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Abstract 

The ambivalent nature has been emphasized as a unique quality of awe in qualitative 

descriptions and cited as a potential source of its various psychiatric and psychosocial benefits. 

However, due to the affective science’s dichotomic positive/negative schema, this ambivalence has 

not been fully explored. This study aims to capture the valence dynamics inherent in awe by 

applying naturalistic VR-EEG paradigm and an extended valence measurement allowing 

ambivalent response. We investigated whether awe can be better characterized as ambivalent 

rather than simply positive or negative at both behavioral and cortical levels. Behaviorally, the 

awe intensity for each clip was precisely predicted by the duration and intensity of ambivalent 

feelings, but not by other valence metrics. In the cortical level, ambivalent feelings during awe 

showed unique neural representations in the latent cortical space, with significant individual 

variability in their distinctiveness from positive/negative representations. Nevertheless, the more 

distinctly ambivalent feelings were encoded in the cortex, the stronger individuals reported awe. 

Finally, frontal delta band power was mainly involved in distinguishing different valence 

representations in the cortices. This study not only explores the existence of unique neural 

representations of ambivalent feelings, a topic of debate in affective neuroscience, but also 

demonstrates that awe can be characterized as an ambivalent experience at both behavioral and 

cortical levels.  

 

Keywords: Awe, Ambivalence, Latent cortical space, Electroencephalogram, Virtual Reality 
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Introduction 

Awe is an intricate emotion evoked by facing something so enigmatic that individuals 

cannot get a sense. Such characteristics of awe make it appear similar to emotions such as fear; 

however, awe is distinguished by the fact that it is accompanied by the expansion of one’s 

conceptual schemes in an attempt to comprehend something mysterious, incorporating not only 

overwhelming but also pleasant feelings. For these reasons, psychologists defined awe with its two 

key dimensions: ‘perceived vastness’ and ‘a need for accommodation’ (Keltner & Haidt, 2003). For 

instance, in the phenomenological study of awe (Yaden et al., 2016), astronauts described their 

awe experience during the space flight that they were bewildered by the vast scale of the universe 

in contrast to the smallness of Earth (i.e., perceived vastness), yet at the same time, they also felt 

ineffable beauty and fragility of Earth and realized that humankind’s urgent task is to preserve 

this beauty (i.e., a need for accommodation). These multifaceted dimensions of awe shape its 

ambivalent nature, and the coexistence of opposing feelings in awe has been regarded as potential 

sources of its psychiatric, psychosocial, and intellectual benefits such as stress resilience, non-

egocentric perspectives, and trait openness (Jiang et al., 2024). Thus, early awe studies asserted 

that “an adequate account of awe must explain how awe can be both profoundly positive and 

terrifyingly negative” (Keltner & Haidt, 2003).  

Nevertheless, recent affective sciences have tried to characterize awe as a single-valence 

emotion. For instance, awe was split into two subtypes in terms of its dominant valence: positive 

awe and threat awe (Gordon et al., 2017; Piff et al., 2015). Based on this framework, neuroimaging 

studies reported distinguishable neural correlates between these two types of awe in terms of 
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structural (Guan et al., 2019) and functional patterns (Takano & Nomura, 2022). However, this 

approach does not fully address ambivalent nature of awe.  

We diagnose that methodological issues regarding affective valence are limiting the 

research on the ambivalence of awe. Conventional measurement of valence such as the 1D bipolar 

continuum model (Russell, 2003) does not allow ambivalent responses. The unidimensional 

structure of this scale is highly problematic since it lacks behavioral and neurobiological 

plausibility of valence representation. Numerous psychometric studies observed that separate 

positivity and negativity dimensions displayed stronger predictive power than a unidimensional 

model of valence, and also positivity and negativity did not show negative correlation, challenging 

unidimensional assumptions of valence (An et al., 2017; Briesemeister et al., 2012; Cacioppo & 

Berntson, 1994; Moeller et al., 2018). From a neurobiological aspect, the neural circuits encoding 

positive and negative feelings share some common components but fundamentally operate in 

distinct ways, supporting multidimensional model of valence (Berridge, 2019; Lammel et al., 2012; 

Norman et al., 2011; Reynolds & Berridge, 2008). For example, while both circuits share the 

ventral tegmental area (VTA) as a common part, reward-VTA circuit receive inputs from the 

laterodorsal tegmentum but aversion-VTA circuit from the lateral habenula (Lammel et al., 2012). 

Regarding the awe, a recent study has found that threat-awe inducing images led higher co-

occurrence between opposing valence compared to happy and fear images by using 2D 

measurement of valence (Chaudhury et al., 2022), implying that multidimensional valence scale 

can facilitate to investigate ambivalence of awe experience.  

Additionally, we suggest that theoretical debates about the distinct neural representation 

for ambivalent feelings may act as another bottleneck for research on the ambivalent of awe. The 

constructive perspectives of emotion have asserted that ambivalent feelings just originated from 
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the rapid fluctuation between conflicting valence in the brain, arguing the absence of distinct 

neural pattern of ambivalent feelings (Barrett & Bliss‐Moreau, 2009; Russell, 2017). Contrarily, 

recent studies support the uniqueness of ambivalent feelings in the cortex. Vaccaro et al. (2020) 

purposed that while in the subcortical regions centered around the brainstem and limbic system, 

opposing valences are rapidly co-regulated to preserve homeostasis, resulting coarse fluctuations, 

cortical areas such as the anterior insula cortex integrate these dynamics to produce a global 

‘mixed’ affective representation. The constructivism has exerted a significant influence in this 

controversy, hindering systematic research on the ambivalence of awe. However, recent human 

fMRI studies support the latter. For example, the posterior-anterior axis gradient within the right 

temporoparietal cortex is associated with valence co-occurrence during movie watching (Lettieri 

et al., 2019). The ventromedial prefrontal cortex and the anterior cingulate cortex also exhibited 

consistent neural pattern for ambivalent feelings during movie watching (Vaccaro et al., 2024). 

These observations motivate the possibility that ambivalent feelings during awe experience are 

represented at the cortical level in a manner that is significantly segregated from the neural 

representation of simply positive or negative feelings.  

Then, how can we identify neural representation of ambivalent feelings during awe 

experience? First, to induce more naturalistic awe experience in the laboratory, we designed 360° 

immersive clips in the virtual reality (VR). Some concerns about conventional image and movie 

stimuli for awe studies emerged due to their lack of ecological validity (Chirico et al., 2016; Silvia 

et al., 2015). Considering that ‘perceived vastness’ is one of the main key dimensions of awe, 

limited magnitude of these stimuli makes it elusive which emotion they trigger. To overcome this 

limitation, we developed VR videos based on the strengths demonstrated by VR protocols in 

eliciting awe (Chirico et al., 2024; Chirico et al., 2017; Chirico et al., 2018; Kahn & Cargile, 2021; 
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Quesnel & Riecke, 2018). Second, we recorded participants’ electroencephalogram (EEG) signals 

while they watched VR clips. The insula synthesizes fluctuating bodily signals within a time 

window of approximately 125 ms to create a global affective representation (Picard & Craig, 2009; 

Vaccaro et al., 2020; Wittmann, 2013), implying that neuroimaging techniques with a sampling 

rate higher than 16 Hz can fully capture these dynamics. Hence, we chose EEG recordings instead 

of the other modalities such as fMRI. Last, we applied deep learning techniques to construct 

individualized latent valence-cortical space instead of conventional hand-crafted feature extraction 

approach. Previously, frontal alpha asymmetry (FAA) was understood as an electrophysiological 

index of valence (Berkman & Lieberman, 2010; Schmidt & Trainor, 2001). However, recent studies 

consistently reported that FAA correlates with motivational behavior rather than valence per se, 

implying the limited specificity of FAA as a valence representation (Gable & Harmon-Jones, 2010; 

Harmon‐Jones & Gable, 2018; Honk & Schutter, 2006; Wacker et al., 2003). Leveraging notable 

representation learning ability of deep neural networks, we learned valence-specific latent neural 

space within individual-stimulus level, which contrasted EEG samples in terms of their valence 

states. Given that the architecture of valence representation in the brain displays large 

heterogeneity across individuals and sensory information (Čeko et al., 2022; Lee et al., 2024; 

Lettieri et al., 2024), our within individual-stimulus approach is expected to capture not only 

these variabilities but also commonality of the latent valence-cortical architecture.  

