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Abstract 

 

   In the pursuit of identifying model parameters from observed 

configurations, we address the Inverse Ising Problem, a 

fundamental challenge in statistical physics. Our study introduces 

a novel approach to augment Ising data using a diffusion model. 

Diffusion model, unlike the Boltzmann machine, learns the score 

function of a given distribution, enabling the learning of data 

distribution without the need for intractable normalization term 

calculations. This allows for Ising data augmentation through 

Diffusion model. We employ the erasure machine to efficiently 

utilize the augmented data for parameter inference. we reveal 

that samples generated by the diffusion model improve the 

accuracy of inferring Ising model parameter. We present results 

across various system sizes, discuss the impact of observed and 

augmented data quantity on the performance, and demonstrate 

the effectiveness of the approach in real-world applications, 

such as inferring missing values in neuronal activity data. This 

work not only introduces a new paradigm for Ising data 

augmentation but also provides insights into the broader 

applicability of diffusion models in data science and physics-

inspired machine learning. 
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Ⅰ. Introduction 

 

The pursuit of identifying model parameters from given 

configurations stands as a paramount objective in data science. 

In statistical physics, deriving observable quantities from 

microscopic laws governing the constituents of a system holds 

significant importance. In the context of the Ising model, the goal 

is to specify interactions among spins, unraveling spin 

magnetization and correlations. 

 The Inverse Ising Problem commences with unknown 

microscopic parameters, where only the observable quantities of 

the systems are known. Despite the unknown interactions among 

spins, our aim is to deduce uncharted parameters from the given 

data, driven by the desire to understand thermodynamic 

observables such as magnetization and correlation. The Inverse 

statistical problem finds application in elucidating diverse 

phenomena, ranging from protein structures[1,2] to the 

potentials between atoms leading to specific crystal lattices[3], 

financial markets[4], gene recombinations[5], and human 

interactions[6]. Its utility extends to the design of complex 

systems, making it a vital tool in scientific inquiry and 

technological innovation. 

 As a concrete illustration, consider a system comprising N 

observed configurations of M binary variables σi, i = 1, … , M, σi =

±1. These binary variables are correlated with Ising spins, and 

the likelihood of observing a particular configuration σ =
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(𝜎1, 𝜎2, … , 𝜎𝑀) is postulated to follow the normalized Boltzmann 

weight: 

 

      p(𝜎𝑖) =
exp [−𝐻(𝜎𝑖)]

𝑍
, 𝑍 =  ∑ exp [−𝐻(𝜎𝑖)]𝜎    (1) 

 

these spins are coupled by pairwise couplings 𝐽𝑖𝑗 and are subject 

to external magnetic fields ℎ𝑖. The Hamiltonian 

 

   H(𝜎𝑖) = − ∑ ℎ𝑖𝑖 𝜎𝑖 − ∑ 𝐽𝑖𝑗𝑖<𝑗 𝜎𝑖𝜎𝑗  (2) 

 

The spin system’s energy is determined by microscopic spin 

variables, local fields, and pairwise couplings. In the context of 

the Inverse Ising problem, the task is to deduce the couplings 𝐽𝑖𝑗 

and local field ℎ𝑖  based on a given set of N  observed spin 

configurations. Employing Maximum Likelihood Estimation 

(MLE), our goal is to identify p(σ) that maximizes the likelihood. 

This involves comparing the Boltzmann distribution with the 

empirical distribution of the data in the sample set D, denoted as 

f(𝜎) =
1

𝑁
∑ 𝛿𝜎𝜇,𝜎𝜇  , μ = 1, 2, … , N . The disparity between two 

probability distributions, f(σ) and p(σ), can be quantified using 

the Kullback-Leibler (KL) divergence. 

 

𝐷𝐾𝐿 =  ∑ 𝑓(𝜎) log
𝑓(𝜎)

𝑝(𝜎)𝜎 = −𝐿𝐷(𝐽, ℎ) +  ∑ 𝑓(𝜎) log 𝑓(𝜎)𝜎  (3) 

 

The second term is independent of model parameter, so 

minimizing 𝐷𝐾𝐿 is achieved by maximizing likelihood. we have 
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∂LD

∂ℎ𝑖
(J, h) = 〈σi〉f − 〈σi〉p   (4) 

                   
∂LD

∂𝐽𝑖𝑗
(J, h) = 〈σiσj〉f − 〈σiσj〉p   (5) 

 

Then we can update parameter as follow 

 

     ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 + 𝛼(〈σi〉f − 〈σi〉p)  (6) 

                  𝐽𝑖𝑗
𝑛+1 = 𝐽𝑖𝑗

𝑛 + 𝛼(〈σiσj〉f − 〈σiσj〉p)  (7) 

 

With a tunable parameter of learning rate α. 

The dependence on parameters is entirely encapsulated in 〈σi〉p 

and 〈σiσj〉p. Utilizing Eq. (4, 5), gradient ascent for parameter 

determination encounters typical challenges associated with local 

maxima, especially in case of sparse data. Regardless of the 

dataset size, N, the computation involves a summation with 2𝑀 

terms.  

Addressing the computational intractability of the partition 

function has been a significant hurdle for physicists. Various 

approximate solutions have been developed, including mean-

field methods [7], Bethe approximations [8], and machine 

learning techniques utilizing variational autoregressive networks 

[9]. Notably, the Erasure machine offers precise inference with 

both synthetic data and real-world examples [10]. 

To obtain optimal model parameters, a substantial amount of 

data is required, yet real-world scenarios often present limited 

data availability. 
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Figure 1. data augmentation process 

 Our goal is to augment Ising data for solving Inverse Ising 

problem using diffusion model (Figure 1). Data augmentation is 

the process of transforming existing training data to generate 

new training samples, aiming to address the insufficient quantity 

of data. This helps improve the generalization performance of 

models and prevent overfitting. Data augmentation is not limited 

to image data [11] but can also be applied to various types of 

data, including text data [12], time-series data [13], and others. 

This technique can be utilized across a range of tasks to enhance 

the performance of machine learning model. 

 

Diffusion models [14-16] are physics inspired latent variable 

models. Recently, diffusion-based tools and applications have 

grown rapidly and a lot of related research is being conducted. 

