
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

  

공학석사 학위논문 

 

뉴로모픽 컴퓨팅을 위한 아날로그  

시냅스 소자로써의 금속 산화물 기반의 

전기화학 메모리 구조 최적화 

 

Structure optimization of metal oxide based  

electrochemical memory as an analog synaptic device  

for neuromorphic computing 

 

 

2022 년  2 월 

 

 

서울대학교 대학원 

기계공학부 

류 다 길 



 

  

뉴로모픽 컴퓨팅을 위한 아날로그  

시냅스 소자로써의 금속 산화물 기반의 

전기화학 메모리 구조 최적화 

 

Structure optimization of metal oxide based 

electrochemical memory as an analog synaptic device 

for neuromorphic computing 
 

지도 교수  이 윤 석 

 

이 논문을 공학석사 학위논문으로 제출함 

2021 년   10 월 

 

서울대학교 대학원 

기계공학부 

류 다 길 

 

류 다 길의 공학석사 학위논문을 인준함 

 2021 년   12 월 

 

위 원 장       최     만     수   (인) 

부위원장       이     윤     석   (인) 

위    원       신     용     대   (인) 

위    원       석사는 삭제        (인)  석사는



 

 i 

Abstract 

 
Despite the success of artificial intelligence(AI) technology, 

training deep neural networks(DNNs) through computation 

intensive algorithms is time consuming and high energy consuming. 

To achieve massive parallel vector-matrix-multiplication(VMM) 

calculation and energy efficient DNN learning, cross point array 

with nonvolatile memory(NVM) analog synaptic device has been 

studied. However, these devices have non-ideal synaptic 

characteristics due to the limitation of the operating mechanism or 

material properties. CMOS compatible metal oxide based analog 

synaptic device with ideal analog synaptic characteristics has been 

studied and operating mechanism has been reported. In this paper, 

through dimension and structure change based on reported 

operating mechanism of the metal oxide based analog synaptic 

device, nonvolatile and artificial synaptic characteristics are 

investigated and optimized. Slow ion diffusion through depth 

changes the average channel conductance, so thinner channel is 

required for symmetric programming. Programming is occurred 

under the gated region and field-driven migration acts speed 

limiting factor, so vertical structure is required for small 

programming energy. The effect of channel thickness and structure 

on performance was studied.  

 

Keyword : Nonvolatile memory, Neuromorphic computing, 

Electrochemical memory, Ionic conduction, Transition metal oxide, 

Structure optimization 
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Chapter 1. Introduction 
 

 

1.1. Study Background 
 

Recently, artificial intelligence(AI) technology innovation is 

taking place through an increase in the amount of data that can be 

collected online and a large-scale demonstration on the cloud, and 

accordingly, interest in AI is rapidly increasing.[1] There are many 

AI learning algorithms, and in particular, learning deep neural 

networks(DNNs) through back-propagation algorithms has 

achieved great success in fields such as image recognition and 

natural language processing.[2]  

However, DNNs consist of fully connected neurons of multi 

layers(Figure 1). The back-propagation algorithm for training 

DNNs consists of numerous vector matrix multiplication(VMM) 

operations, and the von-Neumann structure such as the existing 

GPU-based hardware accelerator is a structure in which the 

memory unit and the processing unit are separated, so a bottleneck 

occurs during operation. Learning is time consuming and requires a 

lot of computing resources and computing power(Figure 2 a, b).[3]  

Therefore, various methods for accelerating the computation 

speed have been studied. Structure that mimics the brain has been 

studied that cross-point array structure where synaptic devices 

are at the cross point(Figure 2 c). Among them, the use of 

nonvolatile memory(NVM) devices has been studied. Because NVM 

has a multi-level conductance state, creating a cross-point array 

with NVM and learn the conductance value of the NVM 

corresponding to the weight value of the DNN, processing and store 

are performed in one device, and parallel weight update is 

possible.[4-10] As a result, time and power consumption are reduced. 

