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ABSTRACT

In this paper, we present frequency-domain implementa-
tions of two adaptive multichannel blind deconvolution fil-
ters that employ the independent component analysis prin-
ciple. The proposed implementations achieve considerable
computational gains, which is shown by performing de-
tailed analysis on the computational complexity. Particu-
larly, our implementations incorporate a nonholonomic con-
straint to deal with overdetermined cases. The developed
algorithms were successfully applied to the blind separation
of real-world speech signals.

1. INTRODUCTION

Several real-world audio signals recorded simultaneously in
a room with an array of microphones are usually modeled
as different linear convolutive mixtures of unknown origi-
nal audio signals such as speech and music [1]. To sepa-
rate these signals, adaptive finite impulse response (FIR) fil-
ters with thousands of filter coefficients are often employed.
When the impulse response of the room is not givena priori,
the separation task is reduced to multichannel blind decon-
volution (MBD) problem. The well-knowncocktail party
problemis one of typical examples of the MBD task.

Time-domain multichannel adaptive FIR filters with a
number of filter coefficients need much computation if they
employ sample-by-sample updating strategy [2], [3], [4].
One way to reduce the computational complexity is to use
adaptive infinite impulse response (IIR) filters. However,
they suffer from instability and local minima problems. An
alternative approach is to employ block updating strategy in
which the filter coefficients are kept fixed during a block of
data and then are updated once at the end of the block. Such
block adaptive FIR filters can be efficiently implemented in
the frequency domain using fast Fourier transform (FFT)-
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based block processing. Considerable savings in the com-
putational complexity are achieved by performing fast con-
volution and correlation with a proper data sectioning tech-
nique such as the overlap-save and overlap-add methods [4].

In general, there are two approaches in obtaining those
frequency-domain adaptive filters. One is to derive them di-
rectly in the frequency domain and the other is to realize
time-domain block adaptive filters equivalently in the fre-
quency domain [4]. For least mean-square (LMS) adaptive
filters, it is known that both approaches are equivalent to
each other. However, this is not the case for adaptive MBD
filters [3]. Thus, these two approaches have been investi-
gated separately so far [5]. The former approach allows to
decompose a convolutive mixing problem in the time do-
main into a number of instantaneous mixing problems in the
frequency domain and then solves each instantaneous mix-
ing problem independently for the corresponding frequency
bin. However, this approach suffers from scaling and per-
mutation indeterminacy problem at each frequency bin. In
addition, it is not fully revealed yet what nonlinear function
is suitable for the adaptation in the frequency domain. Al-
though there have been several heuristic methods to cope
with them, they are still open problems.

This paper focuses on the latter approach since such
problems do not occur in that approach [5]. In particular,
we are interested in two famous adaptive MBD algorithms
using the independent component analysis (ICA) principle:
the standard gradient and natural (or relative) gradient MBD
algorithms. By applying the FIR polynomial matrix alge-
bra, Leeet al. directly formulated these two algorithms in
the frequency domain and mentioned that they could be re-
alized with block LMS techniques [6], [7], [8], [9]. How-
ever, their formulations did not correspond precisely to the
time-domain block implementations of the two algorithms
and detailed computational complexity analysis was not in-
cluded, which motivates this work.

Therefore, the goals of this paper are twofold: 1) to
present how to implement block versions of the two time-



domain adaptive MBD algorithms precisely in the fre-
quency domain and 2) to analyze their computational com-
plexities in detail. To remove the matrix inversion oper-
ation therein and to deal with overdetermined cases effi-
ciently, modified versions of the two adaptive MBD algo-
rithms are employed in our implementations, which also
discriminates them from those of Leeet al.. For a demon-
stration purpose, the proposed implementations were tested
for 2 channel real-world speech signals provided by TeWon
Lee [6], [7], [8], [9].

