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Abstract

The ambivalent nature has been emphasized as a unique quality of awe in qualitative
descriptions and cited as a potential source of its various psychiatric and psychosocial benefits.
However, due to the affective science’s dichotomic positive /negative schema, this ambivalence has
not been fully explored. This study aims to capture the valence dynamics inherent in awe by
applying naturalistic VR-EEG paradigm and an extended valence measurement allowing
ambivalent response. We investigated whether awe can be better characterized as ambivalent
rather than simply positive or negative at both behavioral and cortical levels. Behaviorally, the
awe intensity for each clip was precisely predicted by the duration and intensity of ambivalent
feelings, but not by other valence metrics. In the cortical level, ambivalent feelings during awe
showed unique neural representations in the latent cortical space, with significant individual
variability in their distinctiveness from positive/negative representations. Nevertheless, the more
distinctly ambivalent feelings were encoded in the cortex, the stronger individuals reported awe.
Finally, frontal delta band power was mainly involved in distinguishing different valence
representations in the cortices. This study not only explores the existence of unique neural
representations of ambivalent feelings, a topic of debate in affective neuroscience, but also
demonstrates that awe can be characterized as an ambivalent experience at both behavioral and

cortical levels.
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Introduction

Awe is an intricate emotion evoked by facing something so enigmatic that individuals
cannot get a sense. Such characteristics of awe make it appear similar to emotions such as fear;
however, awe is distinguished by the fact that it is accompanied by the expansion of one’s
conceptual schemes in an attempt to comprehend something mysterious, incorporating not only
overwhelming but also pleasant feelings. For these reasons, psychologists defined awe with its two
key dimensions: ‘perceived vastness’ and ‘a need for accommodation’ (Keltner & Haidt, 2003). For
instance, in the phenomenological study of awe (Yaden et al., 2016), astronauts described their
awe experience during the space flight that they were bewildered by the vast scale of the universe
in contrast to the smallness of Earth (i.e., perceived vastness), yet at the same time, they also felt
ineffable beauty and fragility of Earth and realized that humankind’s urgent task is to preserve
this beauty (i.e., a need for accommodation). These multifaceted dimensions of awe shape its
ambivalent nature, and the coexistence of opposing feelings in awe has been regarded as potential
sources of its psychiatric, psychosocial, and intellectual benefits such as stress resilience, non-
egocentric perspectives, and trait openness (Jiang et al., 2024). Thus, early awe studies asserted
that “an adequate account of awe must explain how awe can be both profoundly positive and
terrifyingly negative” (Keltner & Haidt, 2003).

Nevertheless, recent affective sciences have tried to characterize awe as a single-valence
emotion. For instance, awe was split into two subtypes in terms of its dominant valence: positive
awe and threat awe (Gordon et al., 2017; Piff et al., 2015). Based on this framework, neuroimaging

studies reported distinguishable neural correlates between these two types of awe in terms of



structural (Guan et al., 2019) and functional patterns (Takano & Nomura, 2022). However, this
approach does not fully address ambivalent nature of awe.

We diagnose that methodological issues regarding affective valence are limiting the
research on the ambivalence of awe. Conventional measurement of valence such as the 1D bipolar
continuum model (Russell, 2003) does not allow ambivalent responses. The unidimensional
structure of this scale is highly problematic since it lacks behavioral and neurobiological
plausibility of valence representation. Numerous psychometric studies observed that separate
positivity and negativity dimensions displayed stronger predictive power than a unidimensional
model of valence, and also positivity and negativity did not show negative correlation, challenging
unidimensional assumptions of valence (An et al., 2017; Briesemeister et al., 2012; Cacioppo &
Berntson, 1994; Moeller et al., 2018). From a neurobiological aspect, the neural circuits encoding
positive and negative feelings share some common components but fundamentally operate in
distinct ways, supporting multidimensional model of valence (Berridge, 2019; Lammel et al., 2012;
Norman et al., 2011; Reynolds & Berridge, 2008). For example, while both circuits share the
ventral tegmental area (VTA) as a common part, reward-VTA circuit receive inputs from the
laterodorsal tegmentum but aversion-VTA circuit from the lateral habenula (Lammel et al., 2012).
Regarding the awe, a recent study has found that threat-awe inducing images led higher co-
occurrence between opposing valence compared to happy and fear images by wusing 2D
measurement of valence (Chaudhury et al., 2022), implying that multidimensional valence scale
can facilitate to investigate ambivalence of awe experience.

Additionally, we suggest that theoretical debates about the distinct neural representation
for ambivalent feelings may act as another bottleneck for research on the ambivalent of awe. The

constructive perspectives of emotion have asserted that ambivalent feelings just originated from



the rapid fluctuation between conflicting valence in the brain, arguing the absence of distinct
neural pattern of ambivalent feelings (Barrett & Bliss-Moreau, 2009; Russell, 2017). Contrarily,
recent studies support the uniqueness of ambivalent feelings in the cortex. Vaccaro et al. (2020)
purposed that while in the subcortical regions centered around the brainstem and limbic system,
opposing valences are rapidly co-regulated to preserve homeostasis, resulting coarse fluctuations,
cortical areas such as the anterior insula cortex integrate these dynamics to produce a global
‘mixed’ affective representation. The constructivism has exerted a significant influence in this
controversy, hindering systematic research on the ambivalence of awe. However, recent human
fMRI studies support the latter. For example, the posterior-anterior axis gradient within the right
temporoparietal cortex is associated with valence co-occurrence during movie watching (Lettieri
et al., 2019). The ventromedial prefrontal cortex and the anterior cingulate cortex also exhibited
consistent neural pattern for ambivalent feelings during movie watching (Vaccaro et al., 2024).
These observations motivate the possibility that ambivalent feelings during awe experience are
represented at the cortical level in a manner that is significantly segregated from the neural
representation of simply positive or negative feelings.

Then, how can we identify neural representation of ambivalent feelings during awe
experience? First, to induce more naturalistic awe experience in the laboratory, we designed 360°
immersive clips in the virtual reality (VR). Some concerns about conventional image and movie
stimuli for awe studies emerged due to their lack of ecological validity (Chirico et al., 2016; Silvia
et al., 2015). Considering that ‘perceived vastness’ is one of the main key dimensions of awe,
limited magnitude of these stimuli makes it elusive which emotion they trigger. To overcome this
limitation, we developed VR videos based on the strengths demonstrated by VR protocols in

eliciting awe (Chirico et al., 2024; Chirico et al., 2017; Chirico et al., 2018; Kahn & Cargile, 2021,



Quesnel & Riecke, 2018). Second, we recorded participants’ electroencephalogram (EEG) signals
while they watched VR clips. The insula synthesizes fluctuating bodily signals within a time
window of approximately 125 ms to create a global affective representation (Picard & Craig, 2009;
Vaccaro et al., 2020; Wittmann, 2013), implying that neuroimaging techniques with a sampling
rate higher than 16 Hz can fully capture these dynamics. Hence, we chose EEG recordings instead
of the other modalities such as fMRI. Last, we applied deep learning techniques to construct
individualized latent valence-cortical space instead of conventional hand-crafted feature extraction
approach. Previously, frontal alpha asymmetry (FAA) was understood as an electrophysiological
index of valence (Berkman & Lieberman, 2010; Schmidt & Trainor, 2001). However, recent studies
consistently reported that FAA correlates with motivational behavior rather than valence per se,
implying the limited specificity of FAA as a valence representation (Gable & Harmon-Jones, 2010;
Harmon-Jones & Gable, 2018; Honk & Schutter, 2006; Wacker et al., 2003). Leveraging notable
representation learning ability of deep neural networks, we learned valence-specific latent neural
space within individual-stimulus level, which contrasted EEG samples in terms of their valence
states. Given that the architecture of valence representation in the brain displays large
heterogeneity across individuals and sensory information (Ceko et al., 2022; Lee et al., 2024;
Lettieri et al., 2024), our within individual-stimulus approach is expected to capture not only
these variabilities but also commonality of the latent valence-cortical architecture.

