is based on Kessler (1969), where it is linearly proportional

102 ] -1



to cloud water content when the cloud water content is larger than a threshold
value. The threshold value and the autoconversion efficiency are specifically
tuned to produce a reasonable amount of precipitation in global simulations.
However, we found that the original autoconversion scheme produces an ex-
cessive amount of precipitation and severely distorts the distribution of cloud
properties for the RICO case. Thus we utilize the autoconversion scheme of

Khairoutdinov and Kogan (2000) in the form of

8%" ~a NTb
= ci®*N 5.19
( i ) N, (5.19)

where ¢, is the rain water specific humidity, . = ¢; + ¢; is the specific humidity
of in-cumulus condensate, N, = Nl + N; is the number density of cloud droplets
(Nl: the number density of liquid cloud droplets, N;: the number density of ice
cloud droplets), and a, b, and c are the fitting parameters. The values of the
fitting parameters are set equal to Kogan (2013), which are specifically fitted to
the RICO case. The values are a = 4.22, b = —3.01, and ¢ = 7.98 x 10'° when

Iand NV, is in unit of em™3. The autoconversion scheme

Gc 1s in unit of kg kg™
cannot be implemented in UNICON in general cases, since the microphysics in
UNICON is a simple single-moment scheme. Thankfully, since the RICO case
assumes a constant cloud droplet number density of 70 cm ™2, the parameterized
autoconversion rate becomes a function only of §.. We do not change the other
rain processes like accretion and evaporation since the simulated rain rate of
the RICO case is found to be sensitive only to the autoconversion process.
Finally, a free parameter in UNICON is tuned to simulate reasonable mass
flux. The only parameter changed is the convective updraft fractional area at

the surface Ay, changed from the original value of 0.040 to 0.025. The value

of the parameter was determined by selecting the one with the lowest RMSE
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of f, and g among several SCM simulations with different A,. The SCM
simulation with the new mixing model takes ~ 15% more time compared to
the original UNICON, mainly due to the computation of the neural network.
The computation time can be reduced by using computationally cheaper
activation function or by reducing the size of the network. Accommodating the
neural network adds about 220 KB of memory footprint per process (including
loading related libraries), which is negligible compared to the total memory

consumption of the model code.

5.4 Training and testing of the machine learning model

5.4.1 Training of the machine learning model

The neural network described in Section 5.2.2 is trained and tested with the
combined samples from the BOMEX and RICO cases. The total 287451 samples
are randomly partitioned into the training set, validation set, and test set, with
ratios of 64%, 16%, and 20%, respectively. The validation set is used to estimate
the model skill during the training of the model, and the test set is used to
evaluate the performance of the model after the training. The neural network
of three hidden layers with 16 neurons per layer is iteratively updated through
the stochastic gradient descent with a batch size (number of samples used in
a single update of model weights) of 32 and a learning rate of 0.001 with the
Adam optimizer (Kingma and Ba 2015).

As the training progresses, the loss function evaluated from the training
set (training loss) keeps decreasing, while the loss function evaluated from the
validation set (validation loss) stops decreasing and starts to increase at some

point due to overfitting. In order to prevent overfitting, the neural network is

104 - e R |



trained until the validation loss does not decrease for the following 50 epochs.
The training takes 250~500 epochs depending on the random state of the
stochastic gradient descent. The neural network is trained and tested using
TensorFlow library (Abadi et al. 2015) and TensorFlow Probability library
(Dillon et al. 2017). The hyperparameters that affect the model performance,
which are batch size, learning rate, number of hidden layers, and number of
neurons per layer, are tuned with Keras Tuner library (O’Malley et al. 2019) to
get the optimal performance. We also tested the single-hidden-layer version of
the neural network using the same number of trainable parameters as our multi-
layer neural network (a total of 673 parameters; 84 neurons for the single hidden
layer). The single-hidden-layer neural network showed 89 % of R? compared

to the multi-layer version while predicting the fractional entrainment rate.

5.4.2 Selecting input variables for the machine learning model

We selected input variables for the ML model that are physically meaningful
for predicting mixing rates. This is also an important procedure to reduce
the size of the network and the computation time. First, the candidates of
input variables are chosen from previous studies. The candidates are buoyancy
B = (év — 0,)/0,, vertical velocity w, specific humidity of liquid water g,
anomaly of condensate potential temperature éé = éc — 0., anomaly of the total
water specific humidity ¢; = ¢ — @, vertical gradient of environmental virtual

potential temperature 06, /dz, updraft radius R= \a/m, and environmental

vertical wind shear Vipear = /(00/02)% + (00/02)2.
The thermodynamic variables are all in the form of the anomaly with
respect to the mean environment (if g; = 0). In fact, the most fundamental

variables describing the thermodynamic states of updrafts and environment are
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0., 0., ¢;, and §;. However, if the ML model is trained with these variables, it

cannot be used in a climate different from the one in which it was trained (e.g.

warm climate). This is a well-known issue of machine learning based physics
parameterization (Rasp et al. 2018). Therefore, we select anomalous variables
to limit the sample space. It is also a physically rational choice since turbulent
mixing is proportional to the difference in properties of the two fluids. Previous

studies indicate that relative humidity in environment is an important factor

affecting entrainment and detrainment rates (Bechtold et al. 2008; Lu et al.

2018; Stirling and Stratton 2012; Zhao et al. 2018; Zhu et al. 2021). However,
relative humidity is not considered as a potential input variable here since the
anomaly of the total water specific humidity ¢; which has a similar physical
meaning as relative humidity was found to be a better proxy.

In order to select the input variables, we calculate permutation importance

(PI; Altmann et al. (2010)) to quantify the relative importance of the variables.

The permutation importance is defined as the decrease in a model score when
the values of a single variable are randomly shuffled. We calculate the increase
in mean squared error (MSE) when input variables are permuted, for the neural
networks predicting log(e), log(d), log(e'), log(8?), log(eé)), and w. To increase
statistical significance, 20 random permutations for each input variable are
done. For this analysis, the training of the neural network is only done for the
data samples with ¢; > 0 since the cloud tracking in the sub-cloud layer is
inaccurate (Dawe and Austin 2012).

Table 5.1 shows the results of the permutation importance analysis. Dawe
and Austin (2013) found that the fractional entrainment rate is best predicted
by B and 90,/0z. In our analysis, 80,/0z shows the largest PI values for

predicting log(e) and log(e'). However, the buoyancy B has relatively low PI
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values for predicting log(e) and log(e'). This is thought to be because our
definition of convective updraft includes regions with positive and negative
buoyancy, while Dawe and Austin (2013) used the core region for the analysis.
For log(d) and log(8*), the vertical velocity w shows the largest PI values, which
is one of the best predictors pointed out by Dawe and Austin (2013) as well.
The log of the fractional dilution rate log(efb) does not have predictors with
significantly high PI values. This indicates that the fractional dilution rate
cannot be predicted well by a single variable. For the vertical acceleration w,
90, /0z shows the largest PI, followed by % and ¢,. In contrast, B shows a
relatively low PI value, which seems to be an unexpected result because buoy-
ancy is a main source of the vertical velocity budget. Wang and Zhang (2014)
reported that the buoyancy term becomes small in the vertical momentum
budget when convective updraft is defined to include negative buoyancy region.
Among the candidates of input variables, the vertical wind shear Vypear has
the lowest PI values and the updraft radius R has the second lowest. Moreover,
there is a possibility that PIs of other variables excluding these two variables
are underestimated. As displayed in Figure 5.3, the variables other than R and
Vihear are highly correlated. When variables are correlated, their permutation
importances tend to be underestimated. This is because the permutation of one
variable has little effect on model performance since the same information can
be obtained from the correlated variables. The low correlations of Vgpear and R
with other variables confirm that the low PI values of these variables actually
represent the low importance of these variables. The vertical wind shear is
one of the main factors controlling the cloud-top entrainment of stratocumulus
(Mellado 2017), but it seems to have a low impact on cumulus-type convection.

The low dependency of € and § on shallow cumulus radius is also pointed out
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by Dawe and Austin (2013). For this reason, we choose the final input variables

excluding these two: B, b, 4, 0., q}, and 80, /0z.

5.4.3 Performance of the machine learning model

In this subsection, the performance of the ML model for predicting the mixing
rates is tested. We compare our model with various parameterizations of
entrainment and detrainment rates proposed by previous studies. In addition,
the multiple linear regression model with same inputs as the ML model for
predicting dependent variables of log(e) and log(d) is examined (log is used
to ensure that € and § are positive). The list of tested parameterizations is
given in Table 5.2. The fitting and evaluation of the parameterizations are
done with separate subsets of the dataset, where the fitting is done with the
training set plus validation set, and the evaluation is done with the test set
(see Section 5.4.1 for how the dataset is partitioned). The fitting parameters in
the parameterizations are newly fitted to our dataset without using the default
values. The entrainment model of Lu et al. (2016) was suggested in two versions,

4 or € = aBP1W° where

with and without turbulent dissipation rate (e = aBbwee
¢ is the turbulent dissipation rate). Here, we use the version without turbulent
dissipation rate since the turbulent dissipation rate is hard to be calculated in
one-dimensional convection parameterization. The buoyancy sorting is original
version of Kain and Fritsch (1990), where € = epX? and § = ¢(1 — ¥.)? with
€0 = 0.02m~! which is a typical value for shallow convection. Except for the
ML model, other parameterizations are fitted only on data samples with ¢; > 0
and B > 0 since some parameterizations require a positive buoyancy condition.

We note that this analysis is not a fair comparison for the performance of

the parameterizations since each parameterization has its own method of
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Table 5.2 A list of tested entrainment and detrainment parameterizations. a,
b, and c¢ are fitting parameters. The linear regression model for the entrainment
or detrainment is Y = ag + a1 B + ast + asq; + a4éé + asq, + agd0,/0z, where
Y = {log(e),log(d)}, and a; (i =0,...,6) are fitting parameters.

Entrainment Model  Figure | Detrainment Model  Figure Reference
e=a/R Fig. 5.4a - - Turner (1963)
€e=a/w Fig. 5.4b - - Neggers et al. (2002)

€ = aB/w? Fig. 5.4c - - Gregory (2001)

¢ = aBb© Fig. 5.4d - - Lu et al. (2016)
€ =aB%d0,/02)¢  Fig. 5.4e § = awbxe Fig. 5.5a | Dawe and Austin (2013)
Buoyancy Sorting ~ Fig. 5.4f | Buoyancy Sorting  Fig. 5.5b | Kain and Fritsch (1990)
Linear Regression  Fig. 5.4g | Linear Regression  Fig. 5.5¢ This study
Machine Learning  Fig. 5.4h | Machine Learning  Fig. 5.5d This study
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computing entrainment /detrainment rate and defining cloud region. Although
many of these parameterizations are designed to predict bulk entrainment and
detrainment rates, this analysis tests the performance of predicting directly
measured entrainment and detrainment rates. The purpose of this analysis is
to examine how well the ML model can explain the dependency of the mixing
rates on cloud and environment properties.

Figure 5.4 shows the joint PDF of LES measured € versus predicted € by
various parameterizations. As discussed in the previous section, R is not a
good predictor for € (R? = 0.055; Figure 5.4a). A simple ™! relation shows
R? = 0.287, which is found to perform reasonably well as a single variable
parameterization (Figure 5.4b). The parameterization of Dawe and Austin
(2013) does not show good performance in our analysis (Figure 5.4e), implying
that the parameterization is only applicable for the core region. The buoyancy
sorting scheme shows almost no skill for predicting e (Figure 5.4f). The original
Kain and Fritsch (1990) scheme is found to have some deficiency, for example,
produces too small € in low relative humidity environment (Kain 2004). Rooy
et al. (2013) demonstrated that the simple function with height performs better
than the original Kain-Fritsch scheme when predicting € in the BOMEX case.
The best parameterization except the ML model is the parameterization of
Lu et al. (2016) (Figure 5.4d) which is slightly better than the multiple linear
regression model. The ML model shows R?> = 0.655 and outperforms the
second-best parameterization of Lu et al. (2016) nearly by double the variance
explained.

For the fractional detrainment rate ¢ (Figure 5.5), the ML model outper-
forms other parameterizations with R?> = 0.665. Here, the parameterization

of Dawe and Austin (2013) exhibits reasonable predictive performance (R? =
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0.423; Figure 5.5a), unlike the entrainment parameterization. This predictive
performance is largely due to the dependence of & on the vertical velocity,

! parameterization shows R? = 0.404 (not shown). The

where simple w™
buoyancy sorting scheme shows low prediction skill and produces too large
0 value (Figure 5.5b). Bretherton et al. (2004a) reported that the original
Kain-Fritsch scheme can produce excessive detrainment since all the negative
buoyant mixtures are detrained from the updraft. A more realistic approach is
not to detrain the negative buoyant mixture with a positive vertical velocity
that can travel a certain length scale (Bretherton et al. 2004a; Park 2014a).
It seems that the fractional detrainment rate can be explained well by simple
regression formula with a small number of variables compared to the fractional
entrainment rate.

In addition to € and 0, the skill for predicting w = dw/dt is tested (Fig-
ure 5.6). The most commonly used parameterization, (5.7), surprisingly exhibits
almost the same performance as the ML model. However, the parameterization
can produce expected performance only when the entrainment rate is accurately
predicted. One interesting fact we found is that the entrainment drag term
of the vertical velocity equation should utilize the fractional dilution rate ey,
rather than the fractional mass entertainment rate €. If € is used, the prediction
skill decreases as R? = 0.014 (not shown). The vertical momentum is affected
by the presence of cloud shell like other scalar variables, so the use of the
fractional dilution rate is more appropriate. The ML model predicts w with
lower prediction skill compared to € and §. This result may indicate that large
stochasticity acts on vertical acceleration due to the uncertainty caused by the
vertical pressure gradient, or the ML model does not work well for predicting

w.
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The superior performance of neural network is due to its ability to approx-
imate the arbitrary continuous function from multiple inputs (Cybenko 1989).
Figure 5.7 shows the relationship between € and six selected input variables
for the ML model. B, 1, ¢, and §, are negatively correlated with e, while
is positively correlated with e. 96,/0z does not show a noticeable relationship
with €, which displays the largest permutation importance value (Table 5.1).
This suggests that other variables obscure the true strength of the dependence
of € on 90,/0z. The relationship between input variables and J is a little
more complex than that between input variables and e (Figure 5.8). § shows
non-monotonic responses to §, éé, and ;. Here, a strong inverse relationship
between @ and ¢ is apparent, where W explains largest variabilities on § among
other variables. The ML model successfully reproduce the dependency of € and
0 on the six input variables throughout the sample space (red lines in Figure 5.7

and Figure 5.8). However, the ML model tends to slightly underestimates e.

5.5 Single-column model simulation results

The new mixing model is tested using the SCM simulations of the BOMEX and
RICO cases. We simulate different configurations of SCM listed in Table 5.3 in
order to figure out the source of cloud variabilities. ML-FullVar is the default
configuration with the machine learning based mixing model, where both
the stochastic mixing and stochastic initialization are enabled. ML-MixVar
is the same configuration as ML-FullVar, but the stochastic initialization is
disabled by setting the initial condition of updrafts as the mean values of
the surface PDF. ML-InitVar is the same configuration as ML-FullVar but

with the stochastic mixing disabled. The stochastic mixing can be disabled
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Table 5.3 A list of SCM simulation configurations. P14-NoVar is slightly
different from the original UNICON, where the fractional updraft area at the

surface A, is changed from 0.040 to 0.025, convective downdrafts by mixing

are not allowed, and the auto-conversion scheme is replaced by Kogan (2013).

Configuration Name Mixing Model Sﬁ?ﬁ?sgc InSi::(i);l}iljzj‘Eil(():n
ML-FullVar Machine Learninig On On
ML-MixVar Machine Learninig On Off
ML-InitVar Machine Learninig Off On
P14-InitVar Park (2014a) off On
P14-NoVar Park (2014a) Off Off

UNICON Park (2014a) Off Off
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by setting the mixing rates as its expected value, X;exp. In addition, we test

the mixing model of Park (2014a) with the stochastic initialization on and off.

Note that P14-NoVar is slightly different from the original UNICON, where
the fractional updraft area at the surface Ay is changed from 0.040 to 0.025,
convective downdrafts by mixing are not allowed, and the auto-conversion

scheme is replaced by Kogan (2013).

5.5.1 Mean vertical profiles

Figure 5.9 shows the simulated vertical profiles of various updraft properties for
the BOMEX case. Here, we compare ML-FullVar with the original UNICON to
examine the performance of the new mixing model with respect to the existing

scheme. UNICON exhibits cold and moist biases in the sub-cloud layer, and

warm and dry biases in the cloud layer below 1300 m (Figures 5.9a and 5.9e).

ML-FullVar reduces these biases, especially for g;. The root-mean-square error
(RMSE) of 0. and g; are reduced by 3% and 34% in ML-FullVar, respectively,
compared to UNICON. Based on the fact that the physical tendency of the
mean conservative scalar ¢ due to the multiple updrafts can be expressed
as (0¢/0t)cony = —0 [Z Mi(¢h — qb)] /0z (i denotes individual updrafts), the
reduction of the error c;n be contributed by more realistic simulation of updraft
mass flux and moist conservative scalars within updrafts. ML-Full Var simulates
a smooth mass flux profile similar to LES, while UNICON simulates mass flux
with a rapid slope change near the height of 1500 m (Figure 5.9h). The rapid
decrease of mass flux near the inversion height in UNICON occurs since the
bulk plume scheme lacks variation in convection top heights and terminates
at a certain height (see Section 4.4). ML-FullVar also simulates realistic 0,

and ¢ in the cloud layer below 1500 m, where simulated profiles are not much
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Figure 5.9 Vertical profiles of (a)(e) error of environmental mean moist
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conserved variables from updrafts with respect to the environmental mean
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domain are shown.
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deviated from LES cloud and core profiles (Figures 5.9b and 5.9f). In contrast,
UNICON shows a rapid increase of §; — q; (decrease of éc —6,) in the lower
cloud layer, which results in relative 6. flux divergence (¢ flux convergence)
in the lower cloud layer and the excessive dry biases (warm biases). UNICON
also suffers from rapid increases of w and ¢; in the lower cloud layer and shows
too large values throughout the cloud layer compared to LES. The reason for
the rapid increases will be discussed later. For the BOMEX case, the updraft
fractional area and the mass flux in ML-FullVar are likely to represent the
LES cloud rather than the LES core. However, they can be easily controlled by
the surface updraft fractional area A, which is apparently the most important
tuning parameter.

The simulated vertical profiles for the RICO case lead to similar discussions
as for the BOMEX case (Figure 5.10). For the RICO case, UNICON exhibits
excessive warm and dry biases in the cloud layer above 1700 m up to > 2K

and < —2gkg™!

, respectively. ML-FullVar greatly reduces the biases, where
59% of RMSE in 0. and 47% of RMSE in g are reduced. The large biases
in the upper cloud layer in the UNICON simulation are mainly due to the
fact that UNICON simulates too small updraft mass flux (Figure 5.10h). The
lack of mass flux convergence in the upper cloud layer leads to excessive warm
and dry biases. Here again, UNICON exhibits the rapid increases of w, §;, and
Gt — G (decrease of ée —0.) in the lower cloud layer, while ML-FullVar shows the
smoother and realistic profiles. Notably, the simulated profiles in ML-FullVar
are more likely to follow LES core profiles, although the ML model is trained
for the non-core region. However, simulated profiles of 6. — 0., g+ — q¢ above

the inversion height of ~2000m are largely deviated from the LES core or

cloud profiles. For LES, the constraints of ¢ > 0 and B > 0 lead to sampling
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of highly undiluted air parcels above the inversion height, characterized as a
large magnitude of anomalies. In contrast, negatively buoyant and unsaturated
updrafts are included in ML-FullVar, so the magnitude of anomalies is much

smaller.

