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Abstract

Sediment Load Estimation Based on
Optimized Parameters and Clusters

with Hydro-acoustic Backscatter

Hyoseob Noh

Department of Civil and Environmental Engineering

Civil and Environmental Engineering Major

The Graduate School of Seoul National University

Sediment transport in natural rivers holds significant importance for civil and environ-

mental engineering. However, limitations arise in enhancing the spatial and temporal

resolutions of sediment monitoring due to the labor-intensive nature of the traditional

sediment measurement method, which relies on sample analysis. Recent efforts were

made to improve the temporal resolution of suspended sediment concentration (SSC)

monitoring by fitting the backscattering signal of horizontal acoustic Doppler current

profilers (H-ADCPs) with measured SSC. Although the H-ADCP-based monitoring

increases the data acquisition rate significantly, there are limitations in SSC estima-

tion accuracy due to nonlinearity in the backscattering signal and SSC. This study

primarily aims to improve a sediment load estimation method using hydro-acoustic
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backscatter by the newly proposed parameter optimization methods for clustering and

support vector regression (SVR) techniques. To consider nonlinearity in the SSC-

backscattering relationship, additional hydraulic variables, in addition to backscatter-

ing signal and machine learning techniques, are employed. Model Selection by Global

Optimization for SVR (MOSGO-SVR), which fine-tunes hyperparameters and input

variables, is proposed in order to enhance SSC predictability efficiently. It simulta-

neously determines the combination of input variables and hyperparameters of SVR

using global optimization. An iterative clustering method is also employed to find the

optimal clustering model. These techniques are applied to H-ADCP data to enhance

predictability and measurability based on the procedure to determine the SSC monitor-

ing model with H-ADCP signal using MOSGO-SVR, incorporating the combination

of input variables. Notably, the proposed sediment monitoring procedure includes

simultaneous total load estimation and SSC monitoring. Next, the iterative clustering

method is used to classify sediment monitoring stations in South Korea. Based on

clustering analysis, the application strategy of the H-ADCP-based SSC monitoring

method to sediment ungauged stations is discussed. Third, a new hydraulic model

for total load estimation is derived from the suspended-to-total load fraction using

SVR and symbolic regression methods to complement the hydraulic aspect of the

proposed sediment monitoring procedure. As a result, this study presents a sediment

load assessment framework using H-ADCP, integrating the obtained results. This con-
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tribution enhances the performance of sediment estimation, allowing for systematic

estimation of total loads, even in sediment ungauged stations. The application of these

findings is expected to advance our understanding of river sediment management and

sediment transport mechanisms, improving the predictability and measurability of

sediment monitoring.

Keywords: Total sediment load, Sediment transport, Sediment monitoring, H-ADCP,

Acoustic backscatter, Optimization, Machine learning regression, Clustering

Student Number: 2019-38726

iii





Contents

Abstract i

Contents iv

List of Figures xi

List of Tables xix

Notation xxiii

1 Introduction 1

1.1 Necessity and background . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Enhancing the performance of H-ADCP-based SSC monitoring 3

1.1.2 Presenting extended application strategy of H-ADCP-based

SSC monitoring for sediment ungauged stations . . . . . . . 6

1.1.3 Enabling simultaneous estimation of total load using SSC . 7

1.2 Objectives of the study . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Enhancing the performance of H-ADCP-based SSC monitoring 10

v



1.2.2 Presenting extended application strategy of H-ADCP-based

SSC monitoring for sediment ungauged station . . . . . . . 11

1.2.3 Enabling simultaneous estimation of total load using SSC . 11

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Theoretical backgrounds 15

2.1 Total sediment transport review . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Total sediment estimation using hydraulic parameters . . . . 17

2.1.2 Using suspended load to estimate total load . . . . . . . . . 25

2.1.3 Machine learning models in total load estimation . . . . . . 28

2.1.4 Hysteresis in time-series data . . . . . . . . . . . . . . . . . 30

2.2 Measurement techniques . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Measurement of suspended sediment concentration using H-

ADCP signal . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Regression methods . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Support vector regression (SVR) . . . . . . . . . . . . . . . 49

2.3.2 Genetic programming (GP) . . . . . . . . . . . . . . . . . 57

2.4 Clustering analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.1 K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.2 Gaussian mixture model (GMM) . . . . . . . . . . . . . . . 65

2.4.3 Self-organizing map (SOM) . . . . . . . . . . . . . . . . . 68

vi



2.4.4 Clustering quality criteria . . . . . . . . . . . . . . . . . . 70

2.5 Metaheuristic global optimization . . . . . . . . . . . . . . . . . . 72

2.5.1 Shuffled complex evolution (SCE) . . . . . . . . . . . . . . 74

2.5.2 Shuffled complex evolution with principal component analysis 77

3 Model parameter and input variable optimization 81

3.1 Necessities of the parameter and variable optimization techniques . 81

3.2 SVR parameter and variable set optimization technique . . . . . . . 83

3.2.1 Grid search with RFE and CV for SVR (Grid-RFE-CV) . . 83

3.2.2 MOdel Selection with Global Optimization for SVR (MOSGO-

SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.3 Comparison of the SVR optimization approaches . . . . . . 87

3.3 Iterative SOM–GMM algorithm . . . . . . . . . . . . . . . . . . . 89

3.4 pyGOSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 Advancing H-ADCP-based real-time sediment load monitoring system

using MOSGO-SVR and hydraulic variables 97

4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Study sites and data acquisition . . . . . . . . . . . . . . . 97

4.1.2 H-ADCP signal processing . . . . . . . . . . . . . . . . . . 104

4.2 Instream application performance comparison of the SVR model de-

termination methods in the Nampyeong Bridge station test case . . . 105

vii



4.3 Application of MOSGO-SVR to various monitoring stations . . . . 107

4.3.1 SSC monitoring result . . . . . . . . . . . . . . . . . . . . 107

4.3.2 Discussion on the optimized variable set . . . . . . . . . . . 118

5 Clustering of sediment characteristics in South Korean rivers and its

expanded application strategy to H-ADCP based suspended sediment

concentration monitoring technique 121

5.1 Linear model coefficient similarity . . . . . . . . . . . . . . . . . . 121

5.2 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Regional classification of the sediment monitoring stations . . . . . 125

5.4 Extended application strategy of H-ADCP-to-SSC models using the

clustering result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 A novel efficient method of estimating suspended-to-total sediment load

fraction in natural rivers 145

6.1 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.1 GRID-RFE-SVR . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.2 Explicit equations . . . . . . . . . . . . . . . . . . . . . . . 157

6.3.3 Model performances . . . . . . . . . . . . . . . . . . . . . 163

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

viii



6.4.1 Regional applicability of the models . . . . . . . . . . . . . 166

6.4.2 Clustering analysis . . . . . . . . . . . . . . . . . . . . . . 171

6.4.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 181

7 Integrated sediment load assessment framework 185

7.1 Discussions on sediment load assessment . . . . . . . . . . . . . . 185

7.1.1 Simultaneous monitoring of total sediment load using MOSGO-

SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.1.2 Total sediment concentration estimation using Fsus . . . . . 187

7.1.3 Noisy behaviors of the MOSGO-SVR models . . . . . . . . 193

7.2 The integrated sediment load assessment framework using hydro-

acoustic backscatter . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3 Instream applications . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.4 A brief guideline for the integrated sediment load assessment frame-

work using hydro-acoustic backscatter . . . . . . . . . . . . . . . . 199

7.4.1 Scope of application . . . . . . . . . . . . . . . . . . . . . 199

7.4.2 Data and model sources . . . . . . . . . . . . . . . . . . . 199

7.4.3 Practical Implementation . . . . . . . . . . . . . . . . . . . 202

7.4.4 Limitations and recommendation . . . . . . . . . . . . . . 207

8 Summary and concluding remarks 211

ix



References 215

국문초록 245

x



List of Figures

Figure 1.1 Schematic example of the increase of the backscattering sig-

nal along SSC and correlating it to SSC . . . . . . . . . . . 2

Figure 1.2 A schematic diagram of the H-ADCP sensible area limitation 4

Figure 1.3 Disparity between the automated flow monitoring station and

sediment monitoring stations . . . . . . . . . . . . . . . . . 7

Figure 1.4 Detailed objectives of this study . . . . . . . . . . . . . . . 13

Figure 2.1 Schematic diagram of sediment transport mechanism and

classification . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.2 Schematic diagram of hysteresis in stage-flow rate relationship 33

Figure 2.3 Schematic diagram of possible sediment transport hysteresis

classes (modified after (Williams, 1989; Gellis, 2013)) . . . 34

Figure 2.4 Photographs on suspended sediment and bedload sampling . 37

Figure 2.5 Coefficients varying particle size of the estimation models

(modified after Landers et al. (2016)) . . . . . . . . . . . . 45

xi



Figure 2.6 Schematic examples of the linear SVR’s training rule. The

figure depicts data points generated from a noisy sinusoidal

signal. The red and blue points represent inside- and outside-

margin points, respectively. The thick red line represents the

exact SVR prediction, while the dashed blue line denotes the

margin boundary. . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 2.7 Example of the evaluated score by the grid search . . . . . . 53

Figure 2.8 Example of the K-fold cross validation (K = 5) . . . . . . 54

Figure 2.9 Schematic of RFE-SVR . . . . . . . . . . . . . . . . . . . 56

Figure 2.10 Examples of the GP operations (modified from Noh et al.

(2020)). The blue and red markers indicate the crossover and

mutation operations, respectively. . . . . . . . . . . . . . . 59

Figure 2.11 Example of MGGP formulation with trees multiplied by ar-

bitrary regression coefficients b0, b1, and b2 (modified from

Noh et al. (2020)) . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 2.12 Training process of K-means by the Lloyd algorithm. The X

markers indicate the initial centroids and the square markers

indicate the updated centroid . . . . . . . . . . . . . . . . . 64

xii



Figure 2.13 Gaussian mixture model mapping example on an arbitrary

two-dimensional dataset (K = 3). The dots are randomly

generated points using three artificial Gaussian distributions.

Each trained Gaussian model is displayed with a colored el-

lipse, and assigned points are denoted by the colors of ellipses. 65

Figure 2.14 Schematic diagram of SOM networks. . . . . . . . . . . . . 67

Figure 2.15 A simple SOM update example for 5 × 5 network for an

iteration where σ = 3: the blue X marker is the target data

point and the red dot is the winning node corresponding to

the X marker. . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 2.16 An example of 10×10 grid mapping of three Gaussian distri-

butions by a planar self-organizing map. The randomly gen-

erated points under three Gaussian distributions are marked

in red, blue, and green colored dots, respectively. The black

dots and their connections are the trained self-organizing map

grid components for entire points. . . . . . . . . . . . . . . 69

Figure 2.17 Component planes of the planar SOM depicted in Figure 2.16

for (a) x and (b) y. The face color of each hexagon denotes

corresponding (a) x and (b) y values. . . . . . . . . . . . . 70

xiii



Figure 2.18 Flowchart of the shuffled complex evolution optimization

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.1 Example of the AIC and BIC evaluations with respect to the

number of clusters. . . . . . . . . . . . . . . . . . . . . . . 93

Figure 3.2 A flowchart of the SOM–GMM algorithm . . . . . . . . . . 94

Figure 4.1 Geographical locations of the study sites . . . . . . . . . . . 98

Figure 4.2 The water level-flow rate graph . . . . . . . . . . . . . . . . 103

Figure 4.3 Schematic diagram of the effective cell decrease due to un-

wanted acoustic reflectances . . . . . . . . . . . . . . . . . 104

Figure 4.4 The graph of flow rate-suspended loads for Case 1, depicting

temporal variations by using arrows during the monitoring

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 4.5 The graph of flow rate-suspended loads for Case 2, depicting

temporal variations by using arrows during the monitoring

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 4.6 The graph of flow rate-suspended loads for Case 3, depicting

temporal variations by using arrows during the monitoring

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 4.7 Scatter plots for Measured SSC versus estimated SSC using

Cases 1–3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiv



Figure 4.8 Scatter plots for Measured SSC versus estimated SSC using

Case 2 and one- or two-variable linear models . . . . . . . . 114

Figure 5.1 Scatter plot of H-ADCP-SSC equation coefficients corre-

sponding to Table 4.6 . . . . . . . . . . . . . . . . . . . . . 122

Figure 5.2 Representative clustering cases for sediment measurement

stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 5.3 Spatial overlapping of the clustering result with the stations

where the H-ADCP-SSC equations exist (left-hand side figure

is originally from Figure 5.1) . . . . . . . . . . . . . . . . . 134

Figure 5.4 Example of the H-ADCP-SSC equation determination protocol136

Figure 5.5 Flowchart of the H-ADCP-SSC equation determination protocol137

Figure 5.6 Estimated SSC graphs of the four tested H-ADCP-SSC mod-

els for a given SCB range. . . . . . . . . . . . . . . . . . . 139

Figure 6.1 The sediment load measurement sites in (Williams and Ros-

gen, 1989). The measurement sites are marked with red dots. 148

Figure 6.2 The temperature and grain size effects on the falling velocity:

(a) ws vs T; (b) ws vs ds; (c) ws(T=25)−ws(T=10)
ws(T=25) vs ds. . . . 152

xv



Figure 6.3 Scatter plots for Fsus estimation using all available data. (a)

scatter plot of the three variable models; (b) scatter plot of

the three variable models. (c–d) are the kernel density plots

corresponding to (a–b). . . . . . . . . . . . . . . . . . . . . 164

Figure 6.4 Gerographical projection of SVR5 model performance cor-

responding Table 6.8. The marker size increases in a or-

der of R2 < 0, 0 < R2 ≤ 0.25, 0.25 < R2 ≤ 0.5,

0.5 < R2 ≤ 0.75, and 0.75 < R2 ≤ 1, turning colors

from red to blue. . . . . . . . . . . . . . . . . . . . . . . . 168

Figure 6.5 Correlation heat map for all dimensionless variables. The cor-

relation coefficient values are written in the box, and colored

with the corresponding color bar. . . . . . . . . . . . . . . 172

Figure 6.6 QE and TE epochs for the seven dimensionless variables

[Fsus, W/h, d∗, Reh, Fr, Frd, and Rew] . . . . . . . . . . 173

Figure 6.7 Minimum AIC+BIC values for each cluster number for the

seven dimensionless variables [Fsus,W/h, d∗,Reh,Fr,Frd,

and Rew] . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

xvi



Figure 6.8 Component planes of the trained SOM grid: (a) Fsus; (b)

W/h; (c) d∗; (d)Reh; (e)Fr; (f)Frd; (g)Rew. The grey scale

face color denotes the values of variables. The determined

clusters are differentiated by the edge colors of hexagons. . . 175

Figure 6.9 Pair scatter plots with kernel density plots for the seven di-

mensionless variables [Fsus, W/h, d∗, Reh, Fr, Frd, and

Rew]. The colors of clusters were mapped into the dot and

density contours with the same colors in Figure 6.8. . . . . . 176

Figure 6.10 Spyder and three-dimensional surface plots for the three pro-

posed algebraic equations: (a,d) tanh-type; (b,e) MGGP1;

(c,f) MGGP2. The figure shows changes in the Fsus value as

a function of specific variables. Different colors and markers

are used to denote these changes in the spyder plots in (a,

b, c). The surface grids in (d, e, f) represent the Fsus values

obtained by combining Reh and Frd. . . . . . . . . . . . . 182

Figure 7.1 Examplar flowchart of real-time total sediment load monitor-

ing system . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Figure 7.2 Application of MOSGO-SVR to the total load estimation pro-

cedure and cross-validation scores using MEP estimations. . 188

xvii



Figure 7.3 Scatter plots between sediment load concentrations: (a) Fsus

vs suspended sediment concentration; (b) total load concen-

tration vs suspended load concentration; and (c) bedload con-

centration vs total load concentration. . . . . . . . . . . . . 189

Figure 7.4 Flowchart of the integrated sediment load assessment framework195

Figure 7.5 Sediment sampling photographs. (a) wading-type suspended

sediment monitoring; (b) D-74 suspended sediment sampler;

(c) bedload sampling. . . . . . . . . . . . . . . . . . . . . . 200

Figure 7.6 H-ADCP installation at a bank with sediment cloud passing 201

xviii



List of Tables

Table 2.1 Fsus rough estimation table (modified after Turowski et al. (2010) 26

Table 2.2 Coefficients of Equation (2.17) . . . . . . . . . . . . . . . . 27

Table 2.3 Sign of each term in Equation 2.24 for stage variation . . . . 33

Table 2.4 The costs of the riverine suspended sediment monitoring methods 38

Table 3.1 Fine-tuning ability and computational costs of the SVR opti-

mization approaches . . . . . . . . . . . . . . . . . . . . . . 87

Table 4.1 Data acquisition conditions of the study sites. Bridge, Weir,

River, and Creek are marked in the table as B., W., R., and C.,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table 4.2 Field measurements data summary of the study sites . . . . . 100

Table 4.3 Optimal hyperparameters determined by various SVR opti-

mization approaches in the Nampyeong Bridge station . . . . 106

Table 4.4 Model structures and cross-validation scores in the Nampyerong

Bridge station . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table 4.5 The MOSGO-SVR training results . . . . . . . . . . . . . . 111

xix



Table 4.6 Regression coefficients of the linear models . . . . . . . . . . 115

Table 4.7 RMSEs of the refitted models for each station . . . . . . . . 116

Table 5.1 Variable summary of sediment monitoring stations . . . . . . 126

Table 5.2 Viarable combinations of the clustering cases . . . . . . . . . 127

Table 5.3 Statistics summary of each cluster . . . . . . . . . . . . . . 130

Table 5.4 Coefficient of determination (R2) by cross-application of SVR

models using only SCB . . . . . . . . . . . . . . . . . . . . 142

Table 5.5 RMSE values of applications of Hoguk Bridge and Nampyeong

Bridge models to the Gumi Bridge station . . . . . . . . . . 143

Table 6.1 Dimensionless variables related to sediment transport . . . . 146

Table 6.2 Empirical equations for total loads with dimensionless variables 147

Table 6.3 Summary of the dataset (Nan rows excluded) . . . . . . . . . 150

Table 6.4 Tested hyperparameter grid for the GRID-RFE-CV . . . . . . 154

Table 6.5 The condition of each case and cross-validation scores of the

best model results from GRID-RFE-CV . . . . . . . . . . . 156

Table 6.6 MGGP parameter settings . . . . . . . . . . . . . . . . . . . 159

Table 6.7 5-fold cross-validation score of the empirical equations in es-

timation of Fsus. . . . . . . . . . . . . . . . . . . . . . . . . 163

xx



Table 6.8 Fsus estimation performance and mean Fsus for each geo-

graphical location of the entire data in Williams and Rosgen

(1989). The cells were green colored for high scores and red

colored for low scores. . . . . . . . . . . . . . . . . . . . . . 166

Table 6.9 Fsus estimation performance (R2) of the refitted SVR3 and

SVR5 model for entire data and each geographical location.

The cells were green colored for high scores and red colored

for low scores. . . . . . . . . . . . . . . . . . . . . . . . . . 169

Table 7.1 Integrated sediment load assessment framework test cases with

different model combinations . . . . . . . . . . . . . . . . . 196

Table 7.2 SSC and QTL estimation accuracy (R2) on the Gumi Bridge

station for each case. . . . . . . . . . . . . . . . . . . . . . . 198

Table 8.1 Summary of this study . . . . . . . . . . . . . . . . . . . . . 214

xxi





Notation

µ, Σ Mean and covariance matrix of Gaussian distribution

N Gaussian distribution

D⃗ Diagonal matrix of the covariance matrix of the complex

m⃗i i-th SOM node

w⃗p Weight vector without p-th vector component

w⃗ Weight vector

x⃗j
(−p) x⃗j without p-th feature

X⃗c, X⃗r, X⃗oc, X⃗ic The centroid, reflected, outside contraction, and inside contraction
parameter points in global optimization

A Cross-sectional area

at Transducer radius

AT ,BT ,CT ,DT Coefficients of the Turowski model

Adrain Drainage area

aSL,bSL Regression coefficients for suspended load rating curves

aTL,bTL Regression coefficients for total load rating curves

AIC Akaike information criterion

b Offset of the linear SVR

BIC Bayesian information criterion

c Wave speed

C(·) Sediment concentration

C1,C2 Regression coefficient

xxiii



Cg Curvature coefficient

ci the centroid of the cluster Si

cp Ranking criterion in RFE

Cu Uniformity coefficient

Cv Volumetric sediment concentration

Cref Reference sediment concentration

CSV R Regularization coefficient of SVR

Cw,t, Cw,b Total load and bedload concentrations by weight

Cw, Cppm Sediment concentration by weight and parts per million

d∗ Dimensionless grain size

d84,d50,d16 Sediment particle sizes of the 84%, 50%, and 16% of the material by
weight

dce(Qk, Ql) Distance between clusters Qk and Ql

ds Characteristic sediment particle size diameter

DBI Davies-Boulding index

E Ratio of bed layer thickness to flow depth

eB Bagnold coefficient

f(·) Arbitrary function

Fsus Suspended-to-total load fraction

Fr = U√
gh

Froude number

Frd = U√
g(Gs−1)d50

Densimetric Froude number

Gs Specific gravity of sediment

Gr = 1
2(

d84
d50

+ d50
d16

) Gradation coefficient

Iv Optimization flag designating the input data columns

J1,J2,J ′
1,J ′

2 Einstein integral components

xxiv



K The number of subsets in clustering or cross-validation

k Wavenumber

k, l Location index in the two-dimensional SOM grid

K(x, x) Kernel function

k∗, l∗ Location index of the winning node in the two-dimensional SOM grid

kQ Coefficent of the general discharge relationship

ks Roughness height

LL Log likelihood

MB Measured backscatter

N The number of dataset

n∗i The sorted rank of the i-th individual

Np The number of parametes

Nw, Nh Width and height of SOM grid

ncomp The number of individuals in the complex

p(·) Probability density function

Pi i-th bin’s size fraction

Q Flow discharge

Qn Steady-uniform flow discharge

Qbm Bed material load

Qm Measured sediment load

QTL, QSL, QBL Sediment discharge (total, suspended, bedload)

qTL, qSL, qBL Unit sediment discharge (total, suspended, bedload)

Qum Unmeasured sediment load

Qwl Wash load

QE Quantization error

xxv



r Sound wave travel distance

R2 Coefficient of determination

R2
CV Coefficient of determination from cross-validation

r∗ = rλ/(πa2t ) Dimensionless sound wavelength

Re∗ =
u∗h
ν Shear Reynolds number

Reh = Uh
ν Flow Reynolds number

Rew = wsd50
ν Falling particle Reynolds number

Red∗ =
u∗d50

ν Particle shear Reynolds number

Red50 =
Ud50
ν Particle Reynolds number

Ro Rouse number

SC Distance between the center of clusters and data points

Si i-th cluster

SCB Sediment corrected backscatter

SL Source level

T Temperature

TK Temperature in Kelvin

tk, µk, σk k-th Gaussian weight, mean matrix, covariance matrix on the Giussian
mixture

TE Topological error

TL Transmission loss

TS Target strength

U Cross-section averaged streamwise velocity

u Streamwise velocity at a point

u∗ Shear velocity

Ucr Critical velocity at incipient particle motion

xxvi



uTE Topoligical error function

W Channel width

wi Particle falling velocity of of i-th bin

ws Sediment falling velocity

wk∗l∗ Wining node

ws∗ = ws/
√
(Gs − 1)gds Dimensionless falling velocity

WCB Water corrected backscatter

x, y, z Coordinates (streamwise, transverse, vertical)

Yobs,Yest Observed and estimated values

zn Minimum height of the suspended sediment sampler nozzle

α,α∗ Lagrangian multiplier

αw,αs Backscatter correction coefficients for water and sediment

β Ratio of the turbulent mixing coefficient of sediment to the momentum
exchange coefficient

δb Bedload layer thickness

ϵ Margin width of SVR

γw,γs Specific weight of water and sediment

γRBF inverse of the influence radius of the RBF kernel

κ von Karman coefficient

κ2s Backscatter strength coefficient

λ Wavelength

λn Neighborhood function

ν Kinematic viscosity of water

ω Frequency

ψ Irregular sound diffusion correction factor

xxvii



ρw,ρs Density of water and sediment

σg = (d84d16
)1/2 Gradation of the sediment mixture

σs Backscatter strength of sound wave

τ Shear stress

τ∗ =
u2
∗

g(Gs−1)d50
Shields number

τ0 Bed shear stress

τ ′i , τci Tractivee and critical tractive forces of i-th bin

τxz Turbulent shear stress at distance z above the bed

ξ,ξ∗ Slack variables of SVR

ζs Normalized attenuation coefficient

Y(obs) Mean observed value

x⃗i,x⃗j i-th and j-th input data point vector

AM3 Coefficient of the MGGP3 model

AM5,BM5 Coefficients of the MGGP5 model

AO3,BO3,CO3,DO3,EO3 Coefficients of the Operon3 model

AO5,BO5 Coefficients of the Operon5 model

xxviii



Chapter 1. Introduction

1.1 Necessity and background

Sediment yield observations in rivers are crucial for river management. The sediment

deposition significantly affects flood control capabilities, the design life of hydraulic

structures, and water quality, including turbidity. However, direct sampling meth-

ods for river sediment observation are labor-intensive, resulting in a very low data

acquisition rate.

Additionally, simultaneous flow rate and sediment concentration measure-

ments are necessary to assess suspended sediment loads accurately. However, due to

the time required for conducting both suspended sediment concentration (SSC) and

flow rate measurements, carrying out these observations presents practical challenges.

Due to the time-consuming and labor-intensive sediment sampling process,

practitioners often develop and apply simple power-law-type flow rate-sediment loads

rating curves. While this method is practically useful, Rajaee et al. (2011) pointed out

that it lacks the ability to reproduce complex sediment behavior occurring in natural

rivers, e.g., during storm events. Furthermore, constituents of suspended sediment at

low flows differ from those at high flows, so the rating coefficients are not constant

over the flow rate range (Hoffmann et al., 2020). Noh et al. (2023b) demonstrated that

relying on such curves for sediment budget evaluations during flooding events can
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Figure 1.1 Schematic example of the increase of the backscattering signal along SSC
and correlating it to SSC

yield incorrect outcomes with errors reaching up to 10,000 t/d.

Recently, attempts have been made to observe sediment yield using acoustic

Doppler current profilers (ADCPs). This approach utilizes the backscatter values of

the ADCP signal, which are correlated with the concentration of suspended particles

in the water (Urick, 1948, 1975) as shown in Figure 1.1. Studies have demonstrated the

feasibility of real-time suspended sediment observations using horizontal ADCP (H-

ADCP; Topping et al. 2006, 2007; Landers 2012; Landers et al. 2016; Guerrero et al.

2016; Haught et al. 2017; Guerrero and Di Federico 2018; Szupiany et al. 2019; Aleixo

et al. 2020; Son 2021; Noh et al. 2022, 2023b,c). This approach enables the concurrent

monitoring of SSC and flow rate, facilitating the simulation of hysteresis in sediment

transport. Consequently, utilizing H-ADCP at automated flow measurement stations

in sediment monitoring can reduce the temporal gap in sediment yield observations.

In South Korea, 62 automatic flow measurement stations are currently equipped

with H-ADCP, in operation for monitoring river water flow in Korea (MoE, 2019b).

2



H-ADCPs provide flow data at 10-minute intervals and offer a significant advantage

in measuring sediment concentration with fewer limitations than traditional sampling

methods, as long as the ADCP remains submerged beneath the water surface. There-

fore, if H-ADCPs in monitoring stations are used for sediment monitoring, worker

safety can be ensured, and temporal resolution can be dramatically improved. This

approach enables the concurrent monitoring of SSC and flow rate, facilitating the

simulation of hysteresis in sediment transport, thereby advancing flow and sediment

monitoring accuracy.

1.1.1 Enhancing the performance of H-ADCP-based SSC monitoring

In H-ADCP-based SSC monitoring, cross-section averaged SSC values are derived

using the sediment-corrected backscatter (SCB), obtained from a small portion of

the ensonified volume. This method is called the index concentration method, which

is akin to the index velocity method employed in flow rate monitoring. The typical

estimation of sediment concentration using ADCPs follows the relationship:

log10(SSCV ) = C1 · SCB + C2, (1.1)

where C1 and C2 denote the regression coefficients, and SCB represents sediment-

corrected backscatter, a concept to be discussed in the next chapter. However, the

current H-ADCP-based SSC monitoring method faces several challenges in achieving
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Figure 1.2 A schematic diagram of the H-ADCP sensible area limitation

accurate SSC estimation.

Firstly, accurately determining SCB is challenging due to its nonlinear depen-

dence on sediment particles and water temperature (Landers, 2012; Landers et al.,

2016; Guerrero et al., 2016; Guerrero and Di Federico, 2018; Aleixo et al., 2020). For

instance, suspended sediment particle size distribution (SSPSD) vary during rainfall

events (Landers and Sturm 2013;MoE, 2019b 2019; Hoffmann et al. 2020). As em-

phasized by Hoffmann et al. (2020), a nonlinear regime shift occurs in the SSC-flow

rate rating curves, resulting in a break in sediment rating. Addressing this nonlinearity

becomes necessary, and this can be achieved through empirical relationships, such as

employing a nonlinear method or incorporating multiple ratings in one station.

An additional challenge arises from the constrained coverage area of H-ADCP

in both depth and transverse directions. H-ADCP captures signals from the transmitter
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to the opposite bank through numerous ensonified cells. However, unwanted sonar

reflections from the bottom and water surface can occur, introducing noise in the

backscattering signals. Consequently, SCB values must be derived from only a few

cells near the H-ADCP’s soundwave transmitter. Coupled with H-ADCP’s vertical

immobility, these coverage limitations lead to the incapability of collecting vertical

and transverse information (Figure 1.2. These constraints adversely affect H-ADCP’s

capability to simulate average cross-sectional SSC.

Specifically, H-ADCP-based SSC estimation with the limited coverage area is

grounded in an assumption of uniform SSC across a cross-section, despite the widely

accepted theory of a vertically varying SSC profile as per the Rousean profile (Rouse,

1937). Recent studies utilizing down-looking ADCP for cross-sectional SSC mapping

(Guerrero et al., 2013; Pomázi and Baranya, 2022; Chalov et al., 2022) have illustrated

two-dimensional SSC variation. This implies that relying on a small number of cells

can exacerbate inherent errors in SSC estimation.

One method to resemble such limitations, including unsteadiness and immo-

bility of H-ADCP, is to consider additional variables such as water level and flow

rate besides SCB (Son, 2021). In recent efforts, machine learning techniques have

been successfully applied to address these non-linearities (Nagy et al., 2002; Melesse

et al., 2011; Rajaee et al., 2011; Noh et al., 2023c). By leveraging the strengths of

both approaches, estimation performance enhancement is expected by considering
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additional variables and adopting machine learning techniques.

To address limitations such as the unsteadiness and immobility of H-ADCP,

one approach is to consider additional variables like water level and flow rate alongside

SCB (Son, 2021). Recent endeavors have successfully utilized machine learning tech-

niques to manage these nonlinearities (Nagy et al., 2002; Melesse et al., 2011; Rajaee

et al., 2011; Noh et al., 2023c). By leveraging the strengths of both approaches, an en-

hancement in estimation performance is anticipated, which is achieved by considering

additional hydraulic variables and applying machine learning techniques.

1.1.2 Presenting extended application strategy of H-ADCP-based SSC

monitoring for sediment ungauged stations

Accurate sediment transport measurement data is essential for developing an H-

ADCP-based sediment monitoring model. Specifically, the model is established by

fitting the recorded H-ADCP backscattering signals acquired during sediment sam-

pling with the measured SSC. The problem is that only 18 out of 62 automated flow

observation stations are equipped to monitor sediment loads. Consequently, the H-

ADCP-based sediment monitoring model is infeasible to derive in 70% of the flow

monitoring stations. This monitoring subject disparity is illustrated in Figure 1.3 by a

Venn diagram.

Fortunately, it has been reported that the backscatter of H-ADCP depends on

regional sediment characteristics, such as the diameter of the suspended sediment
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Figure 1.3 Disparity between the automated flow monitoring station and sediment
monitoring stations

(Urick, 1975; Topping et al., 2007; Landers et al., 2016; Guerrero and Di Federico,

2018; Aleixo et al., 2020). This dependence suggests that the relationship of backscat-

ter models can be similar where such sediment characteristics are similar. Therefore, it

would be possible to apply the same calibrated model in places where spatial sediment

characteristics, such as particle size distributions of suspended sediment and bed ma-

terial, appear similar. Therefore, exploring areas exhibiting homogeneous sediment

transport characteristics for application is necessary.

1.1.3 Enabling simultaneous estimation of total load using SSC

On the other hand, fluvial sediment transport is attributed to total load, not only

suspended load, which can be estimated using H-ADCP. The total sediment load

QTL, which is regarded as the sum of the suspended QSL and bed QBL loads. In
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particular, monitoring bed loads is costlier than monitoring suspending loads. Alter-

native methods to monitor suspended sediment have been proposed that utilize various

equipment, such as optical sensors (Agrawal and Pottsmith, 2000) and hyperspectral

cameras (Kwon et al., 2022a,a; Gwon et al., 2023), enabling high spatiotemporal

resolution monitoring in the simplified monitoring process. Technological advances

in the monitoring of bed loads are comparatively slower than those achieved for

suspended loads, owing to difficulties in access both physically and optically. Specif-

ically, suspended loads can be easily calibrated with optical features using turbidity

or reflectances, which are readily measured remotely.