In this study, we aimed to examine whether awe is more precisely characterized as an 

ambivalent experience than single-valence ones at the behavioral and cortical level. For this end, 

we formulated three research questions and corresponding hypotheses as follows: First, is awe 

intensity predicted by ambivalence-related behavior metrics more precisely than single valence 

features? We hypothesize that ambivalence-related features predict awe intensity score of each 
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clip more accurately than single valence ones. Second, does ambivalent feeling during awe 

experience have distinct neural representation in the latent cortical space? We expect that 

ambivalent feeling exhibits distinguishable cortical representation from single valence states. Third, 

does the distinctive neural representation predict the awe intensity score? We predicted that the 

more distinctively ambivalent feeling is represented in the latent cortical space, the more saliently 

individuals feel awe during VR watching.   
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Methods 

Participants 

We recruited 50 healthy young adult Koreans enrolled in psychology courses at Seoul 

National University for this study. Participants were excluded if they met any of the following 

criteria: (1) currently taking psychiatric medication, (2) history of psychiatric treatment, (3) left-

handedness, (4) vestibular neuritis or balance disorder, (5) visual acuity before correction less than 

0.2, (6) non-Korean native speakers, and (7) consumption of alcohol or use of hair rinse 24 hours 

before the experiment. Data from 43 participants were completely collected in the analyses (23 

females; Mage = 20.2 years, SDage = 1.7 years). Seven participants were excluded due to technical 

issues (N = 3), discontinuance due to motion sickness (N = 2), and lack of fidelity in VR watching 

task (N = 2). See Figure 1a for sampling procedures. Participants provided written informed 

consent before the experiment, and all procedures were approved by the Institutional Review 

Board of Seoul National University.   

 

Experimental paradigm 

VR clip design We collaborated with a professional filmmaker to design four audio-integrated 

360° immersive videos using Unreal Engine (version 5.03). Each video lasted 120 seconds. Three 

of the videos were designed to evoke awe: Space (SP), City (CI), and Mountain (MO), while the 

other one, Park (PA), served as a control stimulus, designed not to elicit any specific emotional 

response. To investigate whether ambivalence is consistently observed in various awe experiences, 
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we varied (1) the clip themes, (2) the sub-components of awe, and (3) the perceptual features 

across the awe-inducing videos.  

Firstly, considering that awe is most intensively triggered by massive landscapes (Chirico 

et al., 2018; Keltner & Haidt, 2003; Shiota et al., 2007; Yaden et al., 2019), we differentiated the 

semantic theme of the scenery: SP featured supernatural landscapes (i.e., black holes and planets 

in space), CI showcased urban landscapes (i.e., cityscape viewed from the top of skyscrapers), and 

MO depicted natural one (i.e., mountain scenery).  

Secondly, following Chirico et al. (2018)’s qualitative framework to design videos that 

effectively elicit awe in VR, we aimed to represent the two key dimensions of awe, perceived 

vastness and a need for accommodation, through different cues in each video. Each video was 

designed so that perceivers would first experience vastness during the initial 60 seconds and then 

feel a need for accommodation in the latter 60 seconds. For example, in SP, participants watched 

a giant black hole approaching, consuming everything, and ultimately drawing them in, followed 

by the sudden appearance of Earth from space. Nevertheless, different sub-components were 

applied to realize each dimension across clips. Perceived vastness can be induced through 

perceptual (e.g., ‘width’ and ‘height’) and conceptual cues (e.g., ‘complexity’)(Chirico et al., 2017; 

Chirico et al., 2018). MO was designed to evoke vastness through perceptual width, CI through 

height, and SP through conceptual complexity. For the need for accommodation, we introduced 

surprise cues in each video around the 60-second mark as a trigger of accommodation (Chirico et 

al., 2017; Chirico et al., 2018), tailored to the context of each video to ensure that the cause of 

surprise did not overlap across videos. The design of three awe-inducing clips is summarized in 

Table 1.  
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Table 1. Design of awe-inducing VR clips for diverse awe experiences based on the framework 

of Chirico et al. (2018) 

 0 – 60 secs 60 - 120 secs 

Dimensions Perceived vastness A need for accommodation 

Sub-components perceptual conceptual surprise 

VR cues width height complexity 
Sudden transition 

from inside a cave to a 
mountain peak view 

An elevator 
rapidly 

ascending  

Abrupt 
adsorption into a 

black hole 

Clip MO CI SP MO CI SP 

Theme natural 
panorama 

urban 
cityscape 

supernatural 
scenery 

natural 
panorama 

urban 
cityscape 

supernatural 
scenery 

 

Lastly, to prevent ambivalent feelings from being driven by specific perceptual factors, we 

intentionally composed the three awe videos with different audiovisual information. We 

synchronized visual content with ambient sounds using open-source audio samples from Freesound 

(https://freesound.org) and GarageBand (version 10.4.6). To verify our design, we calculated three 

perceptual features known to predict perceivers’ emotional responses – brightness, hue, and 

loudness (Chua et al., 2022; Thao et al., 2019) – every second for each stimulus and visualized 

their time-course dynamics. We qualitatively confirmed that each video exhibited very different 

temporal dynamics for all features (see Supplementary Figure 1).  

To validate the awe elicitation, we conducted a preliminary study with 28 independent 

young adult Koreans (five females; Mage = 20.2 years, SDage = 1.9 years), who rated awe intensity 

using the Awe Experience Scale (Yaden et al., 2019) after watching each clip. Participants reported 

significantly higher awe scores for three awe clips compared to the control clip, with large effect 

sizes in two-sided paired t-tests (SP-PA: Cohen’s d = 2.466, PFDR = 8´10-13; CI-PA: Cohen’s d = 

2.193, PFDR = 6´10-12; MO-PA; Cohen’s d = 1.52, PFDR = 1´10-6).  

https://freesound.org/
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Figure 1. Experimental and methodological frameworks a, sampling procedures. b, integrated VR-

EEG protocol and experimental procedures. c, construction of individualized latent valence-cortical spaces 
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using CEBRA and neural alignment. d, assessing generalizability of the individualized latent valence-cortical 

spaces across individuals and stimuli through two types of predictive tasks. e, inference of attribution map 

to construct latent valence-cortical space using Dynamask. 

 

Baseline self-report Before the experiment, participants provided information on their sex, age, 

baseline mood states, and dispositional trait of experiencing awe in daily life. Baseline mood states 

were assessed using the Korean version of the Positive and Negative Affect Schedule (PANAS) 

validated by Lim et al. (2010). No participants showed exceptional mood states beyond 1.5 ´ 

interquartile range (Mpositive = 33.581, SDpositive = 6.284; Mnegative = 23.140; SDnegative = 6.331). 

Awe trait was measured using the awe-related items from the Dispositional Positive Emotions 

Scale (Shiota et al., 2006) translated into Korean (M = 29.628, SD = 6.626). The Korean-

translated DPES items demonstrated acceptable reliability (Cronbach’s a = .827) but mixed 

results in internal validity (model fit of the original factor structure: CFI = .946, RMSEA = .127). 

 

Procedures Participants sat on a sofa in a noise-isolated room and wore an Enobio 20 EEG 

device (Neuroelectrics) and a Quest 2 VR headset (Oculus). After checking EEG signal quality, 

the experiment proceeded as follows: baseline EEG recording, keypress training, VR watching task, 

post-trial measurement, and a break (see Figure 1b). Firstly, participants’ resting EEG signals 

were recorded for 120 seconds with their eyes closed (baseline recording). These resting signals 

were used to normalize signals recorded during the movie-watching trials. Secondly, they practiced 

real-time valence keypress reporting (keypress training). Participants were explicitly asked to 

report their valence state in real-time manner with the following auditory instruction:  
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“While watching the video, please report your affective state in real-time by pressing 

a number pad: ‘1’ for positive, ‘2’ for ambivalent (feeling positive and negative 

feelings at the same time), and ‘3’ for negative feelings. If you do not feel any 

affective feelings, please do not press anything. If specific state persists, continue 

to press and hold the corresponding key. It is important to report your subjective 

reactions, rather than which emotions the video intends to elicit”. 

 

Participants practiced this for 60 seconds using sentences describing affective responses to prevent 

confusions which key they should press. Then, participants watched one VR clip in a 

pseudorandom order per trial, reporting their valence states in real time using keypress (VR 

watching task). After each trial, they reported awe intensity, overall valence, arousal, and motion 

sickness using controllers (post-trial measurement). Awe intensity was measured by the Korean-

translated AWES (Yaden et al., 2019), valence by Evaluative Space Grid (Larsen et al., 2009), 

arousal by conventional 9-point Likert scale (Bradley & Lang, 1994), and motion sickness by a 

single 7-point Likert scale item. The Korean-translated AWES demonstrated acceptable 

psychometric properties (Cronbach’s a = .928; model fit of the original factor structure: CFI 

= .881, RMSEA = .079). Participants took a 30-second break with eyes closed after each trial 

(break).  

