

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학석사학위논문

A Novel Time-Indexed Model for the Single

Machine Scheduling Problem with

Sequence-Dependent Setup Times

순서 의존적 작업준비시간이 존재하는 단일 기계 일정계획

문제의 새로운 시간-인덱스 모형

2025 년 2 월

서울대학교 대학원

산업공학과

조 원 우

Abstract

A Novel Time-Indexed Model for the Single
Machine Scheduling Problem with
Sequence-Dependent Setup Times

Wonwoo Cho

Department of Industrial Engineering

The Graduate School

Seoul National University

In this thesis, we address time-indexed models for the single machine scheduling problem

with sequence-dependent setup times. While the ideal formulation of the machine’s ca-

pacity constraint is known in the absence of setup times, no such formulation has been

identified when sequence-dependent setup times are present. To address the computational

burden caused by the large size of time-indexed models, it is essential to formulate the

capacity constraint using a small number of strong constraints.

To this end, we propose a two-phase algorithm for formulating the capacity constraint.

The first phase reduces the number of constraints in the time-indexed model, while the

second phase constructs constraints to tighten the linear programming (LP) relaxation

bound. Computational experiments demonstrate that the resulting novel time-indexed

model significantly outperforms existing models in the literature, achieving much tighter

LP relaxation bounds with a considerably smaller model size and in shorter solving times.

i

Additionally, we introduce a restricted time-indexed model that can be applied when

only a subset of the decision variables is used. This model further reduces its size by

identifying constraints that can be excluded while maintaining the model’s validity. Com-

putational results confirm that the restricted model effectively reduces the number of

constraints.

Keywords: Single machine scheduling problem, Sequence-dependent setup time, Time-

indexed model, Time-indexed formulation

Student Number: 2023-22551

ii

Contents

Abstract i

Contents v

List of Tables vi

List of Figures vii

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Literature Review . 5

1.2.1 Time-Indexed Model for the Single Machine Scheduling Problem

with No Setup Times . 5

1.2.2 Time-Indexed Model for the Single Machine Scheduling Problem

with Sequence-Dependent Setup Times 6

1.3 Motivation and Contributions . 7

1.4 Organization of the Thesis . 8

Chapter 2 Generic Time-Indexed Model for Single Machine Scheduling

Problem with Sequence-Dependent Setup Times 10

2.1 Formulation of Time-Indexed Model . 10

iii

2.1.1 Conflict Graph . 11

2.1.2 Clique of the Conflict Graph . 12

2.2 Generic Time-Indexed Model . 14

2.3 Time-Indexed Models in the Literature . 17

Chapter 3 A Novel Time-Indexed Model and Its Restricted Variant 20

3.1 A Novel Time-Indexed Model . 20

3.1.1 Clique Template Cover Generation Algorithm - Phase 1 23

3.1.2 Clique Template Cover Generation Algorithm - Phase 2 29

3.2 Restricted Time-Indexed Model . 33

Chapter 4 Computational Experiments 38

4.1 Instance Generation . 38

4.1.1 Processing and Setup Times . 38

4.1.2 Objective Function . 39

4.1.3 Planning Horizon Length . 40

4.1.4 Instance Configuration . 40

4.2 Experiments on the Clique Template Cover Generation Algorithm 40

4.2.1 Clique Template Cover Generation Algorithm - Phase 1 40

4.2.2 Clique Template Cover Generation Algorithm - Phase 2 42

4.3 Comparison with Existing Time-Indexed Models 44

4.4 Experiments on the Restricted Time-Indexed Models 47

Chapter 5 Conclusion 49

Appendix 51

iv

A.1 Processing and setup time generation . 51

A.2 Due date generation . 53

A.3 Planning horizon length generation . 54

Bibliography 55

국문초록 59

감사의 글 60

v

List of Tables

Table 2.1 Notation for the conflict graph . 11

Table 2.2 Notation for clique representation . 14

Table 3.1 Notation for bounds on Ui − Li . 25

Table 4.1 Computation time and size of the resulting clique template cover

from Phase 1 of CTCGA . 41

Table 4.2 Computation time of Phase 2 of CTCGA 43

Table 4.3 Comparison between time-indexed models 45

Table 4.4 The number of constraints in restricted time-indexed models 47

vi

List of Figures

Figure 1.1 Feasible schedule of a 3-job instance 2

Figure 2.1 Conflict graph for a two-job instance with Sij = 2 and Sji = 3 . . . 11

Figure 3.1 4-job example of CTCGA . 22

Figure 3.2 2-job example of clique association in the restricted model 35

vii

Chapter 1

Introduction

1.1 Background

Scheduling is the decision-making of allocating resources to jobs over a specified planning

horizon. It arises in various domains, including manufacturing, production, information

processing, transportation, and service systems (Pinedo, 2022). Effective scheduling can

have a significant impact; for instance, after implementing a new scheduling method,

Dell Inc. increased its production volume by 35% and saved over $1 million annually

(Loveland et al., 2007). For comprehensive coverage of scheduling theories, algorithms,

models, performance analyses and practical systems, see Leung (2004) and Pinedo (2022).

Setup time refers to the time required to prepare a resource so that it can start the next

job (Allahverdi, 2015). A setup time is called sequence-dependent if its duration depends

on both the preceding and succeeding jobs. Numerous real-world scheduling problems

involve sequence-dependent setup times, such as those in production (Kress et al., 2019)

and assembly (Kuo et al., 2020) systems. Consequently, sequence-dependent setup times

have been explicitly studied since the mid-1960s. Studies on scheduling problems with

sequence-dependent setup times conducted from the mid-1960s to the end of 2014 are

summarized in comprehensive survey papers (Allahverdi, 2015; Allahverdi et al., 1999,

2008).

1

In this thesis, we address the single machine scheduling problem with sequence-dependent

setup times. The problem is formally described as follows:

A set of jobs J = {1, 2, . . . , n} and a single machine are given. Once a job i ∈ J begins

processing, it occupies the machine for its entire processing time pi. After a job i is com-

pleted, the machine requires a sequence-dependent setup time sij before starting the next

job j.

The decision is to make a schedule for the single machine that meets the following two

requirements:

1. Assignment Constraint: Every job in J must be processed by the machine exactly

once.

2. Capacity Constraint: The machine can perform only one task—either processing

or setup—at any given time.

The objective is to minimize the cost associated with the schedule. An example of a

schedule that respects both the assignment and capacity constraints for the problem with

J = {i, j, k} is illustrated in Figure 1.1.

Figure 1.1: Feasible schedule of a 3-job instance

When sequence-dependent setup times are explicitly considered, even single machine

2

scheduling problems are NP-hard for most objective functions. For example, minimizing

the sum of completion times is NP-hard (Rinnooy Kan, 1976), even though it can be

solved in polynomial time when sequence-dependent setup times are not considered (Smith

et al., 1956). Consequently, heuristic approaches have been predominantly proposed for

scheduling problems with sequence-dependent setup times (Allahverdi, 2015). However,

heuristic designs often heavily exploit the specific characteristics of the problem, which

can limit their applicability or effectiveness if the objective function changes or additional

constraints are introduced. For example, the highly effective heuristic proposed introduced

by Lin and Kernighan (1973) for the symmetric traveling salesman problem—which is

equivalent to the single machine scheduling problem with symmetric setup times and

a makespan objective—cannot be applied when the objective function changes or when

setup times become asymmetric. Furthermore, schedules obtained using heuristics offer no

guarantee regarding their solution quality.

On the other hand, mixed-integer linear programming (MILP) models offer the follow-

ing strengths:

1. The optimal solutions provided by these models guarantee global optimality.

2. A single MILP model can be used to formulate various scheduling problems. Dif-

ferent objectives and additional specifications may be incorporated into the model

by adjusting cost coefficients and adding constraints. Furthermore, parallel machine

scheduling problems may be formulated based on MILP models for the single ma-

chine scheduling problems.

Given these advantages, several MILP models for the single machine scheduling prob-

lem have been proposed (Nogueira et al., 2019; Güngör, 2025). Among these MILP models,

3

we focus on so-called time-indexed models in this thesis. A time-indexed model represents

a schedule with binary decision variables of the form xit, where i ∈ J and t is an integer.

xit is equal to 1 if the job i begins at the time t, 0 otherwise. For example, the schedule

shown in Figure 1.1, where jobs i, j, and k start at times 0, 5, and 14 respectively, is rep-

resented by setting the decision variables xi0, xj5, and xk14 to 1, with all other variables

set to 0.

The time-indexed models offer the following strengths:

1. They can handle any objective function that involves the sum of job-wise costs

depending on the completion times of jobs, by simply adjusting the objective function

coefficients.

2. They can efficiently incorporate constraints such as release dates, deadlines, and

fixed machine downtimes by simply excluding the corresponding decision variables

from the model.

In this thesis, we make the following assumptions to ensure the validity of a time-

indexed model as an optimization framework:

1. Triangle Inequality Assumption: A job cannot start earlier by inserting an inter-

mediate job between itself and the previous job. Formally, this implies sij+pj+sjk ≥

sik for all mutually distinct job triples (i, j, k).

2. Integer-Valued Parameters: All parameter values are integers. This guarantees

that every start time in an optimal schedule is also integer-valued, ensuring that a

time-indexed model can describe an optimal solution.

3. Job-Wise Cost Functions: The cost function of an instance can be expressed as

the sum of job-wise costs, where job i incurs a cost cit if it starts at time t. Common

4

objective functions in the literature, such as the sum of (weighted) completion times,

tardiness and earliness-tardiness, fall into this category.

1.2 Literature Review

We review previous studies dealing with the time-indexed models for the single machine

scheduling problem in this section.

1.2.1 Time-Indexed Model for the Single Machine Scheduling Problem

with No Setup Times

A time-indexed model for the single machine scheduling problem was first proposed by

Dyer and Wolsey (1990), in a setting where no setup times exist. After the proposal,

several polyhedral studies about the model were conducted. Sousa and Wolsey (1992)

derived valid inequalities of the model, by relaxing the scheduling problem as a binary

knapsack problem with generalized upper bounds. Crama and Spieksma (1996) studied

the model where processing times of jobs are all equal. Van den Akker et al. (1999) provided

all facet-defining inequalities with integral coefficients and right-hand sides of 1 or 2 for

the convex hull of the set of feasible schedules. The study showed that the inequalities can

further tighten the linear programming (LP) relaxation bound of the model.

Computational experiments on the model reported the following findings (Sousa and

Wolsey, 1992; Van den Akker et al., 1999):

1. The model yields very strong LP relaxation bounds across various objective func-

tions.

