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Abstract 

 
Hong, Eunsoo 

Department of Linguistics 

  Graduate School 

Seoul National University 

L2 pronunciation is shaped by the interaction of two sound systems, which 

makes their identity more complex than a single phoneme category. This 

non-categorical nature demands assessment at a level finer than 

phonemes. The corresponding sub-segmental inspection, however, is 

highly labor-intensive, which led to the advent of unsupervised error 

pattern discovery literature. Nevertheless, previous works fall short of 

using the supervised and phoneme-prescribed feature, phonetic 

posterior-gram (PPG) to unsupervisedly discover variation patterns 

beyond phonemes. Alternatively, this work adopts the Wav2Vec2.0 code 

vector, a self-supervised learning (SSL) representation acquired through 

an unsupervised and non-prescriptive process. While maintaining the 

previous workflow, we aim to understand how well this feature explains 

sub-segmental variations present in a single segmental error.  

To explore the range of variations code vectors capture, we first 

verify their L1 to L2 discernability via frequency-based usage comparison. 

From the L1(CMU ARTIC) and L2 (L2 ARCTIC) single-speaker corpora 

sharing the same reading prompt, probabilities of featural occurrences 

were constructed into vectors per speaker. These vectors were then 

clustered to confirm diverging membership. We further dissect within L2 

discernment by analyzing patterns among segmentally identical examples. 

With the model fine-tuned with L1 TIMIT, segmental error detection is 

run on L2 NIA037 to select error samples submitted for sub-segmental 
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analysis. For each error type, code vector sequences of corresponding 

sound frames were extracted from the pre-trained model by referencing 

the forced-alignment time stamp. We then derived dominant patterns 

among sequences using the steps of pruning, abstraction, and counting. 

These patterns are ultimately compared against L1 reference material, 

likewise created with TIMIT, to interpret their phonetic attribute and 

relationship with other sub-segmental patterns. Namely, conditional 

probabilities of phonemes per feature and clustering results among all 

available raw code vectors in L1 were used for each purpose.  

The comparative analysis proved that the code vector usage of L1 

and L2 speakers is different with frequency vectors well separated into 

two clusters on account of nativeness. This difference is marked by the 

decreasing inventory size in proportion to L2 proficiency, which reflects 

difficulties in articulating sound units defined in L1 standards. Moreover, 

sub-segmental patterns possessed the following three common traits that 

manifested linguistic relevancy, 1) The patterns formed an error 

continuum along the assumed degree of changed articulatory value, 

whereby 2) the intermediary typology was ambivalent by assuming 

opposite values in two codebooks. The gradient positioning highlights the 

beyond-segmental scope of variation, while the conflicting combination is 

the literal instantiation of non-categoricity. In line with this trait being an 

L2 attribute, intermediate patterns were also the least observed in the L1 

reference data. Lastly, 3) pattern distribution skewed towards the most 

approximate sound in the learner’s L1, with more foreign targets incurring 

greater dispersion. This asymmetry shows that variation at its core occurs 

due to the L1 phonetic transfer. In the end, we claim that code vectors can 

be an alternative means to evaluate pronunciation gradience, with abilities 

to quantify the between-categorical position of errors.  
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Chapter 1. Introduction 
 

1.1. Study Background 
 

The idea of non-categoricity in L2 error has been long proposed, as the 

effect of L1 phonetic transfer. Learners' native speech operates on a 

different sound system from the target education language. As the two 

sound systems mutually participate in articulation, they render unique 

variants that are often hard to strictly categorize through a canonical 

phoneme grid. In other words, phonetic realizations of L2 span over the 

boundaries of two or more canonically defined phonemes. This between-

categorical characteristic can be best described as existing in a continuum, 

demanding evaluation in gradience.  

In contrast to this need for granular, sub-segmental feedback, 

current existing technologies in the Computer-Aided Pronunciation 

Training (CAPT) system primarily rely on segmental judgment. Evaluation 

metrics utilize phoneme-level mismatch information, namely substitution, 

deletion, and insertion. Such practice cannot fully consider the gradient 

nature of errors. The case of substitution, in particular, will run into the 

problem of misdiagnosis after misrepresenting the between-categorical 

attribute with a single phoneme category. Cantonese L2 English speakers, 

for instance, may utter a variation of [n] resembling two L1 phonemes [l] 

and [n], following their recent sound merger at the syllable initial position 

(Ng, 2017). Assessing the sound as neither of the approximate phonemes 

would mirror the true nature of pronunciation (Li et al. 2020). The most 

direct solution would be to incorporate expert knowledge to sub-

categorize the subtleties in acoustic mismatch. While this may amount to 

the most full-fledged qualitative feedback, sub-segmental expert tagging 



 

 ２ 

entails significant time and labor costs. At best, the supervised discovery 

of non-categorical error patterns is an impractical route, especially for 

low-resource languages receiving less attention in academia. 

The conflicting need between granularity and practical 

implementation has been settled by a line of research attempting to 

automate the sub-segmental error labeling process (Wang and Lee 2013, 

2015; Li et al. 2018; Li et al. 2020; Mao et al. 2018). These works 

expanded the ideas in acoustic pattern discovery to detect non-categorical 

patterns in the L2 error continuum. Acoustic pattern discovery is a field of 

research in signal processing that aims to discover recurring signals that 

can be used as a manual label substitute. By comparing the utterance pair 

within the data, acoustic sequences of high similarity values are recorded 

as lexically meaningful units. Likewise, L2 error patterns form repeating 

signals induced by sound system interaction. Thus, the pattern discovery 

strategy is well applicable to discovering granular variations present in 

coarsely labeled phonemes. Previous studies also commonly used phonetic 

posterior-gram (PPG) generated from MFCC phoneme label-trained 

neural networks as an examining feature. PPG is a phoneme probability 

output from the supervised model training, reflecting the final decision 

boundaries in speech recognition. Thus, the attributes of sound are 

identified by its association rate with individual phonemes. Ultimately, 

PPGs were clustered to measure similarity and derive overlapping patterns.  

The current research is prompted by the shortcomings of PPGs. 

For one, they require supervised training of the model to extract the 

feature from. Studies have shown that the quality and extensiveness of 

data used for model training affect the reliability of the PPG feature (Li et 

al. 2020), which would also eventually affect pattern analysis outcomes. 

With a lack of quality labeled data to train instrumental models, one cannot 
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be guaranteed a representative description of sound. This partially runs 

against the purpose of unsupervised error pattern discovery if the goal is 

to forgo the need for manual annotation. It further implies that the 

methodology would be hard to apply to L2 speech of low-resourced 

language that is often short of labeled L1 data in the first place. More 

fundamentally, however, phonetic posterior-grams are phoneme-

circumscribed representations of sound. It is self-contradictory to 

describe a pattern beyond phonemes with the same tool that confines the 

judgments that we so long to escape from. What we need instead is a 

descriptive measure independent of phonemic prescription. 

Taking these limitations into account, this paper suggests Self-

Supervised Learning (SSL) representation, Wav2Vec2.0 code vector, as 

an alternative feature to measure non-categoricity. Unlike PPG, 

representation learning in SSL does not accompany label training. The 

learned representations are also independent of phonemic classification. 

After all, SSL is modeled after human cognitive faculty, whereby the audio 

data alone suffices to acquire languages as an infant (Liu et al. 2022). In 

the absence of explicit supervised labels, infants self-discover operating 

units to represent sound, inferring from the data's structural properties. 

SSL follows this bottom-up fashion of creating pseudo-labels to 

understand the model input, free from the top-down phonemic stipulation. 

On top of these comparative advantages, the code vector of Wav2Vec2.0 

was chosen for its verified phonetic relevance in model documentation 

(Baevski et al. 2020; Conneau et al. 2020) and retrievable nature by an 

entirely model-internal learning process.  

Meanwhile, the general idea of adopting SSL representation is 

conceptually motivated by the procedural resemblance of pattern 

discovery in representation learning. Acoustic pattern discovery and audio 
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SSL share the common goal of acquiring a lexical inventory that classifies 

and expresses speech content. As noted, representations self-discovered 

by the model are the basic operating units summarizing inherent properties 

of the input data. In a similar vein, pattern discovery abstracts 

representational means from structural information of recurring signals. 

The shared principle further implies that using code vectors is about 

revisiting the error pattern discovery task with the most updated 

technology. Above mentioned prior works took place before the recent 

advancement of End-to-End (E2E) models, whose one-step nature of 

handling the raw input fostered immense progress in representation 

learning. While pattern discovery was first introduced to substitute 

transcription for statistical models in the earlier days, E2E approaches 

currently lead the SOTA performance, Thus, we may view code vector 

representation as an advanced rendition of the discovered pattern. 

 

1.2. Purpose of Research 
 

While implementing code vectors for the error pattern discovery task, this 

work first interrogates the nuanced understanding of L2 variation in the 

feature. We will then use it to probe the present typologies in segmentally 

defined substitution errors. Each goal is associated with the following two 

research questions and corresponding methodological outlines. 

Can code vector capture L2 variation differently from the native 

canonical sound? The sound structural knowledge of self-taught acoustic 

units extends beyond the familiarity of the data it was trained on. XLSR, 

the multilingual variant of Wa2Vec2.0, is reported to benefit from cross-

lingually generalizable representation learned during the pre-training on 

distant languages. Simultaneously, the versatility of the representation is 



 

 ５ 

balanced out by inter-language discernability. Frequency probing 

(Conneau et al. 2020) reveals that the code word distribution was more 

similar between close languages than languages of different families. In the 

context of L2 encoding, it is first reasonable to assume that the same set 

of representations can embody the sounds of L2 while being pre-trained 

on L1, as the L2 from L1 acoustic divergence is far less than that between 

different languages. Nevertheless, it is of the question whether they will 

simultaneously be equipped with nativeness-based discernment. In other 

words, would the model allocate representations differently for L1 and L2 

speech? To verify this, the aforementioned language-similarity probing 

was extended to within-language L1 to L2 similarity probing.  

How are gradient characteristics in pronunciation deviation 

encoded in code vectors? The previous research question tests the validity 

of the feature in capturing L2 variation. If the code vector indeed 

possesses L2 discernibility, how would it capture non-categorical 

characteristics? What aspects of the feature’s attributes are utilized to 

encode this trait, and can we quantify gradience on a scale reflecting 

acoustic distance among sub-segmental patterns? Answering these 

questions was in line with re-evaluating the troubling case of segmental 

substitution diagnosis. As the goal is to substantialize variations within a 

single segmental error, we first begin with segmental detection to catalog 

a list of errors to analyze. From here, temporal sequences pertaining to 

each error segment were analyzed in an unsupervised manner. Alongside 

frequency-based similarity probing, core methodologies of previous 

literature and linguistic probing in the model documentation were 

implemented. The cluster sequence analysis (CSA) in Li et al. (2018) was 

first applied to internally derive dominant pattern typologies. To ultimately 

confirm their separability and attributes, external reference was taken 
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from L1. Namely, KMeans clustering results of raw code vectors were 

used to check relationships among discovered sub-segmental patterns, 

whereas the co-occurrence-based phonetic probing in Baevski et al. 

(2020) was used for deciphering their acoustic identities. KMeans 

clustering was a common similarity measure to determine error patterns in 

Wang & Lee(2013, 2015), Li et al. (2018), and Mao et al. (2018).  

 

The remaining chapters are organized as follows. Chapter 2 will give an 

overview of the related areas of research. Since this work is inspired by 

the procedural resemblance of representation learning to pattern discovery, 

the subtopics are divided into two. The first is the outline of acoustic 

pattern discovery and its previous application in the field of CAPT. Second, 

basic principles of audio self-supervised learning will be covered, focusing 

on the founding criteria of the learned representations. Here, we will 

introduce Wav2Vec2.0 and its code vector: the SSL model and its 

representation in usage. Chapter 3 will explain the proposed methodology, 

centering around the two research questions given earlier. Experimental 

details on the choice of data and analysis tools will also be expounded. 

