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Abstract 

Vaccines have long been a foundation in the prevention and control of 

infectious diseases, representing one of the most successful public 

health interventions in history. From the eradication of smallpox to the 

control of COVID-19, vaccines have saved millions of lives worldwide. 

However, despite these remarkable successes, several pathogens, 

including those responsible for bacterial and viral infections, continue 

to pose a significant threat to global health. With infectious diseases 

emerging and re-emerging becoming one of the leading causes of 

mortality globally, there is an urgent need to develop novel vaccine 

strategies that can address these evolving challenges. 

Traditional vaccine approaches, which rely on live attenuated 

or inactivated pathogens, face significant limitations. These methods 

may not always elicit the desired immune response, especially in 

immunocompromised individuals, and there is always the risk of 

reversion to a virulent form in live vaccines. Moreover, in the context 

of rapidly mutating viruses, such as SARS-CoV-2, traditional 

approaches struggle to keep up with the antigenic diversity. Thus, 

there is a critical need for innovative approaches in vaccine design 

that can overcome these limitations and provide long-lasting 

protection against infectious diseases. 
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In this context, bioinformatics has emerged as a powerful tool 

to enhance vaccine development. Immunoinformatics, a specialized 

field within bioinformatics, focuses on analyzing immune responses 

and predicting epitopes that can stimulate both cellular and humoral 

immunity. This field has enabled the strategic design of vaccines by 

identifying specific segments of proteins, known as epitopes, that are 

recognized by the immune system. These epitopes can be used to 

create multi-epitope vaccines, which combine several immunogenic 

epitopes to elicit robust and targeted immune responses. 

Computational methods significantly reduce the time and cost involved 

in vaccine development while providing a platform for designing 

vaccines that are safer, more effective, and highly adaptable. 

Multi-epitope vaccines represent a promising advancement in 

vaccinology. Unlike traditional vaccines that rely on whole pathogens 

or large subunits, multi-epitope vaccines are designed to incorporate 

only the most immunogenic regions of antigens. These epitopes 

stimulate both cytotoxic T lymphocytes and helper T lymphocytes, as 

well as B cells, creating a comprehensive and targeted immune 

response. Furthermore, by selecting epitopes from multiple antigens, 

multi-epitope vaccines address antigenic variability and offer broader 

protection against rapidly evolving pathogens. 
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This thesis explores the design and evaluation of multi-epitope 

vaccine candidates for three significant infectious diseases: Powassan 

virus, tuberculosis, and respiratory syncytial virus. These diseases 

represent critical global health challenges due to their rising incidence, 

significant mortality rates, and lack of effective vaccines. Employing 

advanced bioinformatics tools, including immunoinformatics and 

computational biology, potential vaccine candidates were designed and 

rigorously evaluated. The findings demonstrate the capability of 

computational vaccine technology to rapidly design adaptable and 

effective vaccines for emerging and persistent health threats. 

 

Keywords: Multi-epitope vaccine, Immunoinformatics, Bioinformatics, 

Infectious diseases, Computational vaccinology 
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1.1. The global impact of infectious diseases 

Infectious diseases are among the most critical challenges to global 

health, impacting millions of individuals and placing a substantial 

burden on healthcare systems worldwide. Caused by various 

pathogens, including viruses, bacteria, fungi, protozoa, and parasites, 

these diseases range from mild infections to severe pandemics (Mishra 

et al., 2022). Over the past century, vaccines have played a 

fundamental role in controlling and, in some cases, eradicating 

diseases such as smallpox, measles, polio, and more recently, COVID-

19 (Henderson, 1980; Moss, 2017; Polack et al., 2020; Salk, 1955; 

Voysey et al., 2021). These vaccination efforts have prevented 

millions of deaths globally, emphasizing immunization’s essential role 

in public health and disease prevention. 

Nevertheless, infectious disease threats continue to evolve, 

with emerging and re-emerging pathogens posing significant 

challenges. Climate change is projected to expand tropical regions 

globally, which may increase the spread of vector-borne diseases like 

the Powassan virus (POWV) (Booth, 2018; Robert et al., 2020). The 

dynamics of climate change, including rising temperatures and rainfall 

variability, create favorable conditions for the spread of various 

vectors, particularly ticks and mosquitoes, which are known carriers 
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of diseases like POWV (Tidman et al., 2021; Wilson et al., 2020). 

Additionally, human trade and travel can facilitate the transmission of 

POWV from sylvatic to urban cycles, potentially leading to novel 

outbreaks among human and animal populations (Kraemer et al., 2019; 

Massengo et al., 2023). POWV is an emerging infectious disease that 

can cause severe neurological illness in humans (Della-Giustina et al., 

2021). Clinical presentations vary from asymptomatic cases to severe 

neuroinvasive disease, with an incubation period of 1–5 weeks (Corrin 

et al., 2018; Hermance & Thangamani, 2017). Symptoms include fever, 

headache, vomiting, weakness, and, in severe cases, neurological 

complications such as encephalitis (inflammation of the brain) and 

meningitis (inflammation of the membranes surrounding the brain and 

spinal cord) can occur (Corrin et al., 2018; Telford & Piantadosi, 2023). 

Currently, no specific antiviral therapy or vaccine exists for POWV 

infections. Therefore, developing effective vaccines to mitigate the 

rising risk of POWV is a pressing global public health priority. 

At the same time, airborne infections like respiratory syncytial 

virus (RSV) and tuberculosis (TB) consistently pose a threat to world 

health. TB affects over 10 million individuals annually and remains a 

leading cause of mortality in low and middle-income countries 

(Chakaya et al., 2022). Despite being the world’s second leading cause 
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of death from a single infectious agent, after COVID-19, TB treatment 

and control efforts have been disrupted by the COVID-19 pandemic 

(WHO, 2023). The development of effective TB vaccines has been 

challenging, although promising innovations such as DNA vaccines and 

live attenuated and killed whole-cell vaccines (WCVs) offer hope. 

However, like the Bacillus Calmette-Guerin (BCG) vaccine, tools to 

fight TB are imperfect. The BCG vaccine is effective (70-80%) in 

preventing severe childhood TB forms, such as meningitis and miliary 

TB, but its efficacy in adult pulmonary TB varies and may be 

influenced by environmental exposure to mycobacteria (Katelaris et 

al., 2020; McShane, 2011). Research suggested that BCG’s immune 

response differs across populations due to genetic and environmental 

factors, with potential heterologous effects that may enhance immunity 

against other pathogens (Darboe et al., 2017; Villanueva et al., 2023). 

These studies underscore the challenge in TB vaccination strategies 

and highlight the need for complementary vaccines.  

Besides, airborne viruses such as respiratory syncytial virus 

(RSV) can cause severe illness across all age groups. The COVID-19 

pandemic has led to delayed RSV outbreaks and increased reported 

cases across multiple countries (Chuang et al., 2023; Zhou et al., 2024). 

Annually, RSV is estimated to cause 33 million new cases of acute 



14 
 

lower respiratory tract infections in children under five globally, 

resulting in approximately 3 million hospitalizations and 120,000 

deaths (Colosia et al., 2023; Mejias et al., 2019). In adults, RSV can 

exacerbate pre-existing cardiopulmonary conditions, particularly in 

elderly populations, leading to 60,000 to 160,000 hospitalizations and 

6,000 to 10,000 deaths annually in the United States (Harris, 2023). 

Despite the high incidence of RSV infections, particularly among 

infants and older adults, current treatment options are limited, and no 

effective vaccine is available. This underscores the critical need for 

continued efforts to develop strategies for RSV prevention and control.  

These three diseases, POWV, TB, and RSV, illustrate diverse 

challenges in infectious disease control. While POWV represents an 

emerging vector-borne threat, TB demonstrates the complexities of 

combating a persistent bacterial pathogen, and RSV highlights the 

ongoing struggle with airborne viral infections. Together, they 

underscore the urgent need for innovative vaccine strategies capable 

of addressing a wide range of pathogens. In this thesis, by focusing on 

immunogenic regions of pathogens, multi-epitope vaccines offer a 

strategic advantage, enabling targeted immune responses against 

multiple antigenic sites. This approach could improve protective 

efficacy against diverse pathogens. The application of computational 
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tools for epitope selection allows for rapid and accurate vaccine design, 

positioning multi-epitope vaccines as a highly adaptable approach to 

the evolving challenges in infectious diseases.  

 

1.2. Limitations of traditional vaccine approaches  

“If God did not exist, it would be necessary to invent him”, remarked 

the great French philosopher Voltaire (1694–1778). The same could 

be said about vaccines; we would have to create them if they didn't 

exist because they are so helpful (Flower, 2008). Indeed, vaccines 

have transformed public health. In countries with high coverage of 

vaccine programs, many of the diseases that were previously 

responsible for the majority of deaths have disappeared or near 

disappeared, such as polio (paralytic), diphtheria, rubella, tetanus, 

haemophilus influenzae type B, measles, mumps, hepatitis B, pertussis, 

etc. (Abbas et al., 2021). 

A vaccine is a biological preparation that provides active 

acquired immunity to a particular infectious disease. It typically 

contains an agent that resembles a disease-causing microorganism 

and is often made from weakened or killed forms of the microbe, its 

toxins, or one of its surface proteins. Vaccines work by stimulating the 

immune system to recognize the agent as a threat, destroy it, and 
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remember it, thus enabling the immune system to respond more 

effectively if exposed to the actual pathogen in the future (Chen et al., 

2022; Daddario-DiCaprio et al., 2006; Poland et al., 2020).  

Traditional vaccine approaches, such as inactivated or live-

attenuated vaccines, have been foundational in immunization strategies. 

Live-attenuated vaccines, for example, can confer long-lasting 

immunity after a single administration, as seen with the yellow fever 

vaccine, which protects for decades (Daddario-DiCaprio et al., 2006). 

However, these traditional methods have notable limitations. One 

significant challenge is the variability in vaccine efficacy across 

different populations, particularly in vulnerable groups such as the 

elderly or immunocompromised individuals. Studies have shown that 

the efficacy of inactivated influenza vaccines is often reduced in older 

adults, a phenomenon attributed to immunosenescence (Ramirez et al., 

2016; Vilches et al., 2021). This reduced efficacy can lead to increased 

morbidity and mortality in these populations, highlighting a critical 

limitation of traditional vaccine formulations. 

