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Extended Mean-Distance-Ordered Search Using Multiple for each anchor vector, we introduce an extended MOS algorithm using

£, and £2 Inequalities for Fast Vector Quantization multiple inequalities for an anchor vector set. Although a VQ based on
the extended MOS algorithm can further reduce the search region for
Sun-Young Choi and Soo-lk Chae each input vector, the reduction in its computational cost depends on

the anchor vectors. Therefore, we also propose a greedy algorithm for
) ) selecting an anchor vector set that minimizes the computational cost
Abstract—Mean-distance-ordered search (MOS) algorithms [1], [2] ¢ the extended MOS algorithm in Section IV. Simulation results are
were proposed as a fast and efficient method for vector quantization (VQ) . . S .
encoding. However, the efficiency of MOS algorithms is limited because Presented in Section V, followed by the conclusion in Section V1.
they use only one inequality in reducing the search region. Therefore,

we propose an extended MOS algorithm using multiple anchor vectors Il. MOS
which exploits multiple £; and £; inequalities to reduce the search region '
further. We also describe a greedy algorithm for selecting an anchor vector For an input vector = (z1, 22, -+ -, z,) and a code vectat; =

set that reduces the computational cost of the extended MOS algorithm. .~ = ; ; ; _
For eight test images, the number of operations required in the extended (cir, e, » cin ), the MOS algorithm [1], [2] uses the inequality be

MOS algorithm was 66.2% of that in the previous MOS algorithm on the tween the mean distance and the distortion
average when the codebook size is 256, while producing the same encoding 9
(Zwk - Zk) <n- (e ) ®
k=1 k=1

quality to that of the full-search VQ.
wheren is the dimension of the input and code vectors dfd ;) =
(X7, (@ — cir)?)'/?. Hereafter, we will cal}>7_, «, the mean of
a vectorz although it is the sum of the vector components. In addition,
Vector quantization (VQ) is an efficient data-encoding technique thgke also refer to the left-hand side of (1) as the squared mean-distance
exploits dependencies among vector components [9]. The full-seaygMD) between: ande; just to follow the convention in [2].
VQ finds the nearest code vector that has the minimum distortion fr0m|n the MOS a|gorithms‘ the code vectors are pre_ordered according
an input vector by exhaustively searching all code vectors in the codgtheir vector means. For a given input vectothe search procedure
book. Because its Computational cost is so hlgh, its utilization is ||nﬁ'nds the nearest code vector in the distance sense, Starting from
ited. Therefore, many fast VQ algorithms have been developed that{igs initial code vector, which is the nearest code vector fa the
duce the computational cost substantially while producing the sa§uared mean-distance sense. Then, the procedure moves up and down
reconstructed image quality as the full-search VQ. from the initial code vector alternately in the preordered list. &iet
These fast algorithms can be grouped into three categories: pa§ialthe code vector having the current minimum distortib;, c;),

distortion elimination (PDE) [3], triangular inequality eliminationamong the code vectors searched so far. If a code vectatisfies the
(TIE) [4]-[6], and mean-distance-ordered search (MOS) [1], [2]. fhequality

TIE-based VQ using multiple anchor vectors that were called control

Index Terms—Anchor vector, mean-distance-ordered search, norm, tri-
angular inequality, vector mean, vector quantization..

|. INTRODUCTION

vectors in [5] can further reduce the search region by intersecting n n 2
the search regions for all anchor vectors [9]. An anchor vector is n-d*(z, e;) < <Z Tk — Z Cjk) )
a reference point from which its distance to each code vector is k=1 k=1

precomputed and stored. After eliminating some of the code vectors
by using the inequality for an anchor vector, we can obtain a sub¥ do not need to calculatx, c;) becausel(x. c;) > d(x, ci).
of the codebook that contains the nearest code vector to the giVe#ithermore, we do not check (2) for all the code vectorghat are
input vector, which is called the search region for the anchor vectdfrtheraway fronr; thanc; in the pre-ordered listbecause their SMD’s
However, the mean-distance-ordered search (MOS)-based VQ [1], ¢ larger tham - d*(x, ci).
exploits only one inequality between the vector mean-distance and the
distortion of input and code vectors. I1l. EXTENSION OFINEQUALITY USING RELATIVE VECTORMEANS

T_herefore, the am of this paper IS to_propose an extended MOS al'First, the following inequality betweef (z) and (> (z) is always
gorithm that exploits thé, and¢, inequalities for multiple anchorvec- __.. .. .

