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국 문 초 록

확산 모델의 성공에도 불구하고, 우리는 여전히 그 잠재 공간에 대한 철저한 이해가 부족

한 실정이다. 본 연구에서는 잠재 공간 xt ∈ X 를 이해하기 위해 기하학적 관점에서 분석을

수행하였다. 우리의 접근 방식은 모델 내부 표상과 연관된 풀백 메트릭 (pullback metric) 을

활용하여 X 내의 국소 잠재 기저를 도출하는 것이다. 주목할 만한 점은, 우리가 발견한 국소

잠재 기저가 특정 타임스텝에서 기저 벡터를 따라 잠재 변수 xt 를 이동시킴으로써 이미지

편집 기능을 가능케 한다는 것이다. 또한, 확산 모델의 생성 과정에 걸쳐 잠재 변수 주변 기하

학적 구조가 어떻게 변화하고 서로 다른 텍스트 조건에 따라 어떻게 달라지는지 분석하였다.

이를 통해 이미 알려진 굵직한 특성으로부터 세밀한 질감으로의 생성 현상을 확인함과 동시

에, 잠재 변수 위치에 따른 공간 불일치, 데이터셋 복잡성의 영향, 그리고 시간에 따른 텍스트

프롬프트의 영향 변화와 같은 새로운 통찰을 얻을 수 있었다. 우리가 아는 한, 본 논문은 x

조작 및 추가 훈련 없이 특정 타임스텝 t 에서 단 한 번의 편집만으로 가능한 방법, 그리고

확산 모형의 잠재 구조에 대한 철저한 분석을 최초로 제시하고 있다.

주요어: 확산모형, 기하 구조, 이미지 편집

학 번: 2024-25129
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Abstract

Despite the success of diffusion models (DMs), we still lack a thorough understanding

of their latent space. To understand the latent space xt ∈ X , we analyze them from a

geometrical perspective. Our approach involves deriving the local latent basis within X

by leveraging the pullback metric associated with their encoding feature maps. Remark-

ably, our discovered local latent basis enables image editing capabilities by moving xt, the

latent space of DMs, along the basis vector at specific timesteps. We further analyze how

the geometric structure of DMs evolves over diffusion timesteps and differs across differ-

ent text conditions. This confirms the known phenomenon of coarse-to-fine generation,

as well as reveals novel insights such as the discrepancy between xt across timesteps, the

effect of dataset complexity, and the time-varying influence of text prompts. To the best of

our knowledge, this paper is the first to present image editing through x-space traversal,

editing only once at specific timestep t without any additional training, and providing

thorough analyses of the latent structure of DMs.

Keywords: Diffusion model, Geometry, Image editing

Student Number: 2024-25129

ii



Contents

Abstract i

List of Figures iv

List of Tables vi

1 Introduction 1

2 Related Work 1

2.1 Diffusion Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 The study of latent space in GANs. . . . . . . . . . . . . . . . . . . . . . . . 1

2.3 Image manipulation in DMs. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.4 Riemannain Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Method 1

3.1 Pullback metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.2 Discovering the latent basis of DMs . . . . . . . . . . . . . . . . . . . . . . . 2

3.3 Generating edited images with x-space guidance . . . . . . . . . . . . . . . 3

3.4 The overall process of image editing . . . . . . . . . . . . . . . . . . . . . . 4

3.5 Editing various samples with parallel transport . . . . . . . . . . . . . . . . 4

4 Experiment 1

4.1 Image editing with the latent basis . . . . . . . . . . . . . . . . . . . . . . . 1

4.2 Evolution of latent structures during generative processes . . . . . . . . . . 3

4.2.1 Latent bases gradually evolve from low- to high-frequency structures. 3

4.2.2 The discrepancy of tangent spaces from different samples increases

along the generative process. . . . . . . . . . . . . . . . . . . . . . . 4

iii



iv Contents

4.2.3 DMs trained on simpler datasets exhibit more consistent tangent

spaces over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Effect of conditioning prompts on the latent structure . . . . . . . . . . . . 6

4.3.1 Similar text conditions induce similar tangent spaces. . . . . . . . . 6

4.3.2 The generative process depends less on text conditions in later timesteps. 7

5 Limitation 1

6 Conclusion 1

Appendices 2

A Societal Impacts & Ethics Statements . . . . . . . . . . . . . . . . . . . . . 2

B Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

C Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

D Comparative experiment to other state-of-the-art (SoTA) editing methods . 6

E More Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

F Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

G Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

G.1 Latent basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

G.2 Image editing using latent basis vectors discovered with various

prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

G.3 More discussion on the editing capability of the latent basis discov-

ered with text conditions . . . . . . . . . . . . . . . . . . . . . . . . 16

Bibliography 17

감사의 글 25



List of Figures

1.1 Conceptual illustration of local geometric structure. . . . . . . . . . . . . . 2

3.1 Image editing with the discovered latent basis. . . . . . . . . . . . . . . . . 2

4.1 Examples of image edition using the latent basis. . . . . . . . . . . . . . . . 2

4.2 Examples of image edition using top-3 latent basis vectors. . . . . . . . . . 2

4.3 Examples of image edition using latent basis vectors discovered with various

prompts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.4 Power Spectral Density (PSD) of latent basis. . . . . . . . . . . . . . . . . . 4

4.5 Geodesic distance across tangent space of different samples at various dif-

fusion timesteps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.6 Examples of image edition using parallel transport. . . . . . . . . . . . . . . 5

4.7 Simpler datasets lead to more similar tangent spaces across diffusion timesteps. 6

4.8 Similar prompts create similar tangent spaces, and the impact of the prompt

decreases as the generative process progresses. . . . . . . . . . . . . . . . . . 7

5.1 Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

A1 Importance of the discovered latent directions. . . . . . . . . . . . . . . . . 4

A2 Importance of the x-space guidance. . . . . . . . . . . . . . . . . . . . . . . 5

A3 Comparison with various image editing methods. . . . . . . . . . . . . . . . 5

A1 Parallel transport between similar tangent spaces creates similar latent di-

rections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A2 More examples of tangent spaces across diffusion timesteps. . . . . . . . . . 8

A1 More examples of image editing using the latent basis in FFHQ. . . . . . . 11

A2 More examples of image editing using the latent basis in AFHQ. . . . . . . 12

v



vi List of Figures

A3 More examples of image editing using the latent basis in Flowers. . . . . . . 12

A4 More examples of image editing using the latent basis with Stable Diffusion. 13

A5 More examples of image editing using the latent basis with Stable Diffusion. 14

A6 More examples of image editing using top-5 latent basis vectors when given

the prompt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A7 More examples of image editing using latent basis vectors discovered with

various prompts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A8 More examples of image editing using latent basis vectors discovered with

various prompts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A9 Failure cases of image editing using the latent basis at 1T . . . . . . . . . . . 18

A10 Failure cases of using prompts. . . . . . . . . . . . . . . . . . . . . . . . . . 18



List of Tables

A1 Hyper-parameter settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

A1 Comparisons of the time complexity of state-of-the-art editing methods. . . 6

vii



Chapter 1

Introduction

The diffusion models (DMs) are powerful generative models that have demonstrated im-

pressive performance [Ho et al., 2020, Song et al., 2020a,b, Dhariwal and Nichol, 2021,

Nichol and Dhariwal, 2021]. DMs have shown remarkable applications, including text-

to-image synthesis [Ramesh et al., 2022, Rombach et al., 2022, Balaji et al., 2022, Nichol

et al., 2021], inverse problems [Chung et al., 2022, Lugmayr et al., 2022], and image editing

[Hertz et al., 2022, Tumanyan et al., 2022, Parmar et al., 2023, Mokady et al., 2022].