In this study, we aimed to examine whether awe is more precisely characterized as an
ambivalent experience than single-valence ones at the behavioral and cortical level. For this end,
we formulated three research questions and corresponding hypotheses as follows: First, is awe
intensity predicted by ambivalence-related behavior metrics more precisely than single valence

features? We hypothesize that ambivalence-related features predict awe intensity score of each



clip more accurately than single valence ones. Second, does ambivalent feeling during awe
experience have distinct neural representation in the latent cortical space? We expect that
ambivalent feeling exhibits distinguishable cortical representation from single valence states. Third,
does the distinctive neural representation predict the awe intensity score? We predicted that the
more distinctively ambivalent feeling is represented in the latent cortical space, the more saliently

individuals feel awe during VR watching.



Methods

Participants

We recruited 50 healthy young adult Koreans enrolled in psychology courses at Seoul
National University for this study. Participants were excluded if they met any of the following
criteria: (1) currently taking psychiatric medication, (2) history of psychiatric treatment, (3) left-
handedness, (4) vestibular neuritis or balance disorder, (5) visual acuity before correction less than
0.2, (6) non-Korean native speakers, and (7) consumption of alcohol or use of hair rinse 24 hours
before the experiment. Data from 43 participants were completely collected in the analyses (23
females; Mage = 20.2 years, SDage = 1.7 years). Seven participants were excluded due to technical
issues (N = 3), discontinuance due to motion sickness (N = 2), and lack of fidelity in VR watching
task (N = 2). See Figure la for sampling procedures. Participants provided written informed
consent before the experiment, and all procedures were approved by the Institutional Review

Board of Seoul National University.

Experimental paradigm

VR clip design We collaborated with a professional filmmaker to design four audio-integrated
360° immersive videos using Unreal Engine (version 5.03). Each video lasted 120 seconds. Three
of the videos were designed to evoke awe: Space (SP), City (CI), and Mountain (MO), while the
other one, Park (PA), served as a control stimulus, designed not to elicit any specific emotional

response. To investigate whether ambivalence is consistently observed in various awe experiences,



we varied (1) the clip themes, (2) the sub-components of awe, and (3) the perceptual features
across the awe-inducing videos.

Firstly, considering that awe is most intensively triggered by massive landscapes (Chirico
et al., 2018; Keltner & Haidt, 2003; Shiota et al., 2007; Yaden et al., 2019), we differentiated the
semantic theme of the scenery: SP featured supernatural landscapes (i.e., black holes and planets
in space), CI showcased urban landscapes (i.e., cityscape viewed from the top of skyscrapers), and
MO depicted natural one (i.e., mountain scenery).

Secondly, following Chirico et al. (2018)’s qualitative framework to design videos that
effectively elicit awe in VR, we aimed to represent the two key dimensions of awe, perceived
vastness and a need for accommodation, through different cues in each video. Each video was
designed so that perceivers would first experience vastness during the initial 60 seconds and then
feel a need for accommodation in the latter 60 seconds. For example, in SP, participants watched
a giant black hole approaching, consuming everything, and ultimately drawing them in, followed
by the sudden appearance of Earth from space. Nevertheless, different sub-components were
applied to realize each dimension across clips. Perceived vastness can be induced through
perceptual (e.g., ‘width’ and ‘height’) and conceptual cues (e.g., ‘complexity’)(Chirico et al., 2017;
Chirico et al., 2018). MO was designed to evoke vastness through perceptual width, CI through
height, and SP through conceptual complexity. For the need for accommodation, we introduced
surprise cues in each video around the 60-second mark as a trigger of accommodation (Chirico et
al., 2017; Chirico et al., 2018), tailored to the context of each video to ensure that the cause of
surprise did not overlap across videos. The design of three awe-inducing clips is summarized in

Table 1.



Table 1. Design of awe-inducing VR clips for diverse awe experiences based on the framework

of Chirico et al. (2018)

0 — 60 secs 60 - 120 secs
Dimensions Perceived vastness A need for accommodation
Sub-components perceptual conceptual surprise
Sudden transition An elevator Abrupt
VR cues width height complexity  from inside a cave to a rapidly adsorption into a
mountain peak view ascending black hole
Clip MO CI SP MO CI SP
Th natural urban supernatural natural urban supernatural
eme . .
panorama, cityscape scenery panorama, cityscape scenery

Lastly, to prevent ambivalent feelings from being driven by specific perceptual factors, we
intentionally composed the three awe videos with different audiovisual information. We
synchronized visual content with ambient sounds using open-source audio samples from Freesound

(https://freesound.org) and GarageBand (version 10.4.6). To verify our design, we calculated three

perceptual features known to predict perceivers’ emotional responses — brightness, hue, and
loudness (Chua et al., 2022; Thao et al., 2019) — every second for each stimulus and visualized
their time-course dynamics. We qualitatively confirmed that each video exhibited very different
temporal dynamics for all features (see Supplementary Figure 1).

To validate the awe elicitation, we conducted a preliminary study with 28 independent
young adult Koreans (five females; Mage = 20.2 years, SDage = 1.9 years), who rated awe intensity
using the Awe Experience Scale (Yaden et al., 2019) after watching each clip. Participants reported
significantly higher awe scores for three awe clips compared to the control clip, with large effect
sizes in two-sided paired t-tests (SP-PA: Cohen’s d = 2.466, Prpr = 8x107'%; CI-PA: Cohen’s d =

2.193, Prpr = 6X1O'12; MO-PA; Cohen’s d = 1.52, Prpr = 1><10‘6).
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using CEBRA and neural alignment. d, assessing generalizability of the individualized latent valence-cortical
spaces across individuals and stimuli through two types of predictive tasks. e, inference of attribution map

to construct latent valence-cortical space using Dynamask.

Baseline self-report Before the experiment, participants provided information on their sex, age,
baseline mood states, and dispositional trait of experiencing awe in daily life. Baseline mood states
were assessed using the Korean version of the Positive and Negative Affect Schedule (PANAS)
validated by Lim et al. (2010). No participants showed exceptional mood states beyond 1.5 x
interquartile range (Mpositive = 33.581, SDpositive = 6.284; Muegative = 23.140; SDpegative = 6.331).
Awe trait was measured using the awe-related items from the Dispositional Positive Emotions
Scale (Shiota et al., 2006) translated into Korean (M = 29.628, SD = 6.626). The Korean-
translated DPES items demonstrated acceptable reliability (Cronbach’s o = .827) but mixed

results in internal validity (model fit of the original factor structure: CFI = .946, RMSEA = .127).

Procedures Participants sat on a sofa in a noise-isolated room and wore an Enobio 20 EEG
device (Neuroelectrics) and a Quest 2 VR headset (Oculus). After checking EEG signal quality,
the experiment proceeded as follows: baseline EEG recording, keypress training, VR watching task,
post-trial measurement, and a break (see Figure 1b). Firstly, participants’ resting EEG signals
were recorded for 120 seconds with their eyes closed (baseline recording). These resting signals
were used to normalize signals recorded during the movie-watching trials. Secondly, they practiced
real-time valence keypress reporting (keypress training). Participants were explicitly asked to

report their valence state in real-time manner with the following auditory instruction:
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“While watching the video, please report your affective state in real-time by pressing
a number pad: ‘1’ for positive, ‘2’ for ambivalent (feeling positive and negative
feelings at the same time), and ‘3’ for negative feelings. If you do not feel any
affective feelings, please do not press anything. If specific state persists, continue
to press and hold the corresponding key. It is important to report your subjective

reactions, rather than which emotions the video intends to elicit”.

