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Extended Mean-Distance-Ordered Search Using Multiple
and Inequalities for Fast Vector Quantization

Sun-Young Choi and Soo-Ik Chae

Abstract—Mean-distance-ordered search (MOS) algorithms [1], [2]
were proposed as a fast and efficient method for vector quantization (VQ)
encoding. However, the efficiency of MOS algorithms is limited because
they use only one inequality in reducing the search region. Therefore,
we propose an extended MOS algorithm using multiple anchor vectors
which exploits multiple and inequalities to reduce the search region
further. We also describe a greedy algorithm for selecting an anchor vector
set that reduces the computational cost of the extended MOS algorithm.
For eight test images, the number of operations required in the extended
MOS algorithm was 66.2% of that in the previous MOS algorithm on the
average when the codebook size is 256, while producing the same encoding
quality to that of the full-search VQ.

Index Terms—Anchor vector, mean-distance-ordered search, norm, tri-
angular inequality, vector mean, vector quantization..

I. INTRODUCTION

Vector quantization (VQ) is an efficient data-encoding technique that
exploits dependencies among vector components [9]. The full-search
VQ finds the nearest code vector that has the minimum distortion from
an input vector by exhaustively searching all code vectors in the code-
book. Because its computational cost is so high, its utilization is lim-
ited. Therefore, many fast VQ algorithms have been developed that re-
duce the computational cost substantially while producing the same
reconstructed image quality as the full-search VQ.

These fast algorithms can be grouped into three categories: partial
distortion elimination (PDE) [3], triangular inequality elimination
(TIE) [4]–[6], and mean-distance-ordered search (MOS) [1], [2]. A
TIE-based VQ using multiple anchor vectors that were called control
vectors in [5] can further reduce the search region by intersecting
the search regions for all anchor vectors [9]. An anchor vector is
a reference point from which its distance to each code vector is
precomputed and stored. After eliminating some of the code vectors
by using the inequality for an anchor vector, we can obtain a subset
of the codebook that contains the nearest code vector to the given
input vector, which is called the search region for the anchor vector.
However, the mean-distance-ordered search (MOS)-based VQ [1], [2]
exploits only one inequality between the vector mean-distance and the
distortion of input and code vectors.

Therefore, the aim of this paper is to propose an extended MOS al-
gorithm that exploits thè1 and`2 inequalities for multiple anchor vec-
tors. In Section II, the conventional MOS algorithm is described briefly.
In Section III, we first derive a generalized inequality between the dis-
tortion and the vector mean-distance relative to an anchor vector by
using an`1 and`2 inequality. Because an inequality can be obtained
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for each anchor vector, we introduce an extended MOS algorithm using
multiple inequalities for an anchor vector set. Although a VQ based on
the extended MOS algorithm can further reduce the search region for
each input vector, the reduction in its computational cost depends on
the anchor vectors. Therefore, we also propose a greedy algorithm for
selecting an anchor vector set that minimizes the computational cost
of the extended MOS algorithm in Section IV. Simulation results are
presented in Section V, followed by the conclusion in Section VI.

II. MOS

For an input vectorx = (x1; x2; � � � ; xn) and a code vectorci =
(ci1; ci2; � � � ; cin), the MOS algorithm [1], [2] uses the inequality be-
tween the mean distance and the distortion

n

k=1

xk �
n

k=1

cik

2

� n � d2(x; ci) (1)

wheren is the dimension of the input and code vectors andd(x; ci) =
( n

k=1 (xk � cik)
2)1=2. Hereafter, we will call n

k=1 xk the mean of
a vectorx although it is the sum of the vector components. In addition,
we also refer to the left-hand side of (1) as the squared mean-distance
(SMD) betweenx andci just to follow the convention in [2].

In the MOS algorithms, the code vectors are pre-ordered according
to their vector means. For a given input vectorx, the search procedure
finds the nearest code vector in the`2 distance sense, starting from
the initial code vector, which is the nearest code vector tox in the
squared mean-distance sense. Then, the procedure moves up and down
from the initial code vector alternately in the preordered list. Letci
be the code vector having the current minimum distortion,d(x; ci),
among the code vectors searched so far. If a code vectorcj satisfies the
inequality

n � d2(x; ci) �
n

k=1

xk �
n

k=1

cjk

2

(2)

we do not need to calculated(x; cj) becaused(x; cj) � d(x; ci).
Furthermore, we do not check (2) for all the code vectors,ck that are
further away fromci thancj in the pre-ordered list because their SMD’s
are larger thann � d2(x; ci).

