
Emulator environment based on an FPGA prototyping board

Kyung-soo Oh, Sang-yong Yoon, Soo-Ik Chae
System Design Group,

School of Electrical Engineering, Seoul National University 301-818,
San56-1, Shinlim-Dong, Kwanak-Gu, Seoul, 151-742, Korea

Email: {kyungsoo,syyoon,chae}@sdgroup.snu.ac.kr

Abstract

In this paper, we describe an emulator environment based
on an FPGA prototyping board. This emulator environment
is for functional verification of a multi-media processor we
are currently developing and for software development and
debugging of its application programs. For these purposes,
the emulator environment includes a debugging network
and provides virtual wires and some utilities, board control
functions, and a virtual FPGA board. With this environ-
ment, we verifies the functionality of a multi-media proces-
sor and implements its cycle level simulator

1 Introduction

Now, the verification procedure of a processor becomes
increasingly more important and time consuming. One of
the efficient verification methods is to use an FPGA proto-
typing board [1]. With an FPGA prototyping board, we can
verify the functionality of the processor at much higher
speed compared to the conventional software simulator.
Furthermore, we can test a processor at a system level, whi-
ch includes external memory, other ICs and I/Os before the
processor is fabricated into an IC.

Currently we are developing a multi-media processor for
the videophone of which base applications are H.263 for
video and g.723.1 for audio. Therefore, we developed an
emulator environment based on an FPGA prototyping board
as shown in Fig.1. We use the emulator for high-speed
functional verification of the multi-media processor and for
development of its application software.

This environment can be divided into two parts: hard-
ware and software. The hardware part is comprised of an
FPGA prototyping board, debugging networks and virtual
wires. The software part is comprised of a virtual board,
board control functions and some utilities. Because this
environment is simple and modular, it is easily expandable.

The rest of this paper is organized as follows. In Sections
2 and 3, we describe the hardware and software environ-
ment of the emulator respectively. In Section 4, we intro-

duce the target processor briefly and describe its porting
procedure into the FPGA prototyping board. Finally, the
conclusion is in Section 5.

PCI
ctrl

Run
ctrl

Debug
Slave

Debug
Master

Vch
ctrl

FPGA Board VHDL Library

DownLoad()
PCIreadData()

PCIreadStatus()
PCIwrite(int addr,int data)

Control Function

Virtual Board

partition supporter
virtual wire auto generator

virtual board maker

Utility

Emulator Environment

Figure 1: Emulator environment

2 Emulator environment: Hardware

2.1 Configuration of FPGA prototyping board

The overall structure of the FPGA prototyping board is
shown in Fig.2. We made the detail configuration of this
board for the requirement of verifying the multi-media
processor and for the desire to control the FPGA
prorotyping board more efficienly. Because of the flexible
structure of this board, it can be easily adapted to any other
processor or system.

As shown in Fig. 2, four virtex-1000 FPGAs, each of
which capacity is one million system gates, are mesh-
connected. We selected the mesh connection topology
because of its simplicity. Each FPGA has 80 physical wires
with its neighbors. We can expand the board capacity
easily by increasing the number of FPGA in mesh from 4 to

0-7695-0668-2/00 $10.00 � 2000 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 10, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

9. External memory components are three 1MB SRAMs
and an 4MB SDRAM with a 32bit data bus. For
communication with another board, several external 50pin
ports are provided, each of which is connected with an
FPGA. FPGA configuration is accomplished with a parallel
port and the internal debugging operations are controlled
through a PCI interface chip (PCI9050).

PCI 9050PCI 9050

VIRTEX
1000
(slave1)

VIRTEX
1000
(slave1)

R
O

M
R

O
M

VIRTEX
1000

(Master)

VIRTEX
1000

(Master)

VIRTEX
1000
(slave2)

VIRTEX
1000
(slave2)

80

32bit
VIRTEX

1000
(slave3)

VIRTEX
1000
(slave3)

80

50pin External port

80

80

Parallel port

SDRAM
4MB

SDRAM
4MB

SRAM
1MB

SRAM
1MB

32bit SRAM
1MB

SRAM
1MB

32bitSRAM
1MB

SRAM
1MB

32bit

50pin External port50pin External port

Figure 2: FPGA prototyping board

2.2 Debugging network

One of the important functions of this emulator is debug-
ging capability. Therefore, we did not restrict the debugging
function to the memory module. To trace all internal regis-
ters and signals, we tried to implement debugging networks
that are hierarchical and modular. Fig.3 is its internal de-
bugging network and Fig.4 is its external debugging net-
work.