 

EEG recording and preprocessing We recorded EEG signals using 19 dry electrodes: AF3, 

AF4, F7, F3, Fz, F4, F8, FC5, FC6, C3, Cz, C4, P7, P3, Pz, P4, P8, O1 and O2 with Neuroelectrics 

Enobio 20. Ground and reference electrodes were attached to the right earlobe. The embedded 
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software in the Enobio system assessed signal quality and visualized it using three channel colors: 

green (good), yellow (medium), and red (bad). We ensured no electrodes displayed red signals 

before starting the signal acquisition. We adopted the automated preprocessing pipeline validated 

by Delorme (2023). EEG signals for each trial were time-locked to the initiation of the video, 

excluding the last three seconds to avoid end-of-task effects (e.g., loss of attention or emotional 

confounding). High-pass filtering above 0.5 Hz and Artifact Subspace Reconstruction were 

performed. Unlike the original pipeline, we used interpolation to maintain consistent recording 

lengths across participants and trials instead of exclusion of time window with poor signal quality. 

We conducted independent component analysis-based artifact rejection to remove noise 

components, such as eye movement, muscle noise, or skin potentials, with over 90% probability. 

The preprocessed signal for each trial was normalized by subtracting the average resting signal 

value for each channel. All preprocessing was performed using the “EEGLAB” plugin (Delorme & 

Makeig, 2004) in MATLAB (version 2021a).  

 

Short time/Fast Fourier transform With preprocessed and normalized EEG signals, we 

performed short time Fourier transform (STFT) and fast Fourier transform (FFT) to calculate 

the spectral power of five frequency bands for each channel: delta (1-4 Hz), theta (4-8 Hz), alpha 

(8-14 Hz), beta (14-31 Hz), and gamma (31-49 Hz). For STFT, a Hanning window with a 500-

sample window size (i.e., 1 sec) and a 250-sample hop size was applied. Participants’ valence 

keypresses were embedded as event markers in EEG signals, categorizing EEG samples into one 

of four valence categories. The valence label of each 500-sample window after STFT was defined 

as the mode of the corresponding samples. FFT was also performed to calculate overall spectral 

powers marginalized across the whole time-series. Using the Welch method, we calculated the 
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power spectral density for each EEG channel, and then integrated it over specific frequency range 

described above to determine the band power. For relative band power, we normalized the power 

within each band by the total power across all frequencies. The “scipy” package (Virtanen et al., 

2020) in Python (version 3.8) was used for STFT and FFT.  

 

Behavioral analysis 

Univariate statistical analysis Using data from 43 participants, we firstly assessed the 

univariate association between AWES ratings and 14 behavioral features measured before, during, 

and after each trial: sex, age, PANAS positive score, PANAS negative score, DPES awe score 

(before trial), duration of positive, ambivalent, negative, and neutral feelings (during trial), arousal, 

motion sickness score, and intensity of positive, ambivalent, and negative feelings (after trial). 

The duration of each valence type was calculated as the ratio of keypresses for that valence type 

to the total running time of each clip. Intensity was calculated based on the Evaluative Space 

Grid responses: positivity (x-axis value), negativity (y-axis value), and ambivalence (minimum 

value between positivity and negativity, following previous literature - e.g., (Berrios et al., 2015; 

Chaudhury et al., 2022; Ersner-Hershfield et al., 2008)). Firstly, we performed two-sided paired t-

tests to examine statistical differences in AWES scores, duration, and intensity of each valence 

type between the three awe clips and the control clip at PFDR < .05. Next, to evaluate the 

explanatory power of the 14 metrics, we fit linear mixed effect models with each regressor and two 

random intercepts for participants and clips using the “lmerTest” package (Kuznetsova et al., 

2015). Assumptions of normality were examined using the “DHARMa” package (Hartig, 2018). 

We confirmed that the distribution of residuals did not significantly deviate from a normal 
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distribution using the Kolmogorov-Smirnov test (all Ps > .200). All statistical analyses were 

conducted in R studio (version 2023.03.1+446).  

 

Multivariate machine learning analysis Next, we conducted machine learning-based 

predictive modeling with 14 behavioral variables for AWES scores as multivariate analysis, 

considering potential non-linear interactions among features. Using “h2o” package (LeDell & 

Poirier, 2020), we split the dataset into training and test sets with a 4:1 ratio and conducted 5-

fold cross-validation. A total of 22 models were constructed, and we selected the best model based 

on the lowest fold-averaged RMSE from the test set. Models that did not provide feature 

importance information (e.g., stacked ensemble models) were excluded for interpretability. As a 

result, gradient boost model (GBM) was chosen as the best model. The predictive performance 

was compared to a baseline ridge linear regression model without any interaction terms using for 

metrics: RMSE, MAE, MSE, and R2. To identify the most influential features, we calculated 

feature importance and shapley values for each variable. All machine learning analyses were 

performed in R studio (version 2023.03.1+446). 

 

Electrophysiological analysis 

Construction of latent valence-cortical space Among 43 participants in the behavioral 

analysis, we excluded 16 individuals due to poor-quality preprocessed EEG signals (N = 6) and 

lack of ambivalent keypresses in at least one trial (N = 10; see Figure 1a). The quality of 

preprocessed signals was visually inspected. The primary objective of the electrophysiological 

analysis was to investigate whether ambivalent feelings during awe have distinct cortical 
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representation and to evaluate their relationship with the intensity of awe. Therefore, participants 

who responded ambivalent feelings for less than 5% of the total duration across all videos were 

excluded. Given that our behavioral analysis identified the duration of ambivalent feelings as the 

most salient positive predictor of awe intensity (see ‘Results’), such exclusion is not expected to 

introduce sampling bias regarding the measurement of awe intensity.  

Using 27 participants’ EEG signals and valence keypress in the three awe clip trials, we 

constructed a latent valence-cortical space for each individual-trial design (i.e., total 81 latent 

spaces), using the “CEBRA” package (Schneider et al., 2023). CEBRA employs supervised 

contrastive learning to extract latent embeddings from the input data (i.e., STFT-processed EEG 

signals here), maximizing the attraction of EEG samples with the same valence labels and repelling 

those with different labels (see Figure 1c). As the dimensionality of latent spaces was elusive, we 

fitted CEBRA models for each participant-clip pair across dimensions ranging from one to nine. 

The following hyperparameters were applied: batch_size = {length of STFT EEG signals}, 

model_architecture = ‘offset-10 model’, number_of_hidden_units = 38, learning_rate = .001, 

the number_of_iterations = 500, and hybrid = False. 

 

Validation of latent valence-cortical space with predictive tasks To test whether the 

individualized latent spaces hold significant information generalizable across different individuals 

and clips, we conducted a pairwise prediction task using a 2 tasks ´ 3 conditions design (see 

Figure 1d). For the ‘across participants’ task, a classifier trained on participant A’s latent neural 

space embeddings and valence labels was used to predict the valence keypress of participant B’s 

embeddings for the same clip. For the ‘across clip’ task, a classifier trained on clip X’s embeddings 
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and labeled valence types was used to predict the valence of clip Y’s embeddings within the same 

participant. Predictions were evaluated under three conditions: (1) a baseline null test with 

shuffled training valence keypress labels (‘random’), (2) prediction using personalized latent neural 

embeddings without any alignment (‘not aligned’), and (3) prediction using aligned embeddings 

between train and test embeddings (‘aligned’). Neural alignment motivates to explore 

commonality among individual latent neural spaces (Gallego et al., 2020; Safaie et al., 2023). For 

the alignment, canonical correlation anlaysis (CCA) between train and test embeddings was 

employed using the “sklearn” package (Pedregosa et al., 2011). 

In these prediction tasks, six participants who pressed all valence labels for at least 5% of 

the total duration across three clips were selected to facilitate the multi-label classification. A k-

nearest neighbors (kNN) classifier with a neighborhood parameter of 15 was used without tuning 

(i.e., the nearest odd number to the square root of the input embedding length following the 

conventional heuristic). Considering imbalance in valence keypress labels, prediction performance 

was evaluated using the weighted F1 scores. Pairwise post-hoc comparisons at PFDR < .05 were 

conducted to compared predictive performances across the three conditions. Construction of latent 

neural spaces and prediction was performed in Python (version 3.8).  