As NVM candidates, various devices such as resistive 

memory(RRAM)[11-14], phase change memory(PCM)[15-17], 

conductive bridge memory(CBRAM)[11, 18], ferroelectric-based 

memory[19-21], and field-effect transistor(FET)-based memory[22, 
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23] were studied. These devices, however, have degrade DNN 

learning accuracy because of non-ideal synaptic device 

characteristics such as non-linear and asymmetry conductance 

response states, small step number of conductance levels, limited 

endurance and device to device variation of the NVM device. 

In order to overcome these limitations, electrochemical 

memory(ECRAM) has been proposed as a synaptic device candidate 

in a cross-point array. ECRAM is a redox transistor device with a 

three-terminal structure, and ‘read’ and ‘write’ operations are 

decoupled. The conductance of the channel is read by applying 

voltage to source and drain and measuring current and changed 

through electrochemical reaction by applying voltage to the gate. 

Decoupled nature enables low energy switching and better 

endurance while maintaining non-volatility. Furthermore, the 

electrochemically driven redox reaction can be precisely and 

reversibly controlled through the amount of charge through the gate, 

resulting symmetric switching conductance state. 

Previously studied ECRAM devices especially cation(i.e. proton 

and lithium ion) based have shown CMOS non-compatible and 

unstable operations.[24,25] Although lithium ion based ECRAM 

devices are widely studied owing to well-known material and 

operating mechanism of battery, CMOS non-compatible, the 

formation of lithium dendrites and open circuit voltage are critical 

challenges to make neuromorphic system on a chip. In contrast, 

metal oxide based ECRAMs are CMOS compatible and can be mass 

produced in the semiconductor production line.[26-29] 

In previous study, the mechanism of metal oxide based ECRAM 

has been investigated.[29] The ionic current under gated region 

causes oxygen vacancy to move through the electrolyte layer, 

changing the stoichiometry of the channel material. The 

programming dynamics are modeled that electric field driven ion 

migration through electrolyte and free ion diffusion within the 

channel. In addition, ion diffusion within the channel is not lateral, 

but in the depth direction. Field-driven migration works as a speed 

limiting factor in programming. 
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Here, structure optimization was carried out based on the 

working principle found in previous studies. Slow ion diffusion 

through depth changes the average channel conductance, so thinner 

channel is required for symmetric programming. Programming is 

occurred under the gated region and field-driven migration acts 

speed limiting factor, so vertical structure is required for small 

programming energy. Vertical structure has advantages in scaling. 

 

 

Figure 1. Deep neural network with MNIST dataset inputs, two 

hidden layers, and 10 outputs.[30] 
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Figure 2. (a)Comparison of brain and von Neumann architecture 

conventional memories, (b)Schematic of conventional von Neumann 

architecture that structure that memory unit and processing unit are 

separated, (c)Schematic of in-memory neuromorphic computing 

that cross-point array structure where synaptic devices are at the 

cross point.[31] 
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1.2. DNN learning algorithm 
 

The artificial neural network consists of an input layer that 

receives signals, a hidden layer through which data from the input 

layer flows, and an output layer that outputs results. The hidden 

layer may be composed of one or multiple layers, and the one 

composed of multiple hidden layers is called a deep neural network. 

In artificial neural networks, different weigh values are used to 

pass data to the next layer with different weights. The goal of 

learning neural network is to reduce error values by optimizing 

weight values. Therefore, the neural network is updated by 

modifying the weight values in the direction of reducing the error 

values. The process of learning DNNs is as follows: 1) feed forward 

update and 2) back propagation. 

In feed forward update, it passes through each layer from the 

input layer, repeats VMMs that multiply and sum the weights, and 

the process of passing through the activation function, as follows:  

 

 

 

(1) 

  (2) 

 

where, , , , , and f are output neuron(before activated), 

weight, input neuron, bias value of  layer and  layer of 

DNN, and activation function, respectively. The activation function f 

can be sigmoid, hyperbolic tangent, softmax, ReLU, etc. 

Error values are calculated at the end of feed forward update. 

The errors between the output value and target value are calculated 

by the error function, as follows: 

 

 
 

 

(3) 

 

where w, b, N, target and output are the vector of weights, the 

vector of bias values, total number of layers, the vector of desired 

outputs and the vector of outputs of the network, respectively. 
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Next, in the back propagation step, based on the calculated 

error function, the update is performed in the direction of reducing 

the errors. A simple algorithm that gradient descent has been 

performed to find out weight and bias values minimizing the errors. 

