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Abstract

This study focuses on finding the optimal combination of speech
features to detect major depressive disorder(MDD). Many works
have already shown the utility of voice biomarkers for automatic
detection of MDD using various speech tasks. Despite the utility of
spectral features for MDD detection, there is no consensus of which
speech subsets hold relevant characteristics to explain the clinical
symptoms of MDD. In this study, we examine the classification
performance of the different speech dimensions to verify the most
discriminative speech indicators and find the optimal combination
using several speech feature subsets and validate their predictive
capability using a BDI prediction model.

Voice of reading out pre—defined paragraphs was extracted
from both 72 depressed adults and 70 healthy controls. 210 speech
features were extracted from each audio recording and grouped into
four speech subsets: spectral features, prosodic features, voice
quality, and formants. Extracted features were selected based on
Recursive Feature Elimination(RFE). The criteria for feature
selection were based on importance scores calculated using the
Extreme Gradient Boosting(XGboost). We then evaluated the
classification performance of each subset individually and assessed
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the classification performance of all possible combinations of
speech feature subsets.

In the analysis of individual speech subsets, the spectral
features demonstrated high performance in the classification of the
two distinct groups. The spectral features were then used as the
baseline features to examine all possible feature combination
including the baseline. Among the seven possible combinations, the
combination of spectral and prosodic features outperformed all
other subset combination with an F1 score of 0.83. This addresses
the combined synergy of spectral and prosodic features could be
reliable combination to identify MDD. To evaluate the diagnostic
utility of the optimal combination, we built a Beck Depression
Inventory (BDI-II) prediction model, which obtained a Mean
Absolute Error of 7.19. The further investigation into the
correlation between selected speech features and BDI—II subscale
scores, based on the BDI—II two—factor model, revealed a notable
association between somatic factors and several speech indicators
in spectral and prosody subsets. This suggests that depressive
speech may potentially linked to various clinical symptoms and
subtypes of depression, particularly those associated with the
somatic factors. The overall findings highlight the significance of

feature—based analysis in clinical speech research. Future studies
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should explore the psychological and neural foundations associated

with these relevant speech features.

Keyword : major depressive disorder, optimal speech feature
combination, speech subsets, automatic classification, speech
biomarkers
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Chapter 1. Introduction

1.1. Background

Major depressive disorder (MDD) is a complex mental health
condition marked by a spectrum of primary symptoms such as
persistent low mood, anxiety, restlessness, and a deep emotional
numbness. When these fundamental symptoms co—occur with
additional cognitive symptoms like negative attitude and cognitive
distortions, the condition is categorized as MDD. These cognitive
distortions typically involve detrimental self—assessments and
pessimistic expectations for one’s future. Consequently, it
aggravates the quality of one’s life and severely affects the socio—
economic burden in terms of diagnosis, early intervention, and
rehabilitation (Cummins et al., 2015). The COVID—19 pandemic has
significantly intensified existing mental health challenges, leading to
a marked increase in depression and suicidal ideation. The
widespread impact of the pandemic has forced people into isolation
due to the essential lockdowns and social distancing protocols. In
South Korea, the experience of COVID—19 quarantine has been
associated with a higher risk of depression and an increase in
depressive symptoms, in comparison to those not subjected to

quarantine. Kim et al.(2022) suggests that the period of enforced
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isolation during the pandemic has had negative psychological
consequences, including a spike in depression rates among the
population.

The current clinical diagnostic process is generally time—
consuming and subjective in nature as there is no single clinical
characterization of depressive symptoms, and many of the
assessments are based on self—inventory evaluation (Cummins et
al., 2015; Robin et al., 2020; Silva et al., 2021). It is significant to
acquire a golden time of early intervention and treatment which
could also assist lessening the risk of suicidal behaviors (Cummins
et al., 2015; Stasak et al., 2021). Thus, there is a pressing need to
find cost—effective and scalable markers that can be easily
measured and operated by automated models (Tasnim & Novikova,
2022).

Multiple studies have identified some potential biomarkers
for depression detection. Speech signal is one such marker that
appears to be a reliable modality. Specific acoustic markers from
human speech make a significant gap between normal and
depressive speech. Spectral information is one of the most widely
and frequently used for depressed speech discrimination (Cummins
et al., 2011). Detailed spectral information can be captured through

various features, including Mel frequency cepstral coefficients
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(MFCCs). This information generally offers considerable insight
into speaker’s identity and is easily quantifiable and cost—effective
for computational analysis. Recent methodologies of classifying
clinical speech are much focused on end—to—end learning (Robin et
al., 2020; Tasnim & Novikova, 2022), in which the model is fed up
with raw speech audio and the features are automatically extracted
and selected through black—box system. These pre—trained models
have consistently achieved higher performance, however, there are
insufficient findings of which speech features are key contributors
to explain depressive symptoms. As further investigation on
feature—based approach is still needed particularly in clinical
speech, where speech could not be explained alone by a few
parameters, we address the following research questions:

1) Do spectral features hold the most discriminant power in

depressive speech?
2) What is the optimal combination of speech subsets for

depression detection?