For these reasons, the total loads are frequently estimated using suspended

loads (Turowski et al., 2010). One popular approach is the modified Einstein pro-

cedure (MEP) (Colby and Hembree, 1954), which estimates the total load using

suspended sediment transport information and its computer program implementation

called the Bureau of Reclamation Automated MEP (Holmquist-johnson, 2006) is

available. However, MEP has problems, such as arbitrarily defined terms, physically

impossible results (QSL > QTL), and Rouse number (Ro) tuning. Thus, because of

some improbable results and estimation difficulty in using MEP, it has been revised to

the series expansion MEP (SEMEP) for depth-integrating samplers (Shah-Fairbank

et al., 2011) and point-integrating samplers (Shah-Fairbank and Julien, 2015), re-

spectively. Although analytically driven MEP-based methods are theoretically sound,
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their application range is limited to sand-bed streams (Shah-Fairbank and Julien,

2015; Yang and Julien, 2019).

Another solution for the total load estimation is to invert the relationship

defined by the fraction of suspended load to total load Fsus = QSL/QTL. The

suspended-to-total load ratio formulation can be derived from the relationship between

QTL and QSL of SEMEP (Shah-Fairbank and Julien, 2015; Yang and Julien, 2019).

However, as pointed out by (Shah-Fairbank and Julien, 2015), the applicability of

SEMEP is limited to the coarse armored bed condition with high wash load and grain

size smaller than 2 mm. On the other hand, (Turowski et al., 2010) furnished a profound

investigation ofFsus using the measured data from various natural rivers and proposed

the empirical equations for short-term sediment having a form QBL = AQB
SL, where

A and B are the regression coefficients obtained without hydraulics-related factors.

Accordingly, there is a need to design a field data-driven empirical model for Fsus

that contains physical information.

1.2 Objectives of the study

This study proposes a method for efficiently monitoring real-time sediment con-

centration and flow rate using the H-ADCP installed at automated flow monitoring

stations. The research further derives an SVR model for estimating SSC and sus-

pended loads from the H-ADCP backscattering signal. To develop the SVR model,
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this work presents and applies a method that involves determining input variables and

hyperparameter tuning through the GO algorithm. Additionally, the wider applicabil-

ity of H-ADCP-based SSC monitoring is presented, including its potential for total

load monitoring and its application in sediment measuring stations with missing data.

Three main objectives drive this study:

• Enhancing the performance of H-ADCP-based SSC monitoring

• Presenting extended application strategy of H-ADCP-based SSC monitoring

for sediment ungauged stations

• Enabling simultaneous estimation of total load using SSC

The specific sub-objectives are succinctly outlined in the subsequent subsections.

1.2.1 Enhancing the performance of H-ADCP-based SSC monitoring

• To present methods that involve efficiently determining input variables and

model hyperparameter settings.

• To propose a method for efficiently monitoring real-time sediment concentration

using the H-ADCP installed at automated flow monitoring stations, considering

the inclusion of factors such as SCB, flow rate, and stage for SSC monitoring

performance.

• To suggest a total load estimation protocol in a systematic connection with the
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SSC monitoring method

1.2.2 Presenting extended application strategy of H-ADCP-based SSC

monitoring for sediment ungauged station

• To classify the sediment monitoring stations concerning sediment transport

characteristics.

• To propose a method determining H-ADCP-based SSC monitoring stations.

• To explore the feasibility of applying calibrated SSC estimation models.

1.2.3 Enabling simultaneous estimation of total load using SSC

:

• To develop a field data-driven empirical model for the suspended-to-total load

ratio (Fsus) to enhance total sediment load predictions using SVR and symbolic

regression techniques.

• To assess the applicability of the developed models and discuss using Fsus for

total load estimation.

• To provide the inference of the relationships between Fsus and input dimen-

sionless hydraulic variables based on the clustering analysis.

These objectives aim to propose a sediment load estimation method using

hydro-acoustic backscatter aided by the newly proposed parameter optimization meth-
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ods for clustering and support vector regression. Figure 1.4 briefly shows the three

pillars of this study and detailed sub-objectives.

1.3 Overview

This dissertation is structured into seven chapters. Chapter 2 introduces the back-

ground theories relevant to the subsequent sections, while the following chapter out-

lines the primary methodologies employed. Chapter 4 delves into the enhancement of

estimation performance in the H-ADCP-based sediment monitoring method by apply-

ing the proposed SVR model selection method. Chapter 5 explores the utilization of

the H-ADCP-based SSC monitoring model in sediment ungauged stations through an

analysis of homogeneous sediment monitoring stations’ characteristics using the iter-

ative GMM. Chapter 7 presents a novel method for estimating total loads using SSC,

focusing on the suspended-to-total sediment load fraction and discussing its depen-

dency on hydraulic variables. Consequently, Chapter 8 suggests a new total sediment

load estimation framework incorporating the major results throughout Chapters 3–8.

Chapter 9 provides a comprehensive summary of this dissertation and concluding

remarks.
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Chapter 2. Theoretical backgrounds

This chapter consists of descriptions of the methods, including their background theo-

ries. In terms of the purposes, the chapter is divided into the following four subjects: a

review of total sediment load theory, measurement techniques, soft computing regres-

sion, clustering methods, and a brief review of metaheuristic optimization algorithms.

2.1 Total sediment transport review

Sediment is the material detached from the rocks (earth’s crust) by the physical and

chemical fragmentation (Van Rijn, 1993). Sediment particles are transported by fluid

having various shapes and sizes.

The sediment particle motions are often classified by three modes: (1) sliding

and rolling, (2) saltating (or hopping), and (3) suspended. Regarding the type of parti-

cle movement, the first mode and regular saltating particles are considered bedloads.

The particles transported in suspension due to sufficiently strong shear stress and

turbulence are suspended loads. With these definitions, The total sediment load QTL

in a stream is considered the summation of suspended load QSL and bedload QBL

transports.

In addition to the suspended-bedload classification, the sediment transports

are categorized in several ways regarding movement type, measurement method, and

15



Figure 2.1 Schematic diagram of sediment transport mechanism and classification

sediment source. Figure 2.1 portrays a simple schematic diagram of the sediment

particle motions and classifications.

The measurement-based classification is due to the geometric shape of sam-

plers. Taking an example of suspended sediment samplers, suspended sediment sam-

plers have a fish-like shape with the nozzle at 3 to 7 inches upward from the bottom

(Edwards et al., 1999). Hence, at least 3 inches of non-measured depth exist using

suspended sediment samplers. Let h and zn be the nozzle height and water depth,

respectively. Then, the measured suspended sediment load Qm is defined as an inte-

gration of sediment flux from zn to h.

The third classification distinguishes the source of passing sediment particles

into the bed material load Qbm and wash load Qwl. The bed material load is the

amount of particles originating from bed materials by local flows according to the

channel capacity. The wash load is part of suspended loads but has significantly

smaller particles than the bed material size. The wash load is from the catchment and
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rarely deposited.

2.1.1 Total sediment estimation using hydraulic parameters

In this subsection, the total load estimation formulae are briefly reviewed. This section

introduces the landmark concept models. The branch of the landmark models will be

introduced in section 6.1.

Einstein procedure

As discussed in section 2.1, the unit total load qTL can be obtained by summation

of the unit suspended load qSL and unit bedload qBL. qSL can be considered as the

integration of sediment concentration flux along the elevation z. Accordingly, Einstein

(1950) describes the total load qTL can be obtained by:

qTL = qBL +

∫ h

δb

u(z)C(z)dz (2.1)

where C(z) is the sediment concentration at the vertical distance z from the bed, δb is

the bed layer thickness, which can be defined as 2ds, u(z) is the streamwise velocity

at z. u(z) in Equation (2.1) can be assumed by Keulegan’s velocity profile (Keulegan,

1938):

u(z) =
u∗
κ

ln(
30z

ks
) (2.2)
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where u(z) is the measure velocity at z; u∗ =
√
τ0/ρ is the shear velocity; τ is

the shear stress; ρw is the water density; κ is the von Karman constant; ks is the

roughness height. Similarly, the C(z) can be taken from the Rousean concentration

profile (Rouse, 1937) as given in Equation (2.3).

C(z) = Cref (
h− z

z

δb
h− δb

)Ro (2.3)

where Cref is the reference concentration (= C(δb)); Ro is the Rouse number (=

ws/(βκu∗); β is the ratio of the turbulent mixing coefficient of sediment to the

momentum exchange coefficient (assumed to be 1); and ws is the falling velocity of

sediment particles. Subsequently, with substitutions of u(z) and C(z), the total unit

bed sediment discharge is given below.

qTL = qBL +

∫ h

2ds

Cref
u∗
κ
(
h− z

z

δb
h− δb

)
ws

βsκu∗ ln(
30z

ds
)dz (2.4)

where Cref = qBL/au(δb) is the reference concentration at the bedload layer. The

bedload layer thickness δb, is assumed to be twice the characteristic particle diameter

2ds. Rearranging Equation (2.4),

qTL = qBL + 0.216qBL
ERo−1

(1− E)Ro−1
{ln(30h

ds
)J1 + J2} (2.5)
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J1 and J2 are the Einstein integrals and are defined as follows.

J1 =

∫ 1

E
(
1− z

z
)Rodz (2.6)

and

J2 =

∫ 1

E
ln z(

1− z

z
)Rodz (2.7)

where E is the ratio of bed layer thickness to flow depth, which is commonly used in

the form 2d50/h; is. The Einstein integrals can be estimated by monographs given in

Einstein (1950) or by numerical integration.

The resultant qTL is obtained by the Einstein procedure (EP). In EP, the qSL

and qBL are computed for bins of the SSPSD and bed material particle size distribution

(BMPSD), respectively. Ro is obtained by trial and error.

Modified Einstein procedure

Since EP was proposed for hydraulic design, hydraulic variables are determined by

formulae. In contrast, the modified Einstein procedure (MEP) was originally proposed

by Colby and Hembree (1954) to estimate the total load from measured sediment load

from depth-integrated suspended sediment samplers. Therefore, it requires measured

mean velocity and measured sediment sample. The basic idea is to estimate the

unmeasured load by extrapolation of the Rousean profile using the measured load.

Although the MEP was presented as a simpler modification of the Einstein
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procedure, its computational procedure demands substantial experience, engineering

sense, and time due to its very complex process that uses more than 30 equations

(Holmquist-johnson, 2006). For example, Ro is still estimated by trial and error for

the dominating particle size bin and determined by the power of 0.7 equation for

the other bins. Thus, reliable estimation and consistent reproduction of total load for

multiple users are challenging.

To improve the MEP’s accuracy and procedure, additional modifications were

proposed over the years (Colby and Hubbell, 1961; Lara, 1966; Burkham and Dawdy,

1980; Shen and Hung, 1983). For practical application Holmquist-johnson (2006)

presented the MEP computation software, Bureau of Reclamations Automated Mod-

ified Einstein Procedure (BORAMEP) adopting the re-modification of Lara (1966),

which revised the relationship between Ro and the falling velocity (ws). A detailed

computation process of MEP can be found in Holmquist-johnson (2006).

Series expansion of the modified Einstein procedure

Shah-Fairbank (2009) observed the following problems: (1)Ro being not computable

when no particles are observed in the measured zone, (2) a negative relationship

between Ro and ws, the existence of overlapping bins, (3) suspended loads greater

than total loads. Shah-Fairbank (2009) proposed the series expansion of the modified

Einstein procedure (SEMEP) to complement the problems of MEP.

The distinguished improvements of SEMEP compared to MEP are as follows:

20



1. The calculation of total sediment discharge relies on the median suspended

sediment grain size (d50ss), eliminating the need for the PSD bins.

2. There is no regression fitting of Ro based on data from overlapping bins.

3. Ro is evaluated based on the ratio of settling velocity (ws) to shear velocity

(u∗), assuming βs = 1 and κ = 0.4.

4. qBL is computed using the measured sediment discharge, eliminating the need

to favor Einstein’s bed load equation or arbitrarily divide the bed load intensity

by two, and it ensures qTL ≥ qm.

5. The series expansion of Guo and Julien (2004) is employed to obtain J ′
1 and

J ′
2.

In SEMEP, the Einstein integrals (J1 and J2) are computed based on the

integration algorithm proposed by Guo and Julien (2004). Contrary to MEP employing

qSL to estimate qTL, the SEMEP computes qTL using the measured unit suspended

sediment load qm.

qm = 0.216qBL
ERo−1

(1− E)Ro−1
{ln(30h

ds
)J ′

1 + J ′
2}, (2.8)

For the integration of the measurable area, the corresponding integrals J ′
1 and J ′

2 can

be computed by substituting E with zn/h (for example, J ′
1 =

∫ 1
a (

1−z
z )Rodz). The
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unit bedload, qBL, can be determined using the unit measured load, qm (Equation

(2.8)).

Basically, the MEP uses sediment samples from the depth-integrated sus-

pended sediment samplers. For the point-integrated suspended sediment sampler

users, Shah-Fairbank and Julien (2015) proposed SEMEP for point measurements

(SEMEPP).

Bagnold’s stream power concept

The most popular concept is the stream power concept developed by Bagnold (1966).

The basic idea is that the power of the flow excites the bedload transport, supplying

sufficient energy.

τ0U = ρwgUhSf = γwqSf (2.9)

where, τ0 is the bed shear stress; U is the cross-section averaged flow velocity; ρw

and γw are the density and specific weight of water, respectively; g is the gravitational

acceleration; and Sf is the friction slope.

qTL = qBL + qSL =
τ0U

Gs − 1
(eB + 0.01

U

ws
) (2.10)

where τ0 is the bed shear stress; eB is the Bagnold coefficient; andGs = γs/γw is the

specific gravity of sediment with γs being the specific weight of sediment.

Note that the concept of incipient motion is not considered in the stream power

22



approach so that the transport rate does not reduce to zero even in low velocity with

large grain size (Julien, 2010).

Yang’s the unit stream power concept (on energy dissipation)

The unit stream power (on energy dissipation) concept, presented by Yang (1979), is

one of the stream power-based formulae. Dividing Equation 2.9 by gh leads to stream

power per unit weight of water, USf .

dz

dt
=
dx

dt

dz

dx
= USf (2.11)

From the Rousean profile, Yang (1979); Yang and Molinas (1982) deduced the vertical

sediment concentration distribution related to turbulence energy production.

C(z)

Cref
= [

τxy
dUx
dz

(τxz
du(x)
dz )z=δb

]Ro (2.12)

where, τxz is the turbulent shear stress at distance z above the bed. The total sediment

concentration CTL can be obtained by integration of the C(z) profile.

Cppm = A(
USf
ws

)B or logCTL = AY +BY log(
USf − UcrSf

ws
) (2.13)

where Ucr is the critical velocity at incipient particle motion. As expressed above, the

unit stream power is often represented in the dimensionless form, USf/wS . Based
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on this analysis, Yang (1979) proposed empirical equations separating sand bed and

gravel bed streams. For example, the dimensionless relationship for sand bed streams

is given below.

Cppm =5.435− 0.286 log
wsd50
ν

− 0.457 log
U∗
ws

+ (1.799− 0.409 log
wsd50
ν

− 0.314 log
U∗
ws

) log(
US0
ws

− UcrS0
ws

)

(2.14)

where Cppm is the total load concentration in parts per million; and ν is the kinematic

viscosity of water. In the equations, Ucr/ws can be obtained by Equation (2.15).

Ucr

ws
=


2.5

log(
U∗d50

ν
)−0.06

+ 0.66 for 1.2 < U∗d50
ν < 70.0

2.05 for 70 ≤ U∗d50
ν

(2.15)

Tractive force concept

Another concept uses the tractive force (shear stress) to describe the particle motions.

Inspired by the fact that particles move if the tractive force exceeds a critical value,

Laursen (1958) developed a semi-empirical model as the following equation.

Cw = 0.01γs
∑
i

Pi(
di
h
)7/6(

τ ′i
τci

− 1)f(
u∗
wi

) (2.16)

where Pi is the i-th bin’s size fraction; τ ′i and τci are the tractive and critical tractive

forces of i-th bin, respectively; and wi is the particle falling velocity of of i-th bin. In
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this model, the tractive forces can be obtained by τ ′i = ρwU2

58 (d50h ) and τci = Cd50,

where ρw is the water density; and d50 is the sediment particle sizes of the 50% of the

material by weight. f(u∗/wi) can be determined by a plot given in Laursen (1958).

2.1.2 Using suspended load to estimate total load

2.1.2.1 Models using Fsus = QSL/QTL

Not using detailed suspended sediment sampling results, the total load can be calcu-

lated by using the suspended-to-total load fraction (or the bedload fraction). Taking

Fsus = QSL/QTL as an example, if QSL is directly sample, QTL can be calculated

by QTL = QSL/Fsus.

In this study, total load estimation methods are proposed that assist the H-

ADCP-based suspended sediment monitoring system. With the readily obtainable

suspended loads, usingFsus is practically useful. For instance, the H-ADCP- or remote

sensing-based monitoring systems only provide suspended load. In this manner, this

study introduces several efforts to estimate Fsus.

Rule of thumb: rough estimation using table

Another approach for estimating the total load is to use rough estimations. A method

is assumming Fsus from 0.6 to 0.9 (Turowski et al., 2010). The reference of this

assumption can be found in the estimation tables as shown in 2.1 (Maddock and

Borland, 1950; Lane and Borland, 1951).
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Table 2.1 Fsus rough estimation table (modified after Turowski et al. (2010)

Suspended-to-total load fraction in percent
Bed type Concentration (ppm) Maddock and Borland (1950) Lane and Borland (1951)

Sand
Cppm < 1000 50 to 100 40 to 80

1000 ≤ Cppm < 7500 80 to 90 75 to 90
7500 ≤ Cppm 80 to 90 87 to 95

Gravel
Cppm < 1000 95 90 to 95

1000 ≤ Cppm < 7500 90 to 95 90 to 95
7500 ≤ Cppm 92 to 98 92 to 98

Indeed, Fsus models from Maddock and Borland (1950); Lane and Borland

(1951) are simple and practical. However, Fsus determination depends on the engi-

neer’s intuition, and there is no clear reason for the numbers (Turowski et al., 2010).

Turowski et al. (2010) method

Turowski et al. (2010) developed empirical models to elucidate the solid basis to

estimate Fsus. The long-term and short-term Fsus estimation models were derived

separately, using a dataset with suspended load and total load measured at the same

time.

The short-term model has a power-law form as:

Qb =


ATQ

BT
SL for QSL ≤ (AT /CT )

1/(DT−BT )

CTQ
DT
SL otherwise

(2.17)

Equation (2.17) was repeatedly fitted with the 25th, 50th, and 75th percentiles of the

dataset. The fitted coefficients AT , BT , CT , and DT are given as Table 2.2.
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Table 2.2 Coefficients of Equation (2.17)

Coefficients 25 percentile 50 percentile 75 percentile
AT 0.131 ± 0.007 0.833 ± 0.052 0.653 ± 0.594
BT 1.340 ± 0.125 1.340 ± 0.079 1.1425 ± 0.092
CT 0.241 ± 0.131 0.437 ± 0.210 1.473 ± 0.518
DT 0.588 ± 0.062 0.647 ± 0.076 0.590 ± 0.052
QSL = (AT /CT )

1/(DT−BT ) 2.249 kg sec−1 0.394 kg sec−1 0.345 kg sec−1

The long-term estimation model was derived for the gravel bed streams using

the drainage area, Adrain.

Fsus = 0.55 + 0.040 ln(Adrain) (2.18)

A long-term model for the sand bed streams was not explicitly suggested. Despite

this, they pointed out that sandy bed streams Fsus are less insignificant in a given

drainage area.

Note that the existing Fsus models proposed in Maddock and Borland (1950);

Lane and Borland (1951); Turowski et al. (2010) are simple and easy to use. However,

the existingFsus models do not consider hydro-geomorphic variables, such as velocity,

water depth, and particle sizes. Hence Turowski et al. (2010) pointed out that the

relationships have to be carefully used since Fsus may vary considerably in a given

QSL.
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Series expansion of the modified Einstein procedure

In Equation (2.5), qSL can be derived simply by subtracting qBL. Then, Fsus can be

derived as follows.

Fsus(Ro, h, ds) =
0.216 ERo−1

(1−E)Ro−1 {ln(30hds )J ′
1 + J ′

2}

1 + 0.216 ERo−1

(1−E)Ro−1 {ln(30hds )J1 + J2}
(2.19)

Shah-Fairbank et al. (2011) deduced this equation to described the influences of h/ds

and u∗/ws. They explained that u∗/ws is primarily influential to Fsus and suggested

the thresholds u∗/ws = 1 and u∗/ws = 2.5 for Fsus = 0 and Fsus = 1, respectively.

Despite the physical basis of SEMEP, estimating total loads using Equation (2.8) is

ideal.

2.1.3 Machine learning models in total load estimation

Withstanding the popularity of machine learning, machine-learning techniques are

applied to drive total sediment load estimation models. The application directions of

machine learning can be divided into two. One is a model that learns the time series

data and their time lags, and the other is a model that analyzes or calculates sediment

load using physical variables.

In recent decades, a number of machine learning applications to time series

sediment discharge were introduced using the artificial neural networks (ANNs) and

support vector machine (SVM) (Rajaee et al., 2011; Kim and Seo, 2015; Kim et al.,
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2017b,a; Yadav et al., 2018; Riahi-Madvar and Seifi, 2018; Choubin et al., 2018;

Torabi and Dehghani, 2018; Meshram et al., 2020; Zounemat-Kermani et al., 2020;

Jung et al., 2021). The majority of studies have concentrated on the utilization of ML

models for simulating QSL, compared to QBL or QTL. Specifically, in cases where

studies encompassed total loads, separate models for QSL and QBL were developed

Zounemat-Kermani et al. (2020).

There is less research on physics-based sediment load estimation models than

on time-series analysis. Yang et al. (2009) conducted pioneering research on estimat-

ing QTL using ANN. Tayfur et al. (2013) applied the principal component analysis

(PCA) to identify influential hydraulic variables for explaining total load transport.

In addition, they presented an ANN model and nonlinear equations calibrated by

GA. Pektaş and Doğan (2015); Pektaş (2015) developed an ANN model with input

variables determined by PCA and clustering analysis for QSL and QBL separately.

Among them, most machine learning approaches rely on black box models

such as SVM and ANNs, so it is difficult to provide physical insight. Thus, creating a

model with explicit equations can contribute more to the understanding of sediment

transport and subsequent research (Okcu et al., 2016). In this manner, contemporary

machine learning called symbolic regression methods prove valuable as it provides

explicit equations as outputs (Harun and Ab. Ghani, 2020; Harun et al., 2021).

Despite numerous machine learning applications, there is no machine learning
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application for understanding Fsus.

2.1.4 Hysteresis in time-series data

In time series sediment monitoring data, measured sediment concentration data shows

hysteretic behavior, that different curves are drawn in rising and falling limbs. It is

known that the unsteady river flows accompany the counterclockwise hysteresis loop

hysteresis in stage-flow rate graphs. The hysteresis phenomenon is observed also

in the flow rate-sediment concentration relationship. This section phenomenologi-

cally reviews the possible circumstances with hysteresis concerning Williams (1989);

Chaudry (2008); Gellis (2013); Julien (2018).

2.1.4.1 Stage-flow rate hysteresis

Flow analysis is conducted in steady flow assumption, comprising a simple monotonic

relationship between stage and flow rate. However, the most common flow type is

the unsteady flow in rivers. In unsteady flows, the stage-flow rate relation presents

a looping phenomenon, hysteresis, when the natural flood waves propagate during

rainfall events or weir operations (Kim et al., 2016; Muste et al., 2020, 2022a,b).

Hysteresis in flow can be interpreted with the unsteady one-dimensional shal-

low water equation (St. Venant equation). Assumptions of the St. Venant equation are

as follows:

1. Hydrostatic pressure distribution.
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2. Small bottom slope so that velocity measurements in vertical and normal to

bottom directions are the same.

3. Uniform flow velocity of over entire cross-section.

4. Uniform prismatic cross-section over distance.

5. The head losses in unsteady flow can be simulated by using the steady-state

resistance laws (e.g. Manning equation).

Being with underlying assumptions, the continuity equation is given by

∂A

∂t
+
∂Q

∂x
= ql, (2.20)

whereA is the cross-sectional area; t is the time;Q is the flow rate; x is the streamwise

coordinate; and ql is the lateral input (or output) flow rate. The momentum equation

is

∂U

∂t
+ g

∂

∂x
(
U2

2g
+ y) = g(S0 − Sf ), (2.21)

where Sf is the friction slope; S0 is the bed slope; and y is the water level. The

rearrangement of the momentum equation in terms of the friction slope yields the

following relationship.

Sf = S0 −
∂

∂x
(
U2

2g
+ y)− 1

g

∂U

∂t
(2.22)
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The first term on the right-hand side is the channel bottom slope, and Sf ≈ S0 in

steady-uniform flow. The second and third terms describe the convective and local

accelerations, respectively. The acceleration terms are active in the nonuniform flow.

In unsteady flows, ∂U/∂t has to be considered.

On the other hand, the general flow rate in unsteady flow can be expressed

with channel parameters as Equation (2.23).

Q = kQAR
m
h

√
Sf (2.23)

where kQ is the coefficient. In steady-uniform flow, Sf is equal to S0. If denoting

steady-uniform flow rate in the same channel parameters as Qn, the equation yields

Qn = kQAR
m
h

√
S0 which is followed by a simple stage-flow rate rating curve.

Accordingly, we have Q = Qn

√
Sf

S0
. Substituting Equation 2.22, we obtain

Q = Qn

√
1− 1

S0

∂y

∂x
− 1

S0

U

g

∂U

∂x
− 1

S0

1

g

∂U

∂t
. (2.24)

Equation (2.24) explains how the hysteresis phenomenon is observed in unsteady

flows.

When a simple flood wave propagates through the one-dimensional channel,

the wave first arrives at the upstream end of a reach, control volume, increasing stage,

and later at the downstream end. That is, ∂y/∂x becomes negative. In this case,
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the upstream flow velocity is greater than the downstream flow velocity, resulting in

∂U/∂x < 0 and ∂U/∂t > 0. It is known that the scale of local acceleration, ∂U/∂t, is

smaller than the other terms. Thus, the square root exceeds 1 andQ > Qn in the rising

stage. In the same manner, ∂y/∂x and ∂U/∂x are positive, so Qn > Q, in the falling

stage (Table 2.3). As a result, the stage and flow rate graph shows a counterclockwise

loop, as shown in Figure 2.2.

Table 2.3 Sign of each term in Equation 2.24 for stage variation

∂y/∂x ∂U/∂x ∂U/∂t Sf − 1 Q−Qn

Sign Rising - - + + +
Falling + + - - -

Figure 2.2 Schematic diagram of hysteresis in stage-flow rate relationship

2.1.4.2 Hysteresis in sediment transport

In sediment transport, various types of hysteresis curves are possible (Williams, 1989;

Gellis, 2013). The sediment discharge and flow rate curve and corresponding time
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Figure 2.3 Schematic diagram of possible sediment transport hysteresis classes (mod-
ified after (Williams, 1989; Gellis, 2013))

series in five situations are exemplified in Figure 2.3.

Fundamentally, the sediment hysteresis can be interpreted with shear stress

in unsteady flow. Shear stress, strongly related to sediment transport, can also be

expressed similarly to flow rate using the simplified momentum equation of the St.

Venant equation.

τ0 = γsRhSf = γsRh(S0 −
∂y

∂x
− U

g

∂U

∂x
− 1

g

∂U

∂t
) (2.25)

whereRh is the hydraulic radius. The above equation evidences that shear stress shows

a similar trend to flow rate, representing larger stress in the rising stage than in the

falling stage. Since shear stress fundamentally drives sediment transport, hysteresis

in bed material sediment discharge can be analyzed with this relationship, simply

replacingQ withQTL. However, Sf square times contribute to τ0 than toQ, increase
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and decrease.

If there is no interruption of sediment supply, τ0/Q ∝
√
Sf , then peaks of

flow rate and sediment discharge are simultaneously observed. In this situation, the

Class 1 curve can be observed.

On the other hand, according to Equation (2.25), Julien (2018) explains how

Class 2 hysteresis is probable in upland areas, whereas it does not occur in wash

load-dominated streams. Williams (1989) describes that the clockwise hysteresis loop

(Class 2), the most common mode, occurs in case of sediment source exhaustion.

The progressive wetting of soil, armoring, and bank erosion are potential depletion

of deposited sediments. An increase in base flow can lead to dilution of sediment

concentration having the Class 2 hysteresis. Raises of water depth and bottom slope

before the peak flow lead to an early shear stress peak, resulting in an early sediment

concentration peak.

In Class 3, having a counterclockwise loop, the sediment concentration peak

arrives later than the flow rate peak. It implies delayed sediment transport. The late

sediment arrival is justified by distant sediment sources, a tributary for example, or

bank erosion on the falling limb. Contrary to Class 2, concentration observation is

comparatively higher than observed concentration during an earlier storm (Sidle and

Campbell, 1985).

Eder et al. (2010) reported the figure eight curve with an initial clockwise
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loop (Class IV). It was explained that initial sediment is flushed away from the

vicinity, likewise Class II. Afterward, the contributions from sub-catchments provide

sediments of higher concentration than base concentration.

Seeger et al. (2004) investigated the last hysteresis class. It was reported that

it occurs under dry soil moisture conditions with a low hydraulic conductivity of the

soil. The authors of Seeger et al. (2004) interpreted this event as a partial sequential

of Classes II and III. Initially, near sediment flush increases concentration, saturating

soils with macropores. As macropores are saturated, all catchment areas become con-

tributing areas with Hortonian flow, providing high sediment concentration. During

flood recession, the contributing areas rapidly decrease, resulting in limiting sediment

sources.

2.2 Measurement techniques

One of the sub-objectives of this study is to propose a technique for monitoring the total

sediment load. This section discusses the monitoring methods employed according

to Edwards et al. (1999). The total sediment load is determined by aggregating

independently collected suspended sediment samples and bedload samples. Figure

2.4 displays field sampling photos for suspended load and bedload measurements.

Fish-shaped isokinetic sediment samplers, designed to minimize differences

between nozzle inlet and ambient velocities, are utilized to monitor suspended sedi-
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Figure 2.4 Photographs on suspended sediment and bedload sampling

ment load. These samplers, called point- and depth-integrated samplers, collect turbid

water at a specific point or along a vertical line. Subsequently, the suspended sedi-

ment samples undergo further analysis in the laboratory using filtration or evaporation

methods, effectively separating sediment particles from water. The resulting weights

per volume yield the SSC.

To measure bedload, various types of samplers are employed, with the Helley-

Smith sampler being the most widely used. Unlike suspended samples collected into

a bottle as a water sample, bedload samplers capture sediment particles transported

through a duct-connected meshed sample bag placed at the river bottom. During

bedload sample collection, measurements of channel width and the specific time the

sampler was on the riverbed are taken to calculate bedload discharge passing through

a cross-section. Using the mass of the dried bedload samples analyzed in a laboratory,

unit bedload discharge at a vertical can be determined by dividing the mass by time,

with the width correction involving the ratio of unit width over sampler width. It is
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recommended to conduct bedload sampling at more than 40 verticals, varying the

distances between them.

Recently, surrogate measurement techniques have been employed to measure

the suspended sediment concentration using acoustic or optic backscatter signals,

enhancing the monitoring efficiency. The expected costs of the measurement meth-

ods, including the modern backscattering-based techniques, are shown in Table 2.4

for comparing the pros and cons. Traditionally, samples from conventional samplers

Table 2.4 The costs of the riverine suspended sediment monitoring methods

Methods Cost (USD) Time of survey (s) Personnel Discharge Sample analysis
Sampler 1,000 + (crane) Very high 2∼4 X Every sample
H-ADCP 60,000 Low 1 O Derivation set

LISST-SL2 50,000 + (crane) High 2∼4 O Calibration set
LISST-200X 60,000 + (crane) High 2∼4 X Calibration set

are considered ground truth, but as mentioned earlier, they are not the most efficient

method. In particular, flow needs to be measured independently, and the time re-

quired for a single cross-section is the longest among all methods. Additionally, the

flow velocity needs to be measured separately, and further analysis is required for

all samples. Such sample analysis is also a time-consuming process that may take

up to several weeks. On the other hand, once installed, H-ADCP can continuously

receive flow data and measure suspended sediments through scattering. However,

initial sample analysis is required for calibration purposes. Conversely, laser in situ

Scattering and transmissometery (LISST) devices from Sequoia Scientific Inc. can

measure suspended sediments without the need for additional sample analysis. An
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additional advantage of LISST-200X and LISST-SL2 devices is that they can measure

the size of suspended sediments. However, they require crane-based measurements on

cross-sections, which are time-consuming and subject to weather constraints. There-

fore, for long-term real-time monitoring, H-ADCP is a desirable method that takes

into account rainfall events.