The diffusion model is applied to various fields and show good 

performance. It is a state-of-the-art family of deep generative 

models that covers not only computer vision but also audio [17], 

natural language [18], temporal data [19], and drug molecules 

design [20], As an image data augmentation method, diffusion 

model shows better performance than other generative model 

like GAN [21]. 
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s(σ) ≡ ∇𝜎 log 𝑝(𝜎) = − ∇𝜎𝐻(𝜎) − ∇𝜎 log 𝑍 = −∇𝜎𝐻(𝜎)  (8) 

 

 The diffusion model learns the score of p(σ) without directly 

estimating p(σ) Eq. (8). By leveraging Langevin Markov Chain 

Monte Carlo sampling, it generates data following the inferred 

p(σ)  without explicitly computing the partition function. This 

method allows the model to learn a smooth distribution rather 

than being solely dependent on the data. Furthermore, as a 

generative model, the diffusion model can generate an infinite 

amount of data, this making data augmentation feasible. 

 

 

Figure 2. data augmentation as a perspective of filling missing data 

points of observed data. (a) Observed data sampled from True 

distribution. (b) Diffusion model’s distribution trained by observed 

data. (c) Augmented data sampled from diffusion model. 
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We treat augmented data as missing data points of observed 

data(training data)[22]. We cannot collect the entire data set 

representing the true distribution, known as the population 

(Figure 2(a)). Instead, we only obtain a subset of the population 

as observed data. we hope that the diffusion model infers the true 

distribution from the observed data (Figure 2(b)) and generate 

missing points outside of the observed data (Figure 2(c)). 

 We have observed that augmented data generated by the 

diffusion model impute the true parameter ℎ𝑖 , 𝐽𝑖𝑗  more 

accurately than only using observed data. this means diffusion 

model can fill missing point of the observed data. This is the first 

study on Ising data augmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 7 

Ⅱ. Methods 

 

2.1 Erasure Machine method 

 

 A very effective algorithm called EM(Erasure Machine) was 

proposed as an inverse Ising problem method [10]. EM solved 

intractability of the partition function through approximation by 

reweighting the observed data distribution f(σ)  and model 

distribution p(σ) . 𝑓𝜖(𝜎) ∝ 𝑓(𝜎)𝑝𝜖−1(𝜎), 𝑝𝜖(𝜎) ∝ 𝑝(𝜎)𝑝𝜖−1(𝜎) = 𝑝𝜖 , 

respectively, with the tunable reweighting parameter (0 < ϵ < 1). 

ϵ plays an important role in EM algorithm. 𝑝𝜖 put the system at 

higher temperature from β to βϵ, this means that reweighting 

process resembles the high-temperature approximation in 

statistical mechanics. Then Eq. (4, 5) transform as follow 

 

      
∂LD

∂ℎ𝑖
(J, h) = 〈σi〉𝑓𝜖

− 〈σi〉𝑝𝜖
   (9) 

            
∂LD

∂𝐽𝑖𝑗
(J, h) = 〈σiσj〉𝑓𝜖

− 〈σiσj〉𝑝𝜖
  (10) 

 

The first expectation still needs to consider only observed 

configurations and second expectation follow 

 

 𝑝𝜖(𝜎) =
exp [−𝜖𝐸(𝜎)]

𝑍𝜖
 with 𝑍𝜖 = ∑ exp [−𝜖𝐸(𝜎)]𝜎   (11) 

 

 The EM algorithm’s advantage is that we can approximately 

compute the partition function for given ϵ. 
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𝑍𝜖 = ∑ exp[−𝜖𝐸(𝜎)]

𝜎

= ∑ exp (∑ 𝜖ℎ𝑖𝜎𝑖

𝑖

+ ∑ 𝜖𝐽𝑖𝑘𝜎𝑗𝜎𝑘

𝑗<𝑘

)

𝜎

 

= ∑ ∏ cosh(𝜖ℎ𝑖) [1 + 𝜎𝑖 tanh(𝜖ℎ𝑖)]

𝑖

∏ cosh(𝜖𝐽𝑗𝑘) [1 + 𝜎𝑗𝜎𝑘 tanh(𝜖𝐽𝑗𝑘)]

𝑗<𝑘𝜎

 

= 2𝑀 ∏ cosh(𝜖ℎ𝑖)

𝑖

∏ cosh(𝜖𝐽𝑗𝑘)

𝑗<𝑘

[1 + ∑ tanh(𝜖ℎ𝑙) tanh(𝜖ℎ𝑚) tanh(𝜖ℎ𝑛)

𝑙<𝑚

+ ∑ tanh(𝜖𝐽𝑙𝑚) tanh(𝜖𝐽𝑙𝑛) tanh(𝜖𝐽𝑚𝑛)

𝑙<𝑚<𝑛

+ 𝒪(𝜖4)] 

       (12) 

Then, Logarithm of 𝑍𝜖 is 

 

ln 𝑍𝜖 = 𝑀 ln 2 + ∑ ln cosh(𝜖ℎ𝑖) + ∑ ln cosh(𝜖𝐽𝑖𝑗) + 𝒪(𝜖3)𝑖<𝑗𝑖  (13) 

 

Which leads to 

 

       〈σi〉𝑝𝜖
=  

1

𝜖

𝜕 ln 𝑍𝜖

𝜕ℎ𝑖
≈ ϵℎ𝑖   (14) 

       〈σiσj〉𝑝𝜖
=

1

𝜖

𝜕 ln 𝑍𝜖

𝜕𝐽𝑖𝑗
≈ ϵ𝐽𝑖𝑗   (15) 

 

Therefore, update algorithm Eq. (6, 7) transform to 

 

        ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 + 𝛼(〈σi〉𝑓𝜖
− ϵℎ𝑖

𝑛)  (15) 

     𝐽𝑖𝑗
𝑛+1 = 𝐽𝑖𝑗

𝑛 + 𝛼(〈σiσj〉𝑓𝜖
− ϵ𝐽𝑖𝑗

𝑛 )  (16) 

 

With a tunable parameter of learning rate α. We use α = 0.1 in 

this study. 
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2.2 Diffusion model 

 

 

Figure 3. Diffusion process visualization considered in this work 

 

 Diffusion models are latent variable generative models 

characterized by a forward and a reverse Markov process. The 

forward process corrupts the data q(𝜎1:𝑇|𝜎0) = ∏ 𝑞(𝜎𝑡|𝜎𝑡−1)𝑇
𝑡=1  

into a sequence of increasingly noisy latent variables 

𝜎1, 𝜎2, 𝜎3, … , 𝜎𝑇. Construct a forward process in 𝜎𝑇 to become a 

normal Gaussian p(𝜎𝑇) = 𝒩(𝜎𝑇; 0, Ι) , then generate samples 

through the backward process using a Markov chain with 

Gaussian transition 𝑝𝜃(𝜎0:𝑇) = 𝑝(𝜎𝑇) ∏ 𝑝𝜃(𝜎𝑡−1|𝜎𝑡)𝑇
𝑡=1 . Forward 

process gradually adds Gaussian noise, backward process learns 

remove Gaussian noise (Figure 3). 