Chapter 4 will lay out the results of the two experiments and summarize 

their main findings. Subsequently, Chapter 5 will discuss their implications 

and bring forth other noteworthy observations and how they relate to 

linguistic understandings of existing literature. Finally, chapter 6 will 

summarize the main contributions of this work. 
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Chapter 2. Related Works 
 

2.1. Acoustic Pattern Discovery 
 

Earliest works in acoustic pattern discovery coincide with the task of UTD 

(Unsupervised Term Discovery). Their objective was to automatically 

discover words and phrases from raw waveform to complement the zero-

resource setting. In the absence of labels, the framework self-discovered 

present lexical information through repetitive sequences spotted in 

structural comparison. The comparisons centered around measuring 

similarities and were either carried out with raw acoustic or model-

processed features.  

 For raw acoustics, MFCC features were primarily used, as was the 

case for the most foundational literature, Park & Glass (2007). The 

introduced methodology consisted of two steps. It first calculated the warp 

path between two utterance-level MFCC sequences using the dynamic 

time warping (DTW) technique. Within alignment, the goal is to spot areas 

of lower distortion, which is synonymous with higher correspondence and 

similarity. Nonetheless, grossly comparing utterances with varying lengths 

and contents may be inadequate. Thus, a temporal constraint is introduced 

to limit the global alignment to a local level. Equation 1 stipulates that 

lengths of pairs participating in alignment cannot differ more than R. 

Consequently, the distortion can only reach ahead of time by R. It also 

brings the starting point of alignment under regulation (equation2) to 

create a natural division of the search grid.  

Equation1 Equation2 

 

Figure 1 illustrates the temporally constrained local alignments within a 
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single global alignment pair. This local alignment-obtaining procedure is 

referred to as segmental DTW. Within each local region, warp paths 

satisfying length-constrained minimum average (LCMA) are submitted to 

the second step. The length here is controlled to reflect the desired 

granularity of discovered patterns. The left graph of Figure 2 illustrates 

the distribution of selected warp paths across the audio stream.  

 

Figure1                            Figure 2 

In the second stage, these dispersed entities are united on a similarity 

basis to ultimately form lexical units. The warp path is first transformed 

into an adjacency graph that encodes time and distortion information in 

nodes and edges. Time indices of peak similarity form nodes, while the 

edge weight denotes the average distortion rate among common 

alignments. Finally, clustering is performed on an adjacency graph that 

encompasses all utterances. With all edges initially removed, nodes are 

iteratively merged in a bottom-up fashion to maximize within-cluster 

edge weight. The resulting clusters are taken as an inventory of patterns. 

This is the baseline architecture of unsupervised term discovery, 

reiterated throughout the follow-up works.  

As noted earlier, the main difference in subsequent literature lies 

in the usage of advanced model-processed features. Since raw acoustic 

features like MFCC are susceptible to signal variation, intermediary 

features have been alternatively introduced. These range from acoustic 

embeddings in a fixed dimension (Kamper et al. 2016) to direct 

comparison of Gaussian mixture model (GMM) trained per phoneme data 

(Lee et al. 2015). Most prominently, posterior-grams extracted from 
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models initially trained with raw features were experimented with. The 

immediate follow-up work of Park & Glass (2007), for instance, 

implemented the Gaussian posterior feature as a speaker-robust 

alternative to the same pattern discovery pipeline. Posterior-gram is a 

probability vector over the designated model output categories. Namely, 

the kth dimension of the posterior vector will notate the probability of the 

output's association with the kth category, which in this case was the 

Gaussian component. Posterior-gram has been favored for its normalizing 

property acquired from robust model training. That is, models trained with 

variable inputs can provide normalization to their processed features. 

Aside from GMM, other examples of posterior-gram extraction models 

include Dirichlet Process GMM (DPGMM) (Ravi et al. 2021), Deep Belief 

Network (DBN) (Lee et al. 2013), Acoustic Phonemic Model (APM)(Mao 

et al. 2018), MLP (Wang & Lee 2015), DNN (Li et al. 2018), and phonetic 

segment classifier (Li et al. 2020). The latter 4 models were specifically 

applied in works of L2 error pattern discovery, as their prescribed 

categories are phonemic. This means that the feature is mandatorily 

supervised since categories of probability assignment are predetermined.  

In contrast, the number of Gaussian components for GMM 

posterior can either be prescribed as in Zhang et al. (2010) or be 

automatically decided using a minimal description length (MDL) principle 

(Chan et al. 2011). In DPGMM, the number of constitutive clusters is 

determined through a stick-breaking process, whereby mixing 

probabilities representing cluster contribution rate is iteratively readjusted. 

In addition to using DPGMM, Ravi et al. (2021) aggregated the frame-

level posteriors to a phoneme level, before subjecting it to a similarity 

measurement. The phoneme boundaries are determined by referring to the 

diagonal most faithful to the self-correlation in the affinity matrix. 
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Subsequently, similarities of phoneme-level posteriors are measured with 

3-Neighbor Depth-First Search (3-NDFS) traversal technique which 

lays out a search route of patterns. While 3-NDFS may differ from 

adjacency graph clustering, both methodologies are motivated by 

similarity-based pattern matching. Discussions on phonetic posterior-

grams will be deferred to the following section as they specifically concern 

L2 error pattern discovery.  

Besides posterior-grams, Chan et al. (2011) used the model itself 

to express the signal trajectory of the utterance. Hidden Markov Model 

(HMM) was constructed per GMM cluster, which took hierarchically 

clustered MFCC as input. The choice of HMM stems from its capability to 

model trajectory on top of individual states. Since each GMM cluster 

represents segments of similar acoustic properties, this feature is referred 

to as Acoustic Segment HMM (ASHMM). ASHMM behaves as a query, a 

barometer for comparison in pattern matching. Since it is formed with data 

that has been clustered twice, it is highly similarity-refined. Thus, 

although the process does not involve a direct pairwise utterance 

comparison, the nested similarity measures included in query formation 

align with the principal methodology of Park & Glass (2007).  

 

2.2 Unsupervised Error Pattern Discovery 
 

As noted, the backbone of the pattern discovery architecture comes down 

to spotting the recurring signals that can serve as a label substitute. Error 

patterns of L2 speakers share similar traits with such targets, as 

pronunciation deviation resulting from L1 phonetic transfer forms 

repeating patterns with linguistic groundings. Given this parallel, acoustic 

pattern discovery has been applied to the task of mispronunciation 
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detection and diagnosis (MDD) in an unsupervised fashion. The 

unsupervised nature was used to the advantage of identifying granular 

details that often go unnoticed in simple phoneme-wise detection-based 

comparisons. However, while all the following works strive for a nuanced 

understanding, they differ in whether the end goal is a categorical 

diagnosis or a non-categorical description.  

 The first four works concern the former, named hereafter as 

categorical error pattern discovery. The research focus of this thread lies 

in either constructing a binary decision boundary for evaluation (Lee et al. 

2012, 2013) or phonemically decoding an error pattern (Lee et al. 2015, 

2016). The two also differ in the locus of comparison. 

To begin with, Lee et al. (2012) and Lee et al. (2013) made a 

cross-speaker comparison with L1 data to derive the peculiarity of non-

native speech. The degree of misalignment between native teacher and 

non-native student utterances is the gauging tool for accuracy evaluation. 

This misalignment information is derived from the phone-level and word-

level features extracted from the relationship matrices. For the phone 

level, the distance matrix between corresponding L1 and L2 speech was 

considered. For word level, two self-similarity matrices of the 

corresponding speech were compared. Features were the estimate of 

distance and alignment path information in each comparative matrix. Since 

these linguistic features operate on the acoustic distance, they also would 

have encompassed a gradient understanding of error patterns. 

Nevertheless, such information is lost in the face of binary classification 

training of soft vector machines (SVM). Meanwhile, the initial alignment 

features differ in Lee et al. (2012) and Lee et al. (2013). The former 

study uses MFCC and Gaussian posterior-grams, while the follow-up 

newly introduces the phonetic posterior-gram of DBN to the error pattern 
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discovery literature. DBN shares foundational traits with self-supervised 

learning. It follows the pre-training and fine-tuning scheme to minimize 

the required labeled data. Accordingly, one goal of the experiment was to 

test how robust mispronunciation detection is along a shift in the amount of 

labeled data provided during fine-tuning. Experimental results revealed 

that system performance remained consistent with as little as one-third of 

the speech annotation. This foreshadows promising results for error 

pattern discovery mediated by completely unsupervised units in our 

current work. One difference to be considered for this parallel viewing is 

that DBN simply learns data distribution layer-by-layer, whereas SSL 

takes a more foundational approach by learning underlying representations. 

 On the other hand, Lee et al. (2015) conducted an internal 

inspection of non-native data to locate patterns unique to each learner.  

Single-speaker data was analyzed for the size of the variations is a lot 

tractable at an individual level. They first gathered sound segments for 

every canonical phoneme referencing the boundaries detected by forced 

alignment. Next, GMM was trained for each phoneme class, which became 

the basis of the comparison. As previously noted, these Gaussian models 

were directly used as features to detect confusable phoneme pairs. The 

initial global comparison was specified at a local level by reinterpreting 

segment-level sound as triphones. Frames were divided into three regions 

that were averaged and then concatenated. Among global confusion pairs 

that fell below the local distance threshold, patterns were subcategorized 

according to their triphone identity. Nonetheless, such attempts to derive 

nuanced sub-segmental understanding were only reduced to segmental 

interpretation. Error patterns were ultimately incorporated into the 

Extended Recognition Network (ERN) that used greedy decoding, allowing 

only single triphone interpretation. The follow-up work ,Lee et al. (2016), 
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even abandoned using Gaussian posteriors in favor of reverting to the 

MFCC feature-based DTW approach. Here, the matching process 

culminated in refining the pattern with ERN-edited forced alignment. More 

than identifying pattern traits reflecting acoustic distance, these works 

focused on retrieving the accurate phoneme label to represent them.  

 The next five works concern uncovering non-categorical patterns 

and are thus the direct precedent of the current research. Unlike the 

above-mentioned frameworks, the end goal of these studies is to spot 

characteristics of L2 pronunciation that cannot be expressed by a defined 

set of phonemes. This amounts to the task of discovering the unit of 

expression rather than utilizing the predefined unit for elaborating 

variation details as in Lee et al. (2015) and Lee et al. (2016). While Wang 

& Lee (2015) did conduct work on supervised detection on top of 

unsupervised discovery, classification criteria were sub-phonemic. Using 

a catalog of patterns belonging to a single canonical phoneme, they 

constructed a classification pipeline with acoustic models and hierarchal 

classifiers specialized for each phoneme. Hence, the detection output 

provided granular information beyond the subsuming phonemic category. 

This is clearly different from the greedy decoding of ERN that discards the 

suboptimal variation trajectories. The following non-categorical 

approaches rather collect these sound routes and analyze them to 

complete the gradience puzzle. When uncovering these paths in an 

unsupervised setting, one can either limit the scope of the analysis to a 

single phoneme or the whole utterance. 

 At the utterance level, Mao et al. (2018) and Li et al. (2020) used 

PPGs of the acoustic phonemic model (APM) and phonetic segment 

classifier to discover non-categorical phonemes. Both works analyzed the 

shape of the posterior vectors to check how many phonemes a given sound 
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frame is associated with. If more than one peak was observed among 

probability distribution, the associated sound was considered non-

categorical, with its characteristics defined by peaking phonemes. These 

non-categorical sounds were notated with subjects of prominent 

posteriors such as eh_ey and l_n. Ultimately, non-categorical patterns 

were used to extend the single-category native phoneme set. Mao et al. 

(2018) initially used state-level posterior-grams of APM that were 

averaged at a phoneme level. The segment-wise PPG was put through 

KMeans clustering, whose centroids were the final analyzing component. 

APM was a deep neural network mutually trained with MFCC and phoneme 

sequences, including the preceding and succeeding contexts. Because their 

output was state-based, Li et al. (2020) devised a segmental model to 

create PPG demanding less intermediary processing. It also took a manual 

thresholding approach to analyze individual features instead of relying on 

subsuming analysis per centroid. 