O n ly in
th e m a s te r

B o th in
th e m a s te r
a n d s la v e s

P C I
C tr l

P C I
C tr l

D eb u g
C tr l

D eb u g
C tr l

C o re C lk
G en

C o re C lk
G en

R u n C tr lR u n C tr l

S y s te m C o reS y s te m C o re

V w ire
C tr l

V w ire
C tr l

P C I9 0 5 0

Figure 3: Debugging network (internal)

The front end of the debugging network is the PCI
controller which sends or receives control, address and data

with PCI9050. This PCI controller has internal address and
data buffers.

In read operation, this controller only sends the value of
the internal data buffer to PCI9050.

Master Slave1 Slave2 Slave3

DEBUG_MODE
DEBUG_ADDR

DEBUG_DATA_IN
DEBUG_DATA_OUT

CORE_CLK1

CORE_CLK2

Figure 4: Debugging network (external)

In write operation, this controller store address and data
into the internal buffer and then activates the debug
controller. The received address is decoded as shown in
Fig.5. Chip Id and Local Id determine which debug module
will be activated.

3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 0

C h ip Id L o c a l Id R /W A d d re ss

Figure 5: Address field

At first, if the chip id is not “0000”, the debug controller
in the master sends the received address and data to all
slave FPGAs through the dedicated debug wires. Then the
debug controller with the same chip id go to its debug state.
In the debug state, the debug controller sends a request
signal to the target debug module which has the same local
id. After the debug operation ends, the activacted debug
module returns an acknowledge signal and the result to its
debug controller. Finally, this result is transferred to the
data buffer of the PCI controller.

To run the target processor step by step, we can use
several methods. One method is to control the core clock of
the target processor. Another is to use special debug signals
if the function is supplied by the processor. In the target
multi-media processor, there is an debug_mode signal. If
this signal is asserted, all pipeline registers are disabled and
the processor stop immediatly.

In our implementation, the run controller, one of the de-
bug modules controls this debug_mode signal. This run
controller has a special counter. By a debug-write operation,
this counter is set to the debug data value and decreases its
value by one whenever the core clock of the processor tog-
gles. If the counter becomes to zero, the run controller as-
serts the debug_mode signal and processor stops its opera-
tion. In addition to the step operation, we can implement a

0-7695-0668-2/00 $10.00 � 2000 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 10, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

break operation, with which the user can stop the processor
at a specific program counter.

2.3 Virtual wiring

As explained before, each FPGA has only 80 physical
wires to its neighbors. However, the number of signals be-
tween the partitioned modules is much more than this num-
ber. In partitioning the multi-media processor, we observed
that the maximum number of signals between two FPGAs
was about 1200. To solve this pin limitation, we decided to
use the virtual wiring method [2][3], which slows the clock
of the target processor to increase the number of signals
transferred between the FPGAs.

Logical
Outputs

Logical
Inputs

FPGA#1 FPGA#2

Logical
Outputs

Logical
Inputs

FPGA#1 FPGA#2

Shifter

Physical
wire

Virtual
wires

Figure 6: Virtual wire

For simplicity of the implementation, one virtual wire
controller in each FPGA controls all the virtual wire opera-
tions. “A1” and “A0” are the states for synchronizing to the
core clock of a target processor. “E#” is a state for the
evaluation of each combinational logic. “LD” is for loading
signals and “SHIFT” is for shifting signals in the virtual
wire.

When the core clock toggles, F1 has a new value and the
virtual wire controller starts its operation. After the evalua-
tion time of comb1 elapses, the virtual wire transfers the
result to comb2. Then comb2 starts its evaluation. In phase
2, the same operation repeats. When the core clock toggles
again, F2 has the correct value

If the target processor is partitioned as shown in Fig.7 (a),
a two-phase operation is sufficient for the correct execution.
However, we can manage any multiple-partition structure
by simply increasing the number of this phase.

Comb2Comb1F1 F2Comb2vwire vwire

FPGA1 FPGA2 FPGA3

(a) Partition structure

FPGA CLK

CORE CLK

VWIRE_STATE A1 A0E1LD SHIFT1 A1A0 A1

Core_flip-flopCore_flip-flop

E3LDE2 SHIFT2

phase 1 phase 2

DEBUG_MODE

Figure 7: (b) Virtual wire operation

3 Emulator environment: Software

In this section, we explain the software environment.
This software environment is comprised of a partition file
generator, a virtual wire auto generator, a virtual board gen-
erator and board control functions that are basic functions
of the emulator program.