2. MULTICHANNEL BLIND DECONVOLUTION
BY INDEPENDENT COMPONENT ANALYSIS

2.1. Multichannel Blind Deconvolution

Recently, multichannel blind deconvolution has attracted
much interest due to its promising applications in signal
processing and wireless communications [10]. In MBD
tasks, ann-dimensional vector of observationsx(t) =[x1(t) � � �xn(t)]T at a discrete timet is assumed to be given
by a linear convolutive mixture of anm-dimensional vector
of unobservable source signalss(t) = [s1(t) � � � sm(t)]T :x(t) = 1Xk=�1Hks(t� k); (1)

whereHk is an (n�m) mixing matrix at time lagk and the
superscriptT denotes matrix transpose.

Then, the goal of MBD is to obtain a deconvolution
filter of (m � n) separating matrices,Wk, �1 < k <1, such that them-dimensional recovered vectory(t) =[y1(t) � � � ym(t)]T given byy(t) = 1Xk=�1Wkx(t� k) (2)

corresponds to a scaled, permuted, and delayed version of
the source vectors(t). Most MBD algorithms have tried to
estimate this filter adaptively with the following adaptation
rule: for�1 < k <1,Wk(t+ 1) =Wk(t) + �(t)�Wk(t); (3)

whereWk(t) is the estimate ofWk at a discrete timet,�Wk(t) is an adaptation matrix, and�(t) is a small posi-
tive step-size. Then, the filter coefficients are adjusted with
time such thatlimt!1W(z; t)H(z) = PD(z) (4)

where W(z; t) = P1k=�1Wk(t)z�k, H(z) =P1k=�1Hkz�k, P is a permutation matrix, andD(z) is
a diagonal matrix whosei-th diagonal entry isaiz�ki when

ai is a non-zero scaling value andki is an integer delay
value [10].

In practice, the followingL-tap FIR filter is employed,
instead of the doubly-infinite deconvolution filter in (2):y(t) = L�1Xk=0Wk(t)x(t � k): (5)

There have been several adaptive methods to estimate the
deconvolution filterWk(t), k = 0; � � � ; L � 1. Among
them, ICA has received particular interest because of its
physical plausibility for various blind signal processing
problems. Thus, we briefly summarize two existing ICA-
based MBD algorithms, the standard gradient and natural
gradient MBD algorithms, in the following.

2.2. The Standard Gradient MBD Algorithm

The standard gradient MBD algorithm was first proposed by
Bell and Sejnowski [11] and was extended by Torkkola [1]
later. It is described as�W0(t) = (WT0 (t))�1 � '(y(t))xT (t) (6)�Wk(t) = �'(y(t))xT (t� k); k = 1; � � � ; L� 1; (7)

where (WT0 (t))�1 is the inverse matrix ofWT0 (t) and'(y(t)) = ('1(y1(t)) � � �'m(ym(t)))T is a component-
wise nonlinear function called thescore function.

However, the adaptation rule (6) for the zero delay sep-
arating matrixW0(t) has two problems: (1) it requires
computationally-expensive matrix inversion and (2) it is not
suitable for overdetermined cases (m < n) since the magni-
tude of eachyi(t), i = 1; � � � ;m is controlled by it. To over-
come these problems, Choiet al. [12] modified the adapta-
tion rule (6) as follows:�W0(t) = f�(t)� '(y(t))xT (t)WT0 (t)gW0(t) (8)

where�(t) is a diagonal matrix for a nonholonomic con-
straint whose diagonal entries are equal to the diagonal en-
tries of the matrix'(y(t))xT (t)WT0 (t). Here and in the
following, we assume that the dimension of the recovered
vector isn, i.e. y(t) = [y1(t) � � � yn(t)]T , and thatn � m.
Then, the nonholonomic constraint allows us to deal with
overdetermined cases by letting(n�m) components of the
recovered vector converge to zero quickly. Note that (8) is
exactly equivalent to the natural gradient algorithm with the
nonholonomic constraint for instantaneous mixing cases.