1.2. Structure of the thesis

In the following sections of the thesis, Chapter 2 reviews previous
findings in the domain of detecting depression through speech
analysis. Chapter 3 demonstrates the proposed methods, including
details on data collection and feature engineering. Chapter 4 details
the experiments and their outcomes, which includes an evaluation of
the classification performance of each single speech feature subset,
as well as the combined effectiveness of all possible combinations
of speech feature subsets. In this chapter, the optimal combination
and its corresponding numerical performance are presented. We
also present a BDI—II prediction model, using the feature subset
combination proven to be optimal through the experiments. At the
end of this chapter, we further investigate the correlations between
BDI—II subscale scores and selected speech features based on the
two—factor structure of BDI-II. Chapter 5 demonstrates the
general discussion based on the results and findings from the
experiments, and the conclusions are summarized in Chapter 6,
along with a proposal for further research that can be explored in

the field of clinical speech.



Chapter 2. Literature Review

2.1. The importance of early diagnosis of MDD

Like other mental illnesses, MDD benefits from early diagnosis and
intervention. However, a significant challenge lies in the lack of
awareness among both affected individuals and those around them,
leading to a potential delay in appropriate intervention. The analysis
of the prevalence of MDD across different life stages reveals a U—
shaped pattern, with the highest rates observed between the ages
of 18 and 29, decreasing through middle age, and then increasing
again in the later life (Lee et al., 2017). This highlights the
importance of ongoing societal attention to enable early screening
and intervention, especially during the stages of youth and old age.
The exact pathology of MDD remains uncertain, with discussions
suggesting a diverse range of factors such as biological, genetic,
hormonal, and environmental influences (Nemade et al., 2019).
Given the absence of a single pathology, the heterogenous nature of
MDD makes the clinical decisions in screening, diagnosis, and
intervention even more difficult (Bembnowska & Josko—Ochojska,
2015). Early diagnosis and intervention for psychotic disorders are
crucial to prevent significant functional decline and the high risk of

mortality during a critical period (Davey & McGorry, 2019). MDD,
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which often begins in early life and commonly experienced
throughout adulthood, may offer a strategic window for
interventions with lasting effects. The primary objective of many
early interventions in psychiatry is to provide treatments at the
earliest possible stage (Davey & McGorry, 2019). Failing to
intervene at an appropriate period may result in increased severity
and substantial aggravation of the symptoms, making it even more
challenging to enter the effective treatment. To avoid such risks, it
is essential to establish an efficient system and framework for the
overall procedure of diagnosis and intervention of MDD. This
involves implementing timely interventions based on the severity

level, supported by effective diagnostic tools.

2.2. Speech biomarkers

A biomarker refers to objectively measurable characteristics
utilized to assess biological responses to normal and pathological
processes as well as therapeutic interventions (Cummins et al.,
2015; Robin et al., 2020). In clinical trials, biomarkers play a vital
role in the rational development of medical diagnostics and
therapeutics (Califf, 2019). According to the report by Califf(2019),
it is essential to understand the difference between the concept of

biomarkers and clinical outcome assessment(COA). COAs ‘glypipally
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measure the way people feel and function, representing outcomes
directly relevant to them. This distinction is important as the COAs
are designed to meet specific criteria for the regulatory approval of
therapeutics. On the other hand, biomarkers serve various purposes,
notably having a potential to predict COA measurements through
physiological signals. Some non-—invasive biomarkers including
voice, facial expressions, and gaze tracking are readily accessible
and obtainable in daily life. Consequently, the use of biomarkers can
be advantageous in overcoming the limitations of COAs.

In recent years, digital biomarkers have emerged, leveraging
various digital devices such as smartphones and wearables to
collect information. This technological advancement has expanded
the boundaries of traditional measurements for diagnosis and
prescription. Human voice is well—known biomarkers that clinicians
have long used as diagnostic bases. Speech provides valuable
insights into cognitive and motor functions, which are often affected
in various psychiatric and neurodegenerative diseases (Robin et al.,
2020). The complexity of speech, involving multiple cognitive and
motor processes, makes even a brief speech sample a sensitive
indicator of cognitive health and functioning across various illnesses.
For instance, the speech characteristics of neurodegenerative

disorders such as Parkinson’ s disease and other conditions
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characterized by motor impairment, have already been extensively
investigated in prosody research. Prosody, as a unique yet essential
component of spoken language, is closely linked to neural networks
that underpin language functions (Nevler et al.,, 2019). It plays a
crucial role in the phonological representation for specific words in
the auditory—aural system and primarily contributes to
suprasegmental aspects of sentence processing (Ash et al., 2013;
Neveler et al., 2019). Despite the ongoing challenges in
standardization and quantification due to linguistic variations and the
absence of universally accepted metrics, utilizing speech markers
has the potential to redefine the framework of diagnosis in the
clinical field, which have traditionally relied on subjective criteria

for diagnosis.

2.3. Depressive speech

For many years, extensive research has focused on speech and its
connection to psychomotor disturbances linked to mental disorders.
Depressed speech has often been described as lacking liveness,
being monotonous, and having a flat tone. These perceptual
characteristics have been associated with acoustic variations
related to several metrics, such as fundamental frequency, formant

structure, power distribution, or amplitude modulation (Fran_lce et al.g g
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2000). In recent years, the concept of depressive speech has been
widely investigated through interdisciplinary research in speech
science and speech technology. Many attempts to define the
depressed speech and quantifying its speech signal at a precise
level through vector—based measures have therefore allowed for a
more concrete understanding within various speech subsets. There
are several speech features typically extracted and analyzed from
raw speech sample in a short—term time scale, considered as
relevant markers to capture commonly occurring vocal effect
(Cummins et al., 2015; Robin et al., 2020), as well as associated
symptoms such as increased anxiety, intense affective states, and
low mood (Cummins, et al., 2015).