2. Solving the model is computationally challenging due to its large size.

5

To overcome the computational burden, several solution approaches based on the time-

indexed model were developed. Van den Akker et al. (2000) applied Dantzig-Wolfe decom-

position to the model, demonstrating that this approach can compute the LP relaxation

bound significantly faster than directly solving the LP relaxation. Bigras et al. (2008) pro-

posed an approach to obtain a dual bound more quickly by dividing the planning horizon

into subperiods and allowing job processing to be interrupted. This method significantly

enhances computational efficiency while incurring only a minor loss in bound quality com-

pared to the LP relaxation bound. Avella et al. (2005) applied Lagrangian relaxation to

enable fast dual bound computation.

1.2.2 Time-Indexed Model for the Single Machine Scheduling Problem

with Sequence-Dependent Setup Times

When sequence-dependent setup times are absent, the capacity constraint’s ideal formu-

lation—one that precisely describes the convex hull of all feasible solutions—is known.

However, with the introduction of sequence-dependent setup times, the ideal formulation

remains undiscovered.

This challenge has resulted in comparatively fewer studies on time-indexed models for

single machine scheduling problems with sequence-dependent setup times. For example,

Sun et al. (1999) and de Paula et al. (2010) employed a time-indexed model that formulates

the capacity constraint using O(n2) constraints per unit time. The size is notably large

compared to the case without sequence-dependent setup times, as the ideal formulation

requires only a single constraint per unit time.

Worsening the situation, computational results from Nogueira et al. (2019) demon-

strate that the LP relaxation bound of this O(n2)-constraint model is much weaker than

6

the LP relaxation bound of the time-indexed model without setup times. This weaker

bound negates one of the primary advantages of using a time-indexed model. In response,

the study proposed new valid inequalities and provided computational evidence that in-

corporating these inequalities effectively tightens the LP relaxation bound.

Avella et al. (2017) proposed another time-indexed model that avoided using the O(n2)

constraints per unit time. Instead, their model incorporated constraints that generalized

the valid inequalities proposed by Nogueira et al. (2019). The constraints to include in

the model was selected greedily by solving an integer linear program. Their computational

results demonstrated that their model outperformed the one proposed by Nogueira et al.

(2019) on the runway scheduling problem instances they tested.

1.3 Motivation and Contributions

When sequence-dependent setup times are absent, the time-indexed model for the single

machine scheduling problem is known to yield strong LP relaxation bounds. However, it

remains computationally challenging to solve due to its large size. The biggest weakness

becomes even worse when sequence-dependent setup times are introduced, as they further

increase the model size.

To mitigate the computational burden, an effective time-indexed model should:

1. Be formulated with a small number of constraints to reduce the time required to

solve the LP relaxation.

2. Yield strong LP relaxation bounds to minimize the depth of the branch-and-bound

tree.

In this thesis, we propose a novel time-indexed model for the single machine schedul-

7

ing problem with sequence-dependent setup times that achieves these two goals. The con-

straints in the model are constructed using a two-phase algorithm: the first phase addresses

the first objective, while the second phase focuses on the second objective.

Through computational experiments, we demonstrate that the construction algorithm

is computationally efficient for moderately sized instances. Furthermore, we show that

the proposed time-indexed model improves upon previously proposed formulations in the

literature with respect to the number of constraints, the computation time required to

solve the LP relaxation, and the resulting LP relaxation bound.

A practical approach to reducing the model size is to exclude some decision variables

from the original time-indexed model, thereby restricting the start times of jobs. To fur-

ther reduce the model size, we propose a restricted time-indexed model that excludes

specific constraints from the original model while preserving its validity. This approach is

tailored to the time-indexed model introduced in this thesis. Computational experiments

demonstrate that the proposed method effectively reduces the number of constraints in

the restricted model.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 addresses the formulation

of time-indexed models and derives a generic framework. This generic model includes the

time-indexed models proposed in the literature as well as the novel model introduced in

this thesis as specific instances. Chapter 3 presents the algorithm for constructing the novel

time-indexed model and details the development of a restricted time-indexed model based

on the novel model. Chapter 4 presents the computational results, including the evaluation

of the construction algorithm, the performance comparison of the proposed time-indexed

8

model with existing models in the literature, and the assessment of the restricted model.

Finally, Chapter 5 provides concluding remarks and outlines directions for future research.

9

Chapter 2

Generic Time-Indexed Model for Single Machine
Scheduling Problem with Sequence-Dependent Setup
Times

2.1 Formulation of Time-Indexed Model

In a valid time-indexed model for the single machine scheduling problem with sequence-

dependent setup time, the assignment constraint and the capacity constraint must be

ensured by including constraints in the model. Among these two requirements, the assign-

ment constraint is straightforwardly formulated with n constraints:

H−pi∑
t=0

xit = 1, ∀i ∈ J. (2.1)

Each constraint in (2.1) ensures that a job in J is scheduled exactly once. Here, H repre-

sents the length of the planning horizon.

Enforcing the capacity constraint implies that for every distinct job pair i, j, job j

cannot start until pi + sij time units after the start time of job i. For brevity, we define

Sij := pi + sij , ∀i, j ∈ J, i 6= j.

10

2.1.1 Conflict Graph

To explain formulation of the capacity constraint in a time-indexed model, we introduce

an undirected graph (V, E), referred to as the conflict graph.

Each node in V corresponds to a decision variable in the time-indexed model. An edge

in E is drawn between two nodes if assigning the value 1 to both corresponding decision

variables violates either the assignment constraint or the capacity constraint. We denote

by EA and EC the subsets of E corresponding to violations of the assignment constraint

and the capacity constraint, respectively. The symbols and their formal definitions for the

conflict graph (V, E) are provided in Table 2.1.

Table 2.1: Notation for the conflict graph

Symbol Definition

V {(i, t) ∈ J × Z | 0 ≤ t ≤ H − pi}
EA {((i, r), (i, s)) | (i, r), (i, s) ∈ V, r 6= s}
EC {((i, r), (j, s)) | (i, r), (j, s) ∈ V, i 6= j, −Sji < s− r < Sij}
E EA ∪ EC

Figure 2.1 illustrates the conflict graph for a 2-job instance where Sij = 2 and Sji =

3. Subfigure (a) highlights all edges in E connected to a node (i, 3), with dashed arcs

representing edges in EA and solid arcs representing edges in EC . Subfigure (b) depicts the

conflict graph for this instance.

Figure 2.1: Conflict graph for a two-job instance with Sij = 2 and Sji = 3

11

2.1.2 Clique of the Conflict Graph

A key insight in formulating the capacity constraint is that a schedule derived from a 0-1

solution of a time-indexed model violates this constraint precisely when there exists an

edge in EC for which both corresponding decision variables are assigned the value 1.

In a time-indexed model, a constraint is said to cover an edge in EC if it ensures that

the decision variables corresponding to the endpoints of that edge cannot both be equal

to 1. Therefore, enforcing the capacity constraint is equivalent to covering all edges in EC

with such constraints. This can be achieved by including the constraints

xir + xjs ≤ 1, ∀((i, r), (j, s)) ∈ EC ,

where each constraint covers a single edge in EC . However, a more compact and stronger

formulation can be obtained by employing clique inequalities.

A clique is a set of nodes in which every pair of nodes is connected by an edge. For

instance, in Figure 2.1 (b), the set {(i, 0), (i, 1), (j, 0), (j, 1)} forms a clique.

Let c be a clique of the conflict graph (V, E). By definition, no two decision variables

corresponding to nodes in c can both be equal to 1 in a feasible solution. Therefore, at

most one decision variable xit corresponding to an element (i, t) ∈ c can be equal to 1.

This leads to the following valid inequality for time-indexed models:

∑
(i,t)∈c

xit ≤ 1, (2.2)

which is known as the clique inequality associated with c. Note that the clique inequality

(2.2) covers all edges in EC where both endpoints belong to c.

12

To derive clique inequalities for inclusion in a time-indexed model, we analyze the

structure of cliques in the conflict graph (V, E) using the following two propositions.

Proposition 2.1. Let c ⊆ V, and define Li := min{t | (i, t) ∈ c} and Ui := max{t |

(i, t) ∈ c} for each i ∈ Jc := {i ∈ J | ∃ t such that (i, t) ∈ c}. Then, c is a clique in the

conflict graph (V, E) if and only if Uj − Li < Sij for all distinct i, j ∈ Jc.

Proof. (⇒) Consider any two distinct jobs i, j ∈ Jc. By definition, (i, Li), (j, Uj) ∈ c. Since

c is a clique, the edge ((i, Li), (j, Uj)) must belong to EC , which implies that Uj−Li < Sij .

(⇐) Let (i, r), (j, s) be any two distinct elements in c. If i = j, ((i, r), (j, s)) ∈ EA. If i 6= j,

−Sji < Lj − Ui ≤ s− r ≤ Uj − Li < Sij implies ((i, r), (j, s)) ∈ EC .

Proposition 2.2. Let c1, c2 ⊆ V such that c1 ⊆ c2. Then, the clique inequality associ-

ated with c2 dominates the clique inequality associated with c1, provided that all decision

variables are nonnegative.

Proof. Given
∑

(i,t)∈c2 xit ≤ 1,∑
(i,t)∈c1 xit ≤

∑
(i,t)∈c1 xit +

∑
(i,t)∈c2\c1 xit =

∑
(i,t)∈c2 xit ≤ 1.

Let c be a clique in the conflict graph (V, E), and let Jc, Li and Ui be defined as in

Proposition 2.1. According to Proposition 2.1, the node set

{(i, t) ∈ V | i ∈ Jc, Li ≤ t ≤ Ui} (2.3)

forms a clique. Among cliques sharing the same Jc, Li, Ui values, we can focus solely

on the clique (2.3), as larger cliques in terms of inclusion are preferable according to

Proposition 2.2. Consequently, every clique can be fully characterized by these values.

Table 2.2 presents additional notation to represent cliques based on this observation.

13

Table 2.2: Notation for clique representation

Symbol Definition

S(L,U) {(i, t) ∈ J × Z | Li ≤ t ≤ Ui}
J(L,U) {i ∈ J | Li ≤ Ui}
C(L,U) S(L,U) ∩ V.

Throughout this thesis, L and U denote n-dimensional integer vectors, with their i-th

components represented as Li and Ui, respectively. The set S(L,U) comprises all (i, t)

pairs, where i is a job, and t is an integer time index satisfying Li ≤ t ≤ Ui. J(L,U)

represents the set of jobs i for which Li ≤ Ui, ensuring the existence of at least one time

index t such that (i, t) ∈ S(L,U). The set C(L,U) is the intersection of S(L,U) with V.