 

Dimensionality selection for the latent valence-cortical space We selected the optimal 

dimensionality of the latent valence-cortical space based on two assumptions: (1) The space shares 

the same dimensionality across individuals and clips. (2) The space displayed as good as predictive 

performances across individuals and clips with other neural spaces based on higher dimensionality 

even with fewer dimensions. The second assumption was based on the idea that generalizability, 

as reflected in predictive performance, should be the criterion for determining the canonical 
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dimensions in dimensionality reduction techniques (Cunningham & Yu, 2014). However, it also 

acknowledges that such predictive performance may be overestimated as the number of dimensions 

increases (Cunningham & Yu, 2014; Diaconis & Freedman, 1984). We calculated the mean 

weighted F1 score for each dimension in both predictive tasks and performed hierarchical 

clustering analysis to group dimensions with similar prediction performance. The cluster with the 

highest silhouette coefficient was chosen, and the lowest dimension in the highest-performing 

cluster was selected. Dimensions 6, 7, 8, and 9 formed the high-performance cluster for the across-

participant task, and dimensions 7, 8, and 9 for the across-clip task. Thus, 7 dimensions were 

chosen as the canonical dimension. Hierarchical clustering analysis was conducted using the 

“cluster” package (Maechler et al., 2013) in R studio (version 2023.03.1+446). 

 

Comparing CEBRA-, PCA-, and FAA-driven embeddings For fair comparison of the 

predictive power of our CEBRA-based latent valence-cortical embeddings, we compared its 

performance with principle component analysis (PCA) and FAA-driven embeddings (i.e., PCA:  

conventional linear and unsupervised dimensionality reduction approach; FAA; hand-crafted 

valence-related EEG metrics). First, to extract PCA embeddings, we input only the STFT-

processed EEG data, excluding the valence keypress, and computed latent embeddings with 

dimensions ranging from one to nine. We identified the 6-dimensional embedding as the optimal 

latent space due to its modest predictive performance with the fewest dimensions (see 

Supplementary Figure 2). Second, FAA embeddings were defined as the difference in alpha 

band power between the F4 and F3 channels for each timepoint in the STFT-featured EEG 

sequence. These two channels were selected based on previous studies (Brzezicka et al., 2017; 
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Quaedflieg et al., 2016; Van Der Vinne et al., 2017). The prediction tests with a 2 ×	3 design were 

conducted using these three types of embeddings: CEBRA, PCA, and FAA. Test performances 

under the three conditions – random, not aligned, and aligned – were compared across CEBRA, 

PCA, and FAA-based embeddings. Additionally, within the CEBRA embeddings, performances 

were compared across the different conditions. To test the statistical differences in weighted F1 

scores, two-sided paired t-tests were conducted at PFDR < .05. PCA was performed using the 

“sklearn” (Pedregosa et al., 2011)  package in Python (version 3.8). 

 

Assessing significance of cortical valence representation Using the chosen 7D latent 

CEBRA valence-cortical embeddings, we measured the segregation of ambivalent EEG samples 

from other valence samples using silhouette coefficients. While InfoNCE loss value could quantify 

contrast performance too, it lacks scaling and valence type-specific calculations, so we used 

silhouette coefficients instead. We computed the average silhouette coefficient for ambivalent-

labeled EEG samples for each participant-clip latent space. Since silhouette coefficients can be 

overestimated under the latent space constructed in supervised manner, we assessed its statistical 

significance through permutation test. We randomly shuffled valence keypresses and trained 

CEBRA model with the original STFT-featured EEG signals and permuted valence sequence 

based on the identical hyperparameter set. Average silhouette coefficients of ambivalence-labeled 

EEG samples were extracted from the trained pseudo-embeddings, and we obtained its null 

distribution by repeating this 1,000 times. P-value calculated from the permutation test, Pperm, is 

formulated as follows:  

Pperm	=	
Ns*>s
Ns*

(1) 
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where s* and s are average silhouette coefficients calculated from permuted and original latent 

spaces, and Ns* is the number of s* in the null distribution. All Pperm values were FDR corrected. 

We performed the same analysis with positive and negative valence samples.  

 

Quantifying ‘cortical distinctiveness’ of each valence type We developed a metric called 

‘cortical distinctiveness’, ϕk, indicating how distinguishable a reference valence cluster k is from 

the other valence clusters in the latent valence-cortical space. ϕk is defined as: 

ϕk	=	
1
N
	"d(k,ci)
N

i=1

	(2) 

where N is the number of other clusters, ci is the i-th valence cluster, and d(k, ci) is the cosine 

distance between the cluster k and ci. We applied cosine distance as a metric of cluster distance 

instead of other conventional metrics (e.g., Euclidean distance), considering that latent CEBRA 

embeddings are distributed on the hypersphere space. We initially measured d(k, ci) based on the 

average cluster distance. Average distance between the cluster k and ci is calculated as the mean 

cosine distance between each point in k to every point in ci as follows:  

d(k,ci)	=	
1

nknci
""%1	-	

xp&&&⃗ ⋅ yq&&&⃗

)xp&&&⃗ )*yq&&&⃗ *
+

nci

q=1

nk

p=1

(3) 

where n is the sample size of the corresponding cluster, x⃗ and y&⃗  are the vector samples in each 

cluster. As a sensitivity check for cluster distance metric, we also calculated ϕk based on the 

medoid cluster distance. Medoid distance measures the distance between clusters by calculating 

the cosine distance between ‘medoid samples’ of each cluster that show the closest average cosine 

distance with samples within each cluster. Lastly, to examine the predictive power of cortical 
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distinctiveness metric of each valence type for AWES scores, we applied univariate and 

multivariate analysis framework described in the same manner with “Behavioral analysis” section. 

 

Approximation of feature importance with perturbation-based XAI Due to the black-

box nature of CEBRA, it was challenging to directly evaluate which STFT-processed EEG features 

were crucial for contrasting valence states in the latent space. To address this issue, we applied 

“Dynamask” (Crabbé & Van Der Schaar, 2021), a perturbation-based XAI techniques, to infer 

attribution maps from the trained CEBRA models. Dynamask learns perturbtation weights, w, 

for each feature at every time point to generate pseudo-embeddings with maximal MSE compared 

to the original embeddings with the least perturbation (see Figure 1e). Here, i-th input feature 

at the timepoint t, xi,t  is perturbed to p(xi,t) as weighted sum of its own value and the average 

value in the time window it belongs to, formulated by the following equation:  

π,xi,t-	=	,1	-	ωi,t-	⋅	xi,t	+	ωi,t	⋅	
1

2W+1
" xi,t'
t+W

t'=t-W

(4) 

where W is a time window size. wi,t = 1 indicates significant alteration of the CEBRA embeddings 

upon replacement, implying importance in contrasting valence labels. With a receptive field of 10 

samples, W = 5 was set to align the working behavior of Dynamask with CEBRA’s. We obtained 

w matrices for each EEG feature from participant-clip paired data showing significant silhouette 

scores for ambivalence clusters (Pperm < .05), using the following parameters: keep_ratio = 0.1, 

n_epoch = 2,500, initial_mask_coef = 0.5, size_reg_factor_init = 0.5, size_reg_factor_dilation 

= 100, time_reg_factor = 0, learning_rate = 0.03, and momentum = 0.9. We confirmed that 

Dynamask reached plateau in training performance to learn attribution map (see Supplementary 
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Figure 3). By aligning STFT EEG time-series and valence keypress sequence, we calculated 

wambivalent of each feature by averaging w values of each feature for time points labeled as 

ambivalent states in the valence keypress. Consequently, wambivalent value is indirect measure of 

feature importance to contrast ambivalence-labeled EEG samples from other valence-labeled EEG 

samples for the construction of latent valence-cortical space. The same analyses were conducted 

for positive and negative valence states with data displaying significant silhouette scores for each 

state, respectively.  

 

Post-hoc analysis of feature importance with hidden Markov model We conducted a 

post-hoc analysis to confirm Dynamask-driven attribution weights of each feature in distinguishing 

different valence states within the latent valence-cortical space using hidden Markov model 

(HMM). Particularly, Dynamask revealed that the power of the delta band consistently held 

greater importance than the power of other frequency bands (see ‘Results’). Based on this, we 

hypothesized that combinations of delta features would be temporally aligned with individual 

valence dynamics and tested this hypothesis using an HMM. For all HMM analysis, we used 

“brainiak” package (Kumar et al., 2021). 