Participants practiced this for 60 seconds using sentences describing affective responses to prevent
confusions which key they should press. Then, participants watched one VR clip in a
pseudorandom order per trial, reporting their valence states in real time using keypress (VR
watching task). After each trial, they reported awe intensity, overall valence, arousal, and motion
sickness using controllers (post-trial measurement). Awe intensity was measured by the Korean-
translated AWES (Yaden et al., 2019), valence by Evaluative Space Grid (Larsen et al., 2009),
arousal by conventional 9-point Likert scale (Bradley & Lang, 1994), and motion sickness by a
single 7-point Likert scale item. The Korean-translated AWES demonstrated acceptable
psychometric properties (Cronbach’s o = .928; model fit of the original factor structure: CFI
= .881, RMSEA = .079). Participants took a 30-second break with eyes closed after each trial

(break).
EEG recording and preprocessing We recorded EEG signals using 19 dry electrodes: AF3,

AF4, F7, F3, Fz, F4, F8, FC5, FC6, C3, Cz, C4, P7, P3, Pz, P4, P8, O1 and 02 with Neuroelectrics

Enobio 20. Ground and reference electrodes were attached to the right earlobe. The embedded
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software in the Enobio system assessed signal quality and visualized it using three channel colors:
green (good), yellow (medium), and red (bad). We ensured no electrodes displayed red signals
before starting the signal acquisition. We adopted the automated preprocessing pipeline validated
by Delorme (2023). EEG signals for each trial were time-locked to the initiation of the video,
excluding the last three seconds to avoid end-of-task effects (e.g., loss of attention or emotional
confounding). High-pass filtering above 0.5 Hz and Artifact Subspace Reconstruction were
performed. Unlike the original pipeline, we used interpolation to maintain consistent recording
lengths across participants and trials instead of exclusion of time window with poor signal quality.
We conducted independent component analysis-based artifact rejection to remove noise
components, such as eye movement, muscle noise, or skin potentials, with over 90% probability.
The preprocessed signal for each trial was normalized by subtracting the average resting signal
value for each channel. All preprocessing was performed using the “EEGLAB” plugin (Delorme &

Makeig, 2004) in MATLAB (version 2021a).

Short time/Fast Fourier transform With preprocessed and normalized EEG signals, we
performed short time Fourier transform (STFT) and fast Fourier transform (FFT) to calculate
the spectral power of five frequency bands for each channel: delta (1-4 Hz), theta (4-8 Hz), alpha
(8-14 Hz), beta (14-31 Hz), and gamma (31-49 Hz). For STFT, a Hanning window with a 500-
sample window size (i.e., 1 sec) and a 250-sample hop size was applied. Participants’ valence
keypresses were embedded as event markers in EEG signals, categorizing EEG samples into one
of four valence categories. The valence label of each 500-sample window after STFT was defined
as the mode of the corresponding samples. FFT was also performed to calculate overall spectral

powers marginalized across the whole time-series. Using the Welch method, we calculated the
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power spectral density for each EEG channel, and then integrated it over specific frequency range
described above to determine the band power. For relative band power, we normalized the power
within each band by the total power across all frequencies. The “scipy” package (Virtanen et al.,

2020) in Python (version 3.8) was used for STFT and FFT.

Behavioral analysis

Univariate statistical analysis Using data from 43 participants, we firstly assessed the
univariate association between AWES ratings and 14 behavioral features measured before, during,
and after each trial: sex, age, PANAS positive score, PANAS negative score, DPES awe score
(before trial), duration of positive, ambivalent, negative, and neutral feelings (during trial), arousal,
motion sickness score, and intensity of positive, ambivalent, and negative feelings (after trial).
The duration of each valence type was calculated as the ratio of keypresses for that valence type
to the total running time of each clip. Intensity was calculated based on the Evaluative Space
Grid responses: positivity (x-axis value), negativity (y-axis value), and ambivalence (minimum
value between positivity and negativity, following previous literature - e.g., (Berrios et al., 2015;
Chaudhury et al., 2022; Ersner-Hershfield et al., 2008)). Firstly, we performed two-sided paired t-
tests to examine statistical differences in AWES scores, duration, and intensity of each valence
type between the three awe clips and the control clip at Prpr < .05. Next, to evaluate the
explanatory power of the 14 metrics, we fit linear mixed effect models with each regressor and two
random intercepts for participants and clips using the “lmerTest” package (Kuznetsova et al.,
2015). Assumptions of normality were examined using the “DHARMa” package (Hartig, 2018).

We confirmed that the distribution of residuals did not significantly deviate from a normal
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distribution using the Kolmogorov-Smirnov test (all Ps > .200). All statistical analyses were

conducted in R studio (version 2023.03.1+446).

Multivariate machine learning analysis Next, we conducted machine learning-based
predictive modeling with 14 behavioral variables for AWES scores as multivariate analysis,
considering potential non-linear interactions among features. Using “h20” package (LeDell &
Poirier, 2020), we split the dataset into training and test sets with a 4:1 ratio and conducted 5-
fold cross-validation. A total of 22 models were constructed, and we selected the best model based
on the lowest fold-averaged RMSE from the test set. Models that did not provide feature
importance information (e.g., stacked ensemble models) were excluded for interpretability. As a
result, gradient boost model (GBM) was chosen as the best model. The predictive performance
was compared to a baseline ridge linear regression model without any interaction terms using for
metrics: RMSE, MAE, MSE, and R’ To identify the most influential features, we calculated
feature importance and shapley values for each variable. All machine learning analyses were

performed in R studio (version 2023.03.1+446).

Electrophysiological analysis

Construction of latent valence-cortical space Among 43 participants in the behavioral
analysis, we excluded 16 individuals due to poor-quality preprocessed EEG signals (N = 6) and
lack of ambivalent keypresses in at least one trial (N = 10; see Figure la). The quality of
preprocessed signals was visually inspected. The primary objective of the electrophysiological

analysis was to investigate whether ambivalent feelings during awe have distinct cortical
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representation and to evaluate their relationship with the intensity of awe. Therefore, participants
who responded ambivalent feelings for less than 5% of the total duration across all videos were
excluded. Given that our behavioral analysis identified the duration of ambivalent feelings as the
most salient positive predictor of awe intensity (see ‘Results’), such exclusion is not expected to
introduce sampling bias regarding the measurement of awe intensity.

Using 27 participants’” EEG signals and valence keypress in the three awe clip trials, we
constructed a latent valence-cortical space for each individual-trial design (i.e., total 81 latent
spaces), using the “CEBRA” package (Schneider et al., 2023). CEBRA employs supervised
contrastive learning to extract latent embeddings from the input data (i.e., STFT-processed EEG
signals here), maximizing the attraction of EEG samples with the same valence labels and repelling
those with different labels (see Figure 1c). As the dimensionality of latent spaces was elusive, we
fitted CEBRA models for each participant-clip pair across dimensions ranging from one to nine.
The following hyperparameters were applied: batch size = {length of STFT EEG signals},
model architecture = ‘offset-10 model’, number of hidden units = 38, learning rate = .001,

the number of iterations = 500, and hybrid = False.

Validation of latent valence-cortical space with predictive tasks To test whether the
individualized latent spaces hold significant information generalizable across different individuals
and clips, we conducted a pairwise prediction task using a 2 tasks x 3 conditions design (see
Figure 1d). For the ‘across participants’ task, a classifier trained on participant A’s latent neural
space embeddings and valence labels was used to predict the valence keypress of participant B’s

embeddings for the same clip. For the ‘across clip’ task, a classifier trained on clip X’s embeddings
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and labeled valence types was used to predict the valence of clip Y’s embeddings within the same
participant. Predictions were evaluated under three conditions: (1) a baseline null test with
shuffled training valence keypress labels (‘random’), (2) prediction using personalized latent neural
embeddings without any alignment (‘not aligned’), and (3) prediction using aligned embeddings
between train and test embeddings (‘aligned’). Neural alignment motivates to explore
commonality among individual latent neural spaces (Gallego et al., 2020; Safaie et al., 2023). For
the alignment, canonical correlation anlaysis (CCA) between train and test embeddings was
employed using the “sklearn” package (Pedregosa et al., 2011).