On the other hand, bedload transport poses challenges in measurement, leading

to a reliance on empirical formulas such as rating curves (Willis and Griggs, 2003;

Boateng et al., 2012), given the slower technological advancements in surrogate

measurement methods. The complexities associated with bedload sampling result in a

predominant focus on measuring suspended load, with total loads being estimated. For

instance, in South Korea, the estimation of total sediment load (suspended + bedload)

discharge relies on the use of MEP, while SSC and flow are directly measured (Ministry

of Environment, 2019). Consequently, accessible data for total load measurement,

including bedload, is limited in South Korea. Although rating curves for suspended

and total loads are developed annually for practical applications, they cannot accurately

reflect the hysteresis that occurs in actual rivers, leading to significant errors (Rajaee

et al., 2011; Zounemat-Kermani et al., 2020). This study aims to propose an efficient

and accurate monitoring technique. Therefore, the following chapters will focus on

utilizing H-ADCP as a surrogate for suspended load measurement and total load

estimation.
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2.2.1 Measurement of suspended sediment concentration using H-ADCP

signal

Measurement of suspended sediment concentration using H-ADCP signal is per-

formed with analysis of the backscattered sound wave on the suspended particles.

The measured backscatter (MB) corresponding to the source level (SL) transmitted

from a transducer of ADCP can be expressed by the simplified sonar equation (Urick,

1948), which is given by:

MB + 2TL = SL+ TS (2.26)

where, TL is an abbreviation for transmission loss, which refers to the loss of sound

waves due to various attenuation factors such as sound diffusion, viscosity, and scat-

tering attenuation that occur during the propagation of sound waves. Since TL occurs

both when the sound wave is transmitted and reflected, it is sometimes expressed as

a two-way transmission loss (2TL) by multiplying the one-way loss value by two,

as shown in the equation above. The last term in the sonar equation, TS, stands for

target strength, which in this study refers to the degree to which ultrasound emitted

from an ADCP is reflected by particles present in the path of ultrasound propagation

within the medium. 2TL is calculated taking into account the following three major

attenuation factors: (1) attenuation due to the scattering pattern of the sound waves

emitted from the transducer, (2) attenuation due to the viscosity of the fluid, ionic
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relaxation effects, and other factors, (3) attenuation due to scattering caused by the

viscosity and shape of the boundary surface of the suspended particles.

2.2.1.1 Water and sediment corrected backscatters

When modeling sound diffusion geometrically as spherical, the two-way transmission

loss of sound waves can be expressed as 20log10(r) depending on the distance r that

the sound wave travels. However, there is a characteristic of irregular diffusion of

ultrasound in the initial area adjacent to the transducer. Therefore, Downing et al.

(1995) proposed a correction factor ψ, such as 20log10(ψr), using a dimensionless

number r∗ = rλ/(πa2t ) based on the wavelength λ of the sound wave and the radius

at of the ultrasound sensor to account for diffusion loss. Here, ψ is calculated by the

following equation.

ψ =
1 + 1.35r∗ + (2.5r∗)

3.2

1.35r∗ + (2.5r∗)3.2
, where r∗ =

rλ

πa2t
(2.27)

Here, λ can be obtained from the relationship between the wave speed, c, and the

frequency, f , c = λf . c can be computed as given by:

c =1.402385 · 103 + 5.38813T

− 5.799136 · 10−2T 2 + 3.287156 · 10−4T 3

− 1.398845 · 10−6T 4 + 2.787860 · 10−9T 5

(2.28)
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The attenuation caused by the fluid and the suspended particles can be calculated as

2rαw + 2rαs by multiplying the sound propagation distance r with the correction

coefficients αw for water and αs for particles. The relationship between the left-hand

side of Eq. (1) and the water-corrected backscatter (WCB) and the sediment-corrected

backscatter (SCB), which is additionally corrected for particles, can be summarized

as follows.

MB + 2TL =MB + 20 log10(ψr) + 2rαw + 2rαs

=WCB + 2rαs = SCB

(2.29)

As a result, the volumetric SSC, Cppm, can be measured by deriving a rela-

tionship between Cppm and SCB. Usually, the formula has a form of log10(Cppm) =

C1×SCB+C2, where C1 and C2 are the regression coefficients. SCB is influenced

by physical conditions such as SSPSD and water temperature. It has been reported that

since these physical conditions vary owing to locality, the regression coefficients C1

andC2 of the corrected equation show a negative correlation and vary from site to site

(Noh et al., 2022). To improve the accuracy of the equation, αs (Landers et al., 2016)

or water level measured at the observation site (Son, 2021) can also be introduced as

input variables in the regression equation.
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2.2.1.2 Computation of sediment corrected backscatter

Practically, when calculating WCB, the attenuation of ultrasonic energy in the fluid

is corrected by calculating the attenuation coefficient as a function of salinity and

temperature, which is caused by the relaxation effect of magnesium sulfate (MgSO4)

ions due to their binding and decomposition, as well as the attenuation due to the

viscosity of the medium. In the case where the effect of ions and salinity can be

neglected, such as in river water, and only the attenuation due to the viscosity of water

is considered, the value of WCB can be estimated using the following relationship by

Schulkin and March (1962).

αw = 8.69
3.38 · 10−6f2

21.9 · 106−1520/(T+273)
(2.30)

On the other hand, attenuation due to suspended particles is affected by com-

plex interactions with the viscosity effect between small particles and the scattering

effect that occurs when ultrasound collides with particles. The viscosity effect is

dominated by the surface area of suspended particles, the frequency of ultrasound,

fluid viscosity, and the specific gravity of particles. Given a volume concentration

of particles in suspension, as particle diameter decreases, the surface area per unit

volume increases, causing attenuation to increase. Conversely, as particle diameter

increases, attenuation decreases due to shear and viscosity (Landers et al., 2016).

The scattering attenuation effect is closely related to particle circumference,
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ϕds, rather than surface area. When the wavelength is much larger than the circum-

ference, scattering attenuation increases rapidly. However, when the circumference

and wavelength of the particle are similar, attenuation behavior becomes complicated

(Urick, 1948; Flammer, 1962). Urick (1948) developed and verified an empirical

equation for the attenuation coefficient as a function of particle concentration for the

two particle suspension mechanisms mentioned earlier. Later, Sheng and Hay (1988)

presented another scattering attenuation empirical formula by finding the maximum

value of the attenuation coefficient for particle suspension that was not reflected in

Urick (1948), based on a more in-depth study of particle scattering attenuation by

Flammer (1962).

To complement the two aforementioned attenuation models, Landers (2012)

proposed the hybrid Urick-Sheng-Hay formula (Eq 2.31) by replacing the scattering

attenuation term in the formulae from Urick (1948) and Sheng and Hay (1988).

αs = Cppm[k(Gs − 1)2(
s

s2 + (Gs + τ)2
) +

k4d3s
5(1 + 1.3k2d2s + 0.24k4d2s)

]4.34

(2.31)

where, k is the wavenumber of a wave with wavelength λ in units of cm (i.e., k =

2π/λ); s ≡ 9
4βds

(1+ 1
βds

); τ ≡ 0.5+ 9
4βds

(
1 + 1

βds

)
; and β ≡

√
ωπ/ν, where ν is

the kinematic viscosity of water. Figure 2.5 shows the variation of αs with ds, where

ω = 3 MHz and Cppm = 1,000 ppm.

On the other hand, not only the characteristic particle size but also the standard
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Figure 2.5 Coefficients varying particle size of the estimation models (modified after
Landers et al. (2016))
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deviation (STD) of PSD affect viscous and scattering attenuations (Guerrero et al.,

2016; Guerrero and Di Federico, 2018; Aleixo et al., 2020). Guerrero et al. (2016)

reported that the maximum viscous attenuation decreases and minimum scattering

attenuation increases with the increase of the PSD standard deviation. With this

observation, Guerrero and Di Federico (2018) proposed a SSCV monitoring method

accounting for particle diameter and STD, and Aleixo et al. (2020) proved applicability

in long-term sediment monitoring in rivers. Their method uses the following models:

backscatter σ2s = κ2sSSCV and the sediment attenuation coefficients αs = ζsSSCV .

Guerrero et al. (2016) suggested attenuation to backscatter ratio considering the

observation of Moore et al. (2012):

ABR =
ζsSSCV

κ2sSSCV
=
ζs
κ2s

(2.32)

where ζs is the normalized attenuation coefficient, which is identical to the parenthesis

term in Equation (2.31); κ2s is the backscatter strength coefficient. This model is based

on the concentration relationships to backscatter, σ2s = κ2sSSCV , and attenuation,

αs = ζsSSCV .

In accordance with Eq 2.31, αs estimate requires a lot of assumptions since

its parameter uncertainty and nonlinear behavior with respect to ds. On the other

hand, Topping et al. (2007) demonstrated that SCB from WCB can be computed

by assuming a constant concentration and SSPSD using a multi-cell ADCP and
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thus reduced uncertainty in αs calibration (Landers et al., 2016). If the particle

concentration and size distribution are assumed to be constant along the observation

cells of the H-ADCP, the last two terms of Eq 2.29 become zero when differentiated

with respect to the acoustic path length.

d

dr
(SCB) =

d

dr
(WCB + 2rαs) = 0 (2.33)

The solution of the above equations isαs = −0.5 d
drWCB. Subsequently,αs and SCB

can be obtained (Landers, 2012). Substitution of Eq 2.29, in decibel scale, leads to the

same relationship to the model in (Guerrero et al., 2016; Guerrero and Di Federico,

2018; Aleixo et al., 2020):

αs = −αw − 1

2r
− 1

40 log(e)

d(MB)

dr
. (2.34)

2.2.1.3 Estimation of suspended sediment concentration

Recalling αs = ζsCv, ζs can be determined using a relationship between ζs and ABR

with respect to SSPSD proposed by Guerrero et al. (2016); Guerrero and Di Federico

(2018). By computing αs using Equation (2.34), and ζs, the volumetric concentration

can be calculated by

Cv =
1

ζs
(−αw − 1

2r
− 1

40 log(e)

dIdB
dr

). (2.35)

47



To effectively implement the ABR method, a thorough examination of both

particle size and the corresponding backscattering signal is crucial. When confronted

with a non-stationary PSD during rainfall events, determining ζs becomes challenging

unless particle sizes are monitored simultaneously, for instance, using instruments like

LISST. Unfortunately, automated flow monitoring stations lack particle size analyzers,

making direct ζs estimation unfeasible. One could potentially use the PSD from

the calibration step for ζs determination, assuming stationary PSD. However, this

assumption shares the limitation of using only one linear fitting model in Equation

(1.1) for a station, as aforementioned in the Introduction. Recognizing this limitation,

this study addresses the nonlinearity inherent in unsteady PSD during SSC estimation

by employing a machine learning technique—specifically, support vector regression.

In Son (2021), Equation (1.1) was modified to address the nonlinearity arising

from estimating SSC from SCB. Specifically, the paper focused on correcting errors

due to hysteretic behavior, incorporating the water stage of the observation point.

Rather than simply applying multiple linear regression, the interaction between SCB

and water stage was considered, adding SCB · h as an additional variable in the

equation. The modified equation used in this context is as follows.

log10(SSCV ) = C1 · SCB + C2 · h+ C3(SCB · h) + C4 (2.36)

As mentioned earlier, hysteresis is influenced not only by the depth and flow
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rate but also by their derivatives. Although Son (2021) showed an improvement in

accuracy with the mentioned equation, there is potential for further enhancement by

incorporating temporal information.

2.3 Regression methods

2.3.1 Support vector regression (SVR)

Figure 2.6 Schematic examples of the linear SVR’s training rule. The figure depicts
data points generated from a noisy sinusoidal signal. The red and blue points represent
inside- and outside-margin points, respectively. The thick red line represents the exact
SVR prediction, while the dashed blue line denotes the margin boundary.

Support vector regression (SVR) is a branch of an SVM Drucker et al. (1996).

In the classification problem, SVM (or support vector classification) separates data

classes from the decision boundary by maximizing the margin, which is the distance

between two parallel hyperplanes expanded from the decision boundary. In particular,

the ϵ-insensitive SVR achieves regression by placing target data points within the fixed-
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width margin of 2ϵ width and constructing the flattest regression function possible

unless the points are outside of the margin Awad et al. (2015); Kazemi et al. (2021).

Usually, the real-world data are non-linearly distributed with errors so there are cases

of the margin not being able to contain all data points. To consider the possible

errors, SVR allows the upper and lower offsets from the margin demarcation by

introducing slack variables (ξ and ξ∗) and the regularization coefficient (CSV R).

Figure 2.6 illustrates a schematic example of two SVR fitting cases with the linear

kernel to help understand the training rule of SVR. In the figure, the tube consisting

of the two blue dashed lines is the margin, and the width between the blue dashed

lines is 2ϵ. However, setting too large ϵ is not favorable since the prediction is too flat,

resulting in deteriorated prediction accuracy.

C-SVR is trained by the optimization process of the following primal problem:

min
w⃗,b

1
2 ||w⃗||

2 + CSV R
∑n

i=1 F (ξi) + CSV R
∑n

i=1 F (ξ
∗
i )

subject to (w⃗T x⃗i + b)− yi ≤ ϵ+ ξi

yi − (w⃗T x⃗i + b) ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0

for i = 1, 2, ..., n, (2.37)

where CSV R is the regularization cost coefficient; F (ξ) is the arbitrary cost function
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for ξ. SVR solves the Lagrangian dual problem in Equation 2.39. By setting the cost

function l-1 F (ξ) = ξ, the Lagrangian dual problem can be set as follows:

max
α,α∗

−1
2

∑n
i=1

∑n
j=1(αi − α∗

i )(αj − α∗
j )K(x⃗i, x⃗j)

+
∑n

i=1(αi − α∗
i )yi −

∑n
i=1(αiϵ+ α∗

i ϵ
∗)

subject to
∑n

i=1(αi − α∗
i ) = 0

0 ≤ αi, α
∗
i ≤ CSV R

for i, j = 1, ..., n, (2.38)

(2.39)

where α and α∗ are Lagrangian multipliers and K(x, x) is the kernel function. The

kernel function maps the dot product x⃗iT x⃗j to a higher dimension such that SVR

is likely to find the appropriate predictive function. When no kernel is applied, it is

equal to the linear kernel, which has the functional formK(x⃗i, x⃗j) = x⃗i
T x⃗j . Another

popular kernel is the radial basis function (RBF) kernel, which is defined as:

K(x⃗i, x⃗j) = exp[−γRBF ||x⃗i − x⃗j ||2], (2.40)

where γRBF is the inverse of the influence radius of the samples.
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Notably, the above Lagrangian dual problem is quadratic programming with

respect to α and α∗, that is, the convex optimization rule is applicable. Furthermore,

this problem satisfies the Karush-Kuhn-Tucker conditions, which guarantee that the

solution to the dual problem coincides with that of the primal problem. Thus, SVR

always yields a unique optimum solution when the target data and parameter com-

binations are provided. The fact that SVR always converges to a unique optimum

solution benefits SVR. In contrast, neural networks are prone to converge to local

optima because of parameter setting, learning rate, and noise in the data (Smola and

Schölkopf, 2004).

In this study, the Python machine learning library Scikit-learn (Pedregosa

et al., 2011) was exploited to train SVR models.

2.3.1.1 Parameter tuning using the grid search

Indeed, hyperparameter tuning by trial-and-error referring to the fitness score, such as

R2, is the way to tune the hyperparameters. However, it’s not a clever way to guarantee

the accuracy of the trained model. The most favorable way is using local or global

optimization methods, but it may consume tremendous computation resources. The

much simpler way to find the hyperparameter combination with high accuracy is the

grid search.

The idea of grid search is very simple (rather similar to the manual trial-and-

error approach). The difference between trial and error is that it covers the user-defined
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feasible parameter space. The grid search is to evaluate fitness scores for all user-

defined parameter combinations based on a grid. For example, if the user defines the

parameter gridCSV R = 1, 2, 3 and ϵ = 0.01, 0.1, 1, the method evaluates 9 scores for

([CSV R, ϵ] = [[1,0.01],[1,0.1],[1,1],[2,0.01],[2,0.1],[2,1],[3,0.01],[3,0.1],[3,1]]) and

the user finally chose the parameter combination that the fittest case among all possible

combinations.
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Figure 2.7 Example of the evaluated score by the grid search

2.3.1.2 Implementation of the K-fold cross validation

One important feature of the good model is generalization. For example, the well-

generalized model that is globally applicable would be said to be better than the model

that can only be applicable to a particular condition. In a more detailed example, if

the regression model, which is only correct for the trained condition, is applied to the
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different conditions, it will produce wrong predictions, resulting in wrong decision-

making. In other words, we want to find a robust model. Conventionally, the given

dataset is divided into two subsets: the training set and the test set. After, the model

is fitted only using the training set, and the scores are evaluated using both subsets.

The question can be expanded to whether the hyperparameter combination has

a high score only for the particular separation of the given dataset, having consistently

low scores for the other subset combinations. The problem is also related to over-

fitting. The K-fold cross validation (K-CV) is the most popular way to check the

generalization ability Berrar (2019).

The idea of the K-CV is simple. First, the target dataset is separated into

K subsets. There are many methods to sample the subsets (e.g., sequentially and

randomly), but all the methods have the same purpose of dividing the dataset into the

same size of K-subsets. After the dataset is divided, the fitness score is evaluated for

K times regarding each subset as a test set.

Figure 2.8 Example of the K-fold cross validation (K = 5)
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Figure 2.8 shows an example of the K-CV where K = 5. The final score of

the model with a certain hyperparameter combination is obtained by averaging the

fitness scores (2.41).

ScoreCV =
1

K

K∑
i=1

Scorei (2.41)

where, ScoreCV and Scorei are the averagedK-CV score and the i-th trial’s score. As

a result, the case with high scores for every split can have a high cross-validation score

since the score of the case with over-fitting will be suppressed due to poor predictions

of the rest split.

On the other hand, the produced model with optimal hyperparameter based on

the K-CV has a general feature over the given dataset. Therefore, the final model to

be used in a practical sense can be derived using the whole dataset. This approach is

helpful to deal with the lack of data. Even though the model using the whole dataset

has a generalized ability, the performance comparison has to be conducted using the

fitness from the K-CV.

The K-CV and the grid search can be applied independently. Hence, the user

can conduct the K-CV for each score evaluation of the grid search. As a result, the

user can find the robust model, which has the optimal hyperparameter set.

55



2.3.1.3 Recursive feature elimination for SVR (RFE-SVR)

The extraction of the governing feature to express the empirical relationship was

performed by recursive feature elimination for SVR (RFE-SVR). RFE-SVR is a

feature-selection technique for the SVM problem suggested by Guyon et al. (2002).

In RFE-SVR, the importance of each feature is updated according to the ranking

criterion. For the linear SVM, the ranking criterion cp is w⃗p
2, which is the p-th weight

vector component corresponding to the p-th feature. As a generalization of nonlinear

kernel applications, the ranking criterion of the p-th feature cp can be computed as:

cp =
1

2
|

N∑
i,j=1

(αi−α∗
i )(αj−α∗

j )K(x⃗j , x⃗j))−
N∑

i,j=1

(αi−α∗
i )(αj−α∗

j )K(x⃗j
(−p), x⃗j

(−p)))|,

(2.42)

where x⃗j(−p) is x⃗j without the p-th feature. The update step eliminates the smallest

feature importance cp. Subsequently, SVM is trained using the input data of the reduced

features. The training-elimination sequence continues until the features remain in the

user-defined feature size. Figure 2.9 presents the flowchart of the RFE-SVR algorithm.

Figure 2.9 Schematic of RFE-SVR

Optimizing the model based on the combination of input variables can be

achieved by repeatedly training the model on possible variable combinations and
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selecting the combination that yields the most accurate predictions. However, trying

all possible combinations requires a significant amount of resources. For instance, if

there areNp candidate input variables, 2Np−1 training iterations are needed. However,

RFE-SVM has the advantage of significantly reducing the number of required training

iterations from 2Np − 1 to Np for determining the variables in SVM.

2.3.1.4 Incorporation of CV with RFE (RFE-CV)

Additionally, cross-validation for each iteration of RFE-SVR was performed to assess

the model fitness. CV provides information about the generalized performance of

the model with minimized overfitting risk. The so-called K-fold CV method divides

the entire dataset into K subsets and repeats the model fitting K times. For the i-th

model fitting, the i-th subset is regarded as a test set, and the model is fitted to the

remaining K-1 subsets. By repeating the training for each subset, the average test-set

fitness score is considered the CV score. In RFE-SVR incorporated with CV, the

algorithm evaluates the CV scores at every feature elimination step. CV signifies that

the model with a certain parameter setting (e.g., input variable, hyperparameters of

SVM) predicts not only the training set but also other datasets as well as the CV score.

2.3.2 Genetic programming (GP)

Considering that SVR is a black-box model lacking explicit details about the underly-

ing physics, practitioners unfamiliar with machine learning may encounter difficulties.
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To address this, developing explicit equations driven by symbolic regression meth-

ods can provide insights into the physical structure and make it more accessible for

practitioners to use.

Genetic programming (GP), introduced by Koza (1992), is a symbolic regres-

sion technique that exploits the learning rule of the GA in the empirical formulation.

Unlike SVR, MGGP is a gray-box model because it produces explicit estimation

equations where the machine finds the final equations (strictly, the regression function

of SVR can be computed using α and α∗).

The individuals of the population are the genes in GP, as well as in GA. Every

GP gene has a tree structure consisting of terminally connected branches. In the tree

structure, functional operators, such as +,−,×,÷,
√
·, comprise a terminal, and the

input variables are at the branches. Each gene becomes an equation by combining the

variables according to the adjoint functional terminals, and regression performance

measures are adopted as an objective function of the GP.

Because the GA concept is implemented in GP, the two representative GA

operators, namely, mutation and crossover, are under the user-defined mutation and

crossover probabilities. These GA operators modify the functional terminals of the

population genes in every evolution of the selected gene. Mutation reproduces the

offspring by changing the mathematical operators of the terminals. Two genes are

required for the crossover operation. The crossover exchanges the terminals of the
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chosen genes to breed offspring. Examples of the two GP operations are illustrated in

Figure 2.10, where the mutation and crossover are differentiated using colors.

Figure 2.10 Examples of the GP operations (modified from Noh et al. (2020)). The
blue and red markers indicate the crossover and mutation operations, respectively.

As a result of repeated evolutions, the population comprises various forms of

equations. The best-fit equation in the last evolution is selected as the final product.

2.3.2.1 Multi-Gene Genetic Programming (MGGP)

MGGP is an advanced GP model. MGGP produces equations with multiple genes

(terms of equations) for each solution (produced equation) to enhance variability

without increasing the depth of the tree. Figure 2.11 shows an example of the gene

expression of MGGP [tree depth = 3 and the number of trees = 2]. Additionally, GA
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Figure 2.11 Example of MGGP formulation with trees multiplied by arbitrary regres-
sion coefficients b0, b1, and b2 (modified from Noh et al. (2020))

operators operate in the MGGP. In MGGP, mutation and crossover events occur not

only at the under-gene level but also at the gene-by-gene level. The former and latter

operations are called high- and low-level operations for differentiation, respectively.

For example, the high-level crossover exchanges the sub-genes of the two selected

gene trees.

GA operations only formulate the structure of each formula in the population

in MGGP. The regression coefficients (b0, b1, and b2 in Figure 2.11) remain unknown.

The least squares rule determines the regression coefficients. Finally, individuals in

the population acquire a fully functional structure that can evaluate the target variable.

The MATLAB MGGP library genetic programming toolbox for the identi-

fication of physical systems (GPTIPS) was used, which yields Pareto solutions, as

proposed by Searson (2015). The other advantage of GPTIPS is that it provides multi-

ple independent runs, and thus, the initialization effect decreases. GPTIPS is available
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at https://sites.google.com/site/gptips4matlab

2.3.2.2 Operon

The main challenge of symbolic regression is to enhance the accuracy of the produced

equations by modifying the GP algorithm, for instance, the adoption of the high-level

GA operation in MGGP. Recently, La Cava et al. (2021) compared the performance of

cutting-edge symbolic regression methods and black-box machine-learning models

using several benchmark problems. The benchmark analysis includes the accuracy

and equation complexity of each symbolic regression method. The benchmark test

result indicated that Operon (Burlacu et al., 2020) was a Pareto front model that

considered accuracy and model complexity and was a state-of-the-art method with

respect to accuracy (La Cava et al., 2021).

Burlacu et al. (2020) suggested a new tree initialization algorithm to ensure

the population diversity with the linear tree encoding and implemented it in Operon.

In the linear tree encoding of Operon, an exemplar tree (a + b) · (a + c) · (b + c) is

represented as [a, b,+, a, c,+, b, c,+,×]. The tree initialization algorithm randomly

samples the root, the highest level operator × in the example. Then, fill the functional

and terminal sets according to the function’s arity limits [a′min, a
′
max], which are

newly computed at each iteration. In addition, the functional variability was increased

by adjusting a′min to zero according to the user-specified probability.

In the tree evaluation, Operon enhances the efficiency by the data level paral-
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lelism and vectorized computation. Operon determines the coefficients (such as b0)

of the symbolic inputs using a local search algorithm based on the nonlinear least

squares method, which is supported by automatic differentiation, whereas the coeffi-

cients are determined by the GA operation in MGGP. The local search fine-tunes the

coefficients of the individual equations, thereby increasing the accuracy of the final

formulae. Operon accepts the failure event during offspring generation by returning

maybe type (optional type) signal when the offspring does not meet the configurable

criteria, terminating the offspring selection. In addition, Operon’s encoding and off-

spring generation strategies reinforce strong parallelism and low memory demand.

The Operon code was originally developed in the C++ environment. In this

work, we utilized the PyOperon library, a Python binding of Operon, to develop equa-

tions. PyOperon is available at https://github.com/heal-research/pyoperon

2.4 Clustering analysis

This section explores the methodology of clustering analysis, a powerful technique

employed for various essential purposes. Clustering analysis serves as a key to un-

locking the inherent structure within datasets, enabling the extraction of valuable

insights, detection of anomalies, and identification of significant features. Beyond its

exploratory role, clustering is pivotal for establishing natural classifications, revealing

the degrees of similarity among different entities. Additionally, clustering acts as an
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efficient means of data compression, allowing us to organize and summarize com-

plex information through the identification of cluster prototypes. This study leverages

clustering techniques to classify sediment characteristics and provide insight into the

physical sediment transport process. This section outlines the fundamental princi-

ples and techniques employed in clustering analysis, shedding light on its diverse

applications and significance in data exploration.

2.4.1 K-means

V ar =
K∑
i=1

∑
x⃗j∈Si

|x⃗j − ci|2 (2.43)

in which, Si is the ith cluster; x⃗j is the jth data point; ci is the centroid of the cluster

Si.

The most popular algorithm for K-means clustering is the Lloyd algorithm

(Lloyd, 1982), and a simple illustration of the algorithm is depicted in Figure 2.12.

At first, the K number of centroids is initialized, randomly distributed. Then nearest

points around centroids are grouped as K number of clusters (equation (2.44)).

Q
(t)
i = {xp : |xp − c

(t)
i |2 ≤ |xp − c

(t)
j |2∀j, 1 ≤ j ≤ K} (2.44)

In the next step, centroids of newly grouped clusters are calculated using

Equation (2.45). The algorithm repeats the sequence until components of each cluster

no longer change.
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(a) Centroid initialization
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(d) Re-labelling

Figure 2.12 Training process of K-means by the Lloyd algorithm. The X markers
indicate the initial centroids and the square markers indicate the updated centroid
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c
(t+1)
i =

1

|Q(t)
i |

∑
x⃗j∈Q

(t)
i

x⃗j (2.45)

2.4.2 Gaussian mixture model (GMM)
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Figure 2.13 Gaussian mixture model mapping example on an arbitrary two-
dimensional dataset (K = 3). The dots are randomly generated points using three
artificial Gaussian distributions. Each trained Gaussian model is displayed with a
colored ellipse, and assigned points are denoted by the colors of ellipses.

In natural cases, many datasets have statistical distributions. The Gaussian

mixture model (GMM) assumes the data distribution as a mixture of K multi-variate

Gaussian distributions, which is represented as

N (x|µ,Σ) = 1

(2π)D/2

1

|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)), (2.46)

where x denotes the input data point, Σ denotes the covariance matrix, D denotes

the number of dimensions, and µ denotes the mean matrix. Figure 2.13 depicts how

the three Gaussian distributions are mapped using GMM. By mapping data space
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into several Gaussian superpositions according to weight, probabilities of the data

points for each Gaussian can be calculated. Let tk be the k-th Gaussian weight on the

Gaussian mixture and µk and σk be the mean and covariance matrices, respectively;

then, the probability density function of the trained GMM is calculated using Equation

2.47.

p(x) =

K∑
k=1

tkN (x|µkΣk) (2.47)

The probability of certain data can be viewed as the membership of K clusters.

The most common method used for training the GMM is the expectation-

maximization (EM) algorithm Dempster et al. (1977). The EM algorithm repeats the

expectation and maximization steps until it converges with the log-likelihood objective

function. In the expectation step, it calculates the membership of the data points in

k-th Gaussian distribution according to the following equation:

p(zk = 1|x) ≡ p(zk = 1)p(x|zk = 1)∑K
j=1 p(zj = 1)p(x|zj = 1)

=
tkN (x|µk,Σk)∑K
j=1 τjN (x|µj ,Σj)

(2.48)

In the maximization step, the algorithm maximizes the log-likelihood of the Gaussian

mixture. Once the p(zk = 1|x) values are obtained, the maximization step updates
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Figure 2.14 Schematic diagram of SOM networks.

the parameters µ, Σ, and τ as follows:

Nk =

N∑
n=1

γ(znk) =

N∑
n=1

[
∑
j

τjN (xn|µj ,Σj)] (2.49)

µk =
1

Nk

N∑
n=1

γ(znk)xn (2.50)

Σk =
1

Nk

N∑
n=1

γ(znk)(xn − µk)(xn − µk)
T (2.51)

tk =
Nk

N
(2.52)

Here, N is the quantity of data.

A detailed derivation of Equations 2.48 – 2.52 can be found in Bishop (2006).
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Figure 2.15 A simple SOM update example for 5 × 5 network for an iteration where
σ = 3: the blue X marker is the target data point and the red dot is the winning node
corresponding to the X marker.

2.4.3 Self-organizing map (SOM)

Self-organizing maps (SOMs) are simple models that map a data space to a lower-

dimensional manifold. The primal SOM was introduced by Kohonen (1990).

The update rule of the primal SOM involves pulling the best matching unit

(BMU), which is the closest grid node, to a randomly selected data point and adjacent

nodes. The batch learning SOM (Kohonen, 2012) learns the dataset in a statistical

sense such that simultaneously updating BMUs for all data points is identical to

updating each selected data point at least once. Let m⃗i be the i-th node and x⃗j be the

j-th data point; then, the batch SOM finds the BMU of all data points according to

the following equation:

c(x⃗j) = argmin
i
(d[x⃗j , m⃗i]), (2.53)
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m⃗i =

∑
j λn(c(x⃗j), i), x⃗j)∑

j λn(c(x⃗j), i)
, (2.54)

where, λn(c(x⃗j), i) is the neighborhood function describing the grid node-wise dis-

tance (e.g., λn(c(x⃗j), i) = exp(c(x⃗j) − i)) and d[x⃗j , m⃗i] is the Euclidian distance

between x⃗j and m⃗i].
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Figure 2.16 An example of 10× 10 grid mapping of three Gaussian distributions by
a planar self-organizing map. The randomly generated points under three Gaussian
distributions are marked in red, blue, and green colored dots, respectively. The black
dots and their connections are the trained self-organizing map grid components for
entire points.

Figure 2.16 shows the 10 × 10 planar rectangular SOM grid mapped on

random data points generated using three Gaussian distributions. SOM mimics the

data distribution using the SOM map as black grids in Figure 2.16. Each grid point

quantizes (summarizes) the data.

As the SOM map nodes are connected in a grid shape, the SOM map resembles

the links between the quantized points. The advantageous feature of the SOM map is

depicted in Figure 2.17. The hexagonal grid contours correspond to the x and y axes

in Figure 2.16. The green dot cluster takes the place of the low y and the highest x.
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The upper right side of the SOM map projects the green cluster such that the grid

nodes are bright and dark in 2.17 (a) and (b), respectively.

(a) x (b) y
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Figure 2.17 Component planes of the planar SOM depicted in Figure 2.16 for (a)
x and (b) y. The face color of each hexagon denotes corresponding (a) x and (b) y
values.

2.4.4 Clustering quality criteria

SOM,K-means, and GMM suffer from local extrema problems so the clustering result

can change for every trial. Furthermore, a user ofK-means has to specify the number

of clusters K in order to perform K-means clustering. Hence, quantization error

(QE) (Kohonen, 2012), topographic error (TE) (Kiviluoto, 1996), and Davies-Bouldin

index (DBI) (Davies and Bouldin, 1979) were adopted to determine the performance

of partitioning. QE and TE are the popular SOM performance measures on data

density of the winning nodes and topographic preservation, respectively. The QE can

be obtained by averaging distances between each data point and its winning node. The

TE captures topographic continuity by counting whether the first and second winning
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nodes are adjacent in the ordered weight vector grid. Two performance measures can

be given as follows, respectively:

QE =
1

n

n∑
j=1

||x⃗j − wk∗l∗ || (2.55)

where wk∗l∗ is the winning node corresponding to the j-th data point x⃗j .

TE =
1

n

n∑
j=1

uTE(x⃗j), where


1, first- and second-winning nodes non-adjacent

0, otherwise

(2.56)

The DBI measures how clustered data points are well-divided by calculating each

cluster’s variance and within-cluster distance. The mathematical expression of the

DBI is given by

DBI(Q) =
1

K

K∑
K=1

max
k ̸=l

(
sC(Sk) + sC(Sl)

dce(Sk, Sl)
) (2.57)

in which, sC is the distance between the center of clusters and data points (= Σi||Xi−

ck||/Nk); dce is the distance between clusters Sk and Sl (e.g., = ||ck − cl||). The

numerator, SC , of equation (2.57) has a negative relationship with homogeneity and

the denominator is proportional to the dissimilarity between two clusters. Hence, the

cluster number of the smallest DBI is the optimal number, since the dissimilarity of
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clusters means that clusters are well classified.