Spectral features such as Mel—-Frequency Cepstral
Coefficients (MFCCs) are well-known features for depressive
speech analysis. MFCCs were shown to reflect vocal tract changes
and have been widely introduced as useful features in speech
recognition (Wang et al., 2019; Williamson et al., 2014). Previous
studies in the speech engineering field have revealed the spectral
features as informative factors particularly in detecting
paralinguistic and emotional information of human speech (Wang et
al., 2019). It was found that prosodic features are another relevant

speech characteristics to support certain behavioral cognitive
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symptoms of MDD (Scherer et al., 2013). The basic frequency and
loudness range of depressed individuals were found to be decreased
than that of normal group (Yang et al., 2012). As the severity of
depression increases, the fundamental frequency(FO) range
declines, resulting in monotonous speech (Cummins, et al., 2015;
Yang et al., 2012).

Voice quality features are also reported as useful measures
in depressive speech analysis. Voice quality measures include jitter,
shimmer, and harmonic—to—noise ratio(HNR), which are found to
be influenced by vocal fold tension and subglottal pressure (Afshan
et al., 2018; Silva et al.,, 2021). The effect of depression on
formants is also widely supported by prior works. Formant features
are reported as distinguishable features for depression which
reflect psycho—motor retardation as a representative symptom with
tightening of the vocal tract (Cummins et al., 2017). Recent findings
have provided insights into clinical speech research using the above
speech features with physiological and psychological evidence.
Among these features, spectral features are commonly used to
distinguish the depressed group with a sensitivity of 77.8% and
succeeded in predicting Hamilton Depression Rating Scale (HAMD)

scores (Cummins et al., 2015).
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2.4. Speech—based automatic detection of MDD

The use of speech biomarkers marks a significant leap forward in
predicting and distinguishing mental disorders. This innovative
approach holds the potential to improve diagnostic strategies by
leveraging the extensive accessibility of smart devices to address
the inherent variability in individual cases (Brietzke et al., 2019).
Leveraging digital biomarkers allows us to transform the way we
diagnose mental health conditions. By implementing a fully
automated process that utilizes easily digitized data such as voice
recordings, we can develop a novel diagnostic framework that is
both more accurate and cost—effective.

Many studies have assessed depressed and non—depressed
speech using two common approaches: the feature—based approach
and transfer learning ((Balagopalan & Novikova, 2021). The feature—
based approach explores clinically relevant acoustic and linguistic
features from both audio recordings and transcripts of recorded
speech. This domain—knowledge based approach has been widely
used to investigate novel feature sets, which offers benefits of
interpretable model decisions, representation of speech in various
modalities, and reduced computational resources. With transfer
learning, on the other hand, features are no longer manually

extracted and selected. It primarily employs powerful structural
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mechanisms and uses a pre—trained model, which potentially
achieves in higher performance without the need for extensive
feature engineering. However, the transfer—learning approach stills
holds the opaque nature in its explanation and interpretation.

This study primarily focuses on exploring how clinical
characteristics of MDD manifest within specific speech features
over the pursuit of end—to—end model superiority. While
acknowledging the potential of comprehensive models, our focus is
rooted in a feature—based approach that seeks to delineate the
acoustic signatures of MDD. This method enhances the
interpretability of our findings, ensuring that the decision—making
process of our model is not just a byproduct of a black—box
algorithm, but is instead transparent and directly linked to clinically
observable phenomena. In light of the need for a solution that is
both effective and feasible for real—world application, this study
emphasizes the need for a model that balances precision with
computational efficiency. By selecting and identifying key features,
we aim to craft a model that is both cost—effective and suitable for
widespread deployment, particularly in the context of -clinical

settings.
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Chapter 3. Methods

3.1. Systematic Workflow

The experimental procedure consists of two major parts: feature
engineering and classification. The proposed method is aimed at
building the classification model, in which the input data is acoustic
feature vectors from read speech data and the output is a binary
result of the subjects’ depression status. In this chapter, we first
describe how the clinical speech data was collected, then we
demonstrate the procedure of feature engineering including feature
extraction and selection. Finally, we propose several classifiers
trained for binary classification to detect depressive speech. The

overall workflow is shown in Figure 1.

Selected features

spectral

spectral

prosody

voice quality

I c IIQI

formants

Audio recordings

ol tosontll ittt Finding the optimal
(e |||||| [Jl ||||||||||||||||||| poaori

Figure 1: Systematic workflow
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3.2. Participants

Seventy—two native Korean speakers(34 male, M,,. = 25.1; SD =
2.8, range = 20—30) diagnosed with major depressive disorder and
seventy paired controls (29 male, M., = 24.5; SD = 3.3, range =
20—30) without any history of mental illnesses participated in the
experiment. All subjects enrolled at Seoul National University
Health Service Center located in Seoul, South Korea provided
informed consent before participating in the experiment.
Participants with MDD had an average of 16.9 years of education
(SD=2.1), while the control group averaged with 16.3 years of
education (SD=2.1). To measure the severity of symptomatology,
both depressed and control groups responded to the Korean Beck
Depression Inventory II(BDI—II) questionnaires, which is a 4—point
self—rated measure for depressive symptoms including 21
questions. The average score of MDD group was 26.0 (SD=6.9),
typically falls within the mild to moderate range of depression on
average, whereas the control group showed an average score of 9.4
(SD=3.5). The demographics of participants is shown in Table 1.
Participants were required to meet specific criteria to be
included in the experiment. Those with the following criteria were
excluded: individuals with severe physical or cognitive conditions

that could significantly affect the assessment process, patients with
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profound sensory impairments, including significant hearing or
vision loss, and those with substantial language disorders.
Additionally, non—native individual with insufficient Korean
language proficiency to understand the guideline of the speech

tasks were not included in the study.