2.3. The Natural Gradient MBD Algorithm

The natural gradient MBD algorithm was first derived by
Amari et al. [10] and was modified later by Choiet al. [13]



with the nonholonomic constraint as follows: fork =0; � � � ; L� 1,�Wk(t) = �0(t)Wk(t)� '(y(t � L+ 1))uT (t� k);
(9)

where u(t) = L�1Xq=0WTL�1�q(t)y(t � q) (10)

and�0(t) is a diagonal matrix for the nonholonomic con-
straint whosei-th diagonal element is'i(yi(t�L+1))yi(t�L+ 1). If �0(t) becomes an identity matrix, then (9) is re-
duced to the original natural gradient MBD algorithm. Note
that the (L � 1)-sample delayed values are used in (9) to
avoid the noncausality problem.

3. BLOCK IMPLEMENTATIONS OF ICA-BASED
ADAPTIVE MBD FILTERS

The adaptive algorithms in (7), (8), and (9) update the fil-
ter coefficients each time a new sample vectorx(t) is re-
ceived. An alternative updating strategy is a block updating
strategy in which the filter coefficients are kept fixed dur-
ing a block of sample vectors and then are updated once at
the end of the block using the adaptation matrix accumu-
lated during the block length [2]. Such block updating strat-
egy is attractive since FIR block adaptive filter can be im-
plemented efficiently in the frequency domain. Therefore,
we consider the block implementations of the previous for-
mulations. For notational convenience, we describe them
in terms of direct filtersWii(t), i = 1; � � � ; n and cross-
filters Wij(t), i 6= j; i; j = 1; � � � ; n, whereWij(t) =[wij0(t) � � �wij(L�1)(t)]T andwijk(t) is the (i; j) element
ofWk(t).

Let b = 0; 1; 2; � � � denote the block number andM the
block length. From (5), then, the component-wise output at
theb-th block becomes as follows: fori = 1; � � � ; n,yi(bM) = [yi(bM) � � � yi((b+ 1)M � 1)]T ; (11)

whereyi(bM + p) = nXj=1WTij(bM)xj(bM + p); (12)

with xj(bM+p) = [xj(bM+p) � � �xj(bM+p�L+1)]T .
Thus, (12) corresponds to the sum ofn linear convolutions.

Similarly, from (3), the filter coefficients are updated in
blocks according toWij((b+ 1)M) =Wij(bM) + �(bM)�Wij(bM) (13)

where�Wij(bM) = [�wij0(bM) � � ��wij(L�1)(bM)]T
is an averaged estimate of the gradient vector at blockb.
For the standard gradient MBD algorithm (7) and (8), each
component of�Wij(bM) is given by�wijk(bM) = �cijk(bM); k = 1; � � � ; L� 1; (14)

and�wij0(bM) = � nXp6=i nXq=1 ciq0(bM)wpq0(bM)wpj0(bM)
(15)

where cijk(bM) = (b+1)M�1Xl=bM 'i(yi(l))xj(l � k): (16)

For the natural gradient MBD algorithm (9), each compo-
nent of�Wij(bM) is obtained from�wijk(bM) = (b+1)M�1Xl=bM 
i(l)wijk(bM)� (b+1)M�1Xl=bM 'i(yi(l � L+ 1))uj(l � k); (17)

where
i(l) = 'i(yi(l � L+ 1))yi(l � L+ 1).
4. FREQUENCY-DOMAIN IMPLEMENTATIONS

OF ICA-BASED ADAPTIVE MBD FILTERS

In the following, frequency-domain implementations of the
block FIR adaptive MBD filters will be described. For this
purpose, we employ the overlap-save method with the block
length ofM = L and 50 % overlap since it provides the
most efficient implementation [4]. Thus, the corresponding
FFT size isN = 2L. For notational simplicity, we defineF as theN � N discrete Fourier transform (DFT) matrix
with its elementsFuv = e�j2�uv=N . Its inverse is denoted
by F�1. In real implementations, however,F andF�1 are
performed by an FFT algorithm and thus considerable com-
putational gains can be achieved.