The fitness of the GMM can be evaluated using model criteria. The Akaike

information criterion (AIC) Akaike (1974) and Bayesian information criterion (BIC)

Schwarz (1978) are popular examples of GMM fitness measures. AIC and BIC are

defined by Equations (2.58) and (2.59), respectively.

AIC = −2LL+ 2Np, (2.58)

BIC = −2LL+Nplog(N)., (2.59)

whereLL is the log-likelihood of the fitted model andNp is the number of parameters

of the fitted model. A model with a small AIC and BIC is considered good.

2.5 Metaheuristic global optimization

In hyperparameter and input variable tuning for SVR, traditional methods like grid

search or RFE can be limited by predefined grids and variable nominees, leading

to varied results. Grid search, in particular, demands an extensive grid setting for

fine-tuning, resulting in a drastic increase in computational costs Stenger and Abel

(2022). Consequently, there arises a necessity to explore more advanced optimization

techniques.

Two widely utilized approaches are Bayesian optimization (BO) and meta-
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heuristic algorithms. While BO excels in low-dimensional spaces, its efficiency di-

minishes in higher dimensions, especially in the context of nonlinear mixed-integer

programming Garrido-Merchán and Hernández-Lobato (2020). On the other hand,

metaheuristic optimization algorithms, leveraging evolutionary algorithms, operate

without the need for gradients, handle discontinuities adeptly, are computationally

efficient, and demonstrate robustness to noise, making them a suitable choice for

diverse optimization challenges.

Studies comparing various optimization techniques for Support Vector Regres-

sion (SVR) models, such as the work by Malik et al. (2020), reveal that metaheuristic

algorithms consistently outperform BOAs in terms of model fitting. Alibrahim and

Ludwig (2021) conducted a comparative analysis of Bayesian optimization, GA, and

grid search for tuning Artificial Neural Networks (ANNs). The results highlighted the

superior speed of GA, with more than a twofold improvement in producing optimal so-

lutions compared to Bayesian optimization. Furthermore, the inherent parallelizability

of metaheuristic algorithms contributes to their efficiency and cost-effectiveness.

In our specific study, the goal extends beyond tuning SVR hyperparameters

to developing a model capable of tuning an arbitrary number of input variables. Ef-

ficiently reducing costs in such scenarios, particularly dealing with high dimensions,

makes metaheuristic algorithms highly appealing (Garrido-Merchán and Hernández-

Lobato, 2020). Thus, our focus lies on introducing the Shuffled complex evolution-
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University of Arizona (SCE-UA)-based metaheuristic algorithm embedded in the

developed library. This method is known for its promise in solving hydrological prob-

lems involving unknown high dimensions (Naeini et al., 2019). This section will delve

into the evolutionary algorithms integrated into our developed library, emphasizing

their parallelizability and efficiency in dealing with complex optimization challenges.

2.5.1 Shuffled complex evolution (SCE)

As the name suggests, the SCE-UA algorithm (Duan et al., 1992, 1993) centers

around the fundamental concept of shuffling subsets, termed ‘complexes,’ to evolve

parameters in a global optimization algorithm iteratively. Figure 2.18 provides an

overview of the optimization strategy employed by SCE-UA. Initially, it initializes

the population within a predefined parameter space. Subsequently, individuals in the

population are grouped into subsets known as complexes. The algorithm then employs

an evolutionary algorithm (EA) to explore new offspring points for each complex. At

each step, it assesses the fitness of the objective function. The offspring generated

from the complexes replace individuals with lower fitness values. This optimization

process repeats until the predefined stopping criteria are satisfied.

SCE-UA exhibits notable flexibility in the parameter update step, allowing for

the application of various EAs during the complex updating process. Taking advantage

of this adaptability, Naeini et al. (2018) explored the implementation of diverse EAs,

including Competitive Complex Evolution (CCE; Duan et al., 1993), Modified CCE
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Figure 2.18 Flowchart of the shuffled complex evolution optimization structure
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(MCCE; Chu et al., 2011), Frog Leaping (FL; Eusuff and Lansey, 2003), Greywolf

Optimizer (GO; Mirjalili et al., 2014), and Differential Evolution (DE; Storn and

Price, 1997). This chapter focuses on the description of CCE and MCCE, which serve

as fundamental EAs for SCE.

2.5.1.1 Competitive complex evolution (CCE)

As EA, SCE-UA employs the CCE to update the population. The CCE algorithm

sorts the parameter points according to their fitness and selects the reference points

according to the triangular probability assigned by rank. Then, it generates offspring

points by the simplex method, originally proposed by Nelder and Mead (1965). The

pseudo-code for one epoch of CCE is outlined as follows:

1. Assign triangular probability to individuals based on the fitness value according

to p = 2(ncomp+1−n∗
i )

ncomp(ncomp+1) wherencomp is the number of individuals in the complex,

and n∗i is the sorted rank of the i-th individual

2. Select Np individuals from the complex, including parameter value and fitness

3. Generate offspring using the Nelder-Mead simplex algorithm from the selected

individuals

4. Replace the worst individual in the complex with the newly generated offspring

Within the offspring generation, the following sub-steps are executed:

1. Find the centroid point X⃗c
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2. Reflection step: Compute the reflected point X⃗r with the worst individual X⃗w,

and X⃗c according to X⃗r = 2X⃗c − X⃗w,

3. If fitness is improved, store X⃗r as offspring, and go to step (6); otherwise, do

the expansion step: compute X⃗e = 2X⃗r − X⃗c

4. If fitness is improved, store X⃗e as offspring, and go to step (6); otherwise, do

the contraction step: compute X⃗oc = (X⃗r + X⃗c)/2

5. If fitness is improved, store X⃗oc as offspring, and go to step (6)

6. Otherwise, generate a random point

7. Generate offspring

8. End the offspring generation process

2.5.2 Shuffled complex evolution with principal component analysis

SCE-UA relies on the n-dimensional Nelder–Mead simplex scheme for searching and

evolving. Despite the effectiveness of the simplex method in reproducing qualified

offspring, it introduces a critical issue: population degeneration Chu et al. (2010). This

phenomenon arises as the offspring particles, produced through a series of simplex

processes, converge into a subspace with lower dimensionality than the original search

space. Subsequent evolutions then remain restricted within this subspace, hindering

the recovery to the full parameter space.
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To address the population degeneration challenge, Chu et al. (2011) introduced

the Shuffled complex evolution with principal component analysis (SP-UCI) method.

Unlike the original SCE-UA, SP-UCI incorporates the principal component analysis

(PCA) to identify and search along dimensions not spanned by the sample population.

This innovation ensures that the particle population can search the full space during

every epoch.

SP-UCI integrates four key concepts expressed by individual algorithmic mod-

ules: (a) The complex shuffling scheme; (b) Population dimensionality monitoring and

restoration using PCA; (c) Modified competitive complex evolution (MCCE) strategy;

(d) Multinormal resampling.

2.5.2.1 Modified competitive complex evolution (MCCE)

In Chu et al. (2011), the CCE algorithm underwent slight modifications to enhance

parameter searchability and dimension preservability. These adjustments include the

incorporation of an additional inside contraction and the adoption of multi-modal

resampling. In between steps (5) and (6) of offspring generation in CCE, the algorithm

identifies the inside contraction point, X⃗ic, through the formula X⃗oc = (X⃗w +

X⃗c)/2. In cases where no better point is identified through the reflection, expansion,

and contraction operations, a random sample is generated, serving as the offspring

in step (7), regardless of its fitness. Contrary to SCE-UA, SP-UCI takes a distinct

approach by generating a random point from a multinormal distribution with a mean
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of X⃗c and a covariance matrix D⃗m = 2(D⃗ + mean(D⃗)), where D⃗ represents the

diagonal matrix of the covariance matrix of the complex.
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Chapter 3. Model parameter and input variable
optimization

3.1 Necessities of the parameter and variable optimization

techniques

The field measurement data related to sediment in this study may exhibit noise, and the

dataset size may be insufficient for the application of complex models, such as artificial

neural networks. Additionally, there exists domain knowledge regarding the physical

relationships between SSC and backscatters or tractive force and sediment transport.

Hence, a preferred approach involves primarily leveraging domain knowledge and

utilizing machine learning techniques to address nonlinearities. In this context, an

ideal machine learning method should be capable of accommodating noise and adhere

to a training policy that minimizes model complexity. Consequently, SVR, which

aligns with these recommendations, was employed to model the nonlinearity in SSC

estimation using H-ADCP signals.

On the other hand, SVR needs fine-tuning of hyperparameters, such as margin

parameter, regularization parameter, and kernel parameter. The grid search approach

with cross-validation is commonly used to find the best hyperparameter tuning. How-

ever, the optimal solution depends on user-defined grid point setting and prior infor-

mation (Raghavendra. N and Deka, 2014). In recent years, global optimization (GO)
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approaches have been utilized for tuning the parameters of SVR (Lin et al., 2006; Liu

et al., 2018; Tikhamarine et al., 2019; Kazemi et al., 2021). This method is more effi-

cient for the higher-dimensional dataset. As an example of tuning four variables, using

grid search with each grid point having 20 elements requires 160,000 evaluations of

the objective function. On the other hand, GO can produce more precise values with

80 populations and 100 generations.

Input variable selection is also important in training SVR. The RFE-SVR,

proposed by Guyon et al. (2002), efficiently determines the input variables combina-

tion, especially for high-dimensional datasets. It reduces iteration for input variables

determination from 2Nd − 1 to Nd, where Nd is the dimension of the data (see, e.g.,

Noh et al. 2023c). Yan and Zhang (2015) highlighted instances where important vari-

ables were eliminated early, possibly resulting in their exclusion from the final model

decision. During model calibration procedures in this study, it was suggested that the

best feature set may vary based on the initial feature set, underscoring the limitations

of relying solely on RFE for determining the optimal input variable set.

Meanwhile, parameter and model optimization are also crucial in clustering

analysis. Specifically, two key challenges need to be addressed: (1) the convergence

to different results in each iteration due to initialization dependency (local optima

problem), and (2) the determination of the number of clusters problem. To tackle

these issues, clustering metrics such as DBI and AIC have been developed, applied,
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and employed for evaluating clustering models. However, a systematic resolution to

the aforementioned two problems is still necessary.

Given that both SVR and clustering analysis demand careful optimization

of parameters and models, this section elucidates the methodologies employed to

fine-tune and enhance the performance of these models. The grid search with RFE

and Cross-Validation (RFE-CV) presents an approach for simultaneously determining

SVR hyperparameters and variables using a global optimization technique. Addition-

ally, robust methods for determining the number of clusters, resilient to initialization

challenges, are detailed.

3.2 SVR parameter and variable set optimization technique

3.2.1 Grid search with RFE and CV for SVR (Grid-RFE-CV)

In each hyperparameter combination of the grid-CV sequence, RFE-SVR was addi-

tionally performed, hereafter referred to as GRID-RFE-CV. In this GRID-RFE-CV

system, the user can determine the hyperparameter values and input variables of the

model with a generalized capability supported by the cross-validation score.

3.2.2 MOdel Selection with Global Optimization for SVR (MOSGO-

SVR)

This study introduces a novel method for selecting an SVR model by simultaneously

optimizing the three SVR-related hyperparameters, namely ϵ,CSV R, and γRBF , along
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with input variables. The proposed method utilizes the GO algorithm to fine-tune the

SVR hyperparameters. Additionally, the GO algorithm is employed to determine the

optimal combination of input variables, removing the need for feature elimination

techniques such as RFE. Adopting this approach reduces the algorithmic complexity

of model derivation, achieving hyperparameter fine-tuning and input variable deter-

mination through a single optimization technique.

This method adopts a cross-validation score for fitness evaluation to avoid over-

fitting and assure the robust performance of the resulting models. The hyperparameters

and input variables can be optimized by the mixed integer nonlinear programming

(MINLP), and the objective function of the proposed method is set to be:

min
CSV R,ϵ,γ,Iv

1−R2
CV (y, SV R(X[:, Iv]))

s.t. 10−9 ≤ CSV R ≤ 10000

10−9 ≤ ϵ ≤ 10

10−9 ≤ γRBF ≤ 10

Iv(i) ∈ {0, 1}, for i = 1, 2, ..., nv.

(3.1)

In the expression, y represents the target-dependent variable, and R2
CV (y, SV R(X[:

, Iv])) denotes the cross-validation score of SVR estimation using the input variable

set X[:, Iv]. Here, Iv serves as a flag designating a column of input variables, with

each variable defined by a Boolean integer. This allows the identification of input
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variable combinations with high scores during the optimization process. Given that

CSV R spans several decades, ranging from 10−9 to 104, a logarithmic mapping of the

search space is adopted.

The decision variables for MOSGO-SVR include SVR’s hyperparameters

(CSV R, ϵ, and γ) and flags denoting the usage of the i-th variable (Iv(i)). Optimiza-

tion of these three hyperparameters occurs within a continuous real-valued search

space using the GO technique. Simultaneously, the matrix Iv undergoes optimization

through the GO algorithm within a range of 0 to 1. The real-number values obtained

are rounded to 0 or 1, rendering them integer values. Then, the matrix Iv is com-

posed of 0 or 1 integer components, corresponding to the number of input variable

nominees. Each component serves as a variable use flag: setting Iv(i) to 1 implies

the inclusion of the i-th variable in model training, while 0 implies exclusion. For

instance, in a scenario with three variables to optimize, consider Iv = [1, 0, 1, 0]. In

this case, the first and third variables are included in the training, while the second

and fourth variables are excluded. Consequently, the dimension of the optimization

problem becomes 6 (three for hyperparameters and four for input variables).

As all model input variables and parameter decisions depend on the global

optimization technique, it was named MOdel Selection with Global Optimization for

SVR (MOSGO-SVR). It was implemented MOSGO-SVR with the Python library for

Global Optimization and SHallow learning (pyGOSH). The pyGOSH is available at

85



https://github.com/hyoddubi1/pyGOSH. Note that any GO algorithm accepting

the above objective function can be employed for MOSGO-SVR.

In addressing MINLP problems, the choice between Bayesian optimization and

metaheuristic algorithms depends on the nature of the objective function. Bayesian

optimization excels in optimizing expensive black-box objectives with uncertainty

analysis capabilities, particularly for deep neural networks. In cases where the ob-

jective function, like the SVR used in this study, is not excessively expensive, meta-

heuristic algorithms offer a computationally efficient alternative for MINLP problem-

solving (Eghbal et al., 2011; Garrido-Merchán and Hernández-Lobato, 2020). Also,

for MINLP, Bayesian optimization might not be as effective in searching integer vari-

ables (Garrido-Merchán and Hernández-Lobato, 2020). For SVR model selection, a

shuffled complex evolution with principal components analysis–University of Cali-

fornia at Irvine (SP-UCI; Chu et al. 2011), which is designed to address the issue

of losing dimensionality in the local population, was utilized, thereby improving the

searchability of the parameter space.

The SP-UCI algorithm begins by initializing a population, which is then di-

vided into subsets known as complexes. Each complex evolves its solution using a

Modified Competitive Complex Algorithm (MCCE). In this process, the MCCE algo-

rithm selects reference points within a complex based on their fitness, as determined

by a triangular probability density function. These points are subsequently updated
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Table 3.1 Fine-tuning ability and computational costs of the SVR optimization ap-
proaches

Features Grid search+brute force GRID-RFE-CV GO-RFE-CV MOSGO-SVR
Hyperparameter fine-tuning X X O O

Input variable selection X O O O
Computation cost order O((2nv − 1)n3grid) O(nvn

3
grid) O(3nvncompnevol)

(1) O(3ncompnevol)
(1)

Exemplar cost 50,625(2) 13,500(2) 48,000(3) 12,000(3)

(1): The computational order depends on the algorithm
(2): n3

grid = 15 and nv = 4
(3): The SP-UCI algorithm with 20 complexes of 100 population and 200 evolutions

using the Nelder-Mead simplex method (Nelder and Mead, 1965). Afterward, all

points are shuffled and re-sampled. SP-UCI employs PCA in each evolution step to

maintain population dimensionality. If the dimensionality is reduced, the algorithm

triggers a resampling. The SP-UCI process continues until certain stop criteria, such

as objective function improvements, are met. The detailed algorithm of SP-UCI can

be found in Chu et al. (2011).

3.2.3 Comparison of the SVR optimization approaches

To assess the fine-tuning capabilities of the SVR optimization approaches, Table 3.1

provides a summary of these methods. Alongside GRID-RFE-CV and MOSGO-SVR,

the comparison includes GO-RFE-CV, which employs global optimization exclusively

for hyperparameter optimization with the RFE-determined input variable set. The

table presents the order and exemplar amount of computational costs to illustrate the

efficiency of the proposed algorithm.

Grid search-based methods incur high computational costs due to the curse of

dimensionality. For instance, considering SVR’s three hyperparameters as an example,
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the computational cost scales withn3grid. As the number of hyperparameters increases,

the computational cost escalates exponentially. GRID-RFE-CV can significantly re-

duce the computational cost with systematic determination of the input variable set,

but it shares the disadvantage of grid search. While GO-RFE-CV can fine-tune hyper-

parameters, applying the GO algorithm exclusively for hyperparameters may require

a computational cost comparable to brute force methods. MOSGO-SVR holds an

advantage in optimizing both hyperparameters and input variable combinations si-

multaneously, offering a more cost-effective alternative compared to grid search-based

approaches.

Despite its efficacy in identifying optimal hyperparameters and input variable

sets, the MOSGO-SVR method employed in this study has a limitation. While in-

creasing the number of variables or model complexity may enhance accuracy, it is

undesirable due to the risk of overfitting. Although cross-validation can address the

issue of generalization, i.e., overfitting, there is no regulation on the number of input

variables, potentially leading to the inclusion of more variables than necessary.

To address this limitation, MOSGO-SVR could be enhanced by introducing

a penalty for model complexity, similar to how the BIC penalizes the number of

parameters relative to the data size. However, if the penalty weight is too large,

the model may only utilize a few variables, resulting in suboptimal performance.

Therefore, finding an appropriate modification for the objective function remains an
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open challenge. Another potential solution involves providing a Pareto front solution

set, as adopted in MGGP. This approach offers accuracy for every possible number

of variables, providing users with flexibility. While effective in scenarios without

objective function saddle points concerning the number of variables, it may not be

user-friendly, particularly for practitioners seeking a deterministic model.

Considering both model performance and computational cost, MOSGO-SVR

emerges as the preferred choice. However, its effectiveness may diminish when the

number of variable nominees increases, as MOSGO-SVR optimizes the input variable

combination by searching through the possible combinations. Therefore, in such cases,

GRID-RFE-CV proves to be a practical alternative.

3.3 Iterative SOM–GMM algorithm

The incorporation of the Self-Organizing Map (SOM) in this study was instrumental

for efficiently summarizing intricate information within the sediment dataset. The

SOM’s unique feature, the component planes, proved particularly valuable in mini-

mizing the analytical complexity, especially when confronted with datasets of high

dimensionality. Furthermore, the SOM’s exceptional capability to map data using a

grid manifold enhanced its effectiveness across various complex data distributions,

allowing for a comprehensive understanding of the underlying patterns within the

sediment data.
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The two-stage clustering method is commonly used to apply SOM by incorpo-

rating an additional clustering approach. In general, a trained SOM network is further

divided using K-means Li et al. (2018); Noh et al. (2021) or hierarchical clustering

methods Alvarez-Guerra et al. (2008); Kim et al. (2020). K-means clustering is a

more intuitive and simpler model than other models, but it has certain disadvantages

because of the assumption that the data points are distributed in spherical clusters.

This assumption can lead to misclassification when non-spherically distributed data

are used. Moreover,K-means is a hard clustering method that assigns one label to one

data point; therefore, it is not appropriate to manipulate datasets when data regions

of different classes overlap (Heil et al., 2019). This hard separation feature renders

K-means sensitive to noise or outliers (Jain, 2010; Oyelade et al., 2016). A fuzzy

c-means clustering (FCM) was introduced by Bezdek et al. (1984) as an alternative

to overcome the problem of hard division by fuzzifying K-means directly. However,

FCM is limited to hyperspherical clustering.

However, GMM assumes a fuzzy mixture of multi-variate Gaussians with

varying cross-correlations, which is an advantage of GMM over K means and FCM.

From another perspective, the expectation of K-means can be reproduced when the

user sets the covariance matrix of GMM to be spherical (i.e., Σk = σkI). These

characteristics of GMM make it more reliable than K-means in data classification in

general. Regime shifts of the sediment transport mechanism in natural rivers might not
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be clearly divided and spherically distributed but rather composed of thin ellipses. The

Gaussian shape mapping rule of GMM that allows cross-correlation is advantageous

for summarizing the sediment transport dataset. Therefore, GMM was selected as

the secondary clustering method in this study. Hereafter, the two-stage clustering

algorithm using SOM and GMM is referred to as SOM-GMM.

Two challenges of SOM-GMM must be considered: (1) the prerequisite of

the predefined number of clusters K (and grid size p × q) and (2) local optima

followed by initialization. Different strategies were applied at each stage to address

these challenges.

There are several ways to update SOM: updating point by point in the order

of the data, randomly selecting data for updates, and using batch computing, which

updates the entire dataset based on the grid’s position in each learning step, considering

adjacent multiple data points (e.g., Kohonen, 2013). The first method may converge

to different results when the order of the data changes, while the second method

may lead to different results in each iteration. To minimize the impact of such initial

conditions or dataset ordering, this study applies batch computing, training the entire

dataset simultaneously in every step.

For the SOM stage, the grid size was determined according to the relationship

p× q = 5
√
n (Vesanto et al., 2000). The location of each grid point, comprising

a two-dimensional grid, was initialized by linearly spanning the grid over the two
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largest principal components following the PCA of the target dataset (Kohonen, 2012,

2013). This PCA-based grid initialization strategy always yields the same training

results unless the training epochs and dataset change. To optimize the SOM training,

the training epoch was optimized, minimizing both QE and TE (Equations (2.55) and

(2.56)).

The final two-stage GMM partitioning result was selected using an iterative

method that was similar to a method used previously (Noh et al., 2021). The GMM was

essentially trained over the possible number of clusters K. Because GMM is prone to

converge to the local optimum solution depending on the initial state, it is iteratively

retrained for each K. For example, the SOM-GMM procedure runs 200 times when

the possible K values are in the range of 2–11, and 20 independent iterations are

specified. AIC and BIC can be computed such that the clustering quality can be

evaluated for every iteration. Finally, the case with the minimum AIC + BIC was

selected as the best clustering result produced by the SOM-GMM procedure (Figure

3.1). The flowchart of the iterative SOM-GMM algorithm is illustrated in Figure 3.2.

3.4 pyGOSH

This study proposes the Python library for Global Optimization and SHallow machine

learning (pyGOSH). It is a comprehensive Python library that facilitates global op-

timization and shallow machine-learning tasks. This library encompasses a suite of
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Figure 3.1 Example of the AIC and BIC evaluations with respect to the number of
clusters.

functionalities, including global optimization algorithms, clustering techniques, and

support vector regression-based algorithms, as introduced in this study.

The global optimization algorithm based on SCE was incorporated into py-

GOSH. Harnessing the benefit of SCE’s complex-wise update structure, this library

facilitates parallel computing for global optimization. Through parallel computing,

there was a notable enhancement in computational efficiency.

Notably, pyGOSH stands out by offering an advanced integration of machine

learning algorithms, featuring key methodologies such as GRID-RFE-CV, MOSGO-

SVR, and iterative SOM-GMM. This integration enhances the synergy between var-

ious algorithms, fostering efficient and coherent workflows. Furthermore, pyGOSH

seamlessly integrates with popular machine learning models from the Scikit-learn

library (Pedregosa et al., 2011), including SVR and scalers. This integration ensures

compatibility and ease of use, empowering researchers and practitioners to leverage
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Figure 3.2 A flowchart of the SOM–GMM algorithm
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the diverse capabilities of global optimization and shallow machine learning in a

unified Python environment.
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Chapter 4. Advancing H-ADCP-based real-time
sediment load monitoring system using MOSGO-SVR

and hydraulic variables

This chapter contains material that is partially reproduced from a manuscript currently

under revision: Noh, Son, Kim & Park (2024, accepted) Adv. Water Resour. Note that

the paper is currently accepted, and the information provided is subject to potential

changes during the peer-review process. The inclusion of this partially reproduced

content in the dissertation is based on the manuscript in its current form.

4.1 Dataset

4.1.1 Study sites and data acquisition

This study used the data observed in 2018 and 2019 at eight observation stations in

South Korea. These stations were selected at points where the South Korean national

gauging stations and H-ADCP installations overlap. Table 4.1 shows the observa-

Table 4.1 Data acquisition conditions of the study sites. Bridge, Weir, River, and Creek
are marked in the table as B., W., R., and C., respectively.

Stations Catchment H-ADCP
frequency (kHz)

Distance to sediment
sampling location (km)

Distance to
weir gate (km) Data period

Geukrak B. Yeongsan R. 1,200 -0.64 11.35 2019.07.01-08.31
Gumi B. Nakdong R. 300 0 11.37 2019.07.01-10.31

Gyenae-ri Nakdong R. 300 0.44 8 2018.07.01-08.31
Hoguk B. Nakdong R. 300 2.23 -1.75 2018.06.01-10.31

Ipo W. upstream Han R. 300 0 0.3 2019.06.01-10.31
Jijeong B. Seom R. 300 -0.45 -21.1 2019.06.01-10.31
Naju B. Yeongsan R. 300 -0.14 -4.64, 15.62 2019.07.10-08.31

Nampyeong B. Jiseok C. 600 -0.24 1.10 2019.07.01-10.31
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Figure 4.1 Geographical locations of the study sites
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tion conditions, including H-ADCP frequencies, sampling location, and monitoring

period. Figure 4.1 depicts the locations of the stations. All observation stations are

located on major rivers, including Nakdong River, Han River, and Yeongsan River.

Specifically, the Jijeong Bridge is on the tributary of the Han River, called the Seom

River, and the Nampyeong Bridge is on the tributary of the Yeongsan River, called

Jiseok Creek. The official water level and the flow rate data are accessible through

the following URLs: https://www.hrfco.go.kr/ (Han River), https://www.

nakdongriver.go.kr (Nakdong River), https://www.yeongsanriver.go.kr/

(Yeongsan River). Note that all data acquired in this study is from the existing moni-

toring stations.

Table 4.2 summarizes the measurement data, where d50bm and d50ss are the

median particle sizes of the bed materials and suspended sediment, respectively. σbm

is the standard deviation of the bed material, and it can be computed by:

σbm =
√
d84bm/d16bm (4.1)

where, d84bm and d16bm are the 84% and 16% of the material finer by weight,

respectively. σss can be similarly obtained by the above relationship.

As explained in Chapter 2, the shear stress in unsteady flow is influenced

by ∂y
∂x − U

g
∂U
∂x − 1

g
∂U
∂t . For a rectangular channel, the term ∂U

∂t can be expressed as

∂
∂t

(
Q
Wh

)
. Moreover, spatial derivatives can be transformed into temporal derivatives
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by multiplying ∂x/∂t by a chain rule. These transformations underscore the signifi-

cance of Q, y, and their temporal variations in the context of unsteady shear stress.

Additionally, Landers and Sturm (2013) highlighted that even at the same flow rate,

SSPSD, a crucial parameter for SCB estimation, can vary before and after rainfall.

Consequently, temporal derivatives ofQ and y were included in the analysis to capture

these variations.

SCB, water level (y), and flow rate (Q) obtained at 10-minute intervals from

the automatic gauging station were used as input variables in the model derivation.

Note that the 10-minute interval data represents the average of values measured at

a 1 Hz sampling rate for 7 minutes and 30 seconds. Moreover, dy/dt and dQ/dt

were computed to incorporate temporal information concerning flood waves. The

time derivatives were determined by calculating the first derivatives of the fitted cubic

spline curves. To develop the prediction model, the dataset of suspended sediment

samples from the Annual Hydrological Report of Korea (MoE 2018; 2019) was

compiled and used as ground-truth observations.

The suspended sediment concentrations were measured using a D-74 depth-

integrating suspended sediment sampler. For streams over 300 m width, seven verticals

were sampled, whereas five verticals were sampled for less than 300 m width. Follow-

ing that, cross-section-averaged SSC was employed for the analysis. The suspended

sediment samples were analyzed by the filtration method to obtain concentration. In
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addition to that, the particle size distribution of the suspended sediment samples was

measured using a laser diffraction device (Mastersizer3000). The SSPSD variations

were observed in storm events.

Unfortunately, according to the hydrological survey report (MoE, 2019b 2019),

there are cases where real-time water level observation station locations, H-ADCP

installation points, and suspended sediment gauging station locations do not coin-

cide with the distance between them being up to over 2 km. Additionally, Korea’s

major rivers have weir gates that control water level and flow rate. The operation

of these weirs can cause significant fluctuations in water levels. In particular, MoE,

2019b (2019) notes that water level changes due to weir gates frequently occurred at

the Gyenae-ri, Hoguk Bridge, Ipo Weir upstream, and Nampyeong Bridge stations.

Moreover, when the weirs are not fully open, backwater can occur.

Figure 4.2 depicts the water level-flow rate graph of all monitoring stations

listed in Table 4.1. In Gyenae-ri, Hoguk Bridge, and Ipo Weir upstream stations, the

water level-flow rate loop presents significant fluctuations, and 8-shaped loops are

observed due to the weir operation. The relationship between the water level and flow

rate in Nampyeong Bridge shows a simple curve, whereas Naju Bridge does not follow

a power-law trend.
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Figure 4.2 The water level-flow rate graph
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Figure 4.3 Schematic diagram of the effective cell decrease due to unwanted acoustic
reflectances

4.1.2 H-ADCP signal processing

The H-ADCP signal returns measurements from the pre-defined cell setting. Prior to

analysis, cells showing a low correlation between concentrations and echo intensity

values were trimmed. By this step, the water surface or bottom reflected cells are

trimmed. The number of trimmed cells varies with the water surface stage where the

signal is reflected so that some valid cells in high stages may show erratic results in

low stages (Figure 4.3. Therefore, from a conservative and practical point of view, the

same number of cells was analyzed over the analysis period as the minimum number

of cells from the transducer.

Equation (2.33) implies that the spatial derivatives of the echo intensity lead

to the sediment-corrected backscatter. In some cells, the sign of derivatives can be

positive, locally, resulting in negative SCB. However, the average derivative over the

analysis region should be related to SSC under the uniform concentration assump-

tion. Instead of calculating the derivative in each cell, the spatially averaged dI/dr

104



was obtained from the linear fitting of the intensity profile. Subsequently, the rela-

tionship between SCB and SSC was derived from the cross-section averaged index

concentration concept.

Guerrero and Di Federico (2018)’s approach is useful in understanding a

profound relationship with particle size distribution. However, PSD keeps changing,

especially stream responses to distance sediment sources in the falling limb. In those

cases, their model is particularly good with PSD analyzer’s assistance, such as LISST-

200X. However, this study is based on field sampling analysis without real-time PSD

monitoring. In our cases, PSD variations between samplings are unknown.

In this context, the simple relationship was adopted without PSD information.

Instead, this study adopts SVR with kernel to consider the nonlinearity due to the

PSD effect in concentration evaluation.

4.2 Instream application performance comparison of the SVR

model determination methods in the Nampyeong Bridge

station test case

In the Nampyeong Bridge station, a comparison is conducted among various SSC

monitoring techniques, including the rating curve, SVR optimization methods, and

linear models. Table 4.3 provides an overview of the SVR model optimization methods

and their respective calibration approaches, along with the optimal input variables
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Table 4.3 Optimal hyperparameters determined by various SVR optimization ap-
proaches in the Nampyeong Bridge station

Methods Model calibration Variables CSV R ϵ γSV RVariables Hyperparameters
GRID-RFE-CV RFE Grid search SCB 2.048 · 103 4 · 10−1 1
GO-RFE-SVR RFE GO SCB 5.042 · 103 2.02 · 10−1 3.95 · 10−1

MOSGO-SVR GO GO SCB, Q 7.363 · 103 2.62 · 10−1 1.58 · 10−3

Table 4.4 Model structures and cross-validation scores in the Nampyerong Bridge
station

Model Model structure R2
CV

Rating curve SSC = QSL/Q = 0.1203Q0.6942 0.687
Linear-1var log10 SSC = 0.0405SCB − 2.5729 0.765
SCB-msl log10 SSC = −0.4237SCB − 4.3882h+ 0.0309(h · SCB) + 54.5258 0.792

GRID-RFE-CV SSC=SVR(SCB) 0.812
GO-RFE-CV SSC=SVR(SCB) 0.852

MOSGO-SVR SSC=SVR(SCB,Q) 0.892

and hyperparameters. Furthermore, Table 4.4 presents the model structures and cross-

validation scores for each model. The one-variable linear model, denoted as linear-1var

(formulated as Equation (1.1)), and SCB-msl (representing linear models employing

two features, as per Equation (2.36)) are included.