Tablel. Demographics of participants

Group p—value
CON(n=70) MDD (n=72)
Male/female 29/41 34/38
Age 24.5+3.3 25.1£2.8 0.64
Years of education 16.3=2.1 16.9=x2.1 0.58
BDI-I1I total scores 24.5+3.3 24.5+3.3 0.03

CON: healthy controls, MDD: major depressive disorder, BDI—II:

Beck Depression Inventory—1II

3.3. Speech task

All participants were to read three different paragraphs. In many
clinical speech studies, spontaneous speech tasks are commonly
used for assessing actual speech capabilities, but for the
observation of target phonemes and standardized speech features,

the study utilizes read speech tasks. Read speech tasks offer the
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advantage of being highly convenient for phonation, acoustic
characteristics, naturalness, and syntactic boundaries.

As the current study aims to find acoustic patterns rather than
a higher—level of linguistic features(e.g. semantic or pragmatic
level) which could be effectively analyzed in spontaneous speech,
read speech tasks were used for standardized conditions while
speaking aloud. The paragraphs were Korean Standardized
Passage (Kim, 1996) balanced Korean vowels and consonants.
These three pre—defined paragraphs had different topics(autumn,
travel, the wind, and the sun) and each of the paragraph consists of
5 to 9 sentences, 56 to 129 syllables (The pre—defined paragraphs
are attached in Appendix 1). The speech collection was consistently
recorded at 15cm. The paragraphs were shown at an ordered
sequence and every five seconds were given between each
paragraph. The collected speech dataset consists of 426 audio

samples.

3.4. Speech subsets and feature extraction

To identify the general patterns of depressed speech, the current
study utilizes four defined speech feature subsets according to the

prior research: spectral features, prosodic features, voice quality,
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and formants. For feature extraction, we use Surfboard (Lenain et
al., 2020), an open—source Python package for audio feature
extraction in clinical conditions. It has a significant overlap with
conventional libraries such as OpenSMILE (Eyben et al., 2013) and
Praat (Boersma & Van Heuven, 2001), but it provides simple
Python interface. Furthermore, the features can be selectively
extracted in both low—level descriptors (LLD) and statistical
functional level. LLDs are computed on frame—by—frame basis, and
statistical functionals such as mean, median, maximum, and standard
variation are computed on the low—level descriptors. A total 210
acoustic features were extracted from each audio sample and the
feature set i1s categorized into four speech subsets. The table 2
shows extracted components grouped by four conventional subsets.

The spectral features involve general components of time
series such as MFCC 1—12, which capture the spectrum of sound
signals. As mentioned above, MFCCs are extensively used in
speech and audio processing and have been reported as relevant
information related to depressive voice (Rejaibi et al., 2022).
Spectral kurtosis provides insights into the shape of the spectral
distribution, while entropy quantifies disorder in the spectral
components. Other measures such as spread, rolloff, skewness,

centroid, and flux further characterize the spectral distribution,
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providing comprehensive information about its width, frequency
content, asymmetry, center of mass, and dynamic changes. In the
prosodic features, the study mainly focuses on features related to
speech expression. FO(pitch), duration, and intensity(energy)
provide information about intonation, temporal characteristics, and
vocal strength, respectively. Prosodic components such as pitch
period entropy, log energy, and loudness contribute to the
understanding of pitch wvariability, overall signal strength, and
sustained phonations (Lenain et al., 2020). The voice quality

features include jitter, shimmer and HNR. The level of jitter is

primarily affected by a lack of control of vibration of the vocal cords.

The voices of individuals with certain pathologies generally have an
increased percentage of jitter (Teixeira et al., 2013). Shimmer
measures the variations in amplitude between consecutive vocal
cycles. HNR is another frequently used measure that signifies the
balance between harmonics and non—harmonic noise in a voice
signal. The formant subset includes resonant frequencies(F1—F4)
in the vocal tract that contribute to the perception of vowel sounds.
Changes in these formants(AF1—4) over time offer information
about the dynamic nature of speech. Sliding—window formants
capture formant frequencies within specific time windows, providing

a temporal analysis of resonant frequency changes. Statistical
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measures, including mean, standard deviation, maximum, minimum,

first—derivative mean,

and first—derivative

standard deviation

values were applied to each component in each speech subset.

Table 2. Extracted features: components and statistics

Subset Components Statistics

Spectral MFCC 1-12, mean, standard deviation,
Spectral kurtosis, max, min, first—derivative
entropy, spread, mean, first—derivative
rolloff, skewness, standard deviation
centroid, flux

Prosody FO (pitch), duration, mean, standard deviation,

intensity, pitch
period entropy, log

energy, loudness

max, min, first—derivative
mean, first—derivative

standard deviation

Voice quality

jitter, shimmer,

HNR

mean, standard deviation,

max, min

Formants

F1— F4, AF1—4,
sliding—window

formants

mean, standard deviation,

max, min

3.5. Feature selection

Feature selection is significant to select the most relevant features

with respect to clinical symptoms, minimizing redundancy in the
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selected set of features (Tasnim & Novikova, 2022). We applied
Recursive Feature Elimination (RFE) algorithm for feature selection.
RFE is an algorithm that starts by incorporating all features, then
iteratively eliminates less important features one by one while
retraining, thus selecting significant features (Theerthagiri & Vidya,
2022). The eliminated features were selected by the importance
score calculated by the Extreme Gradient boosting (XGboost), which
finally left 3—5 important speech features within each speech
feature subset. XGboost, an advanced machine learning algorithm,
enhances RFE by providing a robust method for ranking the
importance of features. The number of features was trained to be a

minimum of two or more.