In these prediction tasks, six participants who pressed all valence labels for at least 5% of
the total duration across three clips were selected to facilitate the multi-label classification. A k-
nearest neighbors (kNN) classifier with a neighborhood parameter of 15 was used without tuning
(i.e., the nearest odd number to the square root of the input embedding length following the
conventional heuristic). Considering imbalance in valence keypress labels, prediction performance
was evaluated using the weighted F1 scores. Pairwise post-hoc comparisons at Prpr < .05 were
conducted to compared predictive performances across the three conditions. Construction of latent

neural spaces and prediction was performed in Python (version 3.8).

Dimensionality selection for the latent valence-cortical space We selected the optimal
dimensionality of the latent valence-cortical space based on two assumptions: (1) The space shares
the same dimensionality across individuals and clips. (2) The space displayed as good as predictive
performances across individuals and clips with other neural spaces based on higher dimensionality
even with fewer dimensions. The second assumption was based on the idea that generalizability,

as reflected in predictive performance, should be the criterion for determining the canonical
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dimensions in dimensionality reduction techniques (Cunningham & Yu, 2014). However, it also
acknowledges that such predictive performance may be overestimated as the number of dimensions
increases (Cunningham & Ywu, 2014; Diaconis & Freedman, 1984). We calculated the mean
weighted F1 score for each dimension in both predictive tasks and performed hierarchical
clustering analysis to group dimensions with similar prediction performance. The cluster with the
highest silhouette coefficient was chosen, and the lowest dimension in the highest-performing
cluster was selected. Dimensions 6, 7, 8, and 9 formed the high-performance cluster for the across-
participant task, and dimensions 7, 8, and 9 for the across-clip task. Thus, 7 dimensions were
chosen as the canonical dimension. Hierarchical clustering analysis was conducted using the

“cluster” package (Maechler et al., 2013) in R studio (version 2023.03.1+446).

Comparing CEBRA-, PCA-, and FAA-driven embeddings For fair comparison of the
predictive power of our CEBRA-based latent valence-cortical embeddings, we compared its
performance with principle component analysis (PCA) and FAA-driven embeddings (i.e., PCA:
conventional linear and unsupervised dimensionality reduction approach; FAA; hand-crafted
valence-related EEG metrics). First, to extract PCA embeddings, we input only the STFT-
processed EEG data, excluding the valence keypress, and computed latent embeddings with
dimensions ranging from one to nine. We identified the 6-dimensional embedding as the optimal
latent space due to its modest predictive performance with the fewest dimensions (see
Supplementary Figure 2). Second, FAA embeddings were defined as the difference in alpha
band power between the F4 and F3 channels for each timepoint in the STFT-featured EEG

sequence. These two channels were selected based on previous studies (Brzezicka et al., 2017;
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Quaedflieg et al., 2016; Van Der Vinne et al., 2017). The prediction tests with a 2 x 3 design were
conducted using these three types of embeddings: CEBRA, PCA, and FAA. Test performances
under the three conditions — random, not aligned, and aligned — were compared across CEBRA,
PCA, and FAA-based embeddings. Additionally, within the CEBRA embeddings, performances
were compared across the different conditions. To test the statistical differences in weighted F'1
scores, two-sided paired t-tests were conducted at Prpr < .05. PCA was performed using the

“sklearn” (Pedregosa et al., 2011) package in Python (version 3.8).

Assessing significance of cortical valence representation Using the chosen 7D latent
CEBRA valence-cortical embeddings, we measured the segregation of ambivalent EEG samples
from other valence samples using silhouette coefficients. While InfoNCE loss value could quantify
contrast performance too, it lacks scaling and valence type-specific calculations, so we used
silhouette coefficients instead. We computed the average silhouette coefficient for ambivalent-
labeled EEG samples for each participant-clip latent space. Since silhouette coefficients can be
overestimated under the latent space constructed in supervised manner, we assessed its statistical
significance through permutation test. We randomly shuffled valence keypresses and trained
CEBRA model with the original STFT-featured EEG signals and permuted valence sequence
based on the identical hyperparameter set. Average silhouette coefficients of ambivalence-labeled
EEG samples were extracted from the trained pseudo-embeddings, and we obtained its null
distribution by repeating this 1,000 times. P-value calculated from the permutation test, Pperm, is

formulated as follows:
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where s* and s are average silhouette coefficients calculated from permuted and original latent
spaces, and Ny« is the number of s* in the null distribution. All Pperm values were FDR. corrected.

We performed the same analysis with positive and negative valence samples.

Quantifying ‘cortical distinctiveness’ of each valence type We developed a metric called
‘cortical distinctiveness’, cl>k, indicating how distinguishable a reference valence cluster k is from

the other valence clusters in the latent valence-cortical space. ¢, is defined as:

N
1
0= Z d(k,c;) (2)

where N is the number of other clusters, ¢; is the «th valence cluster, and d(k, ¢;) is the cosine
distance between the cluster k and c;; We applied cosine distance as a metric of cluster distance
instead of other conventional metrics (e.g., Euclidean distance), considering that latent CEBRA
embeddings are distributed on the hypersphere space. We initially measured d(k, ¢;) based on the
average cluster distance. Average distance between the cluster k£ and ¢; is calculated as the mean
cosine distance between each point in k to every point in ¢; as follows:

ng e

d(k,Cz‘) nn 0722 ”J;p” ”?_)” (3)

p=1¢=1

where n is the sample size of the corresponding cluster, 7 and 7 are the vector samples in each
cluster. As a sensitivity check for cluster distance metric, we also calculated ¢, based on the
medoid cluster distance. Medoid distance measures the distance between clusters by calculating
the cosine distance between ‘medoid samples’ of each cluster that show the closest average cosine

distance with samples within each cluster. Lastly, to examine the predictive power of cortical
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distinctiveness metric of each valence type for AWES scores, we applied univariate and

multivariate analysis framework described in the same manner with “Behavioral analysis” section.

Approximation of feature importance with perturbation-based XAI Due to the black-
box nature of CEBRA, it was challenging to directly evaluate which STFT-processed EEG features
were crucial for contrasting valence states in the latent space. To address this issue, we applied
“Dynamask” (Crabbé & Van Der Schaar, 2021), a perturbation-based XAI techniques, to infer
attribution maps from the trained CEBRA models. Dynamask learns perturbtation weights, @,
for each feature at every time point to generate pseudo-embeddings with maximal MSE compared
to the original embeddings with the least perturbation (see Figure 1le). Here, i-th input feature
at the timepoint t, z;; is perturbed to m(z;;) as weighted sum of its own value and the average

value in the time window it belongs to, formulated by the following equation:

. W
n(f,f) = (1 - wi,t) Ty Wiy Wil 2 Lt
t=t-w

where Wis a time window size. @;; = 1 indicates significant alteration of the CEBRA embeddings
upon replacement, implying importance in contrasting valence labels. With a receptive field of 10
samples, W = 5 was set to align the working behavior of Dynamask with CEBRA’s. We obtained
o matrices for each EEG feature from participant-clip paired data showing significant silhouette
scores for ambivalence clusters (Pperm < .05), using the following parameters: keep ratio = 0.1,
n_epoch = 2,500, initial mask coef = 0.5, size reg factor init = 0.5, size_reg factor dilation
= 100, time reg factor = 0, learning rate = 0.03, and momentum = 0.9. We confirmed that

Dynamask reached plateau in training performance to learn attribution map (see Supplementary

g
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Figure 3). By aligning STFT EEG time-series and valence keypress sequence, we calculated
@ambivalent Of each feature by averaging o values of each feature for time points labeled as
ambivalent states in the valence keypress. Consequently, @ambivalens value is indirect measure of
feature importance to contrast ambivalence-labeled EEG samples from other valence-labeled EEG
samples for the construction of latent valence-cortical space. The same analyses were conducted
for positive and negative valence states with data displaying significant silhouette scores for each

state, respectively.