We say that S(L,U) defines a clique if Uj − Li < Sij for all distinct job pairs i, j ∈

J(L,U). This is because, by Proposition 2.1, C(L,U) forms a clique in the conflict graph

(V, E) whenever S(L,U) satisfies this condition.

2.2 Generic Time-Indexed Model

In this section, we introduce a generic time-indexed model that extends existing formula-

tions in the literature (Dyer and Wolsey, 1990; Avella et al., 2017; Nogueira et al., 2019).

The model employs a strategy of constructing clique inequalities to cover all edges in

EC , thereby ensuring its validity. A key feature of this approach is its independence from

the planning horizon length, which significantly reduces the complexity of the formula-

tion process. This independence is achieved by leveraging the fact that every edge in the

conflict graph is determined solely by job indices and the time differences between the

nodes defining the edge, rather than their absolute time values. Consequently, shifting all

elements of a clique by the same arbitrary amount of time results in another clique. This

14

property is formalized in the following proposition. Throughout this thesis, we denote by

1 an n-dimensional vector with all components equal to 1.

Proposition 2.3. If S(L,U) defines a clique, then S(L+ t1, U + t1) also defines a clique

for all t ∈ Z.

Proof. Let S(L,U) define a clique and t ∈ Z. By definition, J(L,U) = J(L+ t1, U + t1).

For all distinct jobs i, j ∈ J(L+ t1, U + t1),

(Uj + t)− (Li + t) = Uj − Li < Sij ,

since S(L,U) defines a clique.

Based on this observation, we introduce the concept of a clique template, which is a

collection of node sets obtained by time translations of a node set that defines a clique.

The formal definition is as follows:

Definition 2.4. Let S(L,U) define a clique. Then, the clique template T (L,U) is defined

as:

T (L,U) := {S(L+ t1, U + t1) | t ∈ Z} .

Note that a clique template is invariant under time translation; that is, T (L,U) =

T (L+ t1, U + t1) for all t ∈ Z.

Assume that a set S(L,U) that defines a clique contains both (i, 0) and (j, r). Then

S(L+ t1, U + t1) clearly contains both (i, t) and (j, r+ t). This implies that every edge in

EC that can be expressed in the form ((i, t), (j, r+ t)) can be covered by a clique inequality

induced from an element of the clique template T (L,U).

15

Every edge in EC can be represented in the form ((i, t), (j, r + t)), where i and j are

distinct jobs, and r is an integer such that −Sji < r < Sij . Therefore, if a set of clique

templates includes a clique template T (L,U) where S(L,U) includes both (i, 0) and (j, r)

for all such triplets (i, j, r), then every edge in EC can be covered by a clique inequality

induced from an element of this set. We refer to such a set as a clique template cover,

which is formally defined as follows:

Definition 2.5. A set of clique templates F is a clique template cover if and only if for

every triplet (i, j, r), where i and j are distinct jobs and r ∈ Z satisfies −Sji < r < Sij,

there exists a T (L,U) ∈ F such that Lj − Ui ≤ r ≤ Uj − Li.

Based on these concepts, we present the generic time-indexed model. The generic model

is instantiated with a clique template cover F . A valid time-indexed model is constructed

using F by including clique inequalities induced from the clique templates in F , spanning

the entire planning horizon. The model is formulated as follows:

TI(F) : minimize
∑

(i,t)∈V

citxit

subject to

H−pi∑
t=0

xit = 1, ∀i ∈ J, (2.4)

∑
(i,r)∈C(L+t1,U+t1)

xir ≤ 1, ∀(L,U, t) ∈ P, (2.5)

xit ∈ {0, 1}, ∀(i, t) ∈ V,

where P := {(L,U, t) | T (L,U) ∈ F, t ∈
⋃

i∈J(L,U)

[−Ui, H − pi − Li] ∩ Z}.

In this model, the assignment constraint is ensured by (2.4), while the capacity constraint

16

is enforced by (2.5).

We prove that TI(F) is a valid time-indexed model for the single machine scheduling

problem with sequence-dependent setup times.

Proposition 2.6. Let F be a clique template cover. Then TI(F) is a valid time-indexed

model.

Proof. We only need to show that for every ((i, r), (j, s)) ∈ EC , there exists a clique

C(L + t1, U + t1) such that (L,U, t) ∈ P and {(i, r), (j, s)} ⊆ C(L + t1, U + t1). By

definition of clique template cover, there exists a clique template T (L,U) ∈ F where

Lj−Ui ≤ s−r ≤ Uj−Li. Therefore, there exist integers r∗ and s∗ such that Li ≤ r∗ ≤ Ui,

Lj ≤ s∗ ≤ Uj and s∗− r∗ = s− r. Since 0 ≤ r ≤ T − pi and Li ≤ r∗ ≤ Ui, −Ui ≤ r− r∗ ≤

T −pi−Li. Therefore, (L,U, r− r∗) ∈ P and C(L+ (r− r∗)1, U + (r− r∗)1) is the desired

clique.

2.3 Time-Indexed Models in the Literature

In this section, we describe two time-indexed models proposed in the literature. Both mod-

els are instances of the generic time-indexed model introduced in Section 2.2. Therefore,

it suffices to provide the clique template covers they employ.

The first model is the one introduced in Nogueira et al. (2019). The clique template

cover they employ includes n(n−1)+1 clique templates. For every distinct job pair i, j ∈ J ,

clique template T (Lij , U ij) where

J(Lij , U ij) = {i, j}, Lij
i = U ij

i = 0, Lij
j = −Sji + 1, U ij

j = Sij − 1

is included in the clique template cover. Since every edge in EC connecting nodes corre-

17

sponding to jobs i and j is covered by including clique inequalities derived from T (Lij , U ij),

the set {
T (Lij , U ij) | i, j ∈ J, i 6= j

}
(2.6)

forms a clique template cover.

In addition to the n(n− 1) clique templates, a single clique template T (L,U) defined

as

(Li, Ui) =

(
max

j∈J\{i}
{−Sij + 1}, 0

)
, ∀i ∈ J (2.7)

is included in the clique template cover. This clique template ensures that J(L,U) = J

and that all components of U are equal. The components of L are chosen to be as small

as possible while satisfying the clique condition. This clique template is included in the

clique template cover (2.6). We refer to the model based on this clique template cover as

Nogueira, named after the first author of Nogueira et al. (2019).

In the second model, introduced by Avella et al. (2017), each element in the clique

template cover is completely characterized by a subset of jobs J∗ ⊆ J . For a given J∗ ⊆ J ,

the L and U values in the corresponding clique template T (L,U) are defined as:

J(L,U) = J∗, (Li, Ui) =

(
max

j∈J∗\{i}
{−Sij + 1}, 0

)
, ∀i ∈ J∗.

The L and U values are constructed similarly to (2.7), with all U values set equal and

L values chosen to be as small as possible while satisfying the clique condition.

The subset J∗ is sequentially selected by solving an integer program, and the corre-

sponding clique template is added to the set of clique templates. This process is repeated

until the set of clique templates forms a clique template cover. Additionally, a clique-

18

enlarging algorithm proposed by Kopf and Ruhe (1987) is applied to each element in the

clique template cover. Specifically, a clique template T (L,U) is replaced by T (L∗, U∗),

where S(L,U) ⊆ S(L∗, U∗). This model is referred to as Avella, named after the first

author of Avella et al. (2017).

19

Chapter 3

A Novel Time-Indexed Model and Its Restricted
Variant

3.1 A Novel Time-Indexed Model

In this section, we propose a novel time-indexed model that is an instance of the generic

time-indexed model. Consequently, the modeling task is reduced to constructing a clique

template cover. Before explaining the construction process, we introduce the core idea

behind the characteristics of the clique templates included in the clique template cover.

Definition 2.5 indicates that constructing a clique template cover requires considering

all (i, j, r) triplets, where i and j are distinct jobs, and the integer r representing the

time difference ranges from −Sji + 1 to Sij − 1. Since the range of r is pseudo-polynomial,

exhaustively considering all such triplets can be computationally intensive, especially when

processing and setup times are large.

To address this issue, we construct a clique template cover such that for every un-

ordered distinct job pair (i, j), all edges in EC connecting job i and j are covered by clique

inequalities derived from a single clique template. We say that such a clique template

covers the job pair (i, j). The formal definition, expressed in terms of L and U , is as

follows:

Definition 3.1. Let i and j be distinct jobs. A clique template T (L,U) is said to cover

20

the job pair (i, j) if (L,U) satisfies the followings:

• {i, j} ⊆ J(L,U),

• Uj − Li = Sij − 1,

• Ui − Lj = Sji − 1.

Two primary objectives are considered in the construction process of the clique tem-

plate cover:

1. The resulting time-indexed model includes a small number of constraints, to reduce

the computational time required to solve the LP relaxation.

2. The resulting time-indexed model yields a strong LP relaxation bound, to minimize

the depth of the branch-and-bound tree.

To achieve these objectives, we propose a two-phase algorithm for constructing a clique

template cover, referred to as the clique template cover generation algorithm (CTCGA).

Each phase of the algorithm is briefly explained below, accompanied by an illustrative

example in Figure 3.1.

21

Figure 3.1: 4-job example of CTCGA

• Phase 1: Partitioning job pairs

In the first phase, the set of all distinct unordered job pairs is partitioned. For

instance, in the case of 4 jobs, there are 6 =
(
4
2

)
distinct unordered job pairs, which

are divided into three partitions. Each partition corresponds to a clique template that

covers all the job pairs it contains. Since reducing the number of constraints in the

generic time-indexed model is equivalent to reducing the size of the clique template

cover, the first phase aims to minimize the number of partitions by including as many

job pairs as possible in each partition. The inclusion is performed while ensuring the

existence of a clique template that covers all the job pairs in the partition.

• Phase 2: Constructing clique templates

In the second phase, a clique template is constructed for each partition created in the

first phase. Additionally, a single clique template, not required to cover any specific

job pair, is generated to enhance the LP relaxation bound. During the construction

22

of clique templates, the algorithm aims to maximize clique sizes while satisfying

coverage conditions to tighten the LP relaxation bound.