Among these models, the rating curve presents the lowest R2
CV , while the

SCB-msl model outperforms the one-variable linear model. Similarly, incorporating

additional variables improves model accuracy in SVR models. The three SVR models

show higher R2
CV compared to the rating curve and the linear models. Notably, the

MOSGO-SVR model stands out as the top performer among all models. The result

implies that considering additional hydraulic features and using SVR is favorable.
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4.3 Application of MOSGO-SVR to various monitoring sta-

tions

4.3.1 SSC monitoring result

In this study, to assess the performance of utilizing the raw backscatter variable from

H-ADCP, the effects of variable inputs in the MOSGO-SVR were investigated. In

the first case, simultaneous calibrations were performed for all possible variables to

identify the most important variables at the monitoring station. In Case 2, similar to

Son (2021), additional variables were taken into consideration, such as water level,

while SCB is forced to be included. In Case 3, only SCB was adopted, but SVR

was employed to account for nonlinearity instead of using algebraic equations. The

input variables combinations and SVR hyperparameters and corresponding R2
CV are

presented in Table 4.5.

The final model with minimum objective function is selected to enhance the

practical applicability, and the SVR model was re-fitted with the entire dataset using

the optimum solution as recommended by Hastie et al. (2009). Figure 4.4 shows the

suspended load (QSL) estimations corresponding to flow rate for the eight monitoring

stations with the models in Case 1. The sediment load prediction results of SCB-

fixed models (Case 2) and the SCB-only models (Case 3) are depicted in Figures 4.5

and 4.6, respectively. In the figures, the H-ADCP-based sediment load prediction is

denoted with black arrows, and the red arrows denote the measured suspended loads.
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Figure 4.4 The graph of flow rate-suspended loads for Case 1, depicting temporal
variations by using arrows during the monitoring periods.
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Figure 4.5 The graph of flow rate-suspended loads for Case 2, depicting temporal
variations by using arrows during the monitoring periods.
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Figure 4.6 The graph of flow rate-suspended loads for Case 3, depicting temporal
variations by using arrows during the monitoring periods.
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Table 4.5 The MOSGO-SVR training results

Cases Stations Best fit variables CSV R ϵ γ R2
CV

Case 1
(No constraint)

Geukrak SCB, y, Q 1.086E+00 1.417E-06 1.632E-01 0.958
Gumi Q, dQ/dt 1.337E+02 1.880E-02 3.407E-02 0.920

Gyenaeri SCB, y, dy/dt 9.670E+00 1.920E-02 1.033E-01 0.904
Hoguk y, dy/dt, dQ/dt 3.134E+01 3.722E-05 1.731E-01 0.713

Ipo y, Q, dQ/dt 7.294E+01 3.201E-02 3.127E-01 0.684
Jijeong SCB, Q, dy/dt 7.839E+00 2.903E-02 1.142E-01 0.928
Naju SCB, Q 4.297E+00 1.164E-08 9.955E-01 0.826

Nampyeong SCB, Q, dy/dt 1.276E+01 1.627E-06 2.517E-02 0.902

Case 2
(SCB forced)

Gumi SCB, y, Q, dy/dt 7.581E+02 2.423E-06 1.008E-03 0.761
Hoguk SCB, Q, dy/dt 1.484E+01 3.814E-02 7.819E-02 0.711

Ipo SCB, y, Q, dQ/dt 6.277E+03 1.664E-02 2.065E-01 0.588

Case 3
(Only SCB)

Geukrak SCB 9.765E+04 2.220E-01 8.195E-02 0.876
Gumi SCB 9.058E+00 4.484E-02 1.383E-01 0.230

Gyenaeri SCB 3.805E+01 2.253E-01 3.418E-01 0.860
Hoguk SCB 6.373E+00 7.540E-03 1.222E-01 0.461

Ipo SCB 2.197E+03 1.787E-03 8.941E-03 0.451
Jijeong SCB 3.806E+03 1.846E-01 1.005E-03 0.707
Naju SCB 1.188E+02 2.642E-01 2.280E-03 0.633

Nampyeong SCB 9.239E+04 2.060E-06 4.424E-03 0.833

In Case 1, all R2
CV values exceeded 0.7. In particular, the H-ADCP backscat-

tering was important in the five stations (Geukrak B., Gyenae-ri, Jijeong B., Naju B.,

and Nampyeong B.) where R2
CV values were greater than 0.82. The flow rate was

selected in most stations except for the Gyenae-ri station. In Case 1, dQ/dt, appeared

as an important variable in the stations where SCB was not selected.

In case 2, MOSGO-SVR was performed, fixing SCB as the input variable for

the Gumi B., Hoguk B., and Ipo weir upstream stations. Model fitness decreased in

terms of R2
CV when using SCB is forced. However, in this case, the Hoguk Bridge

model’s prediction turned out rather reasonable compared to that of Case 1. In Figure

4.4(d) SSC diverged to 10,000 kg/s, while the maximum SSC of Figure 4.5(d) is

smaller than 1,000 kg/s. This result implies that SCB can work as a limiter when the
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model is too sensitive to Q, y or their derivatives.

The results of Case 3 showed lower R2
CV values compared to the other two

cases. Particularly, at the Gumi Bridge station, the cross-validation score was ap-

proximately 0.69, lower than in Case 1. However, at Geukrak Bridge, Gyenae-ri, and

Nampyeong Bridge, the decrease in R2
CV was less than 0.1. The decrease in R2

CV

did not always negatively impact the model’s predictive performance. According to

Figure 4.6, smoother curves were observed for stations that previously showed sig-

nificant fluctuations and divergence in Cases 1 and 2. This smoothing phenomenon

was pronounced in stations with strong fluctuations and divergence, such as Gumi

Bridge, Hoguk Bridge, and Gyenae-ri, located in the Nakdong catchment. However, in

stations belonging to the Yeongsan catchment, such as Geukrak Bridge, Naju Bridge,

and Nampyeong Bridge, the predictability of sediment concentration peak decreased.

On the other hand, partially spiky estimations were observed at the Ipo Weir upstream

station.

Ipo Weir upstream is located upstream of a weir gate, directly influenced by the

flow from Ipo Weir’s operation. This makes it difficult to establish a clear relationship

between sediment loads and flow conditions. In poorly fitted stations, such as Gyenae-

ri and Hoguk Bridge, the sediment sampling locations are situated at 0.44 km and 2.23

km downstream, respectively. These uncertainties lead to a low correlation between

SCB and SSC.
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Figure 4.7 Scatter plots for Measured SSC versus estimated SSC using Cases 1–3
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Figure 4.8 Scatter plots for Measured SSC versus estimated SSC using Case 2 and
one- or two-variable linear models
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Table 4.6 Regression coefficients of the linear models

Linear-1var SCB-msl
Station C1 C2 C1 C2 C3 C4

Geukrak 0.0599 -3.704 -0.1277 -1.7179 0.0234 10.6692
Gumi 0.0759 -6.1559 0.8555 3.4637 -0.0303 -95.2831

Gyenaeri 1.0771 -6.0976 0.4630 8.8243 -0.0801 -48.7645
Hoguk 0.0822 -6.6040 0.7692 4.5530 -0.0390 -87.7626

Ipo 0.0360 -1.6620 -3.2011 -7.6087 0.1143 214.1131
Jijeong 0.05376 -4.1514 0.7329 0.6730 -0.0106 -48.2121
Naju 0.0331 -1.6931 0.1982 5.7220 -0.0678 -15.9844

Nampyeong 0.0405 -2.5729 -0.4237 -4.3882 0.0359 54.5258

Figure 4.7 presents a pairwise comparison between the derived models and

the observed Suspended Sediment Concentration (SSC). It is important to note that

the SVR models in this comparison are re-fitted using the entire dataset to facilitate

a fair comparison with linear models under the same conditions. Alongside the SVR

models, the linear-1var models for each station are represented by star-shaped markers.

The estimation results from Cases 1, 2, and 3 are indicated by circle, rectangle, and

triangle markers, respectively. Figure 4.8 further illustrates the SCB-msl model with

triangle markers. The coefficients of the linear models and the root mean squared

errors (RMSEs) for all models are detailed in Tables 4.6 and 4.7, respectively, with

the RMSEs of the best-performing models highlighted in bold.

Notably, circle markers, Case 1 models, are most closely aligned along the

1:1 estimation line among the compared models in Figure 4.7. However, at the Gumi

Bridge station, an underestimation is observed around SSC = 102 mg/l. In many

stations, the linear regression shows underestimation in high SSC and overestimation
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Table 4.7 RMSEs of the refitted models for each station

Stations RMSE (mg/l)
Case 1 Case 2 Case 3 Linear-1var SCB-msl

Geukrak 34.36 - 122.29 130.37 54.93
Gumi 76.46 5.75 53.06 65.05 27.70

Gyenaeri 62.81 - 144.74 201.84 148.83
Hoguk 7.68 67.38 102.61 124.03 99.76

Ipo 14.82 8.00 77.59 117.68 107.12
Jijeong 22.71 - 76.67 74.08 70.35
Naju 60.81 - 137.61 117.62 58.18

Nampyeong 57.03 - 148.20 177.79 165.45

in low SSC. In Geukrak Bridge, SSC by the linear regression models are 103 times

smaller than actual values.

In Figure 4.8, the SVR models retained through the SCB process demon-

strate superior accuracy compared to other models. Notably, the SCB-msl model

exhibits substantial enhancements over the one-variable linear models, underscoring

the significance of incorporating hydraulic variables. However, at the Gyenari, Hoguk

Bridge, and Ipo Weir upstream stations, certain data points display lower accuracy

than the linear-1var model. Examining Table 4.5, MOSGO-SVR incorporates dy/dt

in addition to SCB and y in those stations, a factor not considered in the SCB-msl

model. This suggests the importance of accounting for the time derivative.

Comparing Case 3 and linear models, the Case 3 SVR models are superior to

those in six stations. Compared to the linear models, the performance improvements

of Case 1 and 2 models are more significant than those of Case 3. The models using

116



SCB and additional variables in most stations show better accuracy than the other

cases, except for the Hoguk Bridge station. This result implies advantages in using

SVR and employing hydraulic variables in addition to SCB. In the Hoguk Bridge

station, the distance exceeding 2 km between the H-ADCP sensor and the sediment

sampling point introduces a time lag between the SCB and SSC data. Consequently,

the correlation between SCB and SSC diminishes, leading to lower accuracy.

The SCB-msl models exhibited superior performance compared to the linear-

1var models. With the exception of the Gyenaeri, Ipo, and Nampyeong stations, RMSE

values were smaller than those of Case 3. This suggests that manipulating nonlinearity

through SVR is less impactful than including additional hydraulic variables. Never-

theless, the SCB-forced SVR models (Case 2) demonstrated better accuracy across

all stations.

In summary, the fitted model reproduced a reasonable yet simple prediction

curve throughout Cases 1 to 3, when SCB was used without incorporating other

variables. However, this overly simplified approach underestimated SSC during high

flows. Therefore, when flow-related variables were included in addition to SCB, the

accuracy improved at higher flow rates. As more variables were applied, the model

exhibited greater fluctuation and divergence. This demonstrates a trade-off between

the model’s complexity and accuracy when considering additional variables. Notably,

it was observed that higher CV scores did not always lead to physically plausible
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results. Therefore, in practical applications, the approach used in Case 2 is advisable.

If the model based on estimation seems too erratic, then using a model derived solely

from SCB, as in Case 3, would be more appropriate, applying the principle of Occam’s

razor.

4.3.2 Discussion on the optimized variable set

In the Naju Bridge station, during the initial rising phase of the flow, the peak sus-

pended sediment concentration occurs, and surprisingly, the sediment concentration

decreases when the flow reaches a gradual rise after the peak flow. Due to inconsistent

behavior in suspended sediment concentration concerning the time derivative, it is

not considered in the analysis. At the Geukrak Bridge, variations in SSC during both

rising and falling flow phases are minimal, with fluctuations below 50 mg/l, leading

to a limited consideration of the influence of time derivatives.

The Gumi Bridge station experiences large fluctuations in water level despite

a modest 1.2 m amplitude of observed water level variations. On the other hand,

especially with a flow amplitude exceeding 5,000 cms, significantly contributes to

flow rate considerations in Case 1. In Case 2, where SCB is forcibly included, dy/dt

is considered instead of dQ/dt.

Including SCB in all cases involves incorporating flow (Q), and simultaneous

consideration of flow and SCB proves effective for estimating cross-sectional average

suspended sediment concentration. In the case of Gyenaeri, Hoguk Bridge, and Ipo
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Weir upstream, where water level fluctuations are frequent due to operational manip-

ulations of the sluice gate, the consideration of water level, flow, or the time derivative

of water level is relevant. In the Gyenaeri station, the flow exhibits significant fluctu-

ations compared to other variables, leading to the exclusion of the flow rate from the

analysis. For the Hoguk Bridge station, the correlation between SSC and SCB is low

due to the difference in the location of sediment concentration measurements and H-

ADCP, resulting in the initial exclusion of SCB. In the upstream region of Ipo Weir,

frequent flow changes occur due to backwater effects, emphasizing the significant

consideration of water level, flow, and the rate of flow change over SCB.
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Chapter 5. Clustering of sediment characteristics in
South Korean rivers and its expanded application

strategy to H-ADCP based suspended sediment
concentration monitoring technique

This chapter is partially reproduced from the following publication: Noh, Son, Kim

& Park (2023) J. Korea Water Resour. Assoc., 55: 43-57. The content presented here

has been adapted and expanded from the original publication to fit the context and

objectives of this dissertation.

5.1 Linear model coefficient similarity

For convenience in the analysis, the coefficients of the derived H-ADCP-SSC rela-

tionship equation were plotted on a scatter plot with different markers for each river

in Figure 5.1. Different marker shapes were used for cases where the frequency of the

H-ADCP signal was different. The observation points represented by circles, where

300 kHz H-ADCPs were installed, showed that similar coefficient values were derived

for the same river, supporting this study’s assumption. However, for the tributary of

the Namhan River, the coefficients were somewhat different from those of the two

observation points in the mainstream of the Han River. A noteworthy point is that the

derived equations have an accuracy of 0.98 in terms of the coefficient of determination,
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Figure 5.1 Scatter plot of H-ADCP-SSC equation coefficients corresponding to Table
4.6

which corresponds to the relationship in Eq 5.1.

C2 = −103.678C1 + 1.8862 (5.1)

Using data from Naju Bridge located in the mainstream of Yeongsan River in

2017 and 2019, the coefficients of the H-ADCP-SSC equations derived for each year

showed an error rate of less than 10%, despite the difference in timing. This result is

less than the coefficient differences observed between adjacent stations in Han River

or Nakdong River.

In stations located in the main and tributary streams of Yeongsan River, there
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were stations that used H-ADCPs of different frequencies. In these cases, it was

revealed that different coefficients were obtained even for the same main river. The

Nampyeonggyo observation station, which used a 600 kHz H-ADCP and is in the

same river basin as the Naju Bridge observation station, showed a value that was more

than 0.006 larger than the mean value of the Naju Bridge station, and the value of

C2 was about 0.850 smaller. The Geurak Bridge station in the Yeongsan River basin

operates a 1,200 kHz H-ADCP, and in this case, a larger variation was observed with

an increase of 0.026 and a decrease of 1.981 for C1 and C2, respectively. Considering

that the Han River and Nakdong River observation stations have similar coefficient

values, assuming that C1 and C2 for Geurak Bridge and Nampyeong Bridge can be

approximated to the value of Naju Bridge using a 300 kHz H-ADCP, it is estimated

that C1 and C2 will have positive and negative relationships, respectively, with the

frequency of the H-ADCP.

5.2 Data description

In this study, the 2019 Annual Hydrological Report on Korea (MOE, 2019) was used

as the clustering target. The report provides the coordinates and catchment areas of 44

sediment observation stations in Korea, as well as flow-suspended sediment discharge

equations developed based on directly collected suspended sediment concentrations

and measured suspended sediment discharge using the modified Einstein method
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proposed by Colby and Hambree (1954). The flow-suspended sediment discharge

equation is derived in the following form:

QSL = aSLQ
bSL (5.2)

where, aSL and bSL are the regression coefficient. The total sediment load rating

curve has the same form. To differentiate the notation, the total load and the regression

coefficients are denoted as QTL, aTL, and bTL.

In addition to the suspended sediment discharge equation and suspended sed-

iment characteristics, the report includes the grain size distribution of suspended

sediment and bed sediment as similar features. The suspended sediment grain size

distribution includes eight particle size categories ranging from 0.062 mm to 8 mm,

each with corresponding weight distribution values. The bed sediment grain size

distribution provides 20 particle size categories ranging from the 5% particle size

d5 to the 100% particle size d100 at 5% intervals, based on cumulative percentage

values. The report also includes uniformity coefficient Cu, curvature coefficient Cg,

and standard deviation σg calculated based on the parameterization of the grain size

distribution characteristics in Eqs 5.3–5.5.

Cu =
d60
d10

(5.3)
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Cg =
d230

d10d60
(5.4)

σg =

√
d84
d16

(5.5)

Simons et al. (1981) emphasized the important of the gradation coefficient

Gr and median grain size d50 in the total sediment load estimation. Therefore, as

bed material characteristics, Gr and the dimensionless grain size d∗ were computed

as defined in Table 6.1. Table 5.1 presents the considered variables in 44 sediment

monitoring stations.

5.3 Regional classification of the sediment monitoring stations

Clustering variables, including latitude, longitude, and catchment area, were addi-

tionally considered. In particular, 0.062 mm and 2 mm, thresholds for silt and sand

were adopted as representative suspended sediment particle size distribution (SSPSD)

variables, and d20, d50, d80 were adopted as bed material particle size distribution

(BMPSD) characteristics. To investigate the combination of variables, 26 cases of

clustering were independently conducted. The variables used in each case were high-

lighted in green and summarized in Table 3. The cases where all class values were

used and the cases where only specific class values were used when applying the depth

analysis data. In Table 5.2, the cases where all class values were used and the cases

where only specific class values were used when applying the depth analysis data
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Table 5.1 Variable summary of sediment monitoring stations

Location Rating curve coeff. SSPSD (mm) BMPSD (mm or -)

Station Name Cat. Area
aSL bSL aTL bTL 0.062 2 d20 d50 d80 Cu Cg σg d∗(m2)

Jucheon B. 533.75 0.3536 1.3882 0.4729 1.5946 80.3 0.2 0.4 0.7 7.6 3.7 0.6 3.2 17.2
Jijeong B. 1,186.67 0.0537 1.9211 0.049 1.9781 59.7 0.2 0.5 1.1 6.2 4.7 1.1 4.7 27.07
Wonbu B. 519.53 0.7223 1.6889 1.0563 1.5802 82.9 0 0.3 1 3.7 6 0.7 4 24.54

Namhangang B. 10,947.38 0.0009 2.2668 0.0005 2.3932 70.7 4.8 0.5 0.9 7 3 1.2 3.1 21.75
Yeoju B. 11,114.18 0.0044 2.0392 0.0123 1.853 77.1 2.4 0.6 1.5 12.1 5.6 1.1 5.1 37.94

Yulgeuk B. 177.33 1.6772 1.7213 10.759 1.3184 89.8 0.2 0.4 0.9 3.8 3.8 0.8 3.4 22.77
Heungcheon B. 294.78 0.7853 1.7854 0.2471 2.0436 82.2 0.1 0.5 1.5 3.2 8.2 2 3.3 38.7

Ipo Weir upstream 11,774.88 0.0091 1.9562 0.0051 2.0853 40.5 14.6 0.4 1.2 13.7 8.9 0.8 6.7 30.61
Gyeongan B. 261.82 0.2261 2.0326 0.1218 2.2044 60.5 9.1 0.6 2.1 8.5 10.1 0.9 4.9 52.36
Hoeryong B. 1,514.28 0.1438 1.7813 0.4995 1.5273 75.2 2.5 0.7 1.3 1.9 3.2 1.1 2.1 32.13
Gimyong-ri 609.42 0.0612 1.6997 0.048 1.7594 54.3 3.1 1.6 9.9 27.7 21.3 0.8 5.4 250.94
Hwagye B. 177.23 2.3218 1.385 5.5478 1.2225 78.3 2.8 0.4 1 2.5 5.1 1.2 3.2 24.79

Bian B. 1,212.02 0.1461 1.7819 0.0891 2.1159 65.1 1.2 0.5 0.9 2.8 3.1 1 3.2 22.51
Museong-ri 472.69 0.0501 1.9671 0.1133 1.8683 73.6 2 0.8 4.4 21.5 21.9 0.5 6.8 110.29

Gimcheon B. 456.4 0.0794 1.9119 0.0745 2.0064 84.4 0 0.4 0.9 1.6 3.4 1.1 2.3 22.26
Seonju B. 987.52 0.3607 1.6316 0.7683 1.7826 68.8 2.7 0.5 1 1.6 3.7 1.3 2.2 24.28
Gumi B. 10,915.39 0.0108 1.7977 0.0001 2.5101 74.2 3.7 0.5 0.8 1.2 2.9 1.2 1.8 19.98

Hoguk B. 11,103.91 0.008 1.8303 0.0039 1.9219 71.5 3.6 0.4 1.4 11.3 11.1 0.6 6 34.15
Geumchang B. 926.93 0.0051 1.8773 0.3981 1.2967 48.3 9.9 3.9 12.8 23.3 9.6 2.5 3.3 323.03

Ansim B. 1,386.90 1.1932 1.1748 1.0177 1.2343 25.8 16 13.8 38.3 21.3 16 0.9 5.9 967.57
Gangchang B. 2,090.22 0.024 2.1127 0.0334 2.1284 51.4 9 0.5 0.8 1.3 2.8 1.1 1.8 19.73

Dojin B. 749.77 0.1396 1.7112 1.677 1.2872 75.3 0.5 0.5 0.8 1.2 2.7 1.2 1.7 20.74
Hwanggang B. 1,240.66 0.6958 1.3793 0.1611 1.6815 42.6 11.7 0.5 0.8 1.2 2.5 1.1 1.6 20.24

Jeokpo B. 16,433.12 0.0011 2.2325 0.0027 2.1234 69 0 0.3 0.4 0.6 2.2 1.1 1.5 9.11
Jeongam B. 2,990.66 0.2107 1.4763 0.0087 2.0131 64.5 7.3 0.3 0.4 0.9 2.4 1.1 2.1 9.87

Gyenae-ri 20,354.77 0.0044 1.9575 0.0027 1.9891 47.4 13.2 0.3 0.7 4.3 4.2 1.1 2.9 18.21
Singu B. 642.5 0.0751 1.9496 0.0118 2.556 68.8 0 1.9 12.5 28.4 26.1 0.3 6 315.95

Palgyeol B. 908 0.9223 1.635 1.1097 1.7519 80 1.1 0.9 1.9 7.6 4.5 0.8 3.8 47.81
Geumnam B. 6,946.30 0.0005 2.7478 0.0013 2.6217 75.6 0.3 0.4 1 3 4.2 0.9 3.3 25.04
Geumgang B. 7,213.30 0.0281 1.9442 0.0023 2.541 60.3 1.4 0.4 1.7 16.3 23 0.3 6.9 43.51

Jicheon B. 209 0.0411 2.1927 0.0053 2.1745 76.7 0.1 0.4 1 7.3 7.3 1.1 6.4 26.31
Baekjae B. 8,328.80 0.09 1.5481 0.0522 1.6805 79.5 0.9 0.2 0.5 1.1 4.5 1.1 2.9 12.65
Yongsan B. 442.58 0.0979 1.8422 0.0562 2.0517 84.1 0 0.5 1.9 13 13.6 0.9 7.3 49.07
Yuchon B. 103.47 3.7123 1.4493 3.1277 1.5521 30.4 12.4 0.6 3.8 19.1 19.2 0.6 7.3 95.62

Geukrak B. 683.5 0.073 1.8954 0.9305 1.8424 74.8 1.6 0.6 1.4 7.4 5.7 1 4.9 35.67
Jangrok B. 555.08 0.0876 1.8602 0.2719 1.7 77.6 0.2 0.3 3.2 17.2 41.5 0.7 9.9 80.19

Nampyeong B. 585.05 0.0602 1.8845 0.0997 1.7579 78.4 0 1 4.1 17.6 11.3 0.4 5.8 103.71
Naju B. 2,055.78 0.0308 1.9557 0.0207 2.0263 63.1 4.7 0.4 4.4 12 24.7 0.2 9.5 111.05

Donggang B. 2,599.85 0.5893 1.3265 0.4066 1.4097 89.5 0.2 0.5 2 5.4 13.3 1.3 4.6 49.58
Nakdan B. 9,399.97 - - - - 78.09 0 0.66 2.22 13.61 9.99 0.69 5.83 56.16

Ilseon B. 9,532.76 0.003 2.0493 - - 81.12 0 0.46 1.16 5.73 6.52 1.13 5.13 29.34
Oin B. 109.21 - - - - 66.7 0.92 0.26 0.79 2.21 7.43 1.15 4.3 19.98

Gukjae B. 257.4 0.1793 1.8529 - - 66.57 0 0.72 1.39 3.74 3.25 0.91 2.83 35.16
Pungyeongjeongcheon 2 B. 66.85 - - - - 79.97 0 1.02 5.14 15.37 19.66 1.33 5.3 130.02

were distinguished, and the variables used in each case were highlighted in green.

In this study, cases with excessive clustering that resulted in similar spatial

classification or did not converge in AIC+BIC values were excluded from the cluster

analysis for 44 observation sites. As a result, six representative cases were identified

and organized in Figure 5.2. SSPSD and BMPSD in Figure 5.2. are cases that use

all class values from floating and bed sediment distributions, respectively, as input
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Table 5.2 Viarable combinations of the clustering cases

SSPSD (%) BMPSD (%)

Case K Lon Lat Cat.
Area
(m2)

aSL bSL aTLa bTL all 0.062 0.062,2 all
d20,
d50,
d80

Cu Cg σg Gr d∗

1 4
2 4
3 9
4 9
5 4
6 4
7 4
8 7
9 6
10 5
11 5
12 5
13 5
14 6
15 5
16 5
17 2
18 6
19 6
20 11
21 12
22 6
23 12
24 4
25 4
26 4

variables. Other cases that use only the representative size of floating and bed sedi-

ments are separately indicated. The Han River, Nakdong River, Geum River, Yeongsan

River, and Seomjin River basins are distinguished in grayscale on the map, and the

clustering results of the observation sites are shown in color on the map.

Figure 5.2-(a), -(b), and -(c) are the clustering results of observation sites with

different floating and bed sediment distributions based on their geographic locations

(latitude and longitude). These correspond to cases 3, 5, and 1, respectively, in Table 3.

The case that uses only the location and bed sediment distribution shows similar results

to the case that considers both floating and bed sediment distributions, which is similar
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Figure 5.2 Representative clustering cases for sediment measurement stations

to the case that considers only the location and floating sediment distribution. This

indicates that the bed sediment distribution has a more significant impact on clustering

sediment monitoring sites among the 44 sites, clearly dividing the boundaries of the

clusters compared to the floating sediment distribution.

Cases 7, 15, and 19 were compared to investigate the influence of the basin

area in the remaining three cases (Figure 5.2-(d) (f)). All three cases classified

The upstream tributaries into cluster 1 (red). When the basin area was considered,

the three observation sites located in the Geum River mainstream were classified

into independent clusters regardless of their location variables. These sites were also
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classified into similar clusters in Figure 5.2-(a), indicating that the floating sediment

characteristics of the Geum River basin have a similar pattern to the basin area.

Figures 5.2 (e) and (f) show the results of the analysis for the Yeongsan River

and Nakdong River watersheds using two different approaches. The first approach in-

volves incorporating a coefficient into the equation based on the catchment area, while

the second approach considers the sediment size distribution of both suspended load

and bed material. Both of these approaches provide more detailed results compared to

the analysis based solely on the catchment area and location coordinates in Figure 5.2

(d), especially for the main channels of the Yeongsan River and Nakdong River water-

sheds. The second approach, which considers the sediment size distribution, results in

a more pronounced differentiation in smaller tributaries than the first approach, which

incorporates a coefficient based on the catchment area. For example, in the Han River

watershed, the Seomgang Bridge monitoring station, which is located in a tributary of

the Namhan River, and the Namhan River Bridge monitoring station, which is located

in the main channel, are differentiated when considering both the catchment area

and sediment size characteristics. In the Yeongsan River watershed, the observation

station located near the Naju Bridge is classified into cluster 1, while the observation

stations located upstream are differentiated from those located downstream.

Table 5.3 summarizes the statistical values of the monitoring stations assigned

to each cluster in Figure 5.2(f) (Case 19). The results show that 17 monitoring stations
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are assigned to cluster 1, with the smallest mean catchment area, while only 5 or fewer

monitoring stations are assigned to clusters 3, 4, 5, and 6. The average catchment area

of cluster 2 is intermediate between clusters 1 and 4, but the average d50 of cluster

2 is larger than that of cluster 1. The Seomgang Bridge monitoring station, which is

assigned to cluster 2 in the Han River watershed, is located in a tributary composed

of cobblestones, as reported by Lee et al. (2010). On the other hand, the Yulgeuk

Bridge monitoring station, which is assigned to cluster 1 in the Han River watershed,

is located in Yanghwa Creek, a smaller tributary with a smaller d50 composed of

gravel and sand.

Table 5.3 Statistics summary of each cluster

Cluster Stats. 1 2 3 4 5 6

Count 17 8 5 4 2 3

Location
Catch.

Area

mean 439.641 1,170.37 11,171.15 2,434.13 18,393.95 7,496.13

std 198.933 218.317 349.193 446.696 2,773.03 733.364

min 103.47 908 10,915.39 2,055.78 16,433.12 6,946.30

max 749.77 1,514.28 11,774.88 2,990.66 20,354.77 8,328.80

Rating

curve

Coeff.

aSL

mean 0.6214 0.4401 0.0066 0.2137 0.0028 0.0395

std 1.0247 0.4447 0.004 0.2649 0.0023 0.0458

min 0.0411 0.0051 0.0009 0.024 0.0011 0.0005

max 3.7123 1.1932 0.0108 0.5893 0.0044 0.09

bSL

mean 1.7862 1.6478 1.978 1.7178 2.095 2.08

std 0.2224 0.2562 0.1884 0.3759 0.1945 0.6113

min 1.385 1.1748 1.7977 1.3265 1.9575 1.5481

max 2.1927 1.9211 2.2668 2.1127 2.2325 2.7478
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Table 5.3 (continued)
Cluster Stats. 1 2 3 4 5 6

aTL

mean 1.4483 0.5116 0.0044 0.1174 0.0027 0.0186

std 2.8047 0.4154 0.0049 0.1931 0 0.0291

min 0.0053 0.049 0.0001 0.0087 0.0027 0.0013

max 10.759 1.1097 0.0123 0.4066 0.0027 0.0522

bTL

mean 1.7953 1.671 2.1527 1.8944 2.0563 2.2811

std 0.3571 0.3077 0.2886 0.3272 0.095 0.5217

min 1.2225 1.2343 1.853 1.4097 1.9891 1.6805

max 2.556 2.1159 2.5101 2.1284 2.1234 2.6217

SSPSD

(mm)

0.062

mean 73.67 58.18 66.81 67.15 58.19 71.77

std 14.14 18.19 14.94 16.02 15.22 10.17

min 30.41 25.79 40.46 51.44 47.43 60.25

max 89.77 80 77.1 89.51 68.95 79.48

2

mean 1.89 5.64 5.81 5.29 6.6 0.85

std 3.52 5.99 4.97 3.81 9.29 0.57

min 0 0.17 2.41 0.24 0.03 0.28

max 12.37 15.99 14.57 9.01 13.17 1.41

BMPSD

(mm or -)

d20

mean 0.65 2.65 0.49 0.4 0.28 0.34

std 0.44 4.67 0.09 0.1 0.04 0.11

min 0.32 0.45 0.43 0.25 0.25 0.22

max 1.86 13.84 0.64 0.48 0.31 0.41

d50

mean 3 7.24 1.14 1.88 0.54 1.07

std 3.35 13.18 0.31 1.8 0.25 0.61

min 0.68 0.8 0.79 0.39 0.36 0.5

max 12.49 38.25 1.5 4.39 0.72 1.72
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Table 5.3 (continued)
Cluster Stats. 1 2 3 4 5 6

d80

mean 11.25 8.24 9.03 4.9 2.45 6.79

std 9.05 9 5.04 5.12 2.67 8.29

min 1.15 1.15 1.17 0.94 0.56 1.09

max 28.43 23.32 13.65 11.97 4.33 16.3

Cu

mean 12.4 5.91 6.3 10.79 3.21 10.58

std 10.5 4.63 3.61 10.55 1.4 10.72

min 2.66 2.53 2.94 2.39 2.22 4.24

max 41.5 15.98 11.07 24.67 4.2 22.96

Cg

mean 0.85 1.2 0.94 0.93 1.07 0.76

std 0.4 0.55 0.26 0.47 0.03 0.39

min 0.26 0.75 0.56 0.23 1.05 0.34

max 1.96 2.5 1.16 1.29 1.09 1.1

σg

mean 5.03 3.33 4.53 4.48 2.2 4.39

std 2.14 1.43 2.02 3.56 0.93 2.2

min 1.73 1.64 1.81 1.75 1.54 2.94

max 9.92 5.86 6.66 9.48 2.86 6.92

d∗

mean 75.95 183.08 28.89 47.56 13.66 27.07

std 84.7 333.37 7.79 45.57 6.44 15.53

min 17.2 20.24 19.98 9.87 9.11 12.65

max 315.95 967.57 37.94 111.05 18.21 43.51

Two downstream observation stations in Geum River were classified into

cluster 6. According to Table 5.3, these stations have a moderate catchment area

compared to other clusters. However, they were classified as independent clusters in
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multiple cases due to their smallest sediment sizes compared to other clusters.

