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Abstract 

 

Alongside the rising global consensus to take more proactive measures to 

tackle climate change, Seoul Metropolitan Government (SMG) pledged 2050 carbon 

neutrality and submitted the Climate Action Plan to C40 in 2021. As 74.8% of the 

total Greenhouse gas emission from Seoul accounts for the building sector, meeting 

this goal heavily depends on cutting down building energy consumption by 

designing an energy-efficient urban environment. However, no investigation has 

been made to examine whether the current highest-level statutory plan of Seoul, 

<2030 Seoul Plan>, aligns with the 2050 carbon neutrality goal. Against such a 

backdrop, this research was conducted to forecast Seoul’s building energy 

consumption in the years 2030 and 2050 as an attempt to provide an evaluation of 

the 2050 carbon neutrality goal. For the prediction, Long Short-term Memory 

(LSTM) networks were constructed using historical data from 2010 to 2019. In order 

to account for the inherently uncertain nature of the future, the scenario analysis 

method was used in the forecasting process. Four scenario combinations were 

applied to forecast building energy consumption in 2030, considering two climate 

change scenarios, two socioeconomic scenarios, and a baseline urban development 

scenario based on the 2030 Seoul Plan. For forecasting in 2050, twelve scenario 

combinations were employed, replacing the baseline urban development scenario 

with three different urban development assumptions. The results showed that the 

LSTM models accurately depicted the residential and commercial building energy 

consumption patterns, with acceptable CV(RMSE) values of less than 15%. The 

LSTM models also outperformed traditional statistical method, ARIMA, in 

predicting future energy consumption in the building sector. The results of the energy 
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consumption forecast indicated that by 2050, the electricity consumption in the 

residential sector would range from 14,049,562 MWh to 14,462,569 MWh. The most 

significant factors affecting residential building energy consumption are 

socioeconomic conditions, followed by urban form and climate. In the commercial 

sector, the forecast of electricity consumption by 2050 ranges from 25,808,064 MWh 

to 28,024,238 MWh. The most significant factor affecting commercial energy 

consumption is urban development, followed by socioeconomic conditions. Scaling 

up urban forests is expected to reduce commercial energy consumption by 10.9 to 

12.2%. The evaluation results of the 2050 carbon neutrality goal indicate that none 

of the 12 scenarios come close to reaching the 2030 interim target or achieving the 

2050 goal of carbon neutrality. Nevertheless, the study found that energy transition 

measures, combined with increased urban forests, can significantly cut down 

building sector carbon emissions. 

 

Keywords: Building Energy Prediction, Deep Learning, LSTM, 2050 Carbon 

Neutrality, Scenario Analysis 

Student Number: 2021-21905 
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I. Introduction 

 

1. Research Background 

 Under the current climate regime, which consists of the UNFCCC (1992), the 

Tokyo Protocol (1997), and the Paris Agreement (2015), taking actions and 

committing resources to limit climate change has become not just a moral mandate 

but a legal obligation. The Paris Agreement, the most effective and legally binding 

of all, states that the goal is to limit global warming well below 2, and preferably 

1.5°C compared to the pre-industrial level (UNFCCC, 2015). The International 

Panel on Climate Change (IPCC) is projecting that the goal is only possible when 

global carbon neutrality is achieved by the year 2050 (IPCC, 2018). In response to 

this global consensus, Seoul Metropolitan Government(SMG) pledged to achieve 

carbon neutrality by 2050 in the 2018 Global Climate Action Summit, which made 

it the very first Korean municipality to join the 2050 carbon neutrality goal (서울특

별시, 2021b). Referring to the Climate Action Plan (CAP) that SMG submitted to 

C40 in 2021, SMG is planning to reduce total Greenhouse Gas (GHG) emissions by 

40% level compared to 2008 until 2030, and reach carbon neutrality by 2050, as 

shown in [Figure 1]. For 74.8% of Seoul’s GHG was emitted from the building sector 

in 2020 (서울특별시, 2021a), meeting this goal heavily relies on cutting down 

building energy consumption through designing energy-efficient urban 

environments. However, <2030 Seoul Plan>, the highest-level statutory plan of 

Seoul, was established in 2014 without carbon neutrality in consideration nor careful 

inspections of the potential impact it may have on climate change. Thus, there is a 
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crucial need to examine whether the 2050 carbon neutrality goal aligns with SMG’s  

current urban development plans. 

 

 

[Figure 1] SMG Greenhouse Gas reduction trajectory to achieve 2050 Carbon Neutrality 

(서울특별시, 2021b) 

 

2. Motivation 

 Forecasting building energy consumption is crucial in determining the 

effectiveness and feasibility of current mitigation efforts. In order to forecast future 

energy consumption in a comprehensive manner, it is vital to accommodate today’s 

trends. The identification of factors that could potentially influence building energy 

consumption has been thoroughly investigated in the literature. As much as the level 

of climate change can be affected by building energy consumption, the inverse 

relationship is also possible. Higher energy demand in buildings to adjust to the 

hotter and more extreme climatic conditions may result in a vicious circle of CO2 

emissions (Ciancio et al., 2020). Socioeconomic factors are also crucial determinants 

of building energy consumption. Currently, South Korea is facing gradual changes 

in socioeconomic aspects - a sharp decrease in the total population, a rapid increase 
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in the elderly population, and an economic slowdown are the most prominent ones 

(Park & Yun, 2022). However, research on predicting urban-scale building energy 

consumption, with consideration of various influencing factors in climatic and 

socioeconomic categories, was hard to find. Moreover, few studies have used a 

scenario-based framework to account for the uncertainties of future conditions in 

their predictions. 

 

3. Research Aims 

  As an attempt to fill in the literature gap, this research's primary aim is to forecast 

the electricity consumption of residential and commercial buildings in future Seoul 

through the years 2030 and 2050 under different assumptions on future. It is 

important to note that the purpose of such forecasting does not lie in probing the 

uninvestigated relationship between factors, but rather in examining how future 

energy use will change, assuming the current trends persist. The secondary aim of 

this research is to examine how energy consumption in building sectors would 

change when applying various urban planning measures. The results of this study 

will provide insights for urban planners and policymakers to deal with the 

predictable range of the future. In particular, this research is essential for 

policymakers because estimating the building energy consumption in the year 2030 

can provide an interim evaluation of the 2050 carbon neutrality plan that the SMG 

pledged. It is also helpful for urban planners, as the results of this research can 

suggest concrete urban form regulations and land use plans for the year 2050 as a 

guideline to achieve carbon neutrality. 

  This study seeks answers to the following research question to serve the research 

purposes: Considering the impact of climate change, socioeconomic shifts, and 
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urban development, how will building energy consumption change in Seoul in 2030 

and 2050?    

 

4. Data and Methodology 

  Residential and commercial energy consumption in 25 gu-s in the years 2030 and 

2050 were forecasted, considering various factors from climatic, socioeconomic, and 

urban form categories. With the ongoing electrification tendency in Seoul, only 

electricity consumption among primary energy sources was examined (SMG, 2020).  

  To make the predictions, Long Short-Term Memory (LSTM) neural networks 

were used as a prediction method. As a type of machine learning technique, LSTM 

can effectively handle non-linear relationship between dependent and independent 

variables. Additionally, unlike classical statistics models, LSTM can handle 

autocorrelations in time series data without complex assumptions. Such 

characteristic of LSTM enables the researcher to extract as much information as 

possible from 10 years of panel data consisting of 25 gu, two building sectors, and 

nine features for forecasting future energy consumption. Fifty LSTM models were 

constructed in total, corresponding to two dependent variables – residential and 

commercial electricity consumption and 25 gu in Seoul. The prediction accuracy of 

the LSTM models was evaluated by comparing the RMSE values with the ARIMA 

models. 

In order to address the inherent unpredictability of the future, different sets of 

scenarios were employed in the forecasting process. Specifically, four sets of 

scenario combinations were used to project the building energy consumption in 2030, 

based on two climate change scenarios, two socioeconomic scenarios, and one urban 

development scenario. For forecasting in 2050, a total of twelve sets of scenarios 
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were used, based on two climate change scenarios, two socioeconomic scenarios, 

and three urban development assumptions. 

The research consists of four major stages as show in [Figure 2]. In the data 

collection stage, historical data from 2010 to 2019 in the four categories – energy, 

climatic, socioeconomic and urban form were collected to be used as input for LSTM 

model construction. In the next scenario making stage, scenarios for 2030 and 2050 

were created and future values of independent variables were generated 

corresponding to each scenario. In the modelling stage, fifty LSTM models were 

built using the historical data collected in the first stage. With the exact same data, 

twenty-five ARIMA models to predict residential electricity consumption in 25 gu 

were constructed at the same time, to be used as a comparison purpose. Finally, in 

the forecasting stage, future values of dependent variables were used as input to the 

constructed LSTM models, to forecast building energy consumption under four 

different scenarios combinations in 2030 and twelve combinations in 2050.  
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[Figure 2] Flow chart of building energy consumption forecast under different scenario combination
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II. Literature Review 

  

 This section investigates the reasoning behind the choices of independent variables, 

dependent variables and forecasting method by reviewing previous literature on 

building energy consumption. Literature was explored in two aspects, one being 

explanative and the other being predictive, following the categorization presented by 

Nakata et al., (Nakata et al., 2010). In the paper, it is suggested that the researchers 

aiming to contribute to energy system design should construct models to serve either 

two purposes: “explain, or predict and/or control the actual situation of energy 

systems”. Researches using the “explaining” models are categorized as explanatory 

studies on building energy consumption and covered in the first part of this section. 

The studies presented “predict and/or control” models are reviewed in the second 

part as prediction studies. The third part summaries the reviewed works, and point 

out the limitation from the literature to identify the contribution of this research. 

 

1. Explanatory Study on Building Energy Consumption 

 Over the past years, many scholars from various disciplines have explored the 

influencing factors of building energy consumption. The variables identified in the 

previous explanatory studies can be categorized into three groups - climatic influence, 

socioeconomic determinants, and urban form and land use factors.  

1) Climatic Influence 

Several studies on climatic influence on building energy and electricity 

consumption were found. Such researches have mainly focused on electricity 
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consumption changes caused by heating and cooling behaviors inside the buildings 

in the research scope (Fan et al., 2019). Due to the non-linear relationship between 

temperature and energy consumption, researchers often replaced temperature values 

with a set of new derived variables such as Cooling Degree Days(CDD) and Heating 

Degree Days (HDD) to conduct quantitative and numerical analysis (Ang et al., 

2017). Unlike most existing studies focusing on a single sector of the buildings, or 

treating energy from all types of buildings as a whole, Moral-Carcedo et al,. explored 

residential, service and industrial sector separately (Moral-Carcedo & Perez-Garcia, 

2015). The paper provides that the sectoral difference in terms of temperature effects 

on electricity has been found to be significant, the highest sensitivity being firms in 

the service sector.  

2) Socioeconomic Determinants 

Sarwar et al. investigated the relationship among economic growth, electricity 

consumption, and total population using panel data from 157 countries of 1960 to 

2014, and concluded there was a significant correlation among all the studied 

variables (Shahbaz et al., 2017). Demographic variables are particularly investigated 

often in the literature. Brounen et al. examined gas and electricity consumption of 

more than 300,000 households and concluded that the aging population will 

significantly increase the future demand for residential sector building energy 

(Brounen et al., 2012).   

3) Urban form and Land Use Factors  

 Chen et al. investigated 231 communities in Tainan city, Taiwan to examined the 

relationships between urban density, community layout, and land use factors and 

household electricity consumption simultaneously, along with building 

characteristics and demographic (Chen et al., 2018). From the result, the literature 
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indicated that the urban form factors such as greater population density, greater urban 

canyon narrowness, greater percentages of vacant space are associated with lower 

household electricity consumption.  

 

2. Prediction of Building Energy Consumption 

1) Prediction Scale 

 The field where the building energy consumption prediction work has most 

frequently been investigated is the architecture engineering field, the main focus 

point being on building optimization. Somu et al., investigated the use of deep 

learning models to predict future energy consumption of four floor building in Indian 

Institute of Technology Bombay, India using a minute frequency data from 2017 to 

2019 (Somu et al., 2021). The literature used short, high-frequency data to build 

models, and then predicted the short-term future by profiling energy consumption 

patterns. Larger scales of building energy prediction research were less likely to be 

found. (Gassar & Cha, 2020; Somu et al., 2021; 공동석 et al., 2010). 

 However, with the recent rising importance of carbon neutrality goal, scholars in 

the urban planning field have started to explore the future change of building energy 

consumption considering upcoming changes. Zuo et al., conducted a research to 

identify 30 provinces in China’s carbon peak using LSTM-STRIPAT model, and 

assessed the drivers of the carbon emissions in different regions (Zuo et al., 2020). 

Liu et al., investigated the long-term monthly electricity demand in Hong Kong 

under future climatic and socioeconomic changes by the year 2100 using six machine 

learning models (Liu et al., 2021). Also, Zheng’s research team has come up with a 

study exploring the climate change impacts on electricity demands in Guangzhou, 
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China by the year 2095 (Zheng et al., 2020).    

 

2) Dependent and Independent Variables 

 Studies of building energy prediction utilize the results from the explanatory studies 

to examine the future changes of energy consumption. Studies which examined the 

effects of climate change on building energy largely focused on the residential 

building sector, analyzing the changes in electricity demand caused by heating and 

cooling behaviors (Fan et al., 2019). Huang’s study extended the analysis to 

commercial buildings and examined residential and commercial building energy use 

in the United States at the state level (Huang & Gurney, 2017). The conclusion 

indicated that at the end of the century, energy demand in some parts of the US the 

energy demand in two types of buildings is going to increase by more than 50%. Lee 

et al. forecasted residential building energy consumptions from cooling and heating, 

with consideration of climate change as well as the socioeconomic shifts in future 

Korea using the year 2010 to predict the year 2050 (이미진 et al., 2015). The result 

indicated that the cooling energy demand is going to increase significantly, while 

demand for heating will decrease. Jeong et al. conducted scenario research to present 

the ways in which the building sector in Korea can reach carbon neutrality by 2050. 