III. EXTENSION OFINEQUALITY USING RELATIVE VECTORMEANS

First, the following inequality betweeǹ1(x) and`2(x) is always
satisfied [7]:

`1(x) �
p
n � `2(x) (3)

where ap-norm of ann-dimensional vectorx denoted as̀p(x), is de-
fined by

`p(x) = kxkp = (jx1jp + � � �+ jxnjp)1=p ; p � 1: (4)

Assume that a setA of anchor vectors is given, which was intro-
duced in the TIE-based VQ [5], [6], [9]. For each anchor vectorak =
(ak1; ak2; � � � ; akn) in A, we define a relative vector mean ofx to an
anchor vectorak as`1(x � ak). The relative vector mean is useful in
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Fig. 1. Relative vector means tom anchor vectorsfa ; a ; � � � ; a g are precalculated and stored for each code vectorc .

deriving an inequality for each anchor vector. Using (3) and the trian-
gular inequality for̀ 1, we obtain

(`1(x� ak)� `1(ci � ak))
2 � n � d2(x; ci): (5)

Inequality (5) is a simple extension of (1) for an arbitrary anchor vector,
which reduces to (1) whenak = (0; 0; � � � ; 0).

For an input vector,x, and its initial code vector,ci, we can obtain
a search regionS(ak; ci; x) = fcj j(`1(x � ak) � `1(cj � ak))

2 <
n � d(x; ci)

2 for cj 2 
g for each anchor vector,ak in A. Here,

is the codebook. Therefore, we can obtain the reduced search region
S, which is the intersection of the search regionsS(ak; ci; x), for all
ak 2 A.

We define the principal anchor vector as an anchor vector whose
inequality is tested first. In the extended MOS algorithm, the code vec-
tors are preordered in ascending order of their relative vector means for
the principal anchor vectora1. Furthermore, for each code vector, its
relative means to all other anchor vectors are also pre-calculated and
stored, as shown in Fig. 1.

For a codebook
 and an anchor vector setA, the extended MOS
algorithm searches the pre-ordered codebook, as described in the fol-
lowing pseudo code, wherem andN are the number of the anchor vec-
tors and the codebook size, respectively.

Get an input vector ;
Find its initial code vector with a bi-
nary search;

; Up = Down = true;
while (((Up == true) or (Down == true))
and (( ) or ( ))) {

if ((Up == true) and ( )) then
{ ; /* index for the upper search
*/

if ( )
then Up = false;

else { for and
;

if (( ) and ( ))
then ; } }
if ((Down == true) and ( )) then {
; /* index for the lower search */

if ( )
then Down = false;

else { for and
;

if (( ) and ( ))
then ; } }
} /* end of while */.

IV. SELECTING THE ANCHOR VECTORSET

We now describe a greedy algorithm for selecting the anchor vector
set that minimizes the computational cost, which greatly affects the per-
formance of the extended MOS algorithm. To reduce the computational
complexity of the greedy algorithm, we use the codebook
 as a good
representative of the input vector space because the codebook is much
smaller than the input vector spaceLn, whereL = f0; 1; � � � ; 255g.
By the same token, we also limit the candidate anchor vector setC to


[ V , from which we select the anchor vectors. Here,V is the subset
of all the vertices inLn, which is

V = f(b1; b1; b2; b2; � � � ; bn=2; bn=2)

�jbi 2 f0; 255g; 1 � i � n=2g: (6)

The reason of includingV in C is that the vertices are good candidates
of anchor vectors, which was confirmed with the experimental results.
We found that the principal anchor vector is usually the zero vector (0,
0, � � �, 0) in the simulations we had done.

For a given input vector,x, first we find its initial code vectorci in
the preordered list of the code vectors for the principal anchor vector
a1. Then, we do not need to calculate the distanced(x; cj)for any code
vectorcj that satisfies the inequalityn � d2(x; ci) � (`1(x � a1) �
`1(cj�a1))

2 Here, the SMD ofx andcj for the principal anchor vector
a1 is a lower bound ofn � d2(x; cj). When the SMD ofx andcj is a
tighter lower bound ofn � d2(x; cj), it is more probable to reject the
codecj that is not nearer tox thanci in the`2 distance sense so that
we need not calculate its distance tox.