Moreover, the development of vaccines using traditional 

methods can be time-consuming and may not keep pace with emerging 

infectious diseases. For example, the rapid evolution of viruses like 

influenza complicates the creation of broadly effective vaccines, as 
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seen in the challenges faced during the COVID-19 pandemic (Chen et 

al., 2022; Poland et al., 2020). The traditional approach of using 

inactivated viruses may not provide the necessary rapid response 

required during outbreaks, as evidenced by the urgent need for 

effective vaccines against SARS-CoV-2 (Pormohammad et al., 2021). 

 Another limitation is the reliance on pre-existing immunity to 

vaccine vectors, which can reduce the effectiveness of viral vector-

based vaccines. For example, vaccines based on adenovirus or 

modified vaccinia Ankara may face challenges due to high levels of 

pre-existing immunity in the population (Kapadia et al., 2005). This 

pre-existing immunity can lead to suboptimal immune responses, 

further complicating vaccine development and deployment. 

While traditional vaccine approaches have been instrumental in 

controlling infectious diseases, they face significant limitations, 

including variable efficacy in vulnerable populations, challenges in 

rapid development for emerging pathogens, issues related to pre-

existing immunity, difficulty in identifying suitable antigens, immune 

evasion, and technical challenges. These challenges underscore the 

need for technologies that offer the potential for rapid development, 

safety, high efficacy, easier production, stability in various storage and 

transport conditions, and more adaptability against infectious diseases. 
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1.3. The emergence of bioinformatics in vaccine 

development   

The rise of bioinformatics has significantly transformed vaccine 

development, providing innovative tools and methodologies that 

enhance vaccine design, efficacy, and safety. Bioinformatics 

encompasses a range of computational techniques that facilitate the 

identification of potential vaccine targets, the prediction of immune 

responses, and the optimization of vaccine formulations. This approach 

allows precise targeting of pathogenic components, making vaccine 

design more rapid and adaptable.  

One of the primary advantages of bioinformatics in vaccine 

development is its ability to identify and characterize immunogenic 

epitopes. For instance, studies have demonstrated the successful 

application of bioinformatics tools in the design of multi-epitope 

vaccines against various pathogens, including Plasmodium knowlesi, 

where immune-protective epitopes were identified and incorporated 

into vaccine candidates (A., 2021). This approach has been 

successfully applied in various studies, including the design of 

vaccines against hepatitis C and Brucella, where bioinformatics 

methods were employed to identify and validate immunogenic epitopes 

(Chen et al., 2021; Guest & Pierce, 2018; Guo et al., 2023). These 
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examples illustrate how bioinformatics can streamline the vaccine 

design process by enabling researchers to predict which epitopes are 

likely to elicit a strong immune response. 

Besides, the rapid advancements in machine learning algorithms 

and artificial intelligence (AI), have significantly enhanced vaccine 

development processes (Khemasuwan & Colt, 2021). This integration 

facilitates various computational techniques, including molecular 

modeling, molecular docking, molecular dynamics simulations, and 

immune simulations, which collectively contribute to predicting the 

stability and efficacy of vaccine constructs. One of the notable 

advancements in this domain is the use of AlphaFold, a deep learning 

model developed by DeepMind, which has revolutionized protein 

structure prediction (Jumper et al., 2021). AlphaFold's ability to 

accurately predict the three-dimensional structures of proteins allows 

researchers to understand the vaccine structure better, thereby aiding 

in the design of effective vaccines (Varadi & Velankar, 2023). 

Furthermore, molecular docking and dynamics simulations further 

complement these efforts by providing insights into the interactions 

between vaccine candidates and immune receptors. For example, 

molecular docking studies can predict the binding affinity between 

vaccine constructs and receptors such as Toll-like receptors (TLRs), 
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which play a vital role in initiating immune responses (Anwar et al., 

2023). This predictive modeling allows researchers to evaluate the 

potential efficacy of vaccine candidates before proceeding to 

experimental validation. Additionally, molecular dynamics simulations 

can assess the stability of these interactions over time, providing a 

deeper understanding of how vaccine constructs may behave in 

biological systems (Abraham et al., 2015). 

Bioinformatics has not only improved vaccine efficacy and 

safety but has also significantly reduced the time and cost associated 

with vaccine development (Pyasi et al., 2021). Traditional vaccine 

development processes can be lengthy and resource-intensive; 

however, the application of computational methods allows for rapid 

screening of potential vaccine candidates from large datasets. For 

example, the integration of next-generation sequencing data with 

bioinformatics approaches has expedited the identification of potential 

vaccine targets for SARS-CoV-2, thereby facilitating the rapid 

development of COVID-19 vaccines (Mukherjee, 2020). This approach 

is essential for addressing emerging infectious diseases and enhancing 

timely vaccine responses. 

Overall, bioinformatics has revolutionized vaccine development 

by enhancing the identification of immunogenic epitopes and 
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streamlining the vaccine development process. The integration of 

bioinformatics into vaccine research represents a powerful 

advancement towards more precise, efficient, and adaptable vaccine 

solutions, meeting the urgent demands of global health challenges. The 

case studies in this thesis demonstrate the transformative role of 

bioinformatics in vaccine design. From identifying immunogenic 

epitopes to predicting immune responses, these tools enable rapid and 

precise vaccine development across a spectrum of pathogens. This 

unified computational framework is applied consistently across the 

Powassan virus, Mycobacterium tuberculosis, and respiratory 

syncytial virus case studies, underscoring its broad applicability. Table 

1.1 lists several servers, databases, and software with web addresses, 

brief descriptions, and comments available for vaccine development. 
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Table 1.1 Servers, databases, and software with web addresses, brief descriptions, and comments are available for 

vaccine development. 
 
Server, Database, 

Software 

Web address Brief descriptions Comments Reference 

UniProt database https://www.u

niprot.org/  

The UniProt database is a comprehensive, 

freely accessible resource for protein 

sequence and functional information. It 

provides curated data on proteins, 

including amino acid sequences, functional 

annotations, 3D structures, and post-

translational modifications.  

Strengths: 

- Extensive data: Covers a vast array of 

protein information, widely used in 

bioinformatics and life sciences. 

- Frequent updates: Continuously updated to 

ensure access to the latest protein data. 

Limitations: 

- Complexity: The breadth of data can be 

overwhelming for beginners; may require 

bioinformatics knowledge for effective 

navigation. 

(Consortium 

et al., 2023) 

MHC II server of 

IEDB  

(Immune Epitope 

Database and 

Analysis 

Resources) 

http://tools.ied

b.org/mhcii/  

The MHC II Server of IEDB predicts 

peptide binding to histocompatibility 

complex class II (MHC-II) molecules, 

aiding vaccine and immunotherapy design 

by identifying potential T-cell epitopes. It 

offers multiple prediction methods, 

including consensus, SMM, and NN-align 

algorithms, for enhanced accuracy. 

Strengths: 

- Multiple prediction methods: Offers a 

range of algorithms to improve prediction 

reliability. 

- Broad allele coverage: Supports diverse 

HLA alleles, facilitating global applicability. 

Limitations: 

Computational load: Processing time 

increases with large datasets or multiple 

alleles. 

 

 

 

(Fleri et al., 

2017) 

 

https://www.uniprot.org/
https://www.uniprot.org/
http://tools.iedb.org/mhcii/
http://tools.iedb.org/mhcii/
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Table 1.1 (continued) 
 

Server, Database, 

Software 

Web address Brief descriptions Comments Reference 

NetMHCII 2.3  https://service

s.healthtech.dt

u.dk/services/

NetMHCII-2.3/  

NetMHCII 2.3 is a server designed to 

predict binding of peptides to MHC-II 

molecules. It uses neural networks 

trained on experimental binding data to 

estimate binding affinities for different 

MHC-II alleles. This is essential for 

identifying helper T-cell epitopes. 

Strengths: 

- Accurate prediction: Employs advanced 

neural networks for high binding prediction 

accuracy. 

- Extensive allele coverage: Covers a 

broad range of MHC-II alleles, supporting 

diverse population studies. 

Limitations: Processing times may be 

longer for large datasets. 

(Jensen et al., 

2018) 

NetMHCIIpan-4.3 

server 

https://service

s.healthtech.dt

u.dk/services/

NetMHCIIpan-

4.3/  

NetMHCIIpan-4.3 is a server that 

predicts peptide binding to a wide range 

of MHC-II alleles, including both human 

and non-human alleles, by using a pan-

specific method. This tool is widely used 

for epitope discovery in vaccine and 

immunotherapy research. 

Strengths: 

- Comprehensive coverage: Supports 

prediction across a broad spectrum of 

MHC-II alleles, including rare ones, aiding 

in population-wide studies. 

- Advanced algorithm: Pan-specific model 

provides high accuracy in binding 

prediction. 

Limitations: Processing may be slower 

with large datasets due to complex 

algorithms. 

 

 

 

 

 

(Nilsson et 

al., 2023) 

https://services.healthtech.dtu.dk/services/NetMHCII-2.3/
https://services.healthtech.dtu.dk/services/NetMHCII-2.3/
https://services.healthtech.dtu.dk/services/NetMHCII-2.3/
https://services.healthtech.dtu.dk/services/NetMHCII-2.3/
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.3/
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.3/
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.3/
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.3/
https://services.healthtech.dtu.dk/services/NetMHCIIpan-4.3/
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Table 1.1 (continued) 
 

Server, Database, 

Software 

Web address Brief descriptions Comments Reference 

MHC I server of 

IEDB  

http://tools.ied

b.org/mhci/ 

Update next-

generation 

Tools site:  

https://nextge

n-

tools.iedb.org/

pipeline?tool=t

c1  

The MHC I Binding Prediction Tool from 

the IEDB is an online resource that 

predicts peptide binding to MHC-I 

molecules, essential for identifying 

cytotoxic T-cell epitopes in vaccine 

design. The tool supports multiple 

algorithms, enhancing prediction accuracy 

and flexibility. 

Strengths: 

- Versatile prediction options: Offers multiple 

algorithms, including consensus and artificial 

neural networks, to improve accuracy. 

- Wide allele coverage: Includes many human 

and non-human MHC-I alleles, supporting 

diverse research needs. 

- Regular updates: Part of the frequently 

updated IEDB platform, constantly updated 

with new data and algorithms. 

Limitation: Complex calculations may lead to 

longer processing times for large datasets. 

(Fleri et al., 

2017) 

NetMHCpan 4.0 

 

Updated to 

NetMHCpan 4.1 

 

https://service

s.healthtech.dt

u.dk/services/

NetMHCpan-

4.0/  

 

https://service

s.healthtech.dt

u.dk/services/

NetMHCpan-

4.1/  

NetMHCpan 4.0 is a tool designed to 

predict peptide binding to a wide range of 

MHC-I molecules, using a pan-specific 

model. It is commonly used for epitope 

mapping across diverse MHC alleles, 

making it useful in immunology and 

vaccine development research.  