5.5.2 Cloud variabilities

To see how cloud variabilities in the stochastic mixing model are evolved verti-
cally, we draw the normalized mass flux distribution of various variables (Fig-
ure 5.11 and Figure 5.12). The normalized mass flux is defined as MA¢/ > MA®
at each height, where A¢ is a bin of variable ¢, slightly modifying the method
of Romps (2016). Starting with the BOMEX case, Figure 5.11 demonstrates
that ML-FullVar and ML-MixVar well reproduce the cloud variance in LES
overall. The results of the two simulations are remarkably similar, which implies
that the stochastic mixing process is the main source of cloud variabilities.
ML-InitVar produces some variance but much smaller compared to LES. The
deterministic parameterizations of the entrainment process have proposed a
theory that cloud variabilities can be generated by the amplification of cloud-
base variabilities (e.g. Neggers et al. (2002)). However, as shown in this analysis,
cloud variabilities can be represented correctly only when the randomness in
the mixing process is considered.

The variances of two moist conserved variables (first and second rows of
Figure 5.11) remain small in the sub-cloud layer. After updrafts penetrated the
planetary boundary layer (PBL), the variances start to increase with respect to
height. Compared to LES, ML-FullVar and ML-MixVar tend to simulate less
diluted updrafts, resulting in means of the moist conserved variables biased

away from the environment profiles. The mean and variance of the vertical
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velocity w increase in the lower sub-cloud layer, and the mean w decreases in
the upper sub-cloud layer (third row). The mean and variance of @ increase
above the PBL and are distributed for a wide range of 0-3 ms™!, due to
the large stochasticity within vertical acceleration (Figure 5.6). A sensitivity
simulation with the standard vertical velocity equation ((5.7)) displays a much
smaller variance of w (not shown). The buoyancy of the updrafts is mostly
positive near the surface but becomes negative near the PBL top height (fourth
row), which is related to convective inhibition. After the inhibition layer, most
of the updraft mass flux become positively buoyant, while some are negatively
buoyant. Above 1500 m, almost every updraft becomes negatively buoyant.
ML-FullVar and ML-MixVar overestimate the variance of buoyancy in the
cloud layer compared to LES. Finally, the variance of liquid water content ¢;
increases within the cloud layer and ranges from 0 to 1.5 gkg™!'. ML-FullVar
and ML-MixVar produce larger ¢; than LES, but as shown in Figure 5.9d ,
they tend to represent the core properties rather than the non-core region.

The normalized mass flux distributions in the RICO case show similar
results (Figure 5.12). The RICO case shows wider spectra of updraft properties
than the BOMEX case, with vertical velocity up to 4ms~! and liquid water
content up to 2 gkg~!. ML-FullVar and ML-MixVar simulate these variabilities
quite well.

Figure 5.13 shows the Paluch diagrams (scatter plots of two moist conserved
variables) at 1000 m simulated by LES and the five SCM configurations in the
BOMEX case. The scatters located upper-left are the updrafts that are less
diluted and have properties of near surface, and the scatters located lower-right
are the updrafts that are highly diluted and have properties of the environment

at 1000m. The LES simulates updrafts with various thermodynamic states,
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Figure 5.13 The Paluch diagrams of LES and SCM simulations at 1000 m for
the BOMEX case. Each point corresponds to a single convective updraft colored

by vertical velocity. The solid line corresponds to the mean environmental
profile, the dashed line denotes the saturation, and the dotted line denotes the

neutral buoyancy. The circles on the mean environmental profile are labeled

with the corresponding heights in meters.
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where many convective updrafts are negatively buoyant and even unsaturated
(Figure 5.13a). However, these negatively buoyant updrafts account for a lower
fraction of the total mass flux compared to the positively buoyant updrafts
as seen from Figure 5.11, due to their low vertical velocity. The positively
buoyant updrafts have vertical velocity up to 2ms~!. ML-FullVar and ML-
MixVar produce the spectrum of updrafts similar to LES. They also simulate
the negatively buoyant and unsaturated updrafts, but with a much smaller
number of unsaturated updrafts. ML-InitVar simulates a narrower spectrum
of updrafts compared to LES and does not produce any unsaturated updrafts
at this level. P14-InitVar produces a narrow spectrum of less diluted updrafts,
with excessively high vertical velocities. While ML-InitVar and P14-InitVar use
different mixing models, they produce a similar amount of variabilities by the
stochastic initialization of updrafts. The configuration with zero stochasticity,
P14-NoVar, shows virtually no variabilities as expected. It appears that the
mixing model of Park (2014a) underestimates the dilution of updrafts in the
lower cloud layer, which results in the steep increases of vertical velocity and
liquid water content.

The Paluch diagrams of the RICO case at 1500 m show wider spectra of
updrafts compared to the BOMEX case (Figure 5.14). Here again, ML-FullVar
and ML-MixVar well reproduce the updraft spectrum of LES, but the number
of unsaturated updrafts is greatly reduced. Our definition of the convective
updrafts in LES allows negatively buoyant or unsaturated convection that is
decoupled from the mixing layer. Using the classification of Stull (1985), these
are passive clouds that are remnants of the old decaying clouds or are formed
due to gravity waves. It seems that our mixing model only simulates the active

and forced convection which penetrate the convective inhibition layer, even
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Figure 5.14 The Paluch diagrams of LES and SCM simulations at 1500 m for
the RICO case. Each point corresponds to a single convective updraft colored
by vertical velocity. The solid line corresponds to the mean environmental
profile, the dashed line denotes the saturation, and the dotted line denotes the
neutral buoyancy. The circles on the mean environmental profile are labeled
with the corresponding heights in meters.
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though we trained the ML model for all types of convection. While the impact
of passive clouds is small compared to active clouds, passive clouds can be
handled explicitly like the stochastic convection scheme of Sakradzija et al.
(2015). At least for the active and forced convection, the new mixing model
well represents the development of variabilities of various variables from the
surface. Not shown in this paper, ML-FullVar and ML-MixVar are capable
of realistically simulating the joint PDFs and correlations of other updraft
properties as well (e.g. W vs §).

Finally, as a measure of the stochasticity in the mixing process, we calculate
the correlation profiles between updraft properties at cloud base and any height
(Figure 5.15 and Figure 5.16). Here the cloud base is defined as the minimum
height at which the total cloud fraction has a local maximum. If the mixing
process is a purely deterministic function of cloud properties, then cloud
properties will be highly correlated with cloud-base properties. In contrast,
if the mixing process is a purely stochastic process, then the upper-level
cloud properties will lose correlation with cloud-base properties rapidly. The
correlation profiles of the BOMEX LES show exponential decreases of the
correlations in the cloud layer for 6, g;, and W (Figure 5.15). The correlations
of 0, and g:+ are smaller than 0.5 at 800 m and approach 0 above 1200 m. In
the sub-cloud layer, the correlations are uniform with the values around 0.7
and 0.3 for éc and §;, respectively. The correlation of w shows a relatively
slow decrease and saturates at the value around 0.3 in the cloud layer. In the
sub-cloud layer, w loses correlation exponentially as getting farther from the
cloud base and approaches correlation of 0 near the surface. The results of the

BOMEX LES are consistent with those of Dawe and Austin (2012).
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Figure 5.15 Correlation profiles between simulated updraft properties at
cloud-base height zp.se and at any height z for (a) 6, (b) G, and (c) @ in the
BOMEX case.

133 2 2] 8-t &

TU



(2)1 ﬁl(zbase))

Cor(0.(2),0c(2ase)) Cor(Gi(2), ¢t(zbase)) Cor(w
2500 E 2500 IE E 2500
2000 1 2000 A 2000 A
& 1500 A & 1500 A & 1500 A
-z 1000 -z 1000 1 -z 1000
< < <
500 500 ( 500
0 0 0
-1 0 1 -1 0 1 -1
Correlation Correlation Correlation
— LES —— ML-FullVar —— ML-MixVar ML-InitVar —— P14-InitVar —— P14-NoVar

Figure 5.16 Correlation profiles between simulated updraft properties at
cloud-base height zp.se and at any height z for (a) 6, (b) G, and (c) @ in the
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The correlation profiles of ML-FullVar and ML-MixVar are remarkably

similar to LES, with exponential decreases of correlation in the cloud layer.

ML-FullVar and ML-MixVar also produce realistic correlation profiles in the
sub-cloud layer. One notable deficiency of ML-FullVar and ML-MixVar is that
they simulate relatively slow decreases of correlations in the cloud layer for 0.
and §;. The correlation profiles of the other SCM configurations are deviated
largely from LES profiles and do not display a systematic trend. The largest
correlation values are from P14-NoVar, which shows correlations around 1 or
—1. The correlations can be changed from 1 to —1 or vice-versa when the
ordering of the variable is reversed while updrafts are ascending. The high
correlation values represent the lack of stochasticity in P14-NoVar. ML-InitVar
and P14-InitVar show smaller correlations compared to P14-NoVar, but the
profiles do not resemble the LES profiles.

The results of the RICO case are similar to those of the BOMEX case
(Figure 5.16). In the RICO case, correlations of 0. and g, decrease rapidly
below 1000 m and are saturated to the values of 0.1-0.2 in LES. ML-FullVar
and ML-MixVar show much slower decreases of the correlations compared to

LES.

5.6 Machine learning model dependency on dataset

In order for the proposed method to be used in full GCM simulations, the
machine learning model should simulate realistic convection properties under
diverse conditions. It is ideal to train the ML model with the convection
statistics from various large-scale conditions, ranging from shallow to deep

convection regimes. In this study, however, the ML model is trained on only
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two marine shallow convection cases. Since the training and the validation is
done with the same BOMEX and RICO cases, there is a possibility that the ML
model is overfitted to the BOMEX and RICO cases and may not be applicable
for other cases. To determine the impact of this issue, we train the ML model
on one of the BOMEX/RICO cases and see if the performance degrades when
tested on the other case. Here, we consider three datasets for the training and
testing: BOMEX+RICO, BOMEX, and RICO.

Table 5.4 summarizes the offline test performance of the ML model when
different combinations of the datasets are used for training and testing. In
general, the ML model works best when the same dataset is used for training
and testing. The ML model trained on the BOMEX+RICO dataset can predict
e and § of all three datasets reasonably well, with R? slightly lower than when
the same dataset is used for training and testing. The noticeable decreases of
R? are found when predicting the RICO or BOMEX+RICO dataset with the
ML model trained on the BOMEX dataset. This is because the RICO dataset
has samples from stronger updrafts compared to the BOMEX dataset. The
RICO dataset includes samples with B >2x 102ms™2, @ > 3ms !, and
4 > 1gkg™!, which rarely exist in the BOMEX dataset (Figure 5.17).

The SCM experiments with the ML models trained on the different datasets

are also tested. Here, ML-FullVar configurations with the ML model trained on

BOMEX+RICO, BOMEX, and RICO datasets are referred to as ML[BOMEX+RICO],

ML[BOMEX], and ML[RICO], respectively. RMSEs of 8, and g; from the SCM
experiments are summarized in Table 5.5. Among the tested configurations,
ML[BOMEX+RICO] has the smallest RMSEs for the BOMEX and RICO
cases. It is notable that ML[BOMEX+RICO] shows slightly better performance

compared to the case when the training and testing case is the same. In
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summary, the offline and SCM tests above suggest that the performance of
the ML model is guaranteed when the data range of testing is a subset of the
data range of training (data denote the inputs and outputs of the ML model).
Considering using the ML model for cases other than BOMEX and RICO, the
ML model can be used if updraft statistics for that case are within the ranges

of BOMEX and RICO.

5.7 Discussion

Our framework can be extended to deep convection, but there are several
aspects to be considered. First, specific humidity of cloud ice is needed to
be included as model input. The updraft radius is currently excluded from
the model input, but there is some evidence that the updraft radius plays an
important role in the development of deep convection (Khairoutdinov et al.
2009). In addition, the production of convective downdraft during the mixing
process should be considered.

In recent years, there have been several attempts to replace whole sub-
grid physics with machine learning based parameterization (Rasp et al. 2018;
Yuval and O’Gorman 2020). The method promises great performance, but
since machine learning works as a black box, underlying physics is inexplicable.
Also, the method is not well generalized in unseen climates when appropriate
physical constraints are not applied (Rasp et al. 2018; Beucler et al. 2021). This
study can be regarded as an attempt to applying machine learning only for the
process that physically based formulation is difficult, which is the mixing of
convection. The proposed method can be more resilient to unseen climates since

training space is much smaller compared to full ML physics parameterizations.
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Table 5.4 Table of R-squared (R?) between € (§ in parentheses) predicted
by the machine learning model and LES measured € (§) when different

combinations of the datasets are used for training and testing.

Testing

. BOMEX+RICO BOMEX RICO
Training
BOMEX+RICO 0.655 (0.665) 0.679 (0.637) | 0.637 (0.661)
BOMEX 0.583 (0.418) 0.699 (0.706) | 0.588 (0.442)
RICO 0.629 (0.648) 0.662 (0.568) | 0.655 (0.653)
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Figure 5.17 Histograms of (a) buoyancy, (b) vertical velocity, (c¢) liquid
condensate, (d) 6. anomaly, (e) ¢ anomaly, and (f) vertical gradient of
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Table 5.5 Root-mean-square errors (RMSEs) of 6, [K] and ¢ [gkg™!]
simulated by MLIBOMEX+RICO], MLIBOMEX], ML[RICO], and the original
UNICON for the BOMEX and RICO cases. RMSEs are calculated within the
LES vertical domain.

Metrics BOMEX RICO
Model 0. RMSE @ RMSE | 6. RMSE @ RMSE
ML[BOMEX+RICO] 0.1202 0.2005 0.3433 0.5178
ML[BOMEX] 0.1206 0.2283 0.3805 0.5702
ML[RICO] 0.1737 0.3855 0.3961 0.5398
UNICON 0.1241 0.3025 0.8302 0.9735
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In addition, mass and energy are conserved since adiabatic processes are still
calculated in analytical ways (e.g. phase change of water and radiative heating).
It is expected that the neural stochastic differential equation framework used

in this study can be applied to other stochastic physics parameterizations.
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6 Extending Stochastic UNICON to Deep Con-

vection and Single-Column Model Results

6.1 Introduction

A main issue in convection parameterization is to represent the impact of
ensembles of convective clouds within a model grid. A widely used simplification
to this problem is the bulk plume approach which considers a single entraining
plume. The bulk plume based mass flux schemes have been extensively used in
operational atmospheric models due to their computational efficiency (Bechtold
et al. 2008; Kain and Fritsch 1990; Tiedtke 1989). However, the bulk plume
based mass flux schemes have a limitation on expressing different types of
convective clouds since a single plume is used to represent the ensemble mean
of multiple convective clouds. Another type of scheme, such as the Arakawa-
Schubert scheme (Arakawa and Schubert 1974), considers multiple convective
updrafts with different cloud-top heights (Pan and Randall 1998; Zhang and
McFarlane 1995a). However, their quasi-equilibrium closures are known to be
unsuitable for simulating shallow convection (Yano and Plant 2020). For these
reasons, many modelers use separate shallow and deep convection schemes to
express the coexistence of shallow and deep convection.

Recently, there have been attempts to develop convection parameterizations

that are capable of representing a spectrum of convective clouds without using
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separate schemes for different cloud types (Baba 2019; Neggers 2015; Suselj
et al. 2019; Yang et al. 2021; Yoshimura et al. 2015). Global simulations with
these schemes have shown improvements in both the mean state and variability
of the simulated global atmospheric circulation, particularly in the intensity
and frequency of the simulated Madden-Julian oscillation (MJO). The spectral
representation of convection has been found to contribute to reproducing the
moisture supply from shallow convection to sustain organized convection (Baba
and Giorgetta 2020; Baba 2021). This supports the importance of shallow
convection in preconditioning the lower troposphere for developing the MJO,
as investigated in many studies (Cai et al. 2013; Janiga and Zhang 2016).
Furthermore, Lawrence and Rasch (2005) showed that spectral representation
of convection parameterization can enhance the efficiency of vertical transport
of tropospheric tracers.

While several spectral convective parameterizations have been successfully
implemented in general circulation models (GCMs), there is still a lack of
understanding of how variability between convective clouds is formed. In
addition, proper convective closure is required to simulate realistic transitions
between different cloud types. Traditional convective closures based on a quasi-
equilibrium assumption inevitably lose the memory of the cloud properties
between the model time steps. This lack of memory seems to be one reason
that conventional diagnostic convection schemes fail to simulate a realistic
diurnal cycle of precipitation. This motivates the parameterization of mesoscale
organized flow and its impact on convection. Mesoscale organized flow is also
important in that it enhances the variabilities of convective clouds. A large-
eddy simulation (LES) study of Kurowski et al. (2018) demonstrated that

mesoscale organized flow greatly increases cloud variabilities by increasing the
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standard deviation of near-surface thermodynamic variables and reducing the
entrainment rate of clouds. This implies that the enhanced cloud variabilities
in the deep convection regime are generated by multiple physical processes and
manifested as a joint distribution of multiple cloud properties.

In this study, we extend stochastic UNICON to deep convection by pa-
rameterizing the increased variabilities of convective updraft properties by
mesoscale organized flow. The multivariate distribution of thermodynamic
variables and updraft radius at the near-surface is parameterized as a func-
tion of the strength of mesoscale organized flow. Four free parameters are
introduced in the formulation of stochastic UNICON, and they are optimized
using single-column model (SCM) simulations at multiple observation sites.
It is best practice to optimize unknown model parameters using a number of
global model simulations. However, the optimization problems regarding global
simulations are complicated because a single evaluation of an objective function
is expensive and it is usually hard to calculate the gradient of the objective
function, so a number of evaluations are unavoidable (Neelin et al. 2010).
Therefore, this study proposes an optimization method using SCM simulations,
which are much cheaper to compute, of diverse cloud types, including stratus,
stratocumulus, shallow convection, and deep convection. This procedure will
provide provisional parameter values for global model simulations. Recently,
an increasing number of studies have utilized a single-column model to cali-
brate the parameters in their parameterizations (Couvreux et al. 2021; De La
Chevrotiere et al. 2014; Hourdin et al. 2021; Langhans et al. 2019; Pathak
et al. 2021). Hourdin et al. (2021) showed that the optimization of a 3D GCM
can be accelerated by reducing parameter space with SCM tuning procedure,

and Pathak et al. (2021) demonstrated that the performance of a host GCM
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is considerably improved with the model parameters calibrated using an SCM.
The performance of stochastic UNICON will be evaluated over the SCM cases,
focusing on how the stochastic closure changes the characteristics of simulated
convection. Particularly, MJO simulated in the Dynamics of the Madden-
Julian Oscillation (DYNAMO) case is analyzed in detail. In addition, the
cloud variabilities simulated by stochastic UNICON in a near-equilibrium are

evaluated with an idealized tropical convection case.

6.2 Stochastic Unified Convection Scheme for Deep

Convection

6.2.1 Thermodynamic Variables

UNICON parameterizes cold pools by solving prognostic equations for the
net fractional area (acp) and the mean conservative scalars of cold pools. The
prognostic treatment of cold pools generates convective memory between the
model time steps. The cold pools in UNICON are defined as a portion in
the planetary boundary layer (PBL) where buoyancy is less than a certain
threshold. The inflows and outflows on cold pools are the source and sink
of acp, and the fluxes at cold pool boundaries control the mean properties
of cold pools. The main inflow to cold pools is convective downdrafts driven
by the evaporation of precipitation (see Section 2d in Park (2014a) for a
detailed derivation of the prognostic equations). From the prognosed cold pool
properties, perturbations of thermodynamic scalars of a convective updraft
driven by the cold pools at the near-surface, A¢q, are calculated at each time
step (see Appendix D). The strength of mesoscale organized flow is represented

by the mesoscale organization parameter €2, which is defined as
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O=—"2  0<qo<1 (6.1)
1_Amax

where flmax is the maximum updraft fractional area and specified as 0.1.
Q plays a similar role to org parameter from Mapes and Neale (2011) in
that it represents the strength of mesoscale organization with a prognosed
variable. However, there is a difference in that UNICON also prognoses other
thermodynamic properties of mesoscale organized flow and their impact on
convective updrafts.