Therefore, we select a vectora 2 C as an anchor vector, such that
the vectora minimizesn �d2(xp; cj)� (`1(xp�a)� `1(cj�a))2 on
the average forcj ; xp 2 
. The cost functionf1(�) for selecting the
principal anchor vector is expressed as

f1(a) =

N

p=1

N

j=1

n � d2(xp; cj)� (`1(xp � a)� `1(cj � a))2 : (7)

Then, the principal anchor vector is determined as

a1 = argmin
a2C

(f1(a)):

We used another measure in selecting the other anchor vectors. First,
for an anchor vectorak and a vectorxp 2 
, we define the min-
imal search regionSmin(ak; xp) as a search region obtained when the
nearest code vectorcl to xp is used as its initial code vector

Smin(ak; xp) = fcj j(`1(xp � ak)� `1(cj � ak))
2

< n � d2(xp; cl); cj 2 
g (8)

where

cl = argmin
c 2
; c 6=x

fd(ck; xp)g:

Assuming that a set of pre-selected (k � 1) anchor vectorsAk�1 =
fa1; a2; � � � ; ak�1g is given, we select another vectora 2 C�Ak�1

as the nextkth anchor vector such that the vector a minimizes the cardi-
nality sum of the intersection of thek minimal regions over allxp 2 
,
which is a greedy algorithm. The cost functionf2(�) for selecting the
kth anchor vector is represented as

f2(k; a) =
1

N

N

p=1

k�1
\
i=1

Smin(ai; xp) \ Smin(a; xp) (9)
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TABLE I
COMPUTATIONAL COSTS FORTHREE TEST

IMAGES WHEN THE CODEBOOK SIZE IS 256

wherejCj is the cardinality of a setC. Then, thekth anchor vector is
determined as

ak = argmin
a2C�A

(f2(k; a)); for all k = 2; � � � ; m: (10)

In the extended MOS algorithm withm anchor vectors, the average
number of multiplications per a vector component (a pixel) required in
encoding an input vector can be roughly estimated with

g(m) � f2(m; am) +
1

n
�

m

k=1

f2(k; ak) (11)

wheren andm are the dimension of the vector and the number of se-
lected anchor vectors, respectively. The first term is the expectation of
the cardinality of the intersection ofm minimal search regions for the
representative input vector space. The second term is the upper bound
of the expectation of the SMD computation divided by the dimension
of the vector because we stop checking the inequalities(`1(x� ak)�
`1(cj � ak))

2 < n � d2(x; cmin) for ak 2 A if the inequality for any
one of the anchor vectors is not satisfied. From (11), we can estimate
the optimal number of anchor vectors as

m = argmin
m

(g(m)):

V. SIMULATION RESULTS

A codebook
 was generated with the Linde–Buzo–Gray algorithm
[8] using training images of512�512 size such as Boats, Bridge, Sail,
Crowd, and Einstein. Codebook size is 256 and vector dimension is 16.
As explained in Section IV, the anchor vectors were selected by using
(7) and (9). The computational cost of the extended MOS algorithm was
compared to those of the full-search (FS) VQ, Ra’s MOS algorithm [2]
and Li’s TIE-based VQ [5]. Here, the number of operations per pixel
was used to measure the computational cost in all the simulation results.

As shown in Table I, the computational cost of the extended MOS
algorithm is reduced substantially for all the test images, compared to
the other algorithms. The digit in the parenthesis indicates the number
of anchor vectors used. Note that three anchor vectors were selected in
the extended MOS VQ as well as in the Li’s TIE-based VQ. The former
is better than the latter, because the number of compare operations is
reduced to about half and the calculation of the`1�`2 distance is much
simpler than that of thè2 distance.

The computational costs for the fast VQ algorithms, which were av-
eraged for eight test images such as Lena, F16, Jaguar, Pepper, Couple,
Girl, Baboon, and Zelda, are shown in Table II. In the extended MOS

Fig. 2. Average number of operations versus the number of anchor vectors in
the extended MOS algorithm when the codebook size is 256.

TABLE II
AVERAGE COMPUTATIONAL COSTS FOREIGHT TEST IMAGES WHEN THE

CODEBOOK SIZE IS 256

(a) (b) (c)

Fig. 3. (a) Original Lena image (512� 512). (b) Reconstructed image of
full-search VQ (PSNR : 31.75 dB). (c) Reconstructed image of extended MOS
VQ (PSNR : 31.75 dB), when the codebook size is 1024.

algorithm, the number of operations of multiply, and add/subtract op-
erations were reduced by 42.7% and 35.1%, respectively, while that
of compare operations is increased by 40.0%, when compared to Ra’s
MOS algorithm [2]. However, note that the portion of compare opera-
tion is small in the total operations. Assume that all types of operations
have equal computational cost although multiplication is more com-
plex than addition or comparison. Then, the total number of operations
in the extended MOS algorithm is reduced to 66.2%, when compared
to Ra’s MOS algorithm.