3.1.1 Clique Template Cover Generation Algorithm - Phase 1

In the first phase of CTCGA, the algorithm determines which job pairs will be covered by

the same clique template. These job pairs are selected such that a single job consistently

appears in every pair. For instance, in the example depicted in Figure 3.1, the first partition

{(i, j), (i, k), (i, l)} includes a job i in every pair. As a result, deciding which job pairs are

covered by the same clique template reduces to selecting a common job and a set of jobs

to pair with it. For example, the set {(i, j), (i, k), (i, l)} can be equivalently represented as

(i, {j, k, l}). Using this notation, for a job i and a set of jobs J∗ ⊆ J \ {i}, we say that a

clique template covers (i, J∗) if it covers (i, j) for every job j ∈ J∗.

For the remainder of this section, we fix a job i and aim to determine a set of jobs

J∗ ⊆ J \ {i} to pair with i. While selecting a larger J∗ is desirable for minimizing the size

of the clique template cover, J∗ cannot be chosen arbitrarily, as a clique template that

covers (i, J∗) may not exist.

The key idea in detecting the existence of a clique template T (L,U) that covers (i, J∗)

is that the jobs in J∗ impose both lower and upper bounds on the value of Ui − Li.

First, we address the upper bound of Ui − Li imposed by a job in J∗.

Proposition 3.2. If T (L,U) covers (i, j), then Ui − Li ≤ Sij + Sji − 2.

Proof. Since T (L,U) covers (i, j), we have:

Uj − Li = Sij − 1, Ui − Lj = Sji − 1, and Uj − Lj ≥ 0.

23

Thus:

Ui − Li = (Lj + Sji − 1)− (Uj − Sij + 1) = −(Uj − Lj) + (Sij + Sji − 2) ≤ Sij + Sji − 2.

Next, we derive the lower bound of Ui − Li. Unlike the upper bound, it is imposed by

two jobs in J∗.

Proposition 3.3. Let i, k, l be mutually distinct jobs. If T (L,U) covers (i, {k, l}), then

Ui − Li ≥ max{Ski + Sil − Skl − 1, Sli + Sik − Slk − 1}.

Proof. Since T (L,U) covers both (i, k) and (i, l), we have

Ui − Li = (Lk + Ski − 1)− (Ul − Sil + 1) = −(Ul − Lk) + (Ski + Sil − 2).

Since Ul − Lk ≤ Skl − 1, it follows:

Ui − Li ≥ Ski + Sil − Skl − 1.

By symmetry, swapping k and l, we also get

Ui − Li ≥ Sli + Sik − Slk − 1.

If the upper bound on Ui − Li imposed by a job j is smaller than the lower bound

24

imposed by jobs k and l, it is impossible for any clique template to cover (i, {j, k, l}). To

resolve this, either k or l is excluded from J∗, prioritizing the exclusion of the job that

imposes higher upper bound on Ui − Li.

The following table summarizes the relevant bounds and provides corresponding nota-

tion that aligns with this strategy.

Table 3.1: Notation for bounds on Ui − Li

Symbol Definition

UBi(j) Sij + Sji − 2

Ji The list of elements in J \ {i}, sorted in ascending order of UBi(·)
LBi(k) max

{
Ski + Sil − Skl − 1, Sli + Sik − Slk − 1 | l precedes k in Ji

}

Here, UBi(j) denotes the upper bound on Ui−Li due to job j, while LBi(k) indicates

the lower bound due to job k. The exclusion strategy ensures that job k is excluded from

J∗ if UBi(j) < LBi(k) for a job j ∈ J∗.

We provide a pseudo-code of the first phase of CTCGA as follows:

25

Algorithm 1 Clique template cover generation algorithm - phase 1

1: P ← ∅.
2: Sort J in the ascending order of

∑
j∈J\{i}(Sij + Sji) for each i ∈ J .

3: for i ∈ J do
4: Construct Ji.
5: end for
6: for i ∈ J do
7: for a = 2, . . . , n− 1 do
8: k ← a-th element of Ji.
9: LBi(k)← 0.

10: for b = 1, . . . , a− 1 do
11: l← b-th element of Ji.
12: LBi(k)← max{LBi(k), Ski + Sil − Skl − 1, Sli + Sik − Slk − 1}.
13: end for
14: end for
15: end for
16: for i ∈ J do
17: while Ji 6= ∅ do
18: j ← first element of Ji.
19: Delete j from Ji.
20: Delete i from Jj .
21: J∗ ← {j}.
22: for k ∈ Ji do
23: if LBi(k) ≤ UBi(j) then
24: J∗ ← J∗ ∪ {k}.
25: Delete k from Ji.
26: Delete i from Jk.
27: end if
28: end for
29: P ← P ∪ {(i, J∗)}.
30: end while
31: end for
32: return P .

Phase 1 performs two main tasks:

1. Preparation (lines 2–15):

• Line 2: Determines a job sequence for the partitioning task.

26

• Lines 3–5: Constructs the list Ji for every job i ∈ J .

• Lines 6–15: Calculates the lower bound LBi(k) for every distinct job pair

(i, k).

2. Partitioning (lines 16–31):

• In the partitioning task, a partition of all distinct unordered job pairs is con-

structed sequentially. During the task, for each job i, every job k included in Ji

indicates that the job pair (i, k) has not yet been assigned to any partition.

• Lines 16–21: A single job i is fixed, and the first element j of Ji is included in

J∗. Since Ji is sorted in the ascending order of UBi(·), UBi(j) is the smallest

upper bound on Ui − Li.

• Lines 22–28: Iterate through the remaining jobs k ∈ Ji. If the lower bound

LBi(k) is less than or equal to UBi(j), include k in J∗.

We prove the existence of a clique template that covers all job pairs in each partition

returned by the algorithm. The existence ensures the algorithm’s validity.

Proposition 3.4. Let P be the returned set of the first phase of CTCGA. Then, for every

(i, J∗) ∈ P , there exists a clique template that covers (i, J∗) .

Proof. We prove the proposition by constructing vectors L,U ∈ Zn such that T (L,U) is

a clique template that covers (i, J∗). Specifically, we define

J(L,U) = J∗ ∪ {i}, Li = 0, Ui = UBi(j), and

(Lk, Uk) = (Ui − Ski + 1, Li + Sik − 1), ∀k ∈ J∗,

where j is the first element of Ji in the iteration that generated (i, J∗).

27

First, we show that J∗ ∪ {i} ⊆ J(L,U). It is clear that Ui − Li = UBi(j) ≥ 0, and for

each k ∈ J∗:

Uk − Lk =(Li + Sik − 1)− (Ui − Ski + 1) = (0 + Sik − 1)− (UBi(j)− Ski + 1)

=Sik + Ski − UBi(j)− 2 = UBi(k)− UBi(j) ≥ 0,

since j is the first element in Ji, ensuring UBi(k) ≥ UBi(j).

Next, we prove that S(L,U) defines a clique by showing that for every distinct job

pair (k, l) in J(L,U) = J∗ ∪ {i}, Ul − Lk ≤ Skl − 1 holds. For distinct k, l ∈ J(L,U), if

both k, l are elements of J∗,

Ul − Lk = (Li + Sil − 1)− (Ui − Ski + 1)

= (Ski + Sil − Skl − 1)− UBi(j) + (Skl − 1)

≤ max{LBi(k), LBi(l)} − UBi(j) + (Skl − 1)

≤ UBi(j)− UBi(j) + Skl − 1 = Skl − 1.

If k = i or l = i, Ul − Lk ≤ Skl − 1 holds by definition of L,U values. Therefore, S(L,U)

defines a clique.

Finally, T (L,U) covers (i, J∗) by definition of Lk, Uk values for every k in J∗.

The time complexity of Algorithm 1 is O(n3). Sorting jobs (line 2) takes O(n2) time.

Constructing Ji for all i ∈ J (lines 3–5) takes O(n2 log n) time. Calculating LBi(k) for all

distinct job pairs (i, k) (lines 6–15) requires O(n3) time. Lastly, the partitioning process

(lines 16–31) also operates in O(n3) time.

28

3.1.2 Clique Template Cover Generation Algorithm - Phase 2

The second phase of CTCGA constructs clique templates that satisfy the coverage condi-

tions defined in the first phase. Additionally, this phase generates a single, additional clique

template specifically designed to improve the LP relaxation bound, which is included in

the final clique template cover.

To construct a clique template T (L,U) that satisfies the coverage conditions with

large clique size |S(L,U)|, a linear program is solved. Given a job i and a job set J∗, the

solution of this linear program provides a clique template that covers (i, J∗). This program

is referred to as the clique template generating linear program (CTGLP). The formulation

is as follows:

CTGLP(i, J∗) : maximize
∑
j∈J

(uj − lj) (3.1)

subject to uk − lj ≤ Sjk − 1, ∀j, k ∈ J, j 6= k, (3.2)

ui − li ≥ 0, (3.3)

uj − lj ≥ 0, ∀j ∈ J∗, (3.4)

uj − li = Sij − 1, ∀j ∈ J∗, (3.5)

ui − lj = Sji − 1, ∀j ∈ J∗. (3.6)

The linear program CTGLP(i, J∗) has 2n decision variables: lj and uj for each job

j in J . Let (l∗, u∗) be a feasible integral solution of the linear program. The constraints

(3.2) enforce that S(l∗, u∗) defines a clique. The constraints (3.3) and (3.4) ensure that

{i} ∪ J∗ ⊆ J(l∗, u∗). The constraints (3.5) and (3.6) ensure that T (l∗, u∗) covers (i, J∗).

29

The objective (3.1) is to maximize the size of S(l∗, u∗).

We show that an integral optimal solution to CTGLP(i, J∗) can be obtained by solving

the linear program.

Proposition 3.5. Let i ∈ J and J∗ ⊆ J \ {i}. Then there exists an integral optimal

solution of CTGLP (i, J∗), provided it is feasible.

Proof. We first show that the constraint matrix defined by (3.2) - (3.6) is totally unimod-

ular. Each row in the constraint matrix contains at most two nonzero elements, and these

elements are either -1 or 1. Importantly, both -1 and 1 do not appear twice in any row.

Such matrices are known to be totally unimodular (Ghoulia-Houri, 1962). Specifically, the

total unimodularity is ensured because, for any collection of columns selected from this

matrix, the sum of those columns yields a vector with each component equal to -1, 0 or

1. This property confirms that the constraint matrix is totally unimodular.

Since the constraint matrix is totally unimodular and every right-hand side value is

integral, the polyhedron defined by (3.2) - (3.6) is integral. Therefore, the linear program

admits an integral optimal solution if it is feasible.

By Proposition 2.2, including clique inequalities associated with maximal cliques in

the conflict graph is preferable to tighten the LP relaxation bound. For the purpose, we

introduce the concept of maximality for clique templates.