0.9

Accuracy: 0.7442
Num features: 4

0.8 1

Accuracy

0.7

0.6 T T T
2 3 4 5 6
Number of features selected(spectral features)

Figure 2. Number of speech features selected
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It employs a sequence of decision tress where each tree is built to
correct the errors of its predecessor, thereby enhancing the model
performance iteratively (Zhang et al., 2022). This process uses a
quantitative measure of ‘importance’ of each feature, determined
by how much each feature contributes to the predictive accuracy
across the tress. Figure 2 and 3 illustrates the spectral features
selected through RFE—XGboost, with Figure 2 showing the number
of features selected and Figure 3 detailing the specific features and
their importance scores. The selected features from each subset

are listed in Table 3.

Top 10 Features by importance scores

mfcc_first_derivative_std_1

spectral_spread_mean

__ spectral_entropy_first_derivative_std

spectral_slope_max

mfcc_first_derivative_std_9

mfcc_mean_2

mfcc_first_derivative_std_13

Feature index(spectral features

mfcc_first_derivative_std_3

spectral_flux_first_derivative_mean

mfcc_first_derivative_mean_8

T T T T
0.05 0.10 0.15 0.20
Importance Score

Figure 3. Features selected by importance scores
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Table 3. Selected speech features

Subset (#number) Selected features

mifcc_first_derivative_std_1
spectral_spread_mean

Spectral (4) . '
spectral_entropy_first_derivative_std

spectral_slope_max

loudness_slidingwindow_max
Prosody (3) log_energy

intensity_first_derivative_mean

localabsolutelitter
apql1Shimmer

Voice quality (5) localdbShimmer
apgq3Shimmer
HNR

F2_mean
Formants (3) F1_first_derivative_std

F2_max

3.6. Model Training

We train three machine learning models, partly following (Tasnim &
Novikova, 2022), support vector machine (SVM), random forest (RF),
and multi—layer perceptron(MLP). These models have been
proposed as robust and cost—effective solutions for processing

conventional acoustic features. In pursuit of optimal performance,
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the hyperparameter values of SVM and RF are tuned following
Balagopalan & Novikova(2021) and Tasnim & Novikova(2022).
Instead of using the deep neural model(FNN) presented by Tasnim
& Novikova(2022), we use MLP given the non—linear attributes of
speech signals. The MLP consists of two hidden layers, both trained
by RelLU activation function. The model is trained for 50 epochs and
binary cross entropy is used for loss calculation. The output layer
is optimized by sigmoid function (Sun et al.,, 2022). To ensure a
valid evaluation and mitigate the effect of limited amount of data, a
5—fold cross wvalidation is used, without any speaker overlap
between training and testing data. The model performance is

evaluated by several metrics: accuracy, recall, and F1 score.
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Chapter 4. Experiments and Results

4.1. Single speech feature subset

Under the binary speaker—independent scenario, namely
depressed or non—depressed, each of the four single speech subset
and the combinations of speech subset was fed up with three
classifiers. The classification results for single speech subset are
presented in Table 4. Out of four subsets, the spectral features
showed the most discriminant performance as expected. The SVM
classifier achieved a recall of 0.73, an F1 score of 0.75, and an
accuracy of 0.74 in spectral features. The prosodic features
followed, with a recall of 0.69, an F1 score of 0.64, and an accuracy
of 0.71 in the same classifier. Voice quality and formants
demonstrated lower performance, with voice quality achieving a
recall of 0.61 in SVM, 0.63 in RF, and 0.70 in MLP. Among all
classifiers, the MLP demonstrated the highest efficacy, particularly
with the spectral feature subset, which achieved a recall of 0.82, an
F1 score of 0.80, and an accuracy of 0.84. In the same classifier,
the prosody subset also demonstrated robust results with recall, F1,
and accuracy scores of 0.80, 0.78, and 0.81, respectively. The
spectral features consistently outperformed other subsets across all
classifiers, indicating its potential as a reliable indicator in speech—
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based detection models,

studies.

in alignment with findings from prior

Table 4. Classification results for single speech subset

Classifier Speech Subset Recall F1 score Accuracy
Spectral 0.73 0.75 0.74
Prosody 0.69 0.64 0.71
SVM
Voice quality 0.61 0.63 0.63
Formants 0.59 0.60 0.61
Spectral 0.77 0.72 0.75
Prosody 0.71 0.66 0.69
RF
Voice quality 0.63 0.64 0.60
Formants 0.58 0.61 0.59
Spectral 0.82 0.80 0.84
Prosody 0.80 0.78 0.81
MLP
Voice quality 0.70 0.68 0.74
Formants 0.69 0.75 0.71
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4.2. Speech feature subset combination

In this study, we strategically combined subsets of speech features,
each comprising 3—5 key features selected for their diagnostic
potential. Spectral features, which emerged as the most predictive
in initial single subset tests, were used as a foundational baseline.
We then systematically tested combinations of this baseline with
other feature subsets to determine which fusion would enhance
depression classification performance. Employing SVM, RF, and
MLP classifiers, and validating through 5—fold cross—validation, the
dataset was divided into training, testing, and validation segments of
70%, 15%, 15%. The synthesis of results, detailed in Appendix 2,
demonstrate the classifiers’ performance across various feature
combinations on the test dataset.