It finds the slope of the function, moving it continuously toward the 

lower absolute value of the slope, and repeating it until it reaches 

the minimum value. By using gradient descent algorithm to back 

propagation step, the error function reaches to the minimum value 

and weights and biases are updated as followed: 

 

 
  

(4) 

 

 

(5) 

 

Where  is learning rate. Since the updates are performed 

using the chain rule, it is sequentially reversed when updating. 

When updating, the weight between the outermost output and the 

hidden layer is changed in order, so it is called back propagation.  

The weights and bias of the same layer are updated as a single 

vector-matrix multiplication. For convenience of calculation, let 

consider bias as the last term of weights. The error at the output 

layer, , and the error at the  layer, , are as followed: 

 

 

 

(6) 

 

 

(7) 

 

The error for any layer can be computed by combining equation 

(6) and (7). From these error values, the gradient of error function 

can be obtained as: 

 

 

 

(8) 

 

Then, the weights are updated with learning rate  as follows: 
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The update of weights can be expressed as vector-vector 

outer product operation: 

 

 
 

(10) 

 

In back propagation step, in each layer, the total number of 

multiplications are , with neglecting derivative calculation 

process. The  and  is the number of neurons in  layer 

and the number of neurons in  layer. In DNNs, it is 

computationally intensive task and consumes lots of computing 

power and time consuming.  

When the use of a crossbar array with synaptic device at the 

cross point can dramatically reduce computation time and power 

consumption. The weights are stored as the conductance of the 

device, the VMM is accelerated by Kirchhoff's law, and the OPU is 

performed according to a stochastic parallel update scheme(Figure 

3 a-c). Since the operation is done in memory, it is energy-

efficient and parallel operation is possible with one order of time 

complexity. 

 

 
 

(11) 

 
 

(12) 

 

There are several important synaptic device characteristics that 

number of states, linearity, symmetry, weight update variation and 

programming power.  
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Figure 3. Weight matrix in neural network corresponds to the 

conductance matrix of cross point array with synaptic devices 

(a)Part of the DNN where  layer and  layer, each 

consists of m neurons and n neurons, (b)VMM can be conducted by 

applying voltage pulses to the rows and reading the current outputs 

in the columns, (c)Half voltage selection scheme for massive 

parallel programming[29] 

 

 

1.3. Purpose of study 
 

Here, we proceed with structural optimization to improve 

properties based on the investigated mechanism of operation of the 

metal oxide-based ECRAM. Specifically, the asymmetry property 

occurs because free ion diffusion within the channel occurs slowly 

in the depth direction and changes the channel conductance. To 

improve this, we propose a device with a thin channel. It has been 

demonstrated by simulation that the symmetry property improves 

as the channel thickness decreases. Also, the programming voltage 

is very large with potentiation 8V and depression -6V, and since 

the source and drain are on the same plane, there is a problem that 

the cell size becomes large when it is made into an array. To solve 

this, a device with a new structure is required. It has been 

experimentally proven to have advantages in terms of scaling and 

energy efficiency by fabricating device with a new structure, 

vertical structure. 
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Chapter 2. Experiment 
 

 

2.1. Deposition of metal oxide 
 

Metal oxide based ECRAM consists of three metal oxide layers 

that channel, electrolyte, and reservoir, respectively. As a channel 

material, transition metal oxide is mainly used whose conductance 

changes according to the cation oxidation number. Tungsten oxide 

was selected as the channel material as it is dramatic conductance 

changing n-type semiconductor.  

Since the device operates at room temperature, material with 

good room temperature ionic conductivity is used as the electrolyte. 

HfO2 was selected as electrolyte material whose intrinsic defects 

determine programming characteristics. 

 

2.1.1. Deposition of channel 

The WOx films were deposited by reactive sputtering with 

varying Ar to O2 ratio using 3” pure metal tungsten(99.99%) 

target. Reactive sputtering was conducted under fixed 5 x 10-6 

Torr base pressure, 20 sccm Ar flow rate, 3.3 sccm O2 flow rate, 

10mTorr working pressure and 150 W RF power. Pre-sputtering 

before deposition was performed for deposition under constant 

conditions by removing target surface contamination including oxide. 