Despite their achievements, the research community lacks a comprehensive understand-

ing of the latent space of DMs and its influence on the generated results. So far, the

completely diffused images are considered as latent variables but it does not have useful

properties for controlling the results. For example, traversing along a direction from a

latent produces weird changes in the results. Fortunately, Kwon et al. [2022] consider the

intermediate feature space of the diffusion kernel, referred to as H, as a semantic latent

space and show its usefulness on controlling generated images. In the similar sense, some

works investigate the feature maps of the self-attention or cross-attention operations for

controlling the results [Hertz et al., 2022, Tumanyan et al., 2022, Parmar et al., 2023],

improving sample quality [Chefer et al., 2023], or downstream tasks such as semantic

segmentation [Ma et al., 2023, Xu et al., 2023].

Still, the structure of the space Xt where latent variables {xt} live remains unexplored

despite its crucial role in understanding DMs. It is especially challenging because 1) the

model is trained to estimate the forward noise which does not depend on the input, as

opposed to other typical supervisions such as classification or similarity, and 2) there are

lots of latent variables over multiple recursive timesteps. In this paper, we aim to analyze X

1



2 Chapter 1. Introduction

Latent space

structure

Feature space

structure

Figure 1.1: Conceptual illustration of local geometric structure. (a) The local basis
{v1,v2, · · · } of the local latent subspace Txt within the latent space X is interlinked with
the local basis {u1,u2, · · · } of the local tangent space Tht in the feature space H. (b)
The derivation of these local bases is facilitated through the singular value decomposition
(SVD) of the Jacobian, which emanates from the U-Net responsible for encoding the
feature map f , linking X and H.

in conjunction with its corresponding representation H, by incorporating a local geometry

to X using the concept of a pullback metric in Riemannian geometry.

First, we discover the local latent basis for X and the corresponding local tangent basis

for H. The local basis is obtained by performing singular value decomposition (SVD) of

the Jacobian of the mapping from X to H. To validate the discovered local latent basis, we

demonstrate that walking along the basis can edit real images in a semantically meaningful

way. Furthermore, we can use the discovered local latent basis vector to edit other samples

by using parallel transport, when they exhibit comparable local geometric structures. Note

that existing editing methods manipulate the self-attention map or cross-attention map

over multiple timesteps [Hertz et al., 2022, Tumanyan et al., 2022, Parmar et al., 2023].

On the other hand, we manipulate only xt once at a specific timestep.

Second, we investigate how the latent structures differ across different timesteps and

samples as follows. The frequency domain of the local latent basis shifts from low-frequency

to high-frequency along the generative process. We explicitly confirm it using power spec-

tral density analysis. The difference between local tangent spaces of different samples

becomes larger along the generative process. The local tangent spaces at various diffusion

timesteps are similar to each other if the model is trained on aligned datasets such as

CelebA-HQ or Flowers. However, this homogeneity does not occur on complex datasets

such as ImageNet.

Finally, we examine how the prompts affect the latent structure of text-to-image DMs

as follows. Similar prompts yield similar latent structures. Specifically, we find a positive
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correlation between the similarity of prompts and the similarity of local tangent spaces.

The influence of text on the local tangent space becomes weaker along the generative

process.

Our work examines the geometry of X and H using Riemannian geometry. We discover

the latent structure of X and how it evolves during the generative process and is influenced

by prompts. This geometric exploration deepens our understanding of DMs.



Chapter 2

Related Work

2.1 Diffusion Models.

Recent advances in DMs make great progress in the field of image synthesis and show state-

of-the-art performance [Sohl-Dickstein et al., 2015, Ho et al., 2020, Song et al., 2020a].

An important subject in the diffusion model is the introduction of gradient guidance,

including classifier-free guidance, to control the generative process [Dhariwal and Nichol,

2021, Sehwag et al., 2022, Avrahami et al., 2022, Liu et al., 2021, Nichol et al., 2021,

Rombach et al., 2022]. The work by Song et al. [2020b] has facilitated the unification

of DMs with score-based models using SDEs, enhancing our understanding of DMs as a

reverse diffusion process. However, the latent space is still largely unexplored, and our

understanding is limited.

2.2 The study of latent space in GANs.

The study of latent spaces has gained significant attention in recent years. In the field of

Generative Adversarial Networks (GANs), researchers have proposed various methods to

manipulate the latent space to achieve the desired effect in the generated images [Ramesh

et al., 2018, Patashnik et al., 2021, Abdal et al., 2021, Härkönen et al., 2020, Shen and

Zhou, 2021, Yüksel et al., 2021, Pan et al., 2023]. More recently, several studies [Zhu et al.,

2021, Choi et al., 2021a] have examined the geometrical properties of latent space in GANs

and utilized these findings for image manipulations. These studies bring the advantage of

better understanding the characteristics of the latent space and facilitating the analysis

and utilization of GANs. In contrast, the latent space of DMs remains poorly understood,

1



2 Chapter 2. Related Work

making it difficult to fully utilize their capabilities.

2.3 Image manipulation in DMs.

Early works include Choi et al. [2021b] and Meng et al. [2021] have attempted to manip-

ulate the resulting images of DMs by replacing latent variables, allowing the generation

of desired random images. However, due to the lack of semantics in the latent variables

of DMs, current approaches have critical problems with semantic image editing. Alterna-

tive approaches have explored the potential of using the feature space within the U-Net

for semantic image manipulation. For example, Kwon et al. [2022] have shown that the

bottleneck of the U-Net, H, can be used as a semantic latent space. Specifically, they

used CLIP [Radford et al., 2021] to identify directions within H that facilitate genuine

image editing. Baranchuk et al. [2021] and Tumanyan et al. [2022] use the feature map of

the U-Net for semantic segmentation and maintaining the structure of generated images.

Unlike previous works, our editing method finds the editing direction without supervision,

and directly traverses the latent variable along the latent basis.