Presented scenarios were: Obligatory zero energy building scenario, Green 

remodeling scenario, high energy efficiency technology – infrastructure supply 

scenario, building energy information infrastructure and behavioral improvement 

scenario, and low CO2 energy source scenario. but the analysis was limited to 

apartment buildings and no prediction model was employed. (정영선 et al., 2021) 
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3) Prediction Methods 

 There are several ways to categorize the prediction models used in building energy 

forecast studies. Somu et al., defined them as Engineering methods, statistical 

methods, and artificial intelligence methods (Somu et al., 2021). Amasyali & El-

Gohary reviewed researches on data-driven building energy consumption prediction, 

and concluded that two main approaches have been taken for building energy 

consumption prediction, one being “physical modelling approach”, and the other one 

being “energy analysis” (Amasyali & El-Gohary, 2018). The researches belonging 

to the first category utilizes software such as EnergyPlus, eQuest, and Ecotect to 

calculate building energy consumption. In Korean context, scenario analysis is often 

employed. 
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[Table 1] Large-scale building energy consumption prediction study with multiple 

independent variables 

Reference 
Forecast 
Methods 

Dependent 
Variables 

Independent 
Variables 

Modelling 
(t unit) 

Predict 
(t unit) 

Site  
(level) 

(D'Agosti
no et al., 
2022) 

simulation 
Residential 
electricity 

Climatic 
2004-2018 
(hourly) 

~ 2060 
(hourly) 

Milan 
(building) 

(Liu et al., 
2021) 

Machine 
learning 

Residential, 
Commercial 
Electricity 

Climatic, 
Socio- 
economic 

2003-2008 
(monthly) 

~2100 
(monthl
y) 

Hongkong 
(city) 

(Zheng et 
al., 2020) 

Statistics 
Total, 
Residential 
electricity 

Climatic, 
Socio- 
economic 
(GDP) 

2004-2015 
(monthly) 

~2100 
(monthl
y) 

Guangzhou 

(city) 

(Fan et 
al., 2019) 

Statistics 
Electricity 
consumptio
n 

Climatic,  
Socio- 
Economic 

1995-2016 ~2100 

30 
Province 
in China 
(Province) 

(Ang et 
al., 2017) 

Statistics 

Electricity in 
residential, 
commercial, 
industrial 
sector  

Climatic  
1990-2015 
(monthly) 

- 
Singapore 
Hong Kong 
(City) 

(Gunay, 
2016) 

Machine 
learning 

Gross 
electricity 
consumptio
n 

Climatic, 
Socio- 
economic 

1975-2013 
(yearly) 

2028 
Turkey 
(national) 

(Bilgili et 
al., 2012) 

Machine 
learning 

Residential, 
Industrial 
Electricity 

Socio- 
economic 

1990-2003 
(yearly) 

2008 
-2015  
(yearly) 

Turkey 
(national) 

(정영선 

et al., 
2021) 

Scenario  

Carbon 
emission 
from 
building 
sector 

Socio- 
economic, 
Urban Form  

2012-2020 
(yearly) 

2050 
Korea 
(national) 

(Lee & 
Kim, 
2019) 

Scenario  

Carbon 
emission 
from new 
apartment 
buildings  

Urban Form 2017 ~2030 
Korea 
(national) 

(이미진 

et al., 
2015) 

Scenario 

Residential 
cooling and 
heating 
energy 

Climatic, 
Socio- 
economic 

2010 2050 
Korea 
(national) 
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3. Summary of Literature Review 

 The influencing factors of building energy consumption can be categorized into 

climatic, socioeconomic, and urban form factors. Based on the three categories, 

[Table 1] summarizes large-scale building energy consumption prediction studies 

reviewed in this research. Three major limitations of previous study were found in 

the process of literature review. 

Firstly, previous studies mostly examined future changes of national or 

metropolitan city scale energy consumption with compromised prediction accuracy 

and limited suggestions to urban planners and policymakers in designing energy-

efficient neighborhoods. 

Secondly, in the aspect of variable selection, residential buildings were most 

frequently investigated in this research area, with seven out of ten researches in the 

list of reviewed studies considering residential energy consumption as a dependent 

variable. However, commercial sector was less likely to be examined, as only two 

studies covered the sector, with Korean paper not being among the two. Furthermore, 

among the ten reviewed papers on large-scale building energy prediction, only one 

research by Jung et al. (2021) comprehensively considered independent variables 

from three categories.  

Finally, Methodology-wise, neural network models and scenario analysis were 

frequently employed in forecasting as separate methodology. However, no study 

implemented the methods as a combination.  

 As an attempt to fill in the gap in the literature, this study forecasts building energy 

consumption in residential and commercial sector of 25 gu in Seoul with 

consideration of features from three categories using LSTM and scenario analysis.  
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III. Data 

 

1. Research Range 

1) Study Scope 

(1) Spatial Scope: Seoul 

 The spatial scope of this research is Seoul, South Korea. As the capital city of South 

Korea, Seoul is considered to be one of the major cities in the world, accommodating 

51,744,876 population as of the year 2021. Seoul consists of 25 autonomous “gu” 

districts (자치구), which act as a basic unit of local government. The 25 gu are further 

divided into 426 administrative “dong” sub-units (행정동). 

 

[Figure 3] Spatial scope: Seoul City, 25 gu 
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(2) Temporal Scope: 2010~2019, 2030, 2050 

The temporal scope of this research is from 2010 to 2050. Ten years of historical 

data from 2010 to 2019 was used to construct fifty models to predict monthly 

residential and commercial electricity use in 25 gu, independently. With the 

constructed LSTM models, forecasts of building energy consumption under four 

different scenario combinations, which consist of two climate change and two 

socioeconomic scenarios, were presented for the year 2030. Then, applying three 

assumptions of urban development to the existing climate change and socioeconomic 

scenario combinations, total of 12 building energy consumption forecast for the year 

2050 were provided. 

2) Unit of Analysis 

(1) Spatial Unit: Jachi-gu 

 The spatial unit of the research is 25 gu of Seoul for the following two reasons. 

First, entrusted by the SMG under the current <Enforcement Rule of Ordinance on 

Urban Planning>, gu is the smallest unit of municipal government that can determine 

and implement urban plans (양재섭 et al., 2020). By examining the future building 

energy consumption at gu level, this study can provide policy guidance to every gu 

in Seoul for making energy-efficient urban environment. Second, as the major unit 

of data provided by the SMG is gu, setting the spatial unit as gu can make the most 

out of the available data. 

(2) Temporal Unit: Month 

 To capture the seasonal changes in energy consumption from the two building 

sectors, and to make the most out of available data, monthly time series data were 

collected to forecast the future changes of monthly energy consumption.  
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2. Choice of Variables 

1) Data Availability 

 As this research investigates the past and future of the building energy consumption, 

the choice of variables largely relied on the availability of the related data. Therefore, 

the availability of variables in four sectors, namely energy, climatic, socioeconomic, 

and urban form were checked rigorously, before setting a variable list used in the 

study. 

 Data availability of energy consumption was identified as shown in [Table 2]. The 

definition of building energy consumption varies, but SMG divides building energy 

into “residential”, “commercial”, “public”, and “agriculture, forestry and fishery” 

sectors in the Greenhouse Gas inventories (서울특별시, 2021a). However, the latter 

two take up only 5% of the greenhouse gas emission from the total building energy 

consumption, only residential and commercial energy consumption was considered 

in this research for the simplicity of analysis. 

 To extract energy consumption from the buildings, sectoral use of energy should 

be provided. Also, to consider the effect of seasonal climate change to energy 

consumption in the future, the energy data must be achievable in a monthly basis. 

Excluding the national or Si-Do scale data and the data shorter than five years, only 

gas and electricity consumption data from MOLIT, and sectoral electricity 

consumption data from KEPCO were left in the list. The MOLIT data was too 

abundant with missing values, therefore the data would be hard to represent energy 

consumption behavior of each gu. Finally, the KEPCO data was chosen as the source 

of the dependent variables – residential and commercial electricity consumption. 



17 

[Table 2] Availability of energy consumption data in Seoul 

Data 
Sector 

Use 
Data 
Site 

Spatial 
Unit 

Time 
Unit 

‘00 ‘05 ‘10 ‘15 ‘20 Source 

gas&electicity O Korea parcel M   11   21 MOLIT 

electricity O Seoul gu M 04       21 KEPCO1 

electricity O Seoul dong M    16 21 SMG 

electricity O Korea gu M 02       21 SMG 

gas O Seoul dong M    16 21 SMG 

gas O Seoul dong Y  07     20 SMG 

gas O Korea company M 01       20 KOGAS 

gas O Korea national Y 86     19  KOGAS 

gas X Korea si M 00       20 KOGAS 

gas X Korea national H   13 18  KOGAS 

gas O Seoul gu Y 04       20 SMG 

GHG O Seoul si(1) Y  05   19  SMG 

GHG O Seoul si(1) Y   11 19  SMG 

total energy O Seoul dong M    16 21 SMG 

total energy O Korea gu Y    18 20 
Green 
Together 

total energy O Korea si Y    18 20 KOSIS 

Notation: Y- yearly, M- monthly, H- hourly frequency 

 

 Next, data availability of climatic, socioeconomic and urban form in Seoul was 

check as shown in [Table 3] and [Table 4]. 

[Table 3] Availability of climatic, socioeconomic and urban form data in Seoul 

No Division Data 
Data 
Site 

Spatial 
unit 

Time 
unit 

‘00 ‘05 ‘10 ‘15 ‘20 source 

1 Climatic 
Surface 
Temperature 

Korea dong H   10   22 KMA 

2 

Socio 
economic  

GRDP Seoul gu Y   10 19  SMG 

3 GRDP Seoul si(1) Y 85     19  SMG 

4 
De facto 
population 

Seoul dong D    17 22 SMG 

5 population Korea gu M   11   22 KOSIS 

                                                           
1 서울 열린데이터 광장(한국전력공사, 서울시 전력 사용량(용도별) 통계), 2022.10.21,  

(https://data.seoul.go.kr/dataList/378/S/2/datasetView.do) – 주거용계, 상업용계 

전력 사용량 

https://data.seoul.go.kr/dataList/378/S/2/datasetView.do
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7 population Korea gu M     21 KOSIS 

8 elderly ratio Korea gu M  08     21 KOSIS 

9 
One-person 
household 

Seoul gu Y 00     21 SMG 

11 
Household 
number 

Seoul Gu Y 00    21 SMG 

10 

Urban 
Form 

building age Korea parcel Y    15 22 KOSIS 

11 land use Korea gu Y 90     21 SMG 

12 
FAR 
regulation 

Korea Si Y   12  21 KOSIS 

13 
CR 
regulation 

Korea Si Y   12  21 KOSIS 

Notation: Y- yearly, M- monthly, D-daily, H- hourly frequency 

 

[Table 4] Future data availability 

Data Site Unit  
time 
unit 

‘20 ‘25 ‘30 ‘35 ‘40 ‘45 ‘50 Source 

Temperature Korea 
Dong 
Or 
1km2 

Day       2100 
IPCC / 
KMA 

population Korea 
Nation 
(1) 

year             2070 KOSIS 

population by 
age 

Korea 
Nation 
(1) 

year             2070 KOSIS 

population Korea Si year             2050 KOSIS 

population by 
age 

Korea Si year             2050 KOSIS 

GDP growth 
rate 

Korea 
Nation 
(1) 

year       2050 KOSIS 

GRDP growth 
rate 

Seoul Si (1) year         2040     SMG  

population Seoul Gu year         2037     SMG  

population by 
age 

Seoul Gu year         2037     SMG 

population by 
age 

Seoul Gu year         2037     SMG 

 

2) Choice of Independent Variables 

 To forecast future energy consumption in a comprehensive manner, it is important 

to accommodate today’s trends. SMG defines upcoming changes of Seoul in five 

divisions. The rise of elderly population and 1 or 2 person household, economic 

slowdown and polarization, increase of natural disaster due to climate change, and 

https://kostat.go.kr/portal/korea/kor_nw/1/2/6/index.board?bmode=read&bSeq=&aSeq=415453&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt=
https://www.si.re.kr/node/59326%20(p.181)
https://data.seoul.go.kr/dataList/10821/S/2/datasetView.do
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lack of development site and mass obsolescence of building complexes (서울특별

시, 2014). Upon investigating the data availability of possible features, a set of 

independent variables were chosen following the criteria presented below. 

 

<Criteria of variable choice> 

 1. Historical Data Availability 

   1-1. Data should be obtainable at gu-level 

   1-2. Data from 2010 to 2019 should be available  

 

 2. Future Data Availability of Climatic, Socioeconomic Features 

 

   2-1. Projection data by 2050 should be available 

   2-2. The projection data should be in gu-level 

    Or, gu-level disaggregation method should be provided by  

       the official sources 

 

 

 A set of dependent variables, consisting of residential and commercial sector of 

building energy consumption was prepared. Such sectoral breakdown is based on a 

literature stating that the sectoral building energy consumption pattern analysis is 

more accurate than the aggregated one (Moral-Carcedo & Perez-Garcia, 2015). 

To represent the climatic condition, monthly average surface temperature was used. 

For socioeconomic factor, Gross Regional Domestic Product, total registered 

population, and elderly ratio is going to be collected. As for urban development 

variables, the selected features should be able to reflect the urban development and 

land use change of Seoul. Building age was the most representative feature, therefore 
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it was included as a form of derived variables. For this, ages of buildings in every 

Jachigu were computed for every year of analysis. Therefore, the percentage of 

newly built buildings were calculated as percentages of buildings under 10 years 

among the total count of buildings. Seoul doesn’t have much space to change in 

terms of land use, however since the current Seoul government has plans to make 

Seoul a “Green City”, Green Space Ratio was included in the variable list. 