Definition 3.6. A clique template T (L,U) is maximal if and only if the following condi-

tion is satisfied:

If S(L∗, U∗) defines a clique and S(L∗, U∗) ⊇ S(L,U), then S(L∗, U∗) = S(L,U).

A key property of maximal clique templates is that if a clique template T (L,U) is

maximal and S(L + t1, U + t1) ⊆ V, then C(L + t1, U + t1) is a maximal clique in the

30

conflict graph (V, E) for every t ∈ Z. Therefore, incorporating maximal clique inequalities

into a time-indexed model is equivalent to including maximal clique templates in the clique

template cover.

Let (l∗, u∗) be an integral optimal solution of CTGLP(i, J∗). If J(l∗, u∗) = J , then

T (l∗, u∗) is a maximal clique template, as any counterexample would contradict the op-

timality of (l∗, u∗). However, T (l∗, u∗) is not guaranteed to be maximal if J(l∗, u∗) 6= J .

In such cases, a maximal clique template can be obtained by enlarging S(l∗, u∗). Note

that the enlarged clique template still covers (i, J∗). The enlarging algorithm is referred

to as the maximal clique template generation algorithm (MCTGA). The pseudo-code of

the algorithm is as follows:

Algorithm 2 Maximal clique template generation algorithm

1: procedure MCTGA(l∗, u∗)
2: L← l∗, U ← u∗.
3: for i ∈ J(l∗, u∗) do
4: Ui ← minj∈J(l∗,u∗)\{i}{Lj + Sji − 1}.
5: end for
6: for i ∈ J(l∗, u∗) do
7: Li ← minj∈J(l∗,u∗)\{i}{Uj − Sij + 1}.
8: end for
9: return T (L,U).

10: end procedure

We prove that the algorithm returns a maximal clique template if the input to the

algorithm is an integral optimal solution of CTGLP(i, J∗).

Proposition 3.7. Let i ∈ J and J∗ ⊆ J \ {i}. If (l∗, u∗) is an integral optimal solution to

CTGLP(i, J∗), MCTGA(l∗, u∗) returns a maximal clique template.

Proof. Let (l∗, u∗) be an integral optimal solution to CTGLP(i, J∗), and let T (L,U) be

the clique template returned by MCTGA(l∗, u∗). Note that for each job j ∈ J , there exists

31

a job k ∈ J \ {j} such that u∗j = l∗k + Skj − 1; otherwise, uj could be increased while

maintaining the feasibility, contradicting the optimality of (l∗, u∗). Similarly, for each job

j ∈ J , there exists a job k ∈ J \ {j} such that l∗j = u∗k − Sjk + 1.

We show that any set S(L∗, U∗) that strictly includes S(L,U) does not define a clique.

Without loss of generality, let (j, t) ∈ J×Z exists such that (j, t) /∈ S(L,U) and S(L,U)∪

{(j, t)} ⊆ S(L∗, U∗).

Case (i): j ∈ J \ J(l∗, u∗)

Let j1 ∈ J \{j} be a job such that u∗j1 = l∗j +Sjj1−1. If j1 ∈ J(l∗, u∗), (j1, u∗j1) ∈ S(l∗, u∗)

leads t ≥ l∗j . Otherwise, there exists a job j2 such that u∗j2 = l∗j1 + Sj1j2 − 1. This process

continues iteratively until an index m such that jm ∈ J(l∗, u∗) is found. Such m exists

since no job can appear twice in j1, . . . , jm, as l∗j1 < . . . < l∗jm holds. Let j0 := j. Then

u∗jm − l∗j =
∑m

k=1(u
∗
jk
− l∗

jk−1) +
∑m−1

k=1 (l∗k−u∗k) ≥
∑m

k=1(Sjk−1jk − 1) + (m− 1) ≥ Sjjm − 1.

By the constraint ujm − lj ≤ Sjjm − 1 of CTGLP(i, J∗), u∗jm − l∗j must equal Sjjm − 1.

Therefore, it follows that t ≥ l∗j . Similarly, it can be shown that t ≤ u∗j . No such t exists,

since j ∈ J \ J(l∗, u∗) implies l∗j > u∗j .

Case (ii): j ∈ J(l∗, u∗)

Since j ∈ J(l∗, u∗), t must either be smaller than l∗j or greater than u∗j . Consider the

case where t is smaller than l∗j . By the lines 6–8 of the Algorithm 2, there exists a job

k ∈ J(l∗, u∗) such that u∗k = l∗j + Sjk − 1. Therefore, S(L∗, U∗) cannot define a clique, as

U∗k −L∗j ≥ u∗k − t > u∗k − l∗j = Sjk − 1. The case where t > u∗j can be proven similarly.

We denote by CTGLP(∅) the linear program obtained by relaxing the constraints

(3.3)–(3.6) from CTGLP(i, J∗). The linear program returns a maximum-sized set S(l∗, u∗)

that defines a clique if J(l∗, u∗) equals J . Assuming that larger cliques provide a stronger

LP relaxation bound, we include the clique template obtained from the solution of CTGLP(∅)

32

in the clique template cover. Propositions 3.5 and 3.7, which address CTGLP(i, J∗), also

hold for CTGLP(∅) because the same proofs apply.

The pseudo-code for the second phase of CTCGA is as follows:

Algorithm 3 Clique template cover generation algorithm - phase 2

1: F ← ∅.
2: P ← Set of (job, job set) pairs returned by the first phase of CTCGA.
3: P ← P ∪ {∅}.
4: for elem ∈ P do
5: (l∗, u∗)← Optimal integral solution of CTGLP(elem).
6: T (L,U)← MCTGA(l∗, u∗).
7: F ← F ∪ {T (L,U)}.
8: end for
9: return F .

The second phase repeatedly solves a linear program and enlarges a clique template.

As a result, a clique template cover composed of maximal clique templates is constructed.

The second-phase algorithm is valid, as every linear program CTGLP(i, J∗) solved in

the second phase is feasible. The feasibility is guaranteed by Proposition 3.4, which ensures

the existence of a clique template T (L,U) that covers (i, J∗). The L,U values of this clique

template provide a feasible solution to CTGLP(i, J∗).

Finally, an instance of the generic time-indexed model provided in Section 2.2 is con-

structed with the clique template cover returned by CTCGA. The time-indexed model is

referred to as the model Proposed.

3.2 Restricted Time-Indexed Model

The number of decision variables and constraints in any instance of the generic time-

indexed model, including our model proposed in Section 3.1, is pseudo-polynomial. This

large size may render solving the integer program—or even its LP relaxation— compu-

33

tationally challenging. Reducing the model’s size by excluding some decision variables is

a viable strategy to address this challenge. Specifically, in this approach job i can start

processing at time t, where xit remains in the restricted time-indexed model. The restricted

model sacrifices optimality because the optimal solution may no longer be representable

with the included decision variables. However, the potential loss in solution quality may

be acceptable given the computational gains achieved by using the restricted model.

In this section, we propose a restricted time-indexed model based on the novel time-

indexed model presented in Section 3.1. Let {xit | (i, t) ∈ VR} be the set of decision

variables in the restricted model, where VR is an arbitrary subset of V. Formulating the

capacity constraint in the restricted model involves covering all edges in EC where both

endpoints belong to VR. Consequently, the reduced number of edges allows these to be

covered with fewer clique inequalities compared to covering all edges in EC . Leveraging the

properties of the novel model, we develop a method to identify which clique inequalities

from the original model can be excluded in the restricted model while maintaining its

validity. This exclusion enables a further reduction in the model size.

We achieve the identification by associating a set of clique inequalities from the original

model with each decision variable in the original model. This set is constructed to ensure

that excluding a clique inequality preserves the validity of the restricted model, provided

that no decision variable in the restricted model is associated with it.

Let F be the clique template cover returned by CTCGA, and let xir be a decision

variable in the original model. The set of clique inequalities derived from F to be associated

with xir is constructed as follows:

For every job j in J \ {i}, there exists a clique template T (Lij , U ij) in F that covers

the job pair (i, j). We compare the values of U ij
i − L

ij
i and U ij

j − L
ij
j :

34

• Case 1: If U ij
i −L

ij
i ≤ U

ij
j −L

ij
j , associate two cliques derived from T (Lij , U ij) with

xir:

1. Clique 1: Set Li = r.

2. Clique 2: Set Ui = r.

These cliques are uniquely obtained through appropriate time translations of S(Lij , U ij).

• Case 2: If U ij
i − L

ij
i > U ij

j − L
ij
j , no clique derived from T (Lij , U ij) is associated

with xir.

An example of this inclusion is shown in Figure 3.2, which shows two cliques associated

with (i, 3), derived from the clique template that covers (i, j).

Figure 3.2: 2-job example of clique association in the restricted model

We present the restricted time-indexed model based on the exclusion strategy is as

35

follows:

TI(F,VR) : minimize
∑

(i,t)∈VR

citxit

subject to
∑

t:(i,t)∈VR

xit = 1, ∀i ∈ J, (3.7)

∑
(i,t)∈c∩VR

xit ≤ 1, ∀c ∈
⋃

(i,r)∈VR

C(i, r), (3.8)

xit ∈ {0, 1}, ∀(i, t) ∈ VR,

where C(i, r) :=
⋃

j∈J\{i}

{
C(Lij + t1, U ij + t1)

∣∣
U ij
i − L

ij
i ≤ U

ij
j − L

ij
j , t ∈ {r − L

ij
i , r − U

ij
i }
}
.

Here, F is the clique template cover returned by CTCGA, VR is a subset of V, and

T (Lij , U ij) is an element of F that covers (i, j). Constraints (3.7) and (3.8) ensure the

assignment constraint and the capacity constraint, respectively.

We conclude this section by demonstrating the validity of TI(F,VR).

Proposition 3.8. Let F be the clique template cover returned by CTCGA and VR be a

subset of V. Then TI(F,VR) is a valid restricted time-indexed model.

Proof. Let {(i, r), (j, s)} ⊆ VR, where ((i, r), (j, s)) ∈ EC . For the clique template T (Lij , U ij),

either U ij
i −L

ij
i ≤ U

ij
j −L

ij
j or U ij

i −L
ij
i ≥ U

ij
j −L

ij
j holds. Without loss of generality, as-

sume that U ij
i −L

ij
i ≤ U

ij
j −L

ij
j . In this case, {C(Lij +(r−Lij

i)1, U ij +(r−Lij
i)1), C(Lij +

(r − U ij
i)1, U ij + (r − U ij

i)1)} ⊆ C(i, r).