 Given observed data 𝜎0 and noise ϵ~𝒩(0, I), one can obtain the 

Langevin equation that allows direct transition from 𝜎0 to 𝜎𝑡. 

 

𝜎𝑡 = √�̅�𝑡𝜎0 + √1 − �̅�𝑡𝜖�̅�   (17) 

 

Here we use �̅�𝑡 = ∏ 𝛼𝑖
𝑡
𝑖=1 , 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛽𝑡 is a parameter 

determining the intensity of noise over time, serving as the noise 

schedule. We defined a new standard normal variable, 𝜖�̅�, as a 
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linear combination of 𝜖1, 𝜖2, … , 𝜖𝑡  each following a standard 

normal distribution. 

 To precisely define spin system’s probability model Eq. (1) 

one needs to determine the normalization constant Z. However, 

by utilizing the score function, 

 

s(σ) ≡ ∇𝜎 log 𝑝(𝜎) = − ∇𝜎𝐻(𝜎)   (18) 

 

which is the variation of the log-likelihood with respect to the 

change in 𝜎𝑡 , instead of the probability function itself, it is 

possible to bypass the computation of the normalization constant 

Z . Instead of observing a probability distribution as a scalar 

function in space, this becomes a vector function corresponding 

to a defined flow along the gradients of the probability 

distribution. 

 For a Gaussian variable σ ~ 𝒩(σ; 𝜇𝜎 , 𝑠2I), Tweedie’s Formula 

states that: 

 

     E[μ|σ] = σ + 𝑠2∇𝜎 log 𝑝(𝜎)   (19) 

 

It can be applied to a diffusion model following a normal 

distribution 𝜎𝑡  ~ 𝑞(𝜎𝑡|𝜎0) = 𝒩(√�̅�𝑡𝜎0, (1 − �̅�𝑡)I). 

 

√�̅�𝑡𝜎0 = 𝜎𝑡 + (1 − �̅�𝑡)∇𝜎𝑡
log 𝑞(𝜎𝑡|𝜎0)   (20) 

 

Upon comparing with equation Eq. (17) (𝜎𝑡 = √�̅�𝑡𝜎0 + √1 − �̅�𝑡𝜖�̅� =

√�̅�𝑡𝜎0 − (1 − �̅�𝑡)∇𝜎𝑡
log 𝑞(𝜎𝑡|𝜎0) ), a relationship between 𝜖�̅�  and 

s(𝜎𝑡) can be elucidated. 
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𝜖�̅� = −√1 − �̅�𝑡∇𝜎𝑡
log 𝑞(𝜎𝑡|𝜎0) = −√1 − �̅�𝑡𝑠(𝜎𝑡)   (21) 

 

If we consider 𝜖�̅�  as representing the direction from 𝜎0 → 𝜎𝑡 , 

then the score s(𝜎𝑡)  indicates the direction from 𝜎𝑡 → 𝜎0 . 

Therefore, by training the noise term 𝜖�̅� it can be aligned with 

the corresponding score and used accordingly. Ho et al [15] 

employed a simple objective function for training (see Appendix 

A), as follow 

𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = 𝔼𝑡,𝜎0,�̅�𝑡
∥ 𝜖�̅� − 𝜖̂(𝜎𝑡) ∥2    (22) 

 

 

2.3 Analog Bit Diffusion 

 

 

Figure 4. Analog Bit Diffusion method : generate discrete data 

using continuous diffusion model.  

 Because the diffusion model generates data by removing 

Gaussian noise from a normal distribution, diffusion can only 

generate continuous state diffusion model. So we use Analog Bit 
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Diffusion method (Figure 4) [23]. this approach can be directly 

modeled by continuous state diffusion model, without any other 

discrete space or re-formulation of the continuous diffusion 

process. At sampling process, the generated continuous data are 

decoded into discrete variables through a thresholding operation. 

 After learning the diffusion model with the observed data, we 

can augment the Ising data using this Analog Bit diffusion 

approach. 
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Ⅲ. Results and discussion 

 

3.1 Experiment detail 

 

 Now we demonstrate that diffusion model is capable of Ising 

data augmentation. After obtaining ℎ𝑖, 𝐽𝑖𝑗  from Ising data 

generated by the diffusion model, which demonstrated greater 

proximity to the true ℎ𝑖, 𝐽𝑖𝑗  than when inferred solely from 

observed data, we applied this approach to experimental 

recordings of neuronal activities. Subsequently, we conducted a 

missing data inference task. 

 We adopt an energy function of Ising model, H(σ) = − ∑ ℎ𝑖𝑖 𝜎𝑖 −

∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗𝑖<𝑗 , which has L = M + M(M − 1)/2 parameters {ℎ𝑖, 𝐽𝑖𝑗}. For 

simulating data, we randomly set the parameter values from a 

Gaussian distribution with zero mean and some variance 𝓝 (𝟎,
𝒈𝟐

𝑴
), 

g is hyperparameter, that specifies bias and coupling strength, 

and define them as ℎ𝑡𝑟𝑢𝑒 , 𝐽𝑡𝑟𝑢𝑒. We then generate observed data 

�̂� from p(�̂�|ℎ𝑡𝑟𝑢𝑒 , 𝐽𝑡𝑟𝑢𝑒). The objective of Inverse Ising is to set 

parameters, creating a model distribution that best represents 

the distribution of the observed configuration. 

 In this experiment, we adopted the EM(Erasure Machine) as the 

algorithm for inferring parameters. Unlike other inverse Ising 

algorithms, the erasure machine requires only the observed 

ensemble without considering all unseen configurations. This 

characteristic makes the computation speed very fast, and the 

performance is also superior compared to other methods. To 

compare the accuracy between the inferred parameter ℎ𝑖
𝑜𝑏𝑠, 𝐽𝑖𝑗

𝑜𝑏𝑠 
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based on the observed configuration and the inferred ℎ𝑖
𝑎𝑢𝑔

, 𝐽𝑖𝑗
𝑎𝑢𝑔

 

based on the configuration augmented by the diffusion model, we 

assess the concordance of each inferred ℎ𝑖
𝑜𝑏𝑠 𝑜𝑟 𝑎𝑢𝑔

, 𝐽𝑖𝑗
𝑜𝑏𝑠 𝑜𝑟 𝑎𝑢𝑔

 

with the true parameter ℎ𝑖
𝑡𝑟𝑢𝑒 , 𝐽𝑖𝑗

𝑡𝑟𝑢𝑒. 