  

   
[Figure 4] Land use distribution map in Seoul: Green area, residential, commercial purpose 

(Seoul Spatial Information Map (서울시공간정보지도)) 
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3. Historical Data Collection 

Examining the data availability as shown in [Table 2,3,4], the full set of data was 

collectable from the year 2010. Since the study do not consider the COVID-19 

effects on building energy consumption, the data from 2020 was not applicable to 

the model. Therefore, historical data from 2010 to 2019 was used to construct the 

prediction model. The variable list presented in [Table 5] shows the unit and counts 

of the raw data collected from 2010 to 2019. There are two dependent variables, but 

the models are not aim to produce multi-outputs, and models were constructed 

independently to forecast monthly electricity consumption of the two sectors. Yearly 

frequency data were adjusted to monthly frequency using the linear interpolation 

method, based on a literature which examined the prediction accuracy of neural 

networks with various frequency data, and concluded that input data interpolation 

improves the prediction power of such models (Raubitzek & Neubauer, 2021). Land 

use variables were included to provide the models dependent variable specific 

feature. Therefore, when constructing residential electricity consumption prediction 

models, commercial land use variable was excluded from the list, and vice versa. For 

the descriptive statistics of the historical data, see [Appendix B]. For plots of every 

variables in every gu, see [Appendix C]. 

  



22 

 

  

 

 

  

[Table 5] Variable List 
 

Division Category 
Variable 

Name 
Contents Unit t unit(t) Obs. source 

Dependent 
Variable 

Building 
energy 
consumption 

Residential 
electricity 
use 

Electricity 
consumption in 
residential use 
buildings 

Mwh  

 SMG 

Commercial 
electricity 
use 

Electricity 
consumption in 
commercial use 
buildings 

Mwh  
Monthly 
(2010.1~ 
2019.12) 

3,000 

SMG 

Independent 
Variable 

Climatic 
temperature 
HDD 

Monthly 
average surface 
temperature 

°C   KMA 
 

Socio 
economic 

GRDP 

Gross Regional 
Domestic 
Product (2015 
base) 

1,000₩ 
Yearly** 
(2010~2019) 

250 KOSIS 

Total 
population 

total registered 
population 

Person  
 

KOSIS 

Elderly 
population 
ratio 

Ratio of 
population older 
than 65 years 
old 

% Monthly 
(2010.1~ 
2019.12) 

3,000 

KOSIS 

Youth 
population 
ratio 

Ratio of 
population 
younger than 15 
years old 

%   KOSIS 

Urban  
Development 

New 
building 
ratio 

Ratio of 
buildings under 
10 years 

%   MOLIT 

Total Floor 

Area 

Sum of all 

buildings’ floor 

area in a gu 

m2   SMG 

Green Area 

Ratio 

Percentage of 

green area in a 

gu 

% Yearly ** 

(2010~2019) 

250 MOLIT 

Residential 

Land Use* 

Area of 

residential land 

use 

m2   MOLIT 

Commercial 

Land Use* 

Area of 

commercial land 

use 

m2   MOLIT 

*land use variables were included corresponding to the dependent variable of the model             
** yearly frequency data were adjusted to monthly frequency using linear interpolation 
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4. Future Data Generation 

 

 In order to address the uncertainties of the future, the total of 4 and 12 sets of 

scenario combinations were employed in the process of forecasting building energy 

consumption of the year 2030 and 2050. The reason for setting different numbers of 

scenario combinations is that the purpose of forecasting building energy 

consumption in the year 2030 differs that of the year 2050.  

 The aim of forecasting building energy consumption in the year 2030 is to provide 

the interim evaluation of the 2050 carbon neutrality goal, and to offer an assessment 

of how much of the current masterplan <2030 Seoul Plan> is in line with the current 

climate change mitigation strategy <2050 Climate Action Plan>. However, the 

purpose of 2050 projection is to examine various combinations of urban form 

alterations under different climatic and socioeconomic conditions to examine the 

ways of which Seoul can meet the 2050 carbon neutrality goal. Corresponding to 

each scenario, future data availability was checked and generated following the two-

step procedure. First, if the future prediction data is readily available from credible 

sources based on reasonable historical data and appropriate methods, they were used 

in the study. Second, if there are future predictions but with outdated historical data, 

the future data was calculated using the same methods but with updated historical 

data.   
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[Table 6] Assumptions adopted for scenario analysis 

Category Scenario Name Assumptions on future conditions Time 

Climate 

Change 

SSP1-RCP2.6 
(SSP126) 

Best case scenario: Sustainable society + 

Very low GHG emissions 

2020 ~ 

2050 

 
SSP5-RCP8.5 
(SSP585) 

Business as Usual: Unsustainable society + 

Very high GHG emissions 

Socioeconomic 

Shifts 

KOSIS Low Low birth rate, Low life expectancy, Low net 

migration 

2020 ~ 

2050 
KOSIS High High birth rate, High life expectancy, High 

net migration 

Urban 

Development 

2030 Seoul Plan 
(baseline 2030) 

Urban development following plans stated 

in <2030 Seoul Plan> and scheduled urban 

redevelopment and regeneration projects 

by 2030 

2020 ~ 

2030  

Assumption #0 No significant change from 2030 2031 ~ 

2050  Assumption #1 Green city initiative Scenario 

Assumption #2 High Density Redevelopment Scenario 
 

 

1) Climate Change Scenarios 

Climate Scenarios are sets of different possible futures that characterize the 

uncertainties of complex interactions between human and environmental systems 

(O'Neill et al., 2021). They have been a key component of global climate change 

research as they enable the researchers to collaborate under the same set of 

assumptions on upcoming changes. Among series of climate scenarios, the SSP 

(Shared Socioeconomic Pathways) – RCP (Representative Concentration Pathway) 

scenario frameworks were used as future climate assumptions.  

 The RCPs consist of four pathways that lead to certain radiative forcing by the end 

of this century. Namely, A very high baseline emission (BAU) scenario that leads to 

radiative forcing levels of 8.5, two medium stabilization scenarios that end up 6 and 

4.5 of radiative forcing, and a low forcing level scenario that lead to 2.6 radiative 

forcing. IPCC officially adopted RCPs in the 5th Assessment Report (IPCC, 2014) 
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as a basis for the development of new climate change projections. In the same report, 

the design of the socioeconomic dimension of the scenario framework was 

established since the RCPs do not form a comprehensive set for elements other than 

GHG concentrations and associated radiative forcing. The SSP basic Scenarios 

provide five distinctly different future developments of socio-economic factors with 

no climate change impacts occurring, nor climate policy responses implemented 

(O'Neill et al., 2021)(see [figure 5] for elements). As both SSPs and RCPs are 

incomplete by design (O'Neill et al., 2021), by combining the societal features 

depicted in the SSPs with RCP climate projection, a rigorous assessment of how the 

future climate system changes would affect us will become feasible. 

  
[Figure 5] Elements of RCP (right) and SSP (left) scenarios (Fuss et al., 2014) 

  
 

 
[Figure 6] SSP-RCP scenario combinations (O'Neill et al., 2021) 
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The Korean Meteorological Administration offers future climate projection data 

under SSP5-8.5 and SSP1-2.6 scenarios in 1km2 resolution and daily frequency2. 

With Daily minimum, maximum, average surface temperature projection data 

coming in NetCDF file format, monthly Heating Degree Days and Cooling Degree 

Days of every gu in Seoul were calculated. The NetCDF file is in 3-Dimensional 

data structure. Each dimension contains coordinates of designated place, time 

element and value of the data. In order to extract weather data from the NetCDF files, 

first the coordinates of every 1km X 1km grid centroid in Seoul were gained using 

ArcGIS pro as shown in [Figure 8]. Then, the extracted coordinates, together with 

daily time stemps in the period between January 2020 to December 2050 were used 

as inputs to the NetCDF files to get average daily surface temperature. Finally, every 

grid’s daily average surface temperature in a gu was aggregated into monthly 

frequency to represent the gu’s monthly average temperature. 

                                                           
2 기상청 기후정보포털 (기후변화 시나리오>다운로드>데이터), 2022.10.22  

http://www.climate.go.kr/home/CCS/contents_2021/35_download1.php  

 
[Figure 7] Change of annual average surface temperature under two climate change 

scenarios 

http://www.climate.go.kr/home/CCS/contents_2021/35_download1.php
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Code 11010 11020 11030 11040 11050 

Gu name Jongno-gu Jung-gu Yongsan-gu Seongdong-gu Gwangjin-gu 

Grid count 10 6 13 11 13 

Code 11060 11070 11080 11090 11100 

Gu name Dongdaemun-gu Jungnang-gu Seongbuk-gu Gangbuk-gu Dobong-gu 

Grid count 13 24 28 27 27 

Code 11110 11120 11130 11140 11150 

Gu name Nowon-gu Eunpyeong-gu Seodaemun-gu Mapo-gu Yangcheon-gu 

Grid count 53 39 22 29 8 

Code 11160 11170 11180 11190 11200 

Gu name Gangseo-gu Guro-gu Geumcheon-gu Yeongdeungpo-gu Dongjak-gu 

Grid count 64 26 16 28 16 

Code 11210 11220 11230 11240 11250 

Gu name Gwanak-gu Seocho-gu Gangnam-gu Songpa-gu Gangdong-gu 

Grid count 43 54 47 46 41 
 

[Figure 8] Future climate data processing – 1km2 grid counts of 25 gu 
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2) Socioeconomic Shifts 

 Statics Korea (KOSTAT) started announcing Korea’s Si-do level population 

projection results in 5-year basis from 1998. The most recent one is <Population 

Projection (Si-do): 2020~2050>, which was made public in May 2022 (SMG, 2022). 

The report provides population projections of 17 Si-do under 7 different scenarios 

from 2020 to 2050.3 Gu-level population projection in Seoul was first started from 

2016, using Si-gun-gu level population projection disaggregation method invented 

by the KOSTAT (서울시, 2020). The most recent gu-level projection report was 

made public in June 2020, containing population projection results of 25 gu in Seoul 

from 2017 to 2037, based on 2017 data.4 As the forecasting time period of this 

research is from 2020 to 2050, Seoul’s gu-level population projection data needed to 

be extended until 2050, by rigorously following the gu-level disaggregation methods 

presented in the report. Low and High KOSIS scenario in Si-do level projection 

report was employed to account for the future uncertainties. KOSIS High scenario 

represents population under high birth rate, high life expectancy, and high net 

migration assumption, whereas Low scenario represents that of low birth rate, low 

life expectancy, and low net migration.      

 SMG uses Cohort Component method to predict the future changes of population 

fluctuation factors - birth, death, and migration – and applies demographic balancing 

                                                           
3 KOSIS (통계청, 장래인구추계(시도편): 2020~2050 년), 2022.10.22  

https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPB001&conn_path

=I2  

4 서울 열린데이터 광장 (서울시 자치구별 연령별 인구 (추계인구) 통계), 2022.10.22 

https://data.seoul.go.kr/dataList/10837/S/2/datasetView.do#  

https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPB001&conn_path=I2
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPB001&conn_path=I2
https://data.seoul.go.kr/dataList/10837/S/2/datasetView.do
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equation (DBE) to calculate a year-forward population as shown in [Figure 9]. 

Instead of 2017, population data in 2020, provided by the Ministry of the Interior 

and Safety (MOIS)5 was used as a baseline data to project gu-level population from 

2020 to 2050. The baseline population was adjusted referring to 2020 Seoul total 

population projection in <Population Projection (Si-do): 2020~2050>. From the 

same report, Seoul’s fertility rates6 and mortality rates7 from 2020 to 2050 under 

High and Low scenario were taken and used to project population of every gu. To 

predict net migration, Original-Destination Matrix by age and gender was first 

constructed with the past 5 years of migration micro data8, and applied to the future 

cohort population. The final values were adjusted referring to Si-do level net 

migration under the two scenarios. 9  5-year average of sex ratio at birth was 

calculated for every gu, and used as fixed value. The summary of reference and 

baseline data used in the population projection process is in [Table 7].  

 From the Cohort component analysis of every gu, future values of three 

demographic variables – the total population, ratio of elderly population over 65 

years old, and ratio of youth population under 15 years old were calculated, 

                                                           
5 행정안전부 (주민등록 인구 및 세대현황, 연령별 인구현황>등록구분: 거주자), 

2022.10.22 https://jumin.mois.go.kr/ageStatMonth.do  

6 KOSIS (통계청, 장래 연령별 출산율/시도>고위, 저위 시나리오), 2022.10.22 

https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA101  

7 KOSIS (통계청, 장래 생명표/시도>고위, 저위 시나리오), 2022.10.22 

https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA401  

8 MDIS (통계청, 국내인구이동통계), 2022.10.22 

https://mdis.kostat.go.kr/dwnlSvc/ofrSurvSearch.do?curMenuNo=UI_POR_P9240  

9 KOSIS (통계청, 장래 성 및 연령별 순이동률/시도> 고위, 저위 시나리오), 

2022.10.22 https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA401  

https://jumin.mois.go.kr/ageStatMonth.do
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA101
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA401
https://mdis.kostat.go.kr/dwnlSvc/ofrSurvSearch.do?curMenuNo=UI_POR_P9240
https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA401
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corresponding to the two socioeconomic scenarios. The calculated results were 

plotted and presented in [Figure10, 11, 12]. 

 The most distinctive socioeconomic shift that is observable from the generated 

future data, is aging society. By 2025, the average percentage of older adults in Seoul 

under both Low and High scenarios passed 20%, entering a “Super Aged Society” 

by definition.At the end of the year 2050, the average older adult ratio of Seoul went 

up to 39.25% under the Low scenario and 36.51% under the High scenario. KOSIS 

High scenario resulted in higher total population, lower elderly population ratio, and 

higher youth population ratio than the Low scenario.  