NetMHCpan 4.1 builds on version 4.0, 

providing enhanced accuracy for MHC-I 

binding predictions with updated 

algorithms and additional MHC allele 

coverage. This version is particularly 

useful for large-scale epitope screening 

projects. 
 

Strengths: 

- Broad allele coverage: Covers a wide array 

of MHC-I alleles, including rare alleles, aiding 

population studies. 

- Accurate predictions: Utilizes advanced 

algorithms for reliable binding predictions. 

Limitations: May process slowly with large 

datasets due to complex calculations. 

(Jurtz et al., 

2017) 

 

(Reynisson et 

al., 2020) 

http://tools.iedb.org/mhci/
http://tools.iedb.org/mhci/
https://nextgen-tools.iedb.org/pipeline?tool=tc1
https://nextgen-tools.iedb.org/pipeline?tool=tc1
https://nextgen-tools.iedb.org/pipeline?tool=tc1
https://nextgen-tools.iedb.org/pipeline?tool=tc1
https://nextgen-tools.iedb.org/pipeline?tool=tc1
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.1/
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ABCpred  

 

http://crdd.osd

d.net/raghava/

abcpred/  

ABCpred is a web server designed to 

predict B-cell epitopes using an artificial 

neural network (ANN) model. It identifies 

linear B-cell epitopes based on amino acid 

sequences, which is crucial for developing 

vaccines and understanding antibody 

responses. 

Strengths: 

- Efficient B-cell epitope prediction: 

Specifically optimized for linear B-cell 

epitope mapping, using ANN models. 

- User-friendly interface: Easy to use for 

researchers with minimal bioinformatics 

experience. 

Limitations: 

Limited to linear epitopes: Does not predict 

conformational epitopes, which are essential 

in some contexts. 

(Saha & 

Raghava, 

2006) 

BepiPred - 2.0 

 

Updated to 

BepiPred - 3.0 

 

https://service

s.healthtech.dt

u.dk/services/

BepiPred-2.0/ 

 

https://service

s.healthtech.dt

u.dk/services/

BepiPred-3.0/ 

 

BepiPred - 2.0 is a web server for 

predicting B-cell epitopes, combining 

machine learning techniques with protein 

sequence data. It predicts both linear and 

potential conformational B-cell epitopes, 

which are essential for antibody response 

analysis in vaccine design. 

 

BepiPred - 3.0 is built on version 2.0, 

incorporating deep learning for enhanced 

accuracy in predicting both linear and 

conformational epitopes. It is widely 

applied in antibody and vaccine research. 

 

 

 

Strengths: 

- Enhanced prediction accuracy: Uses 

improved algorithms over the previous 

version, providing higher accuracy. 

- Predicts both linear and conformational 

epitopes: More comprehensive for vaccine 

research. 

Limitations: 

Dependent on sequence data quality: Limited 

by the quality and completeness of input 

sequences. 

(Larsen et al., 

2006) 

 

(Clifford et 

al., 2022) 

http://crdd.osdd.net/raghava/abcpred/
http://crdd.osdd.net/raghava/abcpred/
http://crdd.osdd.net/raghava/abcpred/
https://services.healthtech.dtu.dk/services/BepiPred-2.0/
https://services.healthtech.dtu.dk/services/BepiPred-2.0/
https://services.healthtech.dtu.dk/services/BepiPred-2.0/
https://services.healthtech.dtu.dk/services/BepiPred-2.0/
https://services.healthtech.dtu.dk/services/BepiPred-3.0/
https://services.healthtech.dtu.dk/services/BepiPred-3.0/
https://services.healthtech.dtu.dk/services/BepiPred-3.0/
https://services.healthtech.dtu.dk/services/BepiPred-3.0/
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VaxiJen v2.0 

 

http://www.dd

g-

pharmfac.net/v

axijen 

/VaxiJen/VaxiJ

en.html  

VaxiJen v2.0 is an antigenicity prediction 

server for identifying vaccine candidates. 

Unlike traditional alignment-based 

methods, it uses a machine learning 

approach to distinguish antigens from non-

antigens, making it a useful tool in 

preliminary vaccine design. 

Strengths: 

- Efficient antigenicity prediction: Uses 

machine learning, allowing for quick and 

accurate antigen identification. 

- Alignment-free: Does not rely on sequence 

alignment, making it faster and suitable for 

diverse proteins. 

Limitation: Focuses solely on antigenicity, 

requiring additional tools for comprehensive 

vaccine design. 

(Irini A. 

Doytchinova 

& Darren R. 

Flower, 2007) 

ToxinPred 

 

http://crdd.osd

d.net/raghava/t

oxinpred/  

ToxinPred is a web server for predicting the 

toxicity of peptides, which helps researchers 

identify toxic and non-toxic peptides in 

vaccine design and drug development. It uses 

various machine-learning techniques to 

evaluate toxicity based on peptide sequence 

characteristics. 

Strengths: 

- Comprehensive toxicity prediction: Identifies 

toxic properties in peptides efficiently. 

- User-friendly interface: Accessible to 

researchers with varied expertise. 

Limitation: Focuses on peptide-level toxicity, 

not applicable for larger proteins directly. 

(Gupta, 

Kapoor, 

Chaudhary, 

Gautam, 

Kumar, Open 

Source Drug 

Discovery, et 

al., 2013) 

AllergenFP  

 

https://ddg-

pharmfac.net/

AllergenFP/ind

ex.html    

AllergenFP is a server designed to predict 

allergenicity in proteins, using a fingerprint-

based approach to identify allergenic 

properties. This tool is particularly useful in 

vaccine design and food safety research to 

minimize allergic reactions. 

Strengths: 

- Fingerprint-based prediction: Uses molecular 

fingerprints for reliable allergenicity prediction. 

- Quick analysis: Provides fast and accessible 

allergen prediction. 

Limitation: Focuses only on allergenic 

properties, requiring other tools for 

comprehensive protein analysis. 

 

(Dimitrov et 

al., 2013) 

http://www.ddg-pharmfac.net/vaxijen%20/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen%20/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen%20/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen%20/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen%20/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen%20/VaxiJen/VaxiJen.html
http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
http://crdd.osdd.net/raghava/toxinpred/
https://ddg-pharmfac.net/AllergenFP/index.html
https://ddg-pharmfac.net/AllergenFP/index.html
https://ddg-pharmfac.net/AllergenFP/index.html
https://ddg-pharmfac.net/AllergenFP/index.html
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AllerTop v.2.0 

 

https://www.d

dg-

pharmfac.net/

AllerTOP/inde

x.html  

AllerTop v.2.0 is a web server for 

predicting protein allergenicity using an 

amino acid composition-based approach. It 

classifies proteins as allergens or non-

allergens, making it valuable in vaccine 

development and food safety to reduce 

allergenic risk. 

Strengths: 

- Efficient allergenicity prediction: Uses 

amino acid composition and auto-cross 

covariance for accurate allergen 

classification. 

- Fast and accessible: User-friendly 

interface for quick allergenicity assessment. 

Limitation: Limited to allergen prediction, 

necessitating complementary tools for 

broader protein analysis. 

(Dimitrov et 

al., 2014) 

IFNepitope 

 

http://crdd.osd

d.net/raghava/i

fnepitope/  

IFNepitope is a web server that predicts 

interferon-gamma (IFN-) inducing epitopes, 

essential for designing vaccines that promote 

cell-mediated immunity. It uses machine 

learning models trained on experimentally 

validated data to identify potential IFN- 

epitopes. 

Strengths: 

- Targeted epitope prediction: Focuses on IFN-

 inducing epitopes, crucial for cell-mediated 

immunity in vaccines. 

- Machine learning models: Enhances prediction 

accuracy using experimentally validated data. 

Limitation: Limited to IFN- epitopes, so 

additional tools are needed for broader immune 

response analysis. 

(Dhanda, Vir, 

et al., 2013b) 

IL4Pred 

 

http://crdd.osd

d.net/raghava/i

l4pred/  

IL4Pred is a web server that predicts 

interleukin-4 (IL-4) inducing peptides, which 

are essential for understanding Th2 immune 

responses. This tool utilizes machine 

learning algorithms to identify peptides that 

may induce IL-4 production, aiding in 

vaccine design and allergy studies. 

Strengths: 

- Specific to IL-4: Focuses on predicting IL-4 

inducers, useful for Th2 immunity analysis in 

vaccine research. 

- Machine learning based: Leverages 

computational models for improved accuracy. 

Limitation: Limited to IL-4, requiring other 

tools for comprehensive immune response 

analysis. 

(Dhanda, 

Gupta, et al., 

2013b) 

https://www.ddg-pharmfac.net/AllerTOP/index.html
https://www.ddg-pharmfac.net/AllerTOP/index.html
https://www.ddg-pharmfac.net/AllerTOP/index.html
https://www.ddg-pharmfac.net/AllerTOP/index.html
https://www.ddg-pharmfac.net/AllerTOP/index.html
http://crdd.osdd.net/raghava/ifnepitope/
http://crdd.osdd.net/raghava/ifnepitope/
http://crdd.osdd.net/raghava/ifnepitope/
http://crdd.osdd.net/raghava/il4pred/
http://crdd.osdd.net/raghava/il4pred/
http://crdd.osdd.net/raghava/il4pred/
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IL-10Pred 

 

http://crdd.osd

d.net/raghava/I

L-10pred/  

IL-10Pred is a web server that predicts 

interleukin-10 (IL-10) inducing peptides, 

facilitating the study of anti-inflammatory 

responses in vaccine design and 

immunotherapy. It employs machine 

learning models to identify peptides that 

may induce IL-10, important for 

modulating immune tolerance. 

Strengths: 

- Focus on IL-10: Specifically predicts IL-10 

inducers, valuable for anti-inflammatory 

research. 

- Machine learning-based: Utilizes trained 

models for accurate predictions. 

Limitation: Limited to IL-10, so other 

immune aspects require additional tools. 

(Nagpal et al., 

2017a) 

Population 

Coverage- 

Immune Epitope 

Database and 

Analysis 

Resources (IEDB)  

http://tools.ied

b.org/populatio

n/  

The Population Coverage tool from IEDB 

estimates how well a set of epitopes 

covers different HLA (human leukocyte 

antigen) alleles across global populations. 