4.1. Frequency-domain Implementation of MBD Filters

First consider the process of obtaining the block filter output
in (11). Define �Wij(b) and �Xj(b) as follows:�Wij(b) = F[WTij(bL) 0 � � � 0| {z }L zeros

]T ; i; j = 1; � � � ; n; (18)



and�Xj(b) = F[xj((b� 1)L) � � �| {z }
(b� 1)-th block

� � �xj((b+ 1)L� 1)| {z }b-th block

]T : (19)

Then, (11) can be obtained by the overlap-save method as
follows: for i = 1; � � � ; n,yi(bL) = lastL elements ofF�1 �Yi(b); (20)

where�Yi(b) = nXj=1 �Wij(b)� �Xj(b); i = 1; � � � ; n; (21)

and� denotes component-wise multiplication.

4.2. Frequency-domain Implementation of the Stan-
dard Gradient MBD Algorithm

ConsiderCij(bL) = [cij0(bL) � � � cij(L�1)(bL)]T . Since
(16) corresponds to a correlation,Cij(bL) is calculated as
follows:Cij(bL) = first L elements ofF�1f�fi(b)� �X�j (b)g; (22)

where�fi(b) = F[0 � � � 0| {z }L zeros

'i(yi(bL)) � � �'i(yi((b+ 1)L� 1))]T
(23)

and the superscript� denotes conjugate. Then, it is manifest
from (14) and (15) that�Wij(bL) can be easily obtained
fromCij(bL). In the final step, the resulting time-domain
gradient�Wij(bL) is transformed into the frequency do-
main and then is added toWij(bL) in order to produce the
updated frequency-domain filter coefficients�Wij(b + 1).
SinceWij(bL) is followed byL zeros in (18), this is per-
formed by�Wij(b+ 1) = �Wij(b) + �(bL)F[�WTij(bL) 0 � � � 0| {z }L zeros

]T :
(24)

In the frequency-domain implementation of block LMS
adaptive filters, the time-domain filter coefficients are not
involved in reality and thus the memory space for them is
not necessary. However, this is not the case for the block
standard gradient MBD algorithm since (15) needs the zero-
delayed filter coefficients. Thus, it is necessary to keep their
updated values at each block. This can be done simply bywij0((b+ 1)L) = wij0(bL) + �(bL)�wij0(bL) (25)

for i; j = 1; � � � ; n. Thus, the additional memory space (n2)
is needed, which is relatively trivial sincen << L.

4.3. Frequency-domain Implementation of the Natural
Gradient MBD Algorithm

The first term in the right-hand side of (17) is just the prod-
uct of

P(b+1)L�1l=bL 'i(yi(l � L + 1))yi(l � L + 1) andwijk(bL) and the second term can be calculated in the same
way we getcijk(bL) since it corresponds to a correlation.

Let hi(bL) =P(b+1)L�1l=bL 'i(yi(l � L+ 1))yi(l � L+ 1).
Then,�Wij(bL) is obtained from�Wij(bL) = first L elements ofF�1fhi(bL) �Wij(b)� �fi(b� 1)� �U�j (b)g (26)

where�Uj(b) = F[uj((b� 1)L) � � �| {z }
(b � 1)-th block

� � �uj((b+ 1)L� 1)| {z }b-th block

]T (27)

Therefore,uj(bL) = [uj(bL) � � �uj((b + 1)L � 1)]T
should be calculated in advance to attain�Uj(b). From (10),
it can be given byuj(bL) = first L elements ofF�1f nXi=1 �W�ij(b)� �Yi(b)g (28)

for j = 1; � � � ; n, where�Yj(b) is obtained by�Yj(b) = F[yj((b� 1)L) � � �| {z }
(b � 1)-th block

� � � yj((b+ 1)L� 1)| {z }b-th block

]T (29)

As in the previous, the frequency-domain filter coefficients�Wij(b+ 1) are updated using (24).

4.4. Computational Complexity Ratios

Although several issues such as the number of additions,
storage requirements, and hardware design would have to
be considered for the computational complexity, it is often
reasonable to examine the total number of multiplications
for each implementation [4]. In the following, we assume
that input data are real-valued and that a radix-2 FFT algo-
rithm is employed. Then, eachN -point FFT or inverse FFT
(IFFT) requires approximatelyN log2(N) real multiplica-
tions.