Section 4.2.1 describes a method of constructing a joint PDF of properties of
updrafts by non-organized turbulence at the near-surface from the surface-layer
similarity theory. The vertical velocity and thermodynamic scalars of convective
updrafts at the near-surface are randomly sampled from the multivariate
Gaussian distribution, where standard deviations and inter-variable correlations
are derived from the surface-layer similarity theory. The standard deviations
and correlations are defined in (4.1)-(4.11) (o; and r;;, respectively, where
i, =w,0c,q,u,v,§).

As mentioned in the introduction, mesoscale organized flow increases the
variances of near-surface thermodynamic variables and greatly enhances cloud
variabilities. The increased variances of near-surface thermodynamic variables
due to mesoscale organized flow are parameterized by exploiting the cold pool
computation in UNICON. We assume that the final joint PDF is multivariate
Gaussian where the variance of each thermodynamic variable is summation
of variances from non-organized turbulence and mesoscale organized flow.
In addition, the variance from mesoscale organized flow is assumed to be

proportional to (A¢q)?. The total standard deviation of thermodynamic scalar
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(7:;6 is parameterized as

O';;) = \/cla¢2 + c2(Agq)?, (6.2)

where ¢; and ¢y are tunable parameters. ¢; (0 < ¢; < 1) is introduced to
describe the effect of reduced variance when small eddies in the lower boundary
layer coalesce to form convective updrafts. The final thermodynamic properties

of convective updrafts at the near-surface are derived as
¢ = 0-:;)0‘({5 + 637 (63)

where « 3 is a random sample from a standard multivariate Gaussian with the
correlation matrix of 7;;, assuming that the correlation matrix is the same as

that derived from the similarity theory.

6.2.2 Updraft Radius

The scale break radius R}, sets an approximate upper limit for the possible
plume size in a given environment. Although the factors controlling the scale
break of convective clouds have not been well studied, it has been reported
that cold pools play an important role in increasing the horizontal size of
convective clouds. At the boundaries of cold pools, strong convergence due to
gust front promotes forced uplifts that are significantly larger than shallow
cumulus (Boéing et al. 2012). The biggest clouds are formed where multiple
cold pools collide (Feng et al. 2015). These updrafts with larger radii are less
affected by entrainment and eventually become deeper.

In that sense, we parameterize the scale break radius as a linear function

of the mesoscale organization parameter §2:

Ry, = Rpla=0 + (Rpla=1 — Rsla=0)<2, (6.4)
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where Rplo—o and Rp|lo—1 are Ry at = 0 and Q = 1, respectively. For
simplicity, we assume that correlations between updraft radius and other

updraft variables are zero at the near-surface.

6.2.3 Updraft Sampling Method and a Discussion on Updraft

Variabilities

In Section 4.2.4, several methods to sample convective updrafts from the joint
PDF at the near-surface are proposed. In the proposed methods, an ensemble
of updrafts is generated by dividing the joint PDF into a specified number of
bins and updrafts are launched with the average values of bins. However, a
large number of bins are needed to approximate the true ensemble from the
multivariate distribution. Here, “true ensemble” refers to the updraft ensemble
in which an infinite number of updrafts are randomly sampled from the joint
PDF.

In this study, we use a Monte-Carlo method to sample convective updrafts
from the joint PDF. A specified number of updrafts are sampled stochastically
from the joint PDF, where the updrafts have equal fractional area. Each
sampled updraft has a fractional area of 4 = A, /ns, where Ay is the total
updraft fractional area at the near-surface and ng is the number of updrafts
to be sampled (1215 = 0.04 and ng = 5 is used in this study). This method is
similar to the sampling strategy used in SusSelj et al. (2013). The sampling
method can simulate the ensemble mean of convective tendencies from the
true ensemble when averaged for a long time but inevitably generates large
stochastic fluctuation with small ng. The value of ng = 5 is chosen from the
SCM simulations of a tropical convection case with varying ns. The result of the

sensitivity test shows that using a larger number of updrafts (more continuous
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updraft distribution) reduces the simulated biases and that the simulation
results converge at about ng > 10. However, the computational time of the
convection scheme increases twofold or more at ng = 10. The value of ng = 5 is
chosen as a trade-off between the model performance and computational cost.

Physically speaking, cloud variabilities are formed by two stochastic pro-
cesses, stochastic initialization (at the near-surface or cloud-base height) and
stochastic mixing with the environment (Romps and Kuang 2010). The pa-
rameterization of Suselj et al. (2019) is one of the modern stochastic param-
eterizations built on this physical basis. The scheme uses the near-surface
distribution of updrafts and the Poisson distribution of the entrainment rate
by assuming that entrainment is a discrete random process. However, previous
LES studies have demonstrated that entrainment is highly dependent on
cloud and environment properties while it exhibits a considerable amount of
stochasticity (Dawe and Austin 2013). The variabilities of updrafts in stochastic
UNICON are formed by the evolution of updrafts which are initialized from
the near-surface distribution, where the entrainment and detrainment rates are
parameterized as complex functions of updraft properties. More specifically, the
mixing between an updraft and the environment is inversely proportional to
updraft radius R and a buoyancy sorting algorithm determines the entrainment
and detrainment rates from the mixed air. The mesoscale organized flow
increases the variabilities of updrafts and produces deeper convective clouds

by initializing larger updrafts which have reduced entrainment rates.

6.3 Validation of the Framework Using LES Datasets

In order to validate the assumptions used in the formulation of stochastic

UNICON, a series of radiative-convective equilibrium simulations with different
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radiative cooling rates and vertical shear strengths are conducted with the
University of California, Los Angeles large-eddy simulation (UCLA-LES) model
(Stevens et al. 1999, 2005). Following Cohen and Craig (2006), the radiative

forcing is provided as a cooling rate profile, where the cooling rate is constant up

to the height of 400 hPa and decreases linearly to 0 between 400 and 200 hPa.

A fixed sea surface temperature of 300K is imposed as a lower boundary
condition. For the sheared cases, the mean wind specified in Tompkins (2000)
is nudged in a time scale of 7 = 1 hr. Four LES configurations with a cooling
rate of —2 K day ! or —4 K day ! and with or without wind shear are simulated,
denoted as DEEP2K-S, DEEP4K-S, DEEP2K, and DEEP4K.

Two-moment mixed-phase microphysics (Seifert and Beheng 2006) is used,
and surface fluxes are calculated by a similarity theory, where aerodynamic
roughness length is obtained from Charnock’s relation. The domain size used is
204.8 x 204.8 x 26.4km?, with a horizontal resolution of 200 m and a stretched
grid system in the vertical (vertical grid size is 50 m below the height of 1200 m
and increases with a ratio of 0.6 % above). To achieve an equilibrium state faster,
long-term (3 weeks) simulations with quadrupled grid size are preceded, and
then three days of high-resolution simulations are initiated with the horizontally
averaged profiles at the last time step of the coarser resolution simulations. The
model outputs from time intervals of 2 hr during the last 20 hr (10 instantaneous
snapshots) are analyzed. An updraft core grid is defined as a grid point that
has positive buoyancy, nonzero cloud condensate, and positive vertical velocity,
and all consecutive core grids are regarded as the same core. The cold pool
air is defined where buoyancy is less then —0.005 ms~2 following Tompkins
(2001). The net fractional area of cold pools (acp) is measured as a fraction

of the volume occupied by cold pool air below the PBL height, and the mean
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perturbation of ¢ of cold pools (A¢gcp) is calculated by averaging the anomalies
(deviation from grid-mean value) of cold pool air. The PBL height is determined
as a height where vertical buoyancy flux is minimum. In addition to the deep
convection cases, the LES of the BOMEX case is included in this analysis,
where the setting of the simulation is explained in Section 6.4. The model
outputs from time intervals of 1 minute during the last 1 hr (60 instantaneous
snapshots) are analyzed for the BOMEX LES.

First, the parameterization of the distribution of thermodynamic variables
is evaluated on how well (6.2) explains the standard deviations of updraft
properties measured in the LES cases. It is hard to directly measure the
statistics of convective updrafts at the near-surface since there is no objective
method to define convective updrafts in the subcloud layer. Therefore, we
measure the standard deviations of updraft core properties at the cloud-base
height (zpase) as a proxy of updraft variabilities in the subcloud layer. This is
based on the LES experiment in Chapter 4. We showed that the variabilities
of updrafts do not change much in the subcloud layer, especially for 8. and g,
using a Lagrangian particle tracking method. The variance of updraft vertical
velocity can increase several times during ascent, but we presume that the
increase of the variance at the near-surface will increase the variance at the
cloud-base height. While evaluating o7 in (6.2), Agq is computed as a method
explained in Appendix D with the cold pool properties measured in the LES
cases. The tunable parameters are set to ¢; = 0.908 and co = 0.482 as optimized
in Section 6.5.

Figure 6.1 shows scatter plots of predicted 0;‘) versus measured o of updraft
cores at the cloud-base height for ¢ = 6., ¢;, and w. For . and w (Figures 6.1a

and 6.1c), five LES cases show linear relationships between the two quantities,

151 ] O+



4 , -1 N
¢ =06:[K] o=qilgkg™'] os o=w[ms']
0.5 (@) Linearfit: y = 1.87x +0.02 051 (®) '
DEEP2KS,  oDEEPAKS
_ 0.4+ _ 0.4+ £ s
' & o DEEP4K &
B 03] B 03] eBOMEX i B
o o o
3 - o DEEP2K 3
x 027 a 027 &
0.1 0.1
Linear fit: y = 0.81x + 0.15
0.0 T T 0.0 T T 0.0 T T
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6
Measured o, at Zpzse

Measured o at Zpase Measured o at Zpase

Figure 6.1 Scatter plots of predicted o7 from (6.2) versus measured o of

updraft cores at the cloud-base height (zpase) for (a) ¢ = 6., (b) ¢ = ¢, and (c)
¢ = w in the five LES cases. The gray cross underneath each red point indicates

oy, computed ignoring the effect of mesoscale organization (i.e., Apg = 0). In
(a) and (c), linear regression lines and formulas are displayed.
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justifying the parameterization. The updraft variabilities in the DEEP cases
are significantly larger than those of the BOMEX case, and the DEEP cases
with higher cooling rates show larger variabilities. Particularly, variabilities
of ¢ = 6. are largely increased by mesoscale organized flow, comparing a(’;
computed with and without the mesoscale organization effect. This is also

confirmed in the distribution of 6. at the near-surface, where the standard

deviations of 6. are much larger than those predicted by the similarity theory.

In contrast to 6. and w, the data points for ¢ = ¢ do not show a clear linear
relationship (Figure 6.1b). We suspect that this unexpected result is due to the
underestimation of the mesoscale organization effect for ¢;. Particularly, Ag cp
in DEEP2K and DEEP4K are measured values close to zero. The difference
between the mean ¢; of cold pools and the environment is small since ¢; at
cold pool center regions is lower than the environment and ¢; at cold pool
boundaries is higher than the environment (not shown). This is closely related
to “water vapor rings” in tropical oceanic cold pools (Langhans and Romps
2015). Over the ocean, latent heat flux is enhanced in cold pools due to the
high near-surface wind speed by density currents, and then the water vapor
is transported to the leading edges of cold pools. New convective clouds are
triggered by the lifting of relatively moist air at the cold pool boundaries (Feng
et al. 2015; Torri et al. 2015). This complex mechanism is not implemented
in the current formulation of UNICON, so the moistening of updrafts by the
mesoscale organization might be underestimated.

Next, the parameterization of the distribution of the updraft radius is
evaluated. Similar to thermodynamic variables, the radii of updraft cores

are measured at the cloud-base height. In Chapter 4, we demonstrated that
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Figure 6.2 (a) Number PDF's of normalized updraft core radius (Z = R/Ry)
measured at the cloud-base height in the five LES cases. The black line denotes
the parameterization of (4.14). The value of R}, for each case is computed as a
non-linear fit to the parameterization in log-log space. (b) Scatter plot of scale
break radius Ry versus mesoscale organization parameter {2 measured in the
five LES cases and a linear regression line.
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the distribution of the updraft core radius in the BOMEX case is well ex-
plained by the proposed parameterization of (4.14). Figure 6.2a shows that
the distributions of updraft core radius in the DEEP cases also well follow the
parameterization with different Rp. Furthermore, a strong linear relationship
between Ry and € is found (Figure 6.2b), justifying the parameterization of
(6.4). A similar discussion can be found in Neggers et al. (2019). They showed
that the maximum size of convective clouds is controlled by spatial organization

using the LES of a precipitating trade wind cumuli case.

6.4 Single-Column Model Experiment Setup

The single-column model (SCM) used in this study is the single-column version
of Community Atmospheric Model version 5 (CAM5). Original UNICON that
is identical to the one used by Park et al. (2019) and stochastic UNICON
with extension to deep convection are implemented in the model. A series of
single-column model simulations are performed for eleven different cases over
the ocean listed in Table 6.1 for the optimization of tunable parameters and
the evaluation of stochastic UNICON. The listed cases are selected to simulate
various cloud types over the ocean. While the development in this study targets
deep convection, the cases of shallow convection and stratiform clouds are also
included so that the optimization is not biased toward deep convection cases.
Land cases are not considered in this study because one of the parameters to be
optimized (Rp|q=1) is found to be highly dependent on whether the simulation
location is land or ocean. Therefore, we focus on the simulation of oceanic
convection, which has a greater impact on global circulation. The cases can
be categorized into two types: time-varying forcing experiments and idealized

experiments.
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Table 6.2 Settings of idealized SCM simulation cases. N, is the specified
cloud droplet concentration. RICO and CGILS use simple bulk flux schemes for
surface flux calculation. The radiation calculation of DYCOMSRFO01 (denoted
as *) uses the simplified radiation flux model described in Stevens et al. (2005).

Name Surface flux Radiation Geostrophic forcing Precipitation N, [em™?]
BOMEX Prescribed  Off On Off -

RICO Bulk Off On On 70
CGILSS12 Bulk On Off On 100
CGILSS11 Bulk On Off On 100
CGILSS6 Bulk On Off On 100
DYCOMSRFO01 Prescribed  On* On Off -
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The GATEIIIL, TOGAII, DYNAMO-AMIE, DYNAMO-North, and DAR-
WIN cases are time-varying forcing experiments that are simulated with time-
varying forcing data collected during intensified observation periods (IOP).
The simulated profiles and surface precipitation rates of these cases can be
directly compared with observations. The total tendencies of temperature T" and
moisture ¢ in SCM are calculated by adding large-scale advective tendencies

and tendencies from physical processes:

T (D)t (B
ot ot xyadv ot zadv ot phys 7 .
1~ (51) o (5. * (50)
==\ = + | = + | = . (6.6)
ot ot xyadv ot zadv ot phys
Here, the large-scale advective tendencies are given as
T T T
<8> = -V.VT, <a> T e, (6.7)
ot xyadv ot zadv ap Cp
361) <5q> 9q
< ot xyadv ot zadv ap

where V is the horizontal wind vector, w is the vertical pressure velocity, and
a = 1/pgir is the specific volume of air. The horizontal advective tendencies
(=V - VT, =V - Vq) are prescribed, while the vertical advective tendencies
are calculated from prescribed w and model simulated vertical gradients. To
compute the vertical advection from w, we use a downstream Eulerian difference
for temperature and a semi-Lagrangian method for water substances and the
other tracers. Sea surface temperature is prescribed so that the surface scheme
in CAMS5 calculates the surface fluxes. In addition, the observed profiles of
horizontal winds are prescribed. The time-varying forcing experiments are
conducted with 30 vertical levels and a model time step of At = 1200s. The

DARWIN case originally spans more than five months, from November 3, 2004
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to April 29, 2005. However, the forcing for this site is not continuous and
broken into 11 segments, so we choose the longest continuous segment.

The BOMEX, RICO, CGILSS12, CGILSS11, CGILSS6, and DYCOMSRF01
cases are idealized experiments that produce near-equilibrium states with
idealized (or time-averaged) forcings. These cases are designed to conduct LES
intercomparison experiments in controlled environments. For these cases, we
simulate the SCM with the same settings and forcings as the LES to compare
with the LES results. The settings of the cases are summarized in Table 6.2, and
detailed settings are available in their companion LES intercomparison studies
(BOMEX : Siebesma et al. (2003); RICO : vanZanten et al. (2011); CGILS :
Blossey et al. (2013), DYCOMSRFO1 : Stevens et al. (2005)). In BOMEX and
RICO, radiation schemes are disabled; instead, radiative cooling tendencies are
specified. The cloud droplet concentration is specified for RICO, but it does
not affect the SCM simulation because UNICON uses simple single moment
microphysics. The idealized experiments are conducted with 80 vertical levels
and a model time step of At = 300s. More vertical levels (80 levels) are used
compared to time-varying forcing experiments (30 levels) since turbulence and
clouds are concentrated in the lower troposphere.

For the idealized experiments, LES model outputs are considered observa-
tions. We use publicly available LES model outputs of LES intercomparison
studies for the DYCOMSRFO1 (12 models) and CGILS (6 models) cases. For
the BOMEX and RICO cases, we simulate those with UCLA-LES with the
settings of Siebesma et al. (2003) and vanZanten et al. (2011), respectively.
The only difference with these intercomparison studies is that we use smaller

grid sizes of 25 x 25 x 25m?3 and 40 x 40 x 40m? for the BOMEX and RICO

159 2] 21



cases, respectively (domain sizes are 6.4 x 6.4 x 3.0 km? and 12.8 x 12.8 x

4.0km?, respectively).

6.5 Optimization

6.5.1 Optimization Strategy

Undetermined parameters in stochastic UNICON are optimized using multiple
SCM cases to increase the accuracy of simulations under various large-scale
environments. Ten SCM cases, except the DARWIN case, are used for the
optimization, while the DARWIN case is used for an independent test. The
relatively long observation period of the DARWIN case (120 days) provides
sufficient time length for the independent test. The following four parameters
of stochastic UNICON are subject to optimization: Rp|o—0, Rp|0=1, c1, and
c2. We choose moist static energy (MSE = ¢,T' + gz + Lyq,, where g is the
gravitational acceleration and ¢, is the water vapor specific humidity) and
surface precipitation rate to measure model performance. The moist static
energy is chosen because it contains information about both temperature
and moisture and is a good diagnostic variable for convective transport. The

standard approach to dealing with optimization problems that involve multiple

cases or variables is multiobjective optimization (Deb 2014; Neelin et al. 2010).

In multiobjective optimization, objective functions of different variables are
lumped into a single weighted cost function. Typically, the weighted cost

function is defined as J = >  wy fi, where wy is the weight and f; is the
k

objective function such as the square error or root-mean-squared error (RMSE).

The selection of wy, is arbitrary because it depends on how a particular user

evaluates accuracy in certain cases or certain variables.
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Using the multiobjective approach, we define the cost function for our

optimization problem as

N,
1 case 1 . 1 %
J = N ;;1: [2-RMSE (MSEg) + 5 - RMSE"(PRECy)| , (6.9)
RMSE(¢1€ UNICONfsTO)
RMSE*(¢y) = ’ 7 010
( ) RMSE(¢]€:UNICON) ( )

where N.gse = 10 is the number of SCM cases, MSE; and PREC, are the
moist static energy and surface precipitation rate of each case, respectively,
and RMSE* is the relative RMSE where the RMSE of stochastic UNICON is
divided by the RMSE of original UNICON.