This is essential for vaccine design, 

ensuring broader population effectiveness 

by addressing allele diversity. 

Strengths: 

- Global HLA coverage: Estimates epitope 

coverage across diverse populations. 

- Essential for vaccine development: Helps 

design vaccines with broader, global 

applicability. 

Limitations: 

- Dependent on HLA data: Results rely on the 

accuracy and availability of HLA allele data. 

- Requires complementary analysis: Other 

immune parameters need separate tools. 

 

 

 

 

 

 

 

 

(Bui et al., 

2006) 

http://crdd.osdd.net/raghava/IL-10pred/
http://crdd.osdd.net/raghava/IL-10pred/
http://crdd.osdd.net/raghava/IL-10pred/
http://tools.iedb.org/population/
http://tools.iedb.org/population/
http://tools.iedb.org/population/
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ProtParam https://web.ex

pasy.org/protp

aram/  

ProtParam is a tool available on the 

ExPASy platform for analyzing the 

physicochemical properties of proteins, 

such as molecular weight, amino acid 

composition, extinction coefficient, and 

stability. This is useful in assessing 

protein characteristics in research and 

vaccine design. 

Strengths: 

- Detailed physicochemical analysis: 

Provides in-depth information on properties 

like stability and molecular weight. 

- User-friendly: Straightforward interface 

suitable for quick assessments. 

Limitations: 

- Limited to primary structure: Analyzes only 

the protein’s amino acid sequence, not 

tertiary or quaternary structures. 

- Requires additional tools: Further tools are 

needed for comprehensive protein modeling 

and structural analysis. 

(Gasteiger et 

al., 2005) 

PROMOTIF 

program  

(PDBsum server) 

http://www.ebi

.ac.uk/pdbsum  

PROMOTIF is a tool integrated within 

PDBsum for analyzing protein secondary 

structure motifs. It identifies structural 

motifs such as β-turns, -turns, β-strands, 

and helical geometries, providing detailed 

insight into protein structure for research 

and validation. 

Strengths: 

- Detailed structural analysis: Identifies a 

wide range of secondary structure motifs, 

aiding in protein structure validation. 

- Useful for model validation: Often used to 

check structure accuracy in structural 

biology. 

Limitations: 

- No standalone access: Available only as 

part of PDBsum, limiting standalone use. 

- Focus on secondary structure: Limited to 

secondary structure analysis, not suitable for 

primary sequence analysis. 

 

(Laskowski et 

al., 2018) 

https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://www.ebi.ac.uk/pdbsum
http://www.ebi.ac.uk/pdbsum
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SWISS-MODEL https://swissm

odel.expasy.or

g/  

SWISS-MODEL is a web-based server for 

homology modeling of protein 3D 

structures. It uses sequence similarity to 

known structures in the Protein Data Bank 

(PDB) to predict structural models, 

supporting research in structural biology 

and protein engineering. 

Strengths: 

- Automated homology modeling: Provides 

high-quality models based on sequence 

alignment with minimal input. 

- User-friendly interface: Accessible to both 

novices and experts in structural biology. 

Limitations: 

- Dependent on known templates: Requires 

similar structures in the PDB for accurate 

modeling. 

- Focus on homology modeling: Limited to 

homology modeling, not suitable for de novo 

predictions. 

(Waterhouse 

et al., 2018) 

I-TASSER https://zhanggr

oup.org/I-

TASSER/  

I-TASSER (Iterative Threading ASSEmbly 

Refinement) is a web server for predicting 

3D protein structures based on sequence-

to-structure alignment and iterative 

structure assembly simulations. It also 

provides functional insights, such as 

ligand-binding sites and GO terms. 

Strengths: 

- Comprehensive prediction: Provides both 

structural and functional predictions, making 

it versatile for protein studies. 

- Accurate for distant homologs: Effective 

when homologous templates are limited, using 

iterative assembly. 

Limitations: 

- Computationally intensive: Processing can 

take longer for larger proteins. 

- Dependent on template availability: 

Performance improves with related 

structures in the database. 

 

(Yang et al., 

2015) 

https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
https://zhanggroup.org/I-TASSER/
https://zhanggroup.org/I-TASSER/
https://zhanggroup.org/I-TASSER/
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AlphaFold https://colab.r

esearch.google

.com/github/de

epmind/alphafo

ld/blob/main/n

otebooks/Alph

aFold.ipynb  

AlphaFold is an AI-driven tool developed 

by DeepMind for predicting protein 3D 

structures with high accuracy based solely 

on amino acid sequences. It uses deep 

learning to model protein folding, 

accelerating research in structural 

biology, drug discovery, and vaccine 

development. 

Strengths: 

- High prediction accuracy: Outperforms 

traditional methods, providing near-

experimental accuracy for many proteins. 

- Broad application: Useful in various fields, 

from structural biology to drug and vaccine 

design. 

Limitations: 

- Focused on static structures: Does not 

address protein dynamics or interactions. 

- Limited in multimer modeling: Primarily 

models single-chain proteins, with limited 

accuracy for complexes. 

(Jumper et 

al., 2021) 

GalaxyRefine  https://galaxy.

seoklab.org/cg

i-

bin/submit.cgi?

type=REFINE  

GalaxyRefine is a web server designed for 

protein structure refinement. It improves 

initial protein models by refining side 

chains and backbone structures, enhancing 

overall structural accuracy, particularly 

for homology-modeled proteins. 

Strengths: 

- Improves model accuracy: Enhances both 

local and global structure through iterative 

refinement, useful for homology models. 

- User-friendly: Offers easy input for 

structure refinement. 

Limitations: 

- Time-consuming: Computationally 

intensive, particularly with large proteins. 

- Dependent on initial model quality: 

Performance varies with the accuracy of the 

initial model. 

 

 

(Heo et al., 

2013) 

https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
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ProSA-web https://prosa.s

ervices.came.s

bg.ac.at/prosa.

php  

ProSA-web is a tool for evaluating the 

quality of protein structures by analyzing 

Z-scores and identifying errors within 3D 

models. It is widely used for validating 

models, helping researchers assess 

whether a structure is within typical 

quality ranges for native proteins. 

Strengths: 

- Effective quality assessment: Offers 

reliable Z-score analysis and error detection 

for model validation. 

- User-friendly interface: Simple input 

requirements, making it accessible for quick 

model checks. 

Limitations: 

- Limited to quality scoring: Does not provide 

structural refinement or optimization. 

- Requires complementary validation: Best 

used alongside other validation tools for 

comprehensive model evaluation. 

(Wiederstein 

& Sippl, 

2007) 

PROCHECK https://www.e

bi.ac.uk/thornt

on-

srv/software/P

ROCHECK/  

PROCHECK is a protein structure 

validation tool that assesses 

stereochemical quality by evaluating 

parameters like bond angles and 

Ramachandran plots. It helps identify 

structural irregularities, making it valuable 

for validating homology-modeled and 

experimentally derived proteins. 

Strengths: 

- Detailed quality metrics: Provides 

comprehensive assessments of protein 

stereochemistry, including bond angles and 

torsion angles. 

- Widely accepted: Commonly used for model 

validation in structural biology. 

Limitations: 

- Focus on stereochemistry: Limited to 

stereochemical parameters, without 

functional validation. 

- Manual interpretation: Requires users to 

interpret Ramachandran plots and other 

metrics for thorough validation. 

(Laskowski et 

al., 1993) 

https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
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ERRAT https://www.d

oe-

mbi.ucla.edu/e

rrat/  

ERRAT is a protein structure validation 

tool used to identify potential errors by 

analyzing non-bonded atomic interactions. 

It generates an overall quality factor, 

useful for assessing the accuracy of 

homology-modeled and experimentally 

determined protein structures. 

 

Strengths: 

- Error detection: Highlights regions with 

potential errors based on non-bonded 

interactions. 

- Quality factor: Provides an overall quality 

score, simplifying structural evaluation. 

Limitations: 

- Focused on non-bonded interactions: Limited 

to specific types of structural assessment, so it’s 
best used with other validation tools. 

- Dependent on initial model quality: 

Effectiveness varies with initial model accuracy. 

(Colovos & 

Yeates, 1993) 

PatchDock https://www.cs

.tau.ac.il//~ppd

ock/PatchDock

/  

PatchDock is a molecular docking 

algorithm that identifies potential binding 

sites by matching complementary shapes. 

It is widely used for protein-protein, 

protein-ligand, and protein-DNA docking, 

aiding structural biology and drug design. 

Strengths: 

- Shape-based docking: Matches 3D 

complementary shapes for effective docking 

predictions. 

- Versatile applications: Suitable for protein-

protein, protein-ligand, and protein-DNA 

interactions. 

Limitations: 

- Focus on rigid body docking: This does not 

account for flexibility, which may limit 

accuracy in certain cases. 

- Requires post-processing: Results often 

need refinement with additional tools for best 

accuracy. 
 

(Schneidman-

Duhovny et 

al., 2005) 

https://www.doe-mbi.ucla.edu/errat/
https://www.doe-mbi.ucla.edu/errat/
https://www.doe-mbi.ucla.edu/errat/
https://www.doe-mbi.ucla.edu/errat/
https://www.cs.tau.ac.il/~ppdock/PatchDock/
https://www.cs.tau.ac.il/~ppdock/PatchDock/
https://www.cs.tau.ac.il/~ppdock/PatchDock/
https://www.cs.tau.ac.il/~ppdock/PatchDock/
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ClusPro v2.0 https://cluspro.

bu.edu/login.ph

p  

ClusPro v2.0 is a protein-protein docking 

server that generates multiple docking 

poses, clusters them, and ranks them 

based on cluster size and interaction 

energy. It’s widely used for predicting 

protein interactions in structural biology 

and drug discovery. 

Strengths: 

- Efficient clustering: Clusters and ranks 

docking poses based on cluster size, 

improving result accuracy. 

- Energy-based scoring: Utilizes energy 

scores for robust ranking. 

Limitations: 

- Rigid-body docking: Assumes rigidity in 

docking, which may affect flexibility-based 

results. 

- Requires additional refinement: Results may 

benefit from further refinement with other 

tools. 

(Kozakov et 

al., 2017a) 

GROMACS 

software 

Linux/Unix 

operating 

system  

GROMACS (GROningen MAchine for 

Chemical Simulations) is a versatile 

molecular dynamics simulation software 

package designed for biomolecular 

simulations of proteins, lipids, and nucleic 

acids. It’s widely used in structural 

biology, drug design, and materials 

science. 

Strengths: 

- Highly efficient: Optimized for fast 

simulations, especially on parallel processors. 