 

Figure 3 proposed framework of Mao et al. (2018) 

 

 Meanwhile, phoneme-based PPG misses the state-level 

transitory details. To account for variation within the given categorical 

phoneme, either sounds associated with the same phoneme can be 

analyzed at a time (Wang and Lee 2013, 2015) or the utterance level 

analysis can be applied to a segmental scope (Li et al. 2018). In the former 

case, the restructuring scheme used for fixed dimension mapping in Ravi 

et al. (2020) and triphone specification in Lee et al. (2015) iterates. First, 
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frame-level features composing a phoneme segment get hierarchically 

clustered to form a similarity tree. By thresholding cut-off points in the 

tree hierarchy, elements of separated subtrees are averaged and 

concatenated to form a single vector per segment. Segmental feature 

created in this manner encodes sub-segmental identities. Thus, they are 

used to discover sub-segmental error patterns using similarity measures 

of clustering. The clustering algorithms in use were KMeans and GMM 

with the MDL principle. PPG of these studies was also unique in that it 

used a mutual phoneme set of multiple languages. The training corpora of 

MLP, the PPG extraction model, was multilingual. Hence, the posterior 

vectors were named UPP (Universal Phoneme Posterior-gram). 

 Figure 4 framework of Wang & Lee(2015) 

 

 On the other hand, Li et al. (2018) use frame-level clustering of 

the entire utterances to analyze sub-segmental transitory details. The 

model for estimating posterior probability was a simple DNN, leading to a 

frame-wise output. Here, state-based PPGs are directly put through 

KMeans clustering without the averaging step. Cluster-ID sequences were 

recorded per phoneme segment, whose boundary was determined by 

forced alignment. Using the cluster sequence analysis(CSA) algorithm, 

they selected the most representative patterns out of all observed cluster 

ID sequences pertained to each phoneme. The current research adopts this 
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sequence analysis method for analyzing sub-segmental detail represented 

by code vectors. Thus, the exact details of the CSA algorithm will be 

further expounded in the methodology chapter. 

 In the end, existing works in non-categorical pattern discovery 

commonly use phonetic posterior-gram, a supervised model-processed 

feature from MFCC raw acoustic input. The models ranged from MLP 

(Wang & Lee. 2013, 2015), simple DNN (Li et al. 2018) to APM (Mao et 

al. 2018), producing a frame-level output. Li et al. (2020) constructed a 

segment-level classifier to reduce the noise of intermediary processing. 

Methodologies of pattern discovery such as reorganizing sub-segmental 

realizations and clustering for similarity measure were adopted. 

Nevertheless, they were not able to entirely escape the categorical 

circumscription when using phoneme category-based probability vectors. 

Moreover, the extraction models require supervised labels, which runs 

against the purpose of making up for L2 annotation deficiency. These PPG 

limitations were the driving motivation behind this research. 

 

2.3. Audio Self-Supervised Learning 
 

Computational modeling of infant language learning was another long-

standing perspective and inspiration behind developing an unsupervised 

framework. The absence of explicit supervision resembles the learning 

condition of the newborn, where one has to pick up lexical cues from the 

statistical property of speech (Park and Glass 2007). Acoustic pattern 

discovery was, in fact, initially developed by expanding this idea of human 

cognition. Trust in the self-sufficiency of audio further led to the 

assumption that models can acquire lexical identities as representational 

units. Hereafter, audio self-supervised learning was born. Its working 

hypothesis is that representational units acquired via self-supervision are 
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generalizable enough to correspond with prescribed labels in the 

subsequent downstream tasks. That is, knowledge learned performing the 

preceding upstream tasks may be deduced to match the specificity of the 

downstream context. Given such universal property, pseudo labels created 

in upstream tasks have been shown to share relationships with the 

language-agonistic phonetic conception of sounds i.e., phonemes. With this 

understanding, this work aims to exploit the quasi-phoneme status of 

self-taught labels to describe sound, uninhibited by categorizations.  

Aside from generalizability, the discriminability of the learned 

representation matters to guarantee its versatility to various downstream 

tasks. One way to reinforce the distinctiveness of individual representation 

is by incorporating contrastive learning objectives. If generalization comes 

from detecting a correlation between different views of the same object, 

contrastive learning boils down to learning decorrelation among views of 

different objects. At its core, the underlying task of SSL is that of a 

prediction. Representation of the input data is learned while inferring how 

the model should express probable output. If the locus of the target output 

is sequential from the last input, the objective is autoregressive predictive 

coding (APC), while masked predictive coding (MPC) estimates the output 

of the masked regions. The umbrella terminology encompassing two 

concepts is contrastive predictive coding (CPC) as it forms the foundation 

of numerous audio SSL models including Wav2Vec2.0. Accordingly, the 

algorithms strive for contrast-based prediction, leading to a composite 

modeling goal that is both generative and discriminative. Generating model 

prediction is based on the representative knowledge acquired by 

maximizing similarity between positive samples, whereas discrimination is 

based on maximizing negative sample distances. If more weight is put on 

the prediction, the resulting feature will be more faithful to capturing 
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general traits of the data. Conversely, a higher emphasis on discrimination 

is more fitting to train features used for manifesting salient outcomes.  

 

A Wav2Vec2.0 
 

Concerning the dual nature of the CPC training objective, featural 

representations of Wav2Vec can be interpreted as being either more 

comprehensive or goal-specific. This work posits quantized discrete latent 

as the former and the context vector as the latter. But before explicating 

details of features in Wav2Vec2.0, it is important to take an overview of its 

predecessors. 

  

       Figure 5  Wav2Vec                 Figure 6  VQ-Wav2Vec 

 

Figure 7 Wav2Vec2.0 

 

We begin with Wav2Vec, the earliest variant of the model. The 

present architecture is composed of two CNN layers with different 

specialties. The first layer captures immediate acoustic information, 

whereas the second layer concerns global context information aggregated 

up to the present timestamp. As contrastive learning is carried out in an 

auto-regressive manner, the training objective is APC. Negative samples 
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are randomly selected from hidden representations of different audio files 

within the training batch. VQ-Wav2Vec is the next generation of the model 

and mostly follows the same layout. The sole difference lies in the 

intervening quantization module between the encoder and context network. 

The quantization module discretizes the latent representation Z to prep its 

application for discrete text models such as BERT. This task is either 

executed with Gumbel SoftMax or online k-means clustering to convert 

continuous speech waves into discrete one-hot vectors.  

Wav2Vec2.0 utilizes the same Gumbel SoftMax tactic. It differs 

from VQ-Wav2Vec, however, in that the input of the context network does 

not undergo quantization. It rather uses a continuous context vector 

trained with a bidirectional MPC objective. Unlike its predecessors, the 

model predicts the masked portion of latent representations concerning its 

surrounding context. Quantization is associated with forming the target 

label for supervision only. Hence, its parameters are fixed during fine-

tuning, since the explicit labels are manually provided. From here, we 

derive the rationale for choosing the discretized code vectors for viewing 

unprescribed characteristics of sound. While context vectors engage in 

fine-tuning, they are concerned with substantializing sounds with 

prescribed labels. In other words, they are goal-specific representations 

attached to the downstream context. In contrast, quantized vectors are 

comprehensive representations of sound agnostic to prescribed utilities at 

the interface. The discreteness also makes it more tractable than 

continuous context vectors. Moreover, we deemed Wav2Vec2.0 discrete 

latent as a robust representation with its encouraged efficacy in diversity 

loss. Another technical advancement of Wav2Vec2.0 is the inclusion of 

codebook diversity loss, which prevents mode collapse in code word usage. 

The loss function in Equation 8 shows how diversity loss Ld encourages 
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the equal usage of every code word. This fair usage complements the 

contrastive loss Lm that aims to maximize the similarity between context 

and quantized vector of the same time indices.  

 

Figure 8 Gumbel SoftMax               Equation 8 

 

The quantized target signal is created by choosing the representative code 

word entries from multiple codebooks and concatenating them. After 

multiplying latent features with the quantization matrix, values of the 

output logits are compared against V code words in G codebooks. The 

most approximate code word is then selected from each codebook by one-

hot encoding the continuous values. Gumbel SoftMax mediates the discrete 

code words and continuous latent by formulating a probability that is 

differentiable enough for backpropagation yet can be approximated to the 

discrete unit with the added noise n and SoftMax transformation. Pg,v of 

Equation 8 denotes this probability of choosing vth code word from gth 

codebook, given the logit value lg,v. Both VQ-Wav-2Vec and Wav2Vec2.0 

use 2 codebooks containing 320 code words each. The learning takes place 

entirely within the model architecture, which makes code vectors 

retrievable. This contrasts with other SSL models like HuBERT (HSU et al. 

2021), where labels from offline clustering are inaccessible. 

 

B Phonetic Relevance of the Codebook 
 

To recap, code vectors are the encoding sound unit of Wav2Vec2.0, 
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forming the positive and negative samples of the MPC objective. They are 

created through product quantization that discretizes constitutive sub-

vectors with different code words. Under careful regulation of diversity 

loss, code vectors are proven to bear phonetic relevance. The first receipt 

comes from the original model documentation of Wav2Vec2.0 (Baevski et 

al. 2020). The plotted conditional probability of human-annotated 

phonemes per code vector shows each featural inventory having a 

specialized phoneme identity. It is worthwhile to note, however, that the 

reverse does not hold. A single phoneme is not monopolized by a single 

quantization but is rather represented by multiple varieties. The 

correspondence asymmetry implies the diverse range of information 

withheld in the confinement of phonemes. Moreover, it shows that code 

vectors are more granular units of sound that encode within-phoneme 

variations. Different vectors corresponding to the same phoneme may each 

instantiate unique variational aspects. This reaffirms the suitability of code 

vectors for detailed sub-segmental analysis. 

 

Figure 9 analysis of discrete latent speech representation in Wav2Vec2.0 

 

 The next evidence comes from the multilingual pre-trained 

version of Wav2Vec2.0. In model documentation of XLSR53, code word 

frequencies among the model's pre-trained language data were 

investigated (Conneau et al. 2020). Since quantized representations are 

the acoustic unit discovered from the input training data, it is expected for 

code words to encode languages of pre-trained data in a linguistically 
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differentiable manner. Accordingly, usage distributions coincided with 

language similarity. Figure 10 plots frequency vectors accounting for 

available discrete tokens (V*G) per language. Vectors of close languages 

are closer to each other than distant language pairs. Clustering confirms 

this trend, as the same-colored cluster each represents a language family. 

 

Figure 10 visualization of shared discrete latent speech in XLSR53 

 

Cámbara et al. (2022) is a work that exploits such phonetic relevancy for 

efficiently initializing a keyword-spotting perceiver. The proposed 

perceiver architecture performs cross-attention between input data and 

latent bottleneck at initialization. When codebooks are transferred as 

weights to this bottleneck (W2V2), the quality of the model improves 

compared with using a random matrix (BASE). This improvement is 

fostered by imparted phonetic information from the codebook latent. 

  

Figure 11 keyword spotting perceiver in Cámbara et al. (2022) 

 

Figure 12 test accuracy of different initialization settings 
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Chapter 3. Methodology 
 

 

Figure 13 outlines the overall framework of this research. It is composed of 

two stages each accounting for previous research questions: 1) Can the 

code vector capture L2 variation differently from L1? and if so, 2) How may 

it encode gradient characteristics of error beyond segmental identification? 

The first stage concerns affirming the eligibility of the featural usage. To 

use code vectors for describing L2 pronunciations, they must possess L2 

discernability, which could be proved through the difference in used 

inventory between L1 and L2 speech. Thus, the preliminary inventory 

probing precedes the main research focus on identifying non-categorical 

patterns. The goal of pattern discovery is to record the variance existing 

within the same phoneme category when a segmental identification cannot 

do justice. Such were the cases of misdiagnosis in L2 substitution errors. 

To concentrate our effort on these troubling examples, conventional MDD 

methodology was used to compile a list of segmental substitutions submitted 

for the sub-segmental analysis.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure13 overall framework of this research 
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Segmental detection itself is a supervised process, as it is not the target of 

our automation goal. It rather represents a prevalent flawed architecture in 

the current CAPT system, whose shortcomings are set to overcome by 

unsupervised specification, our real research interest.  