. . . . ) -~ satisfied [7]:

tors. In Section Il, the conventional MOS algorithm is described briefly.
In Section I, we first derive a generalized inequality between the dis-
tortion and the vector mean-distance relative to an anchor vector by

using anf{; and/- inequality. Because an inequality can be obtained . . .
9 ! 2 1neq 4 q y where ap-norm of am-dimensional vector denoted asg, (), is de-

fined by

f1(2) < V- La() €)
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Fig. 1. Relative vector means to anchor vectorga:, as, -- -, a,,} are precalculated and stored for each code vegtor

deriving an inequality for each anchor vector. Using (3) and the triaf2U V', from which we select the anchor vectors. Hérds the subset

gular inequality for/,, we obtain of all the vertices inL™, which is

O — ag) — (e —ap)? <n-d*(z, ¢). 5

(e —ar) — Li(e; —ag))’ <n-d*(x, ¢;) (%) V= {(b1, b, bay by -+, b sy buy)
Inequality (5) is a simple extension of (1) for an arbitrary anchor vector, -|b; € {0, 255}, 1 <i <n/2}. (6)
which reduces to (1) whesy, = (0, 0, ---, 0).

For an input vectory, and its initial code vector;;, we can obtain
a search regio(ax, c;, z) = {c;|({1(x — ag) — l1(c; — ar))? <
n - d(z, c;)? forc; € Q} for each anchor vectou,, in A. Here, Q2
is the codebook. Therefore, we can obtain the reduced search re
5, which is the intersection of the search regidt(ay, c:, ), for all For a given input vector, first we find its initial code vector; in

@ € A. ) _ the preordered list of the code vectors for the principal anchor vector
We define the principal anchor vector as an anchor vector Who(?e Then, we do not need to calculate the distatioe ¢, )for any code
inequality is tested first. In the extended MOS algorithm, the code Vevcé;:torc » ’that satisfies the inequality - d2(x C‘)' < (2 (z — z ) —
tors are preordered in ascending order of their relative vector meanslfo(rp v_(; ))? Here, the SMD of: andc, forthé zrina al1anchor]vector
the principal anchor vectar, . Furthermore, for each code vector, itsal ’SJ a Iéwer bour,1d of - d2(x. ¢)) \/]Vhen thg SMB of ande. is a
relative means to all other anchor vectors are also pre-calculated %Fd ter lower bound ofs d’ (;’ CJ)' it is more probable to réj]ect the
‘ Ly C5 )y

stored, as shown in Fig. 1. codec; that is not nearer te thanc; in the (> distance sense so that
For a codebook2 and an anchor vector sdt, the extended MOS nejed not calculate its distancézzto w2
algorithm searches the pre-ordered codebook, as described in the‘?’c‘ﬁr

) N herefore, we select a vectare C' as an anchor vector, such that
lowing pseudo code, where and N are the number of the anchor vec- L 2 ) 2
the vector minimizesn - d*(z,, ¢j)— ({1 (zp, —a) — i (c; —a))” on

the average fot;, «, € €. The cost functiory, (-) for selecting the
principal anchor vector is expressed as

The reason of includinyy” in C'is that the vertices are good candidates

of anchor vectors, which was confirmed with the experimental results.

\We found that the principal anchor vector is usually the zero vector (0,
on . . ;

%, -+, 0) in the simulations we had done.

tors and the codebook size, respectively.