- Versatile and comprehensive: Supports 

complex biomolecular systems and various 

force fields. 

Limitations: 

- Steep learning curve: Requires expertise in 

MD simulations. 

- Computational resources: Simulations can 

be resource-intensive, especially for large 

systems. 

 

 

(Abraham et 

al., 2015) 

https://cluspro.bu.edu/login.php
https://cluspro.bu.edu/login.php
https://cluspro.bu.edu/login.php
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C-immSim  http://www.cb

s.dtu.dk/servic

es/C-ImmSim-

10.1/   

C-ImmSim is an immune simulation tool 

that predicts immune responses to vaccine 

candidates or pathogens by simulating the 

interactions of immune cells, including T 

and B cells. This in silico approach aids in 

evaluating immunogenicity before 

laboratory testing. 

Strengths: 

- Comprehensive immune simulation: Models 

complex immune interactions, helpful for 

early vaccine assessment. 

- Reduces lab testing: Provides preliminary 

insights into immune response. 

Limitations: 

- Dependent on simulation parameters: 

Results vary based on input parameters. 

- Does not replace experimental validation: 

Simulated predictions need laboratory 

confirmation. 

(Rapin et al., 

2011) 

 
 

 

 

http://www.cbs.dtu.dk/services/C-ImmSim-10.1/
http://www.cbs.dtu.dk/services/C-ImmSim-10.1/
http://www.cbs.dtu.dk/services/C-ImmSim-10.1/
http://www.cbs.dtu.dk/services/C-ImmSim-10.1/
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1.4. Multi-epitope vaccines: a promising strategy 

against infectious diseases    

Multi-epitope vaccines represent a significant advancement in 

vaccinology, as they are designed to include multiple epitopes from 

different antigens to stimulate both humoral and cellular immune 

responses. By including epitopes that can elicit both T cells (cytotoxic 

T lymphocytes (CTLs) and helper T lymphocytes (HTLs)) and B cells 

and induce effective responses against targeted pathogens, these 

vaccines offer broader protection, more robust immune reactions, and 

greater adaptability to antigenic variability compared to single-epitope 

vaccines (Zhang, 2018). 

One of the key advantages of multi-epitope vaccines is their 

ability to incorporate various epitopes from different antigens, which 

expands the scope of immune recognition of targeted pathogens. For 

instance, Chauhan et al. highlighted that multi-epitope vaccines can 

consist of overlapping CTL, HTL, and B-cell epitopes, thereby 

activating both cellular and humoral immune responses (Chauhan et al., 

2019). This multifaceted approach not only enhances the 

immunogenicity of the vaccine but also reduces the risk of adverse 

effects associated with unwanted components compared to single-

epitope vaccines or whole-pathogen vaccines. 
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Moreover, the ease of synthesis and stability in various storage 

conditions are also some of the advantages of multi-epitope vaccines 

(Zhang, 2018). The synthesis of multi-epitope vaccines is facilitated 

by their reliance on well-characterized peptides, which can be 

produced efficiently and cost-effectively. The ability to rationally 

engineer epitopes allows for the selection of the most immunogenic 

components, thereby optimizing the vaccine's effectiveness while 

minimizing production costs (Chauhan et al., 2019; Rashidi et al., 2022). 

This streamlined production process is crucial, especially when rapid 

responses are needed in the face of emerging infectious diseases or 

pandemics.  

Additionally, the stability of multi-epitope vaccines is a notable 

advantage. Unlike traditional live attenuated vaccines or mRNA 

vaccines, which may require stringent storage conditions to maintain 

their efficacy (Rando et al., 2023; Uddin & Roni, 2021), multi-epitope 

vaccines can often be stored at ambient temperatures without 

significant loss of potency (Zhang, 2018). This stability is particularly 

beneficial for vaccines intended for use in regions with limited cold 

chain infrastructure (Kar et al., 2020). The chemical nature of the 

peptides used in these vaccines contributes to their robustness, 

allowing them to withstand various environmental conditions without 
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degrading (Maleki et al., 2022). 

Furthermore, multi-epitope vaccines can be designed to include 

adjuvants that enhance their immunogenicity while maintaining 

stability. The incorporation of adjuvants not only boosts the immune 

response but also contributes to the overall shelf-life of the vaccine 

(Naz et al., 2023). This combination of stability and enhanced immune 

activation is critical for ensuring long-lasting protection against 

pathogens. 

In summary, multi-epitope vaccines represent a promising 

strategy in vaccine development, offering a next-generation solution 

that leverages the power of immunoinformatics and bioinformatics. By 

incorporating multiple epitopes, these vaccines can elicit stronger and 

broader immune responses, making them valuable tools in the fight 

against infectious diseases. Additionally, their ease of synthesis, 

stability under various storage conditions, and favorable safety profile 

make them particularly compelling in modern vaccine development. 

Ongoing advancements in this field are expected to yield innovative 

vaccine candidates capable of addressing both current and emerging 

health challenges. For example, recent studies on tuberculosis have 

focused on designing multi-epitope vaccines, as outlined in Table 1.2. 
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Table 1.2 Details of previous MEVs design for Mycobacterium tuberculosis 
 
Target protein Selected epitopes Adjuvants References 

Secreted exosome proteins: 

DnaK, GrpE, HBHA, LprA, LprG, 

LpqH, and MPT83 

MHC-I epitopes:  

GEVKDVLLL, DAVITTPAY, RTTPSIVAF, ATKDGSHYK, and AVAGAAILV  

MHC-II epitopes:  

LTVAVAGAAILVAGL, EVKDVLLLDVTPLSL, NVNIAIGGAATGIAA, and 

IGARDDLMVNNAGLV 

B-cell epitopes:  

EAHAEEDRKRREEADV, DGTAVADTAENDQADQ, 

EGEDFDPVLHEAVQHE, LGYTSGTGQGNASATK, PGAASGPKVVIDGKDQ, 

and TDTRSRVEESRARLTK 

RpfE  

(TLR4 agonist) 

(Sharma et 

al., 2021b) 

Ag85A, Mtb32A, Rv2608, and 

Rv2684 

MHC-I epitopes:  

TIATFEMRY, SSPDVLTTY, PTVDYAFQY, STDTPWWAL, and VSIALAAIY 

MHC-II epitopes:  

PQLGFTLSGATPADA, IFYSHDTGIDWDVIF, KFLEGFVRTSNIKFQ, and 

TYGVDVVGYDRTQDV 

B-cell epitopes:  

GITGNGQIGFGKPANP, SRAGLTFNDFMLHLTP, YSDWYQPACGKAGCQT, 

and PALPLDPSAMVAQVGP 

Griselimycin (Bibi et al., 

2021a) 

ESAT-6-like protein and 

diacylglycerol acyltransferase 

B-cell derived T-cell epitopes:   

DSGGYNANS, VSRADEEQQ, ADEEQQQAL, and AGVQYSRAD 

RS09  

(TLR4 agonist) 

(Albutti, 

2021a) 

Rv2031, Rv2346, Rv2347, 

Rv3614, and Rv3615  

MHC-I, MHC-II, and B-cell epitopes:  

DVLAAGDFWGGAGSVACQE, ARRMWASAQNISGAG, 

RIDHVELSARVAWMSES, HPRSLFPEF, WTADPIIGV, and 

ELFAAFPSFAGLRPT 

MHC-I and MHC-II epitopes:  

QTDSAVGSSW, HAMRDMAGR, HTAGVDLAK, and 

SSLHTAGVDLAKSLRIA 

 

TpD  

and flagellin 

(Ghandadi, 

2022) 
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Table 1.2 (continued) 

 
Target protein Selected epitopes Adjuvants References 

Rv1987 B-cell epitopes:  

LGLAITPVASAATARA, GLNIYVRRWRTALHAT, HATVSALIVAILGLAI, 

APGGSATGGLRGGLTG, APLTDWKLEFDLPAGE, VASAAT, TNSSTAPL, 

and APGGSATGGLRGGLTGSYSPPSS 

MHC-I epitopes:  

RATLSVTSTW, ATLSVTSTW, and YVRRWRTAL 

MHC-II epitopes:  

RTALHATVSALIVAI, RWRTALHATVSALIV, TALHATVSALIVAIL, and 

WRTALHATVSALIVA 

NA (Arega et al., 

2024) 

Membrane protein MmpL4 MHC-I epitopes:  

SVLLWQHILAIHLHWL, VVVRWPLPVLV, SIITVVLLLITVGVEL, and 

MIHAFAVPIILGW 

MHC-II epitopes:  

AALLGRWFWWPLRVRSRP, NAGLVFAVTMASMAVSDL, and 

VGTVVVRWPLPVLVA 

B-cell epitopes:  

FWWPLRVRSRPARTPTVPSE, LTRMHSLMAEMASTTHRMVGDTEEMKE, 

RPEGTTMDHTSIPFQISMQNAGQLQTIKYQ, 

YVTGPSALAADMHHSGDRSM, and LEAVGQERSVSLSPKDAPSF 

L7/L12 

Ribosomal 

protein (TLR4 

agonist) 

(Khan et al., 

2023b) 

Putative nitro-reductases: 

Rv2032, Rv3127, Rv3129, and 

Rv3131 

MHC-I epitopes:  

AAAGTTANV, SYHAELFWW, AMAAAGTTA, RRRTDRRAY, 

NTQPWRWRV, WRWRVCPTS, ATLKRHCVR, FRTAEGAKL, TLKRHCVRV, 

HLRIAMTAA, MYWHLFEPA, and YWHLFEPAL  

MHC-II epitopes:  

LGWQAKVNR, LAVRAPSIH, WRWRVCPTS, LKRHCVRVI, FRTAEGAKL, 

WEITGRHFR, VRSYQNRRA, WRWVAESGS, WHLFEPALR, MRPELAAAS, 

VRVGLAPEM, and LRADAILLR 

Phenol-soluble 

modulin alpha 

4  

(TLR4 agonist) 

(Shiraz et 

al., 2021) 
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Table 1.2 (continued) 

 
Target protein Selected epitopes Adjuvants References 

Rv0058, Rv0101, and Rv3343 MHC-I epitopes:  

LSDMRSGRM, PTNGQGRVY, LTADLSAAY, VSAPTIINY, FSIPVTFSY, 

VSESIPLNF, and YSTPALTLF 

MHC-II epitopes:  