In the results for the combination of spectral and prosodic
features, the SVM classifier achieved a recall of 0.81, an F1 score
of 0.78, and an accuracy of 0.85. The RF classifier showed slightly
lower results with a recall of 0.80, an F1 score of 0.82, and an
accuracy of 0.79. The MLP classifier outperformed the other two
with a recall of 0.85, an F1 score of 0.83, and an accuracy of 0.86.
In the outcomes where spectral features are combined with voice
quality, the performance slightly decreases. The SVM classifier

achieved a recall of 0.70, an F1 score of 0.73, and an accuracy of
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0.69. The RF classifier scores a recall of 0.73, an F1 score of 0.68,
and an accuracy of 0.75. The MLP maintained a robust performance
with a recall of 0.72, an F1 score of 0.77, and an accuracy of 0.80.
The combination of spectral features with formants shows further
variation in classifier performance. A recall in the SVM classifier is
0.72, with an F1 score of 0.66 and an accuracy of 0.70. The RF
classifier scores a recall of 0.67, an F1 score of 0.65, and an
accuracy of 0.73. The MLP classifier demonstrates a recall of 0.69,
an F1 score of 0.71. and an accuracy of 0.74. Among the two—
feature subset combinations that include the spectral feature subset
as a baseline, the combination of spectral and prosodic features
consistently shows the highest classification performance for all
three classifiers.

When spectral features, prosodic features, and voice quality
are combined, there is a slight improvement in performance
compared to adding a single subset to the baseline(spectral
features). The SVM classifier achieves a recall of 0.73, an F1 score
of 0.77, and an accuracy of 0.76. RF shows a recall of 0.79, an F1
score of 0.75, and an accuracy of 0.74. The MLP presents a recall
of 0.81, an F1 score of 0.74, and an accuracy of 0.79. For the
combination of spectral, prosodic features, and formants, the SVM

achieves a recall of 0.74, an F1 score of 0.73, and an accuracy of
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0.77. The RF classifier scores a recall of 0.79, an F1 score of 0.77,
and an accuracy of 0.81. The MLP provides a recall of 0.76, an F1
score of 0.80, and an accuracy of 0.82. It is noteworthy that the
inclusion of formants in addition to spectral and prosodic features
enhances the discriminatory power for detection depression
compared to adding voice quality. Particularly, the RF classifier
showed the highest accuracy when combining spectral, prosodic,
and formant features.

For the combination of three subsets without prosodic
features, the performance of SVM includes a recall of 0.71, an F1
score of 0.63, and an accuracy of 0.73. RF classifier scores a recall
of 0.68, an F1 score of 0.61, and an accuracy of 0.64. The MLP
classifier shows a recall of 0.77, an F1 score of 0.71, and an
accuracy of 0.75, indicating that it may not be as potent as when
prosodic features are included in the combination. Upon comparing
the combinations of spectral, prosodic, and voice quality features
with those of spectral, prosodic, and formant features, it was
observed that the latter combination yielded higher accuracy.
However, given the overall metrics, the classification performance
of both sets of combinations was generally similar. Finally, in the
comprehensive examination of all speech feature subsets combined,

the MLP classifier stands out with the highest performance,

28 A ‘“._, ‘_]l



achieving a recall of 0.72, an F1 score of 0.78 and an accuracy of
0.80. The overall findings suggest that the combination of spectral
and prosodic features emerged as the most optimal combination. To
assess the model’ s performance based on the optimal combination
of speech features, ROC curves were generated. Figure 4 illustrates
the ROC curve of the SVM classifier using the optimal combination
of spectral and prosodic features. The corresponding Area Under

the Curve (AUC) value was determined to be 0.81.
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Figure 4. ROC curve of SVM classifier
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4.3. BDI prediction

Based on the classification results from all possible combinations,
we also developed a prediction model for the BDI-II scores based
on SVM. This model leveraged the optimal combination of speech
feature subsets, which includes both spectral and prosodic features.
Figure 5 presents a scatter plot comparing the actual BDI scores to
predicted scores specifically for the depressed group. The
evaluation of model accuracy revealed a Mean Absolute Error

(MAE) of 7.19 and an R—squared value of 0.42.

Actual vs Predicted BDI-II total scores
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Figure 5. Scatter plot of actual and predicted BDI total score
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4.4. BDI two—factor analysis

The study further investigated the correlations between BDI-II
subscale scores and each of the selected speech features employed
for classification. These subscale scores aligned with the two—
factor model proposed by Whisman et al.(2000) and Al—Turkait et
al.(2010), namely Cognitive—Affective and Somatic factors(shown
in Figure 6), were validated through confirmatory factor analysis to
assess the structure validity of BDI-II. By examining the
correlations between individualized scores and selected speech
features, the study aims to delineate a potential link between major

clinical symptoms of depression and speech characteristics.