Post-hoc analysis of feature importance with hidden Markov model We conducted a
post-hoc analysis to confirm Dynamask-driven attribution weights of each feature in distinguishing
different valence states within the latent valence-cortical space using hidden Markov model
(HMM). Particularly, Dynamask revealed that the power of the delta band consistently held
greater importance than the power of other frequency bands (see ‘Results’). Based on this, we
hypothesized that combinations of delta features would be temporally aligned with individual
valence dynamics and tested this hypothesis using an HMM. For all HMM analysis, we used
“brainiak” package (Kumar et al., 2021).

We divided the 95 STFT features into frequency bands to generate five input groups —
delta, theta, alpha, beta, and gamma - for each participant and clip. These inputs were
independently fitted to an HMM, estimating the time points of neural boundaries corresponding
to the number of valence transitions reported via keypress. Thus, the event number, a
hyperparameter of the HMM, was informed by the participants’ reported valence keypress for the

clip. Boundaries within 4 3 seconds (i.e., six STFT samples) of the actual valence transition time
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points were considered a ‘match’, and the ‘match rate’ was calculated as the ratio of matched
boundaries to the total number of boundaries.

Following the framework of Vaccaro et al. (2020), we assessed the statistical significance
of the match rates for the five frequency bands across all participants and clips. This framework’s
advantage is that it accounts for variability in the number of valence transitions reported by each
participant for each clip. The approach involves the following steps: First, for each participant
and frequency band input, maintain the estimated number of intervals of neural boundaries but
shuffle them randomly, comparing these to the actual valence transition time points to compute
a pseudo-match rate. This process is repeated 1,000 times to generate a null distribution of match
rates. Second, calculate the difference between actual match rate and the mean of the null
distribution for each frequency band group for each participant-clip data. Averaging these
differences across participants and clips yields the average mean difference for feature group &,
denoted as M;. Third, repeat this process 1,000 times using the null distribution of each
participant-clip data to derive a null distribution of 1,000 mean differences between permuted
match rates and the mean of the null distribution. Denote the #-th permuted mean difference for
©]
k

feature group k as ;. Last, calculate the P value, Pperm, for M) using the following equation:

1 1000
_ (9)
Ppcrm_w Z 1(@]; = Mk)
p
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Results

Awe experience is consistently associated with longer and stronger ambivalent
feelings, but not with single-valence feelings

We firstly investigated participants’ valence dynamics based on their keypress reports. The
valence dynamics displayed large variability across participants (see Figure 2a). Despite the
individual difference, the valence dynamics was significantly intertwined with clips’ visual and
acoustic features predicting perceivers’ affective response — color hue, brightness, and loudness
(Chua et al., 2022; Thao et al., 2019) at the individual level (see Table 2). These results support
the validity of our continuous valence response paradigm by demonstrating that individual’s
responses are systematically linked to affect-related sensory inputs, while also underlining the
diversity inherent in the temporal patterns of individuals’ valence dynamics.

Next, we examined whether our awe VR clips were associated with more salient awe
experience and ambivalent responses (see Figure 2b and 2c¢). We found that participants reported
significantly higher AWES scores for all awe clips than the control one with large effect sizes (SP-
PA: Cohen’s d = 1.837, Prpr = 1x10™; CI-PA: Cohen’s d = 1.493, Prpr = 3x10'2; MO-PA;
Cohen’s d = 1.373, Prpr = 2x107M). Three awe clips were also associated to significantly longer
and stronger ambivalent responses than the control one (SP: Cohen’s dauration = -562, Pauration/FDR
= .001, Cohen’s dintensity = 451, Pintensity/FpDR = .005; CI: Cohen’s dauration = 514, Pduration/FDR
= .002, Cohen’s dintensity = 449, Ptensity/FDR = .005; MO: Cohen’s dauration = -790, Pdwation/FDR =

2x10°5, Cohen’s dintensity = -780, Pintensity/FDR = 2x%10%). In contrast, except for the duration of

g
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Table 2. Explanatory power of perceptual features on valence keypress in multinomial mixed

logistic regression

positive vs. neutral ambivalent vs. neutral negative vs. neutral
B SE p B SE p B SE p
Time .158 .063 013%%* .052 .065 424 .063 .079 428

Brightness 3758 122 < 2x10-16*** 1.361 115 < 2x10°16"*  -1.191  .136 < 2x10-16"**
Hue 1.581 119 < 2x10-16"* .256 .091 .005%* -.543 A11 1x10-8"*

Loudness 1.594 093 < 2x10-16"* .559 .093 < 2x10°9"** 1.637 107 < 2x10-16***

Note. tested model: valence, = t -+ brightness, + hue, + loudness, + (1 | sub) + (1 | clip); *P < .05; **P < .01;

kP < .001.

Table 3. Statistical differences in valence and arousal ratings across clips

SP - PA CI - PA MO - PA

t df d Prpr t df d PrpRr t df d Prpr

Valence
ambivalent(int) 2.957 42 .552 .005** 2.946 42 576 .005%* 5.118 42 961 2x10-5*

ambivalent(dur) 3.685 42 775 001 %** 3.372 42 770 .002** 5.179 42 1.218 2x10-""

positive(int) 1.427 42 .266 .352 -443 42 092 .660 1.206 42 .225 .352
positive(dur) -3.316 42 .667 003%*  -3.618 42 795 002%% 3178 42 634 .003%*
negative(int) -295 42 .059 769 2562 42 431 021* 3.024 42 .536 013*
negative(dur) 421 42 082 676 4329 42 839  Ix10%  5.243 42 1.085  1x105"
Arousal 5810 42  1.151  7x107** 7404 42 1433  6x1097 9301 42 1777 3x10°

Note. *Pppr < .05; **Pppr < .01; *** Pppr < .001.

positive feelings, behavioral metrics of positive and negative feelings did not show significant
differences between conditions consistently. Awe clips were linked to significantly higher arousal

compared to the control one (see Table 3).
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Figure 2. Valence dynamics, awe intensity, and ambivalent feelings across clips a, participants’
valence dynamics reported by keypress for each clip. b, AWES scores reported for each clip after every trial.
¢, duration (left) and intensity (right) of ambivalent feelings for each clip. This figure is based on data of

N = 43 included in the behavioral analysis and four clips. * Pppr < .05; ** Pppr < .01; *** Pppr < .001.
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Ambivalent feelings predict the awe intensity more precisely than other single
valence metrics

We tested whether metrics of ambivalence (i.e., its intensity and duration) had more
predictive power for awe intensity than other single valence-related features. In the univariate
analysis based on linear mixed model, only duration and intensity of ambivalent feelings and
intensity of positive ones showed significant fixed effects (duration of ambivalent states: f = .565,
95% CI = [.033, 1.097], P = .039; intensity of ambivalent states: f = .220, 95% CI = [.090, .351],
P = .001; intensity of positive states: f = .094, 95% CI = [.007, .180], P = .035; see Figure 3a).

In the multivariate analysis, our machine learning-based model exhibited better predictive
performance than the linear regression model (see Figure 3b). In this model, duration and
intensity of ambivalent feelings showed higher feature importance than other single valence metrics
(see Figure 3c). Computing shapley values, we found that duration and intensity of ambivalent
feelings were positively associated with the awe intensity ratings (see Figure 3d).

Results of both univariate and multivariate analyses imply that the awe intensity rating

is more precisely predicted by ambivalence-related behaviors compared to other valence feelings.

