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Abstract－ We describe a fast VLSI architecture for full-search 
motion estimation for the blocks with 7 different sizes in 
MPEG-4 AVC/H.264. The proposed variable block size motion 
estimation (VBSME) architecture consists of a 16x16 PE array, 
an adder tree and comparators to find all 41 motion vectors and 
their minimum SADs for the blocks of 16x16, 16x8, 8x16, 8x8, 
8x4, 4x8 and 4x4. It employs a 2-D datapath and its control of 
the search area data is simple and regular. The proposed 
VBSME can achieve 100% PE utilization by employing a 
preload register and a search data buffer inside each PE and 
allow real-time processing of 4CIF(704x576) video with 15 fps at 
100 Mhz for a search range of [-32~+31]. 
 
 

I. INTRODUCTION 
 

Nowadays, many international video compression 
standards such as ITU-T H.261, H.263, MPEG-1, -2, and -4 
adopts motions estimation technique to reduce temporal 
redundancy between a current frame and its reference frames. 
The emerging MPEG-4 AVC/ITU-T H.264 standard supports 
motion estimation for the block of 7 different sizes: 16x16, 
16x8, 8x16, 8x8, 8x4, 4x8, and 4x4 to improve coding 
performance, but its computational complexity becomes 
substantially higher. Thus, a fast architecture that can support 
motion estimation for all the 7 block sizes is essential for 
high-end real-time applications. 

Many full-search motion estimation architectures were 
proposed so far, but there were only a few architectures that 
support motion estimation for variable block size [1-4]. 
Algorithms in [1] and [2] described 1-D array architectures, 
and that in [3] is about a 16x16 PE array for the MPEG-4 
standard which supports ME only for the blocks of 16x16, 
8x8 and 4x4. The algorithm in [4] described a 2-D array 
architecture with 1-D partial data reuse and 1-D data 
broadcasting. Note that we limit our discussion only for the 
full-search ME algorithm in this paper. 

An 1-D array architecture is simple, easy to control, and 
occupy smaller area than a 2-D array architecture but 
searches only one row or column of the block at a time, so it 
is slower than a 2-D array architecture which computes the 
sum of absolute differences (SAD) of a search point at every 
cycle. Therefore, a 2-D array architecture is more suitable for 
high-end real-time video processing. 

In the full-search 2-D array architecture, a processing 
element (PE) array computes the SADs between a pixel of 

the current frame and a pixel of one of its reference at every 
cycle, so the pixel data should be changed every cycle. 
According to the data flows, the 2-D array architectures can 
be divided into 3 classes: (1) The current frame pixel data are 
moving while the reference frame pixel data are fixed, (2) 
While the current frame pixel data are fixed, the reference 
frame pixel data are changed, (3) Both current and reference 
frame pixel data are changed. 

In the VBSME architectures, the SADs of 4x4 blocks are 
first computed on a 16x16 macroblock, and the SADs with 
blocks of larger size are calculated by summing up the SADs 
of 4x4 blocks. For a 2-D array VBSME architecture, 
therefore, the class (1) is not suitable because the positions of 
the partition are changed if the current frame pixel data 
moves every cycle, which makes it difficult to sum up the 
SADs of the block of smaller size for those of larger size. The 
class (2) is also not suitable because it is hard to satisfy both 
high PE utilization and simple datapath requirements at the 
same time when the search area data moves both horizontally 
and vertically. In this paper we propose a fast architecture of 
the class (3) because it can achieve both high PE utilization 
and simple datapath. 
 
 

II. PROPOSED ARCHITECTURE 
 

Fig. 1 shows the block diagram of the proposed 
architecture, which consists of 4 basic blocks. The processing 
element array computes sixteen 4x4 SADs of a 16x16 
macroblock. The adder & comparator block sums up the 4x4 
SADs to form the SADs for 7 different block sizes and finds 
the minimum distortions and corresponding motion vectors. 
The search area SRAM contains the reference frame pixel 
data within a given search range to reduce I/O memory  
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Fig. 1. Block diagram of the VBSME architecture 
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bandwidth. The ME control block generates the addresses of 
the search area SRAMs and the control signals to other 
blocks. 