ORIGINAL.VHDORIGINAL.VHD

PART0_CORE.VHDPART0_CORE.VHD

MODIFIED.VHDMODIFIED.VHD

Virtual Wire Auto GeneratorVirtual Wire Auto Generator

PART0.VHDPART0.VHD

Partition File GeneratorPartition File Generator

V6BOARD.VHDV6BOARD.VHD

Virtual Board GeneratorVirtual Board Generator

Cyclone Simulator

Emulator

PART0.RBTPART0.RBT

Synthesizer & Alliance2.1Synthesizer & Alliance2.1

FPGA BOARD(PC)

Emulator

partitioned VHDL file

virtual wired VHDL file

manually modified VHDL file

Figure 8: Software Environment

0-7695-0668-2/00 $10.00 � 2000 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 10, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

We do not generate any special intermediate format in
partitioning and virtual wiring. All input files and output
files are VHDL based. Currently this environment requires
some manual jobs. Before partitioning, we need to make
several modifications.

A. If the size of a cache memory is larger than the size a
FPGA can handle, it is necessary to make an appro-
priate cache model with an external SRAM.

B. If we will access a memory module or signal through
the debugging network, it is necessary to insert a de-
bug-interface to this module or signal as described in
the section 2.2.

3.1 Partitioning

Presently, partitioning is mostly based on manual jobs.
Usually, the top VHDL file consists of several components.
In this step, we assume that any component in the top
VHDL file must be fitted into an FPGA after logic synthesis.
However, this procedure can be automated without diffi-
culty.

Each component is referred to with its instance name. By
using this instance name, we need to write a partition direc-
tive file and run the partitioning utility to generate the parti-
tioned VHDL files. We can increase the target system speed
if we partition the system between flip-flop modules, which
may reduce the number of virtual wire operation phase as
described in section 2.3.

3.2 Virtual wiring

In this step, physical wires must be converted into virtual
ones and some debug controllers are inserted into the parti-
tioned files. We need to write a virtual-wire specification
file, which specifies the operation phase number, the num-
ber of required virtual wires and evaluation times and run
the virtual wire generator to generate the full virtual wired
VHDL files. If we insert some debug-interface modules,
their appropriate debug controller and debug signals are
inserted in this step.

3.3 Virtual board generation

There might be several bugs when a target processor is
mapped into the FPGA board. These bugs might be inserted
mainly due to the following reasons.

A. Imperfect software utility.

B. Incorrect debug-module.

C. Incorrect usage of the board control function.

D. Discord between the partition structure and the virtual
wire operation

E. Timing problem such as clock skew and delay.

“A” occurs frequently in the software utility development
stage, which is almost fixed. “B”, ”C” and ”D” arise due to
the manual works, which can be eliminated if we automated
it. “E” is a critical problem in a real board, which might be
eliminated by simply slowing the operation clock

We might spend much time in finding when, where and
why these bugs are inserted on the real board. However,
these bugs can be easily detected and fixed with the virtual
board.

The virtual board is a VHDL file that includes all virtual
wired components, external memories and a PCI9050 sim-
plified model. Each virtual wired component can be
mapped into an FPGA if the operation of the target proces-
sor is correct in the virtual board. Virtual external memories
and the PCI9050 model have the same functionality with
the real hardware. Especially, the virtual PCI9050 model
includes C interface functions, called slang interface (Syn-
opsys), which can communicate with the emulator program
through socket programming. With the conventional VHDL
simulation tools, we can trace the significant signals and
detect the bugs more easily.

Slave3 Slave2

Slave1Master

PCI9050

RAM

RAM RAM

RAM

Emulator
SW

Emulator ver0.5
v6emu:0>>

waver

Kernel

Virtual Board

Figure 9: Virtual board

3.4 Board control function

We provide two basic board control functions, which are
PCIreadData () and PCIwriteData (int addr, int data). They
activate the operations explained in the section 2.2 for the
debugging network. With these basic functions, we can con-
struct the debug functions such as debugRead (int chipId,
int localId, int addr) and debugWrite (int chipId, int localId,
int addr, int data), which are more useful interface function.

If we insert debug modules in the target processor, we
must assign chip id and local id to each debug module. We
can activate a debug module by simply calling these func-

0-7695-0668-2/00 $10.00 � 2000 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 10, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

tions without understanding the complicated debug proce-
dure in detail.

For example, when the debug module of the data cache
is located in slave3, whose chip id is 3, and the local id is
“0”, we can read the content of address x by calling debu-
gRead (3,0,x). The control hierarchy is as Fig.10.