Aligned latent cortical spaces share valence representation architecture across

individuals and stimuli

We constructed a latent valence-cortical space for each participant for every clip trial. To
evaluate the generalizability of the personalized latent space and determine the optimal

dimensionality, predictive analysis of 2 tasks (‘across participants’, ‘across clips’) x 3 conditions

26 I -_'- "i;



a coefficients of each variable in the univariate model predicting AWES score

N = 43; 4 clips AWES ~ x + (1| sub) + (1 | clip)
variable estimates fixed effects  95% CI P
sex (male) - ; " | B =-.039 [-.429, .351] .845
0T age - —e— [-.192, .030] 162
% ° PANAS positive score - el [-.036, .027] .786
Qs PANAS negative score - (23] [-.037, .025] .689
DPES awe score - Lyl [-.035, .024] .720
_ duration of neutral - ; { [-.621, .314] 522
2 -g duration of positive - | + | [-.655, .206] .308
%’ 2 duration of ambivalent - : B = .565 [.033, 1.097] .039
duration of negative - I { B=-.027 [-.663, .610] .935
intensity of positive - — B =.094 [.007, .180] .035
= intensity of ambivalent - : B =.220 [-090, .351] .001
% j: intensity of negative - —— B=.048 [-.048, .144] .325
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Figure 3. Association between affective components and awe intensity a, beta coefficients of each
behavioral metric in the univariate linear mixed effect models. Error bars denote 95% confidence intervals
of fixed effects. Purple bars show the estimates of ambivalence-related features. Bolded statistics indicate
statistically significant results at P < .05. b, predictive performance of multivariate machine learning-based
models. ¢, scaled feature importance of all behavioral features calculated from the best model. Purple bars
show the importance of ambivalence-related features. d, shapley value of all metrics computed from the

best model. This figure is based on data of N = 43 included in the behavioral analysis and four VR clips.
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(‘random’, ‘not aligned’, ‘aligned’) design was conducted. First, we identified the canonical
dimension that demonstrated high predictive performance in the ‘aligned’ condition with the
lowest dimensionality across tasks. Consequently, a 7D space was selected for the CEBRA-based
latent embeddings (see Figure 4a), while a 6D space was chosen for the PCA-based ones (see
Supplementary Figure 2).

Next, we compared the generalizability of neural embeddings across conditions and across
analytic approaches — CEBRA, PCA, and FAA (see Figure 4b). In the ‘across-participants’ task,
a kNN classifier trained with each participant’s latent neural embeddings and valence dynamics
predicted other participants’ valence dynamics above the random chance (aligned — random:
Cohen’s d = 1.122, Prpr = 5x10°'7; not aligned — random: Cohen’s d = .249, Prpr = .020).
Additionally, aligned embeddings displayed higher predictive performances compared to not-
aligned embeddings (aligned — not aligned: Cohen’s d = .548, Prpr = 2x10°). Our aligned CEBRA
embeddings achieved significantly more precise prediction compared to aligned PCA-based
(Cohen’s d = 1.093, Prpr = 2x10°'%) and FAA-based embeddings (Cohen’s d = 1.115, Prpr =
6x10717), but not in the random and not-aligned conditions (see Table 4).

In the ‘across-clips’ task, only aligned CEBRA embeddings showed significant predictive
power for valence dynamics in the other clip (aligned — random: Cohen’s d = .501, Prpr = .015;
not aligned — random: Cohen’s d = .103, Prpr = .540). Aligned embeddings exhibited higher
performance than not-aligned embeddings, but its significance did not reach a threshold (aligned
—not aligned: Cohen’s d = .283, Prpr = .147). Our aligned CEBRA embeddings predicted valence

dynamics in other trials more precisely compared to aligned PCA-based (Cohen’s d = .553, Prpr

28 | -I_I



a dimension selection of latent valence-cortical spaces
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Figure 4. Generalizability of individualized latent valence-cortical spaces across participants

and stimuli in predictive tasks a, selected dimensionality of CEBRA-based latent valence-cortical spaces.

Results from across-participants (left) and across-clips (right) tasks. Purple violin plots denote the high-

performing clusters identified through hierarchical clustering analysis. b, predictive performance of CEBRA-,

PCA-, and FAA-driven embeddings in three conditions. Purple asterisks indicate the statistical differences

in test performances within CEBRA-based prediction. Black asterisks denote the statistical differences in

test performances in CEBRA versus PCA and CEBRA versus FAA prediction tasks. Purple heatmaps

visualize conceptual scheme of results from pairwise predictive tasks. This figure is based on data of N = 6

reporting all valence types in three awe clips and three awe-inducing clips. *Pppr < .05; **Pppr < .01;

***PFDR < .001.
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Table 4. Statistical differences in predictive performances of latent cortical embeddings across

conditions and analytic approaches

across participants

across clips

t df d Prpr t df d Prpr
within CEBRA embeddings
aligned — random 10.641 89 1.122 5x1017" 3.005 35 501 .015*
aligned — not aligned 5.200 89 .548 2x10°6" 1.699 35 .283 .147
not aligned — random 2.366 89 .249 .020%* .620 35 .103 .540
between embeddings
aligned
CEBRA - PCA 10.371 89 1.093 2x10-16" 3.320 35 553 .006**
CEBRA - FAA 10.576 89 1.115 6x1017 4.840 35 .807 8105
not aligned
CEBRA - PCA 1.830 89 193 .106 .360 35 .060 721
CEBRA - FAA 1.898 89 .200 .091 452 35 .075 782
random
CEBRA - PCA -.379 89 .040 .706 -.410 35 .068 721
CEBRA - FAA .269 89 .028 789 -.278 35 .046 782

Note. *Pppr < .05; **Pppr < .01; *** Pppr < .001.

= .006) and FAA-based embeddings (Cohen’s d = .807, Prpr = 8%x10®), but not in the random

and not aligned conditions (see Table 4).

These results imply that our aligned latent spaces across participants and clips share

general representation of different valence states in the cortex along with idiosyncratic structures,

which could not be captured by conventional linear and unsupervised approaches.

The more distinctively ambivalent feelings are represented in the cortices, the

more saliently individuals experience awe

With the latent valence-cortical spaces, we investigated whether ambivalent states

exhibited distinct representation distinguishable from neural patterns of the other single valence
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states. The silhouette coefficients of ambivalent clusters in the latent space showed large
variability across participants (see Figure 5a). For instance, five participants’ ambivalent states
displayed significant silhouette coefficients in all awe clips while ten individuals showed it only
one clip. Contrarily, most participants displayed significant silhouette scores of single valence
states more consistently than ambivalent states (see Figure 5a). Given the concern about possible
confounding effects of cluster size on the statistical significance of silhouette scores, we further
tested the association between the cluster size of ambivalent cluster (i.e., the duration of
ambivalent feelings) and the Pperm values of silhouette coefficients for every clip. No significant
correlation between them was detected in any of the videos (SP: R = .221, 95% CI = [-.174, .554],
P = .268; CI: R = .198, 95% CI = [-.197, .538|, P = .323; MO: R = .126, 95% CI = [-.267, .483],
P = .531), indicating that the individual differences in distinct cortical cluster of ambivalent
feelings were not driven by its cluster size.

Next, we examined our hypothesis that the more distinctively ambivalent states are
represented in the cortical regions, the more saliently individuals experience awe. For this end, we
developed new metric called ‘cortical distinctiveness’ of each valence cluster, ¢ (see Figure 5b).

In the linear mixed model including four cortical distinctiveness metrics - ¢ , O
neutral positive

o . , and ¢ . and two random intercepts of participant and clip as regressors and awe
ambivalent negative

intensity ratings as outcome variable, only ¢ significantly predicted the awe intensity

ambivalent

score (f = .817, 95% CI = [.307, 1.326], P = .003; see Figure 5c). The predictive power of

G, bivalene Was 1ot killed when the other cluster distance metric — medoid cluster distance was

used to compute ¢ values (S = .803, 95% CI = [.152, 1.455], P = .018; see Figure 5c).

ambivalent
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Figure 5. Individual variability of latent valence representation and its predictive power on
awe intensity a, silhouette coefficients of ambivalent (top), positive (middle), and negative (bottom)
valence clusters in the latent valence-cortical space. Color of each cell shows statistical significance of the
silhouette coefficients assessed through 1,000 times permutation test. b, conceptual framework to calculate
cortical distinctiveness value of each valence cluster - ¢. c, explanatory power of each valence cluster’s ¢ in
the univariate linear mixed effect models. Error bar denotes 95% confidence interval of fixed effects. Purple
bars show the estimates of ambivalence-related features. Bolded statistics indicate statistically significant
results at P < .05. d, performance gain when ¢uupivalent Was added in the behavioral predictive model. e,
scaled feature importance of gampivalent and behavioral features calculated from the best model. Purple bars
show the importance of ambivalence-related variables. This figure is based on data of N = 27 included in

the electrophysiological analysis and three awe-inducing clips.