 

3.1 Code Vector Inventory Probing 
 

The first step of our experiment entails validating code vectors as an 

analyzing tool for non-native pronunciation patterns. The focal point of 

this endeavor is to prove that the featural usage pattern of L2 speakers 

differentiates from those of L1 speakers. The final format of product 

quantization in Wav2Vec2.0 is the concatenation of two entries from each 

codebook. Thus, code vector usage can be viewed from the perspective of 

1) how frequently each entry is used, as well as 2) how frequently each 

final concatenated form appears. The former view was used in XLSR53 to 

prove the code vectors' relevancy to language encoding. When calculating 

the frequency of individual code word entries of the languages the model 

was pre-trained on, there were distribution overlaps within data of the 

same language group. We have seen the graphical illustration in Figure 10. 

The same methodology was adopted with the target of frequency 

calculation now set as individual L1 and L2 speakers. 

For this probing task, comparative corpora of L1 and L2 read 

speech constructed on the same prompt script was used. Each corpus 

contained per-speaker recordings over the same reading material. This 

ensures that the resulting difference in frequency is not the byproduct of 

the contents of the speech. Using the segmentation information obtained 

from the forced alignment, we selected the most representative code word 

entry of the phoneme-divided field in each codebook. Code word entries 

were retrieved as an index since 384 dimensions of entry size was a less 
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manageable unit to track patterns. Nevertheless, the raw vectors were not 

completely out of use. They were later used to identify the characteristics 

of each code word, as will subsequently be explained in 3.2. The 

aggregated frequencies of each entry were ultimately transformed into a 

1*320-sized vector per codebook. As not all 320 entries were in use, 

empty slots were filled with the value of 0. Next, frequency values were 

normalized to a probability from a raw count. Finally, two 1*320-sized 

frequency vectors were concatenated to perform K-means clustering. The 

cluster number K was 2, as the expected result was to have L1 and L2 

speech data develop separate cluster groups. The separation would reflect 

the code vector usage differences. Figure 14 gives a graphical illustration 

of code word frequency retrieval.  

 

file: cmu_us_bdl_arctic_a0007 

 

Figure 14 code word frequency retrieval 

 

 After calculating the frequency of each code word entry, we took a 

step further to parse the variations in the representation's final usage 

format. Probability distributions of separate code words provide only the 

rough outline of code vector usage as two code words are ultimately 

paired to represent sound at each time frame. The same frequency 

retrieval method was applied to a code word pair, counting the frequency 
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of the concatenated vectors in each speaker's audio data. Unlike the 

frequency of individual entries, the set of code word pairs employed by 

each speaker is not fixed. Since each codebook contains 320 code word 

options, the theoretical maximum of the combined type is 102.4k (Baevski 

et al. 2020). For the quantizer of the pre-trained model we used, we found 

that the number varied between 893 to 3133. To plot the frequency in 

mutual space, we took the union of all available paired indices across the 

dataset and set them as counting bins to map occurrences. The L1-L2 

data we used comprised 5712 different varieties which makes the pair 

frequency vectors 5712-dimensional. These were likewise normalized 

into probabilities and clustered into two groups to confirm the deviation of 

L2 usage patterns from L1. As with the token frequency vector, the code 

word pairs unused by the individual were allotted the value of 0. The 

graphical illustration of code word pair frequency retrieval is provided in 

Figure 15. For comparison, it is demonstrated with the same file as the 

word retrieval in Figure 14. 

file: cmu_us_bdl_arctic_a0007 

 

Figure 15 code word pair frequency retrieval 

 

 In addition to mass comparison via clustering in vector space, 

inventory was probed at a more local level through a pairwise comparison 

between speakers. This need was grounded in the fact that pair 
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occurrence is a direct reflection of the usage pattern, more so than the 

individual entry, demanding a more detailed inspection. Accordingly, we 

have calculated the mutual ratio and count of shared code vector pairs 

illustrated in Figure 16. The set of employed codeword pairs per individual 

L1 and L2 speakers was compared against one another to derive a mutual 

code vector set. This paired set was counted in number (mutual count) and 

transformed into a probability by dividing it by the total amount used by 

each speaker (mutual ratio). The mutuality was inspected in terms of both 

ratio and count because the ratio alone might not bring the full picture into 

perspective. We have also separately recorded the total number of paired 

tokens used by each individual and observed a noticeable trend.  

 

Figure 16 formation of mutual code vector set  

 

3.2 L2 Error Pattern Discovery 
 

After confirming the relationship between code vector representation and 

speech nativeness, we will embark on the main stage of our research. To 

achieve the goal of identifying sub-segmental variations, we first need to 

inventorize the list of substitution errors before dissecting them in an 

unsupervised manner. This inventorization will be taken as an additional 

preparatory step, rendering L2 error pattern discovery as a total two-step 
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procedure. Nevertheless, the prior step is to be taken as an auxiliary task, 

irrelevant to the goal of automation. It serves no more purpose than 

limiting the scope of subsegmental analyses as unsupervised discovery is 

separately applicable to any segment of interest. Fig 17 gives an overview 

of how the two tasks relate to one another.  

 

 

Figure 17 overview of L2 Error Pattern Discovery framework 

 

3.2.1 Supervised Segmental Detection 
 

The left part of Figure 17 narrates the preparatory step of cataloging a list 

of segmental errors that will be the subject of the subsequent sub-

segmental analysis. For segmental error detection, we will use the 

standard practice in MDD of comparing recognized phonemes with ground 

truth labels. The recognized phoneme is regarded as how the learner made 

speech, apart from how it should have been pronounced. To generate 

phonetic transcriptions of speech for this purpose, the same pre-trained 

model used for code vector extraction was finetuned with a downstream 

task in automatic speech recognition.  
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Then, recognition is run on the target L2 analysis data. After 

aligning the recognized result with the expected label, the areas of 

mismatch were recorded and sorted from the highest to the lowest 

occurrences. As the focus of this research is to overcome limitations in the 

categorical description of substitution errors, only the cases of 

substitutions were considered. Other error types, namely insertion and 

deletion, were excluded. Among the substitution errors recording high 

frequencies, linguistically relevant patterns prevalent in existing L2 

literature were selected. Table 1 shows the example of recorded instances 

and selected error types annotated with relevant theoretical groundings. 

Selected substitution errors are italicized. 

 (*** marks empty presence) 

 

Table 1 examples of detected segmental errors  

 

Subsequently, sound segments of the detected errors were retrieved. 

The retrieval process first involves performing a forced alignment and 

logging the time stamp of the erroneous sound. The forced alignment 

results were compared with the recognition result-ground truth alignment,  

as the start and end index of the falsely recognized phoneme were 

documented. Figure 18 illustrates the case of retrieving the time stamp of 

IH to IY substitution error samples. At the upper left is a mismatch 

instance between the ground truth label and the recognition result. At the 

lower left, the forced alignment result allows us to document the temporal 
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index of the erroneous phoneme. In the end, as shown on the right, the 

goal is to create a list of time stamp information for later usage in code 

vector extraction. This was viable by using the same phoneme set used 

during forced alignment when creating labels for the model finetuning data. 

Since the original L2 data was provided with orthographic transcription 

only, it had to undergo a grapheme-to-phoneme conversion. The reason 

is that English orthography has poor correspondence with phonetic 

realizations, the latter of which is the research interest. To suffice the 

purpose of both phonemic conversion and notational unification, 39 

ARPAbet transcription codes were used. 

 

 

Figure 18 IH to IY substitution sound retrieval 

 

3.2.2 Unsupervised Sub-Segmental Inspection  
 

Once the subjects of non-categorical analysis are laid out, their 

corresponding code vector encodings are extracted. The extraction was 

carried out by retrieving the paired-index sequence of the corresponding 

time frames. To spot recurring patterns and identify the dominant types, 

cluster sequence analysis (CSA) introduced in PPG-based unsupervised 

error pattern discovery work (Li et al. 2018) was adopted. The given 

methodology was previously applied to identify patterns among frame-
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wise cluster ID sequences of the segmented phonemes. As this work also 

attempts to find patterns within a canonically designated segment notated 

with summarizing indices, this procedure is relevant and applicable. The 

sequence analysis comprises 3 steps. First, it filters and abstracts the 

important information by removing ID with a minor presence in the 

sequence and summing adjacent re-occurrences to one. Second, it selects 

the dominant types out of the refined representations from the previous 

stage. Finally, pertinent subsequences are merged with their subsuming 

counterpart. In all cases, applying the first two steps to code vector 

sequences resulted in the 3 most dominant types represented by a single 

paired index. These 3 index pairs were initially taken as a typology of 

error patterns and were subjected to further analysis. Figure 19 illustrates 

the error pattern typology discovery process in the case of L to R 

substitution. We first begin with the sequence analysis method of Li et al. 

(2018) at the very left. In the middle is the picture of index sequences 

before deriving prominent patterns. The very right shows an example of 

how the sequences have been filtered to a final top-three pattern index.  

 

 

Figure 19 sequence analysis of L to R substitution 

 

While patterns are initially derived through the L2 internal 

inspection, this may not suffice to identify their attributes and judge their 

uniqueness. To serve these two aspects of external surveillance, L1 data 

will likewise undergo code vector extraction to create reference materials. 

The information to be retrieved from L1 code vector usage is 1) what 

phoneme each index pair statistically represents and 2) the numerical 
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values of the raw vectors. The L1 data used to create the reference 

material is identical to the one used for the finetuning. This is to keep the 

consistency of evaluation in both segmental and sub-segmental aspects.  

The statistics of phonemes at each paired index are, in fact, a 

revisit to the initial probing experiment performed in Wav2Vec2.0 

(Baevski et al. 2020). In the paper, the conditional probability of phoneme 

distribution per discrete latent is plotted by counting its co-occurrence 

with human-annotated phoneme boundaries. The same method of counting 

the co-occurrence is applied, with our L1 reference/finetuning data also 

being identical to the corpus used here. At each time frame, the encoded 

paired index is documented alongside the corresponding phonemes. This 

resulted in a dictionary mapping phonemic occurrences per index. The 

integer dictionary values are transformed into probability, which is 

essentially a cross-section of the plotted graph in Baevski et al. (2020) 

along the vertical axis. This phonemic probing process is demonstrated in 

Figure 20. Referencing the associated phonemes in L1, we can infer the 

acoustic attributes of the discovered pattern. If one of the representative 

index pairs yielded by sequence analysis is [107, 33], for instance, we 

could guess that the pattern bears the characteristic of nasality and silence. 

 

 

Figure 20 creation of L1 phonemic reference 
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One notational difference is that while the original Wav2Vec2.0 conditional 

probing on TIMIT was based on the collapsed 39 phonemes, this research 

utilizes all 62 phoneme-like-unit (PLU), including the begin and the end 

marker #h. This reflects the full integrity of annotation to enable more 

granular judgment when using the distribution plot for reference. 

 In addition to measuring distribution at the pair level, phoneme 

distribution per codebook index was also recorded. This was to allow room 

for analysis in cases where L2 code word pairs are unprecedented 

combinations in L1. In the former L1 to L2 code vector comparison 

experiment, we have spotted that index pairs used in L2 often do not 

coincide with the used set in L1. The only way to decode the attributes of 

unprecedented pairs will be to take a hint from what each codebook index 

corresponds to in L1. Figure 21 shows the statistical recordings from each 

codebook.  The [107] index in codebook 1 and [33] index in codebook 2, 

corresponds to [107, 33] measured in Figure 20. 