The dataflows of the search area data and the current block 
data are shown in Fig. 2(a) and 2(b) respectively. In order to 
operate all the 16x16 PEs every cycle, 16 pixel data from the 
search area must be supplied to the PEs at every cycle. We 
decided to shift the search area data only in the horizontal 
direction (right to left) and to supply the 16 search area data 
to the rightmost column of the 16x16 PEs from the search 
area SRAM. In the vertical direction, the current block data 
move down and wrap around. 

For a search range of [-16~+15], the data sequence in the 
PE array is presented in TABLE I where C(x, y) is the pixel 
data in the current block and R(x, y) is the pixel data in the 
search area. During the clocks from 0 to 31, y coordinates of 
the search area pixels are fixed and only x coordinates are 
changed. When computations for one row are finished, the 
current block data shift down and wrap around by one row 
position and the initial search area data is loaded from the 
search data buffer (SDB) to the reference block register 
(RBR). Then the PE array starts to find the second row in the 
search area from the clock 32 without stall. 

A PE consists of a absolute difference computing unit, a 
current block register (CBR), a RBR, a preload register (PR), 
a SDB and two multiplexers as shown in Fig. 3(a). At every 
clock, the absolute difference between the CBR and the RBR 
is computed. The SDB stores data in the initial search area 
data. If the current macroblock is the region 4 in Fig. 3(b), the 
shaded macroblocks 0, 3 and 6 will be the initial search area. 
Each SDB stores one pixel from each shaded macroblock. 
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Fig. 2. (a) Dataflow of the search area data (b) Dataflow of the 
current block data 
 

The search area SRAM stores the data in the remaining 
regions 1, 2, 4, 5, 7 and 8. When starting the computation for 
a new row, the multiplexer in the PE selects the initial data 
from the SDB so that we can compute the SADs without stall. 
Otherwise, the data from RBin are selected. The regions 1, 4 
and 7, which will be the initial search area in the next 
macroblock, are stored in the SDB as soon as the 
computation for the regions 0, 3, and 6 is finished. 

In addition, a preload register is put inside a PE to achieve 
macroblock pipelining [5]. When the current block is the 
region 4, the data of the next current block, which is the 
region 5, are transferred to the preload register in each PE. 
They are loaded to the CBR in all PEs immediately before 
starting computation for the next macroblock. 

As the current block data move down in the PE array, the 
position of 4x4 sub-blocks also moves in the proposed 
architecture. To compute the 4x4 SADs correctly, we add a 
selector inside each 4x16 PE array to match results of 4x1 
SADs with adder inputs. Four 4x16 PEs are connected to 
arrange the 16x16 PE array. 

While computing for the second row of the search range, 
all the rows except the first row in the PE array are provided 
with the same search area data just like when the first row of 
the search range is computed. The search area data of the first 
row is supplied with the new data separated by 16 rows from 
the one previously supplied. Likewise, when changing the 
row position in a search area, we just change one address 
among 16 on-chip SRAM addresses, where the new address 
is pointing the row below by 16 rows. Therefore, each 
on-chip SRAM has only to store every 16th row of the search 
area data. That is, k-th (k=0,1,2,…,15) SRAM contains  
 
 

PR

MUX

CBR

Search
Data
Buffer

| a - b |

RBR

MUX

CBin

RBin
Pin

RBout
Pout

CBout SAD

 

The region which Search area data 
are stored in SA buffer inside PE

The region which Search area data 
are stored in SA SRAM outside PE

0 1 2

3 5

6 7 8

4

 
(a)  (b) 

 
Fig. 3. (a) The PE structure (b) The region which the search area 
data are stored (when search range is [-16~+15])  