 

2.1.2. Deposition of electrolyte 

The HfO2 films were deposited by ALD with TEMAHf Hf-

precursor and H2O oxidant. The use of H2O reactant, lowing 

processing chamber temperature to 150oC, is effective in improving 

oxygen ion conductivity due to the oxygen defect stoichiometry 

compared to ozone reactant. 
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2.2. Electrical measurement of thin films 
 

2.2.1. Thickness of thin films 

Thickness of thin films were measured by SEM or Bruker 

Dektak XT-A surface profiler. Thin films were deposited on Si 

substrate. 

 

2.2.2. Conductivity measurement 

The measurement thin film samples were deposited on SiO2 

surface. The sheet resistance was measured at 4-point probe. 

Conductivity can be calculated from the measured sheet resistance 

as follows:  

 

 

 

(13) 

 

2.2.3. Ionic conductivity measurement 

The ionic conductivity was measured by Electrochemical 

impedance spectroscopy(EIS) measurement. EIS measurement 

sample was fabricated with vertically stacked Au / electrolyte / Au 

on SiO2 substrate. Trough-plane EIS measurement was conducted 

on the hot plate in the dry room. The frequency range of applied AC 

voltage was from 7 MHz to 10 mHz and the temperature range was 

RT, 100, 150, 200, 250 oC. The equivalent circuit model to fit the 

measured data was shown in Figure 4. The fitting process is 

conducted by Z Fit of Bio Logic EC LAB. 

 

 

Figure 4. The equivalent circuit model with ionic and electronic 

resistance.[32] 
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2.2.4. Surface uniformity 

The measurement thin film samples were deposited on Si 

surface. Atomic force microscope(AFM) was used to measure the 

surface uniformity of the thin film sample. 

 

 

 

2.3. Hole fabrication 
 

In the vertical structure device, the process of hole etch and 

deposition on the hole sidewall was added. Establishing an optimized 

hole fabrication process was needed because processes with poor 

step coverage such as sputtering and evaporation were used when 

fabrication devices. 

 

2.3.1. Hole etch 

SF6 was selected as the etchant gas to etch the metal line and 

the inter layer dielectric at the same time. Hole etch process was 

conducted under 750 W ICP power, 100 W RF power, 20 sccm SF6 

flow rate, 20 sccm N2 flow rate and 10 mTorr working pressure. 

 

2.3.2. Hole sidewall deposition 

Due to the linearity deposition nature of sputtering and 

evaporation, deposition is less on the sidewall than on the surface. 

It is necessary to check the thickness to establish the vertical 

structure device fabrication process 

 

 

2.4. Device fabrication 
 

Devices were fabricated by conventional CMOS-compatible 

processes including photolithography, sputtering, evaporation, ALD, 

PECVD, dry etch and wet etch. Channel, all of metal lines and 

reservoir layers were patterned by conventional photolithography 

and lift off process. Especially, lift off process performed with 
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LOR/AZ5214 photoresist bilayer to adjusting photoresist shape to 

form an undercut. 

 

2.4.1. Thin channel device 

Figure 5 shows the whole fabrication process flow of thin 

channel device. First, WOx channel was deposited by reactive 

sputtering on the Si substrate with 90 nm thickness thermal grown 

silicon oxide layer. The thickness of channel was splited by 5, 10, 

15nm and the dimension was 100 x 100 um2. Followed by the 

deposition of metal line was sputtered tungsten. ALD was used to 

deposit 10.5 nm thickness HfO2 layer. Evaporation was used to 

deposit 60 nm thickness MoO3 layer, 20 nm thickness Ti layer and 

30 nm thickness Au layer. Gate geometry was non-overlapped with 

source and drain. The dimension of gate was 90 um x 100, 50 and 

25 um. To contact with source and drain, HfO2 layer on contact pad 

area was wet etched. 