We divided the 95 STFT features into frequency bands to generate five input groups – 

delta, theta, alpha, beta, and gamma – for each participant and clip. These inputs were 

independently fitted to an HMM, estimating the time points of neural boundaries corresponding 

to the number of valence transitions reported via keypress. Thus, the event number, a 

hyperparameter of the HMM, was informed by the participants’ reported valence keypress for the 

clip. Boundaries within ± 3 seconds (i.e., six STFT samples) of the actual valence transition time 
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points were considered a ‘match’, and the ‘match rate’ was calculated as the ratio of matched 

boundaries to the total number of boundaries.  

Following the framework of Vaccaro et al. (2020), we assessed the statistical significance 

of the match rates for the five frequency bands across all participants and clips. This framework’s 

advantage is that it accounts for variability in the number of valence transitions reported by each 

participant for each clip. The approach involves the following steps: First, for each participant 

and frequency band input, maintain the estimated number of intervals of neural boundaries but 

shuffle them randomly, comparing these to the actual valence transition time points to compute 

a pseudo-match rate. This process is repeated 1,000 times to generate a null distribution of match 

rates. Second, calculate the difference between actual match rate and the mean of the null 

distribution for each frequency band group for each participant-clip data. Averaging these 

differences across participants and clips yields the average mean difference for feature group k, 

denoted as Mk. Third, repeat this process 1,000 times using the null distribution of each 

participant-clip data to derive a null distribution of 1,000 mean differences between permuted 

match rates and the mean of the null distribution. Denote the i-th permuted mean difference for 

feature group k as Qk
(i). Last, calculate the P value, Pperm, for Mk using the following equation: 

Pperm=
1

1000
	" 	1.Qk

(i)	≥	Mk0
1000

i=1

(5) 
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Results 

Awe experience is consistently associated with longer and stronger ambivalent 

feelings, but not with single-valence feelings 

We firstly investigated participants’ valence dynamics based on their keypress reports. The 

valence dynamics displayed large variability across participants (see Figure 2a). Despite the 

individual difference, the valence dynamics was significantly intertwined with clips’ visual and 

acoustic features predicting perceivers’ affective response – color hue, brightness, and loudness 

(Chua et al., 2022; Thao et al., 2019) at the individual level (see Table 2). These results support 

the validity of our continuous valence response paradigm by demonstrating that individual’s 

responses are systematically linked to affect-related sensory inputs, while also underlining the 

diversity inherent in the temporal patterns of individuals’ valence dynamics.  

Next, we examined whether our awe VR clips were associated with more salient awe 

experience and ambivalent responses (see Figure 2b and 2c). We found that participants reported 

significantly higher AWES scores for all awe clips than the control one with large effect sizes (SP-

PA: Cohen’s d = 1.837, PFDR = 1´10-14; CI-PA: Cohen’s d = 1.493, PFDR = 3´10-12; MO-PA; 

Cohen’s d = 1.373, PFDR = 2´10-11). Three awe clips were also associated to significantly longer 

and stronger ambivalent responses than the control one (SP: Cohen’s dduration = .562, Pduration/FDR 

= .001, Cohen’s dintensity = .451, Pintensity/FDR = .005; CI: Cohen’s dduration = .514, Pduration/FDR 

= .002, Cohen’s dintensity = .449, Pintensity/FDR = .005; MO: Cohen’s dduration = .790, Pduration/FDR = 

2´10-5, Cohen’s dintensity = .780, Pintensity/FDR = 2´10-5). In contrast, except for the duration of  
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Table 2. Explanatory power of perceptual features on valence keypress in multinomial mixed 

logistic regression 

 positive vs. neutral ambivalent vs. neutral negative vs. neutral 

 b SE P b SE P b SE P 

Time .158 .063 .013*** .052 .065 .424 .063 .079 .428 

Brightness 3.758 .122 < 2´10-16*** 1.361 .115 < 2´10-16*** -1.191 .136 < 2´10-16*** 

Hue 1.581 .119 < 2´10-16*** .256 .091 .005** -.543 .111 1´10-8*** 

Loudness 1.594 .093 < 2´10-16*** .559 .093 < 2´10-9*** 1.637 .107 < 2´10-16*** 

 

 

 

 

 

Table 3. Statistical differences in valence and arousal ratings across clips 

 SP - PA CI - PA MO - PA 

 t df d PFDR t df d PFDR t df d PFDR 

Valence             

ambivalent(int) 2.957 42 .552 .005** 2.946 42 .576 .005** 5.118 42 .961 2´10-5*** 

ambivalent(dur) 3.685 42 .775 .001*** 3.372 42 .770 .002** 5.179 42 1.218 2´10-5*** 

positive(int) 1.427 42 .266 .352 -.443 42 .092 .660 1.206 42 .225 .352 

positive(dur) -3.316 42 .667 .003** -3.618 42 .795 .002** -3.178 42 .634 .003** 

negative(int) -.295 42 .059 .769 2.562 42 .431 .021* 3.024 42 .536 .013* 

negative(dur) .421 42 .082 .676 4.329 42 .839 1´10-4*** 5.243 42 1.085 1´10-5*** 

Arousal 5.810 42 1.151 7´10-7*** 7.404 42 1.433 6´10-9*** 9.301 42 1.777 3´10-11*** 

 

 

 

positive feelings, behavioral metrics of positive and negative feelings did not show significant 

differences between conditions consistently. Awe clips were linked to significantly higher arousal 

compared to the control one (see Table 3). 

Note. tested model: valencet	=	t	+	brightnesst	+	huet	+	loudnesst	+	(1	|	sub)	+	(1	|	clip); *P < .05; **P < .01;  

        ***P < .001. 

Note. *PFDR < .05; **PFDR < .01; ***PFDR < .001. 
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Figure 2. Valence dynamics, awe intensity, and ambivalent feelings across clips a, participants’ 

valence dynamics reported by keypress for each clip. b, AWES scores reported for each clip after every trial. 

c, duration (left) and intensity (right) of ambivalent feelings for each clip. This figure is based on data of 

N = 43 included in the behavioral analysis and four clips. *PFDR < .05; **PFDR < .01; ***PFDR < .001.    
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Ambivalent feelings predict the awe intensity more precisely than other single 

valence metrics 

We tested whether metrics of ambivalence (i.e., its intensity and duration) had more 

predictive power for awe intensity than other single valence-related features. In the univariate 

analysis based on linear mixed model, only duration and intensity of ambivalent feelings and 

intensity of positive ones showed significant fixed effects (duration of ambivalent states: b = .565, 

95% CI = [.033, 1.097], P = .039; intensity of ambivalent states: b = .220, 95% CI = [.090, .351], 

P = .001; intensity of positive states: b = .094, 95% CI = [.007, .180], P = .035; see Figure 3a). 

In the multivariate analysis, our machine learning-based model exhibited better predictive 

performance than the linear regression model (see Figure 3b). In this model, duration and 

intensity of ambivalent feelings showed higher feature importance than other single valence metrics 

(see Figure 3c). Computing shapley values, we found that duration and intensity of ambivalent 

feelings were positively associated with the awe intensity ratings (see Figure 3d).  

Results of both univariate and multivariate analyses imply that the awe intensity rating 

is more precisely predicted by ambivalence-related behaviors compared to other valence feelings.  

 

Aligned latent cortical spaces share valence representation architecture across 

individuals and stimuli 

We constructed a latent valence-cortical space for each participant for every clip trial. To 

evaluate the generalizability of the personalized latent space and determine the optimal 

dimensionality, predictive analysis of 2 tasks (‘across participants’, ‘across clips’) ´ 3 conditions  
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Figure 3. Association between affective components and awe intensity a, beta coefficients of each 

behavioral metric in the univariate linear mixed effect models. Error bars denote 95% confidence intervals 

of fixed effects. Purple bars show the estimates of ambivalence-related features. Bolded statistics indicate 

statistically significant results at P < .05. b, predictive performance of multivariate machine learning-based 

models. c, scaled feature importance of all behavioral features calculated from the best model. Purple bars 

show the importance of ambivalence-related features. d, shapley value of all metrics computed from the 

best model. This figure is based on data of N = 43 included in the behavioral analysis and four VR clips.  
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(‘random’, ‘not aligned’, ‘aligned’) design was conducted. First, we identified the canonical 

dimension that demonstrated high predictive performance in the ‘aligned’ condition with the 

lowest dimensionality across tasks. Consequently, a 7D space was selected for the CEBRA-based 

latent embeddings (see Figure 4a), while a 6D space was chosen for the PCA-based ones (see 

Supplementary Figure 2).  