 

 

Figure 21 examples of L1 phonemic reference per codebook 

 

 Second, to confirm that one pattern marks a clear departure from 

the other, raw concatenated vectors were mathematically compared in 

mass. The L1 data utilizes 2202 pairs of code words in total, hence 2202 

vectors of 768 dimensions were recorded. These vectors were clustered 
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into 39 groups, reflecting the 39 ARPAbet phoneme sets used for model 

finetuning, grapheme-to-phoneme conversion, and eventually segmental 

error detection. Once three representative patterns were uncovered, their 

associated cluster ID was retrieved to check if all three belonged to 

different clusters. If two or more dominant indices turn out to belong to the 

same cluster, their typological memberships are unified. The 39-cluster 

division was set as a minimum separability criterion as we wanted to 

consider patterns that are at least differentiable as the categorization. The 

clustering result is visualized by applying principal component analysis 

(PCA) in two dimensions. The visual material makes pairwise distance 

instantly perceivable. This is important because even if two patterns are 

separated by cluster ID, the degree of divergence varies. By taking a hint 

from the visualization and measuring vector-wise Euclidean distance when 

associated clusters were adjacent, we were able to sort between-pattern 

relationships from being 1) identical, 2) somewhat similar, to 3) 

completely different. Figure 22 is the visualization of concatenated vectors, 

whereby the number denotes the cluster-ID. 

 

Figure 22 visualization of clustering raw concatenated vectors  

 

For the same analytical purpose as with the phoneme distribution plotting, 

raw vectors were additionally retrieved at the codebook level. Clustering 

was not performed on single non-catenated code words as there were not 
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enough vector types to make grouping into 39 clusters meaningful. The 

total number of indices used in codebook1 and codebook2 were, in fact, 67 

and 215 each. This proves that it is the combination of code words that 

creates a powerful differentiable latent, thus deserving detailed inspection 

in 3.1. Fig 23. provides visualization of the non-concatenated forms. 

 

Figure 23 visualization of non-concatenated vectors 

 

 In the end, sub-segmental variation analysis can be summarized 

as the following four steps 

 

1. Retrieve the paired index sequence within the designated time 

frame associated with each L2 error samples 

 

2. Perform sequence analysis and identify the 3 representative 

pattern indices 

 

3. Meanwhile, create a referential material with L1 data. One on the 

corresponding phoneme distribution per index pair / and codebook 

index, and the other on visualization and numerical recordings of 

the actual concatenated / and non-concatenated vectors. 

 

4. Use the former to check the attribute of the discovered pattern, 

and the latter to confirm the number of pattern typologies as well 

as between-pattern relationships. 
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3.3 Experimental setting 
 

Dataset: Two different L1-L2 data sets are used for the experiments 3.1 

and 3.2. For the inventory usage comparison, it was crucial to choose the 

read-speech of L1 and L2 with the same prompt script to regulate 

content-wise variables from interfering with the code vector frequency. 

Having the data field divided by the individual speaker was also important 

as the cross-speaker comparison was used to check if there was an 

overlapping trend differentiating a particular demographic. Accordingly, the 

chosen corpora are speaker-wise recordings over the same 1132 list of 

the Arctic reading prompt.  

 

Experiment 3.1. 

(Inventory probing) 

3.2 

(L2error pattern discovery) 

L1  

 

CMU ARCTIC 

(5 speakers: bdl, slt, jmk, 

rms, clb) 

TIMIT 

(segmental detection model 

fine-tuning: Train) 

(sub-segmental referential 

material creation: Train+ 

Test) 

L2 L2 ARCTIC 

(all 24 speakers of 6 L1 

background) 

NIA 037 

(sentence-wise utterance in 

train split ) 

 

Table 2 overview of the used dataset 

 

For L1, the CMU ARCTIC is a phonetically balanced, US-English 

single-speaker database primarily designed for speech synthesis research 

(Kominek et al. 2003). Among 7 speakers in total (bdl, slt, jmk, awb, rms, 

clb, ksap), 5 speakers of North American accent were used (bdl, rms, jmk, 

rms, clb). Speakers of other accents such as Indian English or Scottish 

English were excluded as this research primarily concerns US English.  

For the L2 counterpart, the L2-ARCTIC encompasses non-native English 
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data with speakers of 6 L1 backgrounds, Arabic, Mandarin, Korean, 

Vietnamese, Hindi, and Spanish. Our used version 5.0 includes praat 

textgrid format of phonetic transcription generated via Montreal Forced 

Aligner (MFA). As noted earlier, index pair occurrence was calculated by 

recording the most representative index in the field of the respective 

phoneme. Thus, this forced alignment information was crucial for 

frequency calculation. Since CMU ARCTIC did not provide a pre-

generated textgrid, we have replicated the L2 ARCTIC generation process 

using the English (US) ARPA dictionary and acoustic models in MFA.  

3.2 had different criteria for corpus selection. For creating 

reference material, it was most important to have a reliable timestamp to 

document the corresponding phonemes of each index accurately. Multi-

speaker acoustics was also desirable for L1 to fine-tune the model with 

diverse input to create robust speech recognition. This led us to choose 

the TIMIT that had manually annotated transcription at the human-

confirmed phoneme range. In terms of diversity, TIMIT encompasses 8 

dialects of North American regions uttered by a total of 630 speakers.  

The same standards were relevant for L2. It was also ideal to have 

a confirmed phoneme range for the accuracy of the recorded sequence, 

while the diversity of speakers would allow us to arrive at generalizable 

findings. Unfortunately, it was hard to find publicly available L2 English 

data with matching levels of annotation as TIMIT. The read speech portion 

of NIA 037 Korean English speech data for educational purposes (Han et 

al. 2024) did meet the second criterion and was chosen. Only the training 

split was used for the analysis, among which phrase-level utterances 

were discarded. The reason stems from difficulties in automation. MFA 

cannot perform phrase-level alignment without manual annotation of each 

speech chunk, which was impractical to complete as the number of 
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phrase-length files reached 22101.  

 

Framework: All SSL-related experiments and the model finetuning were 

carried out under the fairseq① framework, a sequence modeling toolkit 

developed by the Facebook AI Research (FAIR) group. 

 

Pretrained Model: For both code vector extraction and model fine-tuning, 

an identical variant of the Wav2Vec2.0 model is used. The version used 

here is the LARGE architecture trained on LibriVox (LV-60k) data. This 

is also the variant, whereby the original Wav2Vec2.0 discrete latent 

analysis was performed on. The choice more or less stemmed from the 

confirmed linguistic relevance here.  

 

Finetuning: Using the TIMIT TRAIN set, the chosen pre-trained model 

was finetuned under the hyperparameter setting of: CTC criterion, 40000 

max update, 3e-4 learning rate, update frequency=4, adam optimizer 

(betas: 0.9~0.98, eps:1e-08), tri stage learning rate scheduler (ratio 

0.1,0.4,0.5), mask probability 0.65, mask channel probability 0.5, mask 

channel length 64. The final validation phoneme error rate for the 

finetuned model was 1.63%. 

 

Grapheme to Phoneme Conversion: The phoneme set used for both 

finetuning labels and forced alignment were the 39 ARPAbet symbols. For 

finetuning, the set was derived by excluding the sentence stress numeric 

from the g2p tool kit ②. For forced alignment, excluding the stress marker 

in English (US) ARPA dictionary v3.0.0 of Montreal Forced Aligner 

 
①

 https://github.com/facebookresearch/fairseq  
② https://github.com/Kyubyong/g2p  

https://github.com/facebookresearch/fairseq
https://github.com/Kyubyong/g2p
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resulted in the same union of symbols. Keeping the representation format 

identical for model training data and forced alignment was crucial in order 

to consistently spot the area of mispronunciation designated by the 

automatic recognition result. These 39 symbols include: AA, AE, AH, AO, 

AW, AY, B, CH, D, DH, EH, ER, EY, F, G, HH, IH, IY, JH, K, L, M, N, NG, 

OW, OY, P, R, S, SH, T, TH, UH, UW, V, W, Y, Z, ZH.  

 

Forced alignment: As briefly mentioned earlier, the forced alignment tool 

applied to CMU ARCTIC during experiment 3.1 and NIA037 in experiment 

3.2, was Montreal Forced Aligner (MFA). The acoustic model and 

pronunciation dictionary used for the alignment are English (US) ARPA 

acoustic model v3.0.0 and English (US) ARPA dictionary v3.0.0. 

 

Clustering and visualization tools: The clustering of paired code vectors 

and visualization of individual code word vectors were performed with the 

Facebook AI Similarity Search (FAISS③ )library. This ensured to fasten 

the process of clustering high-dimensional data on GPU. Visualization of 

conditional phoneme distribution in 3.2 utilizes the Matplotlib library in 

Python 

 

 

 

 

 

 

 

 

 
③ https://github.com/facebookresearch/faiss  

https://mfa-models.readthedocs.io/en/latest/acoustic/English/English%20%28US%29%20ARPA%20acoustic%20model%20v3_0_0.html#English%20(US)%20ARPA%20acoustic%20model%20v3_0_0
https://mfa-models.readthedocs.io/en/latest/acoustic/English/English%20%28US%29%20ARPA%20acoustic%20model%20v3_0_0.html#English%20(US)%20ARPA%20acoustic%20model%20v3_0_0
https://mfa-models.readthedocs.io/en/latest/dictionary/English/English%20%28US%29%20ARPA%20dictionary%20v3_0_0.html#English%20(US)%20ARPA%20dictionary%20v3_0_0
https://github.com/facebookresearch/faiss
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Chapter 4. Results 
 

4.1 L1 to L2 Code Vector Usage Comparison 
 

3.1 explained how L2 from L1 deviation in code vector usage is confirmed 

at two levels. 1)At the level of individual code word units and 2) a more 

conclusive format as concatenated pairs. The comparative analysis begins 

with constructing frequencies of featural occurrences into a vector. These 

vectors are compared in mass via KMeans clustering with K = 2. 

Clustering results were additionally evaluated using the Davies Boulding 

Index (DBI) metric in Equation 3. DBI measures within-cluster scatter 

(denominator) to between-cluster separation (nominator) ratio. Hence, a 

lower value marks superior cluster quality. C and σ denote cluster 

centroids and the average distance from it within each cluster.  

 Equation 3 

In addition to vector clustering, the concatenated pair was granularly 

inspected via cross-speaker comparison on the used featural inventory. 

 

DBI score: 1.038 

 

Figure 24 code word frequency vectors clustering result 
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Figure 24 shows the plotting of individual token frequency vectors across 

all 29 speakers in L1 and L2 corpora. Although the dimensionality is 

reduced for visualization, these vectors are originally 640-dimensional. 

Each dimension represents the frequency of code words that constitute 

two codebooks of size 320. The speaker of the frequency vectors is 

annotated next to the plotted location, while each cluster element is color-

coordinated according to its cluster membership. As can be noticed from 

the color scheme, the cluster grouping coincides with the division line 

between native and non-native speech. Nevertheless, the separation is not 

the most marked, especially when compared to the inter-language 

frequency plotting in Figure 10. This is expected since the variation based 

on nativeness is a lot more subtle than the acoustic distance between 

different language groups. This motivates us to take a more detailed 

approach by looking into the frequency of the combined format, beyond 

individual presence. 

 

DBI score: 0.822 

 

Figure 25 codeword pair frequency vectors clustering result 

 

 The paired occurrence, in fact, reveals more abundant information 

about the difference in code vector usage between L1 and L2. Figure 25 

plots the clustering of 5712-dimensional vectors accounting for the 
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frequency of the union of used pairs among 29 speakers. As mentioned 

earlier, the amount of total code word pairs employed by each individual 

varied from 893 to 3133, with a theoretical maximum reaching 102.4k. 

The number of concatenated varieties rendered by the present data and 

the model amounts to 5712. In paired clustering, one can spot a clearer 

separation between the L1 and L2 speaker groups. The DBI score 

improves when paired vectors are clustered. The paired frequency vector 

clustering records a score of 0.822, which is superior to the individual 

usage clustering score of 1.038. 

The mass comparison in vector plotting is a rough sketch of how 

the code vector usage pattern overlaps between speakers. To further 

illuminate how nativeness affects the encodings of the codebook features, 

we have conducted a pairwise comparison between speakers. In this regard, 

Figure 26 first shows the ratio of the total used sets compared to the 

mutually used overlaps. The number was derived by dividing the length of 

the mutually used index by the length of the total used pairs of an individual 

speaker. 