Before calculating the RMSE of moist static energy, simulated moist static
energy is interpolated into the vertical levels of observations (IOP observations
for the time-varying forcing cases and LES for the idealized cases). Precipitation
rates are 12-hour running averaged to remove high-frequency noise due to
the Monte-Carlo sampling method of stochastic UNICON. Finally, RMSEs
are calculated using all time steps and entire vertical levels during the case
period. We calculate the RMSEs of precipitation rates only for the time-varying
forcing cases. The idealized cases are boundary-layer cloud cases which produce
significantly lower precipitation rates than deep convection cases. Also, the
LES intercomparison results of RICO and CGILS (only CGILSS6 produces
non-negligible precipitation) show very different precipitation rates among
LES models (Blossey et al. 2013; vanZanten et al. 2011). For these reasons,
RMSE*(PRECy,) is set to 1 for the idealized SCM cases.

We use Bayesian optimization method to search a global minimum of cost
function J. Bayesian optimization is suitable when the objective function f(x)

(where z is a vector of parameters) is expensive to evaluate and the gradient of
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f(z) is unavailable, so an optimization based on gradient descent is not feasible.
The Bayesian optimization also tolerates stochastic noise in f(x) and quantifies
the uncertainty. The Bayesian optimization consists of a surrogate model and
an acquisition function. The surrogate model estimates the distribution of
the function f(x) based on the previously evaluated points ((x1, f(z1)), (22,
f(z2)), ..., (zn, f(xy,))) using Gaussian process regression (Rasmussen 2003).
The acquisition function suggests next evaluation point that minimizes the
function f(x) based on the results of the surrogate model. The process is
repeated for a fixed number of iterations, and evaluation points consequently
approach to global minimum of f(x).

The search space for the parameters is set as Rp|n—o=[50, 500], Rp|q—1=[1000,
5000], ¢;=[0.1, 1.0], and co=[0.1, 1.5]. The search space is determined sufficiently
broadly in consideration of physically possible range of each parameter. Before
optimization, we evaluate 200 initial points selected by Latin hypercube sam-
pling (Mckay et al. 1979) in the search space. Finally, the Bayesian optimization
is conducted with 800 iterations, using expected improvement (Jones et al.
1998) as the acquisition function. The optimized value x,y is defined where
the posterior mean of the Gaussian process is minimum because our cost
function J includes a substantial amount of stochasticity. The optimization is
done with a python Bayesian optimization library, GPyOpt (Gonzilez et al.

2016).

6.5.2 Optimization Results

The optimized values of the parameters z,, are Rplo=o = 108 m, Ry|o=1 =
2190m, ¢; = 0.908, and ¢y = 0.482 (Table 6.3). After about 400 iterations, the

result of the optimization is converged. The first row of Figure 6.3 shows all
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Table 6.3 Optimized parameters in stochastic UNICON

Parameter Search range Optimized value Description

Rylao—o 50-500 108 m Scale break radius at the near-surface at Q = 0 [(6.4)]
Ryla=1 1000-5000 2190 m Scale break radius at the near-surface at Q =1 [(6.4)]
¢ 0.1-1.0 0.908 Scaling factor for variance from non-organized turbulence [(6.2)]
c 0.1-1.5 0.482 Scaling factor for variance from mesoscale organized flow [(6.2)]
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Figure 6.3 (a-d) Scatter plots of the evaluation points during the Bayesian
optimization. (e-h) Scatter plots of the evaluation points of the single-parameter
sensitivity test, which varies a single parameter while fixing other parameters
as the optimized values. Vertical blue lines denote the optimized parameters
Zopt Where the posterior mean of the Gaussian process is minimum. Horizontal
blue lines denote the minimum value of the posterior mean at oy (J = 0.893).
Red dots denote the cost function evaluated at zp; (J = 0.885).
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evaluation points during the Bayesian optimization. Some of the evaluation
points have cost functions greater than 1, where stochastic UNICON performs
worse than original UNICON. Most evaluation points have cost functions
smaller than 0.95. The posterior mean of the Gaussian process at .y is
measured as 0.893, and the cost function evaluated at xop,; is 0.885.

We can roughly see parameter sensitivity from each of Figure 6.3a-d (i.e.,
smaller cost functions near the optimized value), but it is not clear since
the evaluation points in the 4-dimension parameter space are projected to
single parameter space. In order to visualize the parameter sensitivity, a single-
parameter sensitivity test is conducted. The test varies a single parameter
while fixing other parameters as the optimized values. For each parameter, 100
points equally spaced within the search space of the parameter are evaluated.
The sensitivity test shows that all four parameters have considerable impacts
on the performance of stochastic UNICON (second row of Figure 6.3). Roughly,
the Bayesian optimization seems to approach true optimum. However, in the
case of Rp|n—1, smallest cost functions are observed near 3000 m. This value is
larger than the optimized value (Figure 6.3f). The Bayesian optimization can
underperform when the noise level is high in objective functions (Letham et al.
2019). One possible solution is to perform multiple ensemble simulations for
each case to reduce variance in the cost function.

Table 6.4 summarizes the relative RMSEs of moist static energy and surface
precipitation rate simulated by stochastic UNICON with the optimized param-
eters. Optimized stochastic UNICON outperforms original UNICON in most
cases. The improvement is apparent for the thermodynamic profiles of tropical
convection cases, where RMSEs in moist static energy are reduced by 21-45 %.

The precipitation rates are also significantly improved in stochastic UNICON
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Table 6.4 Relative RMSEs (RMSE(UNICON-STO)/RMSE(UNICON)) of

moist static energy and surface precipitation rate simulated by (first row)

new stochastic UNICON and (second row) the previous version of stochastic
UNICON in Section 4 with the optimized parameters for the SCM cases.

TOGAIL _GATEII _DYNAMO-AMIE_DYNAMO-North DARWIN | BOMEX_RICO _CGILSS6 CGILSSIL_CGILSSI2_DYCOMSRFOL
N MSE | 0780 0788 0547 0.588 0.759 0718 0.971 0957 0,981 0,959 T.000
UNICON-STO (new) prpg | g.869 1.003 0.789 0.748 0.699 - - - - - -
MSE | 1008 0951 0.0 0773 0593 0718 0.976 0957 0,081 0,959 T.000
UNICON-STO (0Md)  prpc | gsgo 0957 0746 0725 0.757 - - - - -
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except in the GATEIII case. For the idealized cases, the significant reduction
of RMSE is only notable in the BOMEX case. The performances of original
UNICON and stochastic UNICON are almost identical for the DYCOMSRF01
case. The detailed single-column simulation results of optimized stochastic
UNICON are described in Section 6.6.

In addition to new stochastic UNICON, RMSEs of the previous version of
stochastic UNICON in Section 4 (old stochastic UNICON hereinafter) are evalu-
ated (second row of Table 6.4). Old stochastic UNICON is developed for shallow
convection, so there is a conceptual inconsistency in simulating deep convection
that the impact of non-organized turbulence is treated stochastically, but the
impact of the mesoscale organization is treated deterministically (i.e., the same
mesoscale perturbations are added to convective updrafts). We applied the scale
break radius parameterization of (6.4) for old stochastic UNICON; otherwise,
deep convection would not be generated. For consistency, the optimized values
in Table 6.3 are also used for old stochastic UNICON, except co which is not
available in old stochastic UNICON. Old stochastic UNICON is exactly the
same as new stochastic UNICON when the mesoscale organization is absent,
so the simulation results of the two schemes are identical for the idealized
cases other than RICO. The RMSEs of the RICO case show only a slight
difference between the two schemes due to weak mesoscale organization. For
the tropical convection cases, old stochastic UNICON shows consistently higher
RMSEs of moist static energy compared to new stochastic UNICON, showing
performances in between original UNICON and new stochastic UNICON.
Interestingly, RMSEs of precipitation rates of old stochastic UNICON are
similar to those of new stochastic UNICON. We are not sure about the reason

for this, but we anticipate that old and new stochastic UNICONs have a
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similar mechanism on vertical moisture transport by shallow convection, which
is important for precipitation. The result suggests that both the stochastic
impacts of non-organized turbulence and mesoscale organization contribute to

the performance improvement in stochastic UNICON.

6.6 Single-Column Model Simulation Results

6.6.1 Time-varying Forcing Experiments

Table 6.5 summarizes the RMSEs of temperature, specific humidity, moist static
energy, and precipitation simulated by UNICON and stochastic UNICON for
the time-varying forcing SCM cases. Stochastic UNICON displays consistently
lower RMSEs than UNICON for all variables except precipitation in the
GATE case. The reduction of RMSEs of moist static energy by stochastic
UNICON is both contributed by the decrease in RMSEs of temperature and
specific humidity. Vertical profiles of the simulated biases in these SCM cases
(Figures 6.4-6.6) demonstrate that stochastic UNICON reduces the persistent
biases in UNICON, which is characterized by negative temperature bias in the
upper troposphere and dry bias in the lower troposphere. The DARWIN case,

which is not included in the optimization, also shows considerable performance

improvement by stochastic UNICON with optimized parameters (Figure 6.6).

The result suggests that the parameters are less likely to be overfitted to the
cases subject to optimization. To get more insights into the characteristics of
the simulation of stochastic UNICON, we will discuss in detail the simulation
results of the TOGAII and DYNAMO-AMIE cases.

The TOGAII case’s IOP took place in the western Pacific warm pool

region, and the SCM simulation results of 21 days starting from 18 December
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Table 6.5 RMSEs (in the form of RMSE(UNICON-STO)/RMSE(UNICON))
of temperature, specific humidity, moist static energy, and surface precipitation
rate simulated by stochastic UNICON and original UNICON for the time-
varying forcing SCM cases. The rate of change in RMSE is denoted in

parenthesis.
TOGAIL GATEIII DYNAMO-AMIE DYNAMO-North  DARWIN
T (K 2409 / 2770 1.645 / 1.794  2.646 / 3.492 3203 / 4.408  3.191 / 3.659
(K) (=13.0%) (-8-3%) (=24.2%) (=27.3%) (-12.8%)
. 0.574 / 0.785 0.455 / 0.767  0.623 / 1.316 0.928 / 1.726  1.101 / 1.818
q(gke™) (—26.9%) (—40.6 %) (—=52.7%) (—46.2%) (—39.4 %)
, 3.094 / 3.969 2.131 /2706  3.099 / 5.666 4541 /7727 4.076 / 5.366
MSE (kJ) (—22.0%) (—21.2%) (—45.3%) (—41.2%) (—24.1%)
_1. 3.870 /4452 A768 /4754  3.378 / 4.281 3.000 /4131 4.344 / 6.216
PREC (mmday ™) (141 %) (0.3%) (—21.1%) (—25.2%) (—30.1%)
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(a) Precipitation rate (12-hr running avg.)
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Figure 6.4 (a)

Date

Time series of surface precipitation rates from IOP

observation and UNICON and UNICON-STO simulations in the TOGAIIL
case. The time series are smoothed with 12-hour running averages. (b)-(g)
Errors of temperature, specific humidity, and moist static energy simulated
by UNICON and UNICON-STO, with respect to observation, in the TOGAIIL
case. Root mean squared errors are given at the upper right of each plot.
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1992 are shown in Figure 6.4. Two groups of rainfall events are observed
during 18-29 December and 1-7 January (Figure 6.4a). Most of the rainfall
during these periods is from mesoscale convective system (MCS) scale squall
lines (Rickenbach and Rutledge 1998). The first group of rainfall events is
associated with a prominent MJO event, which started in early December and
decayed during the end of December (Lin and Johnson 1996). Both UNICON
and stochastic UNICON skillfully predict approximate variations of observed
precipitation rates. However, UNICON overestimated the intensities of rainfall
peaks on 19 December, 26 December, and 1 January, which increases the RMSE
of UNICON. The negative temperature biases above 500 hPa level in UNICON

are reduced in stochastic UNICON. However, stochastic UNICON shows a

stronger negative temperature bias centered at 300 hPa level on 2 January.

The negative temperature bias is due to the lack of heat source during the

very end of December. This period is a decaying period of the MJO when the

fraction of stratiform precipitation from anvil clouds is high (Johnson et al.

2016). Johnson et al. (2016) showed that the apparent heat source (@) in
the upper troposphere is highest when the fraction of stratiform precipitation
is high, using radar data during TOGA. The intense heating effect of anvil
stratiform precipitation is due to its large cover and association with the
freezing of hydrometeors (0 °C level is about 650 hPa level). UNICON produces
strong convection on 1 January, which reduces the negative temperature bias in
the upper troposphere, but it seems unrealistic, as seen from the overestimated
rain peak on 1 January. These results suggest that UNICON and stochastic
UNICON do not realistically simulate anvil clouds and their impacts with
the current formulation. The negative humidity bias of original UNICON is

reduced in stochastic UNICON, but the relatively weak positive humidity bias
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is produced in stochastic UNICON during December. The negative moist static
energy bias is reduced in stochastic UNICON, with positive biases in the lower
troposphere and negative biases in the upper troposphere.

The DYNAMO-AMIE case is part of the Dynamics of the Madden-Julian
Oscillation (DYNAMO) field campaign and the ARM Madden-Julian Oscil-
lation Investigation Experiment (AMIE) field campaign, where the forcing
data were collected from Gan island on Addu Atoll for 90 days beginning
on 1 October 2011 (Figure 6.5). This case shows the lifecycles of the MJO
and the associated developing and decaying of convective systems over the
Indian Ocean. During DYNAMO-AMIE, three large-scale convective events
(LCESs) are observed, which are referred to as LCE1, LCE2, and LCE3 following
Powell and Houze Jr. (2013). LCE1 and LCE2 are associated with robust MJO
events, and multiple large MCSs were observed by the radar system on Addu
Atoll during these periods (Powell and Houze Jr. 2013). LCE3 is associated
with a less prominent MJO event, and an isolated MCS and several squall
lines were observed during the period. The MJO phase calculated by the
method of Wheeler and Hendon (2004) provides a broad-scale view of the
phase of convection activity over the tropical Indo-Pacific (Figure 6.5a). At
the DYNAMO-AMIE location, phases 8-3 correspond to active convection
MJO phases and phases 4-7 are inactive MJO phases. The precipitation
enhancements during LCE1 and LCE2 are consistent with active MJO phases.
However, the LCE3 period corresponds to phases 4 and 5 which are inactive
MJO phases. The detailed analysis of the simulations depending on MJO
phases will be discussed in Section 6.6.2.

Stochastic UNICON shows the RMSE of simulated precipitation that is

21 % less than UNICON. UNICON produces a number of rain peaks with erro-
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Figure 6.5 (a) Time series of surface precipitation rates from IOP
observation and UNICON and UNICON-STO simulations in the DYNAMO-
AMIE case. The time series are smoothed with 12-hour running averages.
Wheeler and Hendon (2004) MJO phases are denoted along the top axis.
Durations of three large-scale convective events (LCEs) are denoted with black
vertical lines. (b)-(g) Errors of temperature, specific humidity, and moist static
energy simulated by UNICON and UNICON-STO, with respect to observation,
in the DYNAMO-AMIE case. Root mean squared errors are given at the upper

right of each plot.
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neously estimated intensity, especially during the decaying stage of MJO events
(Figure 6.5a). The overestimated rain peaks are produced from late November
to early December (the last part of LCE2). UNICON displays continuous
strong negative temperature biases in the upper troposphere, and the bias is
strongest during this period (Figure 6.5b). Due to the bias, UNICON produces
unrealistically strong convection to stabilize the atmosphere, as in the TOGAIIL
case. UNICON also shows negative humidity and moist static energy biases.
Stochastic UNICON significantly reduces the temperature, humidity, and moist
static energy biases. Still, stochastic UNICON displays a negative upper-level
temperature bias, especially during the MJO decaying periods, implying that
the diabatic heating from anvil clouds and stratiform precipitation system is
underestimated.

To better understand the simulation results, time-averaged vertical profiles
of convective mass fluxes and tendencies due to convection and planetary
boundary layer (PBL) schemes are drawn (Figure 6.7). The plotted tendencies
include tendencies from turbulent mixing and convection microphysics but do
not include tendencies from stratiform microphysics and radiation. Among the
five cases, stochastic UNICON produces stronger updraft mass fluxes below
500 hPa level and slightly weaker mass fluxes at upper levels, compared to
UNICON. This is because stochastic UNICON launches a spectrum of multiple
updrafts, so less buoyant updrafts are detrained into the environment at lower
levels. The downdraft mass flux in stochastic UNICON is also larger at lower
levels since downdrafts are generated from negatively buoyant detrained air.

Stochastic UNICON shows higher heating tendencies by convection com-
pared to UNICON, considering that the tendencies due to the PBL scheme

are limited in the boundary layer (second row of Figure 6.7). This enhanced
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Figure 6.7 Vertical profiles of time-averaged (a)-(d) convective updraft
mass flux (M, solid lines) and downdraft mass flux (M, dashed lines), (e)-
(h) temperature tendency by convection and PBL schemes, and (i)-(1) specific
humidity tendency by convection and PBL schemes simulated by UNICON
and stochastic UNICON in the time-varying forcing SCM cases.
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Figure 6.8 Vertical profiles of time-averaged (a) temperature and (b) specific
humidity tendencies by convective updrafts (Up), convective downdrafts
(Down), evaporation of convective precipitation within the environment (Evp),
total convective processes (Conv), and the PBL scheme (PBL) simulated by
UNICON and stochastic UNICON in the DYNAMO-AMIE case. Solid lines
denote stochastic UNICON, and dashed lines denote UNICON.
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convective heating contributes to reducing the negative temperature biases
presented by UNICON. In the specific humidity tendencies, stochastic UNICON
displays higher drying tendencies by convection in the mid-troposphere. This
seems to be contrary to the result that stochastic UNICON reduces dry
biases of UNICON. In fact, the higher drying tendency in the mid-troposphere
contributes to reducing the dry bias because it increases the vertical gradient
of specific humidity, so the specific humidity tendency due to vertical advection
(—wdq/0p) is increased. This will be discussed in detail in Section 6.6.2.
Figure 6.8 shows temperature and specific humidity tendencies separated
by detailed convective processes in the DYNAMO-AMIE case. The convective
updrafts generate heating tendency (drying tendency) mostly by the produc-
tion of convective precipitation, and convective downdrafts generate cooling
tendency (moistening tendency) mostly by evaporation of convective precip-
itation. The increased heating and drying tendencies of stochastic UNICON
are contributed both by convective updrafts and downdrafts, where convective
updrafts contribute below 500 hPa level and convective downdrafts contribute

above 500 hPa level.

6.6.2 Simulated MJO in the DYNAMO-AMIE Case

In this subsection, the characteristics of simulated MJO in the DYNAMO-
AMIE case are analyzed in detail. Figure 6.9 shows smoothed anomalies
of temperature (1”), specific humidity (¢’), and moist static energy (MSE’)
in the DYNAMO-AMIE case. In observation, slight positive anomalies in
temperature in the upper troposphere are concurrent with positive moisture
anomalies for each LCE when convection activities are high (Figures 6.9a and

6.9d). It is observed that the heights of positive moisture anomalies increase
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as time progresses during each LCE. At the early stages of LCEs, strong
moistening begins between 850 and 700 hPa after dry anomalies. The positive
moisture anomalies are vertically extended as convection activities increase.
Stochastic UNICON successfully captures the positive temperature and mois-
ture anomalies during the active convection periods and the progressively
increasing heights of positive moisture anomalies. However, stochastic UNICON
overestimates the magnitude of temperature anomalies at the upper levels
(Figure 6.9¢). Original UNICON does not correctly capture the oscillation of
temperature and moisture anomalies, and the simulated positive anomalies
during LCE2 are indistinct. In addition, too strong positive temperature
anomalies are generated at the beginning of LCE1 and LCE3. The intense
heating tendency at the end of LCE2 indicates that unrealistically strong
convection is simulated, which produces overestimated rain peaks during this
period (Figure 6.5a). The results here suggest that stochastic UNICON can
improve the MJO simulation by representing a more realistic interaction
between large-scale forcings and convection.