 

 

Figure 5. Fabrication process of thin film device 

 

2.4.2. Vertical structure device 

Figure 6 shows the whole fabrication process flow of vertical 

structure device. First, 1 um SiO2 insulating layer was deposited by 
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PECVD on the Si substrate. W metal line as source deposition was 

sputtered followed by the deposition of 100 nm silicon oxide inter 

layer dielectric layer was deposited by PECVD. W metal line as 

drain deposition was sputtered followed by the deposition of 100 

nm silicon oxide inter layer dielectric layer was deposited by 

PECVD again. Hole etch was performed to define area for post-

processing. After hole etch, WOx channel was deposited by reactive 

sputtering on hole sidewall. HfO2 was deposited by ALD. 

Evaporation was used to deposit MoO3 and Au. The adhesion layer 

Ti between MoO3 and Au was deposited by sputtering. HfO2 layer 

on contact pad was wet etched to contact with source and drain. 

  

 

Figure 6. Fabrication process of vertical structure device 
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2.5. Electrical measurement of device 
 

All electrical measurements were conducted by Keithley 

4200A-SCS parameter analyzer or Keithley 2450 SourceMeter.  
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Chapter 3. Results and Discussion 
 

 

3.1. Material properties of metal oxide 
 

3.1.1. Tungsten oxide films by reactive sputtering 

Since the tungsten oxide films of 15nm or less were deposited 

by sputtering, AFM was performed to check surface uniformity. 

The root mean square values of surface roughness of 5 nm, 10nm, 

and 15 nm thin films are 140.994, 179.054, and 137.716 pm each.  

 

 

Figure 7. Surface roughness of (a)5 nm thin film, (b)10 nm thin film, 

and (c)15 nm thin film 

 

3.1.2. Hafnia film by ALD 

HfO2 deposited with H2O oxidant has an activation energy of 

0.46 eV and has an 1.63 x 10-13 Scm-1 room temperature ionic 

conductivity value when obtained by extrapolating EIS 

measurement(Figure 8). Compared to the HfO2 with ozone 

oxidant(activation energy of 0.66 eV and has an 1.64x10-14 Scm-1 

room temperature ionic conductivity), the ionic conductivity is 

improved 10 times. 
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Figure 8. EIS measurements of the HfO2 film. From four 

temperature points, the activation energy and ionic conductivity at 

room temperature can be estimated. 

 

 

3.2. Hole structure 
 

When 50, 100, 200 nm films were deposited by sputtering on 

horizontal surface, less than 20 nm, 25 nm, 85 nm were deposited 

on the sidewall surface each(Figure 9). 

 

 

Figure 9. The hole sidewall deposition with horizontal deposition 
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thickness of (a)50 nm, (b)100 nm and (c)200nm, (d)The relation 

between sidewall deposition with horizontal deposition. 

 

 

3.3. Thin channel device  
 

3.3.1. Diffusion simulation of channel thickness 

In metal oxide based ECRAM, oxygen ions that have passed 

through the electrolyte layer move through free ion diffusion within 

the channel. At this time, ion diffusion occurs in the channel region 

below the gate region, and an oxygen ion concentration gradient 

occurs along the depth direction of the channel. 

These are the results of simulations considering the diffusion in 

the channel and stoichiometry distribution according to the channel 

depth over time when a constant voltage bias is applied to the gate. 

At this time, in the case of a 15 nm channel device, it was confirmed 

that when the conductance was calculated by integrating the 

conductivity with the thickness, the hysteresis in the G-Q graph 

was shown, that is, the same as the actual measured value. The 

reason for hysteresis can be inferred by looking at the simulation 

results. From the very beginning of potentiation, a saturated 

conductive layer exists at the interface with the electrolyte, and it 

propagates deeper as time goes on. In the depression, the interface 

becomes sharply insulating, but the conductance decreases slowly 

because the depth of the channel is still conductive. This is a source 

of hysteresis and is expected to cause asymmetry in 

programming.[29] 

Intra-channel diffusion simulations and G-Q graphs were 

calculated for devices with 10 nm and 5 nm channels, which are 

thinner than the conventional 15 nm(Figure 10). As a result, as the 

channel thickness decreased, the hysteresis in the G-Q graph 

decreased(Figure 11). The hysteresis in the G-Q graph means that 

even with the same ion charge, different conductance values can be 

obtained due to the vertical distribution of ions, which greatly 

affects the asymmetry. Therefore, it can be inferred from the 
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simulation results that the asymmetry decreases with a thinner 

channel. 