 

   Demographic Balancing Equation:  

 

Pt: population in year t, B(t-1,t): birth, D(t-1,t): death, M(t-1,t): net movement 

 

[Figure 9] Gu-level population projection process using Demographic Balancing 

Equation and Cohort Component Method (서울시, 2020) 
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[Table 7] List of data used to calculate gu-level population projection by 2050 

Purpose Data year level Source 

Reference 

Sex ratio at birth 2016~2020 Gu KOSIS 

Net Migration,  
Net migration rates 

2016~2020 Gu KOSIS 

Baseline 
Data 

Population by gender, age 2020 Gu MOIS 

Scenario 
generation  
(High, Low) 

Fertility rates 
2020~2050  
(5years gap) 

Si KOSIS 

Mortality rates 
2020~2050  
(5years gap) 

Si KOSIS 

Net Migration rates 
2020~2050  
(5years gap) 

Si KOSIS 
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[Figure 10] Future projection of total population (person) 

 

[Figure 11] Future projection of population above 65 years old ratio (%) 

 

[Figure 12] Future projection of population below 15 years old ratio (%) 
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3) Urban Development Scenarios  

 <2030 Seoul Plan> is the current highest-level statutory plan for the urban 

development in Seoul. SMG also provides the detailed information on urban 

regenerations and redevelopment projects, as shown in [Figure 13]. By investigating 

the two pieces of information, the future urban form and land use change data for the 

year 2030 were collected. To project the newly built building ratio in each gu, 

ArcGIS was used. First, two kinds of shape files were collected: one containing the 

information on all the buildings in 2019 from NSDI10, and the other geographical 

information on the areas, of which redevelopment is planned to be implemented11. 

Assuming the planned redevelopments are completed by the end of the year 2030, 

and the number of buildings will stay the same, young building ratio under 10 years 

were calculated. As for the total floor area by 2030, the <2030 Seoul Plan> states 

that the total floor area of Seoul in 2030 is expected to increase by 53,563ha.  

                                                           
10 NSDI (국가공간정보포털 오픈 API > 국가공간 개방데이터 > 파일데이터 > 

GIS 건물정보 > 서울특별시), 2022.11.01 

http://openapi.nsdi.go.kr/nsdi/eios/ServiceDetail.do?provOrg=NIDO&gubun=F&svcId=F01

8&svcSe=F  

11 SMG (서울공간정보맵> 기초현황 > 도시관리계획) 2022.11.01 

https://space.seoul.go.kr/spmsGisMain.do?MenuMain=MENU0001&MenuSub=SUB00001

&q=l:%EB%85%B9%EC%A7%80%EC%A7%80%EC%97%AD&loginId=#  

http://openapi.nsdi.go.kr/nsdi/eios/ServiceDetail.do?provOrg=NIDO&gubun=F&svcId=F018&svcSe=F
http://openapi.nsdi.go.kr/nsdi/eios/ServiceDetail.do?provOrg=NIDO&gubun=F&svcId=F018&svcSe=F
https://space.seoul.go.kr/spmsGisMain.do?MenuMain=MENU0001&MenuSub=SUB00001&q=l:%EB%85%B9%EC%A7%80%EC%A7%80%EC%97%AD&loginId=
https://space.seoul.go.kr/spmsGisMain.do?MenuMain=MENU0001&MenuSub=SUB00001&q=l:%EB%85%B9%EC%A7%80%EC%A7%80%EC%97%AD&loginId=
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[Figure 13] Areas scheduled for urban redevelopment and regeneration plans in Seoul                        

 

[Figure 14] Change of newly built buildings (% of total building count) under <2030 

Seoul Plan> 

 

 As for development scenarios of the year 2050, the future data collection is solely 

dependent on the question, “How should, or would the future Seoul look like?”. 

Upon deliberating on the question, three urban development assumptions were set 

for 2050. Currently, there’s not much room for Seoul in terms of land use change – 

simply because there are no lands available to be converted. However, there are 

possibilities of growth in green area ratio as one of the key components of current 
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SMG’s goal is to make Seoul a “Green City”. As part of the Green City initiative, 

plans to make boulevards into underground roads and convert the sites into parks 

were proposed (as a matter of fact, the plans were initially stated in <2040 Seoul 

Plan> that was made public in the early 2022, but the masterplan is currently blanked 

out). Furthermore, the Korean Forestry Service has come up with a plan to expand 

the scale of urban forest by 20m2 per capita. Therefore, the first assumption for urban 

development scenario is the “Green city initiative Scenario”, which alters the green 

area in Seoul of a scale of 20m2 per person. Second assumption in “High Density 

Redevelopment Scenario”, where the growth rate of total floor area by 2030 is 

extended by 2050 using linear extrapolation. Additionally, assumption 0 was set as 

a baseline, to represent the future when the urban form condition which resulted from 

<2030 Seoul Plan> persisted by the year 2050. 

 

 

[Figure 15] Future of Green Area Ratio, under <2030 Seoul Plan> and 2050 Forest 
Service Scenario under KOSIS High scenario 
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[Figure 16] Future of Green Area Ratio, under 2030 Seoul Plan and 2050 Forest Service 
Scenario under KOSIS LOW scenario 

 

[Figure 17] Future projection of total floor area under <2030 Seoul Plan>, growing 

trend extended by 2050 using linear extrapolation method 
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IV. Methodology 

 

1. Long Short-term Memory Neural Networks 

 Deep neural networks consist of multiple non-linear hidden units which makes 

them extremely powerful in learning complicated relationship between model inputs 

and outputs (Srivastava et al., 2014). Through such, they have brought dramatic 

advancement of state of art in vision, speech, and other fields (Ioffe & Szegedy, 

2015). Recurrent neural networks (RNN) were first developed to extend the usage 

of Deep neural networks to sequential data. Due to their recurrent structures, RNNs 

are capable of making use of previous context and can adapt to stretched or 

compressed input patterns (Graves et al., 2007). However, Bengio, Simard, and 

Frasconi have argued that the RNNs, which can be characterized as a gradient based 

learning algorithms, face difficulty when performing tasks where the temporal 

contingencies present in the input or output sequential data span long intervals 

(Bengio et al., 1994). In the literature, the difficulty is defined as “vanishing gradient” 

problem. [Figure 18].  

 Long Short-Term Memory neural networks (LSTM) were first introduced by Gers, 

Schmidhuber, and Cummins (2000) as a way to solve the vanishing gradient problem 

by implementing forget gate to the networks. In recent experience, LSTMs are 

widely examined in a variety of sequence processing tasks, such as speech and 

handwriting recognition (Graves, 2013). It is also widely used in processing and 

predicting time series. In building optimization and urban planning field, LSTMs are 

widely used in energy consumption and demand prediction studies (Kim & Cho, 
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2019; Somu et al., 2021; Wang et al., 2020). Another research subject that is 

investigated frequently with LSTMs are air quality prediction study. Seung et al. 

(2020) constructed a prediction model and forecasted the air quality of 35 monitoring 

stations in Beijing (Seng et al., 2021). In Korean context, Kim & Gim (2022) 

constructed independent LSTM models corresponding to 22 air pollution monitoring 

stations that were investigated in the study, and analyzed the relationship between 

air quality and urban form factors. 

 

 

 

 

 

 

 

 

[Figure 19] Architecture of LSTM cell and mathematical expression (Yu et al., 2019) 

  

 A typical LSTM cell consists of input gate, output gate and forget gate as shown in 

[Figure 19]. In the mathematical expression, 𝒙𝒕, 𝒉𝒕, and 𝒚𝒕 denote the input, the 

recurrent information, and the output of the cell at time t, respectively; W-s are 

 

[Figure 18] Gradient vanishing in Standard RNN, LSTM introduced to solve the 

problem (Graves, 2013) 
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weights; b is bias; 𝒄𝒕 denotes the cell state of LSTM at time t. 𝒇𝒕 denotes the forget 

gate, where in case of the value is 0, it decides to get rid of the information, 

meanwhile in case of 1, it keeps the information. Input gate decides which 

information should be stored when updating the cell state, and output gate decides 

which information can be the output based on the cell state. 

In implementing the LSTM, this study mainly used Keras with combination of 

TensorFlow. Keras and TensorFlow are open-sourced neural-network library written 

in Python language. LSTM models corresponding to 25 gu and two target variables 

were constructed independently, as was done in Kim & Gim (Kim & Gim, 2022). 

1) Data Preparation 

 As opposed to the traditional time series models such as ARIMA, Artificial Neural 

Networks including LSTM do not require the input time series data to be stationary 

process. However, it is known that with stationary time series data the prediction 

performance of the prediction model significantly increases. Therefore, differencing 

and log transformation was considered for the dependent variables. Order 1 lag 

variable was included, and all variables were standardized before they were fed to 

the model. Look back size of 12 sliding windows were generated to forecast one step 

forward value of the target variable. 

2) Hyperparameter tuning 

 Using the training dataset from 2010 to 2018, hyperparameters of LSTM were 

tuned. K-fold cross validation method, as presented in [Figure 19] which randomly 

samples validation set from training set is commonly used to tune the 

hyperparameters of machine learning models. However, as the data used in this 

research is characterized as a sequential data, K-fold cross validation is not 

applicable.  
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[Figure 19] k-fold cross validation 

(scikit-learn1.1.2 document) 

 

[Figure 20] Cross-validation on a rolling basis 

(Walk-Forward Validation) (Amraoui & 

Zouari, 2022) 

 
[Figure 21] Hyperparameter tuning process through Walk-Forward Validation 

 
 

 Instead, cross-validation in a rolling basis, also known as walk-forward method, 

like presented in [Figure 20] were applied for validating the model. The training set 

was divided into seven validation sets consisting of two years of training data and 

one year of test data, as shown in [Figure 21]. In total, 12 sets of hyperparameters 

were tested. [Table 8] shows the environment settings options of the LSTM models. 

Hyperparameters of 50 models were tuned using cross validation in rolling basis, 

and grid search method was applied to choose the best hyperparameter settings. 

Additionally, early stopping was applied in deciding the number of training epochs 

to avoid overfitting. Maximum epoch was set at 200. When the validation loss is 

larger than the mean of the validation losses of the last 50 epochs, the training process 

was stopped. See [Appendix D] for the final models’ loss curves. 
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[Table 8] LSTM hyperparameter grid search settings 

Class Setting 

Activation Function ReLU 

Loss function 
[Mean Absolute Errors,  
Mean Squared Errors] 

Optimizer Adam 

Batch Size 32 

Epoch Maximum 200 with early stopping applied 

Number of hidden layers 1 

Hidden units [4, 6, 8] 

Learning Rate [0.01, 0.001] 
 

3) Handling Randomness 

 Due to the small sample size (n=120), the models were highly prone to randomness, 

which can eventually affect the credibility of the long-term future forecast. In order 

to control the randomness, the hyperparameter tuning process was done 20 times for 

each gu under different random states. The hyperparameter setting with the lowest 

mean RMSE value of the 20 times validation was chosen as the final 

hyperparameters. Under the setting, the entire training dataset was fed to 20 models 

of different random states. The model that showed the closest value with the 

validation mean RMSE value was taken as the final prediction model. 

4) Prediction Accuracy Evaluation 

 In ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning 

Engineers) Guideline 14, ASHRAE provides guidance to measure the energy and 

demand savings due to building energy management projects. In the document, three 

indices are presented to measure how well a mathematical model describes the 

variability in measured data. One of them is the Coefficient of Variation of the root 

mean square error (CVRMSE) (AHSHRAE, 2002). The mathematical expression of 

CV(RMSE) is as follows: 
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 Where 𝒚𝒊 , �̂�𝒊 , �̅� denote observed data, predicted data, and average of all the 

observed data, respectively. CV(RMSE) can be useful in determining whether the 

differences between the two datasets; observed and predicted dataset, are within an 

acceptable tolerance. It is suggested that when using monthly data, the range of the 

acceptable tolerance should be within 15% (AHSHRAE, 2002). Following the 

guideline, the constructed prediction models were tested by comparing the predicted 

values of 2019 with the actual data using CV(RMSE). 

 

2. Autoregressive Moving Average (ARIMA) 

 To evaluate the prediction performance of the LSTM model with comparison to 

conventional statistical method, Seasonal Autoregressive Integrated Moving 

Average with exogenous variables (hereby ARIMA) models were employed as an 

alternative prediction model. As a time-series univariate regression model, ARIMA 

model can predict future values of a dependent variable while accounting for serial 

autocorrelation and seasonality in sequential data. A typical ARIMA consists of two 

parts: an autoregressive (AR) process and a moving average (MA) process, which 

are mathematically expressed as follows. 

 

AR(p): …………………… (1) 

 

MA(q):  …………………………….. (2) 

 

Where p denotes the most recent value of time that the y value at time t is dependent 

on, equation (1) is referred to as the p order AR process. Where q denotes the most 

recent value of error terms that the y value at time t is affected by, equation (2) is 
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referred to as the q order of MA process. In MA process, each error terms are 

independent of the others. In addition, identifying and removing seasonality is a part 

of modelling linear time series models. A common way of doing so is differencing, 

converting a time series of values into a time series of changes over time. A d order 

differencing refers to the time series at time t being differenced to the time series at 

time t-d (Nielsen, 2020).  

 Instead of manually searching for the parameters of the 25 models, auto_arima 

module in pmdarmia library written in Python language was used in this study. The 

auto_arima module can automatically set the best possible parameters of an ARIMA 

model with an optimization procedure. With the same set of data that was used to 

construct the LSTM models, 25 independent ARIMA models corresponding to every 

gu in Seoul were made to predict residential electricity consumption. The choice of 

variables followed that of LSTM, except for the temperature variable. As 

temperature and energy consumption typically present a non-linear relationship, a 

quadratic temperature variable was additionally implemented in the ARIMA models. 