Figure 6.10 shows vertical profiles of relative humidity, updraft mass flux,
and normalized probability of convection top composited by the active MJO
phases (phases 8-3) and inactive MJO phases (phases 4-7). The observed
relative humidity is significantly higher during the active MJO phases than
during the inactive MJO phases throughout the troposphere (Figure 6.10a).
The environment with higher relative humidity promotes deeper convection by
reducing the dilution of convective updrafts by mixing. The simulated relative
humidity profiles also display dependency on MJO phases. However, UNICON
and stochastic UNICON simulate lower relative humidity below the 450 hPa

level and higher relative humidity above compared to observation. Notably, the
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Figure 6.9 Smoothed anomalies of (a)-(c) temperature ("), (d)-(f) specific
humidity (¢'), and (g)-(i) moist static energy (MSE') from observation,
UNICON, and UNICON-STO in the DYNAMO-AMIE case. All anomalies
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180 o *”ﬁ £ Eﬂ



Pressure [hPa]

(a) Relative humidity

(b) Updraft mass flux (M)

(c) Normalized probability of convection top

=

200 T
400 1 N
600 b
800 b
1000 —— - . . . RS . . . .
40 60 80 100 0.000 0.005 0.010 0.015 0.020 0.025 0.0 0.1 0.2 0.3 0.4
[%] kgm2s7] [No unit]

OBS, Phases 8-3
OBS, Phases 4-7

—— UNICON, Phases 8-3
UNICON, Phases 4-7

—— UNICON-STO, Phases 8-3
UNICON-STO, Phases 4-7

Figure 6.10 Vertical profiles of time-averaged (a) relative humidity, (b)
updraft mass flux, (c) normalized probability of convection top during MJO
phases 8-3 and phases 4-7 in the DYNAMO-AMIE case, simulated by UNICON
and UNICON-STO. For relative humidity, profiles from observation are
also shown. The normalized probability of convection top is calculated by
accumulating the fractional area of saturated updraft top in each 100 hPa bin
and then normalizing by the total sum of the bins.
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relative humidity close to 100 % at heights above 300 hPa indicates the excessive
amount of high-level clouds in the SCM simulations. Stochastic UNICON re-
duces the relative humidity bias of UNICON below 600 hPa level. The simulated
updraft mass flux above 850 hPa level during the active MJO phases is much
higher than that during the inactive MJO phases (Figure 6.10b). It is notable
that the updraft mass fluxes at the near-surface do not change much along
with MJO phases, implying that the variation of convection activity associated
with the MJO is mainly modulated by the moistening above 850 hPa level.
During the active MJO phases, convective updrafts with higher top heights
are more frequently generated, consistent with the radar observation of Powell
and Houze Jr. (2013). Stochastic UNICON produces more frequent shallower
convection and stronger mass fluxes in the lower troposphere compared to
UNICON (Figures 6.10b and 6.10c).

In order to understand the characteristics of cloud population generated
by stochastic UNICON, the distributions of mesoscale organization parameter
(Q) and updraft radius (R) are drawn (Figure 6.11). During the active MJO
phases, the simulated mesoscale organization parameters are increased by 14 %
and 7% on average for UNICON and stochastic UNICON, respectively. The
increased organization during the active MJO phases is expected to be due to
the increased evaporation of convective precipitation during the active MJO
phases. Stochastic UNICON simulates generally higher mesoscale organization
than UNICON due to the increased downdraft mass flux (Figures 6.7a and
6.7d). The (mass-flux weighted) mean updraft radius at 1000 hPa level is also
increased during the active MJO phases since the near-surface updraft radius

is an increasing function of the mesoscale organization parameter. Stochastic
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Figure 6.11 (a)(d) Normalized density of mesoscale organization parameter
2, and histogram of updraft radius showing mass flux per bin (with a bin size
of 100m) at 1000 hPa level ((b), (e)) and 600 hPa level ((c), (f)) simulated by
UNICON and stochastic UNICON during MJO phases 4-7 (green) and phases
8-3 (magenta). The mean values of the distributions are denoted at the upper
right corner of each plot.
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UNICON shows an updraft radius distribution weighted on small radii which
is significantly different from UNICON.

The difference between the updrafts simulated in UNICON and stochastic
UNICON is evident in the radius distribution at 600 hPa level (Figures 6.11c
and 6.11f). UNICON simulates updrafts with larger radii during the active
phases, while stochastic UNICON produces similar distributions and mean
values of radius between the active and inactive phases. In UNICON, a sin-
gle bulk plume increases its radius during ascent without being completely
detrained, so updrafts with larger radii at the near-surface have larger radii
even in upper levels. In contrast, in stochastic UNICON, convective updrafts
with small radii are detrained in relatively lower levels, so radius distributions
at 600 hPa level become similar. This result reveals the ability of stochastic
UNICON to express the coexistence of shallow and deep convection.

Figure 6.12 shows vertical profiles of tendencies by convection and PBL
schemes, all physical processes, and vertical advection during the active and
inactive MJO phases. The heating and drying tendencies by convection are
greatly enhanced during the active MJO phases. As seen in Figure 6.7, stochas-
tic UNICON simulates higher heating and drying tendencies by convection
compared to UNICON, both during the active and inactive phases. The sim-
ulated tendencies by all physical processes are comparable with tendencies
from convection and PBL schemes, with the little amount of cooling (up to
—2K day~!) and moistening (up to 0.5 gkg ! day ') being added by stratiform
microphysics and radiation schemes. The temperature and specific humidity
tendencies by physical processes can be calculated by subtracting advective

tendencies from total tendencies and have the same definitions as the apparent
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Figure 6.12 Vertical profiles of time-averaged tendencies of temperature and
specific humidity by (a)(d) convection and PBL schemes, (b)(e) all physical
processes, and (c)(f) vertical advection simulated by UNICON and stochastic
UNICON during MJO phases 8-3 and phases 4-7 in the DYNAMO-AMIE case.
For (b)(c)(e)(f), profiles from observation are also shown.
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heat source (Q1) and apparent moisture sink (Q2), respectively. The simu-
lated (OT/0t)phys of UNICON and stochastic UNICON closely match with
observation during the active phases but are overestimated during the inactive
phases. The simulated (0q/0t)pnys of stochastic UNICON exhibits stronger
drying than that of UNICON during the active MJO phases, which is more
closely matches with observation. The tendencies by vertical advection are
almost inverse of physical tendencies, compensating each other. The increased
drying by convection is compensated by the increased moistening by vertical
advection in stochastic UNICON, and the net effect of the two is slightly

increased moistening, which reduces the dry biases of UNICON.

6.6.3 Idealized Experiments

In this subsection, results from the idealized SCM experiments are presented
and discussed. Figure 6.13 shows simulated vertical profiles of various updraft
properties averaged over t = 4 ~ 6h in the BOMEX case. UNICON exhibits
cold and moist biases in the sub-cloud layer and in the layer 1300-1700 m and
warm and dry biases in the cloud layer below 1300 m. Stochastic UNICON
reduces these biases, where RMSEs are reduced by 31% and 39 % in 6, and
G; profiles, respectively. UNICON shows mass flux with a rapid slope change
near the inversion height since the bulk plume in UNICON terminates at a
certain height (Figure 6.13h). Stochastic UNICON simulates a much smoother
mass flux profile similar to LES. Stochastic UNICON also simulates éc and ¢
profiles that closely match with the LES cloud and core profiles, while UNICON
produces colder and more humid updrafts in the lower cloud layer. UNICON

and stochastic UNICON both suffer from rapid increases of @ and §; in the
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Figure 6.13 Vertical profiles of (a)(e) error of 6. and g with respect to LES,
(b)(f) difference of the moist conserved variables from updrafts with respect to
the environmental mean moist conserved variables, (c) updraft vertical velocity,
(d) updraft liquid water, (g) updraft fractional area, and (h) updraft fractional
mass flux averaged over t = 4 ~ 6h simulated by UNICON and stochastic
UNICON in the BOMEX case.
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lower cloud layer, but stochastic UNICON reduces the discrepancy between
the profiles from LES and SCM simulations in the cloud layer.

In the RICO case, UNICON displays excessive warm and dry biases near
the inversion height of approximately 2000m up to > 2K and < —2gkg™?,
respectively (Figure 6.14). Stochastic UNICON slightly reduces the biases in
the cloud layer below the inversion, but the biases near the inversion height
are not alleviated. The biases indicate that the inversion heights are underes-
timated in UNICON and stochastic UNICON. The rapid decrease of éc -6,
(rapid increase of §; — ;) near the inversion height in UNICON and stochastic
UNICON appears at about 400 m lower heights compared to LES, indicating
that convective updrafts terminate at lower levels in the SCM simulations.
Here again, UNICON and stochastic UNICON exhibit the rapid increases of w
and ¢; in the lower cloud layer. & and M are underestimated in UNICON, and
stochastic UNICON simulates @ and M profiles that better match with LES.
However, a and M are rapidly decreased at lower levels than the LES profiles
in both UNICON and stochastic UNICON. As demonstrated in Chapter 5, the
biases presented in the RICO case can be significantly reduced by implementing
a stochastic mixing model with a more realistic formula for entrainment and
detrainment rates.

Figure 6.15 shows vertical profiles of environmental moist conserved ther-
modynamic variables and cloud fraction simulated by UNICON and stochastic
UNICON in the CGILSS6, CGILSS11, and CGILSS12 cases. UNICON and
stochastic UNICON simulate inversion heights only about half that of LES
ensembles and have more humid boundary layers. The PBL scheme of CAMb5

(Park and Bretherton 2009) explicitly includes cloud-top entrainment, but it
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Figure 6.14 Vertical profiles of (a)(e) error of 6. and g with respect to LES,
(b)(f) difference of the moist conserved variables from updrafts with respect to
the environmental mean moist conserved variables, (c) updraft vertical velocity,
(d) updraft liquid water, (g) updraft fractional area, and (h) updraft fractional
mass flux averaged over t = 20 ~ 24 h simulated by UNICON and stochastic
UNICON in the RICO case.
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Figure 6.15 Vertical profiles of (a)(d)(g) environmental condensate potential
temperature, (b)(e)(h) environmental total water specific humidity, and (c)(f)(i)
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seems that the cloud-top entrainment is considerably underestimated. Par-
ticularly, in the CGILSS6 case, a cumulus cloud layer in the LES models
is developed when stratocumulus is formed at the inversion height during
days 1-5 and becomes a shallow convection regime (Blossey et al. 2013). In
contrast, UNICON and stochastic UNICON failed to develop a cloud layer
from decoupled stratocumulus to shallow convection in CGILSS6. Many issues
might be associated with simulating realistic feedbacks between radiation,
cloud, and boundary-layer turbulence. The intercomparison study of CGILS
showed that SCMs have large uncertainties in simulating stratocumulus topped
boundary layer (Zhang et al. 2013). One possible explanation is that UNICON
and stochastic UNICON do not consider downdrafts originated from the in-
version. UNICON and stochastic UNICON launch convective updrafts only
from the near-surface. However, in the stratocumulus-topped boundary layer,
the entrainment of warm and dry tropospheric air, which favors evaporative
cooling, contributes to local changes in buoyancy and generates downdrafts
at an inversion height. The mass flux of downdrafts is comparable to that of
updrafts and has a nonnegligible impact on the heat and moisture fluxes within
the boundary layer (Davini et al. 2017). The simulated environmental profiles
from UNICON and stochastic UNICON are similar in the CGILS cases, while
the RMSEs of UNICON are slightly reduced by stochastic UNICON (Table 6.4).
The DYCOMSRFO01 case is integrated only for 4 hours, so the environmental
thermodynamic profiles simulated from UNICON and stochastic UNICON are

almost identical, and not much deviated from the initial profiles (not shown).
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6.6.4 Cloud Variabilities in a Near-Equilibrium Environment

In the time-varying forcing cases, it is difficult to isolate the cloud variabilities
that are simulated in stochastic UNICON. In order to get the statistics of cloud
variabilities in a near-equilibrium environment of a deep convection regime, an
additional SCM simulation of the idealized GATE case is conducted, which
uses time-averaged large-scale forcing from the GATEIII observed period. This
case is documented in Fu et al. (1995), Khairoutdinov et al. (2009), and Xu
et al. (1992). We use the same setting as the time-varying forcing cases for
running the case, but the radiation tendency specified in Xu et al. (1992) is
used instead of the radiation scheme for this case. In addition, the temperature
and moisture profiles are relaxed toward prescribed profiles with a relaxation
time scale of 7 = 6hr to avoid drifting of the thermodynamic states. The
simulation is run for 90 days, and the statistics of updrafts are collected for
the period, excluding the first ten days.

Figure 6.16 shows the number PDF's of various updraft properties at the
near-surface and the cloud-base height of 580m. The cloud-base height is
defined as the lowest height where the mean updraft liquid water specific
humidity (§;) is greater than 0.01 gkg™'. UNICON parameterizes the impact of
mesoscale organized flow by adding deterministic perturbation A¢q to updraft
properties at the near-surface [(4.13)]. Therefore, the distributions of @ and 6,
at the near-surface simulated by UNICON show small variances, with the mean
values of approximately 0.5ms~! and 298 K, respectively (Figures 6.16a and
6.16b). The variances are not zero because the cold pool properties simulated
by UNICON fluctuates over time and the environment is also not in a perfect

equilibrium. The distribution of ¢; at the near-surface in UNICON shows two
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Figure 6.16 Number PDF of various updraft properties at the near-surface
(first row) and at the cloud-base height of 580m (second row) simulated by
UNICON and stochastic UNICON in the idealized GATE case. The vertical
lines in (b), (c), and (g) denote grid-mean values (6. and @) at each height.
Note that the y-axis of (e) and (j) is in log scale.
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peaks and has a relatively large variance because the simulated ¢; perturbation
by mesoscale organized flow, Ag; o, oscillates with two peaks in the UNICON
simulation. The oscillation seems to be a numerical issue, but we are unsure
about the exact reason. The mean perturbations by mesoscale organizazed flow
simulated by UNICON are Awg = 0.47ms™ !, Ab.o = 134K, and Ag o =
—0.057 gkg ™! in the idealized GATE case. The distributions of updraft radius
and mass flux at the near-surface also show small variances, with the mean
values of 1000 m and 0.05kg m~2?s~!, respectively.

Compared to UNICON, stochastic UNICON shows larger variances of
thermodynamic variables (except §;), updraft radius, and mass flux at the
near-surface. This is because stochastic UNICON parameterizes the impact of
mesoscale organized flow in a stochastic manner by increasing the variances
of the joint PDF of updraft properties. The simulated standard deviations
of updraft thermodynamic properties are o = 0.47ms™!, oy, = 0.80K, and

o, =0.19¢g kg~!. The distribution of @ of stochastic UNICON is half Gaussian

because the constraint of w > 0 is applied to the multivariate Gaussian.

The distributions of éc and §; of stochastic UNICON are close to Gaussian.

As the updraft radius is parameterized as a power-law distribution with a
scale break in stochastic UNICON, the distribution of R is weighted on a
smaller radius (Figure 6.16d). Finally, stochastic UNICON reproduces the
theoretical exponential distribution of M hypothesized by Craig and Cohen
(2006). Stochastic UNICON also exhibits larger variabilities of updrafts at the
cloud-base height (second row of Figure 6.16). The shapes of the distributions
of & and 6, simulated by stochastic UNICON are deformed at the cloud-base
height since the updrafts with relatively smaller w and 0. are detrained in the

sub-cloud layer.
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Figure 6.17 Composite vertical profiles of updraft properties according to
the updraft radius at the cloud-base height (shown at the bottom in a unit
of meters) obtained from the stochastic UNICON simulation of the idealized
GATE case. ¢ and § are the fractional entrainment and detrainment rates,
respectively, and N is the number density of updrafts.
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The increased variabilities of updrafts in the sub-cloud layer also contribute
to increasing variabilities in the cloud layer. Particularly, the updraft radius
plays a critical role in generating the cloud layer variabilities. Figure 6.17 shows
composited vertical profiles of updraft properties according to the updraft
radius at the cloud-base height, simulated by stochastic UNICON. The wider
updrafts tend to have larger w, éc, and §;. The degree of mixing between an
updraft and the environment is inversely proportional to the updraft radius in
stochastic UNICON. Therefore, the fractional entrainment and detrainment
rates are lower for larger updrafts (Figures 6.17e and 6.17f). Larger updrafts
experience less mixing and have greater buoyancy and vertical velocity. The
difference from the shallow convection case is revealed in the relationship
between R and 6. In the simulation of the BOMEX case, larger R is associated
with smaller 6. due to decreased entrainment (see Chapter 4). However, in the
case of deep convection, larger updrafts tend to have larger 0. since the diabatic
heating from the production of precipitation increases in larger updrafts. The
updrafts that are small and have low buoyancy have large detrainment rates, so
they lose mass flux at lower levels and are consequently detrained at the lower
levels (Figures 6.17g and 6.17h). The updrafts with radii smaller than 300 m
at the cloud-base height can be considered shallow convection, and they have
a considerable contribution to total mass flux in the lower troposphere. The
improvements in the simulations of the tropical convection cases by stochastic

UNICON appear to be related to the representation of shallow convection.

6.7 Discussion

Our study suggests several important aspects to further improve stochas-

tic UNICON, including a more realistic representation of the life cycle of a
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mesoscale convective system and the downdrafts originated from cloud-topped
inversion. These issues are also crucial in other convection parameterizations
and are subjects that need further study. Finally, although only SCM cases over
the ocean were considered in this study, optimization of stochastic UNICON
under more general conditions can be expected by adding SCM cases over the

continent.
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7 Global Climate Simulation with Stochastic
UNICON

7.1 Introduction

The Madden-Julian oscillation (MJO; Madden and Julian 1971) is the dominant
mode of intraseasonal variability in the tropical atmosphere. It is characterized
by eastward-propagating envelopes of convective cloud clusters that are coupled
with large-scale atmospheric circulation. The MJO interacts with a variety of
weather and climate phenomena, including monsoonal system (Lavender and
Matthews 2009; Lorenz and Hartmann 2006; Singh et al. 1992; Taraphdar
et al. 2018), El Nino-Southern Oscillation (ENSO) (Hendon et al. 2007; Lee
et al. 2019; Moon et al. 2011), and tropical cyclone activity (Camargo et al.
2009; Hall et al. 2001; Liebmann et al. 1994; Maloney and Hartmann 2000a,b).
The ability of general circulation models (GCMs) to accurately simulate the
intensity, spatial structure, and dispersion relation of the MJO is critical for
predicting tropical variabilities and their future projections.

Despite the importance, state-of-art GCMs still have shortcomings in re-
alistically simulating the MJO. Most models participated in Coupled Model
Intercomparison Project phase 5 (CMIP5) simulate underestimated MJO am-
plitude and low coherency between large-scale wind field and convection system

(Ahn et al. 2017). With considerable improvement in physics parameterizations,
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the general performance on the simulation of the MJO is improved in the
CMIP6 models compared to the CMIP5 models (Orbe et al. 2020; Ahn et al.
2020; Chen et al. 2022). However, the CMIP6 models still underestimate MJO
amplitude and struggle to simulate realistic eastward propagation patterns
(Le et al. 2021; Chen et al. 2022). The realistic representation of the MJO in
GCMs is a challenging task in that it involves physical processes with large
uncertainties. Particularly, parameterizing subgrid convection is thought to
account for a large portion of the uncertainties because of the stochastic nature
of atmospheric convection. One important issue related to MJO simulation
is the parameterization of organized convection. The MJO is associated with
squall lines and mesoscale convective systems (MCS), which have substantially
different characteristics from unorganized convection. The mesoscale convective
organization significantly modulates the transport of heat, moisture, and mo-
mentum by moist convection (Houze Jr 2004). Chen et al. (2021) implemented
an organized convection parameterization in a GCM and reported that the
organized convection parameterization improves the representation of the MJO
and reduces precipitation biases over the tropics.