 

Figure 26 

As expected, the sharing rate between native and non-native speakers is 

far below the rate within the speaker group defined by nativeness. This 
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reflects the former clustering result in that the used inventory overlaps 

among each clustered group. Though to a less salient degree, another 

observable trend is a higher mutuality between L2 speakers of the same 

L1 background. The above heat map was laid out to have the same L1 

background speakers adjacent to each other. Thus, the diagonal region 

highlighted by the boxed shape shows the mutual ratio between speakers 

of the same mother tongue. One can notice that the region with a lower 

degree of mutuality is generally located outside of this diagonal spectrum. 

Such was a trait that went unnoticed in a macro analysis. This trend is 

applicable to the L2 arctic speakers from BWC to TLV.  

 

Figure 27 

The ratio may not reveal the full picture of the shared aspect. Hence, the 

raw count of the size of the mutual set was additionally considered. The 

unfiltered number, indeed, revealed several additional information. For one, 

the number of code vector pairs utilized by the native speaker was far 

beyond that of non-native L2 speakers. In Figure 27, the diagonal 

intersection of the left side has darker shades associated with a smaller 

number of tokens compared to the rightmost five grids of CMU ARCTIC 

speakers.  

Meanwhile, the used vector size among L2 speakers on the left 
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varies. The question followed whether there was an underlying factor 

determining how many index pairs one would use for their non-native 

speech. Observing the individual recording of the raw count, we noticed that 

the size increased proportionately to the speaker’s language proficiency. 

Table 3 is taken from the original corpus documentation (Zhao et al. 2018). 

Demographic information of speakers present at the data’s initial release is 

provided. Based on the TOEFL iBT score, we selected two speaker groups 

representing opposing levels of speaking proficiency. The lower-level 

group consists of speakers SKA, EBVS, BWC, and LXC, whose scores 

range under 90. The higher-level group consists of speakers HKK, YDCK, 

and NJS, whose scores are equal to or greater than 110. Table 4 is the 

numerical recordings of the mutual code vector count. One can notice that 

higher-level speakers have more overlap with 5 native speakers 

compared to their lower-level counterparts. Hence, even when the mutual 

ratios did not mark a clear difference in the heatmap, the absolute number 

of shared tokens varied as a function of articulation adeptness. 

 

Table 3 demographic information of L2 arctic speakers 

  

Table 4 mutual code vector count among different proficiency groups 

 

Table 5 shows that the variation in overlapping degree further translates 

into the overall amount of used paired tokens. One possible reason behind 

this phenomenon is that to fully utilize the self-supervised learning 
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feature encoding English, one has to be phonetically aware of the sounds in 

the language. This awareness is marked by the range of utilization ratio of 

the code vector inventory. If the amount used by the native speakers is the 

full range of available acoustics, the less proficient one is at articulating 

acoustic units defined in the L1 standard, the less amount of inventory in 

use there will be. The language here does not particularly pertain to 

English but rather applies to any variant used during pretraining, whereby 

quantization weight is learned.  

 

Table 5 number of code vectors utilized by each speaker 

 

4.2 L2 Error Pattern Discovery Result  
 
The L2 error pattern discovery begins with selecting a list of substitution 

errors that becomes the subject of sub-segmental analysis. Table 1 

briefly mentions several examples of the chosen substitution errors. 4.2.1 

enumerates all chosen instances, with a linguistically relevant reason 

behind the selections.  

 

4.2.1 Detected Segmental Errors  
 

The types of phonetic sounds involved in the substitution errors are 

divided into three categories: fricatives, liquid, and vowels. As recurringly 
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mentioned, the errors were chosen based on their frequency and linguistic 

relevancies attested in existing L2 literature. Table 6 provides the overall 

summary of the segmental errors found through the supervised recognition. 

 

Fricative substitution errors: Fricatives are reported to be difficult for 

Korean L2 speakers as the language lacks rich fricative inventories in 

English (Hong et al. 2014). Voiced fricatives are particularly challenging, 

with the added dimension of voicing distinction absent in Korean. 

Concerning these two aspects, two substitution routes are documented. 

Substitution of voicing identity in Z to S and substitution of manner of 

articulation in DH to D, V to B, and F to P. Relevant to the former, Korean 

alveolar fricatives are all voiceless ([s] and [sʰ]). The lack of voicing 

contrast awareness hereafter causes difficulties in articulating [z]. The 

latter cases commonly involve a shift towards homorganic plosives. These 

errors are fostered by a comparatively richer inventory of plosives in 

Korean. The acoustic distance between the plosive counterparts and 

existing phonemes in the speakers' mother tongue is closer, which leads 

learners to approximate foreign fricative sounds to an acoustically more 

familiar plosiveness (of existing inventories in L1; [t],[p],[pʰ]). 

 

Liquid substitution errors: Alternations between L and R phonemes can be 

viewed under the same lighting. Unlike English exhibiting two unique 

lateral /l/ and rhotic /ɹ/ liquids phonemically, Korean liquid inventory 

consists of only one element. Rhotic (tap) [ɾ] and lateral [l] come as an 

allophonic variation of this single phoneme /ㄹ/. This could lead to 

confusion in producing English liquids since the two modes of articulation 

do not always show complementary distribution as in the learner's L1. 

Under this context, the articulation accuracy of liquids is deeply correlated 
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with the Korean L2 speaker's pronunciation level (Kim et al. 2019), 

making them a relevant target for sub-segmental examination.  

 

Vowel substitution errors: The selected vowel substitution errors can be 

summarized under three different reasonings. The first type occurs due to 

the absence of tense-lax distinction in the Korean vowel system (Yang et 

al. 2013). This can account for the substitution of IY to IH, IH to IY, AE to 

EH, and EH to AE. The lack of distinction relates two phonemes 

bidirectionally; hence, every two substitutional directions are to be 

evaluated as a pair. The second vowel substitution results from a lack of 

corresponding inventory to the English mid-back vowel AH (Ku & Oh 

2001). When mapping this foreign sound to familiar native phonemes, AH 

bears between-categorical traits encompassing the boundaries of /ㅏ/and 

/ㅓ/. /ㅏ/ also forms a close acoustic distance with AA, which was detected 

as the most dominant substitution target with 4452 occurrences. The third 

instances are subsumed under the diphthongal production category (Choi 

& Oh 2021). English diphthongs OW and EY are both non-present in 

Korean, often leading L2 Korean speakers to reduce them to monthlong 

AO and EH that each bear closer value with present phonemes /ㅓ/and /ㅔ/. 

 
Table 6 selected list of substitution errors 
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4.2.2 Discovered Sub-Segmental Patterns  
 

For every segmental substitution secured in Table 6, the sub-segmental 

pattern analysis is sequentially conducted through internal and external 

inspections. The initial internal inspection concerns discovering the three 

most dominant index pairs, followed by external inspection to judge their 

attributes and uniqueness using the L1 reference data. Accordingly, the 

analysis followed the order of pinning down the identified representative 

index and documenting two-way comparisons. This analysis schema is 

graphically reiterated in Figure 28 to aid understanding. 

 

 

Figure 28 sub-segmental pattern analysis schema 

 

To illustrate an example of its application, the analysis process for the Z to 

S substitution is provided. Among sound samples of Z to S error, the 3 

most dominant indices were [166, 82], [18,51], and [230, 51].  

 

Table 7 internal pattern discovery result of Z to S substitution 

The associated cluster ID of the pair [166, 81] is 21, whereas [230, 51] 

belongs to 28. [18, 51] did not have a native speech occurrence, so it was 

impossible to measure similarity with the other two indices. Cluster 21 and 

28 are separated by a considerable amount, as noted in the cluster 



 

 ４９ 

visualizations below. Hence, it is safe to assume that the Z to S 

substitution error accompanies at least two sub-segmental patterns. 

 

Figure 29 plotting of Z to S substitution dominant index 

Next, we check the attributes of each index. Figure 29 shows what 

phonemes each paired indices corresponds to in L1 TIMIT. Because [18, 

51] did not have any native speech example, the paired reference was 

substituted with examining what each codebook index (codebook1 index 

18 and codebook2 index 51) represents. 

 

 

Figure 30 attributes of the discovered index in Z to S substitution 

 

[166,82] and [230, 51] carries a difference in the secondary probability 

distribution. For [166, 82], the second highest probability is z, whereas it 

is sh in [230, 51]. [18,51] assumes a middle ground between these two. 

18th codeword in codebook1 allocates the highest probability to sh, while 

index 51 in codebook2 is a resemblance to [166, 82]. Within such 

between-index positioning, [18,51] gears slightly more towards [230,51], 
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concerning the 1) overlap in the second codebook index and 2) the 

codebook1 index’s highest association with sh, which wins a secondary 

place in the probability distribution of [230,51]. In the end. three patterns 

are identified that form gradience in the voicing spectrum. The pertinent 

pattern-differentiating traits came from the comparative association rate 

with voiceless sh and voiced z. 

 

 

 

Figure 31 discovered patterns in Z to S substitution 

 

Applying the same analysis strategy to the rest of the 12 segmental 

substitutions arrives at the following three overarching findings. These 

were the common threads underlying subsegmental pattern typologies. 

 

A Subject of Gradience  

 

The first finding was that the relationship among sub-segmental patterns 

could be traced along the assumed degree of the changed articulatory trait. 

We have already seen that in the Z to S example, voicing identity in charge 

of the shift also formed the axes of the substitution spectrum. 

Interpretative evidence came from the second-highest probability in 

native phoneme distribution. Among present patterns, the associated 

phonemes moved from sh [-voicing] to z [+voicing]. Along with the 

substitution of voicing identity, 5 other substitution routes form our 13 
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lists of errors, as each trajectory entails relevant pattern-differentiating 

traits.  

 

Substitution of the manner of articulation: In 4.2.1, the second substitution 

trajectory of fricatives concerned a switch in the manner of articulation. 

Namely, fricatives are replaced with homorganic plosives in DH to D, V to 

B, and F to P. The relevant articulatory trait in this shift is continuity, 

which formed the error pattern continuum. Across 3 examples, there were 

recurring dynamics among constitutive dominant patterns. Native phoneme 

distribution of patterns moved from a relatively higher association with 

plosives and silence markers [-continuity] to a higher association with 

fricatives and vowels[+continuity]. An example of the former [-

continuity] end in DH to D and V to B is provided in Figure 32, whereas 

the [+continuity] end counterpart is provided in Figure 33. For the 

reference of where each pattern lies in the spectrum, the full scale is 

outlined in Figure 32. 

 

 

 

Figure 32 discovered typologies in DH to D and V to B substitutions 
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Figure 33[-continuity] end in the substitution of the manner of articulation 

 

 

Figure 34[+continuity] end in the substitution of the manner of articulation 

 

Substitution of laterality: The switch of lateral to rhotic liquid concerns a 

change in the channel of airflow. Lateral liquid guides the airflow towards 

the side of the tongue by approaching the tongue tip near an alveolar ridge. 

This process of creating a lateral channel concerns the trait laterality and 

is absent in English alveolar approximant /ɹ/. The bunched r rather 

retracts the tongue tip, preventing even the slightest chance of obstruction. 

It involves a lesser degree of constriction, making them more resonant and 

acoustically closer to vowels. Thus, when more probability is shared with 
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vowels, it would indicate a comparatively [-laterality] attribute. With this 

understanding, the native phoneme distribution moves from having more 

lateral [+laterality] to rhotic and vowel [-laterality] association (or vice 

versa as the substitution is bidirectional). Examples of [-laterality] end, 

[+laterality] end, and the full pattern spectrum are presented below. 

 

 

Figure 35 discovered typologies in liquid substitutions 

 

 

 

Figure 36[-laterality] end in the substitution of laterality 
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Figure 37[+laterality] end in the substitution of laterality 

 

In L to R, there is a cluster overlap between two dominant patterns [191, 

212] and [191, 162]. Both belonged to cluster 15 and were thus merged 

into a single pattern. [191, 162] was left out of the description as it had 

only 3 recorded instances in L1. Such lack of representation is due to the 

non-categorical nature of sound, as will be further explained in section B. 

 

Substitution of vowel height: In dominant patterns of AH to AA, singularity 

is marked by the relative association rate with AO and AA in native speech. 