For each output sample, then-channel standard gra-
dient MBD algorithm with L-tap FIR filters requiresn2L real multiplications to compute its filter outputs andn2L + 2n3(n � 1) real multiplications to update the fil-
ter coefficients. Thus, a total of2n2L2 + 2n3(n �1)L real multiplications are needed to produceL output
samples. Its frequency-domain implementation requires2nN log2(N)+4n2N real multiplications to obtain its filter
outputs in (20) and2n2N log2(N)+nN log2(N)+4n2N+



2n3(n � 1) real multiplications to update the filter coeffi-
cients. SinceN = 2L, the computational complexity ratio
is reduced toCCRSG = (2n+ 3)L log2(L) + (10n+ 3)L+ n3 � n2nL2 + n2(n� 1)L :

(30)

Whenn = 2 andL = 1024, the frequency-domain imple-
mentation is roughly 22 times faster than the corresponding
time-domain standard gradient MBD algorithm.

Similarly, for each output sample, then-channel natural
gradient MBD algorithm withL-tap FIR filters needsn2L
real multiplications to get its filter outputs andn + 3n2L
real multiplications to update the filter coefficients. So, to-
tally 4n2L2 + nL real multiplications are required to pro-
duceL output samples. Its frequency-domain implementa-
tion needs2nN log2(N)+4n2N real multiplications to ob-
tain its filter outputs and2n2N log2(N) + 4nN log2(N) +10n2N + nL real multiplications to update the filter coef-
ficients. Thus, the computational complexity ratio is given
by CCRNG = 4(n+ 3) log2(L) + 32n+ 134nL+ 1 : (31)

Whenn = 2 andL = 1024, the frequency-domain imple-
mentation is roughly 30 times faster than the corresponding
time-domain natural gradient MBD algorithm.

5. APPLICATIONS TO REAL-WORLD SPEECH
SIGNAL SEPARATION

The developed frequency-domain adaptive MBD algo-
rithms are applied to the blind separation of real-world
speech signals in Fig. 1. These signals are provided by
TeWon Lee [9]. These 2 channel speech signals were
recorded in a real room in which two speakers spoke si-
multaneously digits in English and Spanish, respectively. In
Fig. 2, Lee’s separation results are depicted.

In these simulations,'i(yi) = yi + tanh(yi) andL =1024 taps FIR filters were employed. The step-size parame-
ter was 0.001 and adaptation was run during 30 iterations of
the speech signals. Fig. 3-4 show the plots of separated sig-
nals from the frequency-domain standard and natural gradi-
ent algorithms, respectively.

It was confirmed through simulations that the proposed
implementations were much faster than their time-domain
implementations and also that signals were well separated.
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Figure 1: Real-world speech signals provided by
Lee [7], [9].
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Figure 2: Separated signals from Lee [9].
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Figure 3: Separated signals from the standard gradient.
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Figure 4: Separated signals from the natural gradient.



6. CONCLUSION

In this paper, we developed frequency-domain implementa-
tions of two time-domain adaptive FIR MBD filters based
on the ICA principle. With the overlap-save data section-
ing and FFT algorithm, the proposed ones precisely per-
form block adaptive MBD filtering. The detailed com-
putational complexity ratios were presented and it was
shown that considerable computational complexity reduc-
tions were achievable. To remove matrix inversion and to
deal with overdetermined cases, modified algorithms were
considered in our implementations. Though great compu-
tational gains are attained, the developed implementations
have several weaknesses. They need more data points to
get a desired performance since they work in blocks, not in
samples. In addition, they cannot follow quickly the rapid
changes of environments. Thus, some modifications to im-
prove these problems may be needed. We are considering
adaptive learning of the step-size parameter for this purpose.
Also, we are currently trying to implement the proposed al-
gorithms in DSP.
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