If more anchor vectors are used, the cardinality of the search region
is reduced further although the number of the SMD computation is in-
creased, as shown in Fig. 2. From the simulation results, we found that
three anchor vectors was optimal for the codebook of 256 codes with
dimension 16. We also compared the computational cost for fast VQ
algorithms when the codebook size was changed from 256 to 1024, as
shown in Table III. In Table III, the computational complexity of the ex-
tended MOS using three anchor vectors is reduced substantially, com-
pared to that using only the principal anchor vector. We found that the
percentage of reduction in the number of multiplication in the extended
MOS algorithm was increased from 43% to 51% as the codebook size
increases from 256 to 1024, compared to Ra’s MOS algorithm [2].

Fig. 3 shows the original Lena image and the reconstructed images
of full-search VQ and the extended MOS VQ when codebook size is
1024. The extended MOS produces the same VQ coding quality to that
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TABLE III
AVERAGE COMPUTATIONAL COSTS FOR THECODEBOOK SIZES FROM 256–1024

of the full-search VQ but reduces the total operations to about 3.6% at
the codebook size of 1024.

In the conventional MOS algorithm [2], the memory ofbit width�

N bits for storing`1(ci)for all i is required in addition to the memory
for the codebook. In contrast, the additional memory for storing`1(ci�
ak) for all i andk is bit width �m � N bits in the extended MOS
algorithm, which is proportional to the number of anchor vectors. We
found that ifbit width was less than 12, the image quality was de-
graded.

VI. CONCLUSION

By introducing a new concept of the relative vector mean, we ex-
tended the MOS algorithm [1], [2] so that the inequalities for multiple
anchor vectors can be exploited. In the extended MOS algorithm, we
reduced the computational cost substantially by reducing the search re-
gion further with multiple inequalities. The extended MOS algorithm
required only 66.2% of the number of operations used in the previous
MOS algorithm, while producing the same encoding quality as the
full-search VQ. We also proposed a greedy algorithm for selecting the
anchor vectors by using the cost functions based on the cardinality of
the minimal search region. Furthermore, we also explained how to de-
termine the number of the anchor vectors with a formula that estimates
the number of multiply operations. The contribution of this brief is to
show the extensibility of the MOS in fast VQ by introducing the anchor
vectors.
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MVDR Beamforming and Generalized Sidelobe
Cancellation Based on Inverse Updating with

Residual Extraction

Marc Moonen and Ian K. Proudler

Abstract—The “standard” minimum variance distortionless response
(MVDR) beamforming algorithm of McWhirter and Shepherd [5] is
known to suffer from linear roundoff error buildup. An alternative [7] has
been developed based on the so-called inverse QR-updating algorithm.
It is amenable to pipelined implementation, but unlike the McWhirter
and Shepherd algorithm, it is stable numerically. Here, a variant of the
latter algorithm that combines (part of) the McWhirter and Shepherd
procedure into the inverse QR updating scheme is discussed. This makes
the derivation of the algorithm less complex compared to the original
[7]. Furthermore, by making use of a residual extraction property of the
inverse updating procedure, an interesting correspondence of the new
MVDR algorithm with so-called ‘generalized sidelobe cancellation’ is
explicitly revealed.

I. INTRODUCTION

The minimum variance distortionless response (MVDR) beam-
forming problem amounts to minimising, in a least-squares sense, the
combined output from an antenna array subject toK independent
linear equality constraints, each of which corresponds to a given ‘look
direction’. By “independent,” we mean that the minimum array output
is computed for each constraint in turn. In other words,K independent
recursive least-squares problems have to be solved at once. The aim is
to derive efficient (parallel) algorithms for this.

In [4], a parallel solution is given for the linearly constrained recur-
sive least-squares problem, with a constraintpre-processor coupled to
a Gentleman-Kung triangular array [1]. For MVDR beamforming, one
would then needK such triangular arrays, which is inefficient. The
so-called “generalized sidelobe canceller” of [2] is also based on con-
straint pre-processing, and hence, equally unsuitable for the MVDR
problem. In [5], however, McWhirter and Shepherd have shown how
the beamforming problem can be solved with only one triangular array,
coupled to a constraintpost-processor. This is commonly accepted as
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