Another critical issue in MJO simulation is a spectral and/or stochastic
representation of convective clouds in convection parameterizations. In a typical
grid size of a GCM, a spectrum of convective clouds is formed in a stochastic
way. It is important to represent the coexistence of shallow and deep convection
since shallow convection supplies moisture to the lower troposphere to sustain
organized convection in developing MJO (Cai et al. 2013; Janiga and Zhang
2016). In addition, cloud systems in developing MJO undergo a transition from
shallow to deep convection, so there is an emerging demand for developing

convection parameterization that represents different types of convection in
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a continuous and unified way. Several spectral convection schemes have been
proposed to represent different cloud types (Baba 2019; Neggers 2015; Susel;
et al. 2019; Yang et al. 2021; Yoshimura et al. 2015). Global simulations with
these schemes have shown improvements in the intensity and frequency of
the simulated MJO without degrading mean climatology (Baba and Giorgetta
2020; Baba 2021). The results from the aforementioned GCM experiments
suggest that spectral convection parameterization and organized convection
parameterization can alleviate a problem known as “MJO-mean state trade-off”
in GCMs, a problem where modifications in the convection parameterizations
that improve MJO simulation tend to degrade the mean state (Chen and
Mapes 2018; Hannah and Maloney 2011).

In this study, we evaluate the global simulation of stochastic UNICON,
focusing on the intraseasonal variability represented by the MJO. Two cli-
mate simulations of SAMO-UNICON atmospheric GCM with UNICON and
stochastic UNICON are compared and evaluated against observations. First, we
demonstrate the model diagnostics on the simulations of global climatologies
and discuss spatial distributions of the model biases. Next, various model
diagnostics for the MJO are presented to demonstrate the impacts of the
spectral parameterization. To understand the physical processes of simulated
MJO, we conduct the precipitation budget analysis from Adames (2017). We
deeply discuss the simulated relationship between moisture and precipitation
and how the spectral representation of convection helps improve the moisture-

precipitation relationship and MJO simulation.
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7.2 Methods

7.2.1 Stochastic UNICON

In this study, we will use a Monte-Carlo method to sample convective updrafts
from the joint PDF, as in Chapter 6. Each sampled updraft has a fractional area
of 4 = Ay /ns, where Ay is the total updraft fractional area at the near-surface
and ng is the number of updrafts to be sampled (ns = 5 is used in this study).
Table 7.1 lists the parameters and their values used in stochastic UNICON.
c1, ¢2, Rplo—0, and Rp|q=1 are the tunable parameters newly introduced in
stochastic UNICON. The values of ¢, ¢g, and Rp|a—o are set by rounding the
values that were calibrated using a single-column model (SCM) in Chapter 6.
The value of Ry|n—1 over the ocean is set as 3500 m, which is larger than the
SCM-calibrated value of 2190 m. In addition, the values of parameters related
to the autoconversion process in cumulus (ca¢ and e crit) over land are modified,

to match the mean precipitation over land.

7.2.2 Model experiments

The atmospheric GCM (AGCM) model used in this study is SAM0O-UNICON
(Park et al. 2019). SAMO-UNICON uses the same dynamic core and physics
parameterizations as CAMS5, except for shallow and deep convection and macro-
physics schemes. The finite volume dynamic core (Lin and Rood 1996), the
double-moment stratiform microphysics scheme of Morrison and Gettelman
(2008), the Rapid Radiative Transfer Method for GCMs (RRTMG) radiation
scheme (Iacono et al. 2008; Pincus et al. 2003), the planetary boundary layer
(PBL) scheme of Bretherton and Park (2009), and the aerosol conversion scheme

of Liu et al. (2012) are the identical components with CAM5. The macrophysics
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Table 7.1 Parameters and their values used in the global simulation with
stochastic UNICON. The parameters that are newly added or have different
values from UNICON are listed.

Parameter Value Description
c 0.9 Scaling factor for the variance from non-organized turbulence
&) 0.5 Scaling factor for the variance from mesoscale organized flow
Rylo=0 110 m Scale break radius at the near-surface at Q =0
Ryla=1 3500m (ocean), 9000 m (land) Scale break radius at the near-surface at Q =1
Autoconversion efficiency over land;
. —3..-1 (], ) ]
Cat 4.0 x 107 m™ (land) Originally 2.0 x 103 m~! in UNICON
N _ _ Critical in-cumulus liquid water content for the formation of precipitation over land;
4 1 ;
de.crit 5.0 x 107" kgkg™" (land) Originally 6.0 x 10~ kgkg ™' in UNICON
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of Park et al. (2014) in CAMS5 is modified to include detrained cumulus (Park
et al. 2017). Finally, UNICON replaces shallow and deep convection schemes
in CAMS5, which parameterizes all subgrid dry and moist convection.

We ran two global climate simulations, one with UNICON and the other
with stochastic UNICON, with a horizontal resolution of 0.9° x 1.25°, 30 vertical
levels, a model physics time step of At = 1800s, and a dynamics time step of
At = 225s. Hereinafter, the two simulations are referred to as UNICON and
UNICON-STO, respectively. The simulations are conducted for 36 years, from
January 1979 to December 2014, according to the Atmospheric Model Intercom-
parison Project (AMIP) configuration described in the CMIP6 experiments
specification (Eyring et al. 2016). The CMIP6 forcing data are prescribed
as described in Park et al. (2019). Following the AMIP configuration, the
observed sea surface temperature and sea ice fraction are prescribed, and a
land model (Community Land Model version 4; CLM4) is coupled to simulate
land surface states. The simulations are initialized from the atmosphere and
land states on January 1, 1979 simulated in the historical coupled simulation

of SAMO-UNICON.

7.2.3 MJO diagnostics and MJO precipitation budget

We use the CLIVAR MJO Working Group diagnostics package (Waliser et
al. 2009) to obtain diverse MJO diagnostics. Daily anomalies are obtained
by removing the mean and first three harmonics of the annual cycle over
the 1979-2014 period. Then, the anomalies are bandpass-filtered using a 101-
point Lanczos filter to extract the intraseasonal anomalies within 20-100 day
time scales. The MJO phase composites are computed using the real-time

multivariate MJO index (RMM index; Wheeler and Hendon 2004), defined as
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the first two principal components of intraseasonal daily anomalies of outgoing
longwave radiation (OLR), and 850 and 200 hPa zonal winds averaged over
15°S-15°N.

To understand the characteristics of MJO propagation in the global sim-
ulations, a precipitation budget analysis of Adames (2017) is conducted. The
precipitation budget is a variant of the moisture budget where the inverse of
the convective moisture adjustment time scale is weighted in each term to
account for the moisture—precipitation relationship. The vertically integrated

moisture budget equation can be written as follows:

dg) aq\" [ 9\
5 = \U5,) vﬁy +E +C, (7.1)

’ dq ' /
P

where ¢ is the specific humidity, © and v are the zonal and meridional wind

speeds, respectively, and w is the vertical pressure velocity; P and E are the
precipitation and evaporation, respectively. The angle brackets indicate the
mass-weighted vertical integral from the surface to 100 hPa, and the prime
symbol denotes the intraseasonal (20-100 days band-filtered) anomalies. The
term C denotes the convectively driven column process, which is the sum of
the vertical advection of moisture and the precipitation.

The relationship between moisture and precipitation over the tropical ocean
is hypothesized as a nonlinear relationship (Bretherton et al. 2004b), and it

can be approximated in the following form:
P (Rh) = Pg exXp (G,Rh> s (7.3)

where Ry, = (q)/{gs) is the column relative humidity (CRH), g, is the saturation

specific humidity, and Py and a are constants. The values of Py and a are deter-

204 1_=-' '-\.I.':_ T



mined from observational data and the two simulations (see Section 7.3.3). By
linearizing (7.3), the anomalous precipitation can be linked with the anomalous
moisture:

E— c— T =
Te CLP

where 7. is the convective moisture adjustment time scale and the overbar
denotes a 100-day low-pass filtered field. 7, is analogous to the adjustment time
scale in the simplified Betts-Miller convective adjustment scheme (Betts and
Miller 1986; Frierson 2007), and it determines the strength of the conversion
of moisture anomaly to precipitation. Finally, the budget equation for the

precipitation anomaly can be written as
opP’ 1/ og\" 1/ og\' E

=——(u—) ——(v=— — 4+ — 7.5
ot Tc<u8x> 7‘C<vay> +77+77 (7.5)

7.2.4 Observational data

For the evaluation of the model mean climates, the following datasets are used:
the Clouds and the Earth’s Radiant Energy System Energy Balanced and Filled
(CERES-EBAF; Loeb et al. 2009) for shortwave and longwave cloud radiative
forcing; the European Centre for Medium-Range Weather Forecasts Interim
Reanalysis (ERAI; Simmons et al. 2007) for temperature, relative humidity,
sea level pressure, and zonal wind; the European Remote Sensing Satellite
Scatterometer (ERS; Bentamy et al. 1999) for ocean surface wind stress; the
Willmott-Matsuura (Willmott; Willmott and Matsuura 1995) data for land
surface air temperature; the Global Precipitation Climatology Project (GPCP)
monthly product version 2.1 (Adler et al. 2003) for global precipitation rate.
These datasets are interpolated onto the native model grid to obtain mean

climate diagnostics.
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For the MJO diagnostics and precipitation budget analysis, the following
datasets are used. We use the National Oceanic and Atmospheric Adminis-
tration (NOAA) daily interpolated OLR product (Liebmann and Smith 1996)
and daily averaged precipitation rate from the Tropical Rainfall Measuring
Mission 3B42 version 7 (TRMM 3B42v7; Huffman et al. 2007) product. Various
atmospheric state variables are obtained from the fifth generation of the
European Centre for Medium-Range Weather Forecasts (ECMWF') reanalysis
(ERAS5) product (Hersbach et al. 2020). The hourly ERA5 data are averaged
daily. The atmospheric field variables that are used in the precipitation budget
analysis are obtained at 27 pressure levels between 1000 and 100 hPa. OLR and
ERAS5 data are obtained for the period 1979-2014, and precipitation data are
obtained for the period 1998-2014. All observational data and model outputs
for the MJO diagnostics and budget analysis are interpolated onto a 2.5° x 2.5°

horizontal grid using areal conservative remapping.

7.3 Results

7.3.1 Mean State

Figure 7.1 is a Taylor diagram (Taylor 2001) summarizing the model perfor-
mance in reproducing the observed global mean climate. The mean RMSEs
of the two simulations are similar; however, UNICON-STO exhibits an 18 %
smaller mean bias compared to UNICON. More than 10 % of biases are reduced
from UNICON to UNICON-STO for shortwave cloud forcing (SWCF), land
rainfall, Pacific surface stress, and relative humidity. While UNICON and
UNICON-STO both overestimate standardized deviations of the majority of

the climate variables, UNICON-STO reduces standardized deviation of SWCF,
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Figure 7.1 A space-time Taylor diagram from the UNICON (black) and
UNICON-STO (green) simulations. Using the monthly climatology for all the
available grid points, the correlations with the observation and the standardized
deviations normalized by observed standard deviation are computed for ten
climate variables indicated on the lower-left portion of the figure. The denoted
RMSE (bias) is the average of the RMSE (bias) of a simulated individual
variable divided by the average RMSE (bias) of UNICON.
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ocean and land rainfall, Pacific surface stress, and relative humidity. The
correlations with observations are quite similar in UNICON and UNICON-
STO and show different trends between variables; for instance, the correlation
of land rainfall is reduced (0.883 — 0.844) and relative humidity is increased
(0.917 — 0.931) from UNICON to UNICON-STO. The result shows that
general performances on simulating spatio-temporal patterns are pretty much
the same in UNICON and UNICON-STO, but stochastic UNICON slightly
improves the model performance in terms of mean bias and variance.

The model performance with stochastic UNICON can be improved with
more careful calibration of the model parameters. In Chapter 6, the tunable
parameters in stochastic UNICON are calibrated using various single-column
model cases over the ocean. Then, the parameters over land are determined from
the multiple global simulations with manually adjusted parameters. However,
inferred from the reduced correlation of land rainfall in UNICON-STO, there is
a possibility that the land parameters are not calibrated properly. In addition,
extending the bulk plume to the spectral/stochastic plume model might require
adjusting mixing and rain production processes since the characteristics of the
bulk plume and individual plumes are different.

Figure 7.2 shows the global climatology of surface precipitation rate from
the GPCP observation and the model biases. Both simulations produce higher
mean precipitation than the observation, exhibiting distinct positive precip-
itation biases over the intertropical convergence zone (ITCZ) and South Pa-
cific convergence zone (SPCZ). UNICON-STO reduces the mean bias of pre-
cipitation in UNICON by 0.04 mm day !, while the RMSE is increased by
0.02mm day ~!. The precipitation biases are weakened over the western Indian

Ocean, ITCZ, and western equatorial Atlantic in UNICON-STO. However,
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Figure 7.2 Annual surface precipitation rate from (a) the GPCP observation
and the biases compared to the observations from (b) UNICON and (c)
UNICON-STO. The global mean of the observation or the mean bias of
the simulation is shown at the top right of each plot, and the RMSE of the
simulation is shown at the top left of each plot.
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Figure 7.3 Annual shortwave and longwave cloud forcings from (a)(d) the
CERES-EBAF observation, and the biases compared to the observation from
(b)(e) UNICON and (c)(f) UNICON-STO. The global mean of the observation
or the mean bias of the simulation is shown at the top right of each plot, and
the RMSE of the simulation is shown at the top left of each plot.
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the magnitudes of positive bias over the northwestern Pacific and negative
bias over the Maritime Continent are intensified. The precipitation biases over
the Maritime Continent and northwestern Pacific appear to be negatively
correlated, as indicated in other GCM simulations (e.g., Schiemann et al.
2014). Schiemann et al. (2014) demonstrated that the decrease in precipitation
over the Maritime Continent is associated with the weakening of the Walker
circulation and the decreased moisture convergence, which lead to an increase
in precipitation over the northwestern Pacific. Since the Maritime Continent
exerts significant impacts on the modulation of the MJO and other large-scale
tropical variabilities (Neale and Slingo 2003; Yang et al. 2019), a detailed
investigation of the bias is required.

Figure 7.3 shows the global climatologies of shortwave and longwave cloud
forcings from the CERES-EBAF observation and the model biases. The neg-
ative mean SWCF bias in UNICON is alleviated in UNICON-STO from
—1.64Wm~2 to 0.40 Wm~2. The increase of SWCF in UNICON-STO is
closely related to decreased low cloud fraction, where the global mean low cloud
fraction is decreased from 41.73 % to 40.14 %. The pattern of SWCF biases is
similar between UNICON and UNICON-STO, while RMSE is slightly decreased
from 8.73 Wm~2 in UNICON to 8.63 W m~—2 in UNICON-STO. For LWCF,
the mean LWCF biases are similar in the two simulations. UNICON-STO
alleviates the positive LWCF biases over tropical land presented in UNICON,
including the biases over the Amazon, Central Africa, and Maritime Continent.
However, positive LWCEF bias over the eastern equatorial Pacific is increased in
UNICON-STO. The RMSE of LWCF is also slightly reduced from 6.54 W m~2

in UNICON to 6.40 Wm ™2 in UNICON-STO.
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Figure 7.4 Annual zonal-mean vertical cross sections of updraft mass flux
from (a) UNICON and (b) UNICON-STO; relative humidity from (c) the ERAI
observation and the biases compared to the observation from (d) UNICON
and (e) UNICON-STO.
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Figure 7.5 Annual zonal-mean vertical cross sections of the (a)(b) tempera-
ture tendencies from the convection and PBL schemes, (c¢)(d) specific humidity
tendencies from the convection and PBL schemes, and (e)(f) temperature

tendencies from the radiation scheme, obtained from UNICON and UNICON-
STO.
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The first row of Figure 7.4 shows the annual zonal-mean updraft mass flux of
UNICON and UNICON-STO. The two simulations show substantially different
updraft mass flux profiles, where UNICON-STO presents a much stronger mass
flux below the height of 800 hPa, and the height of mass flux maximum is
lowered. This indicates more frequent shallow convection due to the spectral
representation of stochastic UNICON, as demonstrated in Section 6.6. The
second row of Figure 7.4 shows the annual zonal-mean relative humidity of
the ERAI observation and the model biases. Both simulations exhibit strong
positive relative humidity biases in the extratropics and relatively smaller
negative biases in the tropics. UNICON-STO slightly reduces the positive
biases in mid-high latitudes and negative biases in levels above 600 hPa over
the tropics. The increase of relative humidity in the upper troposphere over
the tropics is due to the anomalous cooling and moistening by convective
processes in UNICON-STO relative to UNICON (Figure 7.5b and 7.5d). The
relative humidity decrease in mid-high latitudes is associated with complex
feedback between radiation and clouds. UNICON-STO produces anomalous
heating below 900 hPa and anomalous cooling in 800-900 hPa levels by con-
vective processes relative to UNICON. The anomalous convective tendencies
destabilize the lower troposphere and contribute decrease in low cloud fraction.
This induces anomalous radiative heating in the levels above 900 hPa and
anomalous radiative cooling in the levels below (Figure 7.5f), which compensate
for the destabilization of the lower troposphere by convective processes. The
anomalous radiative heating majorly contributes to the decrease of relative
humidity. While considerable relative humidity errors remain in UNICON-STO,

the decrease in relative humidity contributes to reducing the SWCF bias.
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7.3.2 MJO Diagnostics

Figure 7.6 shows the wavenumber-frequency spectra of OLR and 850 hPa zonal
wind from the observations and simulations. Compared to the observations,
the two simulations both produce much stronger power in a wide frequency

domain during summer. UNICON and UNICON-STO reproduce the observed

MJO peak in 30-80-day periods with zonal wavenumbers 1-2 during summer.

However, UNICON produces a power peak stronger than the MJO peak in
periods greater than 80 days, while the dominant variability of UNICON-STO is

in the 30-80 days range. During winter, UNICON simulates a variability that is

too strong in the low-frequency regime and a weaker MJO power (Figure 7.6e).

In contrast, UNICON-STO simulates the adequate power of winter MJO
(Figure 7.6f). During both summer and winter, UNICON and UNICON-STO
overestimate variabilities in low-frequency regimes in westward and eastward
directions. UNICON-STO shows substantially larger MJO-related variabilities
than the observations for OLR during summer and for 850 hPa zonal wind
during both seasons.

Figure 7.7 is the result of a cross-spectrum analysis, showing coherence
squared between OLR and 850 hPa zonal wind. The observations display high
coherence squared (peaking at greater than 0.6) between OLR and 850 hPa

zonal wind in periods of 20-80 days with zonal wavenumbers 1-2, indicating

a strong coupling between large-scale circulation and convection in the MJO.

UNICON shows a coherence squared peak for the simulated MJO but 15-30 %
smaller values relative to the observations. Still, UNICON indicates much
larger coherence than that of CAM5 (Park et al. 2019). UNICON-STO shows

noticeably larger coherence related to the MJO than UNICON, especially
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Figure 7.6 Wavenumber-frequency spectra of OLR (shading; W? m~*) and
850 hPa zonal wind (contour; 0.02m?s~2 interval) averaged over 10°S-10°N

during summer (May-October; first row) and winter (November-April; second
row) for (a)(d) the observations, (b)(e) UNICON, and (c)(f) UNICON-STO.
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the observations, (b) UNICON, and (c) UNICON-STO. The dispersion curves
for Kelvin and n = 1 equatorial Rossby (ER) waves are shown.
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for zonal wavenumber 1. Both UNICON and UNICON-STO show a lack of
coherency between OLR and zonal wind in a zonal wavenumber of 2 (2 cycles
along the circumference). Stochastic UNICON also improves the simulation
of other equatorial waves. UNICON-STO does a better job of reproducing
the observed frequency of peak coherency of Kelvin waves (5-10 days) and
reproducing coherences of slow Kelvin waves (periods of 8-20 days) with zonal
wavenumbers greater than 5. In addition, n = 1 equatorial Rossby waves are
better represented in UNICON-STO.