2.4 Riemannain Geometry.

Some studies have applied Riemannian geometry to analyze the latent spaces of deep gen-

erative models, such as Variational Autoencoders (VAEs) and GANs [Arvanitidis et al.,

2017, Shao et al., 2018, Chen et al., 2018, Arvanitidis et al., 2020, Lee and Park, 2023, Lee

et al., 2022, Yonghyeon et al., 2021]. Shao et al. [2018] proposed a pullback metric on the

latent space from image space Euclidean metric to analyze the latent space’s geometry.

This method has been widely used in VAEs and GANs because it only requires a differ-

entiable map from latent space to image space. However, no studies have investigated the

geometry of latent space of DMs utilizing the pullback metric.



Chapter 3

Method

In this chapter, we explain how to extract a latent structure of X using differential ge-

ometry. First, we introduce a key concept in our method: the pullback metric. Next, by

adopting the local Euclidean metric of H and utilizing the pullback metric, we discover

the local latent basis of the X . Moreover, although the direction we found is local, we

show how it can be applied to other samples via parallel transport. Finally, we introduce

x-space guidance for editing data in the X to enhance the quality of image generation.

3.1 Pullback metric

We consider a curved manifold, X , where our latent variables xt exist. The differential

geometry represents X through patches of tangent spaces, Tx, which are vector spaces

defined at each point x. Then, all the geometrical properties of X can be obtained from

the inner product of ||dx||2 = ⟨dx, dx⟩x in Tx. However, we do not have any knowledge of

⟨dx, dx⟩x. It is definitely not a Euclidean metric. Furthermore, samples of xt at intermedi-

ate timesteps of DMs include inevitable noise, which prevents finding semantic directions

in Tx.

Fortunately, Kwon et al. [2022] observed that H, defined by the bottleneck layer of

the U-Net, exhibits local linear structure. This allows us to adopt the Euclidean metric on

H. In differential geometry, when a metric is not available on a space, pullback metric is

used. If a smooth map exists between the original metric-unavailable domain and a metric-

available codomain, the pullback metric is used to measure the distances in the domain

space. Our idea is to use the pullback Euclidean metric on H to define the distances

1
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Figure 3.1: Image editing with the discovered latent basis. (a) Schematic depiction of
our image editing procedure.① An input image is subjected to DDIM inversion, resulting
in an initial noisy sample xT .② The sample xT is progressively denoised until reaching the
point t through DDIM generation. ③ Subsequently, the local latent basis {v1, · · · ,vn} is
identified by using the pullback metric.④ This enables the manipulation of the sample xt

along one of the basis vectors using x-space guidance.⑤ The DDIM generation concludes
with the progression from the modified latent variable x̃t. (b) Examples of edited images
using a selected basis vector. The latent basis vector could be conditioned on prompts and
it facilitates text-aligned manipulations.

between the samples in X .

DMs are trained to infer the noise ϵt from a latent variable xt at each diffusion timestep

t. Each xt has a different internal representation ht, the bottleneck representation of the

U-Net, at different t’s. The differentiable map between X and H is denoted as f : X → H.

Hereafter, we refer to xt as x for brevity unless it causes confusion. It is important to note

that our method can be applied at any timestep in the denoising process. We consider a

linear map, Tx → Th, between the domain and codomain tangent spaces. This linear map

can be described by the Jacobian Jx = ∇xh which determines how a vector v ∈ Tx is

mapped into a vector u ∈ Th by u = Jxv.

Using the local linearity of H, we assume the metric, ||dh||2 = ⟨dh, dh⟩h = dh
T
dh as

a usual dot product defined in the Euclidean space. To assign a geometric structure to X ,

we use the pullback metric of the corresponding H. In other words, the norm of v ∈ Tx is

measured by the norm of corresponding codomain tangent vector:

||v||2pb ≜ ⟨u,u⟩h = v
T
Jx

T
Jxv. (3.1)

3.2 Discovering the latent basis of DMs

Using the pullback metric, we define the local latent vector v ∈ Tx that shows a large

variability in Th. We find a unit vector v1 that maximizes ||v||2pb. By maximizing ||v||2pb
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while remaining orthogonal to v1, one can obtain the second unit vector v2. This process

can be repeated to have n latent directions of {v1,v2, · · · ,vn} in Tx. In practice, vi

corresponds to the i-th right singular vector from the singular value decomposition (SVD)

of Jx = UΛV
T
, i.e., Jxvi = Λiui. Since the Jacobian of too many parameters is not

tractable, we use a power method [Golub and Van Loan, 2013, Miyato et al., 2018, Haas

et al., 2023] to approximate the SVD of Jx (See Appendix D for the time complexity and

Appendix F for the detailed algorithm).

Henceforth, we refer to Tx as a local latent subspace, and {v1,v2, · · · ,vn} as the

corresponding local latent basis.

Tx ≜ span{v1,v2 · · · ,vn}, where vi is i-th right singular vector of Jx. (3.2)

Using the linear transformation between Tx and Th via the Jacobian Jx, one can also

obtain corresponding directions in Th. In practice, ui corresponds to the i-th left singular

vector from the SVD of Jx. After selecting the top n (e.g., n = 50) directions of large

eigenvalues, we can approximate any vector in Th with a finite basis, {u1,u2, · · · ,un}.

When we refer to a local tangent space henceforth, it means the n-dimensional low-rank

approximation of the original tangent space.

Th ≜ span{u1,u2 · · · ,un}, where ui is the i-th left singular vector of Jx. (3.3)

The collection of local latent basis vectors, {v1,v2, · · · ,vn}, obtained through our pro-

posed method, can be interpreted as a signal that the model is highly response to for a given

x. On the other hand, the basis of the local tangent space, denoted as {u1,u2 · · · ,un},

can be viewed as the corresponding representation associated with the signal.

In Stable Diffusion, the prompt also influences the Jacobian, which means that the

local basis also depends on it. We can utilize any prompt to obtain a local latent basis,

and different prompts create distinct geometrical structures. For the sake of brevity, we

will omit the word local unless it leads to confusion.

3.3 Generating edited images with x-space guidance

A näıve approach for manipulating a latent variable x using a latent vector v is through
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simple addition, specifically x+ γv. However, using the näıve approach sometime leads to

noisy image generation. To address this issue, instead of directly using the basis for manip-

ulation, we use a basis vector that has passed through the decoder once for manipulation.

The x-space guidance is defined as follows

x̃XG = x+ γ[ϵθ(x+ v)− ϵθ(x)] (3.4)

where γ is a hyper-parameter controlling the strength of editing and ϵθ is a diffusion model.

Equation 3.4 is inspired by classifier-free guidance, but the key difference is that it is

directly applied in the latent space X . Our x-space guidance provides qualitatively similar

results to direct addition, while it shows better fidelity. (See Appendix C for ablation

study.)