 
TABLE I 

DATA SEQUENCE OF THE CURRENT BLOCK DATA AND SEARCH AREA DATA (WHEN SEARCH RANGE IS [-16~+15]) 
 

1st row
PE0

C(0,0)-R(-16,-16)

PE1

C(1,0)-R(-15,-16)

PE15

C(15,0)-R(-1,-16)

…

…

2nd row
PE16

C(0,1)-R(-16,-15)

PE17

C(1,1)-R(-15,-15)

PE31

C(15,1)-R(-1,-15)

…

…

…

16th row
PE240

C(0,15)-R(-16,-1)

PE241

C(1,15)-R(-15,-1)

PE255

C(15,15)-R(-1,-1)

…
Clock

0

C(0,0)-R(-15,-16) C(1,0)-R(-14,-16) C(15,0)-R(0,-16) C(0,1)-R(-15,-15) C(1,1)-R(-14,-15) C(15,1)-R(0,-15) C(0,15)-R(-15,-1) C(1,15)-R(-14,-1) C(15,15)-R(0,-1)1

… … … … … … … … ……

C(0,0)-R(15,-16) C(1,0)-R(16,-16) C(15,0)-R(30,-16) C(0,1)-R(15,-15) C(1,1)-R(16,-15) C(15,1)-R(30,-15)

…

C(0,15)-R(15,-1) C(1,15)-R(16,-1) C(15,15)-R(30,-1)

…

31

C(0,15)-R(-16,0) C(1,15)-R(-15,0) C(15,15)-R(-1,0) C(0,0)-R(-16,-15) C(1,0)-R(-15,-15) C(15,0)-R(-1,-15) C(0,14)-R(-16,-1) C(1,14)-R(-15,-1) C(15,15)-R(-1,-1)

…

32

C(0,15)-R(-15,0) C(1,15)-R(-14,0) C(15,15)-R(0,0) C(0,0)-R(-15,-15) C(1,0)-R(-14,-15) C(15,0)-R(0,-15) C(0,14)-R(-15,-1) C(1,14)-R(-14,-1) C(15,15)-R(0,-1)33

… … … … … … … … ……

C(0,15)-R(15,0) C(1,15)-R(16,0) C(15,15)-R(30,0)

…

C(0,0)-R(15,-15) C(1,0)-R(16,-15) C(15,0)-R(30,-15)

…

…

C(0,14)-R(15,-1) C(1,14)-R(16,-1) C(15,15)-R(30,-1)63

… … …
C(0,1)-R(-16,16) C(1,1)-R(-15,16) C(15,1)-R(-1,16) C(0,2)-R(-16,17) C(1,2)-R(-15,17) C(15,2)-R(-1,17) C(0,0)-R(-16,15) C(1,0)-R(-15,15) C(15,0)-R(-1,15)992

C(0,1)-R(-15,16) C(1,1)-R(-14,16) C(15,1)-R(0,16) C(0,2)-R(-15,17) C(1,2)-R(-14,17) C(15,2)-R(0,17) C(0,0)-R(-15,15) C(1,0)-R(-14,15) C(15,0)-R(0,15)993

… … … … … … … … ……

C(0,1)-R(15,16) C(1,1)-R(16,16) C(15,1)-R(30,16)

…

C(0,2)-R(15,17) C(1,2)-R(16,17) C(15,2)-R(30,17)

… …

C(0,0)-R(15,15) C(1,0)-R(16,15) C(15,0)-R(30,15)

…
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Fig. 4. The architecture of the 4x16 PE array 
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Fig. 5. Data transfer of reference frame data to search area SRAM 
 
(16i+k)-th row data in the search area (i: nonnegative integer) 
as shown in Fig. 5. It can be done easily by manipulating 
address generation. 