 

Figure 10. Diffusion simulation of oxygen ion diffusion along the 

channel depth of (a)15 nm channel device, (b)10 nm channel device, 

(c)5 nm channel device with diffusivity, D = 5×10-21 cm2/s.  
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Figure 11. Channel conductance and ionic charge relation from the 

diffusion simulation (a)15 nm channel device, (b)10 nm channel 

device, (c)5 nm channel device 

 

 

3.4. Vertical structure device 
 

3.4.1. Programming characteristics 

Since the vertical structure device has separate source and 

drain layers, the cell size can be reduced from the existing 12F2 to 

4F2. In addition, channel volume scaling can be easily performed 

because the channel length is determined by the ILD thickness, not 

the photolithography resolution. A decrease in channel volume 

means a decrease in Qion, and thus a decrease in programming 

energy. Also, since it has the same structure as VNAND, it is 

possible to stack one layer and then stack it again. Cell density can 

be easily increased through stacking. Also, since the gate is in the 

form of a shell located in the center, there is an advantage in terms 

of programming energy. Unlike the planar type, the electric field 

concentration occurs in the central part. This has the effect of 

reducing the programming voltage. As a result, programming energy 

is reduced. Figure 12 shows low voltage programmable. It had 

achieved +1 V, -1 V programming voltage. Also it had 500 

potentiation, depression conductance states and achieved endurance 

105 times. 
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Figure 12. Programming characteristic of vertical structure device. 

(a)Low voltage programming, (b)Endurance of 105 pulses.  
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Chapter 4. Conclusion 
 

 

In this paper, two structural approaches have been studied for 

performance improvement through device structure optimization. It 

is a method to take advantage in terms of symmetry by reducing the 

ion diffusion effect in the depth direction in the channel by making 

the channel thin, and a method to take advantage in terms of scaling 

and energy efficiency by making the channel vertical. To fabricate a 

thin channel device, the surface uniformity of the thin film was 

checked, and to fabricate a vertical device, the hole structure and 

sidewall deposition were checked. As a result of device channel 

diffusion simulation, it was confirmed that the hysteresis decreased 

as the channel became thinner, and it was confirmed that it has an 

advantage in terms of scaling as a result of manufacturing and 

measuring vertical structure devices and in terms of energy 

efficiency through low voltage programming. 
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초록 

 
인공 지능(AI) 기술의 성공에도 불구하고 연산 집약적 알고리즘을 

통한 심층 신경망(DNN) 교육은 시간과 에너지를 많이 소모합니다. 

대규모 병렬 벡터 행렬 곱셈(VMM) 계산 및 에너지 효율적인 DNN 

학습을 달성하기 위해 비휘발성 메모리(NVM) 아날로그 시냅스 장치를 

사용한 교차점 배열이 연구되었습니다. 그러나 이러한 장치는 작동 

메커니즘이나 재료 특성의 제한으로 인해 이상적이지 않은 시냅스 

특성을 가지고 있습니다. 이상적인 아날로그 시냅스 특성을 가진 CMOS 

호환 금속 산화물 기반 아날로그 시냅스 소자가 연구되고 작동 

메커니즘이 보고되었습니다. 본 논문에서는 보고된 금속 산화물 기반 

아날로그 시냅스 소자의 작동 메커니즘을 기반으로 치수 및 구조 변경을 

통해 비휘발성 및 인공 시냅스 특성을 조사하고 최적화합니다. 깊이를 

통한 느린 이온 확산은 평균 채널 전도도를 변경하므로 대칭 

프로그래밍에는 더 얇은 채널이 필요합니다. 프로그래밍은 게이트가 

덮힌 영역 아래에서 발생하고 전기장에 의한 이온 이동은 속도 제한 

요인으로 작용하므로 작은 프로그래밍 에너지를 위한 수직 구조가 

필요합니다. 성능에 대한 채널 두께 및 구조의 영향을 연구했습니다.  

 

핵심어 : 비휘발성 메모리, 뉴로모픽 컴퓨팅, 전기화학 메모리, 이온 

전도, 전이금속 산화물, 구조 최적화 
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