Since ((i, r), (j, s)) ∈ EC , −Sji + 1 ≤ s− r ≤ Sij − 1 holds. Therefore, (s− r) is included in

at least one of the intervals [−Sji + 1, U ij
j −U

ij
i] or [Lij

j −L
ij
i , Sij − 1]. If (s− r) lies within

in the interval [−Sji + 1, U ij
j −U

ij
i], {(i, r), (j, s)} ⊆ C(Lij + (r−Lij

i)1, U ij + (r−Lij
i)1).

36

Otherwise, {(i, r), (j, s)} ⊆ C(Lij + (r − U ij
i)1, U ij + (r − U ij

i)1).

37

Chapter 4

Computational Experiments

This chapter presents the results of the computational experiments conducted to evaluate

the proposed models and algorithms. All algorithms were implemented in C++, and FICO

Xpress v9.2.2 was utilized as the LP/MILP solver. Linear programs were solved using the

barrier algorithm provided by the solver. The experiments were performed on a machine

running Windows 10, equipped with a 64-bit Intel(R) Core(TM) i7-4770S CPU (3.10 GHz)

and 16 GB of RAM.

4.1 Instance Generation

Synthetic instances were generated and tested across all experiments. This section explains

the instance generation process.

4.1.1 Processing and Setup Times

Processing and setup times were generated by an algorithm that takes four parameters:

the number of jobs n, minimum processing time pmin, maximum processing time pmax,

and maximum setup time smax. In the algorithm, for each job i ∈ J , processing time pi

is randomly generated from the uniform distribution U [pmin, pmax]. Once all processing

times are fixed, setup times sij for every distinct job pair (i, j) are assigned sequentially.

38

Initially, each setup time has a lower bound of 0 and an upper bound of smax. Setup times

are selected randomly, one at a time, and fixed to a value within their current bounds,

chosen uniformly at random.

To ensure the triangle inequality assumption, the algorithm adjusts the bounds of

unfixed setup times immediately after a setup time is assigned. For instance, suppose that

Sij has already been fixed to 10. If Sjk is fixed to 15, by the triangle inequality assumption,

Sik ≤ Sij + Sjk = 25 must hold and therefore sik must be less than or equal to 25 − pi.

Therefore, if the upper bound of sik exceeds 25− pi, it is updated to 25− pi at the point

Sjk is just fixed to 15. The pseudo-code of the instance generation algorithm is provided

in Appendix A.1.

4.1.2 Objective Function

The sum of weighted tardiness was used as the objective function for all problem instances.

The objective function requires two parameter values for each job i to set the objective

function coefficient cit: due date di ∈ Z+ and weight wi ∈ Z+. A job i started at time t

incurs a cost of wi max{0, t+ pi − di}. Therefore, the objective function is expressed as:

∑
i∈J

H−pi∑
t=0

wi max{0, t+ pi − di}xit

in a time-indexed model. The due date parameter values were generated using the method

proposed by Lee et al. (1997), with the detailed information provided in Appendix A.2.

All job weights were drawn from the uniform distribution U [1, 10].

39

4.1.3 Planning Horizon Length

The planning horizon length H was set sufficiently large to ensure that every feasible

schedule without idle time could be represented within the model, thereby guaranteeing

its optimality. Detailed methodology for determining H is provided in Appendix A.3.

However, it is important to note that the computational performance reported in this

thesis could be further improved by appropriately reducing the planning horizon length.

Currently, H is significantly larger than the anticipated makespan of an optimal schedule,

which unnecessarily increases the size of the model.

4.1.4 Instance Configuration

In all subsequent experiments, synthetic instances were generated using fixed values for

pmin and pmax, while varying the parameters n and smax. For every combination of (n, smax),

10 instances were generated and tested.

4.2 Experiments on the Clique Template Cover Generation

Algorithm

We present the experimental results of the clique template cover generation algorithm.

Since the algorithm consists of two phases, experiments were conducted separately for

each phase.

4.2.1 Clique Template Cover Generation Algorithm - Phase 1

We evaluated the performance of the first phase of CTCGA by measuring its computation

time and the size of the resulting clique template cover. Although the clique templates are

not explicitly constructed in the first phase, the size of the cover is determined during this

40

phase.

In this experiment, we tested combinations of n ∈ {25, 50, 100, 200, 400} and smax ∈

{25, 50, 75, 100}, with the parameters pmin and pmax fixed to 10 and 50, respectively. The

results are presented in Table 4.1.

Table 4.1: Computation time and size of the resulting clique template cover from Phase 1
of CTCGA

Time (s) Size

n smax Avg. Std. Avg. Std.

25

25 0.0011 0.0008 37.7 1.900
50 0.0011 0.0006 56.2 1.887
75 0.0009 0.0004 63.8 3.341
100 0.0008 0.0001 68.6 3.555

50

25 0.0054 0.0023 86.7 6.165
50 0.0057 0.0027 141.4 3.292
75 0.0059 0.0024 166.0 6.403
100 0.0041 0.0003 179.2 4.833

100

25 0.0289 0.0025 208.2 10.619
50 0.0338 0.0052 344.9 8.455
75 0.0324 0.0048 418.7 7.577
100 0.0281 0.0022 454.6 11.629

200

25 0.2204 0.0294 480.1 18.625
50 0.2157 0.0144 825.6 21.143
75 0.2115 0.0160 1013.0 19.422
100 0.2233 0.0153 1142.0 22.454

400

25 1.7888 0.0753 1059.2 31.799
50 1.7644 0.0476 1940.5 28.654
75 1.7627 0.0387 2455.3 31.922
100 1.7183 0.0376 2836.1 25.225

The computation time remains minimal even with up to 400 jobs, terminating within

2 seconds for all instances. This confirms that the first phase of CTCGA does not impose

a computational burden. As expected from the algorithm’s time complexity O(n3), the

computation time increases with the number of jobs. However, variation in setup times

41

has a negligible impact on the computation time.

The size of resulting clique template cover exhibits a clear growth trend. It generally

increases with the number of jobs and the value of smax. Additionally, the ratio of the size

to the number of jobs shows a gradual increase as the number of jobs grows, indicating

that larger instances require proportionally more clique templates.

4.2.2 Clique Template Cover Generation Algorithm - Phase 2

We report the computation time of the second phase of CTCGA. Since this phase sequen-

tially constructs maximal clique templates, we present both the total computation time

and the average computation time per clique template.

In this experiment, the parameters pmin and pmax were fixed to 10 and 50, respectively.

The number of jobs n varied among {25, 50, 100, 200}, and the maximum setup time smax

varied among {25, 50, 75, 100}. The results are summarized in Table 4.2.

42

Table 4.2: Computation time of Phase 2 of CTCGA

n smax Total Time (s) Average Time (s)

25

25 0.079 0.0022
50 0.126 0.0023
75 0.156 0.0024
100 0.159 0.0023

50

25 0.746 0.0082
50 1.482 0.0106
75 1.664 0.0103
100 1.913 0.0107

100

25 8.076 0.0394
50 14.476 0.0427
75 17.444 0.0420
100 18.940 0.0411

200

25 63.582 0.1340
50 123.548 0.1498
75 155.634 0.1539
100 176.579 0.1555

The average time to construct a maximal clique template increases significantly with

the number of jobs. This escalation is primarily due to the growing number of decision

variables and constraints within CTGLP. However, the construction time appears to be

independent of the smax value, as the setup times only affect the parameter values of the

linear program and not its size.

The total computation time increases sharply with the number of jobs, driven by the

growing number of maximal clique templates to construct and the longer time required

for each construction. Although the results indicate that the computation time is not scal-

able to the number of jobs, they demonstrate that the approach remains computationally

acceptable for moderate-sized instances.

43

4.3 Comparison with Existing Time-Indexed Models

We compared three instances of the generic time-indexed model—Proposed, Nogueira, and

Avella—to demonstrate the effectiveness of our novel time-indexed model relative to those

in the literature. The comparison was conducted using the following three metrics:

1. Size of the clique template cover,

2. Time required to solve the LP relaxation,

3. LP relaxation bound.

In the experiment, if the LP relaxation of a model could not be solved within 3,600

seconds, the solving time and the LP relaxation bound were reported as 3,600 seconds and

0, respectively.

Instances were tested with the following parameters: pmin = 10, pmax = 50, n ∈

{8, 12, 16, 20}, and smax ∈ {25, 50}. The results are summarized in Table 4.3.

44

Table 4.3: Comparison between time-indexed models

Clique Template
Cover Size

LP Solve
Time (s)

LP Relaxation
Bound

(n, smax) Model Avg. Std. Avg. Std. Avg. Std.

(8, 25)
Proposed 8.8 0.600 2.9 0.70 427.560 437.400

Avella 26.7 1.900 3.8 1.54 332.325 401.695
Nogueira 57.0 0.000 5.3 2.00 350.535 379.968

(8, 50)
Proposed 11.3 1.418 10.1 3.45 495.459 339.810

Avella 27.6 1.356 8.2 1.72 329.355 282.835
Nogueira 57.0 0.000 13.3 4.24 338.384 278.595

(12, 25)
Proposed 15.1 0.943 18.9 4.16 381.234 269.439

Avella 55.1 2.385 31.1 7.02 200.051 184.086
Nogueira 133.0 0.000 48.9 12.23 291.938 243.374

(12, 50)
Proposed 19.8 0.980 81.2 22.59 413.271 206.328

Avella 60.4 2.245 104.4 87.60 160.974 153.794
Nogueira 133.0 0.000 122.8 62.83 213.054 146.186

(16, 25)
Proposed 22.1 2.427 82.7 38.42 424.031 310.158

Avella 89.6 2.332 161.4 59.58 181.769 266.449
Nogueira 241.0 0.000 620.1 902.96 352.505 271.436

(16, 50)
Proposed 30.0 1.844 380.8 29.82 396.183 195.661

Avella 100.4 3.072 692.6 975.15 123.077 101.605
Nogueira 241.0 0.000 522.7 206.97 173.895 142.308

(20, 25)
Proposed 29.5 2.156 284.3 212.73 438.112 247.324

Avella 134.1 5.467 919.1 912.50 213.509 185.259
Nogueira 381.0 0.000 1568.0 1050.27 186.156 129.926

(20, 50)
Proposed 40.4 2.332 1744.6 350.83 874.589 407.376

Avella 150.9 4.182 2165.2 635.79 318.019 308.609
Nogueira 381.0 0.000 3116.3 601.58 278.217 324.355

The results for the size of the clique template covers demonstrate that CTCGA con-

structs a clique template cover with significantly fewer clique templates compared to the

models proposed by Avella et al. (2017) and Nogueira et al. (2019). This efficiency is

attributed to the manner in which restrictions are imposed within the clique templates.