Sixteen 4x4 SADs, which are the outputs of a 16x16 PE 
array, are inputted to an adder & comparator block. Before 
adding them up, the 16 4x4 SADs are stored in the temporal 
registers and an adder tree sums them up to produce 8x4, 4x8, 
8x8, 16x8, 8x16 and 16x16 SADs. Comparators compare 
total 41 SADs and save the 41 minimums with their 
corresponding motion vectors. They can be used at the 
rate-distortion optimization stage to find the best block mode. 

It takes only one cycle to compute the absolute differences 
for each search position so finding 4x4 SADs for the search 
range of [-16~+15] can be performed in 1024 cycles as 
shown in TABLE I. If we add one more cycle for the adder 
tree delay to obtain the SADs of larger sizes, the total number 
of cycles required to finish the computation becomes 1025 
for one macroblock. Therefore, for the search range of 
[-32~+31], the number of the clock cycles required is 64x64 
+ 1 = 4097. 
 
 

III. IMPLEMENTATION 
 

The proposed architecture was implemented with a VHDL 
description and synthesized by Synopsys Design Compiler  
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Fig. 6. Block diagram of the adder tree 
 
with TSMC 0.18um standard cell library. Our design has a 
search range of [-32~+31], and it requires 10Kb on-chip 
memory as the search data buffer inside a PE and 40Kb as the 
search area SRAM and an additional 10 Kb as the search area 
SRAM for the next search area so the total 60Kb on-chip 
memory is required. If we search [-16~+15] range, only 24Kb 
on-chip memory is required. 

Our design contains total 154k gates. The gate counts of 
the blocks are 113.4k for the PE array, 22.1k for the ME 
control block, and 18.5k for the adder & comparator block. 

The search range of our ME can be selected to be either 
[-16~+15] or [-32~+31]. When the search range is [-16~+15], 
it becomes 4 times faster than when the search range is 
[-32~+31]. TABLE II illustrates the summary of our ME 
design. 

The comparison of our proposed architecture with other 
full-search VBSME architectures is presented in TABLE III. 
This table shows that our architecture is faster for the same 
search range, requires less on-chip memory, and has more 
flexible and wider search range. 
 

TABLE II 
DESIGN SPECIFICATION 

 

# of PE

Search Range

Block size

16X16 (2-D array)

32X32, 64X64 (flexible)

Max Freq.

4X4, 4X8, 8X4, 8X8,
8X16, 16X8, 16X16

Process  TSMC 0.18um standard cell library

100Mhz

Throughput
(search range 64X64) 4CIF 15 fps

Gate Count 154k

On-chip memory 60 kbits

Algorithm Full Search
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TABLE III 
COMPARISON OF VBSME ARCHITECTURES 

 
 

# of PE

Search Range

Block size

[3][1] [4] Ours

16X1616 16X1616X16

64X6432X32
16X16 48X32 64X64

32X32

16X16,
8X8,
4X4

Max Freq.

7 kinds of 
block size

7 kinds of 
block size

7 kinds of 
block size

100Mhz

Process 0.5um0.13um 0.35um 0.18um

100Mhz 66.67 Mhz 100Mhz

Throughput(blocks/sec)
(search range 32X32) -5560 61218 97560

Throughput(blocks/sec)
(search range 64X64) 23668- - 24408

Gate Count -108k 106k 154k

On-chip memory 96k bits- 24k bits 60k bits

 
 
 

IV. CONCLUSION 
 

This paper presents a new fast VLSI architecture for 
VBSME in MPEG-4 AVC/H.264. It is based on 2-D array 
architecture and computes the SADs for the blocks of all the 
7 different sizes. The search area data moves only 
horizontally, and the current block data moves only vertically 
to simplify the dataflow. It achieves 100% PE utilization and 
macroblock pipelining by employing 16 on-chip SRAMs and 
search data buffers inside each PE. For the search range of 
[-32~+31], our implementation allows variable block size 
motion estimation of 4CIF (704x576) video with 15 fps at 
100 Mhz. 
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