Next, we compared the generalizability of neural embeddings across conditions and across 

analytic approaches – CEBRA, PCA, and FAA (see Figure 4b). In the ‘across-participants’ task, 

a kNN classifier trained with each participant’s latent neural embeddings and valence dynamics 

predicted other participants’ valence dynamics above the random chance (aligned – random: 

Cohen’s d = 1.122, PFDR = 5×10-17; not aligned – random: Cohen’s d = .249, PFDR = .020). 

Additionally, aligned embeddings displayed higher predictive performances compared to not-

aligned embeddings (aligned – not aligned: Cohen’s d = .548, PFDR = 2×10-6). Our aligned CEBRA 

embeddings achieved significantly more precise prediction compared to aligned PCA-based 

(Cohen’s d = 1.093, PFDR = 2×10-16) and FAA-based embeddings (Cohen’s d = 1.115, PFDR = 

6×10-17), but not in the random and not-aligned conditions (see Table 4).  

In the ‘across-clips’ task, only aligned CEBRA embeddings showed significant predictive 

power for valence dynamics in the other clip (aligned – random: Cohen’s d = .501, PFDR = .015; 

not aligned – random: Cohen’s d = .103, PFDR = .540). Aligned embeddings exhibited higher 

performance than not-aligned embeddings, but its significance did not reach a threshold (aligned 

– not aligned: Cohen’s d = .283, PFDR = .147). Our aligned CEBRA embeddings predicted valence 

dynamics in other trials more precisely compared to aligned PCA-based (Cohen’s d = .553, PFDR  
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Figure 4. Generalizability of individualized latent valence-cortical spaces across participants 

and stimuli in predictive tasks a, selected dimensionality of CEBRA-based latent valence-cortical spaces. 

Results from across-participants (left) and across-clips (right) tasks. Purple violin plots denote the high-

performing clusters identified through hierarchical clustering analysis. b, predictive performance of CEBRA-, 

PCA-, and FAA-driven embeddings in three conditions. Purple asterisks indicate the statistical differences 

in test performances within CEBRA-based prediction. Black asterisks denote the statistical differences in 

test performances in CEBRA versus PCA and CEBRA versus FAA prediction tasks. Purple heatmaps 

visualize conceptual scheme of results from pairwise predictive tasks. This figure is based on data of N = 6 

reporting all valence types in three awe clips and three awe-inducing clips. *PFDR < .05; **PFDR < .01; 

***PFDR < .001.  
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Table 4. Statistical differences in predictive performances of latent cortical embeddings across 

conditions and analytic approaches 

 
across participants across clips 

t df d PFDR t df d PFDR 

within CEBRA embeddings         

aligned – random 10.641 89 1.122 5×10-17*** 3.005 35 .501 .015* 

aligned – not aligned 5.200 89 .548 2×10-6*** 1.699 35 .283 .147 

not aligned – random 2.366 89 .249 .020* .620 35 .103 .540 

between embeddings         

aligned         

CEBRA - PCA 10.371 89 1.093 2×10-16*** 3.320 35 .553 .006** 

CEBRA - FAA 10.576 89 1.115 6×10-17*** 4.840 35 .807 8×10-5*** 

not aligned         

CEBRA - PCA 1.830 89 .193 .106 .360 35 .060 .721 

CEBRA - FAA 1.898 89 .200 .091 .452 35 .075 .782 

random         

CEBRA - PCA -.379 89 .040 .706 -.410 35 .068 .721 

CEBRA - FAA .269 89 .028 .789 -.278 35 .046 .782 

 

 

= .006) and FAA-based embeddings (Cohen’s d = .807, PFDR = 8×10-5), but not in the random 

and not aligned conditions (see Table 4). 

These results imply that our aligned latent spaces across participants and clips share 

general representation of different valence states in the cortex along with idiosyncratic structures, 

which could not be captured by conventional linear and unsupervised approaches.  

 

The more distinctively ambivalent feelings are represented in the cortices, the 

more saliently individuals experience awe 

With the latent valence-cortical spaces, we investigated whether ambivalent states 

exhibited distinct representation distinguishable from neural patterns of the other single valence 

Note. *PFDR < .05; **PFDR < .01; ***PFDR < .001. 
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states. The silhouette coefficients of ambivalent clusters in the latent space showed large 

variability across participants (see Figure 5a). For instance, five participants’ ambivalent states 

displayed significant silhouette coefficients in all awe clips while ten individuals showed it only 

one clip. Contrarily, most participants displayed significant silhouette scores of single valence 

states more consistently than ambivalent states (see Figure 5a). Given the concern about possible 

confounding effects of cluster size on the statistical significance of silhouette scores, we further 

tested the association between the cluster size of ambivalent cluster (i.e., the duration of 

ambivalent feelings) and the Pperm values of silhouette coefficients for every clip. No significant 

correlation between them was detected in any of the videos (SP: R = .221, 95% CI = [-.174, .554], 

P = .268; CI: R = .198, 95% CI = [-.197, .538], P = .323; MO: R = .126, 95% CI = [-.267, .483], 

P = .531), indicating that the individual differences in distinct cortical cluster of ambivalent 

feelings were not driven by its cluster size. 

Next, we examined our hypothesis that the more distinctively ambivalent states are 

represented in the cortical regions, the more saliently individuals experience awe. For this end, we 

developed new metric called ‘cortical distinctiveness’ of each valence cluster, ϕ (see Figure 5b). 

In the linear mixed model including four cortical distinctiveness metrics - ϕneutral , ϕpositive , 

ϕambivalent, and ϕnegative and two random intercepts of participant and clip as regressors and awe 

intensity ratings as outcome variable, only ϕambivalent significantly predicted the awe intensity 

score (b = .817, 95% CI = [.307, 1.326], P = .003; see Figure 5c). The predictive power of 

ϕambivalent was not killed when the other cluster distance metric – medoid cluster distance was 

used to compute ϕambivalent values (b = .803, 95% CI = [.152, 1.455], P = .018; see Figure 5c). 
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Figure 5. Individual variability of latent valence representation and its predictive power on 

awe intensity a, silhouette coefficients of ambivalent (top), positive (middle), and negative (bottom) 

valence clusters in the latent valence-cortical space. Color of each cell shows statistical significance of the 

silhouette coefficients assessed through 1,000 times permutation test. b, conceptual framework to calculate 

cortical distinctiveness value of each valence cluster - ϕ. c, explanatory power of each valence cluster’s ϕ in 

the univariate linear mixed effect models. Error bar denotes 95% confidence interval of fixed effects. Purple 

bars show the estimates of ambivalence-related features. Bolded statistics indicate statistically significant 

results at P < .05. d, performance gain when ϕambivalent was added in the behavioral predictive model. e, 

scaled feature importance of ϕambivalent and behavioral features calculated from the best model. Purple bars 

show the importance of ambivalence-related variables. This figure is based on data of N = 27 included in 

the electrophysiological analysis and three awe-inducing clips.  

 

Contrarily, ϕ values of other valence clusters did not show significant predictive power. As a 

control analysis, we performed the same univariate analysis with FAA metrics. To extract a single 

FAA value from each participant-clip data, we calculated FAA values using FFT-driven band 

power features instead of STFT one, which was marginalized across the whole time-series. We 

found that FAA did not show any significant predictive power for AWES score (b = .000, 95% 

CI = [-.004, .003], P = .789). 

In addition, when ϕambivalent metrics were added to the machine learning model predicting 

the awe intensity with 14 behavioral variables, its R2 value was improved about 7.2% (see Figure 

5d). Furthermore, in this predictive model, ϕambivalent displayed higher predictive power than any 

other behavioral metrics (see Figure 5e).  

These results suggest individual differences in the distinctiveness of cortical representation 

related to ambivalent feelings and elucidate that such individual variability can specifically 

account for the awe experience.  
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The delta oscillation in the frontal channels mainly engages in distinguishing 

different valence representation 

Lastly, using Dynamask, we investigated which EEG features were importantly used to 

contrast different valence states to construct the latent valence-cortical spaces. We observed that 

delta band power features exhibited higher mean perturbation weights for ambivalent states than 

other band power features (see Figure 6a). Within the delta band power features, frontal channels 

showed larger weights than channels in the other areas (see Figure 6b). We performed the same 

analysis for positive and negative states and found that the delta band power in the frontal 

channels exhibited consistently higher mean perturbation weights for both states (see 

Supplementary Figure 4).  