Table 5. Correlations between speech features and

cognitive—affective factor scores

Subset

Selected features r p—value
(#number)

micc_first_derivative_std_1 0.32 0.001

spectral_spread_mean 0.29 0.004
Spectral(4) spectral_entropy_first_deriva

0.28 0.014

tive_std

spectral_slope_max 0.18 0.005

loudness_slidingwindow_max 0.22 0.007
Prosody (3)

log_energy 0.23 0.046
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intensity_first_derivative_me

0.15 0.033

an

localabsolutelJitter 0.20 0.009

apql1lShimmer 0.15 0.029
Voice

localdbShimmer 0.08 0.047
quality (5)

apq3Shimmer 0.13 0.578

HNR 0.20 0.012

F2_mean 0.13 0.002
Formant(3) F1_first_derivative_std 0.09 0.564

F2_max —-0.15 0.047

Initial steps involved categorizing the 21 BDI-II items into
cognitive—affective or somatic factors, yielding total scores for
each sub—factor across 142 participants. Table 6 and 7 shows the
correlations between selected speech features and two—factor
scores, presented with coefficient values and corresponding p—
values. Figure 7 presents the scatter plot illustrating the
distribution of correlations between two—factor scores and speech
features. Results suggest that within the four subsets for final
binary classification, correlations and significance of selected
speech features were more pronounced in somatic factor scores
than cognitive —affective factor scores. This observation highlights a
potential association between somatic symptoms and specific
speech features(Table 5), predominantly in spectral and prosodic
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domains, surpassing the correlations observed with cognitive—

affective factor scores(Table 6).

BDI 1: SADNESS

BDI 2: PESSIMISM
| BDI 3: PAST FAILURE 1

[ BDI 4: LOSS PLEASURE

I BDI 5: GUILT FEELINGS

COGNITIVE-

| BDI 6: PUNISHMENT FEEL AFFECTIVE

I BDI 7: SELF-DISLIKE
| BDI 8: SELF-CRITICAL

BDI 9: SUICIDAL
BDI 10: CRYING
BDI 11: AGITATION

| BDI12: LOSS INTEREST | 1

BDI 13: INDECISIVE

BDI 14: WORTHLESS r

I BDI 15: LOSS ENERGY

BDI 16: SLEEP

BDI17: IRRITABLE

SOMATIC

BDI 18: APPETITE

[ BDI 19: CONCENTRATION [

I BDI 20: TIREDNESS

[ BDI21: SEXINTEREST [

Figure 6. BDI-II two—{factor model (Al—Turkait et al., 2010)

Our finding implies that there is a noteworthy correlation
between somatic factor scores and specific vocal components,
particularly within the spectral and prosodic domains. These vocal
components, marked by their discriminative power observed in the
previous section, motivate the question of a potential link between
the physiological symptoms and certain characteristics embedded

within vocal expressions. This suggests vocal patterns of
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depression may potentially capture somatic symptoms in depression.
Several notable features such as spectral entropy, loudness, and log
energy measures stand out as relevant indicators of the complex
interaction of emotional and physical dimensions in depressive voice.
The results also suggest the potential utility of using speech
features for capturing the somatic symptoms of depression such as

fatigue and lack of energy.

Table 6. Correlations between speech features and

somatic factor scores

Subset

Selected features r p—value
(#number)

micc_first_derivative_std_1 0.37 0.005

spectral_spread_mean 0.35 0.000
Spectral(4) spectral_entropy_first_deriva

0.37 0.002

tive_std

spectral_slope_max 0.28 0.035

loudness_slidingwindow_max 0.28 0.011

log_energy 0.27 0.005
Prosody (3)

intensity_first_derivative_me

0.19 0.001

an

localabsolutelitter 0.11 0.037
Voice

apqllShimmer 0.13 0.002
quality (5)

localdbShimmer 0.15 0.001
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apg3Shimmer 0.08

0.053

HNR

0.02

0.461

F2_mean

—0.03

0.216

Formant(3) F1_first_derivative_std 0.12

0.051

F2_max

—0.09

0.613
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Figure 7. Scatter plot of correlation between two—factor scores and

speech features
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Chapter 5. General Discussion

In the initial phase of our assessment, we examined the
classification results of each single speech subset, and the spectral
features were identified as the most discriminative features for
detecting MDD among the four speech dimensions. This thus
confirmed our first hypothesis, which posited that spectral features
would outperform other speech subsets. As shown in Table 4, the
spectral features consistently yielded better classification results
than all other speech subsets for every classifier. This suggests
that the spectral features contain relevant information for emotional
speech, as supported by previous findings (Lee et al., 2021).

Based on the results shown in Table 4, we included spectral
features as a baseline in all feature combinations, resulting in a
classification experiment for detecting depressive speech across
different speech subsets, presented in Appendix 2. Among all
possible combinations of speech subsets, the combination of
spectral and prosodic features demonstrated the most superior
performance across nearly all evaluation metrics. This performance
was either on par with or better than the results achieved by using
all four speech subsets. In terms of classifiers, MLP consistently

outperformed the other two classifiers. The cross—validated F1
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scores (shown in Table 7) highlight the overall excellence of the
chosen combination in detecting depressive speech.

A notable finding is that when prosodic features were added
to combinations where the baseline feature was enhanced with
only one additional speech subset, it resulted in a substantial
improvement in classification performance. This suggests that
prosodic features, like spectral features, may capture essential
characteristics of depressive speech. As previous research has also
indicated, prosodic features play a significant role in assessing
psychomotor disturbances in depressive speech (Cummins et al.,
2015; Yang et al.,, 2013). In depressive speech, we typically
observe reduced energy variability, pitch variability, and speech
rate, which are central prosodic indicators. This underscores the
importance of studying depressive prosody alongside spectral
features.