 In conventional diffusion models, the architecture usually 

employs a U-net [15], but in this work, because ising data does 

not have locational characteristics, a multi-layer 

perceptron(MLP) with residual connections architecture was 

used as image data was not involved. Training and sampling were 

conducted using the DDPM approach [15](see Appendix A, B). 
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3.2 Early stopping to avoid overfitting 

 

The diffusion model undergoes training with observed data �̂� as 

input, infer the true distribution p(ℎ̂𝑡𝑟𝑢𝑒 , 𝐽𝑡𝑟𝑢𝑒|�̂�). As iterations 

progress, the diffusion model better captures the distribution, 

and it can generate high-quality samples that reflect the true 

distribution inferred from �̂�. 

 

 

Figure 5. Inference performance of augmented data. Inferred 

interactions vs actual interactions graph across iterations. M=40 

system, 2,000ea observed samples, 100,000 augmented data. (a) 

1,000 iterations. (b) 16,000 iterations. (c) 1,000,000 iterations.  

In the early stage of training, the diffusion model fails to 

sufficiently capture the distribution, resulting in the generation 

of random samples. Therefore, when plotting the estimated vs 

true interaction graph (Figure 5(a)), the dots form a skewed 

pattern because random samples imply weak interaction. 

However, at a certain point, the model can generate samples that 

better represent the true distribution than the observed data �̂� 

(Figure 5(b)).  
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Figure 6. Overfitting to observed data  

If too many iterations are given, the diffusion model may overfit 

to data (Figure 6), generating samples that just mimic the 

observed samples ( �̂� ) rather than being close to the true 

distribution (Figure 5(c)). Therefore, it is necessary to employ 

a method to halt the training at an appropriate iteration to prevent 

overfitting in the diffusion model. 
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Figure 7. (a) Inferring performance across iterations (M=40, 

4,000ea observed data). (b) Variance of energy 〈𝐸2〉 − 〈𝐸〉2 . 

(E(𝜎𝑎𝑢𝑔|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠), Orange line), (E(𝜎𝑜𝑏𝑠|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠), dashed blue 

line), (E(𝜎𝑡𝑒𝑠𝑡|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠), dashed skyblue line). 

 

To quantify inference performance, Mean Squared Error(MSE) 

was used to compare the inferred parameters obtained from 

observed data (ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠) and augmented data (ℎ𝑎𝑢𝑔, 𝐽𝑎𝑢𝑔) with 

the true T parameters (ℎ𝑡𝑟𝑢𝑒 , 𝐽𝑡𝑟𝑢𝑒).  

 

MSE =  
1

𝑀
(∑ (ℎ𝑖

𝑡𝑟𝑢𝑒 − ℎ𝑖
𝑜𝑏𝑠 𝑜𝑟 𝑎𝑢𝑔

)
2

𝑖 + ∑ (𝐽𝑖𝑗
𝑡𝑟𝑢𝑒 − 𝐽𝑖𝑗

𝑜𝑏𝑠 𝑜𝑟 𝑎𝑢𝑔
)

2

𝑖<𝑗 )  (23) 
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The MSE score decreases as the iteration progresses, but at 

some point, it starts to rise (Figure 7(a)). This is because the 

diffusion model initially finds the optimal distribution that can be 

inferred from the observed data, but as the training continues, it 

begins to overfit to the observed data.  

MSE score is a metric that can be applied only when we know 

the true parameters. In real-world problems, since we do not 

know the true parameters, we need other indicators to determine 

when to stop the training of diffusion model. 

 

 The reason for the high MSE in the early stage of training is 

that the diffusion model has not learned well, resulting in the 

generation of random samples. Generating random samples 

implies a high variance in the generated samples, and as training 

progresses, the variance decreases. We represent this variance 

using Energy term 〈𝐸2〉 − 〈𝐸〉2 , E(σ|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠) = − ∑ ℎ𝑖
𝑜𝑏𝑠

𝑖 𝜎𝑖 −

∑ 𝐽𝑖𝑗
𝑜𝑏𝑠𝜎𝑖𝜎𝑗𝑖<𝑗  (Figure 7(b)). In statistical physics it represents 

thermodynamics, specific heat 𝐶𝑣 =
(〈𝐸2〉−〈𝐸〉2)

𝑀𝑇2 . In this case M, T =

1 . The variance of energy is initially high during the early 

iterations and gradually decrease as the iteration progresses. If 

the variance of E(𝜎𝑎𝑢𝑔|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠)  is below than that of 

E(𝜎𝑜𝑏𝑠|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠) , it indicates overfitting, and giving too many 

iterations would lead to convergence to the observed line as in 

MSE. When create a test set with the same number of observed 

data and plotting the variance of test data E(𝜎𝑡𝑒𝑠𝑡|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠) line 

on the graph, there exist a point where it intersects with variance 

of E(𝜎𝑎𝑢𝑔|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠). This point serves as an appropriate early 
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stopping point where overfitting is avoided and the variance 

matches that of test data sampled from the true distribution. 

 In this study, we experimented by setting the point at which the 

variance of E(𝜎𝑎𝑢𝑔|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠) intersects with that of E(𝜎𝑡𝑒𝑠𝑡|ℎ𝑜𝑏𝑠,

𝐽𝑜𝑏𝑠) as stopping point when variance stabilizes and E(𝜎𝑎𝑢𝑔|ℎ𝑜𝑏𝑠,

𝐽𝑜𝑏𝑠) does not decrease below E(𝜎𝑜𝑏𝑠|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠). 
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3.3 Quality of augmented data 

 

Figure 8. Quality of inference. 𝐌 = 𝟒𝟎 system, 4,000 observed 

samples. Note that the true parameter {𝒉𝒊
𝒕𝒓𝒖𝒆, 𝑱𝒊𝒋

𝒕𝒓𝒖𝒆} are sampled 

from a normal distribution 𝓝 (𝟎,
𝒈𝟐

𝑴
). We use g=0.2 for 𝐡, g=1 for 

𝐉. (a) left true local field 𝒉𝒕𝒓𝒖𝒆, right true pairwise interaction 𝑱𝒕𝒓𝒖𝒆. 

(b) inference performance comparison between {𝒉𝒊
𝒕𝒓𝒖𝒆,  𝑱𝒊𝒋

𝒕𝒓𝒖𝒆} and 

{𝒉𝒊
𝒐𝒃𝒔, 𝑱𝒊𝒋

𝒐𝒃𝒔} . Left 𝒉𝒊
𝒕𝒓𝒖𝒆 − 𝒉𝒊

𝒐𝒃𝒔 , right 𝑱𝒊𝒋
𝒕𝒓𝒖𝒆 − 𝑱𝒊𝒋

𝒐𝒃𝒔  matrix. (c) 

comparison between {𝒉𝒊
𝒕𝒓𝒖𝒆, 𝑱𝒊𝒋

𝒕𝒓𝒖𝒆} and {𝒉𝒊
𝒂𝒖𝒈

, 𝑱𝒊𝒋
𝒂𝒖𝒈

}. {𝒉𝒊
𝒂𝒖𝒈

,  𝑱𝒊𝒋
𝒂𝒖𝒈

} 

is only use augmented data.  