The two phonemes primarily differ in vowel height with AO sharing the 

same height as AH. Hence, the gradience is formed along the vowel height 

spectrum, being in line with the changed articulatory trait itself. In Figure 37, 

patterns gradually move from bearing relatively [-high] to [+high] 

characteristic. The gradient nature is emphasized by the shared probability 

with AO in the pattern of [-high] end (Figure 38). 

 

 

Figure 38 discovered patterns in the mid-back vowel substitution 
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Figure 39[-high] end in the substitution of vowel height 

 

 

Figure 40[+high] end in the substitution of vowel height 

 

The mid-vowel height relocation also experiences a pattern overlap. [264, 

6] and [264, 131] both belong to cluster 29 which shares a higher 

probability with AA than [232, 131]. Their distance with the [+high] end 

pattern is not large, concerning the proximity of cluster 27 to 29. 

 

Substitution of tenseness: Gauging the relationship among subsegmental 

patterns of IH to IY, IY to IH, and AE to EH was difficult with the standard 

phoneme distribution-based comparison. The reason was that the 

observed dominant indexes had little to no native speech presence. 

Alternatively, pattern attributes were identified by analyzing individual 
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indices, which spelled out a cohesive trend among codebook combinations. 

While codebook1 displayed an identity of laxness, codebook2 showed an 

identity of tenseness. This was confirmed by calculating the tense-to-lax 

ratio of associated native phonemes. Figure 41 shows the used tense and 

lax vowels for calculation along with computed ratios of pertinent indices. 

 

Figure 41 tense-to-lax ratio calculation 

 

The rarity is likely attributed to these conflicting identities. The following 

are the observed combinations and their amount of presence in L1 

reference data. [191, 234] had four occurrences (iy:2. ey:2), [22, 268] 

had two (eh:1, ey:1), [42, 234] and [22, 234] had none. Referring to the 

tenseness ranking, present patterns can be scaled as Figure 42.  

 

 

 

 

 

Figure 42 discovered typologies via tenseness calculation 
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The scaling here aggregates the rankings in two codebooks. [22, 268], for 

instance, occupies the lowest end in IH to IY with the multiplied value of 

0.919 (0.315*2.981). On the other hand, [191, 234] occupies the highest 

end with 4.979 (0.511*9.744). These tenseness rankings are consistent 

with the Euclidean distance between code vectors. [22, 268] and [191, 

234] each belong to cluster 15 and 24 that are considerably apart. Further, 

the distance between [22, 268] and [191, 234] is indeed larger than the 

other two pairs, while codebook1 ranking is in line with the code word 

interval shown in the rightmost visualization graph of Figure 43. 

 

 

Figure 43 consistency of tenseness ranking with Euclidean distance 

 

Meanwhile, EH to AE came as an exception, as their patterns did not adopt 

any of the calculated indices. They also lacked distinction as three index 

pairs were either associated with cluster 29 or 8, which were extremely 

close to one another. Ultimately, they came under a single unified pattern, 

a process illustrated in the first two charts below. 

 

 

Figure 44 EH to AE substitution  



 

 ５８ 

The merged pattern leans more towards laxness than tenseness. The 

rightmost graph of Figure 44 delineates the distance between the merged 

location and three clusters scaled on the tense-lax spectrum in AE to EH 

(Figure 42). Accordingly, the distance is the shortest with the most lax 

cluster 24, while the longest with the most tense cluster 15. The 

intermediary cluster 11 takes a middling position in length as well. The 

uniqueness of EH to AE will be further discussed in Chapter 5.  

 

 

Figure 45 discovered pattern in EH to AE substitution  

 

Substitution of production focus: As diphthongs inherently involve a shift 

in pronunciation position, characteristics derived from two positions 

potentially lead to conflicting identities. Canonical pronunciation displays 

resolved conflict towards the nucleus position, whereas the dispersed 

focus could lead to monophthong reduction error. Figure 46 charts the 

comparative position of the supposed articulation trajectory in relation to 

the substituted place of articulation.  

 

Figure 46   
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Reflecting this nature of positional conflict, patterns are scaled on the 

spectrum of the degree of resolved backness ambiguity. As the desired 

focal point of production is the diphthong nucleus, OW and EY are 

respectively judged on the standard of posterior and anterior resolution. 

This mirrors the relative position of the diphthong within the movement. 

Similar to tenseness substitution, attributes of a conflict-mediating nature 

are identified by calculating the identities of the individual code word. 

Figure 47 displays the used phonemes for calculation alongside computed 

ratios of posterior (back-to-front) and anterior (front-to-back) 

resolution. Instead of limiting the positional identification to vowels, an 

entire catalog of sounds using the front and back cavities was considered.  

 

Figure 47 positional identity calculation 

 

Figure 48 discovered typologies in diphthong reduction errors 
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Ranking in the spectrum is likewise grounded in the aggregation of 

computed values of the paired code words. In the OW to AO spectrum, the 

pairing numbers are annotated, ranging from the highest (1.687-2.084) in 

[191, 212] to the lowest (0.559-2.084) [22, 212]. These calculations can 

be verified from the perspective of the rarity of occurrence and tenseness 

identity. Regarding the former, the index frequencies in L1 data aligns with 

between-pattern distances. In Figure 48, the most compatible pair [191, 

212] has multiple presences, while only two occurrences (ah:1, ow: 1) are 

observed in [22, 212], when index 22 with the last backness distribution 

engages. The associated cluster of less frequent pair [232, 212] and [22, 

212] are close to each other compared to [191, 212]. 

 

 

Figure 49 verification of the production focus scaling 

 

Moreover, there is a correlation between diphthongal property and 

tenseness. The cluster previously defined to constitute the tense end of the 

spectrum (15) is associated with the most resolved pair exhibiting the 

closest value to a diphthong. Conversely, the cluster positioned at the lax 

end of the spectrum (24) is associated with the least resolved pair bearing 

the closest value to monophthong. One can visually spot this trend in the 
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ranking of EY to EH, which is essentially a flipped ordering of tenseness 

substitution ranking.  

 

B Intermediary Typology  
 

Another foundational characteristic prevalent across sub-segmental 

patterns was that the intermediary typology was non-categorical. This 

incoherent positioning was rendered by assuming ambivalent identities in 

two codebooks. As seen from the Z to S example, if one displayed a + 

value of the changed articulatory trait (i.e.[+voicing] in codebook2), the 

other displayed an opposite negative value (i.e. [-voicing] in codebook 1) 

by comparison. The contradictory pairing was the cause of rare 

occurrences in native speech, attesting to the L2 particular nature of non-

categoricity. Intermediary of Z to S, [18, 51], had no presence. Below are 

other examples organized by their substitution routes. 

 

Substitution of the manner of articulation (Fricative to Plosive): Referring 

to Figure 32, intermediaries of DH to D and V to B were [204, 120] and 

[204, 162]. Reflecting the recurring dynamic, they both belonged to 

cluster 34 while displaying comparatively [+continuity] identity in 

codebook1 and [-continuity] identity in codebook2. Figure 50 shows that 

the 204th codeword of the first codebook has a primary association with 

vowels involving continuous airflow. Conversely, the 120th codeword of the 

second codebook mainly shares distribution with silence accompanied by 

airflow obstruction. Although codebook2 index 162 is affiliated with 

approximants, they still bear comparatively less continuous identity than 

vowels of codebook1. Since [204, 162] resolves the discrepancies between 

vowels and approximants, the ambivalence is geared more towards the 

fricative end compared to DH to D. Therefore, the gulf between values was 
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not as large as the V to B intermediary showed more presence. This 

reflects the relationship between frequency and level of contradiction.  

 

 

 

Figure 50 intermediaries of voiced fricative to plosive vying 

 

Substitution of laterality: In both directions of liquid substitution (Figure 

35), intermediaries showed rare occurrences in native speech. [191, 162] 

of L to R appeared twice, whereas [191, 235] of R to L appeared three 

times. The rarity also concurred with the unlikely pairing of conflicting 

attributes. Codebook1 bore [-laterality] attributes with higher rhotic and 

vowel association, whereas codebook2 had greater lateral identity.  
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Figure 51 intermediaries of liquid substitution 

 

Figure 51 explains how the intermediary pattern of liquid is the literal 

instantiation of non-categorical sound between rhotic and lateral. The two 

codebook2 indices 162 and 235 were, in fact, adjacent to each other as can 

be noted from the plotting in raw vector visualization. 

 

Substitution of vowel height: Lastly, it was mentioned that the AH to AA 

intermediary displays a gradient move from the [+high] end (Figure 38). 

The prevalence of AO in [232, 131] (Figure 40) permeates through the 

intermediary [264, 131] (Figure 39), which albeit with AA prominence, 

has a partial AO association. The coexisting articulatory traits were, in fact,  

encoded in the individual codebook distribution shown in Figure 52. 

Namely, codebook1 and 2 each assumes [-high] and [+high] identity. 
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Figure 52 intermediary of vowel height substitution 

 

Lastly, intermediaries of tense-lax substitution and diphthong 

reduction errors are of a different nature, as the gradience itself was 

based on the degree of conflict. Tenseness and positional resolution were 

ranked in proportion to the homogeneity of the two codebook values. 

Therefore, the lowest end of the numerical scale, rather than the 

intermediary, concurred with the highest level of contradiction and least 

occurrence. Nevertheless, the correlation between unlikely combination 

and rare occurrence still holds, as we shall see in the overall review of 

front vowel substitutions in Chapter 5. 

 

C Distributional Asymmetry  
 

The third core finding is that typological distributions are skewed towards 

the most approximate sound available in the learners’ mother tongue. The 

finding can be viewed at two levels: 1)distribution rate across different 

substitution types and 2) within-substitution pattern distribution.   

Regarding the former, one can first refer to the fricative to plosive 
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substitutions. We have previously omitted an illustration of F to P to 

emphasize a point here. Figure 53 gives the visual plotting of associated 

cluster indices for each of the three errors. Compared to the former two 

voiced fricative varieties, F to P involves smaller between-pattern 

distances along with an overall rightward shift.  

 

Figure 53 fricative to plosive dominant pattern dynamics 

 

These two aspects are reflected in the spectrum of Figure 54. The plosive 

to fricative vying has scaled down with a more homogenous distribution 

towards fricatives. [197, 155] setting the [+continuity] fricative ax in DH 

to D and V to B (Figure 31) now positions itself as the [-continuity] lowest 

end. The rest two indices, [166, 196] and [197, 284], allocate their 

probabilities almost entirely to fricatives. Figure 55 shows that t and #h in 

[197, 284] is the only room for exception here. 

 

Figure 54 discovered patterns in F to P substitution 

 

The reason follows that Korean L2 learners, with voiceless fricatives 
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already present in their sound system, should face fewer difficulties with 

pronouncing fricatives of the familiar phonation type. This logic sounds 

fitting concerning how representative indexes share a considerable portion 

with alveolar fricative [s] that is the closest to the phoneme /ㅅ/ in Korean.  

 

 

 

Figure 55 scaled down gradience in F to P 

 

In the end, F to P being markedly skewed towards [+continuity] than DH to 

D and V to B, is related to the closest counterpart in L1. The mapped 

corresponding phoneme is voiceless regardless of the articulation target. 

Therefore, voiceless F displaying the closest distance with the present 

inventory induces less confusion and, in turn, incurs less dispersion.  

The dispersion rate in bidirectional substitution dynamics likewise 

reflects the interaction with the native sound system. In IH to IY and IY to 

IH in Figure 42, lax to tense error incurs more dispersion while the tense 

to lax typologies are more aligned with the canonical sound. In AE to EH 

and EH to AE in Figure 42 and 44, tense to lax error incurs more dispersion 

while lax to tense typologies are more aligned with the canonical sound. 
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This is related to the comparative foreignness of the target among the 

paired substitution directions. Tense IY and lax EH are closer to the 

existing Korean phoneme inventory /ㅣ/ and /ㅐ/ than their lax and tense 

counterparts IH and AE (Ku & Oh 2001). Ultimately, more foreign target 

incurs greater dispersion. 