Get an input vector x;
Find its initial code vector c; with a bi- NN
nary search;, fila) = ZZ [n .d? (xp, ¢;) — (bi(xp —a) — la(c; — a))z] . (7

7 =1 cmin = ¢; Up = Down = true;
while (((Up == true) or (Down == true))
and (( i>1) or ( j<N)) {
if (Up == true) and ( 7 < N)) then
{j = 7 4+ 1; I* index for the upper search
*/

p=1j=1

Then, the principal anchor vector is determined as

ay; = argmin (fi(a)).
it ( (f(z—ar) — e —a1))? > n - d3(x, Cmim)) nee
then Up = false;
else { for (k =2k <
li(ej —ap))? < n-d*(z, )i k
if (( k==m+1) and (
then Cmin = cjl } }
if (Down == true) and ( t>1)) then { i=1:¢-
1; /* index for the lower search */ Swin(an, ¥,) = {¢j|(i(xp = ar) = li(cj — ax))?
if ((Lu(z = a1) = b(e —a)® 2 n-d*@, cmin)) <n-d*(xy, @), c; €Q) (8)
then Down = false;
((r — ax) —

else { for (k =2,k < m and
(e —ax))? <n-d*(x, emin); k =k +1);
if k==m+1) and ( d(z, ¢;) < d(x, cmin .
then é1(nin = C;, ;n} ) ( (x C’L) (x ‘ ))) €= argmin {d((:ka '77]))}'

CLEQ, cpFTp
} /* end of while */. <

m and (E (a: _ ak) _ We used another measure in selecting the other anchor vectors. First,

_ o for an anchor vector; and a vectorr, € €2, we define the min-
k+1 !

i ’ imal search regio8...i. (ax, x,) as a search region obtained when the

d(.’IZ’, cj) < d(.’IZ’, cmin))) 9 (dl,, LI) 9

nearest code vectof to «,, is used as its initial code vector

where

Assuming that a set of pre-selectdd+{ 1) anchor vectorsd,_; =
IV. SELECTING THE ANCHOR VECTOR SET {a1, a2, ---, ar—1} is given, we select another vectoe C' — A,
as the nextth anchor vector such that the vector a minimizes the cardi-
We now describe a greedy algorithm for selecting the anchor veci@ility sum of the intersection of theminimal regions over alk, € €,

setthat minimizes the computational cost, which greatly affects the p@ihich is a greedy algorithm. The cost functign(-) for selecting the
formance of the extended MOS algorithm. To reduce the computationgh anchor vector is represented as

complexity of the greedy algorithm, we use the codehQas a good

representative of the input vector space because the codebook is much N
smaller than the input vector spat&, whereL = {0, 1, ---, 255}. folk, a) = L Z <kﬁl Srnin (@i, ,r,))) N Smin(a, 2,)|  (9)
By the same token, we also limit the candidate anchor vectar'set ' N & J\i=t '
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TABLE | 70 3
COMPUTATIONAL COSTS FORTHREE TEST 60
IMAGES WHEN THE CODEBOOK SIZE IS 256 \
i _g 50 \/0// N Mult]ply
Image Fast VQ Multiply | Add/sub | Compare | Total op. g 40 .
All Full-search 2560 | 4960 16.0 768.0 & \ /E/E/E/E/ —&— Add/sub
Jaguar Li's TIE (3) 20.2 39.1 11.1 70.4 3 30 —&— Compare
Ra's MOS %62 50.1 36 79.9 5 5 ~o—Total op.
Extended MOS (3) 14.9 30.9 5.1 50.8 -g \'\. —
Pepper Li's TIE (3) 12.3 239 7.4 43.6 < 10 r_ﬂ___ﬂ__ﬁ__ﬂ_ﬂ—-—ﬁ_ﬁ—ﬁ_—‘l
Ra's MOS 16.8 325 25 51.8 0 ‘
Extended MOS (3) 8.5 19.9 33 31.6 0 5 10
Lena Li's TIE (3) 13.0 25.0 8.0 46.0 Number of anchors
Ra's MOS 17.3 334 2.5 53.1
Extended MOS (3) 8.8 204 34 326 Fig. 2. Average number of operations versus the number of anchor vectors in

the extended MOS algorithm when the codebook size is 256.