Contrarily, ¢ values of other valence clusters did not show significant predictive power. As a
control analysis, we performed the same univariate analysis with FAA metrics. To extract a single
FAA value from each participant-clip data, we calculated FAA values using FFT-driven band
power features instead of STFT one, which was marginalized across the whole time-series. We
found that FAA did not show any significant predictive power for AWES score (8 = .000, 95%
CI = [-.004, .003], P = .789).

In addition, when ¢ metrics were added to the machine learning model predicting

ambivalent

the awe intensity with 14 behavioral variables, its R? value was improved about 7.2% (see Figure

5d). Furthermore, in this predictive model, ¢ displayed higher predictive power than any

ambivalent
other behavioral metrics (see Figure 5e).
These results suggest individual differences in the distinctiveness of cortical representation

related to ambivalent feelings and elucidate that such individual variability can specifically

account for the awe experience.
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The delta oscillation in the frontal channels mainly engages in distinguishing

different valence representation

Lastly, using Dynamask, we investigated which EEG features were importantly used to
contrast different valence states to construct the latent valence-cortical spaces. We observed that
delta band power features exhibited higher mean perturbation weights for ambivalent states than
other band power features (see Figure 6a). Within the delta band power features, frontal channels
showed larger weights than channels in the other areas (see Figure 6b). We performed the same
analysis for positive and negative states and found that the delta band power in the frontal
channels exhibited consistently higher mean perturbation weights for both states (see
Supplementary Figure 4).

To confirm the importance of the delta oscillation in valence representation, we performed
additional post-hoc analysis using HMM. We hypothesized that the time-series of delta band
power in all channels may be temporally aligned with valence dynamics and found that neural
boundaries extracted from the combination of delta-related features exhibited significant match
rates with participants’ valence transition above the random chance (match rate = 53.6%; Pperm
= .047). We conducted the same analysis with the other four band power features and observed
that only beta oscillation displayed significant match rate (see Figure 6c¢).

These results imply that delta oscillation in the frontal channels crucially participate in
distinguishing ambivalent feelings to other valence states in the cortices, but their importance is

not limited to ambivalent state. They also engage in distinguishing other valence states.
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of N = 27 included in the electrophysiological analysis and three awe-inducing clips.
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Discussion

In this study, using an integrated VR-EEG protocol, we showed that awe is characterized
as an ambivalent feeling rather than a simply positive or negative one at both behavioral and
cortical levels. Behaviorally, the intensity of awe rated by participants for each VR clip could be
significantly predicted by the duration and intensity of ambivalent feelings experienced while
viewing the clip, whereas variables related to positive and negative feelings were less predictive.
At the cortical level, we identified a latent valence-cortical space from each individual’s EEG
signals during watching each movie and aligned these spaces to extract common architecture of
valence representation across individuals and stimuli. This revealed that ambivalent feelings have
distinct neural representations shared across individuals and clips, though with significant
individual variability. This individual difference in distinctiveness of ambivalence-related cortical
representation predicted the awe intensity ratings, with more distinct representations of
ambivalent feelings correlating with stronger awe. The frontal region’s delta oscillation played a
key role in distinguishing ambivalent feelings from other valence states and was consistently
important in differencing other valence states too.

The high predictive power of the duration and intensity of ambivalent feelings on the level
of awe supports our hypothesis that awe is characterized as an ambivalent experience at the
behavioral level. This aligns with recent research on the ambivalent nature of awe. Chaudhury et
al. (2022) reported that Western population rated threat-awe-inducing images (e.g., photo of
Niagara Falls) as having stronger ambivalence compared to stimuli evoking happiness or fear.
Here, by utilizing real-time valence ratings, we newly discovered that the duration of ambivalent

feelings has a higher explanatory power for the awe ratings than its intensity. We speculate that
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its high predictive power may be related to the emotion regulation involved in both ambivalent
feelings and awe. Theoretical models of ambivalent feelings suggest they stem from reappraisal
(Vaccaro et al., 2020; Van Tilburg et al., 2018). For example, to feel ambivalence toward a
stimulus, one must retrieve memories or knowledge related to an opposite valence from the initial
valence feelings evoked by the stimulus. In the case of awe, baseline liability of reappraisal for
emotion regulation significantly predicts awe ratings for memory recall (Chirico et al., 2024;
Chirico et al., 2021), indicating a close relationship between awe and reappraisal. Furthermore,
prior search on affect dynamics reports that emotion regulation types show significant correlations
with the duration of negative feelings triggered by stimuli (Van Mechelen et al., 2013; Verduyn
et al., 2009; Verduyn et al., 2011), but not with their intensity per se (Brans & Verduyn, 2014).
Synthesizing our behavioral results with this previous literature, we propose a new ‘reappraisal
hypothesis’ as the cognitive process bridging ambivalent feeling duration and awe ratings, positing
that the type of emotion regulation strategy employed by an individual while watching a video
explains their awe rating and this relationship is mediated by duration of ambivalent feelings.
Future studies tracking the cognitive dynamics of emotion regulation during VR watching are
expected to validate this hypothesis.

In our electrophysiological analysis, we identified a latent cortical space that shared valence
representations across individuals and sensory input. Specifically, in a pairwise prediction task,
the aligned latent valence-cortical embeddings significantly predicted the valence dynamics
obtained from other participants and different clips. Meanwhile, embeddings obtained using PCA
and FAA did not capture the commonality of valence representations that could be generalized
across individuals and clips even after alignment. In the case of FAA, we could confirm that FAA

lacks generalizability and specificity as an electrophysiological index of valence as previous studies
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have criticized (Gable & Harmon-Jones, 2010; Harmon-Jones & Gable, 2018; Honk & Schutter,
2006; Wacker et al., 2003). Contrarily, the results of PCA-based embeddings were somewhat novel,
given that aligned PCA-driven embeddings captured common neural trajectories for various
behaviors such as motor control (Gallego et al., 2020; Safaie et al., 2023). We guess that this
finding may justify our neural network-based approaches for nonlinear dimensionality to explore
shared representation across individuals for affective valence, considering nonlinear relationship
between brain activities and valence (Aftanas et al., 1998; Berridge, 2019; Viinikainen et al., 2010).
Additionally, the significant predictive performance in the across-clips prediction task indicates
that our supervised learning-based dimensionality reduction technique can be effective in
disentangling sensory information from valence-cortical embeddings.

The individual-specific latent neural spaces we derived revealed that ambivalent feelings
have distinct cortical representations, while also showing significant individual differences in how
these neural patterns are differentiated from those of other valence states. We allude that these
findings may reconcile conflicting viewpoints about distinct neural system of ambivalent feelings.
Our findings support recent studies indicating that ambivalent feelings exhibit unique neural
patterns in the cortical regions (Lettieri et al., 2019; Man et al., 2017; Vaccaro et al., 2020; Vaccaro
et al., 2024), challenging the constructivist view that ambivalent feelings would not have distinct
neural representations since they are merely fluctuations between opposing valence states (Barrett
& Bliss-Moreau, 2009; Russell, 2017). However, the individual differences in the cortical
distinctiveness of ambivalent feelings can be also interpreted from a constructivist perspective.
For instance, neuropsychological factors constructing affect into emotions, such as beliefs about

emotions, emotional granularity, and the time window of event segmentation, could contribute to
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this individual variability in experiencing mixed emotion and its neural representation (Hoemann
et al., 2017).