 Now, We are evaluating the performance of augmented data. For 

a M = 40 system, we trained the diffusion model with 4,000ea 
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observed samples, and then generating 100,000ea augmented 

data. To compare the performance of parameters inferred from 

observed data and data augmented by the diffusion model, we 

visually depicted the difference between true parameters and 

inferred parameters (Figure 8(b)-(c)). Using data purely 

generated by diffusion model allows for a more accurate 

inference of parameters. 

 

 

Figure 9. Inferred parameters vs actual parameters for strong and 

weak interactions. True interaction weights 𝒉𝒊
𝒕𝒓𝒖𝒆, 𝑱𝒊𝒋

𝒕𝒓𝒖𝒆  are 

sampled from a normal distribution 𝓝 (𝟎,
𝒈𝟐

𝑴
), 𝐌 = 𝟒𝟎. To generate 

strong and weak interactions, we use g=1.0 (a), g=0.6 (b) 

respectively. Inference performance of only use 4,000ea 

observed data (obs, filled blue circles), only use 100,000ea 

augmented data (aug, filled red circles). (c) Inferring performance 
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based on the parameter 𝐠. (obs. Filled blue circles), (aug, filled 

orange circles). 

 

Diffusion model even can augment Ising data in both weak and 

strong interaction weight regime (Figure 9). When inferring 

using only observed samples for both strong interaction (Figure 

9(a)) and weak interaction (Figure 9(b)), Regardless of the 

hyperparameter g value that affects the strength of interactions, 

augmented data consistently improves performance across all 

levels of interaction strength(Figure 9(c)). it can be seen that 

using augmented data leads to better inference compared to 

relying solely on observed samples in both strong, weak 

interaction system. 
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Figure 10. Inferring performance based on the number of 

observed data and augmented data. (a-c) Inference performance 

based on the number of observed data. After training the diffusion 

model with observed data, we augmented data (300,000ea) using 

DDPM method. All true parameters followed a normal distribution 

𝓝 (𝟎,
𝒈𝟐

𝑴
), with g=1. (a) 𝐌 = 𝟐𝟎. (b) 𝐌 = 𝟒𝟎. (c) 𝐌 = 𝟔𝟎. (d-f) 

Inferring performance based on the number of augmented data 

diffusion model learned by 4,000ea(d-e), 8,000ea(f) observed 

data. (d) 20 variables. (e) 40 variables. (f) 60 variables.  
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 The performance of data generated by the diffusion model 

varies with the number of observed and augmented data. To 

evaluate the inference performance based on the quantity of 

observed data, we examined the trend using the MSE score 

between true parameters and inferred parameters (Figure 10). 

Regardless of the number of observed data, data generated by 

diffusion models shows better performance (Figure 10 (a)-(c)). 

 Regarding number of augmented data, the accuracy of inference 

improves with an increasing number of augmented data (Figure 

10 (d)-(f)). Utilizing not only augmented data but also observed 

data in the inference process enhances overall performance. 

 

 

3.4 neuronal network imputation 

 

 

Figure 11. Activities of tiger salamander retina 160 neurons 

 

 We applied augmented data to investigate whether it enhances 

inference in real-world problems. We conducted a task to 

recover missing values in data using neuronal network derived 

from temporal neuronal activities in the tiger salamander 

(Ambystoma tigrinum) retina [24]. The dataset consists of 

neuronal spike trains from 160 neurons stimulated by a film clip 

of fish swimming, with a bin size of 20 ms (Figure 11).  



 

 25 

 

Figure 12. 40 most active neurons activities without considering 

time sequence. (a) original configuration of some test samples 

with black dots representing -1 value and white dots representing 

+1 value. (b) Noisy test samples by randomly missing 14 

variables from original test sample (gray dots). (c) Recovered 

test samples using the inference of the erasure machine. 

 

 We considered only the 40 most active neurons. Since the 

temporal sequence is irrelevant in this model, we randomly 

arranged the data without considering the order (Figure 12(a)). 

Initially, we divided the data into 8,000ea training samples and 

1,000ea test samples. We applied the EM to the training samples 

to infer {ℎ𝑖
𝑜𝑏𝑠, 𝐽𝑖𝑗

𝑜𝑏𝑠}. Since we do not know the true parameters 

{ℎ𝑖
𝑡𝑟𝑢𝑒 , 𝐽𝑖𝑗

𝑡𝑟𝑢𝑒}, the inferred local fields and interactions cannot be 

directly compared. Instead, we evaluated the accuracy of the 

inferred parameters through missing values prediction on test 

samples. In the test samples, we randomly selected 14 variables 
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(35% of the total 40 variables) and set them as missing variables 

(𝜎𝑖 = 0) (Figure 12(b)). To recover the missing values, we 

divided all variables σ = (𝜎𝑚, 𝜎𝑚
𝑐 ) into missing variables 𝜎𝑚 and 

observed variables 𝜎𝑚
𝑐 . Next, we reconstructed the missing 

variables by fining 𝜎𝑚  that maximizes p(𝜎𝑚|𝜎𝑚
𝑐 ) ∝ 𝑝(𝜎𝑚, 𝜎𝑚

𝑐 ) ≡

𝑝(𝜎) (Figure 12(c)). We measured the accuracy of matching the 

missing variables for evaluating reconstruction performance and 

compared the accuracy obtained from observed data with that 

from augmented data. 

 

 

Figure 13.  variance of energy of augmented data across iteration 

 

 Even when using real-world neuronal data, we confirmed that 

the variance of energy decreases over iterations (Figure 13). We 

identified the point where the variance of energy  E(𝜎𝑎𝑢𝑔|ℎ𝑜𝑏𝑠,

𝐽𝑜𝑏𝑠)  intersect with E(𝜎𝑡𝑒𝑠𝑡|ℎ𝑜𝑏𝑠, 𝐽𝑜𝑏𝑠)  as stopping point for 

training the diffusion model. 
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Figure 14. Inferring missing data with observed and augmented 

data . (a) Recovery accuracy for varying numbers of missing 

variables. (b) same task for the Hamiltonian without a local field 

term 𝐇(𝛔) = − ∑ 𝑱𝒊𝒋𝝈𝒊𝝈𝒋𝒊<𝒋 . 