In our approach, a single clique template is encouraged to contribute to the sufficient

condition for forming a valid clique template cover, by covering multiple job pairs simul-

45

taneously. To achieve this, the first phase of CTCGA imposes no unnecessary restrictions

on L,U values, except for the necessary condition that S(L,U) must define a clique. In

contrast, the existing models from the literature adopt stricter structural conditions for

their clique templates, thereby limiting their flexibility and effectiveness.

Specifically, in the model Avella, all clique templates must have identical Ui values

for every job i in J(L,U). This restriction diminishes the number of conditions that a

single clique template can satisfy, resulting in a larger clique template cover. Similarly, the

model Nogueira includes n(n− 1) clique templates in its clique template cover, with each

template designed to cover only a single job pair. This approach leads to a significantly

larger clique template cover compared to our method.

In terms of the time required to solve the LP relaxation, the computational results

demonstrate that our proposed model outperforms the other models, especially as the

number of jobs increases. The results underscore the relationship between the size of the

clique template cover and the time taken to solve the LP relaxation.

The results of the LP relaxation bound are particularly impressive, as the proposed

model achieves a much stronger LP relaxation bound compared to the existing models in

the literature, despite having significantly fewer constraints. This superior bound can be

attributed to the fact that all clique templates in our model are derived from the solution

of a linear program aimed at finding the largest clique that satisfies predefined conditions.

Consequently, generating clique inequalities through this approach is highly effective for

constructing a time-indexed model that yields a strong LP relaxation bound.

46

4.4 Experiments on the Restricted Time-Indexed Models

We evaluated the effectiveness of the proposed restricted time-indexed model by generating

multiple restricted models of the same instance, each differing in the set of included decision

variables. Specifically, each restricted model incorporated only those decision variables

whose time indices are multiples of a constant value, referred to as stride.

In this experiment, we evaluated four values of n from the set {8, 12, 16, 20}, while

keeping other parameters fixed: smax = 30, pmin = 5, and pmax = 30. For each value of n,

we formulated four restricted models using stride values of 1, 2, 4, and 8. The experimental

results include the number of constraints in each model and the percentage of constraints

retained relative to the original model (stride = 1). These results are summarized in

Table 4.4.

Table 4.4: The number of constraints in restricted time-indexed models

Number of Constraints Retained Constraints (%)

n Stride Value Avg. Std. Avg. Std.

8

1 3357.5 442.14 1.0000 0.0000
2 2973.2 380.49 0.8867 0.0379
4 2234.7 191.94 0.6704 0.0508
8 1514.5 92.58 0.4574 0.0597

12

1 10 450.0 1022.02 1.0000 0.0000
2 9621.9 851.86 0.9218 0.0253
4 7731.2 497.30 0.7426 0.0407
8 5254.6 317.50 0.5047 0.0233

16

1 20 666.1 1342.73 1.0000 0.0000
2 19 712.7 1389.08 0.9538 0.0201
4 16 518.6 799.41 0.8005 0.0309
8 12 210.2 513.14 0.5924 0.0349

20

1 36 871.5 1896.40 1.0000 0.0000
2 34 527.8 1631.10 0.9368 0.0231
4 29 494.7 1330.05 0.8004 0.0209
8 22 433.5 989.91 0.6089 0.0217

47

The computational results confirm that the restricted model effectively reduces the

number of constraints included in the model while maintaining its validity.

48

Chapter 5

Conclusion

In this thesis, we investigated time-indexed models for the single machine scheduling prob-

lem with sequence-dependent setup times. We proposed a novel time-indexed model based

on the concept of a clique template cover, a concept also adopted by other models in the

literature. The clique template cover that characterizes our model was constructed through

a two-phase algorithm. The first phase focused on reducing the number of constraints in-

cluded in the model, while the second phase aimed to identify strong valid inequalities

to tighten the LP relaxation bound. Computational experiments demonstrated that our

model outperformed models in the literature, in terms of the number of constraints, the

time required to solve the LP relaxation, and the LP relaxation bound.

Additionally, we proposed a restricted time-indexed model, a restricted version of the

novel model, that reduces the number of constraints when only a subset of decision vari-

ables is employed. Computational results showed that the restricted model effectively

reduces the number of constraints while preserving the model’s validity.

Several extensions of this research can be explored. First, investigating the problem of

finding a minimum-sized clique template cover is a potential research direction. Enhancing

the two-phase clique template cover generation algorithm is another avenue for exploration.

For instance, in the first phase, constructing a clique template cover without relying on

49

the notion of covering a job pair could lead to alternative and potentially more effective

approaches. In the second phase, exploring methods for constructing clique templates that

do not require solving a linear program could significantly reduce computational overhead.

Lastly, theoretical or empirical studies on the impact of individual clique templates on the

LP relaxation bound could provide valuable insights.

50

Appendix

A.1 Processing and setup time generation

The pseudo-code for generating processing and setup times for the synthetic instances is

provided in Algorithm 4. Additionally, the pseudo-code for the functions that update the

lower and upper bounds of unfixed setup times after a setup assignment is presented in

Algorithm 5 and 6, respectively.

Algorithm 4 Processing and Setup Time Generation Algorithm

1: procedure Processing and Setup Time Generation(n, pmin, pmax, smax)
2: J ← {1, . . . , n}.
3: for i ∈ J do
4: pi ∼ U [pmin, pmax].
5: end for
6: for i ∈ J do
7: for j ∈ J do
8: Slb[i][j]← pi.
9: Sub[i][j]← pi + smax.
10: end for
11: end for
12: JobPairs← list of all distinct job pairs, randomly sorted.
13: for (i, j) in JobPairs do
14: Sij ∼ U [Slb[i][j], Sub[i][j]].
15: if Sij > Slb[i][j] then
16: Slb[i][j]← Sij .
17: UpdateLB(i, j, Slb, Sub).
18: end if
19: if Sij < Sub[i][j] then
20: Sub[i][j]← Sij .
21: UpdateUB(i, j, Slb, Sub).
22: end if
23: end for
24: end procedure

51

Algorithm 5 Updating lower bound

1: procedure UpdateLB(i, j, Slb, Sub)
2: for k ∈ J \ {i, j} do
3: if Slb[i][j]− Sub[k][j] > Slb[i][k] then
4: Slb[i][k]← Slb[i][j]− Sub[k][j].
5: UpdateLB(i, k, Slb, Sub).
6: end if
7: if Slb[i][j]− Sub[i][k] > Slb[k][j] then
8: Slb[k][j]← Slb[i][j]− Sub[i][k].
9: UpdateLB(k, j, Slb, Sub).
10: end if
11: end for
12: end procedure

Algorithm 6 Updating upper bound

1: procedure UpdateUB(i, j, Slb, Sub)
2: for k ∈ J \ {i, j} do
3: if Sub[i][j] + Sub[j][k] < Sub[i][k] then
4: Sub[i][k]← Sub[i][j] + Sub[j][k].
5: UpdateUB(i, k, Slb, Sub).
6: end if
7: if Slb[i][k]− Sub[i][j] > Slb[j][k] then
8: Slb[j][k]← Slb[i][k]− Sub[i][j].
9: UpdateLB(j, k, Slb, Sub).
10: end if
11: if Slb[k][j]− Sub[i][j] > Slb[k][i] then
12: Slb[k][i]← Slb[k][j]− Sub[i][j].
13: UpdateLB(k, i, Slb, Sub).
14: end if
15: if Sub[k][i] + Sub[i][j] < Sub[k][j] then
16: Sub[k][j]← Sub[k][i] + Sub[i][j].
17: UpdateUB(k, j, Slb, Sub).
18: end if
19: end for
20: end procedure

52

A.2 Due date generation

The distribution of due dates is determined by two parameters: the due date tightness

factor τ and the due date range factor R. For each job i, the due date di is generated as

follows:

di ∼


U [(1−R) · davg, davg] with probability τ,

U [davg, (1 +R · τ

1− τ
) · davg] with probability 1− τ,

where davg = (1− τ) ·n · (pmin + pmax) + 0.3 · smax

2
. For all instances, τ = 0.3 and R = 0.3

were applied.

53

A.3 Planning horizon length generation

The maximum makespan of feasible schedules without idle time can be obtained by solving

an asymmetric traveling salesman problem (ATSP). The set of cities for the ATSP is

defined as J0 := J ∪ {0}, where 0 represents a dummy job that precedes the first job

and follows the last job, enabling the construction of a tour from a schedule. For each job

i ∈ J , we define S0i = 0 and Si0 = pi.

The decision variable yij is defined for all distinct i, j ∈ J0 and takes the value 1 if job

j immediately follows job i and 0 otherwise. The planning horizon length H was set to an

upper bound on the optimal cost of the ATSP, which is obtained by relaxing the subtour

elimination constraints. The model is formulated as follows:

H = maximize
∑

i,j∈J0,i 6=j

Sijyij

subject to
∑

j∈J0\{i}

yij = 1, i ∈ J0,

∑
i∈J0\{j}

yij = 1, j ∈ J0,

yij ∈ {0, 1}, i, j ∈ J0, i 6= j.

54

Bibliography

A. Allahverdi, “The third comprehensive survey on scheduling problems with setup

times/costs,” European Journal of Operational Research, vol. 246, no. 2, pp. 345–378,

2015.

A. Allahverdi, J. N. Gupta, and T. Aldowaisan, “A review of scheduling research involving

setup considerations,” Omega, vol. 27, no. 2, pp. 219–239, 1999.

A. Allahverdi, C. T. Ng, T. E. Cheng, and M. Y. Kovalyov, “A survey of scheduling

problems with setup times or costs,” European Journal of Operational Research, vol.

187, no. 3, pp. 985–1032, 2008.

P. Avella, M. Boccia, and B. D’Auria, “Near-optimal solutions of large-scale single-machine

scheduling problems,” INFORMS Journal on Computing, vol. 17, no. 2, pp. 183–191,

2005.

P. Avella, M. Boccia, C. Mannino, and I. Vasilyev, “Time-indexed formulations for the

runway scheduling problem,” Transportation Science, vol. 51, no. 4, pp. 1196–1209, 2017.

L.-P. Bigras, M. Gamache, and G. Savard, “Time-indexed formulations and the total

weighted tardiness problem,” INFORMS Journal on Computing, vol. 20, no. 1, pp. 133–

142, 2008.