The Nakdong River basin is the most subdivided cluster, with clusters 4 and

5 only appearing in the Nakdong River basin. Cluster 5 consists of locations in the

lower reaches of the Nakdong River mainstream, and Cluster 4 consists of upstream

observation stations relatively located in the lower reaches. aSL is a measure of how

sensitive sediment load is to changes in flow rate and is used as a variable in this

case. Cluster 5 had the lowest aSL value, indicating a region with strong resistance to

changes in sediment load. Although aSL was not used as an analytical variable in this

case, the regional characteristics of aSL were revealed. This result was considered

obvious considering that sediment load and grain size of bed material and catchment

area are widely used variables in determining sediment transport characteristics. On

the other hand, cluster 4 was distinguished from other clusters in that the bed material

grain size was relatively smaller despite having a slightly larger average sediment size

of 2 mm.

This result shows that observation stations with similar sediment loads and bed

material characteristics are classified into different clusters depending on the river.

Considering this, it is considered desirable to consider the overall similarity when

selecting the clustering results. However, as small watershed observation stations

with a catchment area of less than 749.77 m2 accounted for the highest proportion in

the clustering process, Figure 5.2-(f), which was the most subdivided case among the
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cases considered the catchment area, was selected as the representative case.

5.4 Extended application strategy of H-ADCP-to-SSC models

using the clustering result

Figure 5.3 Spatial overlapping of the clustering result with the stations where the
H-ADCP-SSC equations exist (left-hand side figure is originally from Figure 5.1)

Figure 5.3 shows the cluster results of Korean suspended sediment monitoring

stations based on their location, watershed area, suspended sediment concentration,

and bed sediment particle size distribution. The figure also includes the H-ADCP-SSC

regression equations for each station, with a diamond marker indicating the location

of each station. To aid in the analysis, Figure 5.1 is also included.

In the Han River basin, the Ipo Weir and Namhangang Bridge are clustered

together in Cluster 3 due to their similar regression coefficients. On the other hand,

the two stations located in the mainstream of the Han River and the Jijeong Bridge
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station on the Seom River, which have slightly different coefficients, were successfully

separated into Cluster 2.

As seen in Figure 5.3, when comparing the derived coefficients, the Naju

Bridge in the Yeongsan River basin showed similar coefficients to the Ipo Weir and

Namhangang Bridge in the Han River basin. While the Han River mainstream stations

were classified into Cluster 3, Naju Bridge in the Yeongsan River basin was classified

into Cluster 4. Although the coefficient values were similar, it was determined that

they were classified into different clusters because they were geographically far apart.

The Gumi Bridge and Hoguk Bridge monitoring stations in the Nakdong River

basin were clustered into Cluster 3, the same as the Ipo Weir upstream station and

Namhangang Bridge station in the Han River basin. However, the Haman Gyenaeri

station, which has a very similar H-ADCP-SSC regression equation to the Gumi

Bridge station, was assigned to Cluster 5.

In the case of the Han River basin, it can be said that the clustering by location

is effective within the same basin. However, it is inferred from the fact that even

though they have similar H-ADCP-SSC regression equations, they were classified into

different clusters in the Han River and Yeongsan River basins that the clustering results

are relatively less significant between different basins. Therefore, as an alternative, it

was proposed to use the coefficients of monitoring stations classified into the same

cluster within the same basin in areas where the H-ADCP-SSC regression equation
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has not been developed.

Based on the analysis described above, an alternative protocol for applying

H-ADCP-based SSC monitoring methods at monitoring stations, where the H-ADCP-

SSC regression equation has not been developed, was presented. This protocol can

be applied by distinguishing between the 44 suspended sediment monitoring stations

used in this study for clustering and those that were not. To explain the proposed

protocol, Figure 5.4 shows the clustering results with Voronoi polygons indicating

each cluster’s influence range, and two examples are added. QGIS’s Voronoi polygon

function was used in this process.

Figure 5.4 Example of the H-ADCP-SSC equation determination protocol

The first case is when applying the protocol to a similar quantity observation

station where the H-ADCP-SSC relationship equation has not been developed. First,
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Figure 5.5 Flowchart of the H-ADCP-SSC equation determination protocol

select equations developed in the same region from the H-ADCP-SSC relationship

equation dataset. Then, select the same clustering results in the same region and use the

H-ADCP-SSC relationship equation of the observation station that is geographically

closest among the observation stations classified into the same cluster in the same

region. Example 1 in Figure 5.4 is when the Gumi Bridge observation station is used

as an example of an undeveloped equation area. For the Gumi Bridge, selecting point
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3 of the cluster in the Nakdong River basin selects the Hoguk Bridge and Gumi

Bridge. Therefore, the floating bed measurement model developed at the Hoguk

Bridge floating bed observation station can be applied.

The second case is when an alternative protocol is applied to an automatic

flow monitoring station that is not a floating bed observation station targeted for

clustering in this study. In this case, the process of selecting observation stations in

the same region is the same as in the previous case. However, in this case, knowing

which cluster the observation station belongs to is impossible. Instead of directly

referring to the cluster number, if it is determined which Voronoi polygon area the

target observation station is included in Figure 5.4, it can be determined which cluster

the area belongs to. By selecting the same cluster using this method, the model of

the closest observation station can be used instead, as in the first case. A flowchart is

provided in Figure 5.5 to understand better the protocol described above.

To test the applicability of the extended relationship equation for H-ADCP-

SSC, which includes a range of concentrations from 2.57 mg/l to 493.29 mg/l observed

in 2019, the range of SCB was set between 80 dB and 118 dB to cover the observed

range, and the H-ADCP SSC relationship equation for each of the three observation

points, Hoguk Bridge, Jijeong Bridge, and Namhangang Bridge, was applied and the

results were shown in Figure 5.6. As a result, the R2 the Gumi Bridge observation

point was 0.14, -0.39, and -0.44 for Hoguk Bridge, Jijeong Bridge, and Namhangang
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Figure 5.6 Estimated SSC graphs of the four tested H-ADCP-SSC models for a given
SCB range.

Bridge, respectively. The relationship equation for all three observation points showed

a low correlation coefficient of 0.2 or less with the Gumi Bridge equation. In addition,

the RMSE and PBIAS were evaluated, and models with lower RMSE and PBIAS

were considered to have lower errors. The RMSE values for the Hoguk Bridge,

Jijeong Bridge, and Namhangang Bridge equations were 156.8 mg/l, 124.3 mg/l, and

62.13 mg/l, respectively, showing results opposite to the R2 values. On the other

hand, the PBIAS for Hoguk Bridge was 56%, which was more than 5.6 times lower

than the PBIAS for Namhangang Bridge with the lowest RMSE of 315%. In Figure

5.6, the suspended sediment concentrations at the junctions increase in the order of

Hoguk Bridge, Jijeong Bridge, and Namhangang Bridge, and the root mean squared
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error of the error increases significantly at higher suspended sediment concentrations.

Therefore, although the RMSE for the Hoguk Bridge equation was the largest and the

RMSE for the Namhangang Bridge observation point was the smallest, the overall

applicability of the Namhangang Bridge equation is considered the poorest with an

error ratio of 1,166% at low suspended sediment concentrations. Considering theR2,

RMSE, and PBIAS, it is concluded that the Hoguk Bridge observation point is the

most suitable alternative model for the Gumi Bridge observation point among the

three observation points.

To explore the interrelations between not only the linear-1var model but also

the SVR models, Table 5.4 is presented. This table compiles the R2 when cross-

applying the stations denoted in the second column on the left to the stations on

the second rows. A greener shade indicates a higher performance. For example,

row 1, column 1 means R2 when measured SSC at the Geungnak Bridge station

was estimated using the Geuknak Bridge model, and row 1, column 2 means R2

calculated at the Geuknak Bridge station using the Gumi Bridge model. The diagonal

components represent the accuracy of the refitted model, which may differ from Table

4.5, presenting the cross-validation score.

In most stations, the diagonal components in the stations where the model is

derived show the fittest results. However, in the Gyenaeri station, theR2 of the model

derived from the Hoguk Bridge station was greater than the Gyenaeri station model.
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The accuracy of the Gyenaeri model was insignificant in the Hoguk Bridge station,

highlighting its inaccuracy due to the low correlation between SCB and SSC in that

station. Also, in Naju Nampyeong Bridge station, observation points located in the

same catchment exhibited high applicability to each other. Therefore, it is expected

that incorporating additional catchment information in model determination will yield

more robust results.

In the previously mentioned example monitoring station, Gumi Bridge station,

the Nampyeong Bridge station located in a different watershed showed an R2 of

more than 0.5. In contrast, the Hoguk Bridge station revealed a score of 0.3 in the

clustering approach. Looking solely at alternative application scores, the Naju Bridge

and Nampyeong Bridge stations located in the Yeongsan River basin showed high

cross-application scores compared to the Jijeong Bridge station located in the Seom

River.

The Ipo Weir model shows the worst score, except when applied to the Ipo

Weir upstream station. In that station, the Geukrak Bridge model was the second most

accurate, even though the Geukrak Bridge is in a different basin.

Table 5.5 presents the RMSE values obtained by applying the Hoguk Bridge

and Nampyeong Bridge models to the Gumi Bridge station for four rainfall events and

a pre-rainfall period. The RMSE of each model was calculated using the Gumi Bridge

time series estimation as the reference. In the pre-rainfall period, the Hoguk Bridge
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Table 5.4 Coefficient of determination (R2) by cross-application of SVR models using
only SCB

Alternative application
Geukrak Gumi Gyenaeri Hoguk Ipo Jijeong Naju Nampyeong

Geukrak 0.725 -0.856 -0.651 -0.553 -689273356.628 -0.858 -0.276 -3545.016
Gumi -0.475 0.988 0.157 0.304 -2093.399 0.398 0.347 0.538

Gyenaeri -2.221 0.544 0.770 0.786 -354.452 -0.668 -0.112 -0.558
Hoguk -2.371 0.455 0.626 0.745 -67.756 -0.407 0.200 -0.285

Ipo 0.451 -0.270 -0.019 -0.028 0.783 -0.394 0.104 -0.188
Jijeong -1.942 -5.104 -2.094 -0.967 -107387.122 0.870 0.690 0.485
Naju -1.142 -3.234 -0.459 0.118 -24778.965 0.468 0.601 0.582

Target

Nampyeong -1.013 -1.528 -0.109 0.241 -20134.557 0.699 0.599 0.834

model demonstrates an RMSE of 39.19 mg/l, representing a 73% improvement over

the Nampyeong Bridge model. For Events 1 to 4, the Hoguk Bridge model consistently

outperforms the Nampyeong Bridge model, showing RMSE values that are 88%, 72%,

95%, and 101% smaller, respectively.

Despite the higherR2 values for the Nampyeong Bridge model shown in Table

5.5, it is essential to note that these results are influenced by the relatively higher

accuracy of Event 4’s high concentration. When considering the RMSE calculated

using estimated SSC with 10-minute intervals, the difference is minimal at only

0.5%. This underscores the robustness of the Hoguk Bridge model, which remains

superior. The real-time SSC estimation results affirm the effectiveness of the sediment

ungauged station application strategy, favoring the nearest station in the same cluster,

particularly the Hoguk Bridge model in this case.

Rivers undergo constant changes due to a variety of factors, including natural

occurrences like floods and human-induced activities such as development. Recog-

nizing the dynamic nature of natural rivers, it is essential to update the data used for
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Table 5.5 RMSE values of applications of Hoguk Bridge and Nampyeong Bridge
models to the Gumi Bridge station

RMSE (mg/l)
Pre-rainfall Event 1 Event 2 Event 3 Event 4

Hoguk to Gumi 39.19 144.68 112.62 3,582.57 90,939.86
Nampyeong to Gumi 147.52 164.13 156.31 3,759.03 90,428.03

RMSE ratio (-) 0.27 0.88 0.72 0.95 1.005

SCB-SSC model determination annually. The sediment load-flow rate relationship at

the sediment monitoring site is revised yearly in the Annual Hydrological Report on

Korea. It is crucial to note that the results presented in this study are based solely

on data from 2019, introducing the possibility of errors in practical applications.

However, given the minimal temporal variation observed in the coefficients of the

H-ADCP-SSC relationship developed at the Naju Bridge in 2017 and 2019, the model

is considered valid at least every two years.

Moreover, this study focused exclusively on the 44 sediment monitoring sta-

tions designated for suspended sediment observations in 2019. Applying these results

to rivers in the Seomjin River Basin or along the East Coast, which are not part of the

target data, may entail a high level of uncertainty.

Figure 5.5 suggests using the values from the nearest observed station within

the cluster, which includes the target sediment monitoring station and demonstrates

similarity in estimation when using a linear model at the Gumi Bridge station in Figure

5.6. However, when estimating SSC with SVR models at the Gumi Bridge station,

Table 5.4 shows that the Nampyeong Bridge model has the highest R2 for measured
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SSC estimation. Nevertheless, in Table 5.5, the time series estimation similarity to

the Gumi Bridge model for the Hoguk Bridge model, located in the same watershed,

surpasses that of the Nampyeong Bridge model. Additionally, sediment transport

exhibits strong locality, emphasizing the need to consider locational information.

Therefore, when determining the model for sediment ungagged stations, it is advisable

to follow the instructions in Figure 5.5 and prioritize a model from a monitoring station

located in the same watershed.
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Chapter 6. A novel efficient method of estimating
suspended-to-total sediment load fraction in natural

rivers

This chapter is partially reproduced from the following publication: Noh, Park &

Seo (2023) Water Resour. Res. 59: e2022WR034401. The material presented in this

chapter has been modified and expanded from the original publication to align with

the context and objectives outlined in this dissertation.

6.1 Dimensional analysis

First, dimensionless numbers were deduced based on Buckingham’s Pi theorem to

obtain reasonable dimensionless numbers for total sediment transport estimations.

The dimensionless variables examined in a previous study (Tayfur et al., 2013) were

additionally referred to and rearranged to avoid duplications. Table 6.1 compiles the

dimensionless variables presented in this study, where ρs is the sediment density,

respectively; W is the channel width; d84, and d16 are the sediment particle sizes of

the 84%, and 16% of the material by weight, respectively; and τ is the shear stress.

The selection of appropriate input variables requires extensive sediment trans-

port observations and analyses. Table 6.2 lists the published empirical equations for

estimating the total loads and the dimensionless parameters of the equations. In the

table, Cw and Cppm denote the total sediment concentration by the sediment weight
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Table 6.1 Dimensionless variables related to sediment transport

Variables Definitions Variables Definitions

Gs =
gρs
gρw

= γs
γw

Specific gravity W
h Channel width depth ratio

U
u∗

≈ U√
gRhS0

≈ U√
ghS0

Friction factor US0
ws

Dimensionless stream power

Gr = 1
2(

d84
d50

+ d50
d16

) Gradation coefficient σg = (d84d16
)1/2 The gradation of the sediment mixture

d∗ = d50[
g(Gs−1)

ν2
]1/3 Dimensionless particle size Rh

d50
≈ h

d50
Dimensionless hydraulic radius

Red50 =
Ud50
ν Particle Reynolds number Reh = Uh

ν Flow Reynolds number

Re∗ =
u∗h
ν Shear Reynolds number Red∗ =

u∗d50
ν Particle shear Reynolds number

Rew = wsd50
ν Falling particle Reynolds number Fr = U√

gh
Froude number

Frd = U√
g(Gs−1)d50

Densimetric Froude number Ro = ws
βκu∗

Rouse number

τ∗ =
τ

gρw(Gs−1)d50
= u2

∗
g(Gs−1)d50

Shields number Fsus =
QSL

QSL+QBL
suspended-to-total sediment load fraction

per total weight and parts per million units, respectively. Harun et al. (2021) devel-

oped six equations by setting two variable sets with three machine learning models.

The two multi-gene genetic-programming (MGGP) equations are presented as the

representative models of the two variable sets.

In improvements of the modified Einstein procedure (Colby and Hembree,

1954; Shah-Fairbank et al., 2011; Shah-Fairbank and Julien, 2015; Yang and Julien,

2019), u∗/ws and h/d50 were considered governing factors related to the suspended

and total loads. For example, Shah-Fairbank et al. (2011) demonstrated that u∗/ws

and h/d50 are the major factors determining the ratio of suspended to total sediment

discharge and that u∗/ws is more influential than h/d50.

Although a few variables in Table 6.1 do not appear in Table 6.2, the following

analyses embrace all possible dimensionless variables. For example, W/h signifi-

cantly influences the suspended to total load ratio (Edwards et al., 1999). W/h is

a morphologically important factor resulting from stream bank stability, along with
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Table 6.2 Empirical equations for total loads with dimensionless variables

References Formulae Dim.less parameters
References Formulae Dim.less parameters

Bagnold (1966)
QTL
W = qt = qb + qs =

τ0U
Gs−1(eB + 0.01U

ws
),

where 0.2 < eb < 0.3
C = f( U

ws
)

Engelund and Hansen (1967) Cw = 0.05( Gs
Gs−1)

US0√
(Gs−1)gd50

RhS0

d50(Gs−1) C = f( U√
g(Gs−1)d50

, S0,
Rh
d50

)

Shen and Hung (1972)
logCppm = [−107, 404.459 + 324, 214.747Sh

−326, 309.589Sh2 + 109, 503.872Sh3]

where, Sh = (
US0.57159

0
w0.31988

s
)0.00750189

C = f(US0
ws

)

Ackers and White (1973)

Cw = cAW2Gs(
d50
Rh

)( U
u∗
)cAW1( cAW5

cAW3
− 1)cAW4

cAW5 =
u
cAW1
∗√

(Gs−1)gd50
( U√

32 log(10h/d50)
)1−cAW1

for 1.0 < d∗ ≤ 60.0
cAW1 = 1.0− 0.56 log d∗

cAW2 = 2.86 log d∗ − (log d∗)
2 − 3.53

cAW3 =
0.23√
d∗

+ 0.14

cAW4 =
9.66
d∗

+ 1.34

for d∗ > 60.0,
cAW1 = 0, cAW2 = 0.025, cAW3 = 0.17,cAW4 = 1.50

C = f( U
u∗
, Rh
d50
,

u∗√
(Gs−1)gd50

, d∗)

Yang (1979)

for sand,
Cppm = 5.435− 0.286 log wsd50

ν − 0.457 log u∗
ws

+(1.799− 0.409 log wsd50
ν − 0.314 log u∗

ws
) log(US0

ws
− UcrS0

ws
)

for 1.2 < u∗d50
ν < 70.0 , Ucr

ws
= 2.5

log(
u∗d50

ν
)−0.06

+ 0.66

for 70 ≤ u∗d50
ν , Ucr

ws
= 2.05

C = f(US0
ws
, u∗
ws
, wsd50

ν , u∗d50
ν , S0)

Karim (1998)
qt√

(Gs−1)d350
= 0.00139( U

g
√

(Gs−1)d50
)2.97( u∗

ws
)1.47 C = f( U

g
√

(Gs−1)d50
, u∗
ws

)

Molinas and Wu (2001) Cppm = 1430(0.86+
√
Ψ)Ψ1.5

0.016+Ψ

where, Ψ = U3

(Gs−1)ghws(log(h/d50))2

C = f( U
u∗
, U
ws
, h
d50

)

Tayfur et al. (2013)
Cppm = [0.00075(u∗d50

ν )2.5047( 1
d3∗
)0.2117(Rh

d50
)1.2405

( qt√
(Gs−1)gd350

)−0.3637( u2
∗

gd50
)0.7975( U√

g(Gs−1)d50
)0.9561]

C = f(u∗d50
ν , d∗,

Rh
d50
,

q√
g(Gs−1)d350

, u2
∗

gd50
, U√

g(Gs−1)d50
)

Okcu et al. (2016)

Cppm = 34.45P 3.239J0.005

L0.066R0.146

where,
P = U√

(Gs−1)gd50

J = exp[(lnS0)
3]

L = exp[(ln(h/d50))
2]

R = u∗d50
ν

C = f( U

g
√

(Gs−1)d50
, S0,

h
d50
, u∗d50

ν )

Harun et al. (2021)
QTL = 25.8u∗

U (e
u∗
U − 0.869U2

gh log(
U2

gh ))− 200u∗
U

−4.2log(Q)− 6.15log(U
2

gh ))− 0.787QU2

gh )

−0.135Q+ 1311Q(u∗
U )2U

2

gh )− 1.96

C = f(u∗
U ,

U2

gh )

Harun et al. (2021)

QTL = 0.953

√
g(Gs−1)d50

URh
(Q(Q+ Rh

d50
) +Q

√
g(Gs−1)d50

URh )

−10.7US0
ws

− 0.0724Qlog(

√
g(Gs−1)d50

URh
)− 0.00157Q2

+1.16Q2log((

√
g(Gs−1)d50

URh
)

√
g(Gs−1)d50

URh )

−2000Q2US0
ws

√
g(Gs−1)d50

URh
log(

√
g(Gs−1)d50

URh
)

C = f( U

g
√

(Gs−1)d50
, Rh
d50
, US0

ws
)
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sinuosity and S0 (Rosgen, 1994). Gr is also considered a particle size distribution

indicator because of its apparent contributions (e.g., entrained suspended particle size;

Van Rijn 1993).

6.2 Data

40.0 40.0

-120.0

-120.0

-100.0

-100.0

-80.0

-80.0

Figure 6.1 The sediment load measurement sites in (Williams and Rosgen, 1989). The
measurement sites are marked with red dots.

The analyses in this study require not only the integrated total sediment loads

but also the suspended and bed loads with hydraulic variables. However, in South

Korea, direct total load measurement data in South Korea do not exist. Therfore, the

target dataset includes data from the United States Geological Survey (USGS) report
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on the measurement of suspended and bed loads in 93 natural rivers (Williams and

Rosgen, 1989). Figure 6.1 displays the 93 measurement sites in Williams and Rosgen

(1989): Colorado (54 sites), Alaska (9 sites), Idaho (9 sites), California (8 sites), Wis-

consin (5 sites), Washington (3 sites), Iowa (2 sites), Wyoming (2 sites), and Oregon

(1 site). All the locations were obtained from the USGS database, and descriptions

were included in the paper. As shown in the figure, most sites are distributed in the

western US.

The targeted dataset is a natural river sediment load monitoring dataset based

on field sampling that includes sample analysis of both suspended and bed loads with

hydraulic variable measurements. The input variables and calculated dimensionless

numbers are summarized in Table 6.3.

The kinematic viscosity of water, ν = µ/g, was obtained based on the Vogel

equation (Vogel, 1921), which is calculated as follows:

µ = gν = exp[−3.7188 +
578.919

−137.546 + TK
], (6.1)

where µ is the dynamic viscosity of water and TK is the temperature in Kelvin. The

coefficients from the above equation were obtained from the website of Dortmund

Data Bank Software and Separation Technology (GmbH, nd).

The National Institute of Standards and Technology (Maryland, USA) adopts

the model from Wagner and Pruß (2002) for density calculation, but it is known to
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Table 6.3 Summary of the dataset (Nan rows excluded)

Count Mean Std. Min. Max.
Q (cms) 1,957 2.26×102 5.15×102 7.00×10−3 3.77×103

U (m/s) 1,721 1.05 6.41×10−1 4.70×10−2 3.40
W (m) 1,894 5.70×101 8.95×101 6.40×10−1 5.18×102

h (m) 1,764 1.01 1.18 4.00×10−2 5.80
S0 650 7.39×10−3 2.14×10−2 9.30×10−5 1.88×10−1

u∗ (m/s) 632 1.48×10−1 8.51×10−2 3.02×10−2 6.37×10−1

Temp. (◦C) 1,026 9.92 5.19 5.00×10−1 3.00×101

Cw (mg/l) 1,957 3.31×102 1.39×103 1.00 2.91×104

QSL (kg/s) 1,957 1.81×102 7.68×102 2.50×10−5 1.41×104

QBL (kg/s) 1,928 7.75 2.32×101 3.20×10−7 3.38×102

d16 (mm) 1,487 9.95 1.39×101 1.06×10−1 9.04×101

d50 (mm) 1,530 3.77×101 4.07×101 2.78×10−1 2.16×102

d65 (mm) 1,530 5.58×101 5.78×101 3.26×10−1 2.89×102

d84 (mm) 1,530 9.85×101 1.02×101 4.25×10−1 4.46×102

ν (m2/s) 1,957 1.17×10−6 2.00×10−7 8.04×10−7 1.71×10−6

σg 1,487 5.23 4.66 1.46 2.37×101

Gr 1,487 8.09 1.12×101 1.46 5.99×101

Fsus 1,928 7.49×10−1 2.69×10−1 1.82×10−3 1.00
W/h 1,755 4.74×101 5.63×101 3.03 6.32×102

H/d50 1,409 3.59×102 1.10×103 5.10×10−1 1.19×104

d∗ 1,530 8.65×102 9.20×102 5.54 4.35×103

ws 1,530 6.27×10−1 3.86×10−1 3.43×10−2 1.76
US0/ws 389 1.03×10−2 1.36×10−2 9.20×10−5 7.61×10−2

U/u∗ 589 9.58 4.57 2.06×10−1 2.04×101

Reh 1,720 1.35×106 2.21×106 6.16×103 1.60×107

Red50 1,366 2.96×104 3.12×104 1.33×102 2.05×105

Red∗ 431 5.66×103 1.02×104 1.05×101 6.07×104

Re∗ 632 1.95×105 2.46×105 4.65×103 1.29×106

Rew 1,530 3.31×104 5.13×104 6.69 2.70×105

Fr 1,720 3.97×10−1 1.48×10−1 3.00×10−2 1.24
Frd 1,366 2.64 2.90 2.90×10−2 2.39×101

U/ws 1,366 3.05 3.85 3.08×10−2 4.66×101

Ro 431 8.57 4.70 8.98×10−1 2.33×101

τ∗ 431 2.25×10−1 4.35×10−1 9.74×10−3 4.07
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be extremely complicated. Thus, all density-related variables were calculated using

Equation (6.2), which was improved for both brevity and correctness (Civan, 2007).

ln(1− ρw
1065

) = 1.2538− −1.4496 · 103

TC + 175
+

−1.2971 · 105

(TC + 175)2
(kg/m3), (6.2)

where TC is the temperature in Celsius.

When the falling velocity ws and Rouse numberRo are estimated, the median

suspended grain size d50ss is considered the characteristic grain size, particularly in

the MEP. To ensure the applicability of the proposed models, d50 was used, which

can be readily obtained from databases such as Abeshu et al. (2022), instead of d50ss.

For example, in remote sensing using aerial images for SSC, obtaining d50ss for every

monitoring event may not be reasonable, and thus measuring d50. In the characteristic

size percentile, the median bed material size d50 is used if the particle size percentile

for a dimensionless variable is not explicitly expressed. Similarly, the falling velocity

ws was calculated using the following equation:

ws =
8ν

d50
[(1 + 0.0139d3∗)

1/2 − 1] (6.3)

The shear velocity u∗ was calculated using the water surface slope by approximating

u∗ ∼
√
ghS0.

Equation 6.3 indicates that the falling velocity of the suspended particles is
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influenced by temperature because d∗ depends on both the viscosity and density of

water. If the temperature is greater than approximately 4 ◦C, both the density and

viscosity decrease as the temperature increases. This results in an increase in ρs/ρw

and a decrease in the viscous drag, which increases the falling velocity. Figure 6.2

shows the falling velocity changes owing to temperature and grain size variations.

The y-axes in Figures 6.2(a) and (b) represent the dimensionless number ws∗ =
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Figure 6.2 The temperature and grain size effects on the falling velocity: (a) ws vs T;
(b) ws vs ds; (c) ws(T=25)−ws(T=10)

ws(T=25) vs ds.

ws/
√
(Gs − 1)gds, which is the ratio of the falling velocity computed by Equation

6.3 to the terminal velocity under buoyancy force. Figure 6.2(c) shows the acceleration

rate of the falling velocity by changing the temperature from 10 ◦C to 25 ◦C. It must

be noted that the falling velocity of the figure may differ from that of a real-world

phenomenon because the silt or clay particles are likely to flocculate (Julien, 2010).

As shown in Figures 6.2(a) and (b), the effect of increasing falling velocity

is negligible when the grain size is larger than 4 mm. For larger particles (ds >>4

mm), ws∗ converges to 0.94. For particles smaller than 4 mm (fine gravel, sand, silt,
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and clay), the viscous drag is discernible, accompanying the temperature effect. The

temperature effect is apparent in the range 10−3 < ds < 4mm. The gap between

the orange and blue lines is maximized for sand-sized particles. As shown in Figure

6.2(c), the actual falling velocity of particles larger than fine gravel is insensitive to

temperature variations. By contrast, ws(T=25)−ws(T=10)
ws(T=25) continues to increase as ds

decreases. Although the ratio of the gravity force to ws appears to be insensitive to

the temperature variation for small particles, the viscosity change due to temperature

affects the actual falling velocity. For extremely fine sand, ds ≈ 10−2 mm, the falling

velocity changes by approximately 30%.

Overall, the analysis implied that the temperature effect should be considered

for sand, silt, and clay particles. The average value of d50 of the dataset is 3.76

mm, and the inflection point is observed in Figure 6.2. Therefore, the dimensionless

variables related to ρw and ν, such as ws, are computed using Equations 6.1 and 6.2,

respectively, considering the temperature effect.

The flow rate Q was recorded on the entire dataset. However, other hydraulic

variables have some missing data including the width and depth. In particular, S0 is

only given at 650 points, and thus the available number of shear velocity u∗ ∼
√
ghS0

reduces to 632. Results of the bed material sample analysis are recorded for each river.

The data include the distance of each bed material sampling location from the sediment

discharge monitoring location. The characteristic grain size of each river, d50, was
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obtained by analyzing the closest sample. Subsequently, the number of available data

differs depending on the combination of input variables. For example, 371 out of

1,354 data contain u∗. Therefore, depending on whether u∗ is included as a variable,

the number of available data changes substantially.

6.3 Results

6.3.1 GRID-RFE-SVR

For SVR parameter determination, the kernels and other parameters were tuned, such

as CSV R, γRBF , and ϵ. Because the field sediment measurement data are accompa-

nied by noise owing to various sources of uncertainties, it is important to reasonably

determine noise regulation parameters (CSV R and ϵ) for an acceptable prediction of

Fsus. Considering noise and overfitting, the parameters were tuned by grid search-

ing using a cross-validation (grid-CV) approach. Table 6.4 lists the hyperparameter

nominee grid points.

The ϵ-insensitive SVR does not impose a fitting penalty on the data points

within ϵ. Accordingly, the grid range of ϵ is [2−6, 23] that includes the possible

maximum value of 10Fsus = 10. Additionally, 0.001 was added.

Table 6.4 Tested hyperparameter grid for the GRID-RFE-CV

Hyperparameters Values
ϵ 10−3, {2i|i = [−6, 3] and i ∈ I}

CSV R {2i|i = [−6, 10] and i ∈ I}
γRBF {2i|i = [−6, 10] and i ∈ I}
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In each hyperparameter combination of the grid-CV sequence, RFE-SVR was

additionally performed, hereafter referred to as GRID-RFE-CV. In this GRID-RFE-

CV system, the user can determine the hyperparameter values and input variables of

the model with a generalized capability supported by the cross-validation score.

All the dimensionless variables discussed in Section 6.1 were nominated to

GRID-RFE-CV. To check the variable scaling effect of SVR fitting, the target variable

Fsus and dimensionless input variables were scaled. In addition to Fsus without

scaling, the scaling cases included the logarithmic scaling (log(Fsus)) and power

scaling (10Fsus).

Table 6.5 presents the GRID-RFE-CV results for all the cases. The first and

second numbers of the case names are distinguished by the input variables and

Fsus, respectively. To compare the model performances, three criteria were evaluated,

namely, the mean squared error (MSE), percent bias (PBIAS), and coefficient of

determination R2. The performance criteria in Table 6.5 can be defined as follows:

MSE =

∑n
i=1(Yi,(obs) − Yi,(est))

2

n
, (6.4)

PBIAS =
100

n

n∑
i=1

Yi,(est) − Yi,(obs)

Yi,(obs)
, (6.5)

R2 =

∑n
i=1(Yi,(obs) − Yi,(est))

2∑n
i=1(Yi,(obs) − Y(obs))2

, (6.6)

where Yi,(obs) and Yi,(est) are the observed and estimated values, respectively, and
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Y(obs) is the mean observed value. Both MSE and R2 describe the erraticism of

the model. The former reflects the scale of the error, whereas the latter focuses

on model predictability compared to lumped mean prediction. PBIAS is a useful

indicator of over or underestimation of signs (+ or -). In addition, PBIAS measures

errors corresponding to each data, whereas MSE and R2 provide data-lumped error

information.

The performance criteria values define the best variable model from GRID-

RFE-CV. Table 6.5 shows the average test score matrices in the 5-fold cross-validation

step. For C12, C13, C22, and C23, the matrices were computed after transforming

scaled variables back to Fsus, with 0 ≤ Fsus ≤ 1.