3.4 The overall process of image editing

In this section, we summarize the entire editing process with five steps: 1) The input image

is inverted into initial noise xT using DDIM inversion. 2) xT is gradually denoised until t

through DDIM generation. 3) Identify local latent basis {v1, · · · ,vn} using the pullback

metric at t. 4) Manipulate xt along the one of basis vectors using the x-space guidance. 5)

The DDIM generation is then completed with the modified latent variable x̃t. Figure 3.1

illustrates the entire editing process.

In the context of a text-to-image model, such as Stable Diffusion, it becomes possible

to include textual conditions while deriving local basis vectors. Although we do not use any

text guidance during DDIM inversion and generation, a local basis with text conditions

enables semantic editing that matches the given text. Comprehensive experiments can be

found in Section 4.1.

It is noteworthy that our approach needs no extra training and simplifies image editing

by only adjusting the latent variable within a single timestep.

3.5 Editing various samples with parallel transport

Let us consider a scenario where our aim is to edit ten images, changing straight hair to

curly hair. Due to the nature of the unsupervised image editing method, it is becomes
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imperative to manually check the semantic relevance of the latent basis vector in the

edited results. Thus, to edit every samples, we have to manually find a straight-to-curly

basis vector for individual samples.

One way to alleviate this tedious task is to apply the curly hair vector obtained from

one image to other images. However, the basis vector v ∈ Tx obtained at x cannot be

used for the other sample x′ because v /∈ Tx′ . Thus, in order to apply the direction we

obtained to another sample, it is necessary to relocate the extracted direction to a new

tangent space.

To achieve this, we use parallel transport that moves vi onto the new tangent space

Tx′ . In the realm of differential geometry, parallel transport is a technique to relocate

a tangent vector to different position with minimal direction change, while keeping the

vector tangent on the manifold [Shao et al., 2018]. It is notable that in curved space,

parallel transport can significantly modify the original vector. Therefore, it is beneficial to

apply the parallel transport in H, where relatively flatter than X .

The process of moving a tangent vector v ∈ Tx to v′ ∈ Tx′ through parallel transport

in H is summarized as follows. First, we convert the latent direction vi ∈ Tx to the

corresponding direction of ui ∈ Th. Second, we apply the parallel transport ui ∈ Th to

u′
i ∈ Th′ , where h′ = f(x′). In the general case, parallel transport involves iterative

projection and normalization on the tangent space along the path connecting two points

[Shao et al., 2018]. However, in our case, we assume that H has Euclidean geometry.

Therefore, we move u directly onto Th′ through projection, without the need for an iterative

process. Finally, transform u′
i into v′

i ∈ X . Using this parallel transport of vi → v′
i via H,

we can apply the local latent basis obtained from x to edit or modify the input x′.
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Experiment

In this chapter, we analyze the geometric structure of DMs with our method. § 4.1 demon-

strates that the latent basis found by our method can be used for image editing. In § 4.2,

we investigate how the geometric structure of DMs evolves as the generative process pro-

gresses. Lastly, in § 4.3, we examine how the geometric properties of the text-condition

model change with a given text.

The implementation details of our work are provided on Appendix B. The source code

for our experiments can be found at https://github.com/enkeejunior1/Diffusion-Pullback.

4.1 Image editing with the latent basis

In this section, we demonstrate the capability of our discovered latent basis for image

editing. To extract the latent variables from real images for editing purposes, we use

DDIM inversion. In experiments with Stable Diffusion (SD), we do not use guidance, i.e.,

unconditional sampling, for both DDIM inversion and DDIM sampling processes. This

ensures that our editing results solely depend on the latent variable, not on other factors

such as prompt conditions.

Figures 3.1 and 4.1 illustrate the example results edited by the latent basis found

by our method. The latent basis clearly contains semantics such as age, gender, species,

structure, and texture. Note that editing at timestep T yields coarse changes such as age

and species. On the other hand, editing at timestep 0.6T leads to fine changes, such as

nose color and facial expression.

Figure 4.2 demonstrates the example results edited by the various latent basis vectors.

1

https://github.com/enkeejunior1/Diffusion-Pullback
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Figure 4.1: Examples of image edition using the latent basis. The attributes are
manually interpreted since the editing directions are not intentionally supervised. For
Stable Diffusion, we used an empty string as a prompt. Each column represents edits
made at different diffusion timesteps (0.6T , 0.8T , and T for the unconditional diffusion
model; 0.6T and 0.7T for Stable Diffusion).
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Figure 4.2: Examples of image edition using top-3 latent basis vectors. Each
column is edited using a different latent vector {v1,v2,v3}. Each group of columns repre-
sents edits made at different diffusion timesteps (0.6T and 0.7T ). Notably, when given the
“Lion” prompt, it is evident that all the top latent basis vectors align with the direction
of the prompt.

Interestingly, using the text “lion” as a condition, the entire latent basis captures lion-

related attributes. Furthermore, Figure 4.3 shows that the latent basis aligns with the text
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Figure 4.3: Examples of image edition using latent basis vectors discovered with
various prompts. Each column is edited using the latent basis vector obtained from a
different text prompt. Importantly, our method employs each prompt only once to derive
the local latent basis.

not only in terms of object types but also in relation to pose or action. For a qualitative

comparison with other state-of-the-art image editing methods, refer to Appendix D. For

more examples of editing results, refer to Appendix G.

4.2 Evolution of latent structures during generative pro-

cesses

In this section, we demonstrate how the latent structure evolves during the generative

process and identify three trends. 1) The frequency domain of the latent basis changes

from low to high frequency. It agrees with the previous observation that DMs generate

samples in coarse-to-fine manner. 2) The difference between the tangent spaces of different

samples increases over the generative process. It implies finding generally applicable editing

direction in latent space becomes harder in later timesteps. 3) The differences of tangent

spaces between timesteps depend on the complexity of the dataset.

4.2.1 Latent bases gradually evolve from low- to high-frequency struc-

tures.

Figure 4.4 is the power spectral density (PSD) of the discovered latent basis over various

timesteps. The early timesteps contain a larger portion of low frequency than the later
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Figure 4.4: Power Spectral Density (PSD) of latent basis. The PSD at t = T
(purple) exhibits a greater proportion of low-frequency signals, while the PSD at smaller
t (beige) reveals a larger proportion of high-frequency signals. The latent vectors vi are
min-max normalized for visual clarity.

timesteps and the later timesteps contain a larger portion of high frequency.

This suggests that the model focuses on low-frequency signals at the beginning of the

generative process and then shifts its focus to high-frequency signals over time. This result

strengthens the common understanding about the coarse-to-fine behavior of DMs over the

generative process [Choi et al., 2022, Daras and Dimakis, 2022].