Residuals of automatically generated ARIMA models were diagnosed with the 

Augmented Dickey-Fuller test and Ljung-Box test. Those models containing unit 

roots and autocorrelations in the residuals were adjusted manually.  
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3. Scenario Analysis  

[Table 9] Variable alterations depending on Scenario 

Category Scenario 
2030 2050 

variable alteration1 variable alteration2 

Climate  
Change  

SSP126 
Best case climate 
change 

Temperature_SSP126 

SSP585 
Worst case climate 
change 

Temperature_SSP585 

Socioecono
mic Shifts 

KOSIS High 

total popualtion_H 

Elderly population ratio_H 

youth population ratio_H 

KOSIS Low 

total popualtion_L 

Elderly population ratio_L 

Youth population ratio_L 

Urban 
Developme

nt 

2030 Seoul Plan 

New Building Ratio_0 
  
  
  

Green Area Raio_0 

Totla Floor Area_0 

Land Use_0 

Assumption #0 
No significant change 
from 2030 Seoul Plan 

  
  
  

New Building Ratio_0 

Green Area Raio_0 

Totla Floor Area_0 

Land Use_0 

Assumption #1 
Green city initiative 

  
  
  

New Building Ratio_0 

Green Area Raio_1 

Totla Floor Area_0 

Land Use_0 

Assumption #2 
High density 
development 

  
  
  

New Building Ratio_0 

Green Area Raio_0 

Totla Floor Area_2 
Land Use_0 

 

1) Scenarios by the year 2030 

 Total of four sets of scenario combinations, which consist of two climate change 

scenarios, and two socioeconomic scenarios, and one urban form and land use data 

based on <2030 Seoul Plan> were prepared in the future data collection process. 

Corresponding to each scenario combination, the four datasets on the year 2030 was 

put into the constructed LSTM model, to project 2030 building energy consumption 

of all two sectors. 
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2) Scenarios by the year 2050 

 Two sets of future climate data, two sets of socioeconomic data, and three sets of 

urban form and land use data based on three different urban development 

assumptions are prepared in the future data generation process. A total of twelve 

future dataset on the year 2050 is going to be put into the LSTM model, to project 

2050 building energy consumption of all three sectors. 
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V. Results and Discussions 

 

1. LSTM construction results 

 LSTM models to predict monthly residential and commercial building electricity 

consumption in 25 gu were constructed individually, using nine independent 

variables from climatic and socioeconomic categories from 2010 to 2018. Yearly 

frequency data were adjusted to monthly frequency using the linear interpolation 

method, based on Raubitzek and Neubauer’s work that proved input data 

interpolation improves the prediction power of neural network models (Raubitzek & 

Neubauer, 2021). Differencing and log transformation were not adopted in any of 

the models, as the dependent variables did not show significant trend, nor they were 

characterized as exponentially distributed time series.  

The accuracy of the final LSTM models was tested by comparing the observed 

values of the dependent variable in 2019 with the predicted values from the LSTM 

models using CV(RMSE). [Tables 10] and [Table 11] show the hyperparameter 

choices of the final models, the average of 20 validations' CV(RMSE), and the 

CV(RMSE) of the test set. [Figures 22] and [Figure 23] are plots of the test set 

prediction results and the actual values of the target variables. The average test 

CV(RMSE) of the LSTM models was 6.04% for residential energy prediction and 

6.40% for commercial energy prediction. With the exception of the Seongdong-gu 

and Gangseo-gu commercial electricity prediction models, the CV(RMSE) values of 

48 models are within the acceptable range specified by ASHRAE Guideline 14 

(AHSHRAE, 2002).   
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[Table 10] Residential electricity prediction models – Validation and test results 

under the best hyperparameter settings 

Model Residential Electricity Prediction Models 

Gu 
hidden 
layer units 

loss 
function 

learning 
rates 

Validation 
mean CV(RMSE) 

test set  
CV(RMSE) 

Jongno-gu 6 mae 0.01 1.44% 3.96% 

Jung-gu 8 mae 0.01 1.71% 3.60% 

Yongsan-gu 6 mae 0.01 2.18% 7.10% 

Seongdong-gu 4 mae 0.01 2.73% 6.96% 

Gwangjin-gu 8 mae 0.01 2.49% 3.79% 

Dongdaemun-gu 8 mae 0.01 2.64% 6.96% 

Jungnang-gu 6 mae 0.001 4.83% 6.38% 

Seongbuk-gu 6 mae 0.001 4.04% 7.67% 

Gangbuk-gu 6 mae 0.01 2.28% 5.67% 

Dobong-gu 8 mae 0.01 1.76% 8.44% 

Nowon-gu 8 mae 0.01 1.45% 6.20% 

Eunpyeong-gu 8 mae 0.01 1.75% 9.52% 

Seodaemun-gu 8 mae 0.01 1.41% 4.48% 

Mapo-gu 6 mae 0.01 1.90% 5.95% 

Yangcheon-gu 8 mae 0.01 2.97% 3.74% 

Gangseo-gu 8 mae 0.01 2.22% 4.71% 

Guro-gu 8 mae 0.01 1.75% 3.51% 

Geumcheon-gu 8 mae 0.01 2.01% 6.40% 

Yeongdeungpo-gu 8 mae 0.01 2.10% 8.47% 

Dongjak-gu 4 mae 0.01 2.22% 4.98% 

Gwanak-gu 4 mae 0.01 2.51% 5.01% 

Seocho-gu 8 mse 0.01 2.62% 4.90% 

Gangnam-gu 4 mae 0.01 2.58% 6.66% 

Songpa-gu 8 mse 0.01 1.79% 5.92% 

Gangdong-gu 4 mae 0.01 3.00% 9.98% 

Evaluation Score Mean 2.34% 6.04% 
 

[Table 11] Commercial electricity prediction models - Validation and test results 

under the best hyperparameter settings 

Model Commercial Electricity Prediction Models  

Gu 
hidden 
layer units 

loss 
function 

learning 
rates 

Validation 
mean CV(RMSE) 

test set  
CV(RMSE) 

Jongno-gu 6 mae 0.01 4.36% 4.42% 

Jung-gu 6 mae 0.01 2.51% 3.49% 

Yongsan-gu 4 mae 0.001 5.72% 6.09% 

Seongdong-gu 4 mae 0.01 3.40% 25.12% 

Gwangjin-gu 6 mae 0.01 2.56% 3.24% 

Dongdaemun-gu 8 mae 0.01 1.70% 4.87% 

Jungnang-gu 8 mae 0.001 2.13% 4.22% 

Seongbuk-gu 6 mae 0.01 1.31% 4.31% 

Gangbuk-gu 6 mae 0.01 2.31% 2.93% 

Dobong-gu 4 mae 0.01 3.43% 3.74% 

Nowon-gu 6 mae 0.001 6.44% 7.01% 

Eunpyeong-gu 4 mae 0.01 1.73% 5.80% 
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Seodaemun-gu 4 mae 0.001 1.53% 3.59% 

Mapo-gu 6 mse 0.001 2.81% 9.74% 

Yangcheon-gu 4 mae 0.01 2.39% 4.56% 

Gangseo-gu 6 mae 0.001 7.41% 19.49% 

Guro-gu 6 mae 0.01 1.19% 5.86% 

Geumcheon-gu 8 mae 0.01 1.43% 3.53% 

Yeongdeungpo-gu 8 mse 0.001 2.60% 4.19% 

Dongjak-gu 8 mae 0.001 3.45% 4.11% 

Gwanak-gu 6 mse 0.001 2.36% 6.74% 

Seocho-gu 4 mae 0.001 1.42% 5.02% 

Gangnam-gu 6 mae 0.001 1.85% 8.29% 

Songpa-gu 4 mae 0.001 3.76% 6.80% 

Gangdong-gu 4 mae 0.01 1.68% 2.78% 

Evaluation Score Mean 2.86% 6.40% 

 

 

2. Prediction Performance Comparison with ARIMA  

25 ARIMA models for residential electricity prediction were constructed using 

the auto_arima function in the pmdarima library for each gu. The detailed settings 

and evaluation scores of these models can be found in [Appendix A]. To compare 

the prediction power of the two sets of models, root mean squared error (RMSE) 

metric was used. The mathematical expression of RMSE is as follows. 

 

Where 𝒚𝒊, �̂�𝒊, n denote observed data, predicted data, and the number of the 

observed data, respectively. As presented in [Table 12], the mean value of the RMSE 

of the 25 constructed models was 3024.631, which shows that the LSTM models, 

with a mean RMSE value of 2699.66, perform better in predicting residential 

electricity consumption than the ARIMA models.  
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[Table 12] LSTM and ARIMA models residential building energy prediction 
performance comparison using RMSE 
Gu Test set LSTM RMSE Test set ARIMA RMSE 
Jongno-gu 818.2618 1504.924 
Jung-gu 566.7071 1313.357 
Yongsan-gu 2329.673 3399.487 
Seongdong-gu 2316.735 3789.856 
Gwangjin-gu 1467.069 3755.445 
Dongdaemun-gu 2795.972 3801.456 
Jungnang-gu 2684.479 3585.697 
Seongbuk-gu 3868.461 2916.182 
Gangbuk-gu 1887.347 1741.083 
Dobong-gu 3032.257 1203.442 
Nowon-gu 3589.471 2582.806 
Eunpyeong-gu 4729.173 4583.533 
Seodaemun-gu 1529.355 2711.059 
Mapo-gu 2685.981 2766.409 

Yangcheon-gu 1938.326 2695.603 

Gangseo-gu 2910.503 5082.602 

Guro-gu 1615.836 4008.048 

Geumcheon-gu 1527.232 2374.784 

Yeongdeungpo-gu 3908.388 1997.967 

Dongjak-gu 2057.804 3924.95 

Gwanak-gu 2679.127 2724.213 

Seocho-gu 2740.326 5065.879 

Gangnam-gu 4849.302 2683.375 

Songpa-gu 4326.825 3397.151 

Gangdong-gu 4637.012 2006.463 

Mean 2699.665 3024.631 
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[Figure 22] Test set result of residential electricity use (Mwh) 
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[Figure 23] Test set result of commercial electricity use (Mwh) 
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3. Building Energy Consumption Forecasting Results 

 Using the constructed LSTM models, residential and commercial electricity 

consumption in 25 gu-s were forecasted, under four scenarios in 2030 and twelve 

scenarios in 2050. Future values of one climate, four socioeconomic, and four urban 

form variables were used as inputs to the constructed LSTM models. A step-forward 

prediction was conducted by the end of 2050 to predict the future values of monthly 

energy consumption in the two building sectors under twelve scenario combinations. 

The gu-level forecasting results were aggregated into Seoul level and analyzed. For 

the gu-level forecasting results, see [Appendix C]. 

 

[Figure 24] Scenario combinations used in the forecasting process 

 

 For clarity, scenario combinations will be referred to by abbreviations indicated in 

[Table 13] from this point on. The first letter indicates whether the combination 



55 

adopts the High or Low socioeconomic scenario, while the numerical three digits 

represent which climate change scenario is used, either SSP126 or SSP585. The last 

digit behind the underbar(“_”) is based on urban development assumptions, with 0 

representing the baseline, 1 representing a green city initiative, and 2 representing a 

high-density development assumption.  

[Table 13] Scenario Combination Abbreviations 

Scenario 
Combination Scenarios 

Abbreviation Socioeconomic Climate Change Urban Development 

H126_0 

High 

SSP126 
(best case) 

#0 Baseline 

H126_1 #1 Green city 

H126_2 #2 High Density Development 

H585_0 
SSP585 
(worst case) 

#0 Baseline 

H585_1 #1 Green city 

H585_2 #2 High Density Development 

L126_0 

Low 

SSP126 
(best case) 

#0 Baseline 

L126_1 #1 Green city 

L126_2 #2 High Density Development 

L585_0 
SSP585 
(worst case) 

#0 Baseline 

L585_1 #1 Green city 

L585_2 #2 High Density Development 

 

1) Residential Electricity Consumption Forecasting Results 

 [Figure 25] is the forecasting results of electricity consumption from the residential 

building under 12 scenario combinations, by the year 2050. The projected electricity 

consumption in the residential building sector is expected to reach up to 14,462,569 

MWh in the L585-0 scenario combination and decrease to 14,049,562 MWh in the 

H126-1 scenario combination by 2050, resulting in a difference of 3.12%. [Figure 

25] shows a clear separation of the high and low socioeconomic scenario 

combinations into two groups. Within the two groups, the projection results by 2050 

further divided into three groups following the urban development assumptions. The 
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results have three key implications. One, socioeconomic conditions have the most 

significant impact on residential building energy consumption among the three 

factors studied: climate, socioeconomic, and urban form. Two, smaller populations 

with a higher ratio of seniors consume more energy than larger populations with a 

lower ratio of seniors, regardless of climate or urban development conditions. Three, 

Increasing the size of the urban forest was the most effective method for reducing 

residential building energy consumption, followed by high-density development 

with increased total floor area.  

 

*different colors represent socioeconomic and climate scenario combinations  
**different line styles represent urban development assumptions   

[Figure 25] Forecasting Results of future residential electricity consumption 

 

2) Commercial Electricity Consumption Forecasting Results 

[Figure 26] shows the results of forecasted electricity consumption in the 

commercial sector by 2050. It is expected that electricity consumption will reach 

28,024,238 MWh in the H126_2 scenario combination and decrease to 25,808,064 

MWh in the L585-1 scenario combination, resulting in a reduction of 16.2%. The 

results show significant differences from the residential energy forecast, revealing 
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three critical implications. Firstly, the fact that all four scenario combinations 

containing the green city initiative assumption #1 are clustered in the lower part of 

the plot indicates that urban development is the most significant factor for 

commercial energy consumption. Secondly, scaling up of urban forests can 

significantly lower the commercial use energy consumption - under low 

socioeconomic scenario settings, the average energy consumption from the 

commercial building sector is reduced by 12.2%, and under high socioeconomic 

scenario settings, it is reduced by 10.9%. And Finally, scenario combinations 

containing the High socioeconomic scenario are always expected to consume more 

commercial electricity than the low- socioeconomic scenario combinations. This 

reveals the important implication that, unlike residential energy consumption, total 

population and young population size are positively related to commercial building 

energy consumption.  