EmulatorEmulator

Basic FunctionBasic Function

CommandCommand

Device DriverDevice Driver

PCI chipPCI chip

Debug controllerDebug controller

PCI controllerPCI controller

FPGA Porting SystemFPGA Porting System

Figure 10: Board control hierarchy

4 Emulator Implementation

4.1 Feature of target processor

We designed the target processor as a core for video-
telephone and implemented its emulator on this emulator
environment. The basic applications are H.263 for video
codec and g.723.1 for audio codec. In this emulator, we
verify the kernel of each application.

X-data
memory

Y-data
memory

data
cache

instruction
cache

A regfiles B regfiles

ExeUnit0 ExeUnit1 Coprocessors

DMA

instruction-
decode

/
address-

generation
/

control

SDRAM

address /
special

registers

Video
Accelerate

Unit

accumulator accumulator accumulator

Figure 11: Target processor

Fig.11 is the block diagram of the processor. To acceler-
ate multimedia-specific applications, the architecture of this

processor has several features. It merges the features of
RISC and DSP and its instruction set is extended to acceler-
ate both video and audio applications. Furthermore, it in-
cludes X/Y memories to reduce both bandwidth and latency
for multimedia applications with frequent memory accesses.

4.2 Porting procedure

First, we tried to find out the size of each sub-component
and analyze the signals among them. From this information,
we partitioned the multi-media processor as shown Fig.12.
The value in the arrow-box is the ratio of used virtual wires
to the available virtual wires. The value in the square-box is
the ratio of mapped logic blocks to the total available logic
blocks in a single FPGA.

data path
(88%)

95%

36%

Memory
Accumulator

(66%)

VPU
(30%)

Controller
Register
(75%)

93%

83%

D/X/Y
Cache

Instruction
Cache

Figure 12: Partition

Second, we modified the internal memory such as in-
struction cache, data cache and X/Y memories to the cache-
like model by using an external SRAM. These cache models
use internally fast clock which is also used in debug con-
troller, virtual wire operation and SRAM access, and are
synchronized to the slow clock which is used by the target
processor.

FPGA CLK

CORE CLK

I0 I1 I2 I3

D0 D1 X0 X1 Y0 Y1

Instruction
Cache

D/X/Y Cache

Figure 13: Cache model

Third, we ran partition generator, virtual wire generator
and virtual board generator. The number of virtual wire
operation phase was two and the core clock is 80 times
slower than the fast clock.

0-7695-0668-2/00 $10.00 � 2000 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 10, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

Fourth, we implemented a simple emulator program that
included some basic commands such as program, step, view
register, view memory and reset. With the virtual board and
the emulator program, we tested the functionality of the
processor.

Finally, by mapping the target processor into the real
board and using the same emulator program, we can also
test the functionality of the processor. The effective opera-
tion speed of the processor is currently 128 KHz, which can
be increased with optimizing the partition.

4.3 Result

The full test of this emulation environment is now going
on. We can verify the RTL of the target processor faster and
reflect its changes more flexibly with this emulator. After
this verification ends, we plan to upgrade the user interface
that is similar to the software simulator already imple-
mented in the early stage of the processor development.

5 Conclusion

We implemented a flexible emulator environment and
verified our multi-media processor in this environment.
After most verification is completed, we will release this
emulator for our software developers. Currently, we are also
developing an expanded FPGA prototyping board with 3x3
mesh, which includes nine FPGAs and a flash ROM, and
more upgraded software and hardware environment. The
target of this second version is to verify the functionality of
the multi-media system with dual processors. This dual
processor system is targeted to run the applications that
execute a web browser and a voice recognizer concurrently.

References

[1] Sudheendra Hangal and Mike O’Connor, “Performance
Analysis And Validation Of The PicoJava Processor”, IEEE
MICRO, May/June 1999.

[2] J. Babb. Virtual Wires, “Overcoming Pin Limitations in
FPGA-based Logic Emulator”, MS Degree Thesis, MIT 1994.

[3] M. Dahl, “An Implementation of the Virtual Wires Intercon-
nect Scheme”, MS Degree Thesis, MIT, 1994.

[4] Xilinx inc,” Virtex 2.5V Field Programmable Gate Arrays”,
Technical Manual, May 1999.

[5] Duncan A. Buell, Jeffrey M. Arnold, Walter J. Klein-
felder,”Splash2: FPGAs in a Custom Computing Machine”,
IEEE Computer Society Press.

0-7695-0668-2/00 $10.00 � 2000 IEEE

Authorized licensed use limited to: Seoul National University. Downloaded on November 10, 2009 at 21:48 from IEEE Xplore. Restrictions apply.