The cortical distinctiveness of ambivalent feelings during awe experiences shows significant
individual difference, but this variability can predict the awe intensity. Specifically, the more
distinct the cortical representation of ambivalent feelings compared to positive, negative, and
neutral feelings, the higher the reported intensity of awe. Given that the cortical distinctiveness
of other feeling categories did not significantly predict awe ratings, this implies a specific
relationship between the neural representation of ambivalent feelings and awe intensity. These
results highlight a new aspect of awe that conventional approaches, which focus on activation
levels of specific regions or networks - e.g., (Guan et al., 2019; Hu et al., 2017; Takano & Nomura,
2022), are insufficient to address by considering the geometrical characteristics of affect-related
latent neural spaces.

We suggest that the predictive power of the cortical distinctiveness of ambivalent feelings
for awe can be understood through the lens of ‘holistic meaning-making’, a key cognitive aspect
observed in awe experiences (Bonner & Friedman, 2011; Dai et al., 2022; Thm et al., 2019; Sawada
et al., 2024; Yin et al., 2024). During awe, individuals face an extraordinary object that expands
their belief or cognitive scheme, leading to the generation of new meanings. In terms of affect, this
process integrates the initial negative feelings evoked by the object with the pleasure derived from
epistemic transformation. For example, awe is often described as a ‘self-transcendent’ experience,
where conflicting two feelings — ‘self-diminishment’ and ‘connectedness’ are harmonized (Yaden
et al., 2019). Thus, awe is fundamentally based on the integration of these opposing feelings,
resulting in an emotion that cannot be reduced to merely positive or negative information. We

propose that the new meaning generated during an awe experience is perceived as an ambivalent
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feeling, encompassing both positive and negative aspects. This integration process is reflected in
cortical representations distinct from those of simply positive or negative feelings. While our
findings do not elucidate the specific attributes of awe’s high-level cognitive dynamics, they suggest
the potential connection between these cognitive processes and cortical representation patterns
through the spatial analysis of latent neural spaces.

Finally, we consistently observed that the delta oscillation of the frontal channels is a
significant feature for distinguishing valence states in both Dynamask and HMM analyses. Firstly,
the result that frontal channels have higher importance compared to other regions within the same
frequency range aligns with several studies on human neuroimaging. The prefrontal cortex (PFC),
particularly the orbitofrontal cortex, shows unique activation patterns for conflicting affective
information (Levens & Phelps, 2010; Rolls & Grabenhorst, 2008; Simmons et al., 2006) and
consistent activity patterns when individuals feel ambivalence during naturalistic movie watching
(Vaccaro et al., 2024). We believe this result is related to the valence-related information stored
in the PFC, which integrates conflicting bodily signals from interoceptive circuits to create a global
mixed feeling.

In terms of the frequency band below 5-6 Hz, encompassing delta and low-theta ranges,
has been reported to be closely associated with emotional processing and regulation. For emotional
processing, it has been observed that this frequency range in the frontal areas increases when
emotional memories, crucial for determining valence feelings to the stimuli, are encoded and
retrieved (Brenner et al., 2014; Hutchison & Rathore, 2015; Nishida et al., 2009; Sopp et al., 2017).
Unlike other frequency bands, the microstate features of the 1-3 Hz range successfully decode
valence ratings to images (Shen et al., 2020). Additionally, intermittent theta burst stimulation,

enhancing the 5 Hz band power in the left dorsolateral PFC, improved emotion recognition for
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lexical and facial stimuli (Dumitru et al., 2020; Moulier et al., 2021), supporting the role of low-
frequency bands in the frontal regions in emotional feeling and processing. In terms of emotion
regulation, successful regulation of negative feelings induced by image stimuli has been correlated
to increased 4 Hz band power in frontal channels, as reported in both experimental (Ertl et al.,
2013) and meta-analytical studies (Cavanagh & Shackman, 2015). Heroin-addicted patients with
disrupted regulatory abilities exhibited consistent decreases in the < 5 Hz frequency band in these
regions when viewing affect-charged images (Jiang et al., 2022). Interestingly, the synchrony of
delta and beta features, which displayed significant alignment with keypressed valence dynamics
in the HMM analysis, have been also reported to correlate positively with the efficiency of emotion
and stress regulation (Brooker et al., 2021; Myruski et al., 2022; Phelps et al., 2016; Putman et
al., 2012). In this context, our results and prior studies may support the rationale of the
‘reappraisal hypothesis’ we suggested.

Our findings require consideration of three major limitations. First, our emphasis on
ambivalent feelings in awe may be overestimated due to the inclusion of only Asian participants
in this study. Western individuals report fewer ambivalent feelings in awe experiences compared
to Asians (Nakayama et al., 2020). Nonetheless, even among Western populations, ambivalent
feelings were rated higher for awe-inducing image stimuli than those inducing single-valence
emotions such as happiness or fear (Chaudhury et al., 2022). Thus, it remains to be verified
whether the cortical distinctiveness of ambivalent feelings can significantly predict awe intensity
in Western group. Second, real-time valence ratings through keypresses might have
unintentionally influenced the emotion generation process. Continuous introspection and reporting
of feelings can interfere with natural emotional generation (Larsen & Fredrickson, 1999). Despite

this, we validated participants’ valence ratings by predicting this sequence from each video’s
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perceptual information that could predict viewers’ emotional responses at both individual and
stimulus levels. Nevertheless, using collaborative filtering (Jolly et al., 2022) for interpolation of
dense reports could mitigate this potential limitation. Third, we assumed that the dimensions of
the latent valence-cortical space are identical for all participants. It remains necessary to verify
whether individuals’ idiosyncratic valence representations are encoded in a space of the same
dimensionality.

Despite these considerations, our study is significant in that it elucidates the importance
of the ambivalent nature of awe at both behavioral and cortical levels, a topic that has not been
sufficiently highlighted in quantitative research. Our approach, which explains awe through the
hierarchical integration of negative and positive feelings, offers a new perspective on the origins of
the psychiatric benefits of awe (e.g., stress resilience or non-egocentric schemes). Additionally, our
approach provides insights not only into awe itself but also significant implications for the distinct
neural representation of ambivalent feelings, a topic of debate in affective neuroscience. We
anticipate that our study will stimulate further research on topics not directly addressed in this
study, such as the relationship between the experience of ambivalent feelings in awe and
improvement in mental health, and the cognitive dynamics of emotion regulation required to shape

ambivalent feelings during awe experience.
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Supplementary Figure 1. Diverse sensory dynamics of three awe-inducing clips a, brightness

of each clip. Brightness is measured as ‘value’ channel in the hue-saturation-value (HSV) color space. b,

color hue of each clip. Hue is calculated as ‘hue’ channel in the HSV color space. ¢, audio volume of each

clip. Volume is defined as root mean square energy of audio segments.
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Supplementary Figure 2. Dimensionality selection for PCA-driven embeddings a, Test

performances in the ‘across-participants’ task. Purple violin plots denote high-performing group identified

by hierarchical clustering analysis. b, Test performances in the ‘across-clips’ task. Based on these two

predictive tasks, 6D embeddings were chosen as the optimal dimensionality for PCA-based latent valence-

cortical spaces.
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Supplementary Figure 3. Learning curves of Dynamask Dynamask learns perturbation weights of

EEG features for every time point so that it generates perturbed embeddings showing large mean square

error (MSE) loss with the original CEBRA embeddings. Colored curves denote its learning curves based on

each participant’s data. Thick gray curves visualize the average loss values at every epoch.
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Supplementary Figure 4. Dynamask weights of EEG features in positive and negative states

, top 40 EEG features with high perturbation weights for positive states. b, spatial distribution of delta

features’ perturbation weights in the positive states. ¢, top 40 EEG features with high perturbation weights

for negative states. d, spatial distribution of delta features’ perturbation weights in the negative states.
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