4.2.2 The discrepancy of tangent spaces from different samples increases

along the generative process.

To investigate the geometry of the tangent basis, we employ a metric on the Grassmannian

manifold. The Grassmannian manifold is a manifold where each point is a vector space,

and the metric defined above represents the distortion across various vector spaces. We use

geodesic metric [Choi et al., 2021a, Ye and Lim, 2016] to define the discrepancy between

two subspaces {T (1), T (2)}:

Dgeo(T (1), T (2)) =

√∑
k

θ2k, (4.1)

where θk denotes the k-th principle angle between T (1) and T (2). Intuitively, the con-

cept of geodesic metric can be understood as an angle between two vector spaces. Here,

the comparison between two different spaces was conducted for {Th1 , Th2}. Unlike the X ,

the H assumes a Euclidean space which makes the computation of geodesic metric that

requires an inner product between tangent spaces easier. The relationship between tangent

space and latent subspace is covered in more detail in Appendix E.

Figure 4.5 demonstrates that the tangent spaces of the different samples are the most
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Figure 4.5:Geodesic distance across tangent space of different samples at various
diffusion timesteps. Each point represents the average geodesic distance between pairs
of 15 samples. It is notable that the similarity of tangent spaces among different samples
diminishes as the generative process progresses.

similar at t = T and diverge as timestep becomes zero.

Moreover, the similarity across tangent spaces allows us to effectively transfer the

latent basis from one sample to another through parallel transport as shown in Figure 4.6.

In T , where the tangent spaces are homogeneous, we consistently obtain semantically

aligned editing results. On the other hand, parallel transport at t = 0.6T does not lead to

satisfactory editing because the tangent spaces are hardly homogeneous. Thus, we should

examine the similarity of local subspaces to ensure consistent editing across samples.

Real image
(Man)

Real image
(Woman)

Real image
(Red lip)

P.
T

P.
T

Figure 4.6: Examples of image edition using parallel transport. The first row
demonstrates the results of editing with their respective latent vectors, while the sub-
sequent rows exhibit the results of editing through the parallel transport (P.T) of the
latent vectors used in the first row. The latent vector performs effectively when t = T (left
and middle), but comparatively less satisfactorily for 0.6T (right).
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Figure 4.7: Simpler datasets lead to more similar tangent spaces across diffusion
timesteps. (a) Distance matrix visualization of tangent space measured by geodesic metric
across various timesteps. (b) Average geodesic distance based on timestep differences,
indicating that the complexity of the dataset correlates with greater distances between
tangent spaces.

4.2.3 DMs trained on simpler datasets exhibit more consistent tangent

spaces over time.

In Figure 4.7 (a), we provide a distance matrix of the tangent spaces across different

timesteps, measured by the geodesic metric. We observe that the tangent spaces are more

similar to each other when a model is trained on CelebA-HQ, compared to ImageNet. To

verify this trend, we measure the geodesic distances between tangent spaces of different

timesteps and plot the average distances of the same difference in timestep in Figure 4.7

(b). As expected, we find that DMs trained on datasets, that are generally considered

simpler, have similar local tangent spaces over time.

4.3 Effect of conditioning prompts on the latent structure

In this section, we aim to investigate how prompts influence the generative process from a

geometrical perspective. We randomly sampled 50 captions from the MS-COCO dataset

[Lin et al., 2014] and used them as text conditions.

4.3.1 Similar text conditions induce similar tangent spaces.

In Figure 4.8 (a), we observe a negative correlation between the CLIP similarity of texts

and the distance between tangent spaces. In other words, when provided with similar

texts, the tangent spaces are more similar. The linear relationship between the text and

the discrepancy of the tangent spaces is particularly strong in the early phase of the
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Figure 4.8: Similar prompts create similar tangent spaces, and the impact of
the prompt decreases as the generative process progresses. (a) The horizontal
axis represents the CLIP similarity between two different prompts, while the vertical axis
represents the geodesic distance in the tangent space from each prompt. Different colors
represent various diffusion timesteps. A negative relationship is observed between prompt
similarity and tangent space distance. (b) The R2 score of the linear regression between
clip similarity and geodesic distance of tangent spaces decreases throughout the generative
process. (c) Each point represents the distance between tangent spaces created from dif-
ferent prompts. Until around t = 0.7T , the distance between tangent spaces is very large,
but it gradually decreases thereafter. This indicates that the influence of the prompt on
the tangent space diminishes.

generative process as shown by R2 score in Figure 4.8 (b).

4.3.2 The generative process depends less on text conditions in later

timesteps.

Figure 4.8 (c) illustrates the distances between local tangent spaces for given different

prompts with respect to the timesteps. Notably, as the diffusion timestep approaches

values below 0.7T , the distances between the local tangent spaces start to decrease. It

implies that the variation due to walking along the local tangent basis depends less on the

text conditions, i.e., the text less influences the generative process, in later timesteps. It is

a possible reason why the correlation between the similarity of prompts and the similarity

of tangent spaces reduces over timesteps.
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Limitation

It is interesting that our latent basis usually conveys disentangled attributes even though

we do not adopt attribute annotation to enforce disentanglement. We suppose that decom-

posing the Jacobian of the encoder in the U-Nets naturally yields disentanglement to some

extent. However, it does not guarantee the perfect disentanglement and some directions

are entangled. For example, the editing for beard converts a female subject to a male as

shown in Figure 5.1 (a). This kind of entanglement often occurs in other editing methods

due to the dataset bias: female faces seldom have beard.

While our method has shown effectiveness in Stable Diffusion, more research is needed

to fully validate its potential. We have observed that some of the discovered latent vector

occasionally leads to abrupt changes during the editing process in Stable Diffusion, as

depicted in Figure 5.1 (b). This observation highlights the complex geometry of X in

achieving seamless editing. Exploring this topic in future research is an interesting area to

delve into.

Our approach is broadly applicable when the feature space in the DM adheres to a

Euclidean metric, as demonstrated by H. This characteristic has been observed in the

context of U-Net within Kwon et al. [2022]. It would be intriguing to investigate if other

architectural designs, especially those similar to transformer structures as introduced in

[Peebles and Xie, 2023, Tevet et al., 2022], also exhibit a Euclidean metric.

Despite these limitations, our method provides a significant advance in the field of

image editing for DMs, and provides a deep understanding of DM through several exper-

iments.