 

 Augmented data improved missing values prediction accuracy 

regardless of the number of missing data (Figure 14(a)). It could 

be that it performs well because a lot of information is contained 

in the local term, so we experimented using only the interaction 

term without local term H(σ) = − ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗𝑖<𝑗  (Figure 14(b)).  

Even when considering only the interaction term, it exhibits 

augmentation performance similar to when a local field is present. 

It represents that the interaction term contains the key 

information. 
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Ⅳ. Conclusion 

 

In a low-data setting, increasing the amount of data to improve 

model performance is a crucial task in the era of big data. In this 

study, we explored the potential of the first Ising data 

augmentation. We confirmed the possibility of generating binary 

Ising data without additional structural changes using continuous 

state diffusion with an Analog Bit diffusion approach. 

 Diffusion model learns the interaction weight, and since the 

weight is embedded inside the model, it is not possible to know 

directly what the value is, but it can generate an infinite number 

of samples that fit the weight. As the number of augmented data 

increase, a more accurate true weight value can be found. In this 

study, we were able to use a very large number of data generated 

by diffusion model using an efficient method called Erasure 

Machine. 

 In our experiment, fully connected MLP(Multi-Layer 

Perceptron) was used as the architecture of the diffusion model 

(Appendix B). This places a lot of load on learning and is not an 

efficient method. Nevertheless, the experimental results were 

surprising. Just as the CNN(Convolutional Neural Network)[25]  

Structure is effective for image data, performance will improve 

even further if the optimal architecture for generating Ising data 

is found. Additionally, In recent time, this powerful generative 

model, diffusion model, has been extended to time series 

applications[26]. Data augmentation using diffusion model can be 

applied to kinetic Ising problem. Deriving time series augmented 

Ising data is an intriguing avenue for future work.  
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Diffusion model’s ability to augment Ising data demonstrates the 

effectiveness of the score-based approach, allowing them to 

bypass the computation of intractable normalization terms. This 

study not only introduce a new paradigm for Ising data 

augmentation but also provides insights into the broader 

applicability of diffusion models in data science and physics-

inspired machine learning. 
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Appendix 

 

<A.1> diffusion model (Deep Unsupervised Learning None-

quilibrium Thermodynamics, sohl-Dickstein et al., ICML 2015) 

 

The diffusion process where 𝜎0 loses existing information and 

transforms into noise can be expressed using the langevin 

equation. 

 

𝜎1 = √𝛼1𝜎0 + √1 − 𝛼1𝜖1   (24) 

 

𝛼1 is a parameter that determines the speed of diffusion. If 𝛼1 =

1, it corresponds to a case where no diffusion occurs. When 𝛼1 =

0 , 𝜎0  becomes noise following a standard normal distribution 

𝜖1 ~ 𝒩(0, 𝐼). 

 When we further advance the diffusion process to generalize, it 

can be expressed as follows: 

 

𝜎𝑡 = √𝛼𝑡𝜎𝑡−1 + √1 − 𝛼𝑡𝜖𝑡  (25) 

 

𝛼𝑡  is also be described as 𝛽𝑡 = 1 − 𝛼𝑡 , which is parameter 

determining the intensity of noise over time, referred to as the 

noise schedule. The results of this Langevin equation can be 

expressed through the following conditional probability 

 

q(𝜎𝑡|𝜎𝑡−1, 𝜎0) ∝ exp [−
(𝜎𝑡−√𝛼𝑡𝜎𝑡−1)2

2(1−𝛼𝑡)
]  (26) 
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In this conditional probability, we can observe that the forward 

diffusion process is a Markov process dependent only on the 

previous time state, 𝜎𝑡−1 . This diffusion dynamics exhibit an 

interesting property 

 

𝜎2 = √𝛼2𝜎1 + √1 − 𝛼2𝜖2 = √𝛼1𝛼2𝜎0 + √(1 − 𝛼1)𝛼2𝜖1 + √1 − 𝛼2𝜖2 

     = √𝛼1𝛼2𝜎0 + √1 − 𝛼1𝛼2𝜖2̅     (27) 

 

In the final expression 𝜖2̅ is defined as linear combination of 𝜖1 

and 𝜖2, which follow a standard normal distribution, resulting in 

a new standard normal distribution 𝜖2̅. Generalize this expression 

we can obtain new Langevin equation : 

 

𝜎𝑡 = √�̅�𝑡𝜎0 + √1 − �̅�𝑡𝜖�̅�   (28) 

Here �̅�𝑡 = 𝛼1𝛼2 … 𝛼𝑡  

 

Also we can express through the following conditional probability: 

 

q(𝜎𝑡|𝜎0) ∝ exp [−
(𝜎𝑡−√�̅�𝑡𝜎0)2

2(1−�̅�𝑡)
]  (29) 

 

The inverse process of the forward diffusion defined above can 

be expressed using Bayes’ theorem as the following conditional 

probability: 

q(𝜎𝑡−1|𝜎𝑡 , 𝜎0) =
𝑞(𝜎𝑡|𝜎𝑡−1,𝜎0)𝑞(𝜎𝑡−1|𝜎0)

𝑞(𝜎𝑡|𝜎0)
  (30) 
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As the three probability on the right side of the equation are all 

normal distributions, multiplying them together results in a 

normal distribution. 

  

     q(𝜎𝑡−1|𝜎𝑡, 𝜎0) = 𝒩(𝜇𝑞(𝜎𝑡, 𝜎0, t), 𝜎𝑞
2(t))  (31) 

    𝜇𝑞(𝜎𝑡 , 𝜎0, t) =
√𝛼𝑡(1−�̅�𝑡−1)

(1−�̅�𝑡)
𝜎𝑡 +

(1−𝛼𝑡)√�̅�𝑡−1

(1−�̅�𝑡)
𝜎0   (32) 

    𝜎𝑞
2(t) =

(1−𝛼𝑡)(1−�̅�𝑡−1)

(1−�̅�𝑡)
   (33) 

 

To determine the values of variables obtained through the 

inverse process at any arbitrary 𝜎𝑇, not just 𝜎𝑇 obtained from 

starting at 𝜎0, we envision a model that describes the inverse 

process. We assume that the forward diffusion process 𝜎𝑡−1 → 𝜎𝑡 

occurs over a very short period, and we also assume that its 

inverse process is nearly in thermodynamic equilibrium. 

Therefore, it can be considered as a Markov process following a 

normal distribution. We hope that this inverse process model, 

denoted as p(𝜎𝑡−1|𝜎𝑡) , approximately matches the inferred 

q(𝜎𝑡−1|𝜎𝑡, 𝜎0) from the data. To simplify the problem, we assume 

that the variance of the model, 𝜎𝑝
2(t), depends only on the noise 

schedule, similar to 𝜎𝑞
2(t). 