The skewed distribution within substitution can be found in the case 

of voicing identity substitution (Figure 30), liquid substitution (Figure 35), 

and mid-back vowel height shift (Figure 38). To begin with, our first 

introduced example Z to S had the intermediary skewing towards the [-

voiceless] end. This relates to the corresponding native phoneme /ㅅ/ being 

voiceless. In liquid, distributions are skewed towards the laterality. In L to R, 

cluster overlap gears towards the lateral end. In R to L, the intermediary 

pattern bears a closer [+laterality] identity than the [-laterality]. The 

asymmetry reflects greater difficulties involved with producing the 

unobserved variety of rhotic [ɹ] in the learner’s mother tongue. In AH to AA, 

distributions are skewed towards the high end, which is related to the most 

adjacent sound in native speech, /ㅓ/, being closer to AH than AA.  
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Chapter 5. Discussion 
 

Our analysis result first confirmed that code vector features used by L2 

speakers differ from the set employed in native speech. While greater 

usage overlap coincides with increasing proficiency, one can expect that 

the more pronunciation deviation there is, the higher the chance for the 

speech to utilize unused varieties in L1. Such was the case for typological 

overlap in front vowel substitutions. In four substitution errors in the left 

chart of Table 8, every pattern constituting one substitution has at least 

one co-occurrence in another error type. The used varieties were also 

commonly rare in native speech. [22, 234] was unobserved, while [42, 

234] and [22, 268] appeared once and twice each. [191, 234] records 4 

instances. Given the overlap and rarity, L2 front vowel substitutions seem 

to collapse into a mode disparate from L1 renditions. The finding concurs 

with the vowel space analysis in (Ku & Oh 2001), whereby Korean English 

vowel space is reported to be smaller, particularly along the frontal region. 

Accordingly, Korean speakers are not versed in manipulating oral 

constriction required for the accurate articulation of English front vowels. 

Tongue tip movement is more limited, creating acoustic distance between 

IH, IY, EH of learners and that of American native speakers.  

 

Figure 56 vowel space analysis in Ku & Oh (2001) 

This acoustic trend is reflected in the code vector distributions 

across L2 analysis and L1 reference corpora. We have calculated the 

Euclidean distance between the most dominant index of front vowel 
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segments in L2 erroneous speech and L1 TIMIT data. In Table 8, selected 

indexes for calculation are emboldened. Pairwise distances for IH, IY, and 

EH were 8.14, 7,80, and 7. 476/7.79 each. EH has two recorded distances 

as substitution AE→EH and EY→EH were associated with a different 

dominant index.  

For comparison, vector-wise L1-L2 Eucledian distance among 

back vowels involved in substitutions were also measured. Dominant 

indexes used for calculation are likewise, emboldened. Overall, distances 

between the representative index of the L1 phoneme and the 

corresponding erroneous segment in L2 are a lot smaller in back vowel 

substitutions than in front vowel pairs. Typological distances in AA and AO 

were 5.626 and 5.264 each. Such difference reflects the greater deviation 

occurring in front vowel space. Note that back vowel variants were also 

more frequently observed in native speech, which proves that a smaller 

acoustic distance concurs with better correspondence. They further do not 

experience typological overlap, as the lack of distinction is primarily 

caused by a limited range of movement in the frontal cavity. 

 

Table 8 dominant index pairs of vowel substitutions 

 

Another peculiar finding in front vowel substitution is that EH → 

AE is immune to the overlap while experiencing cluster merger. 

Substitution leading up to AE forms a unique identity lacking sub-

segmental variation. The situation is comparable to the findings of Yang et 

al. (2013), where a comparative distance between Korean English and 
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American English front vowels was measured. Referencing the vowel plot 

in Figure 55, one can notice that the AE variation is greater in American 

English in blue notation, while for EH the reverse holds.  

This difference in the comparative dynamic in EH and AE relates 

to the present code vector observation. On one hand, greater L1 variability 

of AE creates room for L2 error pattern correspondence. Hence, the used 

varieties in EH to AE had more native speech presence compared to other 

front vowel substitution errors. On the other hand, because the receptive 

field of L2 is comparatively narrower, differences within AE could be 

overlooked when interpreted in an L1 standard i.e. with L1 reference 

material. This would be the cause of the cluster merger. Meanwhile, as the 

situation is the opposite for EH, AE to EH error has a lower native speech 

correspondence while being more dispersed.  

  

Figure 57 vowel plot in Yang et al. (2013) 

 

On top of these peculiar findings, the general observations in 4.2,2 

imply that the discovered patterns are linguistically interpretable. The 

between-categorical positioning in the error continuum could be calculated 

through the value of the substituted articulation trait, whose measurement 

expounded how non-categoricities were rendered. In this vein, the 

uncovered sub-segmental patterns reflected the acoustic distance in L2 

variations established in the existing literature. Unfortunately, direct 
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comparisons with prior works on non-categorical error pattern discovery 

(Wang & Lee. 2013, 2015; Li et al. 2018; Li et al. 2020; Mao et al. 2018) 

were not viable as they did not concern the L1-L2 pair of the current 

interest. Nevertheless, concerning all the observations we made, this work 

affirms the adequacy of code vector-based non-categorical pattern 

analysis.  

 

Lastly, the final step in actualizing the goal of automated sub-segmental 

feedback leads to a discussion on how we may use the obtained 

information for finer judgment. Possible paths of suggestion include 

comparing the codebook sequence of L1 and L2 and assessing the 

misalignment information. Lee et al. (2012, 2013) have introduced an 

established methodology to detect mispronunciation by comparison in an 

unsupervised manner. This work found that just as raw acoustic or DBN 

posteriors, SSL representation code vectors hold discriminative power 

against nativeness. We may take advantage of such L2 discernability to 

automatically spot areas of mismatch. The final decoding format, however, 

should be more gradual and nuanced. To suffice this, Hu et al. (2023) 

proposal of restoring continuous representation from the codebook prior 

could be considered. 
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Chapter 6. Conclusion 
 

This work recreated the unsupervised L2 error pattern discovery 

experiments in previous literature using an SSL representation code 

vector. In this endeavor, it seeks to reinforce the unsupervised nature of 

the pipeline and conduct sub-segmental analysis with an unprescribed 

acoustic unit. In implementation, we adopted an unsupervised model for 

feature extraction, departing from the previous supervised framework. 

The learned representation, discrete latent of Wav2Vec2.0, was a 

descriptive mechanism uninhibited by phonemic categorization.  

With these goals in mind, we attempted to answer questions on 

whether the chosen acoustic unit is suitable for sub-segmental analysis, 

and if so, how it would capture subtle variations within each segmentally 

defined error type. From the first experiment, one could spot the 

difference in used inventory, and how the encoding units of L2 differed 

from L1. The second experiment revealed that this difference resulted 

from an unlikely codebook combination in L2 assuming conflicting 

characteristics. The pertinent two opposing identities each formed the 

opposite ends of the typological spectrum, while the unlikely combination 

was the prime example of non-categorical sound. Consequently, a higher 

degree of phonetic divergence coincided with the increased usage of such 

L2 particular non-categorical index. Moreover, distributions of sub-

segmental typologies reflected the acoustic proximity of corresponding L1 

phonemes to two L2 segments participating in substitutions. Thus, the way 

code vectors encode L2 variation is phonetically relevant.  

In the end, the Wav2Vec2.0 code vector is a valid tool to uncover 

sub-segmental gradience in grossly categorized substitution errors. Its 

attribute bears quantifiable phonetic relevance that allows us to calculate 
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the between-categorical details. While discovered gradience urges us to 

re-evaluate L2 substitution errors from a sub-categorical standpoint, 

discourse on how we may utilize obtained details for more granular 

feedback is left for future work.  
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국문 초록 
 

L2 발음은 두 음성체계 간 상호작용 아래 실현되기에 단일 음소 범주보다 복합

적인 정체성을 지닌다. 이 같은 비범주적 속성은 음소 보다 세분화된 접근의 평

가를 요구한다. 그러나 분절 이하 조사는 상당한 전문인력을 동반하기에 데이터

로부터 오류 특징을 스스로 찾는 자동화 연구들이 대두되었다. 다만 기존 연구

들은 비지도 방식으로 음소 이상의 변이 패턴을 찾기 위해, 지도학습 자질이자 

음소적으로 규제된 음소사후 확률을 사용한다는 모순적 한계가 있다. 이에 본 

연구는 비지도 학습만을 요하며, 외부 규제 없이 표현 학습으로 습득된 음성 단

위 Wav2Vec2.0 코드벡터를 대체 분석 자질로 도입한다. 동시에 기존 자동화 

연구의 주요 프레임워크를 유지함으로써, 코드백터가 분절 오류만으로는 정의될 

수 없는 발음 변이 양상들을 설명할 수 있을지 탐색하고자 한다.  

자질의 발음 오류 표현 적합성 탐색은 사용 빈도 계산을 통한 L2 식별

력 검증과 분절 단위 오류 표본들의 열 분석을 통한 유형(패턴) 분석 두 단계

로 진행된다. 같은 발화목록을 지녀 내용적으로 통제된 L1 (CMU ARTIC) 및 

L2 (L2 ARTIC) 단일 화자 코퍼스에서 화자 별 코드벡터 사용 목록의 빈도를 

벡터로 구축해 군집화하고 비교하였다. 아울러 L1 TIMIT으로 파인튜닝된 모델

로 L2 NIA037 내 분절 단위 오류 탐지를 실시해 분석에 사용될 표본들을 선

별했다. 강제정렬로 오류 음소에 대응되는 음성 구간을 찾아 원모델로부터 소속

프레임들의 코드벡터열이 추출되면, 대표 인덱스 요약, 빈도 계산, 시퀀스 통합

을 거친 내부 분석이 진행되며 우세한 패턴들이 도출된다. 패턴들은 같은 L1 

TIMIT을 이용해 구축된 참조자료를 통해 최종 해석된다. 이름하 L1음소-코드 

백터 공동 발생 확률로 음성학적 특성을 유추했으며, L1 데이터에 현존하는 전

체 코드벡터들을 군집화하여, 패턴 간 관계성 및 각 유형의 고유성을 판단했다. 

실험 결과, L1 및 L2 화자 사이 빈도벡터들의 군집화 분리를 통해 자

질의 L2 식별력을 선차적으로 확인할 수 있었다. 두 화자 집단 간 사용목록의 

차이는 특히 낮은 L2 숙련도일수록 감소되는 목록 크기로 확인될 수 있었는데, 

L1 기준으로 학습된 음성 단위가 충분히 활용되기 미흡한 발화 수준 때문이다. 
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또한 분절 이하 패턴 양상에서 다음 세 가지 공통된 특징이 기록되었다. 1) 첫

째 오류 유형들은 변화된 조음 특성의 반영도를 따라 형성된 연속체를 이루었

으며, 2) 각 연속체 속 중도 유형은 본 특성에 대해 두 개의 코드북에서 상반된 

값을 구현하는 양면적 성격을 띄었다. 아울러 3)유형 분포는 학습자 L1에 존재

하는 가장 근접한 소리를 향해 편향되었으며, 더 생소한 조음 특성을 가진 목표

음이 더 큰 분산을 유발하였다. 각 발견은 언어학적 이해를 동반한다. 변화된 

특성에 따른 점진적 위상은 발음 변이가 분절적 틀로 정의될 수 없음을 보여주

며, 특히 중도 유형의 상충된 조합은 명확한 음소 범주로 분류 불가능한 비범주

성의 전형이다. 비범주성이 L2 특성인 만큼 해당 패턴들은 L1 데이터에서 희

박한 발생빈도를 가지기도 했다. 아울러 L1 음성체계와 관련된 비대칭성은, 발

음 변이가 근본적으로 학습자의 모국어가 목표 학습어에 영향을 미치며 발생한

다는 점을 반영한다. 결국 코드벡터는 L2 발음의 연속체적 성격을 수치화 할 

수 있는 수단으로써, 발음 오류의 점진성을 평가할 대체 수단임을 주장한다.  

, 
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