The multivariate empirical orthogonal function (EOF) patterns of intrasea-
sonal OLR and 850 and 200 hPa zonal winds (Figure 7.8), which are used
to calculate the RMM index, confirm the low coherency between convection
and wind for zonal wavenumber 2 in UNICON and UNICON-STO. The sign
and order of the EOF1 and EOF2 in the simulations are adjusted to match
the observations. In the observations, EOF1 shows a sharp peak of negative
OLR and steep changes in zonal winds near 90°E. Note that the observed
EOFs are slightly different from Wheeler and Hendon (2004) since different
datasets and periods are used. In contrast to the observations, the peaks of
OLR and zonal winds EOFs in the simulations are much broader, especially
for EOF1. The EOF patterns of the simulations are more like sine waves with
zonal wavenumber 1. The EOF structures of UNICON and UNICON-STO are
almost identical. However, the total variances of EOF modes in UNICON-STO
(EOF1: 17.9%, EOF2: 21.5%) are higher than in UNICON (EOF1: 15.1 %,
EOF2: 18.4%), which better matches with the observations (EOF1: 22.2 %,
EOF2: 21.9%).

Figure 7.9 shows lag-longitude diagrams of intraseasonal precipitation

(shading) and 850 hPa zonal wind (contour) correlated against precipitation
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Figure 7.8 All-season multivariate first (first row) and second (second row)
combined EOF modes of 20-100-day 15°S-15°N averaged 850 hPa and 200 hPa
zonal winds and OLR from the (a)(c) observations, (b)(d) UNICON (dashed),
and UNICON-STO (solid). The total variance accounted for each mode is
shown in the parentheses at the top of each panel.
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Figure 7.9 Lead-lag correlations of the 20-100-day bandpass-filtered daily
precipitation (shading) and 850hPa zonal wind (contour; 0.1 intervals)
correlated to the daily time series of bandpass-filtered precipitation averaged in
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Figure 7.10 Lead-lag correlations of the 20-100-day bandpass-filtered daily
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at an Indian Ocean reference area. The figure is plotted for the period of
1998-2014 when the TRMM dataset is available. The observations show the
eastward propagation of mesoscale precipitation systems and associated wind
convergence across the Eastern Hemisphere with a phase speed of about 4ms™?.
The lag between zonal wind anomalies and precipitation anomalies is about
5-7 days. During summer, both UNICON and UNICON-STO reproduce the
observed eastward propagation of the precipitation and zonal wind anomalies.
However, during winter, UNICON substantially underestimates the eastward
propagation of precipitation across the Maritime Continent and western equa-
torial Pacific and associated wind convergence. UNICON-STO simulates more
realistic propagation of precipitation and zonal wind anomalies during winter.
The observations show an abrupt decrease of correlation (especially 850 hPa
zonal wind) at about 110°E due to the barrier effect of the Maritime Continent
(Hsu and Lee 2005; Zhang and Ling 2017) during summer. The barrier effect
is weaker in winter since the MJO detours the Maritime Continent (Kim et
al. 2017). UNICON and UNICON-STO do not show an abrupt correlation
decrease during summer, presumably because the wind anomalies over the
Maritime Continent and nearby oceans are not realistically simulated. The lag-
latitude diagrams (Figure 7.10) indicate that both simulations reproduce the
observed northward propagation of the MJO during summer and southward
propagation during winter. UNICON-STO better reproduces the observed
correlation associated with northward propagation during summer, but during
winter, UNICON-STO shows too elongated correlation pattern of precipitation
in the southward direction.

Finally, the simulated composite life cycle of intraseasonal anomalies of

OLR and 850 hPa wind vectors are examined (Figure 7.11 and 7.12). UNICON
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Figure 7.11 Composite of the 20-100-day bandpass-filtered daily anomalies
of OLR (shading; W m™2) and wind vectors at 850 hPa as a function of RMM
phase during November-April from (a) the observations, (b) UNICON, and (c)
UNICON-STO.
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Figure 7.12 Composite of the 20-100-day bandpass-filtered daily anomalies
of OLR (shading; W m™2) and wind vectors at 850 hPa as a function of RMM
phase during May-October from (a) the observations, (b) UNICON, and (c)
UNICON-STO.
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simulates substantially weaker deep convection over the Indian Ocean and the
western equatorial Pacific where the convection passed through the Maritime
Continent during winter (Figure 7.11). UNICON-STO noticeably improves the
simulation of the life cycle of the winter MJO, simulating stronger MJO-related
OLR anomalies. The convection activity after passing through the Maritime
Continent is more strongly maintained in UNICON-STO. Nevertheless, the two
simulations exhibit too strong wind anomalies over the equatorial Pacific, as

indicated by large EOF amplitudes of zonal winds over the Pacific (Figure 7.8).

7.3.3 Precipitation Budget Analysis

Before demonstrating the result of the precipitation budget analysis, we discuss
the simulated characteristics of precipitation and their relation to water vapor.
Figure 7.13 shows frequency spectra and the fraction of convective precip-
itation as a function of the daily surface precipitation rate over the tropics.
UNICON-STO generally increases the frequency of intense precipitation greater
than 25 mmday ! with respect to UNICON. The simulated frequencies in
UNICON-STO are more consistent with the TRMM observation than those in
UNICON, while UNICON already simulates realistic precipitation frequency
spectra. The increased frequency of heavy rainfall is related to the increase
in the fraction of convective precipitation in UNICON-STO (Figure 7.13b).
Over 95 % of moderate-intensity rainfall is convective precipitation (from the
convection schemes) in the simulations, and the ratio of convective precipitation
decreases as precipitation intensity increases. UNICON-STO increases up to
10 % of convective precipitation fraction for intense precipitation greater than

25 mm day .
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Figure 7.13 (a) Frequency spectra and (b) fraction of convective precipi-
tation as a function of daily surface precipitation rate in the tropical region
(15°S-15°N), obtained from UNICON and UNICON-STO. In (a), the frequency
spectra of the TRMM 3B42v7 daily precipitation are also shown.
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Figure 7.14 Panels in the first-row show the density plots of daily

precipitation versus column relative humidity (Rp,) from the (a) TRMM and
ERA5 observations, (b) UNICON, and (¢) UNICON-STO. The black line
denotes the nonlinear least squares fit of the data in (7.3). Panels in the

second-row show tendencies of R; and precipitation as vectors and fraction

of positive R tendency as color shading, where the data are obtained from
the (d) TRMM and ERA5 observations, (¢) UNICON, and (f) UNICON-STO.
The vector indicates the changes of R, and precipitation per day computed by

central differencing averaged in each bin. Bins containing less than 300 data

points are discarded. The data are obtained from a horizontal grid of 2.5° x 2.5°

in the area of 10°S-10°N and 60°

-180°E.
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The observed and simulated relationships between column relative humidity
(Rp,) and precipitation (P) are displayed in Figure 7.14. The data are obtained
from the warm pool region where Adames (2017) determined the value of a in
(7.3). The first row of the figure shows the density plots of R, and precipitation
and nonlinear least squares fits of data on (7.3). It is clear that the relationship
between the two variables is exponential in the observation and simulations,
while there are considerable uncertainties. The noticeable deficiency of the
model simulations is the overestimation of precipitation intensity at low Rp.
For R, = 0.7 ~ 0.75, the simulations tend to produce light-to-moderate rain
rates (P = 5 ~ 20 mm dayfl) too frequently, and for R;, > 0.75, the simulations
underestimate the frequency of very light rain rates (P < 5 mm day_l). Rushley
et al. (2018) demonstrated that many CMIP5 models have the same issue
of early precipitation pickup on a drier regime. This shows the problem of
most GCMs where their convection schemes are insensitive to environmental
humidity (Derbyshire et al. 2004).

The values of a determined in Figure 7.14 are used to calculate the pre-
cipitation budget for the observation and simulations. The fitted value of
a = 13.95 from the TRMM dataset is in the range of the values obtained
from other studies, 15.6 from Bretherton et al. (2004b), 12.1 from Adames
(2017), and 14.72 from Rushley et al. (2018). In UNICON, a is measured
as a smaller value of 9.67, while a is measured as 11.55 in UNICON-STO,
showing a value in between the observation and UNICON. The larger value of
a in UNICON-STO is largely contributed by increased intense precipitation
in the high Ry, regime (Figure 7.14c). The increased density for high R; and
P implies that UNICON-STO simulates stronger organized convection (e.g.,

Adames 2017). The corresponding mean convective adjustment time scales (7¢)
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computed with (7.4) (using the climatological mean of precipitation rate and
vertically-integrated saturation specific humidity) over the warm pool region
are 17.0h, 25.1h, and 22.0 h for the observations, UNICON, and UNICON-STO,
respectively. The reduced convective adjustment time scale in UNICON-STO
indicates that the fractional entrainment rate in the convection scheme is
increased, and convection becomes more sensitive to environmental humidity.
This can be explained by the fact that the mean radius of updrafts is decreased
due to the increased frequency of shallow cumulus in stochastic UNICON.
The vectors in the second row of Figure 7.14 show changes in R and P
in a day. The trajectories along the vectors show the life cycles of tropical
convective systems, showing clockwise evolution around an attractor (Wolding
et al. 2020). Wolding et al. (2020) categorized precipitation types using the
TRMM 2A23 data, where shallow convective precipitation occurs in low Ry,
and P regime, deep convective precipitation occurs in the moderately moist
environment (0.6 < Ry, < 0.8) with high P, and stratiform precipitation occurs
in the very moist environment (Rj > 0.8). UNICON largely underestimates
the magnitudes of daily tendencies of R;, and P, particularly for the positive
tendencies in the deep convective precipitation regime (moderate Rp). The
weak positive R, and P tendencies indicate a lack of driving mechanisms
(e.g., moisture convergence) for developing organized convection. In the case
of moisture convergence, it is known that shallow convection is important
since the convective heating in the lower troposphere drives more moisture
convergence than is removed by precipitation, resulting in a net moistening
(Wolding and Maloney 2015). The positive Rj, and P tendencies in the deep
convective precipitation regime are considerably stronger in UNICON-STO,

while they are still weaker than in the observation. The enhanced tendencies are

229 ] O+



also consistent with the increased frequency of intense precipitation. As will be
discussed later, UNICON-STO exhibits stronger moistening tendencies in the
MJO developing stage, which make a more favorable condition for developing
organized convection. The larger contribution of convective precipitation for
rain rates greater than 25 mm day ! in UNICON-STO (Figure 7.13b) also indi-
cates increased lower-tropospheric instabilities due to the better representation
of shallow convection (also see Figure 7.5b).

Since the multivariate EOF modes of the observation and simulations are
substantially different, compositing precipitation budget terms to a specific
RMM phase does not provide a fair comparison between the observation
and simulations. Therefore, we calculate lead-lag regressions of intraseasonal
precipitation budget terms against area-averaged OLR time series in the area
over the Indian Ocean (5°S-5°N, 75°-85°E). We flip the sign of the regression
coefficients for the figures so that the anomalies correspond to enhanced
convection over the equatorial Indian Ocean. The value of the regression
coefficient denotes a change in a variable against a decrease in 1 Wm™2 of
OLR. Figure 7.15 shows anomalies of OLR and precipitation tendencies on
lag days 0-15 for the observation and simulations. The convection activity
matures in the equatorial Indian Ocean on lag day 0, and the convection
propagates across the Maritime Continent with increasing lag days. In the
observation, positive precipitation tendencies (moisture recharging) precede
about 10-15 days on the east of convection peaks, and negative precipitation
tendencies follow the convection peaks on the west. The simulations show
much weaker precipitation tendencies than the observation, and the simulated
distributions of anomalies are somewhat different from the observation. The

positive precipitation tendencies in the simulations propagate northeastward
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UNICON UNICON-STO

Figure 7.15 20-100-day bandpass-filtered anomalies of OLR (shaded;
Wm~2) and precipitation tendency (contour; 0.005mmday~? intervals)
regressed onto the OLR time series averaged in the area over the Indian
Ocean [5°S-5°N, 75°-85°E; the red box in (a)], obtained from (first column)
the observations, (second column) UNICON, and (third column) UNICON-
STO. The regression coefficients on lag 0, 5, 10, and 15 days are shown.
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much faster and leave the Maritime Continent earlier than the observation.
However, UNICON-STO simulates stronger precipitation tendencies and also
better maintains negative OLR anomalies with longer lags compared to UNI-
CON (note that negative OLR anomalies are stronger in lag day 10 over the
Maritime Continent).

Figure 7.16 shows the horizontal distribution of individual precipitation
budget terms on lag day 0. The sum of the four terms is approximately
equal to the total precipitation tendencies (contour). The equality is not
exact because of the numerical errors when computing budget terms. In the
observation, the patterns of the horizontal advection terms resemble that of
the total precipitation tendency with the same polarity (Figures 7.16a and
7.16d), while the evaporation term shows the opposite polarity (Figure 7.16g).
The convective column process enhances moisture tendency in the equatorial
Indian Ocean and the Maritime Continent area (Figure 7.16j). The patterns
of the precipitation budget terms are similarly reproduced in UNICON and
UNICON-STO but with weaker amplitudes. There are some regions where
UNICON does not simulate the contribution by the budget terms properly. For
example, UNICON simulates drying tendencies by zonal advection (—udq/0x)
over the Maritime Continent area, while the observation shows moistening
tendencies. In addition, UNICON simulates too weak moistening by convective
column process over the eastern equatorial Indian Ocean and the Maritime
Continent region. UNICON-STO alleviates these deficiencies and does a better
job of reproducing magnitudes of tendencies by the budget terms. The analysis
from Adames (2017) demonstrated that the moistening by the convective
column process is associated with bottom-heavy baroclinic vertical motion

(which is related to shallow convection), and the drying is associated with

232 ] O+



UNICON-STO

-0.02 0.00 0.02

Figure 7.16 As in Figure 7.15, except that each precipitation budget term
on lag day 0 is shaded.
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elevated stratiform convection. Shallow convection transports moisture from
PBL to the lower free troposphere, leading to tropospheric moistening and
increasing precipitation. The increased moistening tendencies by the convective
column process in UNICON-STO are due to a better representation of shallow
convection. However, both UNICON and UNICON-STO do not reproduce
drying tendencies by the convective column process over the western equatorial
Pacific. This might indicate the deficiency of the convection scheme where
stratiform precipitation systems in the MJO decaying stage (anvil clouds) are
not realistically simulated, as shown in Section 6.6.

Figure 7.17 shows the regression coefficients of the precipitation budget
terms averaged over the reference area over the Indian Ocean where the MJO
events initiate. The first row of the figure shows averages during lag -15 to
lag 0 days (developing period), and the second row shows averages during
lag 0 to lag 15 days (decaying period). During the developing period, mean
moistening tendencies exist over the area, and the largest contribution comes
from the convective column process, indicating that moistening from shallow
convection is a critical factor. UNICON underestimates positive precipitation
tendencies in the developing period largely due to the underestimation of the
convective column process and zonal advection terms. Particularly, UNICON
considerably underestimates the tendencies from the convective column process
during winter, indicating that the initiation of winter MJO is suppressed in
UNICON (Figure 7.17b). UNICON-STO displays larger total precipitation
tendencies and the tendencies from zonal advection and convective column
process during the developing period of all seasons, which are more consis-
tent with the observation. Similarly, during the decaying period, UNICON

underestimates total precipitation tendencies, and UNICON-STO simulates
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Figure 7.17 Regression coefficients of the precipitation budget terms
averaged in the area over the Indian Ocean (5°S-5°N, 75°-85°E; red box in
Figure 7.15a). In (a) and (b), the regression coefficients are averaged during

lag -15 to lag 0 days for May-October and November-April, respectively. In (c)

and (d), the regression coefficients are averaged during lag 0 to lag 15 days for

May-October and November-April, respectively.
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more realistic precipitation tendencies due to the increased contribution of
horizontal advection terms. However, the convective column process terms
in both simulations are underestimated in the decaying period, implying the
unrealistic representation of stratiform precipitation systems in the simulations
discussed above.

To investigate the propagation of the simulated winter MJO, the regression
coefficients of budgets are averaged in the area over the southern Maritime
Continent (Figure 7.18). Since the MJO detours southward of the Maritime
Continent during boreal winter, the magnitudes of precipitation tendencies
and budget terms during winter are much larger than those of summer. The
largest contribution to the total tendencies comes from the horizontal advection
terms, and a similar result is found in Kang et al. (2021). Consistent with the
result above, UNICON-STO simulates improved precipitation tendencies and
budget terms during early lag days in all seasons. Therefore, the improved
winter MJO in UNICON-STO attributes to better simulation of moistening
on the initiation of the MJO over the Indian Ocean and propagation over the
southern Maritime Continent.

Lastly, the vertical structures of regression coefficients of several atmo-
spheric variables are plotted (Figure 7.19). Jiang et al. (2015) showed that
the CMIP5 models with good MJO simulations reproduce vertically tilted
structures of anomalous T', ¢, and w in observations, so the vertical structure
of intraseasonal anomalies can be used as a measure of model performance
on convective processes. The convection peak at 75°-85°E is associated with
anomalous horizontal wind convergence (Figure 7.19a) and large-scale ascent
motion (Figure 7.19b). The top-heavy temperature anomalies come from the

strong diabatic heating at the main convection region (Jiang et al. 2015). The
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Figure 7.18 Regression coefficients of the precipitation budget terms
averaged in the area over the southern Maritime Continent (15°S-5°S, 100°-
140°E; the yellow box in Figure 7.15a). In (a) and (b), the regression coefficients
are averaged during lag -15 to lag 0 days for May-October and November-April,
respectively. In (c) and (d), the regression coefficients are averaged during lag
0 to lag 15 days for May-October and November-April, respectively.
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Figure 7.19 Vertical-longitudinal profiles of annual zero lag-regression
coefficients of the intraseasonal anomalies of zonal wind (u), vertical pressure
velocity (w), temperature (T'), specific humidity (¢), and moist static energy
(MSE) averaged over the latitude band of 10°S-10°N. The vertical dashed lines
denote the latitudes of the reference area over the Indian Ocean.
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temperature anomalies show westward vertical tilts due to the lowering of
convection height in the eastward direction (Figure 7.19c). The simulations
reproduce the observed vertical MJO structure reasonably well. However,
UNICON-STO simulates more pronounced positive specific humidity and moist
static energy anomalies below 700 hPa at the east of the main convection
region, signaling a better representation of the preconditioning process for the
eastward propagation of the MJO. The anomalies are also enhanced in the main
convection region in UNICON-STO, implying that the increased moistening

intensified organized convection.

7.4 Discussion

This study emphasizes the importance of spectral representation of convection
(the coexistence of shallow and deep convictions in a grid) in a GCM for realistic
MJO simulation. Such a model can help understand how convective clouds
with different scales interact. We can investigate intraseasonal variabilities of
physical tendencies, mass fluxes, and fractional entrainment rates for different
types of convection. However, it requires a model to output a large number
of four-dimensional variables in high frequency, so we will leave this subject
as a future study. In addition, the MJO simulations in a fully-coupled model
and with different model resolutions are important issues that need to be

investigated.
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8 Summary and Conclusions

A convection parameterization in an atmospheric model needs to parameterize
subgrid convection, which is characterized by stochastically generated multiple
convective updrafts. The primary aim of this study is to develop a stochastic
convection parameterization that is capable to physically simulate variability
generated by multiple convective updrafts. The new stochastic convection
scheme is based on unified convection scheme (UNICON; Park 2014a). Before
developing stochastic UNICON, we examined the chracteristics of the global
simulation using UNICON and its application. In Chapter 2, we examined the
impacts of ENSO and MJO on tropical cyclone genesis based on a set of long-
term coupled simulations with UNICON. The general circulation model (GCM)
with UNICON, namely SEMO, reproduces the observed impacts of ENSO and
MJO on tropical cyclone genesis in various regions around the world more
accurately than CESM1. The inter-phase correlations between the observed
and SEMO-simulated tropical cyclone genesis over the combined phases of
ENSO and MJO are 0.76 and 0.54 over the western North Pacific and North
Atlantic oceans, respectively, which are much greater than the corresponding
values of CESM1 (0.27 and 0.25).