While voice quality and formants did not contribute to
improving classification performance as much as prosodic features,
formant features had a greater impact on performance enhancement
compared to voice quality. This may indicate that the influence of
depressive speech characteristics commonly observed in vowel
formants played a significant role. Another remarkable observation

i1s that employing only two influential speech subsets for
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classification yielded higher performance compared to using all
speech features, implying that increasing the number of features

may not necessarily improve the classification performance.

Table 7. 5—fold cross—validated F1 score on the

optimal combination validation set

#lold 5—fold
Classifier 1 2 3 4 5 Mean
SVM 0.74 0.74 0.76 0.85 0.81 0.78
RF 0.79 0.84 0.80 0.83 0.84 0.82
MLP 0.85 0.81 0.81 0.81 0.87 0.83
In light of our further experiments, it becomes more

apparent that a potential correlation exists between somatic factor

scores and specific vocal components, particularly within the

spectral and prosodic dimensions. These vocal components,
distinguished by their discriminatory capacity as observed, suggest
a further exploration into the potential interconnection between
distinctive vocal characteristics and somatic symptoms. Somatic
symptoms often have the potential to affect behavioral patterns.
Such changes, then, may also impact vocal characteristics. Hence,
the correlation between somatic symptoms and speech features

interaction between behavior and voice. This
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discussion also leads to another follow—up thought. When somatic
symptoms of depression manifest, there can be alterations iIn
emotional expression. These changes may be reflected in vocal
characteristics, particularly in prosodic features. In summary, the
relevant correlation between the somatic factor and speech features
suggests the possibility that physical symptoms or behavioral
changes associated with depression are reflected in voice.

In this study, the primary goal was to enhance our
understanding of the clinical explanatory power of depression—
related speech features, particularly in the context of detecting
clinical symptoms of depressive disorders and emphasize the
clinical interpretability of depressive speech by leveraging the
synergy of specific speech feature combinations. We used the read
speech task; however, it may have inherent limitations in capturing
the emotional dynamics which can be easily observed in
spontaneous speech. Furthermore, it 1s important to note that data
scarcity may introduce performance biases among various speech
subsets. Future work should explore more effective elicitation
methods of depressive vocal markers from spontaneous speech
through a larger dataset. Another limitation of this study arises
from the benchmarking of most classifiers against those previously

utilized in clinical speech research. This introduces challenges in
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mitigating potential performance differences and distortions, given
that the classifiers used in prior studies were trained on specific
datasets in certain context. Furthermore, as is often the case in the
clinical speech domain, it is unavoidable to encounter variability due
to data scarcity. Some classifiers may have been optimized to train
on large dataset, so achieving a more effective performance
comparison may require a substantially large sample size to ensure
robustness. Given these limitations, future work should prioritize
exploring novel speech tasks that can effectively capture emotional
dynamics of depressive speech. Finally, there is a pressing need to
investigate the generalizability of vocal markers and their elicitation
methods such as recording systems across larger dataset to

enhance the reliability and applicability of the findings.
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Chapter 6. Conclusion

This study aims to explore various speech features with varying
classification capabilities to effectively distinguish clinical
symptoms of depression. We have presented our work with the goal
of providing an objective diagnostic tool to support clinicians in their
diagnosis of depression. The results have validated our hypotheses
by examining and comparing participants’ acoustic features
through a read speech task. We found that the combined speech
subsets of spectral and prosodic features outperformed other
speech subset combinations as well as a single spectral subset.
These findings may indicate that depressive speech patterns are
more comprehensively explained by the combined influence of
spectral and prosodic features within the overall speech pattern. It
further underscores the need for future analyses to delve into the
psychological and neural underpinnings that contribute to the
discriminative power of each speech subset. Our findings also
highlight the significance of feature—based analysis, particularly in
the domain of clinical speech research. In conclusion, the
development of a highly reliable and cost—effective markers for
automated assessment 1s pivotal, with a focus on minimizing

computational demands. This requires meticulous training on
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specific speech patterns closely associated with clinical symptoms.
Such efforts hold utmost importance in real—world clinical
applications, where the demand for accurate and efficient diagnostic

tools is crucial.
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Appendix

Appendix 1: Pre—defined paragraphs (Kim, 2005)

During the speech collection, each paragraph was presented using
visual materials displayed on a 24 —inch monitor, with a font size of
18 points, zero letter spacing, 160% line spacing, and justified

alignment.
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Appendix 2: Synthetic results of experiments

1: spectral features, 2: prosodic features, 3: voice quality, 4: formants

Classifier SVM RF MLP
# Speech

Recall F1 score  Accuracy Recall F1 score  Accuracy Recall F1 score  Accuracy
subset
(1,2) 0.81 0.78 0.85 0.80 0.82 0.79 0.85 0.83 0.86
(1.3) 0.70 0.73 0.69 0.73 0.68 0.75 0.72 0.77 0.80
(1.4) 0.72 0.66 0.70 0.67 0.65 0.73 0.69 0.71 0.74
(1,2,3) 0.73 0.77 0.76 0.79 0.75 0.74 0.81 0.74 0.79
(1,2,4) 0.74 0.73 0.77 0.79 0.77 0.81 0.76 0.80 0.82
(1,3,4) 0.71 0.63 0.73 0.68 0.61 0.64 0.77 0.71 0.75
(1,2,3,4) 0.70 0.66 0.67 0.75 0.71 0.71 0.72 0.78 0.80
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