 

*different colors represent socioeconomic and climate scenario combinations  
**different line styles represent urban development assumptions   

 [Figure 26] Forecasting Results of future commercial electricity consumption 
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3) Aggregated Total Building Electricity Consumption 

 As depicted in [Figure 27], which displays the aggregated results of total electricity 

consumption from both the residential and commercial building sectors, it is evident 

that the pattern closely resembles that of the commercial electricity consumption 

forecast. This is due to the fact that the commercial sector accounts for nearly twice 

the amount of electricity consumed compared to the residential sector. The total 

electricity consumption from both sectors ranges from 40,151,927 MWh under the 

L585_1 scenario combination to 42,249,125 Mwh under the H126_0 scenario 

combination. It is worth mentioning that [Figure 27] displays roughly four sets of 

lines, each comprising of two climate change scenarios. This suggests that among 

the three factors studied, the impact of climate change is the least significant. 

 

 

*different colors represent socioeconomic and climate scenario combinations  
**different line styles represent urban development assumptions   

 

[Figure 27] Forecasting result of future electricity consumption from the two building 
sectors 
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4. Evaluation of the 2050 Carbon Neutrality Goal 

 

 

 

[Figure 28] Total carbon emission from the two building sectors, BAU emission factors 
applied  

 

 The Seoul Metropolitan Government (SMG) has set a goal to decrease carbon 

emissions from the building sector by 40% in 2030 and 50% in 2050, as outlined in 

the <2050 Climate Action Plan> submitted to the C40 in 2020 (서울특별시, 2021b). 

The plan aims to achieve a reduction of 29,687tCO2eq in the building sector by 2030 

and 26,969tCO2eq by 2050, compared to 2005 levels when 14,736 tCO2eq and 

14,951 tCO2eq were emitted from residential and commercial buildings, 

respectively. In 2005, electricity consumption accounted for 45.7% of the building 

sector's total GHG emissions, a figure that remained unchanged in 2019. If this trend 

continues until 2050, the building sector's GHG emissions from electricity 

consumption would need to reach at least 13,573.57 tCO2eq in order to meet the 

interim target of carbon neutrality by 2030. In the same sense, GHG emission from 
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the building sector’s electricity consumption would have to reach roughly 12,349.29 

tCO2eq to meet the final goal. 

 The current GHG emission factor for electricity in Seoul is 5.422 tCO2eq/TOE. By 

applying this factor to forecasted data, GHG emissions from the building sector is as 

depicted in [Figure 28]. Based on business-as-usual (BAU) electricity emission 

factors, none of the twelve scenarios analyzed come close to reaching the 2030 

interim target, let alone achieving the 2050 goal of carbon neutrality. [Table 14] 

highlights the level of supplementary GHG emission reduction required to attain the 

interim target for 2030 and 2050 carbon neutrality. 

 

[Table 14] Additional GHG emission reduction target breakdown 

year Scenario Mwh BAU CO2eq 
to 2030 
target 
(CO2eq) 

to 2050 
target 
(CO2eq) 

Effect of 
urban 
development 

2030 

H126 40,162,407 18,715,682 6,142,112   

H585 40,222,479 18,743,675 6,170,105   

L126 39,798,399 18,546,054 5,972,484   

L585 39,783,751 18,539,228 5,965,658   

2050 

H126_0 42,249,125 19,688,092 
 

7,338,802 baseline 

H126_1 40,446,899 18,848,255 6,498,965 -11.44% 

H126_2 42,073,800 19,606,391 7,257,101 -1.11% 

H585_0 42,207,890 19,668,877 
 

7,319,587 baseline 

H585_1 40,495,392 18,870,853 6,521,563 -10.90% 

H585_2 42,048,536 19,594,618 7,245,328 -1.01% 

L126_0 41,823,551 19,489,775 
 

7,140,485 baseline 

L126_1 40,170,829 18,719,606 6,370,316 -10.79% 

L126_2 41,838,512 19,496,747 7,147,457 0.10% 

L585_0 41,892,658 19,521,979 
 

7,172,689 baseline 

L585_1 40,151,927 18,710,798 6,361,508 -11.31% 

L585_2 41,962,520 19,554,534 7,205,244 0.45% 

 

The last column in [Table 14] indicates how much of the GHG emission was reduced 

due to implementing the urban planning measures – assumption #1 being green city 

initiative and assumption #2 being high-density development. It is worth noting that 
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under all four socioeconomic and scenario combinations (H126, H585, L126, L585), 

assumption #1 of scaling up the urban forest resulted in more than a 10% reduction 

in GHG emission. The effect of assumption #2 was rather insignificant compared to 

that of assumption #1. However, high-density development tended to reduce GHG 

emissions under High socioeconomic scenarios. In contrast, it was prone to increase 

GHG emissions under Low socioeconomic scenarios. How small or large they emit, 

none of the twelve scenarios were expected to achieve the 2050 carbon neutrality 

goal. 

 One of the most realistic ways to reduce GHG emissions from electricity 

consumption is lowering the GHG emission factor of electricity through the energy 

transition. The purpose of this research is not GHG emission accounting, hence the 

estimated future GHG factors were taken from previous literature. Lee et al. (2018) 

conducted a study on a national GHG reduction strategy considering energy 

transition and came up with GHG emission factors by 2050 on five years basis, as 

presented in [Figure 29] (이상엽 et al., 2018). This study took the product of the 

research directly and used it to calculate the future GHG emission from the building 

sector when the energy transition has successfully been implemented. 

 

[Figure 29] GHG emission factor considering energy transition by 2050 (이상엽 et al., 

2018) 
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 [Figure 30] shows total carbon emission from the building sector in case of a 

successful energy transition. As any of the line plots is not reaching the “2050 carbon 

neutrality” level, it suggests that even with the implementation of energy transition 

measures, the objective of achieving 2050 carbon neutrality cannot be fulfilled. 

[Table 15] shows how much extra GHG reduction should occur to achieve the 2030 

and 2050 goals. 

 

[Figure 30] Total carbon emission from the two building sectors, in case of successful 

energy transition 

 However, it must be noted that the effort for energy transition is not fruitless, as it 

dramatically reduces the gap between the goal and the estimated GHG emissions. 

Moreover, compared with the baseline urban development assumption #0, GHG 

emissions from building energy consumption under green city initiative assumption 

#1 have decreased down to at least 52.67% and up to 59.29%, depending on the 

socioeconomic and climate scenarios. This indicates that the energy transition 

amplifies the effect of assumption #1 in cutting down building energy consumption. 
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[Table 15] Additional GHG emission reduction target breakdown of 2030 and 

2050, in case of energy transition 

year Scenario Mwh CO2eq 
to 2030 
target 
(CO2eq) 

to 2050 
target 
(CO2eq) 

Effect of 
urban 
development 

2030 

H126 40162406.9 16988698.1 3,415,128   

H585 40222479.3 17014108.74 3,440,539   

L126 39798399.1 16834722.84 3,261,153   

L585 39783751 16828526.67 3,254,957   

2050 

H126_0 42249125.3 13392972.72 
 

1,043,683 baseline 

H126_1 40446899 12821666.99 472,377 -54.74% 

H126_2 42073800.4 13337394.72 988,105 -5.33% 

H585_0 42207889.9 13379901.08 
 

1,030,611 baseline 

H585_1 40495392.2 12837039.31 487,749 -52.67% 

H585_2 42048535.9 13329385.87 980,096 -4.90% 

L126_0 41823551.1 13258065.71 
 

908,776 baseline 

L126_1 40170829.4 12734152.92 384,863 -57.65% 

L126_2 41838511.9 13262808.28 913,518 0.52% 

L585_0 41892657.9 13279972.55 
 

930,683 baseline 

L585_1 40151927.4 12728161 378,871 -59.29% 

L585_2 41962519.8 13302118.78 952,829 2.38% 
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VI.  Conclusion and Limitations 

 

 This study forecasted electricity consumption in the residential and commercial 

building sectors of 25 gu-s in Seoul using LSTM, as an attempt to evaluate the 

current masterplan of Seoul and examine if it aligns with the 2050 carbon neutrality 

goal in the building sector. A total number of fifty LSTM models were constructed 

corresponding to every gu and every building sector, using data from 25 gu in Seoul 

over the past ten years. Through scenario analysis, this research explored the impact 

of climate change, and socioeconomic shifts, and urban development on building 

energy. The conclusion of the research can be summarized as follows. 

 (1) This study explored how well LSTM performs in building energy consumption 

prediction task. The results of the modelling process indicate that the LSTM models 

accurately depicted the residential and commercial building energy consumption 

patterns in each gu of Seoul, as evidenced by the acceptable CV(RMSE) values (less 

than 15%). Additionally, the LSTM models constructed in this research 

demonstrated improved performance in predicting future energy consumption in the 

building sector compared to the traditional statistical method, ARIMA. 

 (2) The forecast of electricity consumption in residential buildings by 2050 ranges 

from 14,049,562 MWh to 14,462,569 MWh with a difference of 3.12%. 

Socioeconomic conditions have the greatest impact on residential building energy 

consumption, followed by urban form and climate. Energy was consumed more 

under the Low socioeconomic scenario which represents smaller populations with a 

higher senior ratio than the High socioeconomic scenarios. 
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 (3) The forecast of electricity consumption in the commercial sector by 2050 ranges 

from 25,808,064 MWh to 28,024,238 MWh with a difference of 16.2%. The results 

show that urban development is the most significant factor for commercial energy 

consumption, followed by socioeconomic conditions. Scaling up urban forests can 

significantly lower commercial energy consumption by 10.9-12.2%. Unlike 

residential sector, High socioeconomic scenario combinations are expected to 

consume more commercial electricity than low-socioeconomic scenario 

combinations, indicating that population size and young population size positively 

impact commercial building energy consumption. 

 (4) The aggregated results of total building electricity closely resemble the 

commercial electricity consumption forecast. Total electricity consumption ranges 

from 40,151,927 MWh to 42,249,125 MWh, with the least significant impact being 

from climate change. 

 (5) When applying the estimated GHG emission factor to the electricity forecast 

results, none of the 12 scenarios come close to reaching the 2030 interim target, let 

alone achieving the 2050 goal of carbon neutrality. In this case, scaling up the urban 

forest (assumption #1) resulted in more than a 10% reduction in GHG emission in 

all four socioeconomic and climate scenario combinations, while high-density 

development (assumption #2) had a relatively insignificant effect. The study also 

showed that even with the implementation of energy transition measures, the 

objective of achieving 2050 carbon neutrality cannot be fulfilled. However, the study 

found that the effect of assumption #1 in reducing energy consumption is 

strengthened and becomes more effective when combined with the energy transition. 

 The key contributions of this study are threefold: first, as a rare attempt to 
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comprehensively understand the sectoral energy consumption of residential and 

commercial buildings in 25 gu-s of future Seoul, it provided the effects of climate 

change, socioeconomic shifts, and urban development to building energy 

consumption. Second, by investigating the cutting-edge machine learning technique 

application to empirical work, this study has explored how well the LSTM model 

performs in building energy consumption prediction tasks. Finally, with the result of 

the forecasting, this study has provided an evaluation for SMG’s 2050 carbon 

neutrality goal by examining the monthly electricity demand of the year 2030 in 

residential and commercial buildings of 25 Gu-s in Seoul, under urban development 

plans stated in <2030 Seoul Plan> and additional urban form alterations. 

 The limitations of this study are as follows: Firstly, the assumption that there is no 

spatial correlation between gu-s in energy consumption behaviors is somewhat 

unrealistic. An initial attempt was made to create a single integrated model using an 

encoder-decoder method to handle 3-dimensional panel data, but the prediction 

accuracy dropped significantly. As a result, the researcher adopted an alternative 

approach by constructing multiple models corresponding to each dependent variable 

and gu. Future studies can further explore the use of the encoder-decoder method. 