1
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Real image (Beard) Real image

(a) Entanglement of semantic directions (b) Abrupt changes

P.
T

Figure 5.1: Limitations. (a) Entanglement between attributes due to dataset biases (b)
Abrupt changes in Stable Diffusion.
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Conclusion

We have analyzed the latent space of DMs from a geometrical perspective. We used the

pullback metric to identify the latent and tangent bases in X and H. The latent basis

found by the pullback metric allows editing images by traversal along the basis. We have

observed properties of the bases in two aspects. First, we discovered that 1) the latent bases

evolve from low- to high-frequency components; 2) the discrepancy of tangent spaces from

different samples increases along the generative process; and 3) DMs trained on simpler

datasets exhibit more consistent tangent spaces over timesteps. Second, we investigated

how the latent structure changes based on the text conditions in Stable Diffusion, and

discovered that similar prompts make tangent space analogous but its effect becomes

weaker over timesteps. We believe that a better understanding of the geometry of DMs

will open up new possibilities for adopting DMs in useful applications.

1
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A Societal Impacts & Ethics Statements

Our research endeavors to unravel the geometric structures of the diffusion model and

facilitate high-quality image editing within its framework. While our primary application

resides within the creative realm, it is important to acknowledge that image manipulation

techniques, such as the one proposed in our method, hold the potential for misuse, includ-

ing the dissemination of misinformation or potential privacy implications. Therefore, the

continuous advancement of technologies aimed at thwarting or identifying manipulations

rooted in generative models remains of utmost significance.

B Implementation details

Models and datasets We validate our method and provide analyses on various models

using the official code and pre-trained checkpoints. The available combinations of the

models and the datasets are: DDPM [Ho et al., 2020] on ImageNet [Deng et al., 2009],

LSUN-church/bedroom/cat/horse [Yu et al., 2015], and CelebA-HQ [Karras et al., 2018];

and DDPM trained with P2 weighting [Choi et al., 2022] on FFHQ [Karras et al., 2019],

Flowers [Yu et al., 2015] and AFHQ [Choi et al., 2020]. We also use Stable Diffusion (SD)

version 2.1 [Rombach et al., 2022] for the text-conditional diffusion model.

For image editing, we use the official codes and pre-trained checkpoints for all baselines

and keep the parameters frozen. For analysis, we compare models with the same diffusion

scheduling (linear schedule) and resolutions (2562) to ensure a fair comparison, except

Stable Diffusion.

Table B1 summarizes various hyperparameter settings in our experiments. Specific

details not covered in the main text are discussed in the following paragraphs.

2
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Table A1: Hyper-parameter settings.

model tedit inversion step γ n tboost

Stable Diffusion 0.7T 100 1 50 ×
0.6T 100 2 50 ×

Unconditional DMs T 100 0.5 50 0.2T
0.8T 100 1 50 0.2T
0.6T 100 4 50 0.2T

Edit timestep (tedit) For unconditional DMs, we show the editing results at tedit ∈

{T, 0.8T, 0.6T}, while for Stable Diffusion, we show the editing results at tedit ∈ {0.7T, 0.6T}.

Note that our method allows manipulation at any timestep.

Inversion step We conduct real image editing with DDIM inversion [Song et al., 2020a].

We set the number of steps to 100 for obtaining the latent variable xT and all experiments.

x-space guidance scale (γ) The value of γ determines the magnitude of a single

editing step by x-space guidance. Fortunately, through experimentation, we observed that

the value of γ does not have a significant impact on image quality unless it is excessively

large.

Low-rank approximation (n) We employ a low-rank approximation of the tangent

space using n = 50 for all settings.

Quality boosting (tboost) While DDIM alone already generates high-quality images,

Karras et al. [2022] showed that including stochasticity in the process improves image

quality and Kwon et al. [2022] suggest similar technique: adding stochasticity at the end of

the generative process. We employ this technique in our experiments on every experiment

after t = 0.2T , except Stable Diffusion.

Computing resource For power-method approximation with n = 50, it spends about

3-4 minutes on a single NVIDIA RTX 3090 (24GB). As n specifies the number of bases,

it can be as small as a user want to use for image editing. Reducing n provides faster

runtime, e.g., 10 seconds for n = 3.
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Real image

Real image

Figure A1: Importance of the discovered latent directions. Random direction exper-
iments with CelebA-HQ pre-trained model (top) and Stable Diffusion (bottom). Adding
random directions instead of latent directions severely distorts the resulting images. When
we perform edits along the projection onto the latent subspace Tx, the generated image
presents a semantically meaningful transformation.

C Ablation study

In this section, we validate our method with ablation study.

Random v To demonstrate the meaningfulness of the latent basis found by our method,

we qualitatively compare its effect to näıve baseline: random directions. The first row

in Figure A1 shows that manipulating the images with a random vector ‘v’ does not

result in semantic editing but rather degrades images. The second row shows the results of

projecting the random ‘v’ onto our obtained latent subspace. The projected results exhibit

semantic manipulation such as pose changes without image distortion. It indicates that

the found latent subspace captures semantics in the latent space effectively.

x-space guidance Figure A2 demonstrates the the effectiveness of x-space guidance

compared to a straightforward alternative: simple addition. First, x-space guidance pro-

duces higher quality images with similar meaning. Especially Stable Diffusion apparently

benefits from x-space guidance regarding smoothness of the editing strength and artifacts.

The difference is more significant at t = 0.6T . Note that the meaning of the same directions

may slightly differ between the two settings due to non-linearity of the U-Net.

Currently, we do not have a deeper understanding of the underlying principles of x-
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Figure A2: Importance of the x-space guidance. x-space guidance experiments with
AFHQ (top), Flowers pre-trained model (middle), and Stable Diffusion (bottom). x-space
guidance helps achieve qualitatively similar editing while preserving the content of the
original image.
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Figure A3: Comparison with various image editing methods. Our approach em-
powers image editing that aligns seamlessly with text conditions while upholding object
identity. In contrast, alternative methods exhibit deficiencies such as: inadequate preser-
vation of object structure (Instruct pix2pix), inefficacious manipulation (Pix2pix-zero), or
challenges in maintaining identity fidelity (Plug-and-Play, SDEdit).

space guidance. Exploring the reasons behind its ability to improve manipulation quality

would be an interesting direction for future work.
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Table A1: Comparisons of the time complexity of state-of-the-art editing meth-
ods

Image Edit Method Running time Preprocessing

Ours 11 sec N/A
SDEdit 4 sec N/A

Pix2Pix-zero 25 sec 4 min
PnP 10 sec 40 sec

Instruct Pix2Pix 11 sec N/A

D Comparative experiment to other state-of-the-art (SoTA)

editing methods

We conduct qualitative comparisons with text-guided image editing methods. Our SoTA

baseline methods include: (i) SDEdit [Meng et al., 2021], (ii) Pix2Pix-zero [Parmar et al.,

2023], (iii) PnP [Tumanyan et al., 2022], and (iv) Instruct Pix2Pix [Brooks et al., 2023].

All comparisons were performed using the official code. Please refer to Figure A3 for the

qualitative results.