 

Now, let’s define the likelihood of the samples 𝜎0  generated 

through the inverse process model p(𝜎𝑡−1|𝜎𝑡) . Finding the 

parameters that can maximize this objective function is precisely 

what constitutes “training”. 

log-likelihood : 

∑ log 𝑝(𝜎0)𝜎0
= ∫ 𝑑𝜎0𝑞(𝜎0) log 𝑝(𝜎0)   (34) 
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p(𝜎0) = ∫ 𝑑𝜎1 ⋯ 𝑑𝜎𝑇𝑝(𝜎0, 𝜎1, ⋯ , 𝜎𝑇)  

= ∫ 𝑑𝜎1 ⋯ 𝑑𝜎𝑇𝑝(𝜎𝑇) ∏ 𝑝(𝜎𝑡−1|𝜎𝑡)𝑇
𝑡=1

𝑞(𝜎1,⋯,𝜎𝑇|𝜎0)

∏ 𝑞(𝜎𝑇|𝜎𝑡−1)𝑇
𝑡=1

  

= ∫ 𝑑𝜎1 ⋯ 𝑑𝜎𝑇𝑞(𝜎1, ⋯ , 𝜎𝑇|𝜎0)𝑝(𝜎𝑇) ∏
𝑞(𝜎𝑡−1|𝜎𝑡)

𝑞(𝜎𝑡|𝜎𝑡−1)
𝑇
𝑡=1    (35) 

 

Inserting the expressed p(𝜎0)  into the log-likelihood and 

applying Jensen’s inequality, let’s expand it as follow: 

 

∫ 𝑑𝜎0𝑞(𝜎0) log 𝑝(𝜎0) =

∫ 𝑑𝜎0𝑞(𝜎0) log ∫ 𝑑𝜎1 ⋯ 𝑑𝜎𝑇𝑞( 𝜎1, ⋯ , 𝜎𝑇|𝜎0)𝑝(𝜎𝑇) ∏
𝑝(𝜎𝑡−1|𝜎𝑡)

𝑞(𝜎𝑡|𝜎𝑡−1)
𝑇
𝑡=1   

≥ ∫ 𝑑𝜎0𝑑𝜎1 ⋯ 𝑑𝜎𝑇𝑞(𝜎0, 𝜎1, ⋯ , 𝜎𝑇) [log 𝑝(𝜎𝑇) + ∑ log
𝑝(𝜎𝑡−1|𝜎𝑡)

𝑞(𝜎𝑡|𝜎𝑡−1)
𝑇
𝑡=1 ]  

 = ∫ 𝑑𝜎𝑇𝑝(𝜎𝑇) log 𝑝(𝜎𝑇) +

        ∑ ∫ 𝑑𝜎0𝑑𝜎1 ⋯ 𝑑𝜎𝑇𝑞(𝜎0, 𝜎1, ⋯ , 𝜎𝑇) log
𝑝(𝜎𝑡−1|𝜎𝑡)

𝑞(𝜎𝑡−1|𝜎𝑡)

𝑞(𝜎𝑡−1|𝜎0)

𝑞(𝜎𝑡|𝜎0)
𝑇
𝑡=1  

 = ∫ 𝑑𝜎𝑇𝑝(𝜎𝑇) log 𝑝(𝜎𝑇) − ∑ 𝐿𝑡−1
𝑇
𝑡=1 −

        ∫ 𝑑𝜎0𝑑𝜎𝑇𝑞(𝜎0, 𝜎𝑇) log 𝑝(𝜎𝑇|𝜎0)    (36) 

 

Since 𝜎𝑇 is designed to follow a standard normal distribution, the 

crucial factor here becomes the second term. 

 

𝐿𝑡−1 = ∫ 𝑑𝜎0𝑑𝜎𝑇𝑞(𝜎0, 𝜎𝑡)𝐷𝐾𝐿[𝑞(𝜎𝑡−1|𝜎𝑡, 𝜎0) ∥ 𝑝(𝜎𝑡−1|𝜎𝑡)] (37) 

 

Calculating the Kullback-Leibler divergence between these two 

normal distributions yields the following result: 

 

𝐷𝐾𝐿[𝑞(𝜎𝑡−1|𝜎𝑡, 𝜎0) ∥ 𝑝(𝜎𝑡−1|𝜎𝑡)] =
1

2𝜎𝑞
2(𝑡)

∥ 𝜇𝑝 − 𝜇𝑞 ∥2 (38) 
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By training in the direction of reducing this objective function and 

obtaining 𝑝(𝜎𝑡−1|𝜎𝑡), we can now generate samples 𝜎0 through 

𝜎𝑇 → 𝜎𝑇−1 → ⋯ → 𝜎1 → 𝜎0 process. In practice, sampling is done 

through the Langevin equation following the conditional 

probability. Here, ϵ ~ 𝒩(0, 𝐼)  plays a role in increasing the 

diversity of samples generated, as it is a sample generated from 

noise following a standard normal distribution. 

 

 

 

<A.2> DDPM (Denoising Diffusion Probabilistic Models, Ho et al., 

NeurIPS 2020) 

 

Eq. (25) that connecting 𝜎0 to 𝜎𝑡 in the original diffusion model 

can be expressed as follows : 

 

𝜎0 =
𝜎𝑡−√1−�̅�𝑡�̅�𝑡

√�̅�𝑡
    (39) 

 

Then, Eq. (32) is also newly expressed as follow: 

 

𝜇𝑞(𝜎𝑡 , 𝜎0, t) =
1

√𝛼𝑡
𝜎𝑡 +

1−𝛼𝑡

√1−�̅�𝑡√𝛼𝑡
𝜖�̅�   (40) 

 

By using this, we can design the 𝜇𝑝(𝜎𝑡 , t) of 𝑝(𝜎𝑡−1|𝜎𝑡) as follow : 

 

𝜇𝑝(𝜎𝑡, t) =
1

√𝛼𝑡
𝜎𝑡 +

1−𝛼𝑡

√1−𝛼𝑡̅̅ ̅√𝛼𝑡
𝜖̂(𝜎𝑡)   (41) 
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Using this expression, rewriting the Kullback-Leibler 

divergence, Eq. (38) 

 

   𝐷𝐾𝐿[𝑞(𝜎𝑡−1|𝜎𝑡, 𝜎0) ∥ 𝑝(𝜎𝑡−1|𝜎𝑡)] =
1

2𝜎𝑞
2(𝑡)

(1−𝛼𝑡)2

(1−�̅�𝑡)𝛼𝑡
∥ 𝜖�̅� − 𝜖̂(𝜎𝑡) ∥2   (42) 

 