where|C| is the cardinality of a sef’. Then, theith anchor vector is

N TABLE I
determined as

AVERAGE COMPUTATIONAL COSTS FOREIGHT TEST IMAGES WHEN THE
CODEBOOK SIZE IS 256

ap = argmin (f2(k, a)), forallk=2,---, m. (20)

a€C-Ay_4 ’ ’ Multiply | Add/sub | Compare | Total op.
Full-search 256.0 496.0 16.0 768.0
In the extended MOS algorithm with anchor vectors, the average Li's TIE (3) 16.1 311 9.1 564
number of multiplications per a vector component (a pixel) required in Ra's MOS 21.1 40.5 30 64.5
encoding an input vector can be roughly estimated with Extended MOS (3)|  12.1 263 42 42.7
1 m.
m) = y Ay — 2(k, ag 11
g(m) & fo(m, am) + — kzlff)( k) 11)

wheren andm are the dimension of the vector and the number of s
lected anchor vectors, respectively. The first term is the expectatio
the cardinality of the intersection @f minimal search regions for the
representative input vector space. The second term is the upper b
of the expectation of the SMD computation divided by the dimensi
of the vector because we stop checking the inequalitigs: — ax) —
ti(e; = ag))? < n-d*(z, cmin) for ax € A if the inequality for any Fig. 3. (a) Original Lena image (51% 512). (b) Reconstructed image of

one of the anchor vectors is not satisfied. From (11), we can estimaf@search VQ (PSNR : 31.75 dB). (c) Reconstructed image of extended MOS
the optimal number of anchor vectors as VQ (PSNR : 31.75 dB), when the codebook size is 1024.

(b)

m = arg min(g(m)). algorithm, the number of operations of multiply, and add/subtract op-
" erations were reduced by 42.7% and 35.1%, respectively, while that
of compare operations is increased by 40.0%, when compared to Ra’s
MOS algorithm [2]. However, note that the portion of compare opera-
tion is small in the total operations. Assume that all types of operations
A codebook? was generated with the Linde—Buzo—Gray algorithrhave equal computational cost although multiplication is more com-
[8] using training images df12 x 512 size such as Boats, Bridge, Sail,plex than addition or comparison. Then, the total number of operations
Crowd, and Einstein. Codebook size is 256 and vector dimension is irf6the extended MOS algorithm is reduced to 66.2%, when compared
As explained in Section IV, the anchor vectors were selected by usitigRa’s MOS algorithm.
(7) and (9). The computational cost of the extended MOS algorithm wadf more anchor vectors are used, the cardinality of the search region
compared to those of the full-search (FS) VQ, Ra’s MOS algorithm [ reduced further although the number of the SMD computation is in-
and Li's TIE-based VQ [5]. Here, the number of operations per pixeteased, as shown in Fig. 2. From the simulation results, we found that
was used to measure the computational cost in all the simulation resutisee anchor vectors was optimal for the codebook of 256 codes with
As shown in Table |, the computational cost of the extended MQSmension 16. We also compared the computational cost for fast VQ
algorithm is reduced substantially for all the test images, comparedaigorithms when the codebook size was changed from 256 to 1024, as
the other algorithms. The digit in the parenthesis indicates the numisaown in Table Ill. In Table Ill, the computational complexity of the ex-
of anchor vectors used. Note that three anchor vectors were selecteimed MOS using three anchor vectors is reduced substantially, com-
the extended MOS VQ as well asin the Li's TIE-based VQ. The form@ared to that using only the principal anchor vector. We found that the
is better than the latter, because the number of compare operationzeicentage of reduction in the number of multiplication in the extended
reduced to about half and the calculation ofthe ¢- distance is much MOS algorithm was increased from 43% to 51% as the codebook size
simpler than that of thé, distance. increases from 256 to 1024, compared to Ra’'s MOS algorithm [2].
The computational costs for the fast VQ algorithms, which were av- Fig. 3 shows the original Lena image and the reconstructed images
eraged for eight testimages such as Lena, F16, Jaguar, Pepper, Cooplell-search VQ and the extended MOS VQ when codebook size is
Girl, Baboon, and Zelda, are shown in Table II. In the extended MCI®24. The extended MOS produces the same VQ coding quality to that

V. SIMULATION RESULTS
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TABLE Il
AVERAGE COMPUTATIONAL COSTS FOR THECODEBOOK SIZES FROM 256-1024
Multiply Total op.