We also compare the time complexity of each method. For a fair comparison, we only

identify the first singular vector v1, i.e., n = 1, and set the number of DDIM steps to 50.

All experiments were conducted on an Nvidia RTX 3090. The runtime for each method is

summarized in Table A1.

The computation cost of our method remains comparable to other approaches, al-

though the Jacobian approximation takes around 2.5 seconds for n = 1. This is because

we only need to identify the latent basis vector once at a specific timestep. Furthermore,

our approach does not require additional preprocessing steps like generating 100 prompts

with GPT and obtaining embedding vectors (as in Pix2Pix-zero), or storing feature vec-

tors, queries, and key values (as in PnP). Our method also does not require finetuning

(as in Instruct Pix2Pix). This leads to a significantly reduced total editing process time

in comparison to other methods.

E More Discussions

Why do we measure the geodesic distance of the tangent spaces instead of

the latent subspaces? The geodesic distance on the Grassmannian manifold between
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(a) Parallel transport across timesteps (b) Parallel transport across samples

Figure A1: Parallel transport between similar tangent spaces creates similar la-
tent directions. The horizontal axis represents the geodesic distance between tangent
spaces from (a) different timesteps (b) different samples at t ∈ {T, 0.9T, · · · , 0.1T}. The
vertical axis represents the angle between the original latent direction and transported
latent direction. Different colors represent various datasets. A positive relationship is ob-
served between tangent space distance and the distortion induced by parallel transport.

two subspaces is defined as the l2-norm of principal angles. To define angles between

different vector spaces, an inner product needs to be defined. In our work, we define

the inner product in Tx using the pullback metric. The issue is that the pullback metric

is locally defined for each latent subspace Tx (Eq. (3.1)). Therefore, measuring angles

between distant latent subspaces becomes challenging. On the other hand, H follows the

assumption of the Euclidean metric. Consequently, even for distant tangent spaces, angles

can be easily computed using the dot product. In this regard, we measure the similarity

between latent subspaces by exploiting the geodesic distance of their corresponding tangent

spaces. Furthermore, when compared to X , H offers the advantage of being a semantic

space, making it more suitable for measuring semantic similarity.

Similar tangent space implies similar latent subspace In Figure A1, we calculated

the geodesic distance of tangent spaces obtained at different timesteps (or different samples

at same the timestep) and the angle between the original latent direction and parallel

transported direction between them. It is evident that as the geodesic distance decreases,

the amount of distortion during parallel transport also reduces.

Notice that the similarity between tangent spaces implies consistency of latent basis

across timesteps. In Figure A2 (b), we parallel transport the latent vector vi to various

tangent spaces and visualize the outcomes. As expected, when the tangent spaces are
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Figure A2: More examples of tangent spaces across diffusion timesteps. (a) Dis-
tance matrix visualization of tangent space measured by geodesic metric across various
timesteps. (b) Visualization of the result from parallel transport across timesteps. v′ta→tb

i

denotes the latent vector transported from ta to tb. Transported vector significantly devi-
ates from the original vector, as the tangent space grows further apart according to the
distance matrix. For visualization purposes, vi is min-max normalized.

similar, the transported vector v′
i retains the original signal. On the other hand, as we

move to more distant timesteps, where the tangent space is farther apart, v′
i deviates

from the original signal.

F Algorithms

In this section, for reproducibility purposes, we provide the code for two important algo-

rithms. The code is implemented using PyTorch [Paszke et al., 2017].

Jacobian subspace iteration The diffusion model has dimensions that are too large

in both X and H, making the computation of the Jacobian infeasible. To overcome this

challenge, we attempt the Jacobian subspace iteration algorithm to approximate the sin-

gular value of the Jacobian, as proposed in [Haas et al., 2023]. For details, please refer to

Haas et al. [2023].

1 import torch # >= ver 2.0

2

3 def local_encoder_pullback(

4 x, t, get_h , n=50, chunk_size =25, min_iter =10, max_iter =100,

convergence_threshold =1e-4,

5 ):

6 ’’’

7 Args

8 - x : tensor ; latent variable
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9 - t : tensor ; diffusion timestep

10 - get_h : function ; return h given x, t

11 - n ; low -rank approximation dimension

12 - chunk_size ; To avoid OOM error

13 - min_iter (max_iter) ; minimum (maximum) number of iteration

14 - convergence_threshold ; to check convergence of power -method

15 ’’’

16 # set number of chunk to avoid OOM

17 num_chunk = n // chunk_size + 1

18

19 # get dimensions of x space and h space

20 h_shape = get_h(x, t).shape

21 c_i , w_i , h_i = x.size (1), x.size (2), x.size (3)

22 c_o , w_o , h_o = h_shape [1], h_shape [2], h_shape [3]

23

24 # power -method

25 a = torch.tensor (0., device=x.device , dtype=x.dtype)

26 vT = torch.randn(c_i*w_i*h_i , n, device=x.device)

27 vT, _ = torch.linalg.qr(vT)

28 v = vT.T

29 v = v.view(-1, c_i , w_i , h_i)

30

31 for i in range(max_iter):

32 v = v.to(device=x.device , dtype=x.dtype)

33 v_prev = v.detach ().cpu().clone ()

34

35 time_s = time.time()

36 u = []

37 v_buffer = list(v.chunk(num_chunk))

38 for vi in v_buffer:

39 g = lambda a : get_h(x + a*vi , t=t)

40 ui = torch.func.jacfwd(

41 g, argnums=0, has_aux=False , randomness=’error ’

42 )(a)

43 u.append(ui.detach ().cpu().clone())

44 u = torch.cat(u, dim=0)

45 u = u.to(x.device , x.dtype)

46

47 g = lambda x : torch.einsum(
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48 ’b c w h, i c w h -> b’, u, get_h(x, t=t)

49 )

50 v_ = torch.autograd.functional.jacobian(g, x)

51 v_ = v_.view(-1, c_i*w_i*h_i)

52

53 _, s, v = torch.linalg.svd(v_, full_matrices=False)

54 v = v.view(-1, c_i , w_i , h_i)

55 u = u.view(-1, c_o , w_o , h_o)

56

57 convergence = torch.dist(v_prev , v.detach ().cpu()).item()

58 if torch.allclose(v_prev , v.detach ().cpu(), atol=

convergence_threshold) and (i > min_iter):

59 break

60

61 # reshape as a x space , h space vector

62 u, s, vT = u.reshape(-1, c_o*w_o*h_o).T.detach (), s.sqrt().detach (), v.

reshape(-1, c_i*w_i*h_i).detach ()

63 return u, s, vT

Listing 1: Jacobian subspace iteration

Geodesic metric For a detailed discussion on the geodesic metric, please refer to Choi

et al. [2021a] for more information.