Therefore, the overall objective function for the entire time is as 

follows: 

 

L = ∑ 𝐿𝑡−1

𝑇

𝑡=1

= ∑ ∫ 𝑑𝜎0𝑑𝜎𝑡𝑞(𝜎0, 𝜎𝑡)
1

2𝜎𝑞
2(𝑡)

(1 − 𝛼𝑡)2

(1 − �̅�𝑡)𝛼𝑡
∥ 𝜖�̅� − 𝜖̂(𝜎𝑡) ∥2

𝑇

𝑡=1

= ∑ 𝛾𝑡 ∫ 𝑑𝜎0𝑑𝜎𝑡𝑞(𝜎0, 𝜎𝑡) ∥ 𝜖�̅� − 𝜖̂(𝜎𝑡) ∥2

𝑇

𝑡=1

 

        (43) 

Ho et al. [15] simplified above objective function as follows: 

 

  𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = 𝔼𝑡,𝜎0,�̅�𝑡
∥ 𝜖�̅� − 𝜖̂(𝜎𝑡) ∥2      (44) 

 

𝐿𝑠𝑖𝑚𝑝𝑙𝑒 can be interpreted as simplifying the 𝛾𝑡, which represents 

the weight for each time, to 1. In reality 𝛾𝑡  is larger as t 

approaches 0. However, setting all of them to1 reduces the 

weight for smaller values of t, effectively downplaying the 

importance of samples with more noise at larger t. This can be 

interpreted as giving more weight to removing noise in samples 

with significant noise at larger t. In DDPM, the diffusion model 

evolved by predicting the noise 𝜖�̅� and removing it, instead of 

predicting the original 𝜎0. 
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<B> Diffusion model architecture code 

 

 

 

# activation function 

nonlinearity = nn.GELU() 

 

class SinusoidalPosEmb(nn.Module): 

    def __init__(self, dim): 

        super().__init__() 

        self.dim = dim 

 

    def forward(self, x): 

        device = x.device 

        half_dim = self.dim // 2 

        emb = math.log(10000) / (half_dim - 1) 

        emb = torch.exp(torch.arange(half_dim, device=device) * -emb) 

        emb = x[:, None] * emb[None, :] 

        emb = torch.cat((emb.sin(), emb.cos()), dim=-1) 

        return emb 

     

class ResNetBlock(nn.Module): 
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    def __init__(self, in_hidden, out_hidden, temb): 

        super().__init__() 

        self.in_hidden = in_hidden 

        self.out_hidden = out_hidden 

 

        # timestep embedding 

        self.temb_proj = nn.Linear(temb, out_hidden) 

 

        # mlp layer 

        self.mlp1 = nn.Linear(in_hidden, out_hidden) 

        self.mlp2 = nn.Linear(out_hidden, out_hidden) 

         

         

        if self.in_hidden != self.out_hidden: 

            self.conv_shortcut = nn.Linear(in_hidden, out_hidden) 

         

    def forward(self, x, temb): 

        h = x 

        h = nonlinearity(h) 

        h = self.mlp1(h) 

         

        h = h + self.temb_proj(nonlinearity(temb)) 

 

        h = nonlinearity(h) 

        h = self.mlp2(h) 

         

        if self.in_hidden != self.out_hidden: 

            x = self.conv_shortcut(x) 

 

        return x + h 

     

class MLP(nn.Module): 

    def __init__(self, n_var,n_dim=128, n_hidden1=256,n_hidden2=512): 

        super().__init__() 

 

        self.t_emb = nn.Sequential( 

            SinusoidalPosEmb(n_steps), 

            nn.Linear(n_steps, n_hidden1), 

            nn.GELU(), 

            nn.Linear(n_hidden1, n_hidden1), 

        ) 

        self.mlp_in = nn.Linear(n_var, n_dim) 
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        self.downs = nn.ModuleList([ 

            ResNetBlock(in_hidden=n_dim, out_hidden=n_hidden1, temb=n_hidden1), 

            ResNetBlock(in_hidden=n_hidden1, out_hidden=n_hidden2, temb=n_hidden1), 

            ResNetBlock(in_hidden=n_hidden2, out_hidden=n_hidden2, temb=n_hidden1), 

        ]) 

     

        self.mid = ResNetBlock(in_hidden=n_hidden2, out_hidden=n_hidden2, 

temb=n_hidden1) 

         

        self.ups = nn.ModuleList([ 

            ResNetBlock(in_hidden=2*n_hidden2, out_hidden=n_hidden2, temb=n_hidden1), 

            ResNetBlock(in_hidden=2*n_hidden2, out_hidden=n_hidden1, temb=n_hidden1), 

            ResNetBlock(in_hidden=2*n_hidden1, out_hidden=n_dim, temb=n_hidden1), 

        ]) 

 

        self.mlp_out = nn.Linear(2*n_dim,n_var) 

         

    def forward(self, x, time): 

        # timestep embedding 

        t = self.t_emb(time) 

        x = self.mlp_in(x) 

        r = x.clone() 

 

        h = [] 

        for block_idx, block in enumerate(self.downs): 

            x = block(x, t) 

            h.append(x) 

             

        x = self.mid(x, t) 

 

        for block_idx, block in enumerate(self.ups): 

            x = torch.cat([x, h.pop()], dim=1) 

            x = block(x, t) 

         

        x = torch.cat([x, r], dim=1) 

     

        return self.mlp_out(x) 
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국 문 초 록 

 

 이 논문에서는 Diffusion 모델로 ising data 를 증강하여 Inverse 

Ising problem 성능 향상 가능성에 대해 연구하였다. Diffusion 

model 은 Boltzmann machine 과는 다르게 data distribution 의 

score function 을 학습하기 때문에 계산량이 많은 normalization 

term 을 계산하지 않고도 data 의 분포를 학습할 수 있고 이를 통해 

Ising data augmentation 이 가능하다. 우리는 Analog Bit 방식의 

Diffusion model 에 의해 생성된 샘플이 Ising 모델 매개변수 

추정의 정확도를 향상시키는 것을 확인하였고 다양한 시스템 

크기와 주어진 데이터와 증강된 데이터 양이 성능에 미치는 영향을 

논하였다. 또한 neuronal data 로 missing value imputation 

task 에서도 성능 향상을 보여 현실 세계의 문제에도 적용 가능함을 

확인했다. 본 연구는 Ising data augmentation 의 가능성을 

확인하였으며, Diffusion 모델의 물리 기반의 기계학습에서의 더 

넓은 적용 가능성에 대한 통찰을 제시한다.  

 

 

주요어 : Diffusion Model, Inverse Ising problem, Data Augmen-

tation  

학   번 : 2022-27415 
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