Secondly, the choice of variables relied heavily on the availability of data, which 

resulted in some chosen independent variables not having a direct relationship with 

the dependent variable, particularly in the prediction models for commercial 

building's electricity consumption. The study employed registered population data 

as a proxy, even though the energy consumption behavior in commercial areas is 

strongly related to the de-facto population. Finally, the study did not consider the 

potential impact of disruptive technologies such as net-zero building construction or 



67 

self-sufficient energy systems in buildings. However, the purpose of prediction 

research is not just to accurately predict the future, but also to explore various 

assumptions about future conditions and provide insights for policymakers to deal 

with the predictable range of the future. Through such, the result of this research 

would be able to serve as a reference for the future studies to come.  
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Appendix 

[Appendix A] 25 ARIMA models to predict residential electricity consumption in 25 gu, 

constructed for purpose - Model settings and evaluation results 

Jachigu name SARIMAX(p,d,q)(P,D,Q)(12) RMSE NRMSE MAPE 

Jongno-gu SARIMAX(0,0,0)(1,0,1)(12) 1504.924 0.15 14.39 

Jung-gu SARIMAX(0,0,0)(2,0,1)(12) 1313.357 0.15 11.92 

Yongsan-gu SARIMAX(0,0,0)(1,0,1)(12) 
3399.487 0.183 14.11 

Seongdong-gu SARIMAX(0,0,0)(1,0,0)(12) 3789.856 0.238 12.30 

Gwangjin-gu SARIMAX(0,0,0)(1,0,1)(12) 
3755.445 0.185 11.81 

Dongdaemun-gu SARIMAX(0,0,0)(1,0,1)(12) 
3801.456 0.203 11.19 

Jungnang-gu SARIMAX(0,0,0)(1,0,1)(12) 3585.697 0.190 10.58 

Seongbuk-gu SARIMAX(1,0,2)(1,0,0)(12) 
2916.182 0.148 13.25 

Gangbuk-gu SARIMAX(3,0,2)(1,0,0)(12) 
1741.083 0.127 13.67 

Dobong-gu SARIMAX(1,0,1)(2,0,1)(12) 1203.442 0.081 11.78 

Nowon-gu SARIMAX(0,0,2)(1,0,0)(12) 
2582.806 0.115 11.88 

Eunpyeong-gu SARIMAX(0,0,0)(1,0,0)(12) 4583.533 0.205 9.72 

Seodaemun-gu SARIMAX(0,0,0)(1,0,1)(12) 2711.059 0.164 10.41 

Mapo-gu SARIMAX(0,0,3)(1,0,0)(12) 
2766.409 0.111 14.53 

Yangcheon-gu SARIMAX(1,0,2)(1,0,0)(12) 2695.603 0.120 13.23 

Gangseo-gu SARIMAX(0,0,0)(0,0,1)(12) 
5082.602 0.166 11.32 

Guro-gu SARIMAX(0,0,0)(1,0,0)(12) 
4008.048 0.195 9.93 

Geumcheon-gu SARIMAX(0,0,0)(1,0,1)(12) 2374.784 0.202 9.34 

Yeongdeungpo-
gu 

SARIMAX(0,0,0)(1,0,0)(12) 
1997.967 0.085 13.49 

Dongjak-gu SARIMAX(0,0,0)(1,0,1)(12) 3924.95 0.190 11.06 

Gwanak-gu SARIMAX(1,0,2)(1,0,0)(12) 
2724.213 0.106 14.12 

Seocho-gu SARIMAX(2,0,5)(1,0,0)(12) 5065.879 0.172 16.23 

Gangnam-gu SARIMAX(0,0,1)(1,0,0)(12) 2683.375 0.066 13.74 

Songpa-gu SARIMAX(0,0,0)(1,0,0)(12) 
3397.151 0.095 13.31 

Gangdong-gu SARIMAX(3,0,2)(1,0,0)(12) 2006.463 0.090 13.45 

Mean  3024.631 0.149 12.43 
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[Appendix B] Descriptive Statistics of Model Input, Historical Data (2010-

2019, n=120) 

Gu Name Variable mean std min max 

Jongno-gu 
Residential 
Electricity 

20643.82 2645.94 16369 32747 

  
Commercial 
Electricity 

100367.8 12991.88 78999 136031 

  Temperature 11.86 10.22 -7.84 27.16 

  GRDP 29117252 1834740 25907762 32427863 

  
Total 
Population 

159551.4 6412.85 151290 171215 

  Elderly Ratio 15.32 1.6 12.2 18.1 

  Youth Ratio 10.31 1.06 8.83 12.62 

  
Total Floor 
Area 

15210351 1338723 13690905 18326241 

  
Young Building 
Ratio 

6.08 1.79 4.49 10.32 

  
Green Area 
Ratio 

46.78 0.04 46.74 46.82 

  
Residential 
Area 

9362781 414374.1 8964805 9830838 

  
Commercial 
Area 

3375791 388445.6 2937285 3749385 

Jung-gu 
Residential 
Electricity 

15756.7 1977.66 13438 26561 

  
Commercial 
Electricity 

168860.1 21687.95 135548 224628 

  temperature 13.06 10.28 -6.72 28.66 

  GRDP 49673783 2151722 46998911 52869673 

  
Total 
Population 

128831.5 3413.59 123926 135841 

  Elderly Ratio 15.25 1.67 12.2 18.2 

  Youth Ratio 9.97 1.08 8.36 12.14 

  
Total Floor 
Area 

19533021 707842.2 17658147 20622728 

  
Young Building 
Ratio 

4.74 1.72 3.35 8.76 

  
Green Area 
Ratio 

0.16 0.12 0 0.25 

  
Residential 
Area 

6205717 149588.1 6037439 6349623 

  
Commercial 
Area 

3752303 140957.6 3616462 3911718 

Yongsan-gu 
Residential 
Electricity 

32798.48 4274.1 27919 54911 

  
Commercial 
Electricity 

53089.92 7545.03 41147 77290 

  temperature 13.18 10.29 -6.49 28.76 

  GRDP 10708789 697259.7 10010946 11992461 

  
Total 
Population 

236524.2 6372.65 228507 247206 
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  Elderly Ratio 14.47 1.45 11.7 16.8 

  Youth Ratio 11.24 1.09 9.38 13.3 

  
Total Floor 
Area 

16265044 809666.6 14505887 17517086 

  
Young Building 
Ratio 

6.76 2.42 3.86 11.34 

  
Green Area 
Ratio 

39.85 0.96 38.95 40.93 

  
Residential 
Area 

11741752 335838.8 11378857 12130669 

  
Commercial 
Area 

1378349 115774.1 1237935 1490319 

Seongdong-gu 
Residential 
Electricity 

33284.58 4327.27 28444 58320 

  
Commercial 
Electricity 

58633.32 10687.78 43837 93148 

  temperature 13.34 10.16 -6.29 28.72 

  GRDP 10022388 896484.5 8213234 11419293 

  
Total 
Population 

302271.8 4084.1 295866 310487 

  Elderly Ratio 12.22 1.3 9.8 14.6 

  Youth Ratio 12.04 1.05 10.49 14.34 

  
Total Floor 
Area 

18037357 3302140 14959427 33658656 

  
Young Building 
Ratio 

6.36 1.65 4.67 10.02 

  
Green Area 
Ratio 

26.19 0.44 25.78 26.69 

  
Residential 
Area 

9344521 533713.3 8841365 9947641 

  
Commercial 
Area 

369762 91482.81 283741 473145 

Gwangjin-gu 
Residential 
Electricity 

38704.11 4715.8 32968 64259 

  
Commercial 
Electricity 

57240.79 7986.57 45096 77620 

  temperature 13.34 10.19 -6.15 28.59 

  GRDP 5915710 124853.4 5696485 6187957 

  
Total 
Population 

364402.5 7424.73 351350 376205 

  Elderly Ratio 10.67 1.56 8.1 13.6 

  Youth Ratio 11.61 1.21 9.67 14.13 

  
Total Floor 
Area 

16899799 688926.8 15767049 17954439 

  
Young Building 
Ratio 

12.38 2.3 8.07 16.56 

  
Green Area 
Ratio 

31.46 0.6 30.89 32.14 

  
Residential 
Area 

11477337 110295.4 11373497 11607090 

  
Commercial 
Area 

197231 2856.63 193152 203281 



71 

Dongdaemun-gu 
Residential 
Electricity 

40179.03 4544.2 35212 66430 

  
Commercial 
Electricity 

58150.98 8227.34 44931 79135 

  temperature 13.34 10.19 -6.15 28.59 

  GRDP 6799703 174486.7 6433936 7078663 

  
Total 
Population 

359070.4 6819.01 346152 367454 

  Elderly Ratio 14 1.76 11 17.1 

  Youth Ratio 11.25 1.06 9.63 13.35 

  
Total Floor 
Area 

18401969 917934.7 16520680 19713848 

  
Young Building 
Ratio 

6.55 1.22 4.31 9.01 

  
Green Area 
Ratio 

1.85 0.89 0.84 2.69 

  
Residential 
Area 

13089645 49543.07 13034193 13145393 

  
Commercial 
Area 

902423.1 65825.19 828159 973364 

Jungnang-gu 
Residential 
Electricity 

42095.15 4488.79 37039 68134 

  
Commercial 
Electricity 

41456.28 5216.12 33780 53974 

  temperature 12.77 10.29 -6.99 28.26 

  GRDP 4106909 155218 3856334 4447811 

  
Total 
Population 

415458 8146.76 397015 428766 

  Elderly Ratio 12.49 2.03 9.2 16.4 

  Youth Ratio 11.33 1.22 9.38 13.87 

  
Total Floor 
Area 

20684721 600166 19642170 21782589 

  
Young Building 
Ratio 

11.54 1.98 8.75 15.11 

  
Green Area 
Ratio 

40.21 1 39.39 41.99 

  
Residential 
Area 

10737800 177138.2 10491158 10973326 

  
Commercial 
Area 

302720.6 48422.57 257189 357442 

Seongbuk-gu 
Residential 
Electricity 

50418.1 5266.9 41695 75716 

  
Commercial 
Electricity 

49391.09 6343.71 39029 64120 

  temperature 12.52 10.23 -7.24 27.90 

  GRDP 5552190 142565 5275765 5761704 

  
Total 
Population 

465011.8 17621.85 435270 489703 

  Elderly Ratio 13.19 1.67 10.4 16 

  Youth Ratio 12.8 1.09 10.97 14.77 
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Total Floor 
Area 

21525162 579130.5 19961118 22806896 

  
Young Building 
Ratio 

7.54 1.89 5.59 11.38 

  
Green Area 
Ratio 

26.39 0.31 25.97 26.74 

  
Residential 
Area 

17407613 343811.7 17084539 17829600 

  
Commercial 
Area 

672287.5 243397.1 397229 901153 

Gangbuk-gu 
Residential 
Electricity 

33265.17 3342.07 28938 50984 

  
Commercial 
Electricity 

36426.19 4814.31 29281 48607 

  temperature 11.76 10.24 -8.04 27.08 

  GRDP 3072420 259302.3 2759140 3897307 

  
Total 
Population 

333593.6 9835.55 313954 346943 

  Elderly Ratio 15.11 2.27 11.4 19.3 

  Youth Ratio 11.11 1.34 8.83 13.5 

  
Total Floor 
Area 

12530146 440853.5 11543582 13150749 

  
Young Building 
Ratio 

9.26 1.65 6.88 12.73 

  
Green Area 
Ratio 

55.92 3.77 52.38 60.18 

  
Residential 
Area 

9938757 925556.2 9067850 10985275 

  
Commercial 
Area 

298307 24734.55 270342 322150 

Dobong-gu 
Residential 
Electricity 

35912.67 3619.14 30902 54949 

  
Commercial 
Electricity 

30825.83 4025.19 24361 40202 

  temperature 11.22 10.24 -8.70 26.52 

  GRDP 3039029 113141.9 2892873 3208282 

  
Total 
Population 

354159 10343.97 333362 369428 

  Elderly Ratio 13.29 2.23 9.9 17.6 

  Youth Ratio 12.1 1.42 9.78 14.82 

  
Total Floor 
Area 

17087185 5733291 15056489 46224370 

  
Young Building 
Ratio 

10.94 2.45 7.46 16.21 

  
Green Area 
Ratio 

47.43 5.31 41.43 52.43 

  
Residential 
Area 

9331319 1100765 8084190 10366463 

  
Commercial 
Area 

297054.4 31994.87 258659 327000 

Nowon-gu 
Residential 
Electricity 

57886.36 5655.18 49249 84952 



73 

  
Commercial 
Electricity 

52687.57 6793.35 42690 70274 

  temperature 12.05 10.30 -7.86 27.56 

  GRDP 5801313 231998.6 5504884 6236040 

  
Total 
Population 

579656.4 23593.47 532905 612815 

  Elderly Ratio 11.58 1.78 9 15.2 

  Youth Ratio 13.79 1.54 11.33 16.74 

  
Total Floor 
Area 

23303761 619698.7 22653202 26299359 

  
Young Building 
Ratio 

9.97 1.9 6.55 14.03 

  
Green Area 
Ratio 

60.7 1.74 59.07 62.69 

  
Residential 
Area 

13264335 634169.1 12660506 13980338 

  
Commercial 
Area 

578041.7 9880.39 568760 590480 

Eunpyeong-gu 
Residential 
Electricity 

49699.19 5170.26 42941 77765 

  
Commercial 
Electricity 

43813.86 5694.03 35085 58862 

  temperature 12.00 10.33 -7.41 27.49 

  GRDP 4079331 320786.3 3678726 4601453 

  
Total 
Population 

492182.5 9348.68 466950 504701 

  Elderly Ratio 13.44 1.83 10.5 16.8 

  Youth Ratio 12.62 1.31 10.38 14.81 

  
Total Floor 
Area 

19210721 895515.4 17812389 20931468 

  
Young Building 
Ratio 

13.77 2.81 10.72 19.65 

  
Green Area 
Ratio 

47.65 1.05 46.66 48.84 

  
Residential 
Area 

15069609 262534.8 14817328 15376440 

  
Commercial 
Area 

447145.2 64521.64 384474 523842 

Seodaemun-gu 
Residential 
Electricity 

34160.47 3688.45 29777 54390 

  
Commercial 
Electricity 

42596.59 5452.08 34342 55548 

  temperature 12.49 10.27 -7.11 28.00 

  GRDP 7549932 409041.7 6389459 8107945 

  
Total 
Population 

314615.8 4818.5 306681 327561 

  Elderly Ratio 14.23 1.48 11.4 16.7 

  Youth Ratio 11.6 1.04 10.08 13.89 

  
Total Floor 
Area 

16071768 923556.1 14298360 17714232 

  
Young Building 
Ratio 

8.01 1.77 5.86 11.8 
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Green Area 
Ratio 