Codebook size 256 512 1024 256 512 1024
Full-search 256.0 512.0 1024.0 768.0 1536.0 3072.0
Li's TIE (3) 16.1 27.3 48.0 56.4 96.8 172.8

Ra's MOS 21.1 38.4 71.8 64.5 116.7 216.9
Extended MOS (1) 21.1 38.4 71.8 64.5 117.6 216.9
Extended MOS (3) 12.1 20.5 35.1 42.7 67.9 111.7

of the full-search VQ but reduces the total operations to about 3.6% at MVDR Beamforming and Generalized Sidelobe

the codebook size of 1024. Cancellation Based on Inverse Updating with
In the conventional MOS algorithm [2], the memorybof_width x Residual Extraction

N bits for storingf, (¢, )for all 7 is required in addition to the memory

for the codebook. In contrast, the additional memory for stofirig; — Marc Moonen and lan K. Proudler

ay) for all i andk is bit_width x m x N bits in the extended MOS
algorithm, which is proportional to the number of anchor vectors. We

found that ifbit_width was less than 12, the image quality was de- Abstract—The “standard” minimum variance distortionless response
graded (MVDR) beamforming algorithm of McWhirter and Shepherd [5] is

known to suffer from linear roundoff error buildup. An alternative [7] has
been developed based on the so-called inverse QR-updating algorithm.
It is amenable to pipelined implementation, but unlike the McWhirter
VI. CONCLUSION and Shepherd algorithm, it is stable numerically. Here, a variant of the
. . . latter algorithm that combines (part of) the McWhirter and Shepherd
By introducing & new concept of the relative vector mean, we exgocedure into the inverse QR updating scheme is discussed. This makes
tended the MOS algorithm [1], [2] so that the inequalities for multiplehe derivation of the algorithm less complex compared to the original
anchor vectors can be exploited. In the extended MOS algorithm, W& Furthermore, by making use of a residual extraction property of the
reduced the computational cost substantially by reducing the searcH’\’/IPl\é/e-DrEe ulpdag:lg pr_c;ﬁedure, ”ar(; |pterest||r)g gorfzs?ot;ldence OII i_he new
gion further with multiple inequalities. The extended MOS algorithr’gxp"Cm;rge(\)lre'algnd with so-cafled “generalized sidelobe cancefiation” 1
required only 66.2% of the number of operations used in the previous
MOS algorithm, while producing the same encoding quality as the

full-search VQ. We also proposed a greedy algorithm for selecting the
anchor vectors by using the cost functions based on the cardinality ofrhe minimum variance distortionless response (MVDR) beam-

the minimal search region. Furthermore, we also explained how 10 dgzing problem amounts to minimising, in a least-squares sense, the

termine the number of the anchor vectors with a formula that eStimaE:eosmbined outout from an antenna arrav subiectiioindependent
the number of multiply operations. The contribution of this brief is tQ P y ) P

show the extensibility of the MOS in fast VQ by introducing the ancthinear equality constraints, each of which corresponds to a given ‘look
vectors. direction’. By “independent,” we mean that the minimum array output

is computed for each constraint in turn. In other woddsndependent
recursive least-squares problems have to be solved at once. The aim is

to derive efficient (parallel) algorithms for this.
[1] G-Inggi, “FﬁZilgf{i‘tlngfor fulllé%%afch VQ encodinglectron. Lett, In [4], a parallel solution is given for the linearly constrained recur-
[2] ;OW Ii;)grlld J.-K. Kim, :‘Alfjgset meaﬁ-distance-ordered partial codebodclzve least-squares prpblem, with a constranetprocessor coup.led o
search algorithm for image vector quantizatiolsEE Trans. Circuits a Gentleman-Kung triangular array [1]. For MVDR beamforming, one
Syst. 1] vol. 40, pp. 576-579, Sept. 1993. would then needy such triangular arrays, which is inefficient. The
[3] C.D.BeiandR.M. Gray, “An improvement of the minimum distortionso-called “generalized sidelobe canceller” of [2] is also based on con-
encoding algorithm for vector quantizatiofZEE Trans. Commumvol.  siraint pre-processing, and hence, equally unsuitable for the MVDR

COM-33, pp. 1132-1133, Oct. 1985. -
[4] C.-M. Huaﬂ%ﬁ Q. Bi, G. S. Stiles, and R. W. Harris, “Fast full seardproblem. In [5], however, McWhirter and Shepherd have shown how

equivalent encoding algorithms for image compression using vect§te beamforming proplem can be solved .Wi.th only one triangular array,
quantization,lEEE Trans. Image Processingol. 1, pp. 413416, July coupled to a constraimgostprocessor. This is commonly accepted as
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