55

Y. Crama and F. C. Spieksma, “Scheduling jobs of equal length: complexity, facets and

computational results,” Mathematical Programming, vol. 72, pp. 207–227, 1996.

M. R. de Paula, G. R. Mateus, and M. G. Ravetti, “A non-delayed relax-and-cut algorithm

for scheduling problems with parallel machines, due dates and sequence-dependent setup

times,” Computers & Operations Research, vol. 37, no. 5, pp. 938–949, 2010.

M. E. Dyer and L. A. Wolsey, “Formulating the single machine sequencing problem with

release dates as a mixed integer program,” Discrete Applied Mathematics, vol. 26, no.

2-3, pp. 255–270, 1990.

A. Ghoulia-Houri, “Characterisation des matrices totalement unimodulaires,” CR

Acad/Sci. Paris, vol. 254, pp. 1192–1194, 1962.

M. Güngör, “Classification and comparison of integer programming formulations for the

single-machine sequencing problem,” Computers & Operations Research, vol. 173, p.

106844, 2025.

R. Kopf and G. Ruhe, “A computational study of the weighted independent set problem

for general graphs.” Found. Control Eng., vol. 12, no. 4, pp. 167–180, 1987.

D. Kress, D. Müller, and J. Nossack, “A worker constrained flexible job shop scheduling

problem with sequence-dependent setup times,” OR Spectrum, vol. 41, pp. 179–217,

2019.

Y. Kuo, S.-I. Chen, and Y.-H. Yeh, “Single machine scheduling with sequence-dependent

setup times and delayed precedence constraints,” Operational Research, vol. 20, pp.

927–942, 2020.

56

Y. H. Lee, K. Bhaskaran, and M. Pinedo, “A heuristic to minimize the total weighted

tardiness with sequence-dependent setups,” IIE transactions, vol. 29, no. 1, pp. 45–52,

1997.

J. Y. Leung, Handbook of scheduling: algorithms, models, and performance analysis. Chap-

man and Hall/CRC, 2004.

S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman

problem,” Operations Research, vol. 21, no. 2, pp. 498–516, 1973.

J. L. Loveland, S. K. Monkman, and D. J. Morrice, “Dell uses a new production-scheduling

algorithm to accommodate increased product variety,” Interfaces, vol. 37, no. 3, pp. 209–

219, 2007.

T. H. Nogueira, C. R. V. d. Carvalho, M. G. Ravetti, and M. C. d. Souza, “Analysis of

mixed integer programming formulations for single machine scheduling problems with

sequence dependent setup times and release dates,” Pesquisa Operacional, vol. 39, pp.

109–154, 2019.

M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 6th ed. Springer, 2022.

A. H. Rinnooy Kan, “Machine scheduling problems: classification, complexity and com-

putations,” (No Title), 1976.

W. E. Smith et al., “Various optimizers for single-stage production,” Naval Research Lo-

gistics Quarterly, vol. 3, no. 1-2, pp. 59–66, 1956.

J. P. Sousa and L. A. Wolsey, “A time indexed formulation of non-preemptive single

machine scheduling problems,” Mathematical Programming, vol. 54, pp. 353–367, 1992.

57

X. Sun, J. S. Noble, and C. M. Klein, “Single-machine scheduling with sequence dependent

setup to minimize total weighted squared tardiness,” IIE Transactions, vol. 31, no. 2,

pp. 113–124, 1999.

J. Van den Akker, C. Van Hoesel, and M. W. Savelsbergh, “A polyhedral approach to

single-machine scheduling problems,” Mathematical Programming, vol. 85, pp. 541–572,

1999.

J. Van den Akker, C. A. Hurkens, and M. W. Savelsbergh, “Time-indexed formulations for

machine scheduling problems: Column generation,” INFORMS Journal on Computing,

vol. 12, no. 2, pp. 111–124, 2000.

58

국문초록

본 논문에서는 순서 의존적 작업준비시간을 가지는 단일 기계 일정계획 문제를 푸는 시간-

인덱스 모형을 다룬다. 작업준비시간이 없는 경우에는 설비의 용량 제약에 대한 이상적인

모형화가 알려져 있는데, 순서 의존적 작업준비시간이 존재하는 경우에는 이러한 모형화가

아직 알려져 있지 않다. 시간-인덱스 모형의 큰 크기로 인한 계산 부담을 해결하기 위해서는

적은 수의 강한 제약식들로 설비의 용량 제약을 모형화하는 것이 필수적이다.

이를 위해 용량 제약을 모형화하기 위한 두 단계 알고리즘을 제안한다. 첫 번째 단계에서

는 시간-인덱스 모형에 포함될 제약식 수를 줄이고, 두 번째 단계에서는 모형의 선형완화경계

값을 강화시키기 위한 제약식들을 구축한다. 계산 실험을 통해 제안된 새로운 시간-인덱스

모형이 기존 문헌의 모형들보다 훨씬 더 작은 모델 크기를 가지며 훨씬 더 좋은 선형완화경계

값을 더 빠르게 얻을 수 있음을 확인하였다.

추가적으로, 결정 변수의 부분 집합만을 사용할 때 적용 가능한 제한된 시간-인덱스 모

형을 소개한다. 이 모형은 모형의 유효성을 유지하면서 제외할 수 있는 제약식을 식별하여

모형의 크기를 더욱 줄인다. 이 제한된 모형이 제약식의 수를 효과적으로 줄임을 실험적으로

확인하였다.

주요어: 단일 기계 일정계획 문제, 순서 의존적 작업준비시간, 시간-인덱스 모형, 시간-인덱스

모형화

학번: 2023-22551

59

감사의 글

이 학위논문을 마무리하며, 이 논문을 완성할 수 있도록 도와주신 분들께 깊은 감사를 전하

고자 합니다.

먼저, 학위 과정 동안 지도와 격려를 아끼지 않으신 이경식 교수님께 진심으로 감사드

립니다. 교수님의 가르침이 연구자로서, 또 인간으로서 성장하는 데 큰 도움이 되었습니다.

특히,학업과연구에온전히집중할수있는환경을마련해주신교수님의배려와헌신에깊이

감사드립니다. 이 은혜는 반드시 보답하겠습니다.

또한, 바쁜 일정 중에도 이 논문을 심사해 주시고 귀중한 조언을 아끼지 않으신 문일경

교수님과 홍성필 교수님께도 진심으로 감사의 말씀을 드립니다.

연구실에서 함께한 종헌 선배님, 준영 선배님, 세영 선배님, 성원 선배님, 호진이 형, 학용

선배님, 영주 선배님, 우석이, 예빈이, 민규에게도 고마움을 전합니다. 여러분과 함께하며 많

은것을배우고성장할수있었던것은제게큰행운이었습니다.긴시간이흘러도여러분들의

동료로 남아있고 싶습니다.

끝으로,언제나아낌없는사랑과응원을보내주신부모님께깊은감사의마음을전합니다.

지금까지 베풀어 주신 사랑의 절반만이라도 되돌려드릴 수 있도록 부단히 노력하겠습니다.

존경하고 사랑합니다, 아버지, 어머니.

60

	Chapter 1 Introduction
	1.1 Background
	1.2 Literature Review
	1.2.1 Time-Indexed Model for the Single Machine Scheduling Problem with No Setup Times
	1.2.2 Time-Indexed Model for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times
	1.3 Motivation and Contributions
	1.4 Organization of the Thesis
	Chapter 2 Generic Time-Indexed Model for Single Machine Scheduling Problem with Sequence-Dependent Setup Times
	2.1 Formulation of Time-Indexed Model
	2.1.1 Conflict Graph
	2.1.2 Clique of the Conflict Graph
	2.2 Generic Time-Indexed Model
	2.3 Time-Indexed Models in the Literature
	Chapter 3 A Novel Time-Indexed Model and Its Restricted Variant
	3.1 A Novel Time-Indexed Model
	3.1.1 Clique Template Cover Generation Algorithm - Phase 1
	3.1.2 Clique Template Cover Generation Algorithm - Phase 2
	3.2 Restricted Time-Indexed Model
	Chapter 4 Computational Experiments
	4.1 Instance Generation
	4.1.1 Processing and Setup Times
	4.1.2 Objective Function
	4.1.3 Planning Horizon Length
	4.1.4 Instance Configuration
	4.2 Experiments on the Clique Template Cover Generation Algorithm
	4.2.1 Clique Template Cover Generation Algorithm - Phase 1
	4.2.2 Clique Template Cover Generation Algorithm - Phase 2
	4.3 Comparison with Existing Time-Indexed Models
	4.4 Experiments on the Restricted Time-Indexed Models
	Chapter 5 Conclusion
	Appendix
	A.1 Processing and setup time generation
	A.2 Due date generation
	A.3 Planning horizon length generation
	Bibliography
	국문초록
	감사의 글

<startpage>10
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 5
1.2.1 Time-Indexed Model for the Single Machine Scheduling Problem with No Setup Times 5
1.2.2 Time-Indexed Model for the Single Machine Scheduling Problem with Sequence-Dependent Setup Times 6
1.3 Motivation and Contributions 7
1.4 Organization of the Thesis 8
Chapter 2 Generic Time-Indexed Model for Single Machine Scheduling Problem with Sequence-Dependent Setup Times 10
2.1 Formulation of Time-Indexed Model 10
2.1.1 Conflict Graph 11
2.1.2 Clique of the Conflict Graph 12
2.2 Generic Time-Indexed Model 14
2.3 Time-Indexed Models in the Literature 17
Chapter 3 A Novel Time-Indexed Model and Its Restricted Variant 20
3.1 A Novel Time-Indexed Model 20
3.1.1 Clique Template Cover Generation Algorithm - Phase 1 23
3.1.2 Clique Template Cover Generation Algorithm - Phase 2 29
3.2 Restricted Time-Indexed Model 33
Chapter 4 Computational Experiments 38
4.1 Instance Generation 38
4.1.1 Processing and Setup Times 38
4.1.2 Objective Function 39
4.1.3 Planning Horizon Length 40
4.1.4 Instance Configuration 40
4.2 Experiments on the Clique Template Cover Generation Algorithm 40
4.2.1 Clique Template Cover Generation Algorithm - Phase 1 40
4.2.2 Clique Template Cover Generation Algorithm - Phase 2 42
4.3 Comparison with Existing Time-Indexed Models 44
4.4 Experiments on the Restricted Time-Indexed Models 47
Chapter 5 Conclusion 49
Appendix 51
A.1 Processing and setup time generation 51
A.2 Due date generation 53
A.3 Planning horizon length generation 54
Bibliography 55
국문초록 59
감사의 글 60
</body>