10.95 0.16 10.77 11.1 

  
Residential 
Area 

15471807 28701.04 15439372 15498794 

  
Commercial 
Area 

241027.8 37624.05 205650 283546 

Mapo-gu 
Residential 
Electricity 

45165.13 5820.84 38283 76414 

  
Commercial 
Electricity 

104927.2 13175.37 82924 148281 

  temperature 12.99 10.26 -6.57 28.58 

  GRDP 17313478 1610882 13152867 18987571 

  
Total 
Population 

383025.2 5905.34 373200 393334 

  Elderly Ratio 12.09 1.09 10 13.9 

  Youth Ratio 12.54 1.01 10.82 14.46 

  
Total Floor 
Area 

22193462 1650709 19001124 24379410 

  
Young Building 
Ratio 

12.36 3.11 9.67 18.63 

  
Green Area 
Ratio 

43.11 3.3 40.01 46.84 

  
Residential 
Area 

12699573 615280.2 12089969 13399356 

  
Commercial 
Area 

734091.8 179499 564778 940188 

Yangcheon-gu 
Residential 
Electricity 

51838.46 5345.43 45592 79932 

  
Commercial 
Electricity 

72254.86 8153.54 58123 98773 

  temperature 13.16 10.26 -6.57 28.58 

  GRDP 6430639 148351.4 6260452 6729834 

  
Total 
Population 

484959.9 13196.8 458165 501478 

  Elderly Ratio 10.01 1.7 7.4 13.3 

  Youth Ratio 14.25 1.19 12.56 16.75 

  
Total Floor 
Area 

20655567 481663.5 19313778 21621356 

  
Young Building 
Ratio 

11.56 2.96 8.12 17.84 

  
Green Area 
Ratio 

23.63 0.89 22.87 25.33 

  
Residential 
Area 

12498393 137229.5 12303891 12731777 

  
Commercial 
Area 

701338.6 84579.35 609277 796830 

Gangseo-gu 
Residential 
Electricity 

61764.08 7680.27 53116 104016 

  
Commercial 
Electricity 

89791.47 17090.02 67429 143503 

  temperature 13.05 10.27 -6.43 28.79 
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  GRDP 11906451 3272239 8259388 16743106 

  
Total 
Population 

583055.2 12738.03 567173 601850 

  Elderly Ratio 11 1.66 8.3 14.2 

  Youth Ratio 13 1.09 11.08 15.27 

  
Total Floor 
Area 

57317683 36740542 24805741 1.19E+08 

  
Young Building 
Ratio 

15.4 3.92 10.69 24.3 

  
Green Area 
Ratio 

55.25 1.05 54.27 56.45 

  
Residential 
Area 

14187152 476817.4 13654836 14719962 

  
Commercial 
Area 

1366884 65276.97 1321659 1492974 

Guro-gu 
Residential 
Electricity 

46029.76 5075.69 39265 73488 

  
Commercial 
Electricity 

77155.27 11412.53 58574 121837 

  Temperature 13.02 10.25 -6.57 28.71 

  GRDP 12372553 481412.6 11881642 13302390 

  
Total 
Population 

420006.4 7919.78 403668 428914 

  Elderly Ratio 12.01 2.15 8.7 16 

  Youth Ratio 13.05 1.1 11.11 14.96 

  
Total Floor 
Area 

21691748 1035856 19304535 23701803 

  
Young Building 
Ratio 

10.37 2.75 7.38 15.97 

  
Green Area 
Ratio 

27.06 1.64 25.61 29.47 

  
Residential 
Area 

8624634 1386120 7211810 10188383 

  
Commercial 
Area 

511792 12763.22 473561 523690 

Geumcheon-gu 
Residential 
Electricity 

23867.22 2715.69 20763 38931 

  
Commercial 
Electricity 

80201.53 10368.94 55625 108565 

  temperature 13.20 10.24 -6.23 28.98 

  GRDP 15365184 776166.3 13429693 16745777 

  
Total 
Population 

238991.5 4135.26 232644 246417 

  Elderly Ratio 12.36 2.01 9.1 16 

  Youth Ratio 11.01 1.35 8.85 13.95 

  
Total Floor 
Area 

15054669 1051603 13426024 16902274 

  
Young Building 
Ratio 

10.82 2.18 7.72 15.17 

  
Green Area 
Ratio 

21.73 0.56 21.09 22.25 
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Residential 
Area 

5941311 90840.92 5845488 6097205 

  
Commercial 
Area 

164204.5 12903.93 149622 176338 

Yeongdeungpo-gu 
Residential 
Electricity 

46162.99 5454.03 39352 75448 

  
Commercial 
Electricity 

140573.9 17584.83 115300 190389 

  temperature 13.51 10.25 -6.06 29.06 

  GRDP 30325041 1882208 27458784 34201860 

  
Total 
Population 

383904.9 13213.1 367678 407798 

  Elderly Ratio 12.74 1.68 9.8 15.5 

  Youth Ratio 11.8 1.19 9.96 14.26 

  
Total Floor 
Area 

26573669 1357533 23876584 29742853 

  
Young Building 
Ratio 

7.3 1.61 5.21 10.61 

  
Green Area 
Ratio 

32.03 3.96 27.56 35.76 

  
Residential 
Area 

7043930 851920 6243685 8013840 

  
Commercial 
Area 

2523865 80644.66 2447002 2645273 

Dongjak-gu 
Residential 
Electricity 

41325.21 4484.86 36306 66210 

  
Commercial 
Electricity 

50397.47 6114.65 42206 67624 

  temperature 13.48 10.26 -6.10 28.98 

  GRDP 6019867 230752.5 5521181 6333388 

  
Total 
Population 

402296.7 4865.76 394249 411369 

  Elderly Ratio 12.75 1.62 10 15.7 

  Youth Ratio 11.81 1 10.07 13.78 

  
Total Floor 
Area 

18051481 716187.6 16095569 18952205 

  
Young Building 
Ratio 

11.45 2.38 8.67 16.26 

  
Green Area 
Ratio 

9.45 4.57 4.28 13.74 

  
Residential 
Area 

14654344 763357.6 13790984 15386262 

  
Commercial 
Area 

307737.1 33758 263523 344623 

Gwanak-gu 
Residential 
Electricity 

53464.08 5712.59 46775 84549 

  
Commercial 
Electricity 

64837.5 7775.76 53608 85785 

  temperature 12.77 10.18 -6.69 28.25 

  GRDP 5568724 61673.58 5365298 5679347 

  
Total 
Population 

515499.2 10049.76 500094 532858 
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  Elderly Ratio 11.99 1.78 8.9 15 

  Youth Ratio 10.03 1.34 7.67 12.51 

  
Total Floor 
Area 

20780823 787488.2 18580082 22929469 

  
Young Building 
Ratio 

13.77 2.68 10.12 19.36 

  
Green Area 
Ratio 

52.69 6.23 46.81 59.74 

  
Residential 
Area 

13269526 1821994 11556104 15335188 

  
Commercial 
Area 

368351.1 19526.55 350000 392024 

Seocho-gu 
Residential 
Electricity 

55914.55 6858.47 48834 93804 

  
Commercial 
Electricity 

169774.3 20819.75 135086 217557 

  temperature 12.96 10.24 -6.63 28.38 

  GRDP 30584082 2125739 26606520 33432374 

  
Total 
Population 

439224.1 6536.64 426355 450504 

  Elderly Ratio 10.56 1.49 8 13.2 

  Youth Ratio 14.49 0.42 13.54 15.07 

  
Total Floor 
Area 

33687905 1561469 31059732 35708514 

  
Young Building 
Ratio 

12.21 2.86 6.54 17.69 

  
Green Area 
Ratio 

57.41 0.59 56.91 58.36 

  
Residential 
Area 

18620970 291134.1 17939082 18890070 

  
Commercial 
Area 

1330584 10170.55 1317259 1340154 

Gangnam-gu 
Residential 
Electricity 

72792.3 9107.38 62844 118932 

  
Commercial 
Electricity 

301708.7 40148.34 230705 389497 

  temperature 13.45 10.20 -6.12 28.82 

  GRDP 59993260 5375238 50124725 67789806 

  
Total 
Population 

563358.4 10396.39 541854 579722 

  Elderly Ratio 10.02 1.64 7.3 13 

  Youth Ratio 12.77 0.45 12.19 13.78 

  
Total Floor 
Area 

48254324 2060439 44664315 51243628 

  
Young Building 
Ratio 

14.34 4.92 8.53 24.85 

  
Green Area 
Ratio 

36.25 2.2 33.73 40.08 

  
Residential 
Area 

22891222 1175774 20959660 24298708 

  
Commercial 
Area 

2052418 271274.2 1676116 2320955 
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Songpa-gu 
Residential 
Electricity 

73075.42 8218.93 63101 118807 

  
Commercial 
Electricity 

125561 15972.23 101680 179037 

  temperature 13.52 10.19 -6.02 28.82 

  GRDP 23710702 2993148 19306616 28427927 

  
Total 
Population 

670939.6 9176.55 655309 686982 

  Elderly Ratio 9.86 1.61 7.3 12.9 

  Youth Ratio 13.66 0.95 12.18 15.48 

  
Total Floor 
Area 

37132748 2805437 31806035 41727437 

  
Young Building 
Ratio 

16.29 4.97 11.15 25.68 

  
Green Area 
Ratio 

30.75 0.48 29.93 31.18 

  
Residential 
Area 

21268694 226242 21015588 21606657 

  
Commercial 
Area 

2213464 62157.78 2128822 2284846 

Gangdong-gu 
Residential 
Electricity 

46468.88 5088.01 38631 71180 

  
Commercial 
Electricity 

61519.95 8072.6 49576 82505 

  temperature 12.98 10.26 -6.81 28.51 

  GRDP 7852727 444269.6 6900908 8720189 

  
Total 
Population 

466171.4 24586.88 424235 496776 

  Elderly Ratio 10.74 2.08 7.6 14.5 

  Youth Ratio 12.82 1.02 11.3 14.78 

  
Total Floor 
Area 

23761200 1391122 18465038 26693250 

  
Young Building 
Ratio 

13.62 2.84 9.79 18.99 

  
Green Area 
Ratio 

43.57 1.43 40.37 44.43 

  
Residential 
Area 

13239766 369517.6 12965432 14051893 

  
Commercial 
Area 

628285.3 43374.23 579673 680697 
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[Appendix B] Plot charts of 13 variables in 25 gu  
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[Appendix C-1] Forecasting result of residential electricity consumption of 25 gu under twelve scenario combinations, by the year 2050 
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[Appendix C-2] Forecasting result of commercial electricity consumption of 25 gu under twelve scenario combinations, by the year 2050 
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[Appendix D-1] Loss curves - Residential electricity prediction LSTM models (Red line: Validation loss, Green line: Train loss)  
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[Appendix D-2] Loss curves - Commercial electricity prediction LSTM models (Red line: Validation loss, Green line: Train loss) 
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Abstract in Korean 

 국문초록 

 

기후 위기에 대한 적극적 대응의 필요성이 국제적 합의로 확산되는 

가운데, 서울시는 2050 탄소 중립을 선언하고 2021년 C40에 기후 행동계획을 

제출했다. 2020년 기준 서울시 총 온실가스 배출량의 74.8%가 건물 부문에서 

발생한 만큼, 본 목표를 달성하기 위해서는 에너지 효율적인 도시환경 설계를 

통해 건물 에너지 소비를 절감하는 것이 필수적이다. 그럼에도 불구하고, 현 

서울시 최고 수준 법정계획인 <2030 서울플랜>이 서울시가 제시한 2050 

탄소중립 목표에 부합하는지에 관한 연구는 부재한 실정이다. 이러한 배경하에 

본 연구는 2050 탄소 중립 목표에 대한 평가를 목적으로 2030년 및 2050년 

서울의 건물 에너지 소비량을 예측하였다. 이를 위해 2010년부터 2019년까지의 

과거 데이터를 사용하여 LSTM (Long Short-Term Memory) 딥러닝 예측 모형을 

구축하였으며, 미래 환경의 불확실성을 고려하고자 시나리오 분석 방법을 

활용하였다. 2030년 건물 에너지 소비량 예측에 있어서는 <2030 서울플랜>을 

참고한 기본 도시개발 시나리오 1개, 기후변화 시나리오 2개, 사회경제 

시나리오 2개로 구성된 시나리오 조합 총 4개를 적용하였다. 2050년 미래 

에너지 소비량을 예측에 있어서는 기본 도시개발 시나리오를 3개의 도시개발 

가정으로 대체하여, 총 12개의 시나리오 조합을 사용하였다. LSTM 모형 구축 

결과, 연구에서 사용한 모형의 CV(RMSE) 값은 오차범위 이내로, 현재 건물 

부문의 에너지 소비행태를 적절히 반영하고 있었다. 또한 구축된 LSTM 모형의 

에너지 소비 예측 정확도는 전통적인 통계 방법인 ARIMA의 예측 정확도를 

상회하였다. 에너지 소비 예측 결과에 따르면, 2050년까지 주거용 건물 부문의 

전력 소비량은 14,049,562MWh에서 14,462,569MWh까지 증가할 것으로 보인다. 

주거용 건물 에너지 소비에 영향을 미치는 가장 중요한 요인은 사회경제적 

환경이며, 다음으로 도시 형태와 기후인 것으로 분석되었다. 상업용 건물의 

전력 소비량은 25,808,064MWh에서 28,024,238MWh 사이로 예측되었다. 상업 
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부문의 에너지 소비에 영향을 미치는 가장 중요한 요소는 도시 개발 

요소였으며, 다음으로 사회 경제적 환경이었다. 도시 숲 확대는 상업용 건물 

에너지 소비를 10.9 ~ 12.2% 절감하는 효과가 있는 것으로 나타났다. 2050 

탄소중립 목표를 평가한 결과, 성공적으로 에너지 전환을 이루었다는 

가정하에조차 2050 탄소중립 목표를 달성할 수 있는 시나리오는 없는 것으로 

나타났다. 그럼에도 불구하고, 본 연구는 에너지 전환을 통해 극적인 탄소 

배출량 감축을 이룰 수 있으며, 또한 도시 숲 확대 대책과 에너지 전환을 결합 

시 건물 에너지 소비 감축 효과가 강화된다는 점을 입증하였다. 

 

 

키워드: 건물 에너지 예측, 딥러닝, LSTM, 2050 탄소중립, 시나리오 분석방법 

학번: 2021-21905 
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