In Chapter 3, to enhance the forecast skill of tropical SST anomalies
including ENSO, we combined a model-analog approach with a linear inverse

model (MA-LIM). The model-analogue (MA) is a statistical prediction method
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based on the pattern similarity between model and observation, and for this
purpose we use the long-term coupled simulation with UNICON. The MA-
LIM nudges monthly SST/SSH anomalies forecasted by the LIM to those
forecasted by the MA with an appropriate weighting w at each forecast month.
In predicting the GCM-simulated and observed Nino3.4 SST anomalies, the
LIM performs better than the MA at short leads while the opposite is true at
long leads. The MA-LIM with w=0.15 shows the best performance at all leads.
The MA-LIM with w=0.15 retains most of the beneficial aspects of the MA
and substantially remedies the undesirable aspects of the MA, resulting in the
overall best performance in the tropical oceans.

In Chapter 4, we developed a stochastic UNICON which correctly simulates
the variability generated by multiple stochastic plumes. The joint area PDF of
updraft thermodynamic scalars at the surface is assumed to follow a correlated
multivariate Gaussian distribution with its standard deviations and inter-
variable correlations derived from the Monin-Obukhov (M-O) similarity theory.
The radius of stochastic updraft plumes at the surface is assumed to follow a
power-law distribution with a specified scale break radius, Ry.

A full stochastic method launching multiple stochastic plumes at the sur-
face is able to simulate both the ensemble-mean and variance of grid-mean
convective tendency in a realistic way, but it is computationally expensive.
Thus, we developed a hybrid method that launches n bin plumes and a single
stochastic plume. The key ingredient of the hybrid method is to compute the
grid-mean convective tendency as the weighting average of those of a single
stochastic plume and n bin plumes.

First, we analyzed the LES simulation to validate the various parametric

assumptions. Consistent with the assumption used in stochastic UNICON,
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the LES-simulated individual PDF's of w and g5 at the surface approximately
follows the correlated multivariate Gaussian distribution. It was shown that
a substantial portion of the variability of convective updraft plumes at the
cloud base stems from the variability at the near surface. The vertical profiles
of core updraft plumes in the cloud layer are well classified by Riase, implying
that I%base substantially controls the variability of convective plumes. The
number PDF of convective updraft plumes at the cloud base follows a well-
defined power-law distribution as a function of R with a scale break radius of
Ry = 120m.

Next, we compared the SCM simulations with identically-forced LES. Both
the full and hybrid stochastic UNICON adequately reproduce the LES-simulated
grid-mean thermodynamic profiles. The properties of convective updraft plumes
simulated by the stochastic UNICON are also reasonably similar to those of
LES. At the cloud base, the full stochastic SCM sufficiently reproduces the
LES-simulated PDF's of w, éc, and ¢; as well as the theoretical exponential
distribution of subgrid M. The composite vertical profiles of (5 as a function
of Rbase simulated by the full stochastic SCM are quite similar to those from
LES. Consistent with the theory, stochastic UNICON adequately reproduces
the expected decreases in the spatiotemporal variance of the grid-mean M as
G increases, enhancing the scale-adaptivity of the original UNICON. It was
also shown that all stochastic perturbations in the updraft properties at the
surface (e.g., R, , and (;AS) contribute substantially to a correct simulation of
the mean thermodynamic state.

In Chapter 5, we propose a stochastic mixing model with a machine learning
technique for the mass flux convection schemes. The strategy of the model is

to set the stochastic differential equations (SDEs) for the following four mixing
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rates presented in the governing equations of mass flux scheme: fractional
entrainment rate e, fractional detrainment rate J, fractional dilution rate eg,
and vertical acceleration w. The fractional dilution rate is defined in order
to calculate the dilution of scalars by mixing process with consideration of
the effect of cloud shell. The unknown parameters of the SDEs are modeled
using the deep neural network which takes cloud and environment properties as
inputs, and the network is trained using the BOMEX and RICO LES datasets.
The following input variables for the machine learning model are selected using
the permutation importance analysis: B, @, §;, 0., 4, and 90, /0z.

The performance of the ML model for predicting the mixing rates is
compared with those of previously proposed parameterizations. The ML model
predicts € with R? = 0.655 and § with R? = 0.665, outperforming other
parameterizations. In addition, the ML model was found to represent the
relationship between the input variable and € or § shown in LES well. However,
the ML model predicts vertical acceleration with a relatively low predictive
skill of R? = 0.284, implying that the large stochasticity is associated with the
updraft vertical velocity.

The SCM experiment with the new stochastic mixing model showed a
reduction of root-mean-square errors of environmental 6. and ¢; profiles by 3%
and 34% in the BOMEX case, and 59% and 47% in the RICO case, respectively,
compared to the original UNICON. Also, the profiles of simulated mean updraft
variables consistently matched with LES profiles. The following configurations
of SCM are tested: the default simulation (ML-FullVar), the simulation without
the stochastic initialization (ML-MixVar), and the simulation without the
stochastic mixing (ML-InitVar). In general, ML-FullVar and ML-MixVar are

capable of realistically simulating the variabilities of various updrafts properties,
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while the ML-InitVar produced a limited amount of variabilities. The simulation
results of ML-FullVar and ML-MixVar are remarkably similar, implying that
stochastic mixing is the main source of cloud variabilities.

In Chapter 6, we extended stochastic UNICON, which was originally formu-
lated for shallow convection, to deep convection by parameterizing the impact of
mesoscale organized flow on updraft properties. The variances of the joint PDF
are the summation of variances from non-organized turbulence and variances
from mesoscale organized flow. The variances of mesoscale organized flow are
calculated from the UNICON cold pool routine. The scale break radius is
parameterized as a linear function of the mesoscale organization parameter.
The proposed parameterization is validated using a series of LES simulations of
radiative-convective equilibrium. The parameterization is able to predict LES-
measured standard deviations of convective updrafts for potential temperature
and vertical velocity. The linear relationship between the mesoscale organiza-
tion parameter and the scale break radius is also verified. Four parameters that
are newly introduced are optimized using SCM simulations of the ten intensive
observation period (IOP) cases over the ocean.

The GATEIIIL, TOGAII, DYNAMO-AMIE, DYNAMO-North, and DAR-
WIN cases are time-varying forcing experiments that simulate tropical con-
vection, and they are directly compared with IOP observations. In all five
cases, stochastic UNICON reduces the negative temperature biases in the
upper troposphere and negative moisture biases in the lower troposphere
presented in UNICON simulations. The simulations of precipitation rates are
also significantly improved by stochastic UNICON, except for the GATEIII case.

In the five cases, stochastic UNICON simulates generally increased updraft
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mass fluxes in the lower troposphere and stronger heating and drying tendencies
by convective processes compared to UNICON.

The detailed analysis of simulated MJO in the DYNAMO-AMIE case

promotes our understanding of the characteristics of simulated convection.

Stochastic UNICON realistically simulates the variations of temperature and
moisture anomalies associated with three MJO events, while UNICON fails
to reproduce the intensity and timing of the anomalies. During the active
MJO phases, UNICON and stochastic UNICON produces stronger and deeper
convection due to higher relative humidity above 850 hPa level. The simulated
mesoscale organization and updraft radius are also greater during the active
MJO phases. The stronger heating by convection in stochastic UNICON
contributes to reducing negative temperature biases in UNICON. The stronger
drying tendencies by convection in stochastic UNICON, particularly during the
active MJO phases, increase moistening by vertical advection and consequently
reduce negative moisture biases in UNICON.

Finally, the cloud variabilities in the a near-equilibrium deep convection
case are examined. Stochastic UNICON exhibits enhanced variabilities of
thermodynamic variables, radius, and mass flux of updrafts at the near-surface
and cloud-base height. The increased variabilities in the sub-cloud layer lead
to increased variabilities in the cloud layer. The non-negligible contribution of
shallow convection is found, suggesting that the improvement in the tropical
convection cases by stochastic UNICON is contributed to the representation
of the coexistence of shallow and deep convection.

In Chapter 7, we evaluate the global climate simulation with stochastic
UNICON, focusing on the simulation of the MJO. Two AMIP simulations using

the SAMO-UNICON atmospheric GCM with UNICON and stochastic UNICON
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are conducted for the period 1979-2014 and compared with observations. The
mean RMSEs in UNICON and UNICON-STO are almost identical, while the
mean bias is reduced by 18 % from UNICON to UNICON-STO. The reduction
of the mean bias largely comes from the alleviation of the mean negative
shortwave cloud forcing (SWCF') bias presented in UNICON. UNICON-STO
simulates much more frequent shallow convection, and the increased shallow
convective heating induce a change in the feedback between radiation and
clouds. As a result, positive relative humidity biases over mid-high latitudes
presented in UNICON are slightly reduced and mean SWCF is increased in
UNICON-STO.

Although SAMO-UNICON is one of the CMIP6 models that have rela-
tively good MJO simulation performance (Le et al. 2021), UNICON-STO
further improves various properties of MJO. A spectrum analysis indicates that
UNICON-STO better reproduces the wave power maximum in the intraseasonal
time scale, while UNICON produces the power maximum at a lower frequency
regime. Particularly, UNICON-STO substantially improves the power of winter
MJO, while UNICON simulates too weak winter MJO. UNICON-STO also
enhances the wave coherency between OLR and 850 hPa zonal wind for the
wave components related to the MJO, which UNICON underestimates. The
lead-lag correlation analysis indicates that UNICON substantially underes-
timates the strengths of eastward propagation of convection and associated
wind anomalies during winter, and UNICON-STO simulates more realistic
propagation patterns. Still, both simulations have a common problem that
simulated intraseasonal variabilities are too strong over the central and eastern

equatorial Pacific.
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The relationship between column relative humidity (R},) and precipitation
(P) is hypothesized as an exponential function of P = Pyexp(aRy). The
fitted values of a in the observation, UNICON, and UNICON-STO are 13.95,
9.62, and 11.55, respectively. UNICON-STO has a larger value of a (and
smaller convective adjustment time scale) than UNICON because UNICON-
STO produces more frequent intense precipitation over the tropics, which
better matches with the TRMM observation. These results indicate stronger
development of organized convection and increased sensitivity of convection to
environmental humidity, in UNICON-STO. UNICON-STO displays stronger
positive Ry and P tendencies in the deep convective precipitation regime,
implying that stronger moisture convergence is induced by shallow convection.

To decompose the processes that induce moisture tendencies, the precipita-
tion budget analysis is conducted. The magnitudes of intraseasonal moisture
tendencies are underestimated in both simulations, but UNICON-STO shows
larger total tendencies and budget terms compared to UNICON. UNICON-STO
better reproduces moistening tendencies by zonal advection over the Maritime
Continent area and by convective column process over the eastern equatorial
Indian Ocean. During the MJO development stage over the Indian Ocean,
UNICON-STO simulates increased moistening tendencies primarily due to the
enhanced convective column process. The vertical structures of MJO-related
anomalies confirm that these moistening tendencies are located in the lower

troposphere before convection matures.
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9 Appendix

9.1 Appendix A: Computation of Convective Tenden-
cies by Stochastic Plumes Sampled from an Area

PDF

In our stochastic UNICON, the normalized thermodynamic variable « for
convective updraft plumes at the surface is sampled from the area PDF,
P,(a) = da(a)/da. The use of the area PDF is inevitable, because the M-
O similarity theory on which the closure of our stochastic UNICON is based is
derived from the area average of instantaneous pointwise observations. Once
a set of o' (a = a@,aéc,aqt,aﬁ,a@,algz) is sampled from the multivariate
Gaussian area PDF for a specific updraft plume, i (1 <14 < ngy), we can compute
the plume number density N = d/w]%iz = (Rg/RZ2)/G using the fractional
area @' = 7Rk2/G and the radius R’, where R, is from (4.16). Our stochastic
UNICON computes the convective tendency for a single updraft plume with R
and then multiplies it by its number, GN ¢ which will be referred to as n’. In the
case of the full stochastic method (ns = GN ), the final grid-mean convective
tendency is n = ZlG:Alf nt, where N is the plume number density sampled from
the Poisson distribution (4.18). In the case of the single stochastic method

(ns = 1), the final grid mean convective tendency is n = GN nl. In the case of

the hybrid stochastic method (ns = 1), ns = n} in (4.20).
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9.2 Appendix B: Computation of the Cumulative Den-
sity Function (CDF) and the Bin Plume Proper-
ties from the Correlated Multivariate Gaussian

Distribution

Following the notation of Tallis (1961), the probability density function (PDF)
of a correlated multivariate Gaussian distribution of the normalized variables,
x = (21,2, ...,7,)T, where n is the number of variables and T is a transpose,

can be written as
1
b (1,72, ..., Tp) = (27)_n/2\R‘_lmexp(—iXTR_lX)a (9.1)

where R is a symmetric correlation matrix, |R| is a determinant of R, and
R ! is an inverse of R. As explained in Section 4.2.2, the transformation of
ap tod = R/ Ry uses the cumulative density function (CDF) of P,(a ) and
P,(%). The CDF of P,(Z) is obtained by numerically integrating (4.15). The
CDF of P,(ap) can be obtained in a similar way by integrating the correlated
multivariate Gaussian PDF in the regime of ay; > 0. From (9.1), the joint PDF

of ay and o, is

2 2
1 % + Qb — 2Ty R s
exp(— R v v Rw), Qqpy > 0,

/ 2 2(1—1r2
b2, o) =47 L="ur ( wn)
O) A S 07
(9.2)
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where r,, g is the correlation coeflicient between «y;, and a 7+ The corresponding

CDF as a function of o 2 becomes

% + 0‘12,3 — 2ry RO p

ap oo 1 o
H(ap :/ / ————exp | — dagda g
R N ( 21— 72p) ) £

A TwR O f
R —erf | — 2R daj

1 /O‘R a2/
= —_— e R
27 J—oo V2 \[1-r2p
(9.3)

which is solved numerically and then used for the transform between o and
&= R/Ry in (4.17).

Stochastic UNICON launches n bin plumes from the surface with a set of
mean thermodynamic properties of an individual bin plume. Binning of the

multi-variables is performed by defining the bin edges of the variable quS as

af =21 (i/ny(9)),  0<i<m(d), (9.4)

where @ is the CDF of ¢ and n() is the number of bins for ¢. In the case
of HYB12 where ny = 12, ny(R) = 3, ny(6.) = 2, and ny(g;) = 2. Stochastic
UNICON computes the thermodynamic properties of an individual bin using a

Monte-Carlo method, i.e., by sampling a large number of random points from

the multivariate Gaussian distribution and averaging the points in each bin.

With a constant random seed, our Monte-Carlo method does not generate an

artificial stochastic variance.
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9.3 Appendix C: Computation of Lagrangian Tenden-
cies for the Tracked Updrafts

The fractional dilution rate efb and the vertical acceleration w are calculated
using Lagrangian tracking of each convective updraft. We calculate these rates
as mean tendency during At = 60 s which is the LES output sampling frequency.
Let’s consider an updraft parcel at height z and time ¢. The vertical position of
the parcel is updated in time with forward differencing with a small sub-step
time interval of Atgy, = 1s, and then the parcel position at t + At can be
obtained after 60 sub-steps. The updraft vertical velocity between time interval
[t,t + At] is calculated using a linear interpolation between model vertical grid
points and sampling times. Similarly, the parcel position at ¢ — At is calculated
using the backward differencing method. Hereinafter, any updraft property =
at time t — At, t, and t + At are denoted as z'~1, 2!, and z!T!, respectively.
The fractional dilution rate is estimated using the decaying passive tracer
which is already used to define the plume region in LES. The fractional dilution

rates €4 at time ¢ and ¢ — At are calculated as

1 gl 5t st+3
t —
NN ( N (9:5)

1 st_gt-1 gt—3

t—1

= — , 9.6
“ st-5 gt ( At + T (9-6)

where § and 5 are the mean concentration of the decaying passive tracer within

N

updraft and environment, respectively, and 7 is the decaying time scale of the
tracer. The superscript ¢ + % denotes the average of values at t and t + At
(e.g. § 3 = 3 (81 +351)), and similar for ¢ — 5. The term associated with

7 is added to compensate the decaying tendency of the tracer. The vertical
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acceleration w are calculated as

w ' =
At ’
1 W t_ W t—1
w =
At

9.4 Appendix D: Computation of mesoscale pertur-

bations in UNICON

UNICON divides the horizontal grid within the PBL into three regions: cold

pools (acp), uplift region of mesoscale organized flow (an), and the remaining

portion where perturbations by mesoscale organized flow are zero (1 —acp —aq).

The area-weighted sum of perturbations of a conservative scalar ¢ by mesoscale

organized flow of these three regions should be zero:

QQA¢Q + acpA¢cp =0,

where A¢q = ¢q — ¢ppr, is the mean perturbation of ¢ in the uplift region of

mesoscale organized flow and A¢cp, = ¢cp — PpBL is the mean perturbation of ¢

(9.9)

of cold pools (¢ppr, is the mean ¢ in PBL). aq is parameterized as ag = CQAS,

where A, = 0.04 is the net updraft fractional area at the surface and Cq = 5

is a constant parameter. Therefore, A¢q is computed as

_ Qcp A ¢cp

A(ZSQ = ) ¢ = 067 qt,u,v,f.

CQ As

For vertical velocity, it is assumed that a certain fraction of available
potential energy in PBL is converted into mesoscale kinetic energy through a

convective overturning process. Awg is computed as

keuh),
mm:%P<ft><%A
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where g is the gravitational acceleration, 8, .ot = 300K is the reference virtual
potential temperature, k., = 0.08 is the conversion factor of available potential
energy, h is the PBL-top height, and 6, is the virtual potential temperature
difference between cold pools and other area. UNICON assumes that the
properties of convective updrafts at the near-surface are modulated by the

subgrid mesoscale organized flow.

9.5 Appendix E: The Relationship between Low-level
Cloud Amount and Its Proxies over the Globe by
Cloud Type

We extend upon previous work to examine the relationship between low-
level cloud amount (LCA) and various proxies for LCA — estimated low-
level cloud fraction (ELF), lower tropospheric stability (LTS), and estimated
inversion strength (EIS) — by low-level cloud type (CL) over the globe using
individual surface and upper-air observations. Individual CL has its own
distinct environmental structure, and therefore our extended analysis by CL
can provide insights into the strengths and weaknesses of various proxies and
help to improve them.

Overall, ELF performs better than LTS and EIS in diagnosing the variations
in LCA among various CLs, indicating that a previously identified superior
performance of ELF compared to LTS and EIS as a global proxy for LCA comes
from its realistic correlations with various CLs rather than with a specific CL.
However, ELF, LTS, and EIS have a problem in diagnosing the changes in LCA
when noCL (no low-level cloud) is reported and also when Cu (cumulus) is

reported over deserts where background stratus does not exist. This incorrect
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diagnosis of noCL as a cloudy condition is more clearly seen in the analysis
of individual CL frequencies binned by proxy values. If noCL is excluded,
ELF, LTS, and EIS have good inter-CL correlations with the amount when
present (AWP) of individual CLs. In the future, an advanced ELF needs to
be formulated to deal with the decrease in LCA when the inversion base
height is lower than the lifting condensation level to diagnose cumulus updraft
fraction, as well as the amount of stratiform clouds and detrained cumulus, and
to parameterize the scale height as a function of appropriate environmental

variables.
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