Table 6.5 The condition of each case and cross-validation scores of the best model
results from GRID-RFE-CV

Case Fsus Inputs MSE PBIAS R2 Selected variables
C11 Fsus X 0.037 47.8 0.538 W/h,d∗,Reh,Frd,Rew
C12 log(Fsus) X 0.039 33.3 0.505 W/h,d∗,Reh,Frd,Rew
C13 10Fsus X 0.042 38.7 0.472 US0/ws,U/u∗,Reh,Rew,Gr
C21 Fsus log(X) 0.045 62.0 0.428 Reh,Fr,Frd
C22 log(Fsus) log(X) 0.046 70.8 0.425 Reh,Fr,Frd
C23 10Fsus log(X) 0.042 63.8 0.464 H/d50,Reh,Frd

In the cases where the input variables are not scaled, all the performance

criteria support C11. In particular, the R2 of C11 is 0.538, which is the best in all the

cases. Although the R2 score of C11 is superior to C12 and C13, the PBIAS of C12

and C1 are better than that of C12. Thus, C11 is taken to be the best case among the

cases without input-variable scaling.
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C21 in Fsus exhibits the lowest PBIAS for no scaling, and the log(Fsus)

scaling case shows poor PBIAS and R2 score. R2 of C23 is slightly larger than that

of the other cases.

Considering the four performance measures, deriving the SVR models without

Fsus scaling is preferable. The surviving input variables differ depending on whether

the input variables are scaled. but they are independent of the Fsus scaling. The

effective input variables are revealed from the frequencies of the surviving variables,

as presented in Table 6.5. W/h, d∗, Reh, Frd, and Rew survived when the input

variables were not scaled, whereas Reh, Fr, and Frd survived for C21, C22, and

C23. Notably, Reh and Frd were the two most frequent features. Reh survived in all

of the cases, and Frd was excluded in C13.

Two different SVR models were selected based on GRID-RFE-CV analysis.

The two SVR models use five and three surviving variables in C11 and C21, respec-

tively. The names of the models are distinguished by the number of input variables,

namely, SVR5 and SVR3. The optimal hyperparameter settings for the SVR models

are set as follows: SVR3 [kernel: RBF, CSV R = 0.25, γRBF = 256, ϵ = 0.0625],

and SVR5 [kernel: RBF, CSV R = 1, γRBF = 128, ϵ = 0.0625].

6.3.2 Explicit equations

Although crucial features for Fsus were identified by RFE-SVR with acceptable accu-

racy, the functional relationship remained hidden. The following subsection presents
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how the input variables interact with the help of explicit expressions aided by sym-

bolic regression. Cutting-edge machine-learning methods, MGGP and Operon, were

used to identify the underlying sediment transport physics in Fsus. The analysis con-

tinues with clustering and sensitivity analyses. Note that all the corresponding input

variables, such asReh and Frd, in the following explicit equations are post-processed

values by the MinMaxScaler.

MGGP

Formulation using MGGP requires certain parameter settings. The parameters that can

be tuned in MGGP consist of formula shape and genetic algorithm parameters. De-

termining the functional form depends on the mathematical operator used in MGGP.

In addition to the arithmetic operations, exponential operators (power, tanh, log, and

exp) were included. A formula can be generated under the function set and formula

size parameter (maximum gene number and tree depth)using the genetic algorithm

parameters. Thus, the population size and generations must be sufficiently large to

appropriately examine the functional structure to obtain reasonable results. However,

increasing the population size and generation is not a solution. Essentially, genetic

algorithms lose solution diversity, converging individual solutions to a certain form

for one sequence. Therefore, in this step, the population using the number of runs was

reset to 200. However, an increase in shuffling within the genetic algorithm opera-

tors (crossover, mutation, and replacement) results in a trade-off between population
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diversity and the dismantling of the population. The determined MGGP parameter

settings are presented in Table 6.6.

Table 6.6 MGGP parameter settings

Parameter Settings

Mathematical operators
+,−,×,÷,√,

square, cube, exp, tanh, log, power

Population size 500

Number of generations 500

Runs 200

Maximum number of genes 4

Maximum tree depth 6

Tournament size 15

Elitism 0.15 of population

Crossover events 0.84

High-/low-level crossover 0.2 / 0.8

Mutation events 0.14

Sub-tree mutation 0.9

Replacing input terminal

with another random terminal
0.05

MGGP provides Pareto optimal equations; thus, several optional equations can

be selected as the final product. In this study, the best models with respect to the test set

scores were chosen and compared. For the perceptibility of the explicit models, a few

terms such as AM3 were included as separate expressions. The replaced symbols use

A, B, C, D, and E with the subscripts denoting the symbolic regression method. For
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example, M3 is the three-variable MGGP model and O5 is the five-variable Operon

model.

The three-variable MGGP model (MGGP3) is as shown in Equations (6.7) –

(6.8).

Fsus = 0.406 eAM3 − 1.97 e−Reh − 0.779 eFrd
2

+0.779 e−Reh
3

+1.45Frd
2 +1.77

(6.7)

AM3 = e−6Frd−3Reh − Fr2Reh
3 (6.8)

Fr appears in only once in Equation (6.8), with the accompanying Reh. For Fr,

Fsus decreases with an increase in Fr. In addition, Reh with Fr appears to affect the

scaling of Fr in the last term of Equation (6.11).

The MGGP5 model has a more complicated structure than MGGP3. Equations

(6.9) – (6.11) are mathematical expressions for MGGP5.

Fsus = 0.365 eAM5−0.549 d∗−0.0521(eBM5+Reh+

√
(
W

h
)
d∗

)+0.222
W

h
d∗+0.708

(6.9)

AM5 =
e
− tanh(Reh)

Reh+d∗

tanh
(
(e−Rew)Reh d∗

) (6.10)

BM5 = 3 e−Reh (6.11)

In the above formulation, MGGP considers all five surviving variables (W/h, d∗,
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Reh, Frd, and Rew). However, the resultant equation does not contain Frd, which is

related to the grain size-flow interaction. Instead, d∗ and Rew are included. Notably,

composite effects of W/h and d∗ are observed.

Operon

The low computational cost and accuracy of Operon enable heuristic input parameter

tuning with less effort compared to MGGP. Hence, in this study, the input parameters of

Operon were determined by a grid search with cross-validation using multiple Operon

runs. The test parameter grid was identical to that in a previous study (La Cava et al.,

2021).

Operon3 (Equations 6.12 – 6.17) requires three variables but is the most

complicated among the explicit formulations proposed in this study.

Fsus =
1.012 (2.616Reh − 11.552Fr +AO3 −BO3 + CO3)√

(0.711Reh − 11.392Fr +DO3)
2 + 1

− 0.009 (6.12)

AO3 =
20.192Fr − 1.331√

(7.505Reh − 0.567Fr + EO3 − 0.04)2 + 1
(6.13)

EO3 =
45.229Frd√

11.916304Fr2

387.893025Reh
2+1

+ 1
(6.14)

BO3 =
(3.364Fr − 1.587)√
8330.395441Reh

2 + 1
(6.15)

CO3 = (3421.821Frd + 0.005) (0.075Reh + 0.004Fr + 0.005) (6.16)
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DO3 = (0.057Reh + 0.015) (9.269Reh + 3739.117Frd + 31.422) (6.17)

The five-variable Operon model was produced using the following equations:

Fsus = 0.499
W

h
−AO5 −BO5 + 2.622 (6.18)

AO5 =

(
2.878 W

h + 1.345 d∗ + 2.235Frd
)√

5670.843025Reh
2 + 1

(6.19)

BO5 =

(
27.784Reh − 0.657 d∗ − 2.446Frd +

0.563√
38808.212Rew2+1

+ 1.331

)
√

288.388324Reh
2 + 1

(6.20)

Operon5 uses five complete variable sets, including Frd, which are not included in

MGGP5.

The formulations of MGGP3 and MGGP5 show dependence on exp[Reh],

resulting in the potential for computational overhead. However, the equations derived

using Operon consist of multi-fractional expressions.

Nonlinear least-squares local optimization coefficient tuning distinguishes

Operon from the MGGP models. For example, some terms in MGGP models share

coefficients (the third and fourth terms in Equation (6.7)). Each term in the Operon

model has a particular fine-tuned coefficient value. This coefficient tuning increases

the predictability but lengthens the equation. The above Operon models were addi-

tionally rearranged, and the coefficient values were truncated to the sixth decimal
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place for simplicity.

6.3.3 Model performances

Table 6.7 5-fold cross-validation score of the empirical equations in estimation of
Fsus.

MSE PBIAS R2

SVR3 0.045 62.0 0.428
SVR5 0.037 47.8 0.538

MGGP3 0.059 101.9 0.264
MGGP5 0.055 98.2 0.310
Operon3 0.045 56.8 0.441
Operon5 0.046 50.8 0.427

Table 6.7 shows theFsus estimation performance of the derived models. Every

proposed model may estimate a value outside of the range [0,1]. Because values with

Fsus > 1 or negative values are physically incorrect, all estimated values over one

are corrected to 1. The negative values are adjusted to 10−4 to prevent infinite total

load values when QTL = QSL/0 = ∞. These physical limitations must be applied

to practical applications of these models.

In terms of MSE, the two SVR-driven models were superior to other symbolic

regression models. Operon3 and Operon5 were next in terms of performance.

A distinct result of PBIAS is the poor performance of SVR3, which has a

smaller PBIAS than those of the Operon models. MGGP3 yielded the lowest absolute

value of PBIAS, and MGGP 5 follows. All models overestimated Fsus more than

47%.
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SVR5 showed excellent accuracy in terms ofR2 (0.538).R2 values of Operon3

ranked second. Operon3 was superior in MSE, and R2 to Operon5. The two MGGP-

driven models showed low R2 values for all the performance criteria compared to the

other methods. MGGP5 showed better accuracy than MGGP3 in all criteria.
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Figure 6.3 Scatter plots for Fsus estimation using all available data. (a) scatter plot of
the three variable models; (b) scatter plot of the three variable models. (c–d) are the
kernel density plots corresponding to (a–b).

Figure 6.3 shows the estimation results of the six models as scatter and density

plots. The figures on the left-hand side are for the three-variable models, and those

on the right-hand side are for the five-variable models; the symbols represent the
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derivation methods. The black lines are the 1:1 lines of perfect estimations.

In the scatter plots, almost all markers are under the 1:1 line whenFsus is close

to 1, while for low values, the markers are over the 1:1 line. All models appear to fit,

centering approximately on the average of Fsus, 0.749. In addition, the overestimation

of the lower values establishes the lower limit barriers in cases of Operon3, MGGP3,

and MGGP5.

Additionally, two density plots were drawn for perceptibility. The two circles

indicate the two density levels for each color, which are the same as those in the scatter

plots. The closer to the 1:1 line and thinner, the more accurate the model is. Most

Fsus observations are distributed in the range from 0.75 to 1, and the inner circles

cover the range. Using the two distinguished circles, the performance at large and low

values can be resolved.

As proven above, SVR5 exhibits the best performance among the proposed

models, with the densest distribution around the 1:1 prediction line. In Figure 6.3 (c),

Operon3 appears at a comparable level to SVR3, which is the best-performing three-

variable model. Although SVR3 is the most accurate model for Fsus < 0.75 among

the three-variable models, it presented underestimation for the larger Fsus range, as

evidenced by the inner circle of the density plot. Contrary to the high predictability of

Operon3, Operon5 does not perform well, covering a range similar to that of MGGP5.

In the performance and applicability evaluation of this work, all results of SVR-
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based models are from test set estimation of 5-fold cross-validation. In Table 6.7, the

Operon and MGGP models present full evaluation results rather than cross-validation

because the symbolic regression model was derived without cross-validation. Because

refitting models with optimal hyperparameters using the entire dataset is practically

recommended (Hastie et al., 2009), the practical applicability of the SVR models in

the following performance assessments can be underestimated. For example, R2 of

the refitted SVR3 and SVR5 models based on the full dataset are 0.648 and 0.742,

respectively.

6.4 Discussion

6.4.1 Regional applicability of the models

Table 6.8 Fsus estimation performance and mean Fsus for each geographical location
of the entire data in Williams and Rosgen (1989). The cells were green colored for
high scores and red colored for low scores.

R2

State Data size Mean Fsus SVR3 SVR5 MGGP3 MGGP5 Operon3 Operon5
Alaska 265 0.919 -0.266 -0.111 -0.548 -0.366 0.108 0.134

California 136 0.476 0.699 0.793 0.591 0.653 0.805 0.819
Colorado 982 0.747 0.320 0.514 0.189 0.238 0.383 0.350

Idaho 261 0.788 0.640 0.647 0.630 0.649 0.653 0.642
Iowa 20 0.909 -4.998 -1.472 -4.668 -6.638 -3.846 -2.675

Oregon 43 0.926 -0.442 -1.779 -3.398 -0.793 -0.620 -0.308
Washington 86 0.885 -0.435 -0.063 -0.981 -1.317 -0.780 -0.820
Wisconsin 89 0.497 0.079 0.384 0.312 0.451 0.342 0.349
Wyoming 46 0.377 0.095 0.170 -0.603 -0.513 -0.188 -0.013

To assess the regional applicability of the model, the R2 scores of six models

presented in this study were individually calculated based on the geographical location
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included in the dataset in Table 6.8. In this table, to provide macroscopic information

with a large dataset, geographical locations were divided by state. In Oregon streams,

U is not available, so instead, U was estimated with Q
Wh for estimating Fsus. The

table includes the number of data in each region and region averaged Fsus.

The overall prediction performance of the SVR5 model was the best, and in the

symbolic regression method, the two Operon models showed similar performance.

MGGP3 was the least accurate, followed by MGGP5. With respect to states, the

prediction performance of Iowa was the worst among all regions, followed by Oregon.

However, in the case of SVR5, it was found that Oregon was the worst predicted state,

and Iowa had a relatively high R2, indicating a better fit. In all models, streams in

California showed the best prediction performance. In particular, Operon5 showed

the most accurate result with an R2 of over 0.819 for California among all regions.

Additionally, the streams in Wisconsin were the second-best fit for SVR5 with an R2

of 0.9086, but R2 of Wisconsin was smaller than that of Colorado and Idaho in the

Operon models. The meanFsus values of California and Wisconsin being close to 0.5,

SVR5 well-predicts the cases in a range of 0.45 < Fsus < 0.75. Although Colorado

streams comprise more than 50% of the dataset, streams in Idaho, Wisconsin, and

California, which have a relatively small dataset proportion, were better predicted. In

the case of Washington, it was found to have a higher accuracy than in Alaska, only

in the SVR5 model.
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Figure 6.4 Gerographical projection of SVR5 model performance corresponding Table
6.8. The marker size increases in a order ofR2 < 0, 0 < R2 ≤ 0.25, 0.25 < R2 ≤ 0.5,
0.5 < R2 ≤ 0.75, and 0.75 < R2 ≤ 1, turning colors from red to blue.

Additionally, the geographical performance mapping of SVR5 was illustrated

in Figure 6.4. The figure shows that the regional specificity of the SVR5 model is not

clearly clustered with geographic locations. California and Colorado appeared to have

R2 values of 0.5 or greater, whereas R2 < 0 for the adjacent region, Oregon. Iowa

was the second-lowest region, and Wisconsin was the fourth-highest region whilst

they are both in the Mid-west. Wyoming and Colorado showed an R2 of 0.170 and

0.514, respectively.

Practically, it is common to refit the model with determined hyperparameters

during the cross-validation step (Hastie et al., 2009). Consequently, SVR3 and SVR5

were refitted to the entire dataset using the optimal parameter and variable configu-

rations. The geographical performance mapping results of the refitted models (SVR3

and SVR5) are presented in Table 6.9. The overallR2 scores notably increased follow-
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Table 6.9 Fsus estimation performance (R2) of the refitted SVR3 and SVR5 model
for entire data and each geographical location. The cells were green colored for high
scores and red colored for low scores.

SVR3-refitted SVR5-refitted
Entire data 0.5296 0.7710

Alaska -0.1670 0.6417
California 0.8461 0.9546
Colorado 0.4491 0.7189

Idaho 0.7862 0.8217
Iowa -2.9354 0.2476

Oregon -0.9163 -0.2302
Washington 0.0874 0.8301
Wisconsin 0.5783 0.9086
Wyoming 0.3599 0.4789

ing refitting for both models. Particularly noteworthy is the substantial improvement

in estimation using the refitted SVR5 model in California and Wisconsin, demonstrat-

ing significant agreements with R2 exceeding 0.9. The lowest recorded R2 value is

-0.2302, indicating challenges in estimating Fsus in Oregon state streams using the re-

fitted models. Conversely, notable improvement is observed in Washington with anR2

value of 0.8301. Colorado, Washington, and Idaho exhibit R2 values of 0.7 or higher,

while the adjacent region, Oregon, has anR2 below 0. Iowa ranks as the second-worst

region, and Wisconsin as the second-best, despite both being located in the Midwest.

Wyoming and Colorado show R2 values of 0.4789 and 0.7189, respectively.

One practical approach involves considering site-specific information, given

the variability in local sediment transport and hydrologic characteristics. Incorporating

site-specific information is anticipated to enhance predictability. For instance, models
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can be derived for each category after classifying characteristic regions.

Several studies have clustered hydrological factors in the United States, in-

cluding (Shinker, 2010; Berghuijs et al., 2014; Ho et al., 2017). They grouped Oregon

and Washington as hydrologically homogeneous regions and Idaho, Wyoming, and

Colorado as another cluster. However, Agarwal et al. (2016) combined some streams

in Idaho, Oregon, Colorado, and Wyoming as one cluster. According to (Agarwal

et al., 2016; Dettinger et al., 2011), precipitation in this cluster is concentrated dur-

ing winter storms. In contrast, Shinker (2010); Agarwal et al. (2016) revealed that

Wyoming and Colorado, which were better predicted than Oregon and Idaho, are

relatively diverse regions with various combinations of clusters compared to Idaho.

This is consistent with our results showing that the locality of Colorado and Wyoming

is diverse, resulting in low accuracy. With regard to the Midwestern areas, the climate

characteristics in Iowa and Wisconsin can be classified into different clusters (Ho

et al., 2017; Berghuijs et al., 2014). In particular, Berghuijs et al. (2014) reported that

the correlation between their past rainfall records was only 0.07. Notice that local

hydrologic and sediment transport characteristics can vary. It is advised to employ

site-specific information in building models whenever possible.

Despite achievingR2 scores above 0.6 in Table 6.9, further accuracy improve-

ment is still necessary. Consideration of sediment transport locality is crucial for

practical application. For instance, the model performs well in streams with scores
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higher than 0.8, while its applicability is limited in streams with scores below 0.5.

It is important to note that all the data used for model training were obtained

from US streams. The applicability of the model to South Korean streams is not

explicitly validated. For practical application in South Korea, the optimal approach

would be to develop an estimation model using a dataset collected from South Korean

streams.

Alternatively, by comparing the spatial estimation scores of US streams with

the clustering results of South Korean streams, it is possible to identify clusters that

are similar to those with high scores, facilitating a more appropriate application. It

should be acknowledged that the conditions of upstream urbanization in South Korean

streams may differ from those in US streams.

6.4.2 Clustering analysis

A clustering analysis was performed to investigate the relationships between the

dimensionless variables by grouping data points of similar distributions. Before ap-

plying the clustering algorithm, the correlations between the derived dimensionless

variables were inspected. Figure 6.5 presents a correlation heat map for the dimen-

sionless variables. For Fsus, which is the key parameter of this study, six variables

were filtered based on the condition that the absolute values of the Pearson correlation

coefficient were greater than 0.5. The six selected variables that significantly correlate

with Fsus are W/h, US0/ws, U/u∗, H/d50, Reh, and Frd, which are also marked

171



in the correlation map. The variables with a maximum-to-minimum ratio higher than

104 were analyzed on a logarithmic scale.
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Figure 6.5 Correlation heat map for all dimensionless variables. The correlation
coefficient values are written in the box, and colored with the corresponding color
bar.

For the SOM analysis, the grid size was determined according to the rela-

tionship p× q = 5
√
n (Vesanto et al., 2000). The data length was 1,346, and the

corresponding optimal SOM map size was calculated as 5
√
1346 = 183.5. Thus, the

grid size of the SOM was set as 14× 13 = 182.

The trained SOM map was additionally partitioned by GMM partitioned,
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and the clustering case with the smallest AIC + BIC score was selected as the

final clustering result using an iterative method. that was similar to a method used

previously in (Noh et al., 2021). The test range of the epochs of the SOM and the

number of GMM clusters K were [0,1000] and [2, 10], respectively.

To optimize the SOM training, the training epoch was optimized, minimizing

both QE and TE (Equations (2.55) and (2.56)). The QE-TE test results are shown in

Figure 6.6. Both QE and TE rebounded after 300 epochs of the SOM update. GMM

was performed after fixing the SOM to 250 epochs to ensure the lowest QE and TE.
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Figure 6.6 QE and TE epochs for the seven dimensionless variables [Fsus, W/h, d∗,
Reh, Fr, Frd, and Rew]

The iterative GMM procedure is illustrated in Figure 6.7. The figure shows

the minimum scores for each cluster. The minimal AIC+BIC value was 5. However,

K = 4 was selected because the BIC increased when K > 4.

Two cluster plots were drawn to analyze the SOM-GMM results. Figure 6.9

shows a pair of scatter plots, and Figure 6.8 shows the corresponding SOM component

planes.

Based on the frequency of the dimensionless variables, it is evident that Reh

and Frd are sufficiently informative to explain Fsus through the following inferences.

Cheng et al. (2020) demonstrated that Frd is preferable to explain sediment en-
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Figure 6.7 Minimum AIC+BIC values for each cluster number for the seven dimen-
sionless variables [Fsus, W/h, d∗, Reh, Fr, Frd, and Rew]

trainment, and considering turbulent kinetic energy can enhance estimation accuracy.

Furthermore, all of the dimensionless numbers, excluding the slope-related numbers

u∗ and S0 with high uncertainties, can be approximated by combining Reh and Frd.

For example, RehFrd = f(h/
√
d50), such that h/d50 can be expressed in a scaled

manner.

With respect to physical inference, these two variables are related to suspended

and bed loads.Frd is identical to the drag-bed friction balance, which can be expressed

using Equation 6.21.

Drag force
Friction force

=
Cdπr

2
pu

2

λfN
=

Cdπr
2
pu

2

λfg(Gs − 1)π 4
3r

3
p

= f(
u2

g(Gs − 1)rp
) = f(Fr2d),

(6.21)

where Cd denotes the drag coefficient, rp denotes the particle radius, up denotes the

effective velocity of the particle, λf denotes the friction coefficient on the bed, andN

174



 (a) Fsus  (b) W/h  (c) d *

 (d) Reh  (e) Fr  (f) Frd

 (g) Rew
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Figure 6.8 Component planes of the trained SOM grid: (a) Fsus; (b) W/h; (c) d∗;
(d) Reh; (e) Fr; (f) Frd; (g) Rew. The grey scale face color denotes the values of
variables. The determined clusters are differentiated by the edge colors of hexagons.

is the normal force. This interpretation of the initiation of particle motion aligns with

the observations made by Aguirre-Pe et al. (2003). In another aspect, with respect to

coastal or ocean environments, similar interpretations have been conveyed by Fischer

et al. (2002) regarding the denominator of Equation (6.21) as a representation of the

buoyancy force. In this respect, as shown in Table 6.2, Frd is considered as the main

input variable in total load estimation formulas, especially in recent studies (Tayfur
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Figure 6.9 Pair scatter plots with kernel density plots for the seven dimensionless
variables [Fsus, W/h, d∗, Reh, Fr, Frd, and Rew]. The colors of clusters were
mapped into the dot and density contours with the same colors in Figure 6.8.

et al., 2013; Okcu et al., 2016). Frd has been highlighted as the main parameter along

with d50/h, the main parameter of MEP, in the bed load transport mechanism Hager

(2018), sewer deposition problem (Safari and Mehr, 2018).

On the other hand, the Shields number (τ∗) is the most commonly considered

parameter for sediment transport, describing the incipient motion of particles. How-

ever, it was not included in the optimal input variable sets in this study. This omission

stems from the observation that incorporating τ∗ did not significantly enhance the
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estimation of Fsus compared to the contributions of W/h, d∗, Reh, Fr, Frd, and

Rew.

Notably, the role of Frd, which considers flow force instead of shear stress

(as in τ∗), was found to represent the sediment transport dynamics effectively. Since

the work of Hager and Oliveto (2002), there has been a growing focus on analyzing

bedload transport and sediment entrainment by incorporating Frd, surpassing the

importance of τ∗. Several studies (Cheng and Emadzadeh, 2016; Sulaiman et al.,

2017; Cheng et al., 2020; Wahl, 2023) have underscored the stronger correlation of

Frd with sediment transport regimes. Particularly, Sulaiman et al. (2017) emphasized

the continuous and robust relationship exhibited byFrd for both highland and lowland

streams, whereas the Shields parameter and Einstein’s exponential formula (Einstein,

1950) are applicable only to lowland streams dominated by suspended load.

Attempts to explain the higher correlation of Frd compared to the Shields

number highlight that, fundamentally, the Shields number considers excessive total

shear stress over the critical shear stress. In situations of weak sediment transport,

where stress is very close to or lower than the critical shear stress, the explanation

becomes challenging with the Shields number (Cheng, 2002). Another reason is that,

in highland streams, the primary factor of total shear stress, a key component of the

Shields stress, is significantly influenced by form drag (Pitlick et al., 2008), making it

challenging to explain particle movement (Cheng, 2009).
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The Reynolds number is known as the turbulence criterion. Thus, Reh may

contribute to increasing the turbulent diffusion, causing particles to remain in suspen-

sion. The imbalance of the drag force on a single particle and the friction between the

particle and bed materials initiate incipient motions (e.g., sliding, saltating, etc.).

In the highReh region,Fsus approaches 1. In cases of sufficiently strong turbu-

lence dispersion forces, bed loads in unmeasured areas of suspended samplers become

suspended and disperse to the measurable area, corresponding to the suspended sed-

iment region. Consequently, intense suspension allows suspended sediment loads to

be approximated to the total sediment loads (as shown in Figure 6.9). Previous studies

(Shen and Lemmin, 1999; Best, 2005; Hardy et al., 2009) have also reported that an

increase in Reh strengthens the coherent turbulent structures near the bottom (e.g.,

hairpin vortices and larger wakes), leading to particle movement. In a Rousean pro-

file, the increase in shear stress associated with Reh leads to a decrease in the Rouse

number, resulting in a stronger contribution from suspended sediment.

From a different perspective, the drag coefficient Cd is commonly considered

a function ofReh (Van Nierop et al., 2007; Cheng, 2009; Wallwork et al., 2022). Upon

revisiting the drag force equation in Equation (6.21), an interrelationship betweenFrd

and Reh becomes evident. Additionally, as highlighted by Brown and Lawler (2003);

Cheng (2009), d∗ can also contribute to Cd.

As observed from the structures of MGGP3 and Operon3, Fr, which Reh
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always accompanies, plays a role in scaling h. Furthermore, Fr2 = U2/(gh) is the

ratio of the flow energy head to the suspended sediment region. For h = hs + hb,

where hs and hb represent the suspended sediment and bed load regions, respectively,

hb is constant owing to the sampler size, and thus, a variation in h indicates a variation

in hs. If the flow velocity is fixed, a decrease in Fr implies an increase in hs, which

in turn increases QSL. In terms of fixing the water depth h, laboratory experiments

demonstrated that the suspended load contribution increases for larger Fr in dune

migration dominated by bed loads (Naqshband et al., 2014). In Figures 6.8 and 6.9,

the cover range of a low Fr decreases in the order of red, blue, and orange clusters

for 12 < ln(Reh) < 14. For the same Reh value, Fsus increases in the same order,

thus supporting the above inference. Camenen et al. (2006) reported that roughness

height can be predicted usingFr and dimensionless falling velocity. Shen et al. (1990)

observed that the combined effect of skin resistance and form resistance constitutes

the overall resistance to flow for modeled alluvial bed forms in situations of open

channel flow with a Froude number less than 0.4. Fr controls the wavenumber and

stability of bedforms, altering the form drag induced by bedforms in the equilibrium

state and suppressing suspension (Fourriere et al., 2010). Subsequently, Fr can be

interpreted as scaling of Reh and bed roughness predictor.

d∗ is a fundamental characteristic for sediment particles, defining the falling

velocity of particles as indicated in Equation 6.3. Additionally, the well-known Shields
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diagram illustrates incipient motion concerning τ∗ and d∗ for critical Shields stress.

Several studies have classified bedforms based on d∗ (for example, Julien and Raslan

1998; van Rijn 1984a,b). Ackers and White (1973) adopted d∗ to consider sediment

transport regime shift.

In both MGGP5 and Operon5 formulations, W/h accompanies d∗. Stewart

(1983) reported that the fluvial channel, predominantly composed of suspended sed-

iment, possessed features, such as silt/clay and steep bench/point bar, owing to a low

W/h. In morphological transitions, streams with low W/h are likely to be eroded,

and excessive deposition occurs in streams with high W/h (Rosgen, 1994, 2019).

Another report (Edwards et al., 1999) describes the influence of W/h on Fsus and its

temporal change. For fine bed materials, W/h can be reciprocal to Cw. According to

a previous study (Xu, 2002), W/h can have a positive relation with Cw for low Cw,

with the assumption that for a coarser grain, the flow is prone to be related to bed load.

The low W/h coverage is smaller in the order of red, blue, orange, and green clusters

for ln(Reh) < 12.5. Fsus decreases in the order of the red, blue, and orange clusters.

However, Fsus for the green cluster is the largest, despite the high W/h and d∗. As

shown in the upper two rows of Figures 6.8 (b) and (c), the green cluster is charac-

terized by a high Reh. For large total loads, the QTL fraction becomes dominant, as

depicted by the linearly increasing lower bound in the 1 × 4 plot in Figure 6.9. This

suspended sediment-dominant flow of the green cluster was due to the excessively
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large Reh. The nonlinear relation between W/h and d∗ in MGGP5 and Operon5 is

valid for the calibration of the regime shift. The same interpretation can be applied to

Rew because its correlation to d∗ is 1 and curved for low Rew (the orange cluster).

6.4.3 Sensitivity analysis

This section presents the sensitivity of the models developed in this study obtained by

changing the input variables. The sensitivity analysis was conducted on Operon3 and

SVR5, the best explicit and implicit models, respectively. In addition, a sensitivity

analysis was conducted on SVR3 to inspect the effect of a nonlinear complexity

increase.

Figure 6.10 presents the one-at-a-time (OAT) sensitivity analysis results. The

upper plots are spyder plots indicating the change in Fsus owing to a 50% variation in

the input variables. The sensitivity index (SI) defined by Equation 6.22 is computed

for quantitative comparison.

SI =
max(Fsus)−min(Fsus)

max(Fsus)
(6.22)

For perceptibility, three-dimensional surface plots were drawn using the two influential

variables Frd and Reh.

To properly apply the Optimal Attribute Transform (OAT) method, multi-

collinearity should be examined. This can be checked by evaluating the Variance
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Inflation Factor (VIF), which is defined as the R2 score when a specific variable is

taken as the dependent variable, and the remaining variables are used to regress the

model. In three-variable models, there is no multicollinearity between the features

when the VIF is less than 2. However, in five-variable models, it is revealed that Rew

and d∗ are correlated. Therefore, this analysis focuses on the three-variable models.
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Figure 6.10 Spyder and three-dimensional surface plots for the three proposed al-
gebraic equations: (a,d) tanh-type; (b,e) MGGP1; (c,f) MGGP2. The figure shows
changes in the Fsus value as a function of specific variables. Different colors and
markers are used to denote these changes in the spyder plots in (a, b, c). The surface
grids in (d, e, f) represent the Fsus values obtained by combining Reh and Frd.

The most sensitive variable in the case of Operon3 is Reh (SI = 0.4024) in

a positive relationship. Frd is reciprocal to Fsus and only half as influential as Reh.

Fr is the most insensitive variable with an SI value of 0.149 and an exponential-like
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increment.

The effect of Reh is prominent (SI = 0.5306). Fsus diminishes after a change

of 120%. The increasing and decreasing behavior was observed for both Frd and

Fr, but the fluctuation in Fr was exceptional. The fluctuation observed in Operon3

indicates a nonlinear relationship between the three variables.

In SVR5, the curve of Reh that in SVR3. The SI associated with Reh was

the largest at 0.359. However, it was 1.67 times smaller than the maximum SI values

obtained in the spyder plots of Operon3 and SVR3. This indicates the tuning effect of

the two additional variables. d∗ andRew demonstrated similar trends when increasing.

For a negative change in d∗, Fsus drastically decreased with the local maximum point.

Rew, which represents the falling velocity, was negatively related to Fsus.

The proportionality of Reh is clearly illustrated in the bottom row of Figure

6.10. For Operon3 and SVR3, the sensitivity of Frd is as high as Reh is small. The

surfaces of SVR3 and SVR5 have local maximum points. However, Fsus increases

corresponding to Frd, as shown in Figure 6.10(f). This growth may be because SVR5

expresses the grain-size effect using not only Frd but also d∗ and Rew.
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Chapter 7. Integrated sediment load assessment
framework

7.1 Discussions on sediment load assessment

7.1.1 Simultaneous monitoring of total sediment load using MOSGO-

SVR

Directly measuring bed loads in addition to the suspended sediment is the best way

to obtain the total sediment load, QTL. However, bed load sampling shares similar, if

not more, difficulties as in suspended sediment sampling. Instead, a common practice

is to apply empirical models to estimate total loads. The most intuitive approach is

applying a total sediment load model, such as Ackers and White (1973) and Yang

(1979), but these direct estimation models do not contain information from suspended

loads. Another method is to use the relationship betweenQTL withQSL. One popular

method is the modified Einstein procedure (MEP) (Colby and Hembree, 1954; Son,

2021). However, the MEP is limited to sandy streams, and it also yields anomalous

results, i.e., QTL < QSL, in some cases (Shah-Fairbank et al., 2011).