HSDVMYRSVLALLML, LGLTVRYLTPHSKWS, TRIRLVLVSLGVSSF, 

AALFVLDSWLRPVPA, DQRGASLVVDWPASV, TRILRADTGAEVAFG, 

GRKEVFRLRLASGRE, and VMRLLSAEAKIKLSD 

B-cell epitopes:  

MMDIQLHEPTMWKHSP, CAAISAPLRPGSGMPP, and 

RGDYQGLLGFSSGANV 

Griselimycin (Khan et al., 

2022) 

Ag85a and low molecular weight 

T-cell antigen TB8.4 

MHC-I epitopes:  

DINTPAFEWY 

MHC-II epitopes:  

GAAAQFNASPVAQSY, AAQFNASPVAQSYLR, AAAQFNASPVAQSYL, 

LPVEYLQVPSPSMGR, SAVVGLSMAASSALT, and PVEYLQVPSPSMGRD 

B-cell epitopes:  

DAVINTTCNYGQVVAA, YSDWYQPACGKAGCQT 

50S ribosomal 

protein L7/L12 

and pan-HLA 

DR-binding 

epitope 

(Peng et al., 

2023) 

Rv1736c (nitrate reductase), 

Rv3872 (PE family-related 

protein), Rv2626c (Hypoxic 

response protein 1), Rv2031c 

(heat shock protein), Rv3878 

(ESX-1 secretion-associated 

protein), and Rv2654c (Possible 

PhiRv2 prophage protein) 

MHC-II epitopes:  

QLGETAAEL, MSHDPIAADI, ESHGVAAVLF, LTDRDIVIK, AGLRPTFDTR, 

and GELFWTVVPY 

MHC-II epitopes:  

VVLEFAATVDPEAGR and PVVLEFAATVDPEAG 

B-cell epitopes:  

AEVVAAARDEGAGASP, TAAAQYMREHDIGALP, DEMKEGRYEVRAELPG, 

and PSVGPDRPEYEPRGCP 

 

 

Cholera toxin 

subunit B 

(Jiang, 

Wang, et al., 

2023) 
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Table 1.2 (continued) 

 
Target protein Selected epitopes Adjuvants References 

Rv1698 and Rv197 MHC-I epitopes:  

ATDGTTALL, LTGTFLDAY, FSDTLLSSL, and STDAGNQGV 

MHC-II epitopes:  

VIAYGLLPGLALALT and VARFAAALAPRGSGT 

B-cell epitopes:  

LSNADPAAPTVEQAQRDTVL, and VNQTITVGKDAPTTAASSVR 

Cholera toxin 

subunit B 

(Rahmat 

Ullah et al., 

2021) 

PE_PGRS49 and PE_PGRS56 MHC-II epitopes: GTGWNGGKGDTG  

B-cell, MHC-I, and MHC-II epitopes:  

GIGGGTQSATGLG, FAGAGGQGGLGG, and GGAGGNGSLSS 

RS09 (Ruaro-

Moreno et 

al., 2023) 

PE_PGRS17 MHC-I epitopes:  

GGVGGAGGAAGAVTTI, TGVAVNPVTGEVYVTN, 

VSLARAGTAGGAGRGP, and TVSVIDPTTNTVTGSP 

MHC-II epitopes:  

GGNVYVTNFGSGTVS, GEVYVTNFAGDTVSV, RFVLALSQAGSTYAV, 

FVLALSQAGSTYAVA, PVTGLVFVTNFDSNT, HGQHYQAISAQVAAY, 

QRFVLALSQAGSTYA, YQQRFVLALSQAGST, and TGLVFVTNFDSNTVS 

B-cell epitopes:  

AISAQVAAY, VTTITHASF, ALSQAGSTY, AVNPGGNVY, VSTAIAALF, and 

VIDPTTNTV 

Griselimycin (Moodley et 

al., 2022) 

HtpX, Mce1a, Mce4C, Mce4D, 

OstA, , Rv1085c 

MHC-I epitopes:  

SLAGNSAKV, FAVGMNVYV, and ILLKMCWPA 

HT epitopes:  

LVLVFALVVALVYLQ, PNLVAARFIQLTPVY, LVFALVVALVYLQFR, 

VLVFALVVALVYLQF, LTIGFFLHIPFPPVE, RPDLTIGFFLHIPFP, and 

DLTIGFFLHIPFPPV 

 

 

NA (Madan et 

al., 2021) 
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Table 1.2 (continued) 

 
Target protein Selected epitopes Adjuvants References 

EspA, EspC, EsxA, EsxB, LppX, 

LprA, Mpt63 and PPE18 

MHC-I epitopes:  

SLHTAGVDLAK, SQFNDTLNV, RVQGDNISVK, HVAVRTTGK, 

VLDPAAGVTQL, STNIRQAGVQY, TPAARALPL, APAAAAQAV, 

VWGLTVGSW, NKSEDAKFVY, KSEDAKFVY, GPSPTIVAM, 

IPGYPVAGQVW, TYIPVVGHAL, and FIIDPTISA 

MHC-II epitopes:  

DLTYIPVVGHALSAA, RIAAKIYSEADEAWR, TAGVDLAKSLRIAAK, 

STTKITGTIPASSVK, QGVPFRVQGDNISVK, STNIRQAGVQYSRAD, 

AVVRFQEAANKQKQE, AGIEAAASAIQGNVT, EQQWNFAGIEAAASA, 

QNGVRAMSSLGSSLG, AMFGYAAATATATAT, AAQVRVAAAAYETAY, 

DAKFVYVDGHLYSDL, STGKIYFDVTGPSPT, TTTKKYSEGAAAGTE, and 

ADGPVGAAAEQVGGQ 

B-cell epitopes:  

AVDASSGVEAAAGLGE, SLLGITSADVDVRANP, LKTQIDQVESTAGSLQ, 

GGSGSEAYQGVQQKWD, GARAGGGLSGVLRVPP, LVQIQIAPTKDTSVTL, 

GGCSTEGDAGKASDTA, GQVWEATATVNAIRGS, 

EDAERAPVEADAGGGQ, and YSEGAAAGTEDAERAP 

Heparin-

binding 

hemagglutinin 

(Andongma 

et al., 2023) 
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1.5. Applications of multi-epitope vaccines in 

infectious diseases     

The design and evaluation of multi-epitope vaccines presented in this 

thesis follow a consistent methodology, from epitope prediction to 

immune simulation. These steps, applied to the Powassan virus, 

Mycobacterium tuberculosis, and respiratory syncytial virus, not only 

highlight the adaptability of bioinformatics approaches but also reveal 

insights into the shared principles that govern immune responses 

across infectious diseases. By exploring the challenges and 

opportunities in designing multi-epitope vaccines for these diverse 

targets, this thesis underscores the versatility and potential of 

computational tools in tackling global health challenges. 

Based on this consistent methodology, the thesis is organized 

into six chapters, each focusing on different aspects of multi-epitope 

vaccine design and evaluation. 

- Chapter 1: General Introduction provides an overview of the 

global health challenges posed by infectious diseases, the 

limitations of traditional vaccine development, and the 

emergence of bioinformatics as a powerful tool for designing 

multi-epitope vaccines. This chapter sets the context for the 

studies presented in the following chapters. 
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- Chapter 2: Methodology Overview describes the bioinformatics 

and immunoinformatics approaches used throughout the thesis. 

Key computational tools and techniques, such as epitope 

prediction, epitope evaluation, molecular modeling, molecular 

docking, molecular dynamics simulations, and immuno-

simulation, are explained in detail. 

- Chapter 3 focuses on the design of a multi-epitope vaccine 

candidate for the Powassan virus, a tick-borne virus that 

causes severe neurological complications in humans. Its 

incidence rising due to climate change, thus becoming a growing 

public health concern. Currently, there are no vaccines or 

treatments for the Powassan virus. This chapter applies 

bioinformatics to predict B-cell and T-cell epitopes and 

evaluates the vaccine's potential to induce strong immune 

responses. 

- Chapter 4: Mycobacterium tuberculosis (MTB), the causative 

agent of tuberculosis, remains a significant global health threat, 

particularly in developing countries, despite the availability of 

the BCG vaccine. This study focuses on designing a multi-

epitope vaccine targeting key proteins of MTB. The vaccine 

construct incorporates epitopes that stimulate both T-cell and 
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B-cell responses, which are critical for controlling intracellular 

pathogens like MTB. 

- Chapter 5: This chapter presents a promising vaccine against 

respiratory syncytial virus (RSV), which poses a major health 

threat, particularly for infants and the elderly. Integrating 

immunoinformatics and computational approaches, this study 

analyzes RSV structural proteins across subtypes A and B, 

identifies T-cell and B-cell epitopes based on antigenicity, 

allergenicity, toxicity, and cytokine-inducing potential, offers 

theoretical support, and marks a significant advancement in 

vaccine development efforts for RSV. 

- Chapter 6: General Discussion integrates the findings from the 

four studies and provides a broader discussion of the potential 

of multi-epitope vaccines in addressing infectious diseases. 

This chapter also explores the limitations of computational 

approaches and proposes future directions for experimental 

validation and clinical applications. 

The research presented in this thesis has the potential to 

significantly impact both the fields of infectious disease control. The 

Powassan virus study (Chapter 3) lays the groundwork for epitope-

based vaccine design in a viral context, which is further explored in 
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Mycobacterium tuberculosis (Chapter 4) through its application to a 

bacterial pathogen. These findings inform the design of vaccines for 

more complex pathogens, such as RSV (Chapter 5), showcasing the 

broad utility of the methods developed in this thesis. 

The successful application of bioinformatics and 

immunoinformatics to the design of multi-epitope vaccines 

demonstrates the power of computational approaches in addressing 

some of the most pressing global health challenges. Firstly, the ability 

to rapidly design multi-epitope vaccines for emerging pathogens is 

critical for pandemic preparedness. The research in this thesis shows 

that bioinformatics tools can accelerate the identification of 

immunogenic epitopes and reduce the time needed to develop effective 

vaccines. This is especially important in the context of rapidly 

mutating viruses and other pathogens with high antigenic variability. 