To confirm the importance of the delta oscillation in valence representation, we performed 

additional post-hoc analysis using HMM. We hypothesized that the time-series of delta band 

power in all channels may be temporally aligned with valence dynamics and found that neural 

boundaries extracted from the combination of delta-related features exhibited significant match 

rates with participants’ valence transition above the random chance (match rate = 53.6%; Pperm 

= .047). We conducted the same analysis with the other four band power features and observed 

that only beta oscillation displayed significant match rate (see Figure 6c).  

These results imply that delta oscillation in the frontal channels crucially participate in 

distinguishing ambivalent feelings to other valence states in the cortices, but their importance is 

not limited to ambivalent state. They also engage in distinguishing other valence states.  
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Figure 6. Attribution map of EEG features in constructing latent cortical space a, top 50 

important features in contrasting ambivalent states to other valence types. b, spatial distribution of delta 

power-related features’ importance. c, mean differences between HMM-based match rate and null 

distribution of each frequency group. The vertical line denotes the real mean differences value. Purple and 

gray plots show statistically significant and non-significant results, respectively. This figure is based on data 

of N = 27 included in the electrophysiological analysis and three awe-inducing clips. *Pperm < .05.   
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Discussion 

In this study, using an integrated VR-EEG protocol, we showed that awe is characterized 

as an ambivalent feeling rather than a simply positive or negative one at both behavioral and 

cortical levels. Behaviorally, the intensity of awe rated by participants for each VR clip could be 

significantly predicted by the duration and intensity of ambivalent feelings experienced while 

viewing the clip, whereas variables related to positive and negative feelings were less predictive. 

At the cortical level, we identified a latent valence-cortical space from each individual’s EEG 

signals during watching each movie and aligned these spaces to extract common architecture of 

valence representation across individuals and stimuli. This revealed that ambivalent feelings have 

distinct neural representations shared across individuals and clips, though with significant 

individual variability. This individual difference in distinctiveness of ambivalence-related cortical 

representation predicted the awe intensity ratings, with more distinct representations of 

ambivalent feelings correlating with stronger awe. The frontal region’s delta oscillation played a 

key role in distinguishing ambivalent feelings from other valence states and was consistently 

important in differencing other valence states too.  

The high predictive power of the duration and intensity of ambivalent feelings on the level 

of awe supports our hypothesis that awe is characterized as an ambivalent experience at the 

behavioral level. This aligns with recent research on the ambivalent nature of awe. Chaudhury et 

al. (2022) reported that Western population rated threat-awe-inducing images (e.g., photo of 

Niagara Falls) as having stronger ambivalence compared to stimuli evoking happiness or fear. 

Here, by utilizing real-time valence ratings, we newly discovered that the duration of ambivalent 

feelings has a higher explanatory power for the awe ratings than its intensity. We speculate that 



  

 37 

its high predictive power may be related to the emotion regulation involved in both ambivalent 

feelings and awe. Theoretical models of ambivalent feelings suggest they stem from reappraisal 

(Vaccaro et al., 2020; Van Tilburg et al., 2018). For example, to feel ambivalence toward a 

stimulus, one must retrieve memories or knowledge related to an opposite valence from the initial 

valence feelings evoked by the stimulus. In the case of awe, baseline liability of reappraisal for 

emotion regulation significantly predicts awe ratings for memory recall (Chirico et al., 2024; 

Chirico et al., 2021), indicating a close relationship between awe and reappraisal. Furthermore, 

prior search on affect dynamics reports that emotion regulation types show significant correlations 

with the duration of negative feelings triggered by stimuli (Van Mechelen et al., 2013; Verduyn 

et al., 2009; Verduyn et al., 2011), but not with their intensity per se (Brans & Verduyn, 2014). 

Synthesizing our behavioral results with this previous literature, we propose a new ‘reappraisal 

hypothesis’ as the cognitive process bridging ambivalent feeling duration and awe ratings, positing 

that the type of emotion regulation strategy employed by an individual while watching a video 

explains their awe rating and this relationship is mediated by duration of ambivalent feelings. 

Future studies tracking the cognitive dynamics of emotion regulation during VR watching are 

expected to validate this hypothesis.  

In our electrophysiological analysis, we identified a latent cortical space that shared valence 

representations across individuals and sensory input. Specifically, in a pairwise prediction task, 

the aligned latent valence-cortical embeddings significantly predicted the valence dynamics 

obtained from other participants and different clips. Meanwhile, embeddings obtained using PCA 

and FAA did not capture the commonality of valence representations that could be generalized 

across individuals and clips even after alignment. In the case of FAA, we could confirm that FAA 

lacks generalizability and specificity as an electrophysiological index of valence as previous studies 
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have criticized (Gable & Harmon-Jones, 2010; Harmon‐Jones & Gable, 2018; Honk & Schutter, 

2006; Wacker et al., 2003). Contrarily, the results of PCA-based embeddings were somewhat novel, 

given that aligned PCA-driven embeddings captured common neural trajectories for various 

behaviors such as motor control (Gallego et al., 2020; Safaie et al., 2023). We guess that this 

finding may justify our neural network-based approaches for nonlinear dimensionality to explore 

shared representation across individuals for affective valence, considering nonlinear relationship 

between brain activities and valence (Aftanas et al., 1998; Berridge, 2019; Viinikainen et al., 2010). 

Additionally, the significant predictive performance in the across-clips prediction task indicates 

that our supervised learning-based dimensionality reduction technique can be effective in 

disentangling sensory information from valence-cortical embeddings. 

The individual-specific latent neural spaces we derived revealed that ambivalent feelings 

have distinct cortical representations, while also showing significant individual differences in how 

these neural patterns are differentiated from those of other valence states. We allude that these 

findings may reconcile conflicting viewpoints about distinct neural system of ambivalent feelings. 

Our findings support recent studies indicating that ambivalent feelings exhibit unique neural 

patterns in the cortical regions (Lettieri et al., 2019; Man et al., 2017; Vaccaro et al., 2020; Vaccaro 

et al., 2024), challenging the constructivist view that ambivalent feelings would not have distinct 

neural representations since they are merely fluctuations between opposing valence states (Barrett 

& Bliss‐Moreau, 2009; Russell, 2017). However, the individual differences in the cortical 

distinctiveness of ambivalent feelings can be also interpreted from a constructivist perspective. 

For instance, neuropsychological factors constructing affect into emotions, such as beliefs about 

emotions, emotional granularity, and the time window of event segmentation, could contribute to 
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this individual variability in experiencing mixed emotion and its neural representation  (Hoemann 

et al., 2017).  

The cortical distinctiveness of ambivalent feelings during awe experiences shows significant 

individual difference, but this variability can predict the awe intensity. Specifically, the more 

distinct the cortical representation of ambivalent feelings compared to positive, negative, and 

neutral feelings, the higher the reported intensity of awe. Given that the cortical distinctiveness 

of other feeling categories did not significantly predict awe ratings, this implies a specific 

relationship between the neural representation of ambivalent feelings and awe intensity. These 

results highlight a new aspect of awe that conventional approaches, which focus on activation 

levels of specific regions or networks - e.g., (Guan et al., 2019; Hu et al., 2017; Takano & Nomura, 

2022), are insufficient to address by considering the geometrical characteristics of affect-related 

latent neural spaces.  

We suggest that the predictive power of the cortical distinctiveness of ambivalent feelings 

for awe can be understood through the lens of ‘holistic meaning-making’, a key cognitive aspect 

observed in awe experiences (Bonner & Friedman, 2011; Dai et al., 2022; Ihm et al., 2019; Sawada 

et al., 2024; Yin et al., 2024). During awe, individuals face an extraordinary object that expands 

their belief or cognitive scheme, leading to the generation of new meanings. In terms of affect, this 

process integrates the initial negative feelings evoked by the object with the pleasure derived from 

epistemic transformation. For example, awe is often described as a ‘self-transcendent’ experience, 

where conflicting two feelings – ‘self-diminishment’ and ‘connectedness’ are harmonized (Yaden 

et al., 2019). Thus, awe is fundamentally based on the integration of these opposing feelings, 

resulting in an emotion that cannot be reduced to merely positive or negative information. We 

propose that the new meaning generated during an awe experience is perceived as an ambivalent 
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feeling, encompassing both positive and negative aspects. This integration process is reflected in 

cortical representations distinct from those of simply positive or negative feelings. While our 

findings do not elucidate the specific attributes of awe’s high-level cognitive dynamics, they suggest 

the potential connection between these cognitive processes and cortical representation patterns 

through the spatial analysis of latent neural spaces.  