One may also utilize the suspended-to-total loads ratio, QSL/QTL (Turowski

et al., 2010; Noh et al., 2023a). This method requires fewer parameters compared to

MEP. Since QSL/QTL is in the range of [0,1], the resulting total loads are always

equal to or larger than the suspended loads.
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H-ADCP signal SCB, Q, h
dh/dt, dQ/dt

SVR-SSC model
by MOSGO-SVR

SSCSVR

QSL=SSCSVRQ

SVR-QTL model
by MOSGO-SVR

QTL

Figure 7.1 Examplar flowchart of real-time total sediment load monitoring system

If the total sediment load is measured or estimated at the monitoring station,

the same approach can be applied to develop a model for estimating total loads as

described in the previous section. Total loads are defined as the sum of suspended

and bed loads. Therefore, the model developed using MOSGO-SVR to estimate

SSC can be adapted for QTL. By nominating SSC as the input variable and using

the variables obtained by H-ADCP, a framework can be established to simultaneously

measureQSL andQTL in real-time. Figure 7.1 shows the real-time total sediment load

monitoring system protocol when the suspended sediment sampling data is available.

The protocol derives two SVR models, for SSC and QTL, utilizing MOSGO-SVR.

Firstly, the SVR-SSC model is trained with information from H-ADCP. Next, the

SVR model for total loads, QTL, is trained using the H-ADCP deduced variables

and SSCSV R. The flowchart can be applied not only in model derivation but also in

estimation. However, the estimated sediment loads may lead to physically impossible
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situations where the prediction model givesQTL < QSL. In such cases, it is necessary

to adjust the total loads to be equal to the suspended loads.

In South Korea, using measured SSC, MEP is applied to estimate total loads.

Then, the derived total loads are applied to develop rating curves for practical appli-

cations. In this study, using the MEP-estimated total loads as reference values, the

framework in Figure 7.1 was applied in order to derive a real-time total load estimation

model based on the results of Case 2. Figure 7.2 illustrates the total load estimation

with cross-validation score for each station. The optimal variables combination fre-

quently included that SSC estimated by SVR. The modeling accuracy showed that the

CV score of SSC variables ranged from as low as 0.7, while that ofQTL was above 0.9

for all models. This result indicates that the efficiency of sediment monitoring can be

significantly enhanced by employing this real-time total loads monitoring framework.

7.1.2 Total sediment concentration estimation using Fsus

Overall, the analysis showed that SVR5 was the best model for estimating accuracy. In

practical use, Operon3 shows promise, considering its explicit expression. However,

the underestimation of PBIAS amplifiesQTL in Operon3. By contrast, SVR5 is likely

to underrate QTL. Based on these characteristics, SVR5 is considered suitable for

users who want to determine Fsus correctly. Operon3 can be appropriately used for

conservative river channel designs.

The practical use of Fsus involves the estimation of the total load QTL using
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Figure 7.2 Application of MOSGO-SVR to the total load estimation procedure and
cross-validation scores using MEP estimations.
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the following relationship:

QTL = QSL +QBL =
QSL

Fsus
(7.1)

in which QSL can be approximated to Q · Cw.
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Figure 7.3 Scatter plots between sediment load concentrations: (a) Fsus vs suspended
sediment concentration; (b) total load concentration vs suspended load concentration;
and (c) bedload concentration vs total load concentration.

189



Figure 7.3 shows the relationships between Fsus, Cw, total load concentration

(Cw,t), and bedload concentration (Cw,b). Cw,t and Cw,b were computed by dividing

QTL andQBL with flow rate. Figure 7.3(b) shows thatCw is distributed along the 1:1

line. In the physical sense,Cw should be smaller or equal toCw,t. For a highly tractive

flow, water sweeps the bed material, resulting in rapid bed load transport. If the flow is

sufficiently rapid to convey bed materials, there is also a high possibility of suspended

sediment-governed flows that develop suspension. Thus, Cw can be approximated as

Cw,t even though a large amount of Cw,b is transported. However, Cw,b contributes

more to a low Cw, as shown in the relationship between Fsus and Cw.

On the other hand, there is a point below the 1:1 line (Cw,t<Cw) in Figure

7.3(b). The case was Cross Creek near South Fork, Colorado State, measured on

June 30, 1983. In that case, the reported Cw was 8 mg/l, but QSL/Q = 4 mg/l by

recalculation, and thus an error is suspected.

Because Cw dominates over Cw,t,R2 is equal to 0.985, where theR2 value of

Cw,b is 0.053. However, estimating Fsus using only Cw is not recommended because

the R2 evaluation yields a value of -2.879·107. Despite the high R2, estimating Cw,t

using Fsus is advantageous over using only QSL in a conservative design because an

estimation using Fsus always yields Cw, t ≥ Cw with R2 over 0.999.

The approximation values for Fsus approaching 0 were not evident in Figures

6.9 and 7.3. However, as shown in Figure 6.9, when Reh is large, Fsus converges to
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1. ForReh > 1.34 · 107, Fsus exceeded 0.87, and whenReh > 1.34 · 107, 75% of the

data had Fsus > 0.9. In Figure 7.3, Fsus can be approximated to 1 as the suspended

sediment concentration increases. WhenCw is greater than 12,500 mg/l, the minimum

value of Fsus was greater than 0.9. When Cw >500 mg/l, 75% of the data had Fsus

exceeding 0.9. Subsequently, this study proposes a threshold of Cw >12,500 mg/l

and Reh > 1.34 · 107 for suspended sediment dominant regime (Fsus ≈ 1).

Other thresholds can be referred to in previous studies. For instance, in cases

of large Fsus, Dade and Friend (1998) proposed a regime where u/ws is less than 0.3

for suspended dominant flow and greater than 3 for bedload dominant flow. Yang and

Julien (2019) used SEMEP to classify the suspended sediment dominant condition

considering both Cw and u/ws with the categorization of riverbed material by sand,

gravel, and cobble.

MEP interprets that the nonlinear relationship between the Rouse number Ro

and d50 governs Fsus. The Einstein integral contains the velocity profile information

from the turbulent velocity profile, causing the ratio of suspended load to total load to

vary with ds, h, and Ro (Yang and Julien, 2019). u∗ in Ro alternatively depends on

g, h, and S0. An issue arises when our equations do not contain u∗ and dss, which are

key factors for Ro. In contrast, Lara (1966) proved that Ro could be estimated using

Ro = AwB
ss. Ro can be implicitly applied as a nonlinear expression of the explicit

equations obtained in this study. Moreover, excluding u∗ is beneficial for minimizing
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uncertainty. In other words, the strict measurement of the slopes for u∗ is challenging

because natural streams have various bedforms and platforms.

Essentially, MEPs assume sand-bed streams. In this context, Shah-Fairbank

et al. (2011) observed that applying different schemes for Ro regimes was favorable

because of the applicability of MEP. The suggested empirical models are widely

applicable using a previously published dataset (Williams and Rosgen, 1989), which

covers bed material sizes ranging from sand (0.28 mm) to cobbles (216 mm).

Recently, river-monitoring techniques have been developed. The empirical

models designed in this study can be implemented in recently developed flow-

suspended sediment-monitoring techniques to estimate QTL because the required

input variables can be obtained by these techniques. For example, at the river scale,

drone-based remote-sensing techniques have been applied to SSCs (Kwon et al.,

2022b,a; Gwon et al., 2023), bathymetry, and flows (Legleiter and Harrison, 2019;

Legleiter and Kinzel, 2021; Eltner et al., 2020). ADCPs can be utilized to simultane-

ously measure flow and suspended sediment (Son et al., 2021; Noh et al., 2022). For

bed grain-size estimation, one method is to use image-processing software packages,

such as pyDGS (Buscombe, 2013) and Basegrain (Detert and Weitbrecht, 2012);

however, sieving is the only reliable method that can be used for sand or finer grains

(Harvey et al., 2022). If sieving is the only option, it is advantageous to create a dic-

tionary of the median size of bed material on the probable areas before applying the
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above methods. Safety and cost minimization can be achieved if the aforementioned

monitoring technologies can be combined and applied appropriately.

7.1.3 Noisy behaviors of the MOSGO-SVR models

In Chapter 4, demonstrating the estimates of SSC for MOSGO-SVR models, noisy

SSC curves were observed. This phenomenon may be attributed to the natural oscil-

lations of flow variables (Q and h) or the step-shaped flow rate phenomenon, which

arises due to the measurement resolution of H-ADCP being too long to capture tempo-

ral flow variations. This issue could amplify errors in the overall behavior. Therefore,

to address errors arising from these two causes, both preprocessing and postprocessing

steps can be considered.

In the preprocessing step, there are two approaches. The first is smoothing the

time series of flow rate and water level. This can be implemented using techniques

such as moving averages or mode decomposition. By doing so, when calculating

instantaneous time derivatives, the step-like patterns due to the resolution of flow rate

changes can be mitigated, retaining only large-scale variations. The second approach

involves setting a window size when computing the time series flow rate from H-ADCP

data, calculating the window-averaged time derivative instead of the instantaneous

slope. While this method can reduce errors due to water level and flow rate resolution,

choosing an appropriate window size is challenging for effectively controlling short-

time-scale fluctuations. Postprocessing is similar to the first preprocessing method but
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is applied to the estimated SSC time series. This approach is based on the assumption

that the fluctuations in the input time derivatives are strictly trustworthy.

Investigating such preprocessing and postprocessing techniques can signifi-

cantly contribute to analyzing physical data using time-series information. Neverthe-

less, as the primary objective of this study is the optimization of the estimation model

rather than analysis through filtering, this aspect will not be further explored here and

is left for future work. Instead, the influence of postprocessing on total load estimation

will be briefly reviewed in Section 7.3.

7.2 The integrated sediment load assessment framework us-

ing hydro-acoustic backscatter

In the context of applying the SSC model derived from backscatters, limitations arise

when considering the regional variations in flow and water level parameters. This

prompts the need for a cautious approach, favoring models that align with the SCB’s

regional characteristics, especially when directly applying the MOSGO-SVR model

to unmeasured observation points. Additionally, for estimating the total sediment load,

it is proposed to leverage physics-based models when the observed sediment load is

available.

For estimating the total sediment load, the framework suggests applying the

MOSGO-SVR method when sediment load observations are available. In instances
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Figure 7.4 Flowchart of the integrated sediment load assessment framework

where only estimated total sediment load data is accessible, MEP for example, one

can train a MOSGO-SVR model with estimated total load values.

In summary, the final sediment load assessment framework involves a sys-

tematic approach. Starting with H-ADCP input data, the framework assesses the

availability of SSC observational data. If such data is available, the MOSGO-SVR

method is deployed for SSC estimation. In cases where observational data is absent,

cluster analysis outcomes are utilized to form models. For estimating total sediment

load, models can also be derived if observational data exists, while the Fsus relation-

ship formula is applied for estimations without total sediment load data. Figure 7.4

illustrates the integrated sediment load assessment framework.
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Table 7.1 Integrated sediment load assessment framework test cases with different
model combinations

Cases SSC QTL

Control Measured SSC MEP estimation
MM MOSGO-SVR MOSGO-SVR
MF MOSGO-SVR Fsus (refitted SVR5)
UF USAS* Fsus (refitted SVR5)

7.3 Instream applications

In this chapter, to demonstrate the effectiveness of the framework, the framework

was applied to the estimation of SSC and QTL in various cases. The benchmark for

comparing SSC values is the field-measured SSC. As forQTL, field-measured values

are not available, and therefore, MEP estimations from the Annual Hydrological

Report of Korea (MoE 2018; 2019) are used. For validation purposes, three cases

were established and are organized in Table 7.1, being denoted as MM, MF, and UF,

indicating the models employed for SSC and total load estimation. The MM case uses

MOSGO-SVR for both SSC and total load estimation. In the second case, the SVR5

Fsus model is adopted for total load estimation instead of using MOSGO-SVR. In the

UF Case, the strategy for ungauged station application and Fsus model are employed

for SSC and total load estimation, respectively.

For all Fsus estimation, the SVR5 model refitted to the entire Fsus dataset was

employed. The dimensionless hydraulic variables were calculated using the channel

width and mean depth obtained from the integration of the cross-section below water
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levels. The flow velocity was estimated by U = Q/A.

Similarly to the approach used for the Gumi Bridge station in Chapter 5, the

framework was applied to this station. For the USAS strategy, the primary model was

based on the Hoguk Bridge station, with an additional application of the Nampyeong

Bridge station model. The coefficient of determination was utilized as the accuracy

criterion. Table 7.2 presents the accuracies of SSC andQTL estimations for each case.

The MM Case demonstrates the most noteworthy accuracies in both SSC and

QTL, surpassing 0.98. The MM Case, being a model directly trained on the MEP of

the Gumi Bridge station, may exhibit higher accuracy in QTL than in SSC. However,

uncertainties may be propagated for QTL estimation in MF and UF cases, where

models are derived using SSC as input and extrapolated to other data. Despite the

existence of error propagation and Fsus being derived from US streams, it reasonably

estimatedQSL in the Nakdong River withR2 = 0.891. In UF Cases, theR2 values for

QTL estimation were 0.241 and 0.434 when using the Hoguk Bridge and Nampyeong

Bridge models, respectively. In other words, theR2 deterioration when using Fsus for

QTL estimation is on the order of 0.063 to 0.1, suggesting that the performance of

SSC estimation strongly influences the accuracy of total load estimation.

On the other hand, it is not accurate to claim that a model is more applicable

simply because it exhibits higher accuracy. Note that the SVR models utilized for

USAS employ only SCB as input variables. This is particularly true due to the lower
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Table 7.2 SSC andQTL estimation accuracy (R2) on the Gumi Bridge station for each
case.

R2

Case SSC QTL

MM 0.988 0.9996
MF 0.988 0.891

UF-Hoguk 0.304 0.241
UF-Nampyeong 0.538 0.434

correlation between SCB and SSC at the Hoguk Bridge station. Therefore, when

implementing USAS, a more advanced approach, such as employing ensemble models

with fuzzy clustering inference, could be considered to mitigate uncertainties arising

from the SSC model itself.

In this section, comparisons were made with MEP estimation data. Since there

are no actual measured true values, MEP was utilized for model validation, but it is

applicable only to sandy rivers and remains an estimated value indefinitely. Therefore,

it should be acknowledged that all the total load estimation results presented in this

section may not represent true values.

The Fsus model was derived based on data that encompasses not only sand but

also a diverse distribution of gravel, the following dataset by Williams (1989). Hence,

in rivers where MEP does not perform well, especially those classified as gravel rivers

with a d50 of more than 2 mm among the eight target observation stations in this study

(Gyenaeri Bridge, Hoguk Bridge, Naju Bridge, Nampyeong Bridge), the applicability

of Fsus may be relatively closer to the true values than MEP.
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7.4 A brief guideline for the integrated sediment load assess-

ment framework using hydro-acoustic backscatter

7.4.1 Scope of application

The monitoring of sediment transport is vital for effective river management. However,

the costs and manpower requirements of conventional sediment monitoring methods

impose limitations on expanding observation points and frequency. Therefore, the

objective is to economically enhance sediment monitoring efficiency by utilizing

fixed hydro-acoustic sensors, especially horizontal acoustic Doppler current profilers

(H-ADCP), installed in automated flow monitoring stations for real-time sediment

monitoring (e.g., Figure 7.6). Additionally, this approach encompasses the determi-

nation protocol for both suspended sediment concentration (SSC) and total sediment

load (QTL).

The flowchart of the framework is presented in Figure 7.4. The following

sections will provide a brief description of how to apply the framework.

7.4.2 Data and model sources

7.4.2.1 Sediment loads

Sediment loads encompass both suspended sediment load and bedload sediment load

(Figure 7.5). In this framework, the suspended load is considered as the measured

suspended load obtained using a suspended sediment sampler. The suspended load can
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Figure 7.5 Sediment sampling photographs. (a) wading-type suspended sediment
monitoring; (b) D-74 suspended sediment sampler; (c) bedload sampling.

be calculated by multiplying the flow rate and the suspended sediment concentration,

which is estimated through sample analysis. The weight of bedload samples and the

recorded time can be directly converted to bedload discharge.

Sediment sampling and sample analysis are advised to adhere to the guide-

lines outlined in Edwards et al. (1999) for obtaining cross-section averaged sediment

load. Alternatively, in South Korea, the sediment dataset provided in the Annual

Hydrological Report of Korea (MoE 2018; 2019) can be used for data collection.

7.4.2.2 Sediment corrected backscatter

SCB stands for sediment-corrected backscatter. Through the analysis of water-corrected

backscatter derived from raw acoustic signals, SCB can be assessed, as explained in

Chapter 2.2.1. As emphasized in Aleixo et al. (2020), SCB analysis should be carried

200



Figure 7.6 H-ADCP installation at a bank with sediment cloud passing

out using effective cells that fall within the sensible range without noise from the

water surface or bottom.

7.4.2.3 Flow-Related Variables

H-ADCP can be installed at artificial structures or stream banks (Figure 7.6). Cell-

wise flow velocity and water level are outputs from H-ADCP monitoring. As H-

ADCP covers a limited area without mobility, the flow rate needs to be calculated

using the index velocity method. In South Korea, official water level and flow rate

data are provided by the government through the websites of flood control offices

at the following URLs: https://www.hrfco.go.kr/ (Han River), https://www.

nakdongriver.go.kr (Nakdong River), https://www.yeongsanriver.go.kr/

(Yeongsan River).

Additionally, cross-sectional shapes are available in the Annual Hydrological

Report of Korea or on the flood control office websites. The integration of the cross-

sectional shape, utilizing water level information, allows the evaluation of the cross-

sectional area and channel width. Dividing the flow rate by the area yields the mean
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hydraulic depth.

7.4.2.4 Suspended sediment concentration estimation

This sediment load assessment framework utilizes the MOdel Selection with Global

Optimization for SVR (MOSGO-SVR), which optimizes SVR model hyperparameters

and input variables in SSC estimation. The method is implemented in the Python

library for Global Optimization and SHallow machine learning (pyGOSH). You can

download the pyGOSH library from the following URL: https://github.com/

hyoddubi1/pyGOSH

7.4.2.5 Total sediment load estimation

For total load estimation, the default setting is to use the MOSGO-SVR model if

measured total load data are available. If not, the Fsus estimation models devel-

oped in this study can be used as an alternative. All the Fsus estimation models

developed in this study are stored in the following GitHub repository: https://

github.com/hyoddubi1/Fsus-sediment-fraction-models. Alternatively, ex-

plicit models can directly calculate Fsus. Then, the total load can be estimated by

dividing suspended load with Fsus.

7.4.3 Practical Implementation

The list of required data for deriving the suspended sediment concentration (SSC)

estimation model is as follows:
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• H-ADCP raw signal

• Flow rate and water level

• SSC data

The list of required data for deriving the total sediment load estimation model

is as follows:

• H-ADCP raw signal

• Flow rate and water level

• Estimated SSC data

• Total load data

7.4.3.1 Model derivation

Initially, the model derivation process is conducted utilizing the MOSGO-SVR

method, which is implemented within the pyGOSH library. Below is an example

of MOSGO-SVR model derivation in Python.

1 from pyGOSH.Utils import CheckMakeFolder

2 from pyGOSH.RFECVSVR import MOSGOSVR

3 from pyGOSH import GlobalOptimization as go

4 from sklearn.pipeline import Pipeline

5 from sklearn.svm import SVR

6 from sklearn.model_selection import KFold
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7 from sklearn.preprocessing import StandardScaler

8

9 k_fold = KFold(n_splits=4, random_state=42, shuffle=True)

10 svr = SVR(kernel=’rbf’)

11 scaler = StandardScaler()

12 estimator = Pipeline([(’scaler’,scaler), (’regressor’,svr)])

13 optimizer = go.Optimizer(lb = [10**-9,10**-9,10**-3],

14 ub = [100000,10,1],

15 algorithm = ’MCCE’,

16 stop_step = 200,

17 stop_span = 10**-6,

18 stop_obj_percent = 0.1,

19 stop_fcal = 40000,

20 dimension_restore = True,

21 n_complex = 15,

22 n_complex_size = 8,

23 iseed = int(np.random.random()* 100),

24 pop_init_method = ’LHS’,

25 init_pop = None,

26 verbose = True,

27 n_jobs = 1,

28 pre_dispatch = ’2*n_jobs’,

29 obj_eval = ’serial’ )

30

31 mosgo = MOSGOSVR(X=None,
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32 estimator=estimator ,

33 cv = k_fold,

34 optimizer=optimizer ,

35 verbose = True,

36 X_log_flag = [True,True,True],

37 yScale = ’log10’,

38 n_jobs= 4,

39 fix_variables = [False, False, True,False, False ])

40 mosgo.fit(X,y)

Listing 7.1 Python example for five variable MOSGO-SVR execution with the variable

keeping operation

The hyperparameter search space can be set as lb and ub variables. It is recommended

that the MOSGO-SVR procedure be executed repeatedly for the robust model deriva-

tion. To apply the model and estimate the total sediment load, if there is total sediment

load measurement data available for training, the user can also derive a total sediment

load model using the code provided above.

7.4.3.2 Model application

To estimate SSC or total load using the models derived in Section 7.4.3.1, the user

can input ‘mosgo.predict(X)’. For the case where the total load needs to be estimated

using the Fsus model, Python code is provided below.

1 from FsusModels.FsusModels import main, CsustSL, FsustoTL
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2 #Manual input

==========================================================

3 U = [0.5, 2] # m/s

4 h = 0.5 # m

5 W = 2 # m

6 d50 = 1 # mm

7

8

9 Cunit = ’mg/L’ # Unit of Csus

10 SLunit = ’kg/s’#

11

12 model = ’SVR’ # Empirical model derivation method (’SVR’,’Operon’,’

MGGP’,’GPGOMEA’,’BPGP’)-str

13 nv = 5 # Number of variables used to model derivation (3,5)-

int

14 #==========================================================

Processing

15 U = np.array(U),h = np.array(h),W = np.array(W),d50 = np.array(d50),

S0 = np.array(S0)

16

17 Q = U * W * h # cms

18

19 Csus = mosgo.predict(X)

20 Fsus = main(U,h,W = W, d50=d50,nu=10**-6, T=20, ustar = None, rhos =

None,
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21 nv = nv,model = model)

22 SL = CsustoSL(Csus,Q, Cunit=Cunit, SLunit=SLunit)

23 TL = FsustoTL(Fsus,SL)

Listing 7.2 Python script for total load estimation using MOSGO-SVR and Fsus

model (SVR5)

Here, the example hydraulic variables are entered manually, but the user can also

load pre-measured and calculated hydraulic variables for input. Additionally, within

the code, MOSGO-SVR may have loaded models for stations determined through the

ungauged station application strategy instead of the models derived directly.

7.4.4 Limitations and recommendation

The Fsus estimation models were developed based on steady flow data and assume a

bed material load. Similarly, empirical sediment transport equations rely on three key

assumptions (Gomez and Church, 1989): 1) steady flow; 2) an algebraic relationship

between hydraulic variables and similarity variables; 3) the maximum sediment load

being transported under specific hydraulic conditions. Despite the disparities in as-

sumptions, empirical bedload formulas are applied for unsteady time-series sediment

yield assessments in practical applications (Li et al., 2021; Cohen et al., 2022). More-

over, while empirical bedload estimation models can be practically used following

H-ADCP-driven SSC estimations, which encompass wash load and unsteady flow,

it should be noted that unsteady flow bedload transport may deviate from estimates
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provided by these equations.

If there is a hydraulic structure, the pattern of sediment transport and the

velocity profile may change, potentially posing limitations in the models proposed in

this work, i.e., Fsus models. However, since the scattering of sound waves follows

the physical relationship between sediment concentration and the sound waves them-

selves, it is deemed applicable, irrespective of hydraulic conditions. Nevertheless,

H-ADCP may introduce structural errors when estimating cross-sectional average

sediment concentrations, leading to reduced accuracy in cases where flow patterns

vary significantly.

The advantage of the ADCP method lies in its ability to observe both flow and

sediment transport after installation simultaneously. While this makes it suitable for

long-term, real-time observations, the inherent costliness of the equipment remains

a challenge. In developing countries, where cost considerations weigh heavily, direct

manual measurements of sediment transport might be a more cost-effective approach

than employing ADCP. For situations where increased temporal resolution in mea-

surements is required, especially if cost is a concern, one can use RGB cameras as an

index of SSC rather than ADCP backscatter.

While this study contributes significantly to sediment monitoring, several areas

for further research improvement have been identified in each chapter. It is noteworthy

that these suggestions aim to guide future research toward achieving more efficient
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and accurate sediment monitoring. The following paragraphs will briefly overview the

identified areas for improvement and propose directions for future research to address

current limitations.

As demonstrated in prior studies (Guerrero et al., 2016; Guerrero and Di Fed-

erico, 2018; Aleixo et al., 2020), the median particle size and the standard deviation

of particle size distribution can characterize the backscattering features. In Chapter

4, although the importance of particle size distribution was highlighted, the particle

size features were not considered in deriving the SSC model. While the real-time

acquisition of particle size distribution is challenging in the field, incorporating parti-

cle size information along with flow features in the H-ADCP-based model derivation

will contribute to the advancement of SSC monitoring theory. Once the relationship

is explicitly established, particle sizes can be inversely modeled during H-ADCP

monitoring.

This study initially classified sediment monitoring stations based on on-station

values. However, sediment transport mechanisms in unsteady flows are influenced by

upstream catchment land use or cover (Gellis, 2013). Additionally, considering factors

like tributaries and stream order may be essential for understanding the hysteresis

in SSC. These additional variables need careful consideration, especially given the

theoretically dominant role of particle size distributions and the temporally varying

nature of rivers.
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As highlighted in Noh et al. (2023b), the H-ADCP-based sediment monitoring

technique accurately analyzes fluvial sediment input. Furthermore, acoustic devices,

such as an acoustic wave and current profiler (AWAC), are deployed for monitoring

coastal currents. Real-time SSC monitoring in coastal environments can be effectively

achieved by applying a similar method to the one presented in this study using moored

acoustic devices.

In Chapter 7, the applicability in South Korean streams is not fully inves-

tigated since the training dataset is collected from the U.S. streams. A comparable

approach can be employed if a substantial dataset of South Korean total load measure-

ments is available for model derivation. While focusing solely on bed material size in

Fsus estimation may offer practical advantages, it is advisable from a physical accu-

racy standpoint to consider suspended sediment particle size, as it holds significant

information regarding the interaction between suspended and total loads.
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Chapter 8. Summary and concluding remarks

This paper introduces methodologies to improve sediment transport’s predictabil-

ity and measurability using H-ADCPs and innovative machine learning techniques,

specifically MOSGO-SVR and iterative SOM-GMM. Mainly, three contributions

were made to enhance hydro-acoustic-based sediment transport estimation accuracy

and applicability by optimized parameters: (1) enhancing the accuracy of H-ADCP-

based sediment monitoring with high temporal resolution (10 minutes); (2) addressing

the limitation of spatial applicability; and (3) extending real-time total load moni-

toring while providing insights into the suspended-to-total sediment load transport

mechanism. The proposed procedures enable sediment data collection at higher spa-

tiotemporal resolutions compared to current conventional techniques, including total

sediment load estimation. Consequently, advancements in sediment transport man-

agement, both qualitatively and quantitatively, are anticipated. The contributions of

this study are summarized in Table 8.1.

Chapter 3 presents machine learning model selection methods, employing

iterative approaches and global optimization, particularly for SVR and clustering al-

gorithms. It discusses the rational advantages of the newly presented machine learning

methods. Note that all the methods were implemented in the pyGOSH library and

shared in public.
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In Chapter 4, the investigation into the accuracy improvement of the H-ADCP-

based SSC monitoring technique was conducted by incorporating hydraulic variables

alongside SCB. The results demonstrated that considering additional variables while

maintaining SCB shows good accuracy. However, comparing estimation results with

the SCB-only case is advisable. Moreover, the two SVR model selection methods,

GRID-RFE-CV and MOSGO-SVR, were applied, with MOSGO-SVR yielding better

accuracy than GRID-RFE-CV. Furthermore, a systematic connection of H-ADCP-

based SSC monitoring to the total load, Modified Einstein Procedure estimations, was

presented with reasonable predictability.

In Chapter 5, clustering analysis, using the iterative GMM, of sediment charac-

teristics, including particle size distributions and flowrate-sediment load rating curve

coefficients, in South Korean sediment monitoring stations was conducted. The clus-

ters were primarily classified based on the catchment area and particle sizes. Given

that the SSC-backscattering relationship depends on suspended sediment particle size

distribution, a protocol for determining the SSC-backscattering relationship was in-

troduced. The protocol establishes a surrogate model with the model in the closest

station of the cluster where the target station is assigned.

Chapter 6’s objective of this study is to present a globally applicable total es-

timation method using suspended load and hydraulic variables, whereas the total load

model in Chapter 3 is locally applicable. As the target variable, the suspended-to-total
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load fraction, Fsus, six machine learning models were developed. The importance of

the feature was assessed through the GRID-RFE-CV step with SVR fitting. The flow

Reynolds number (Reh), densimetric Froude number (Frd), and Froude number (Fr)

were identified as the three dominant parameters. In addition to SVR, explicit equa-

tions were derived using the two symbolic regression algorithms, MGGP and Operon.

The iterative SOM-GMM protocol revealed the influences of hydraulic variables on

Fsus.

Subsequently, Chapter 7 systematically incorporates the major results in Chap-

ters 3–6 proposing a total sediment load estimation framework. Possible model combi-

nations of the framework were tested and showed commendable predictability. From a

more practical point of view, a brief guideline and related discussions were provided.
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Pektaş, A. O. and Doğan, E. (2015). “Prediction of bed load via suspended sediment

load using soft computing methods.” G eofizika, 32(1), 27–46.

Pitlick, J., Mueller, E. R., Segura, C., Cress, R., and Torizzo, M. (2008). “Relation

between flow, surface-layer armoring and sediment transport in gravel-bed rivers.”

Earth Surface Processes and Landforms: The Journal of the British Geomorpho-

logical Research Group, 33(8), 1192–1209.
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국문초록

자연하천의 유사 이송 현상은 공학적으로, 환경적으로 중요한 의의를 가

진다. 그러나 시료 채취에 의존하는 노동집약적인 전통적 유사량 계측 방법으로

인해 유사량 조사의 시공간 해상도를 높이는 데에 한계가 있다. 최근에는 횡방향

도플러유속계(H-ADCP, Horizontal Acoustic Doppler Current Profiler)의후방산란

강도와부유사농도관계식을유도해부유사모니터링의시간해상도를높이고자

하는 노력이 지속되고 있다. H-ADCP 기반 모니터링은 데이터 취득 효율을 크게

높이지만후방산란신호발생기작의비선형성과데이터취득의어려움으로인해

예측 성능과 적용성이 제한적이다. 본 연구는 대한민국의 자동 유량 관측소에서

얻은 H-ADCP후방산란신호를기반으로부유사농도모델을결정하는파이프라

인을기반으로예측성과계측가능지점과항목을향상시키는것을목적으로한다.

단면 평균 부유사 농도 산정의 비선형성을 고려하기 위해 후방산란 신호 외에도

유량과 유량의 시간 변화율과 같은 수리 변수를 추가로 사용하였다. 이를 위해

본 연구에서는 입력변수의 조합과 서포트벡터회귀 모형의 초매개변수를 동시에

결정하는방법론인전역최적화기반서포트벡터회귀모형결정법(MOSGO-SVR,

MOdel Selection by Global Optimization for support vector regression)와최적군집

수 및 군집화 결과를 결정하는 반복 군집화 기법을 새로 제시하고 자동유량관측

소에 H-ADCP자료에적용해 H-ADCP기반유사량모니터링기법의산정정확도
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및 계측성을 높일 수 있는 방법을 제시한다. 첫번째로, H-ADCP로 취득할 수 있

는 후방산란강도와 더불어 수위, 유량 그리고 수위와 유량의 시간 변화율 자료에

MOSGO-SVR를적용함으로써입력변수조합을포함한최적의부유사농도산정

모형을결정해정확도를높인다.이때총유사량산정값을추가로학습해 H-ADCP

신호로부터부유사농도와총유사량을동시에체계적으로산정할수있는파이프라

인을추가로제시한다.다음으로는반복적군집화기법으로국내유사량관측소의

군집분석을수행한뒤그결과를바탕으로유사량미계측관측소에 H-ADCP기반

부유사 농도 모니터링 방법을 적용할 수 있는 방안에 대해 논의한다. 세번째로,

특정관측소의유사량산정자료를학습시키는대신보다수리적인관계를바탕으

로총유사량을산정하기위해부유사농도로부터총유사량을산정하는수리모형을

SVR과기호회귀법을이용해유도한다.최종적으로이결과를종합해 H-ADCP를

이용한 부유사 농도 및 총유사량 산정 프레임워크를 제안함으로써 기존 유사량

모니터링의 정확도 향상 및 시공간 격차 해소에 기여한다. 본 연구의 결과를 적

용함으로써 하천 유사량 관리 및 유사이송 기작에 대한 이해를 발전시킬 수 있을

것으로기대된다.

주요어:총유사량,유사이송,유사량모니터링, H-ADCP,후방산란,최적화,기계학

습회귀,군집화

학번: 2019-38726
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