1 import torch

2

3 def geodesic_metric(U1 , U2):

4 _, S, _ = torch.linalg.svd(U1.T @ U2)

5 th = torch.acos(S)

6 return th.norm()

Listing 2: Geodesic metric
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G Additional results

G.1 Latent basis

Unconditional latent basis We provide more examples of image editing using the

latent basis. Figure A1, A2, A3, A4 and A5 show that every latent basis produces different

results and editing at timestep T yields coarse changes while 0.6T leads to fine changes.

Stable Diffusion shows a similar trend; 0.7T yields coarse changes while 0.6T leads to fine

changes. The results of T in Stable Diffusion will be covered in the § G.3. Please zoom in

for the best view.

Real image Real image Real image

(Coarse) (Fine)

Figure A1: More examples of image editing using the latent basis in FFHQ.
The editing result using ten vi’ in FFHQ. Each column represents edits made at different
diffusion timesteps (0.6T , 0.8T , and 1T ). Editing at timestep 1T yields coarse changes.
On the other hand, editing at timestep 0.6T leads to fine changes. Please zoom in for the
best view.
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Real image Real image Real image

(Coarse) (Fine)

Figure A2: More examples of image editing using the latent basis in AFHQ.
The editing result using ten vi’ in AFHQ. Each column represents edits made at different
diffusion timesteps (0.6T , 0.8T , and 1T ). Editing at timestep 1T yields coarse changes.
On the other hand, editing at timestep 0.6T leads to fine changes. Please zoom in for the
best view.

Real image Real image Real image

(Coarse) (Fine)

Figure A3: More examples of image editing using the latent basis in Flowers.
The editing result using ten vi’ in Flowers. Each column represents edits made at different
diffusion timesteps (0.6T , 0.8T , and 1T ). Editing at timestep 1T yields coarse changes.
On the other hand, editing at timestep 0.6T leads to fine changes. Please zoom in for the
best view.
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Real image

Figure A4: More examples of image editing using the latent basis with Stable
Diffusion. The editing result using vi’ in Stable diffusion at 0.7T .
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Real image

Figure A5: More examples of image editing using the latent basis with Stable
Diffusion. The editing result using vi’ in Stable diffusion at 0.6T .

latent basis with given prompt As shown in Figure A6, when we condition a specific

prompt, such as “Zebra” or “Chimpanzee”, the entire latent basis corresponds to the

prompt-related attributes. Notably, Changes to “zebra”, which are clear, all show similar

results, but “chimpanzee” show different results. Nevertheless, it is clear that they are all

related to “chimpanzee”.

Real image

w/ “Zebra”

Real image

w/ “Chimpanzee”

Figure A6:More examples of image editing using top-5 latent basis vectors when
given the prompt. Notably, Changes to “zebras”, which are clear, all show similar
results, but “chimpanzees” show different results. Nevertheless, it is clear that it is all
related to “chimpanzees”.
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G.2 Image editing using latent basis vectors discovered with various

prompts

We provide additional examples of image editing using latent basis vectors discovered with

various prompts. Figure A7, A8 show image editing with various pictures and various

prompts. For brevity, we denote the prompt ”a cat dressed as a witch wearing a wizard

hat in a haunted house” by ”[ · · · cat · · ]” in Figure A7.

Real image

“Zebra”

“Ostrich”

“Crying dog”

“Koala”

“Chimpanzee”

“Horse”

[···cat···]
→ [···girl···]

“Eiffel Tower 

Fireworks”

“Eiffel Tower 

Full moon”

“Angelic”

“Demonic”

[···cat···]
→ [···dog···]

Figure A7: More examples of image editing using latent basis vectors discovered
with various prompts.
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Real image

“Emma Watson”

“Sports car”

“Rose”

“Jumping 

giraffe”

“Western 

cowboy”

“Cherry tomato”

Figure A8: More examples of image editing using latent basis vectors discovered
with various prompts.

G.3 More discussion on the editing capability of the latent basis discov-

ered with text conditions

In this subsection, we provide a discussion based on the failure cases of our approach.

Figure A9 shows the results of latent basis found at t = T with Stable diffusion. Unlike

unconditional models, the directions found at t = T exhibit rapid and drastic unexpected

changes. However, landscape photos, which do not contain a main object, exhibited desired

editing effects at any timesteps. Moreover, in the case of landscapes, it is conjectured that

the latent basis plays a significant role in representing patterns and textures. Analyzing

the landscape images generated by Stable diffusion would be an interesting topic.

Figure A10 presents examples of failure cases in our image editing using latent basis

vectors discovered with various prompts. (a) When using pose or action as a prompt, there

are instances where the identity is not preserved. (b) When the shape of the target subject

differs significantly from the source image, the results are often unsatisfactory. (c) There

are cases where the preservation of the background is not achieved. (d) It is challenging

to make significant changes to the entire image.

Regarding the reasons for these failure cases, we emphasize two factors. First, we
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manipulate in the X . The result in Figure A10 (a) implies that X is not a space where

disentanglement for identity is achieved effectively. On the other hand, in H, there are

results indicating successful preservation of identity [Kwon et al., 2022, Haas et al., 2023].

Investigating the disentanglement capability of X and any other distinguishing features it

may have compared to H would be an interesting future research topic.

Secondly, we perform manipulation by adding and subtracting the ”signal” that the

model pays attention to in xt. Here, The signal is captured from the current input xt,

which limits the deviation from the original form. Therefore, when there is a substantial

difference in shape, such as transforming a giraffe into a tiger, the results may not be

satisfactory. (Figure A10 (b)) When we utilize text conditions, the latent basis aligns with

the text information. This leads to not capturing background information, resulting in

changes in the background when manipulated. It is also an interesting research topic to

capture signals related to the background. (Figure A10 (c)) Since the model focuses on

finer features as t approaches 0, if broad changes are desired, manipulation should be

performed at t = T . However, manipulation at t = T is unstable. Deep analysis of xt at

t = T in Stable diffusion is also an intriguing research topic. (Figure A10 (d))

Despite these limitations, we have successfully achieved direct manipulation in the

latent space xt at a single timestep, which, to our knowledge, is the first of its kind.

Through this, we provide insights into the model and contribute to the understanding of

the latent space, hopefully benefiting the diffusion community.
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Real image

Figure A9: Failure cases of image editing using the latent basis at 1T . The editing
result using vi’ in Stable diffusion at 1T .

Real image

“Jumping dog”

“Tiger”

“Guitar”

“Snowy”

(a)

(b)

(c)

(d)

Figure A10: Failure cases of using prompts. (a) When using pose or action as a prompt,
there are instances where the identity is not preserved. (b) When the shape of the target
subject differs significantly from the source image, the results are often unsatisfactory.
(c) There are cases where the preservation of the background is not achieved. (d) It is
challenging to make significant changes to the entire image.
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