Finally, we consistently observed that the delta oscillation of the frontal channels is a 

significant feature for distinguishing valence states in both Dynamask and HMM analyses. Firstly, 

the result that frontal channels have higher importance compared to other regions within the same 

frequency range aligns with several studies on human neuroimaging. The prefrontal cortex (PFC), 

particularly the orbitofrontal cortex, shows unique activation patterns for conflicting affective 

information (Levens & Phelps, 2010; Rolls & Grabenhorst, 2008; Simmons et al., 2006) and 

consistent activity patterns when individuals feel ambivalence during naturalistic movie watching 

(Vaccaro et al., 2024). We believe this result is related to the valence-related information stored 

in the PFC, which integrates conflicting bodily signals from interoceptive circuits to create a global 

mixed feeling.  

In terms of the frequency band below 5-6 Hz, encompassing delta and low-theta ranges, 

has been reported to be closely associated with emotional processing and regulation. For emotional 

processing, it has been observed that this frequency range in the frontal areas increases when 

emotional memories, crucial for determining valence feelings to the stimuli, are encoded and 

retrieved (Brenner et al., 2014; Hutchison & Rathore, 2015; Nishida et al., 2009; Sopp et al., 2017). 

Unlike other frequency bands, the microstate features of the 1-3 Hz range successfully decode 

valence ratings to images (Shen et al., 2020). Additionally, intermittent theta burst stimulation, 

enhancing the 5 Hz band power in the left dorsolateral PFC, improved emotion recognition for 
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lexical and facial stimuli (Dumitru et al., 2020; Moulier et al., 2021), supporting the role of low-

frequency bands in the frontal regions in emotional feeling and processing. In terms of emotion 

regulation, successful regulation of negative feelings induced by image stimuli has been correlated 

to increased 4 Hz band power in frontal channels, as reported in both experimental (Ertl et al., 

2013) and meta-analytical studies (Cavanagh & Shackman, 2015). Heroin-addicted patients with 

disrupted regulatory abilities exhibited consistent decreases in the < 5 Hz frequency band in these 

regions when viewing affect-charged images (Jiang et al., 2022). Interestingly, the synchrony of 

delta and beta features, which displayed significant alignment with keypressed valence dynamics 

in the HMM analysis, have been also reported to correlate positively with the efficiency of emotion 

and stress regulation (Brooker et al., 2021; Myruski et al., 2022; Phelps et al., 2016; Putman et 

al., 2012). In this context, our results and prior studies may support the rationale of the 

‘reappraisal hypothesis’ we suggested.  

Our findings require consideration of three major limitations. First, our emphasis on 

ambivalent feelings in awe may be overestimated due to the inclusion of only Asian participants 

in this study. Western individuals report fewer ambivalent feelings in awe experiences compared 

to Asians (Nakayama et al., 2020). Nonetheless, even among Western populations, ambivalent 

feelings were rated higher for awe-inducing image stimuli than those inducing single-valence 

emotions such as happiness or fear (Chaudhury et al., 2022). Thus, it remains to be verified 

whether the cortical distinctiveness of ambivalent feelings can significantly predict awe intensity 

in Western group. Second, real-time valence ratings through keypresses might have 

unintentionally influenced the emotion generation process. Continuous introspection and reporting 

of feelings can interfere with natural emotional generation (Larsen & Fredrickson, 1999). Despite 

this, we validated participants’ valence ratings by predicting this sequence from each video’s 
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perceptual information that could predict viewers’ emotional responses at both individual and 

stimulus levels. Nevertheless, using collaborative filtering (Jolly et al., 2022) for interpolation of 

dense reports could mitigate this potential limitation. Third, we assumed that the dimensions of 

the latent valence-cortical space are identical for all participants. It remains necessary to verify 

whether individuals’ idiosyncratic valence representations are encoded in a space of the same 

dimensionality.  

Despite these considerations, our study is significant in that it elucidates the importance 

of the ambivalent nature of awe at both behavioral and cortical levels, a topic that has not been 

sufficiently highlighted in quantitative research. Our approach, which explains awe through the 

hierarchical integration of negative and positive feelings, offers a new perspective on the origins of 

the psychiatric benefits of awe (e.g., stress resilience or non-egocentric schemes). Additionally, our 

approach provides insights not only into awe itself but also significant implications for the distinct 

neural representation of ambivalent feelings, a topic of debate in affective neuroscience. We 

anticipate that our study will stimulate further research on topics not directly addressed in this 

study, such as the relationship between the experience of ambivalent feelings in awe and 

improvement in mental health, and the cognitive dynamics of emotion regulation required to shape 

ambivalent feelings during awe experience.  
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Supplementary Materials 

 

Supplementary Figure 1. Diverse sensory dynamics of three awe-inducing clips a, brightness 

of each clip. Brightness is measured as ‘value’ channel in the hue-saturation-value (HSV) color space. b, 

color hue of each clip. Hue is calculated as ‘hue’ channel in the HSV color space. c, audio volume of each 

clip. Volume is defined as root mean square energy of audio segments.  

 

 
Supplementary Figure 2. Dimensionality selection for PCA-driven embeddings a, Test 

performances in the ‘across-participants’ task. Purple violin plots denote high-performing group identified 

by hierarchical clustering analysis. b, Test performances in the ‘across-clips’ task. Based on these two 

predictive tasks, 6D embeddings were chosen as the optimal dimensionality for PCA-based latent valence-

cortical spaces.  
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Supplementary Figure 3. Learning curves of Dynamask Dynamask learns perturbation weights of 

EEG features for every time point so that it generates perturbed embeddings showing large mean square 

error (MSE) loss with the original CEBRA embeddings. Colored curves denote its learning curves based on 

each participant’s data. Thick gray curves visualize the average loss values at every epoch.  

 

 

Supplementary Figure 4. Dynamask weights of EEG features in positive and negative states 

a, top 40 EEG features with high perturbation weights for positive states. b, spatial distribution of delta 

features’ perturbation weights in the positive states. c, top 40 EEG features with high perturbation weights 

for negative states. d, spatial distribution of delta features’ perturbation weights in the negative states.  
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Abstract in Korean 

경외감에 동반하는 양가적 느낌은 경외 체험에 대한 질적 묘사에서 독자적인 성질로 강조되어 

왔으며, 그것이 갖는 다양한 정신의학적 및 심리사회적 이점의 가능한 근원으로 언급되어 왔다. 

그럼에도 불구하고 정서과학의 이분법적인 긍/부정 도식으로 인해 경외감의 양가적 성질은 온전히 

연구되지 못했다. 본 연구에서는 경외에 내포된 유인성의 동역학을 풍부하게 포착하기 위한 가상현실-

뇌전도 결합 프로토콜과 양가적 느낌의 응답을 허용하는 확장된 유인성 측정도구를 사용하여, 행동 

및 피질 수준에서 경외감이 단순 긍/부정 느낌보다 양가적 느낌으로 더 정확히 특정될 수 있는지 

살펴보았다. 행동 수준에서, 참여자들이 각 가상현실 영상에 대해 평정한 경외 수준은 양가적 느낌의 

길이와 강도에 의해 정확히 예측될 수 있었던 반면, 다른 유인성에 관한 평정값으로는 유의하게 

예측되지 못했다. 피질 수준에서, 경외 체험 동안의 양가적 느낌은 잠재 신경 공간에서 독자적인 신경 

표상을 보였지만, 그 신경 표상이 긍/부정 느낌의 표상에 대해 갖는 구분가능성은 큰 개인차를 보였다. 

그럼에도 불구하고, 양가적 느낌이 긍/부정 느낌의 표상과 질적으로 구분되어 피질에 부호화 될수록, 

더 강한 경외감이 보고되었다. 마지막으로, 다른 종류의 유인성 표상을 구분하는데 있어 주로 전측 

영역의 델타파의 파워가 관여하는 것으로 관찰되었다. 이 연구는 정서 신경과학에서 논쟁되어오던 

양가적 느낌의 독자적인 신경표상을 탐색했을 뿐 아니라, 이를 기반으로 행동 및 피질 수준에서 

경외감이 양가적 경험으로써 더욱 정확히 특정될 수 있음을 밝혔다는 점에서 의의를 갖는다.  

 

주요어: 경외, 양가성, 잠재 신경 공간, 뇌전도, 가상 현실 

학번: 2022-23358 
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