Secondary, the computational framework developed in this thesis is 

highly flexible and can be adapted to a wide range of pathogens. This 

adaptability is particularly valuable in addressing emerging and re-

emerging diseases that require rapid vaccine development. Finally, the 

ability to integrate bioinformatics with immunoinformatics allows for 

the design of vaccines that are not only effective but also safe, 

reducing the risk of adverse reactions. 
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In summary, this thesis sets the stage for the use of 

bioinformatics-driven multi-epitope vaccines in combating infectious 

diseases. The ability to predict, design, and evaluate vaccine 

candidates using computational tools represents a major advancement 

in the field of vaccinology. The research presented here not only 

addresses current health challenges but also provides a foundation for 

future vaccine development efforts.  
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This thesis utilizes bioinformatics approaches, specifically 

immunoinformatics and computational biology, to design multi-epitope 

vaccine candidates for infectious diseases. Computational vaccinology 

is a critical advancement in modern vaccine design, allowing for rapid 

prediction and evaluation of antigenic epitopes without the need for 

laboratory-based testing in the initial stages. This chapter outlines the 

methodologies applied across the studies, and a summary of the steps 

involved is presented in Figure 2.1. 
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Figure 2.1 Schematic representation of the methodology used in multi-

epitope vaccine design and evaluation. 
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2.1. Sequence retrieval 
 

The protein sequences of target pathogens antigens were obtained 

from publicly available databases such as UniProt (Consortium, 

2023)(Consortium, 2022). For each study, specific antigens that were 

critical for immune recognition were selected.  

 

2.2. Epitope prediction 
 

Predicted epitopes are critical in multi-epitope vaccine design as they 

drive the immune response. 

Cytotoxic T lymphocyte (CTL) epitopes were predicted using 

the NetMHCpan 4.1 server, an advanced tool for predicting peptide 

binding affinities to MHC-I molecules across a wide range of species 

and alleles. Unlike earlier versions, NetMHCpan 4.1 uses a pan-

specific model, which allows it to make accurate predictions even for 

rare or novel MHC alleles. It leverages deep learning to improve 

prediction accuracy, making it especially useful in identifying T-cell 

epitopes for vaccine development and immunotherapy research 

(Reynisson et al., 2020). 

Helper T lymphocyte (HTL) epitopes were identified using the 

NetMHCIIpan 4.3 server, focusing on epitopes with strong binding 

affinity to MHC-II molecules. This server uses a pan-specific method 
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and provides high accuracy in binding prediction. This tool is widely 

used for epitope discovery in vaccine and immunotherapy research 

(Nilsson et al., 2023). 

Linear B lymphocyte (LBL) epitopes were predicted using 

BepiPred 3.0. This version leverages deep learning methods for more 

accurate predictions compared to previous versions, enhancing 

accuracy in predicting both linear and conformational epitopes. 

BepiPred-3.0 is widely used in vaccine design, antibody development, 

and immunodiagnostics, where accurately identifying B-cell epitopes 

is essential for inducing antibody responses (Clifford et al., 2022). 

 

2.3. Epitope evaluation 
 

To ensure the vaccine candidates are immunogenic and safe, predicted 

epitopes were evaluated using: 

VaxiJen v2.0, an online server for predicting the antigenicity. 

Unlike many other tools, VaxiJen does not require alignment with 

known epitopes; instead, it uses a physicochemical property-based 

approach to distinguish between antigenic (vaccine-relevant) and 

non-antigenic proteins. This makes it particularly fast and suitable for 

screening large numbers of proteins to identify potential vaccine 

candidates. VaxiJen v2.0 supports predictions for several pathogen 
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types, including viruses, bacteria, and parasites, making it a widely 

used tool in initial vaccine design (Irini A. Doytchinova & Darren R. 

Flower, 2007). 

AllergenFP to predict allergenic epitopes. It employs a unique 

fingerprint-based approach, converting protein sequences into binary 

fingerprints, which are then compared with known allergens to assess 

potential allergenicity. AllergenFP is particularly valuable in vaccine 

development, where identifying and avoiding allergenic proteins is 

critical for safety. Its fast, alignment-free method makes it suitable for 

screening large datasets, ensuring that selected proteins are less 

likely to provoke allergic reactions (Dimitrov, Naneva, et al., 2013). 

ToxinPred to ensure non-toxic properties of the epitopes. It 

uses machine learning models to assess various physicochemical 

properties, such as hydrophobicity and charge, to determine a 

peptide's toxicity. ToxinPred is particularly useful in vaccine and 

therapeutic peptide development, as it helps filter out toxic peptides 

early in the design process, reducing the risk of adverse reactions and 

ensuring safety in final vaccine formulations (Gupta, Kapoor, 

Chaudhary, Gautam, Kumar, & Raghava, 2013). 

IFNepitope is a computational tool designed to predict and 

identify interferon-gamma (IFN-) inducing epitopes. IFN- is a 
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critical cytokine in immune responses, especially in activating 

macrophages and promoting antiviral immunity. IFNepitope uses 

machine learning algorithms to analyze protein sequences and predict 

which peptides are likely to induce IFN- production, making it 

valuable for designing vaccines and immunotherapies that aim to 

stimulate strong cellular immune responses (Dhanda, Vir, et al., 2013b). 

IL4Pred is a bioinformatics tool used to predict interleukin-4 

(IL-4) inducing peptides. IL4Pred employs machine learning 

techniques to analyze peptide sequences and predict their potential to 

induce IL-4 production. This tool is useful in vaccine design, especially 

for vaccines targeting pathogens that require a strong humoral 

response, as it helps identify epitopes likely to enhance IL-4 mediated 

immune responses (Dhanda, Gupta, et al., 2013a). 

IL-10Pred is a bioinformatics tool designed to predict peptides 

that can induce interleukin-10 (IL-10) production. Using machine 

learning algorithms, IL-10Pred analyzes peptide sequences to predict 

their potential to stimulate IL-10 production. This tool is particularly 

valuable in designing therapeutic peptides and vaccines aimed at 

controlling inflammatory responses, autoimmune conditions, and 

chronic infections, where modulation of the immune response is 

essential (Nagpal et al., 2017a). 
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2.4. Population coverage analysis  
 

The IEDB population coverage analysis tool was used to estimate 

population coverage for the selected T-cell epitopes in the vaccine 

candidate. In the IEDB tool, default values were used for the number 

of epitopes and query options, while the “World” option was selected 

for area/population (Bui et al., 2006b). 

 

2.5. Vaccine construction 
 

The chosen CTL, HTL, and LBL epitopes were assembled into a 

vaccine construct. The epitopes were linked using suitable linkers 

such as GPGPG, AAY, KKK, GGS, and EAAAK to preserve 

immunogenicity and structure as they are cleavable, flexible, and rigid. 

Additionally, adjuvants like tetanus and diphtheria toxoids (TpD), the 

final subunit of Escherichia coli type 1 fimbria (FimH), RS09, flagellin 

protein, the PADRE (Pan HLA DR-binding epitope) sequence, etc., 

were incorporated to enhance the immune response. Previous studies 

have demonstrated the effectiveness of TpD in protecting mucosal 

surfaces and promoting neutralizing antibody production (Chan et al., 

2020; Li et al., 2018), while cholera toxin subunit B (Hou et al., 2014) 

and E. coli FimH have shown potential to enhance immunogenicity and 

stimulate cytokine production (Zhang et al., 2020; Zhang et al., 2022). 
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RS09 functions as an agonist of TLR4, while the flagellin protein acts 

as a TLR5 agonist (Forstnerič et al., 2017; Gupta et al., 2014; 

Shanmugam et al., 2012). The TLR agonists play a crucial role in 

activating innate and adaptive immunity. Incorporating PADRE into the 

vaccine can elevate its immunogenicity and efficacy (Ma et al., 2020). 

PADRE exhibits a high-affinity binding ability to various MHC class II 

molecules, facilitating the generation of antigen-specific CD4+ T-cell 

responses (Ghaffari-Nazari et al., 2015). Additionally, it has also been 

reported to elicit CD8+ T-cell responses (Ma et al., 2020). 

 

2.6. Vaccine’s physiochemical properties 
 

The ProtParam web tool was used to evaluate the physicochemical 

properties of the vaccine. This tool is provided by the ExPASy (Expert 

Protein Analysis System) platform which analyzes various 

physicochemical properties of proteins based on their amino acid 

sequences. It calculates key parameters such as molecular weight, 

theoretical isoelectric point (pI), amino acid composition, extinction 

coefficient, instability index, aliphatic index, and grand average of 

hydropathicity (GRAVY). These properties are essential for 

understanding protein stability, solubility, and overall behavior of 

vaccine design (Gasteiger et al., 2005). 
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2.7. Immune simulations 
 

In silico immune simulations were performed using C-ImmSim, an 

online server designed to simulate the immune response to antigens 

and vaccine candidates. It uses a computational approach to model 

both humoral and cellular immune responses over time. C-ImmSim can 

simulate processes like the generation of antibodies, activation of T-

cells, and cytokine responses, providing valuable insights into 

potential vaccine efficacy before experimental testing (Rapin et al., 

2012). 

 

2.8. Vaccine’s secondary and tertiary structure 

prediction 
 

The secondary structure of the vaccine was predicted using Gail 

Hutchinson's PROMOTIF v.3.0 program via the PDBsum server. 

PROMOTIF analyzes protein coordinate files to identify and detail 

structural motifs within a protein, providing information on secondary 

structures, β- and -turns, helical geometry, β-strand topology, β-

hairpins, and more (Laskowski et al., 2018).  

The tertiary structure of the vaccine construct was modeled 

using several servers, such as SWISS-MODEL, Iterative Threading 

ASSEmbly Refinement (I-TASSER), and AlphaFold via AlphaFold 
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Colab.  

SWISS-MODEL is a web-based tool for homology modeling of 

protein 3D structures. It was used to generate structural models based 

on a known template, which is identified from proteins with similar 

sequences. It’s widely used in structural biology, drug discovery, and 

vaccine design for visualizing protein functions, interactions, and 

ligand binding sites, aiding in research where experimental structures 

are unavailable (Waterhouse et al., 2018).  

I-TASSER is a computational tool for protein structure 

prediction and function annotation. It uses a combination of threading 

(identifying structural templates), iterative fragment assembly, and 

atomic-level refinement to predict 3D structures of proteins from their 

amino acid sequences. Widely used in structural biology and 

bioinformatics, I-TASSER is valuable for research in drug discovery, 

vaccine design, and protein engineering, especially when experimental 

structures are unavailable (Yang et al., 2015).  

AlphaFold is an AI-driven tool developed by DeepMind that 

predicts protein 3D structures with remarkable accuracy based solely 

on amino acid sequences. Leveraging advanced deep learning models 

trained on extensive experimental protein data, AlphaFold produces 

structural predictions comparable to those obtained by experimental 
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methods like X-ray crystallography or cryo-electron microscopy. This 

breakthrough has significantly accelerated research across structural 

biology, drug discovery, and vaccine development by offering rapid, 

accessible insights into protein folding, function, and interactions 

(Jumper et al., 2021).  

While SWISS-MODEL, I-TASSER, and AlphaFold are all 

powerful tools for protein structure prediction, they each have distinct 

strengths. SWISS-MODEL is best for accessible, routine homology 

modeling when suitable templates are available. I-TASSER offers 

flexibility for proteins with limited homologs and provides additional 

functional insights, such as active site predictions. AlphaFold delivers 

unmatched accuracy, making it ideal for complex or novel proteins 

where high-quality structure predictions are essential. 

 

2.9. Three-dimensional structure refinement and 

validation  
 

To assess the structural quality and stability of the vaccine’s 3D model, 

the following tools were employed GalaxyRefine, ProSA-web, 

PROCHECK, and ERRAT.  

GalaxyRefine is a computational tool used for protein structure 

refinement, primarily improving the quality of initial protein models 



61 
 

generated by homology modeling methods. Developed as part of the 

GalaxyWeb server suite, GalaxyRefine applies iterative structural 

relaxation through molecular dynamics simulations to optimize side-

chain positioning and correct minor backbone errors. This results in 

more accurate models with enhanced structural quality, particularly in 

terms of stereochemistry and overall geometry (Heo et al., 2013). 

ProSA-web, an online tool used for evaluating the quality of 

protein structures, is typically generated through computational 

modeling or experimental methods like X-ray crystallography. ProSA-

web analyzes structural models by assessing the overall quality based 

on Z-scores, which indicate how closely the model aligns with high-

quality protein structures in the Protein Data Bank (PDB) (Wiederstein 

& Sippl, 2007).  

PROCHECK is a widely used computational tool for assessing 

the stereochemical quality of protein structures. It generates detailed 

reports on structural features such as bond angles, bond lengths, and 

dihedral angles. By comparing these parameters to those in high-

quality structures, PROCHECK identifies any structural anomalies or 

errors, helping refine protein models for better accuracy (Laskowski 

et al., 1993).  

ERRAT is a structural analysis tool that evaluates the quality of 
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protein models by identifying potential errors in the non-bonded 

interactions between atoms. It examines the atomic interactions within 

a protein structure and calculates an “error value” to highlight regions 

where the geometry deviates significantly from known high-quality 

structures. ERRAT is especially useful for validating protein models 

derived from X-ray crystallography or homology modeling (Colovos & 

Yeates, 1993). Often used alongside other tools like PROCHECK and 

ProSA, ERRAT supports the improvement of model accuracy before 

further analysis or application in research fields such as drug design, 

vaccine design, and protein engineering. 

 

2.10 Molecular docking and molecular dynamics 

simulation 
 

To assess the interaction between the vaccine and immune receptors, 

molecular docking was performed using PatchDock or ClusPro v2.0. 

The stability of the interactions was confirmed through molecular 

dynamics simulations using GROMACS, which analyzed key metrics 

such as root mean square deviation (RMSD) of backbone residues, root 

mean square fluctuation (RMSF) of C-alpha, radius of gyration (Rg), 

and solvent accessible surface area (SASA). 

PatchDock is a molecular docking algorithm used for predicting 
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protein-protein, protein-small molecule, and protein-DNA/RNA 

interactions. PatchDock identifies and aligns geometrically 

complementary shapes, allowing it to predict how molecules may 

interact based on surface compatibility. After initial docking, 

PatchDock refines the results using scoring functions to estimate the 

binding energy and rank possible interactions (Schneidman-Duhovny 

et al., 2005). 

 ClusPro v2.0 is a widely used online server for protein-protein 

docking, designed to predict the most likely 3D structures of protein 

complexes. It operates by generating multiple docking models and then 

clustering them to identify stable conformations. ClusPro v2.0 offers 

different modes based on the nature of the interaction, such as 

balanced, electrostatic-favored, hydrophobic-favored, and van der 

Waals interactions, which allows to tailor the docking to the specific 

characteristics of the proteins involved (Kozakov et al., 2017b). 

ClusPro offers greater accuracy and reliability, especially for 

protein-protein docking, through its clustering-based approach, 

making it suitable for in-depth studies. PatchDock, on the other hand, 

is fast and efficient for quick docking predictions based on shape 

complementarity, which is helpful in preliminary analyses or for users 

needing flexible applications like protein-ligand or protein-nucleic 
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acid docking. 

GROMACS is a high-performance, open-source software suite 

for molecular dynamics (MD) simulations, primarily used to study 

biomolecular systems like proteins and lipids. It excels in simulating 

atomic interactions over time, supporting a variety of force fields (e.g., 

CHARMM, AMBER), and offering numerous tools for energy 

minimization and data analysis. GROMACS is widely used in fields like 

structural biology, drug discovery, vaccine design, and materials 

science to study protein folding, molecular interactions, ligand binding, 

and membrane dynamics, providing insights that are critical for 

designing new drugs/vaccines, materials, and therapeutic strategies 

(Abraham et al., 2015). 
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3.1. Abstract 

Powassan virus is an arthropod-borne virus (arbovirus) capable of 

causing severe illness in humans for severe neurological complications, 

and its incidence has been on the rise in recent years due to climate 

change, posing a growing public health concern. Currently, no vaccines 

to prevent or medicines to treat Powassan virus disease, emphasizing 

the urgent need for effective countermeasures. In this study, I utilize 

bioinformatics approaches to target proteins of Powassan virus, 

including the capsid, envelope, and membrane proteins, to predict 

diverse B-cell and T-cell epitopes. These epitopes underwent 

screening for critical properties such as antigenicity, allergenicity, 

toxicity, and cytokine induction potential. Eight selected epitopes were 

then conjugated with adjuvants using various linkers, resulting in 

designing of a potentially stable and immunogenic vaccine candidate 

against Powassan virus. Moreover, molecular docking, molecular 

dynamics simulations, and immune simulations revealed a stable 

interaction pattern with the immune receptor, suggesting the vaccine's 

potential to induce robust immune responses. In conclusion, my study 

provided a set of derived epitopes from Powassan virus’s proteins, 

demonstrating the potential for a novel vaccine candidate against 

Powassan virus. Further in vitro and in vivo studies are warranted to 
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advance our efforts and move closer to the goal of combatting 

Powassan virus and related arbovirus infections. 

 

3.2. Introduction 

Emerging infectious diseases have posed significant challenges to 

public health worldwide in recent years. Among these, the Powassan 

virus (POWV) is a compelling subject of investigation due to its 

potential to cause severe neurological illness in humans. POWV, a 

member of the Flaviviridae family, belongs to a group of vector-borne 

viruses that include other lethal pathogens such as Zika, dengue, and 

West Nile virus (Kemenesi & Bányai, 2018). The Powassan genome is 

composed of about 11 kb of single-stranded, positive-sense RNA that 

encodes three structural proteins: the capsid (C) protein, the 

premembrane (prM) protein, and the envelope (E) glycoprotein at the 

5′ end of the genome and seven nonstructural proteins in the 3' end of 

the genome (Hermance & Thangamani, 2017). Geographically, the 

virus is predominantly found in North America, with a higher incidence 

in the eastern parts of Canada, Northeastern and Great Lakes regions 

of the United States, and in far eastern Russia (Corrin et al., 2018; 

Hermance & Thangamani, 2017). There are two lineages of POWV: 

lineage 1, which includes POWV strain LB, and lineage 2, also called 
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deer tick virus (Krow-Lucal et al., 2018). The lineage 1 virus is 

primarily transmitted to humans through the bite of infected ticks, 

specifically the Ixodes scapularis tick (also known as the black-legged 

tick) in North America. Meanwhile, the lineage 2 virus, such as Ixodes 

cookei mostly transmits to humans in the far eastern region of Russia 

(Stone et al., 2022). 

The virus can lead to various clinical presentations, from 

asymptomatic cases to severe neuroinvasive disease (Della-Giustina 

et al., 2021). The time between being bitten by an infected tick and the 

onset of symptoms (incubation period) can vary, but it's generally 

within 1–5 weeks (Corrin et al., 2018; Hermance & Thangamani, 2017). 

Many individuals who are infected with POWV may not show any 

symptoms. Those who develop symptoms can range from mild to 

severe, including fever, headache, vomiting, weakness, and confusion. 

In some cases, neurological symptoms such as encephalitis 

(inflammation of the brain) and meningitis (inflammation of the 

membranes surrounding the brain and spinal cord) can occur (Telford 

& Piantadosi, 2023). Given the potentially rapid onset of symptoms and 

the lack of specific antiviral therapies, understanding the factors 

contributing to disease severity and developing novel strategies to 

prevent and treat POWV is paramount. Preventing POWV infections 



69 
 

hinges on effective tick bite prevention strategies, including insect 

repellents, protective clothing, and thorough tick checks (Bogaty & 

Drebot, 2018). As for treatment, there is no specific antiviral therapy 

or vaccine for Powassan virus infections. Supportive care is the 

cornerstone of managing cases, and hospitalization may be required 

for severe presentations (Khan et al., 2019). 

In response to the urgent need for effective countermeasures 

against POWV infections, this study takes an innovative 

immunoinformatics approach to design a potential vaccine candidate. 

Leveraging the power of computational tools and bioinformatics 

analyses, I aim to harness the immune system's capabilities by 

targeting the structural proteins of POWV. These proteins, including 

the capsid, envelope, and membrane proteins, play pivotal roles in 

virus entry, replication, and host interactions, making them attractive 

targets for vaccine design. Initial steps encompass the retrieval and 

analysis of structural protein sequences of POWV to identify B-cell 

epitopes and major histocompatibility complex class I (MHC-I) and 

MHC-II binding peptides. By employing algorithms that predict binding 

affinity to MHC molecules, I prioritize epitopes likely to be presented 

to T cells, a key step in generating cellular immunity. Then, the 

antigenicity, allergic potential, toxicity, and cytokine inducing potential 
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of the epitopes were predicted to ensure that our vaccine candidate 

triggers specific immune responses without causing adverse effects. I 

aim to narrow the list of potential epitopes exhibiting optimal 

immunological properties through these stringent screening processes. 

Subsequently, I design a vaccine candidate using the epitopes that 

satisfy the selection criteria by joining them to adjuvants using suitable 

linkers. Finally, I employ molecular modeling techniques to generate 

the vaccine candidate's three-dimensional structure, which is then 

used to perform molecular docking and molecular dynamics simulation 

analyses with toll-like receptor (TLR) molecules.  

 

3.3. Materials and Methods 

3.3.1. Retrieval and analysis of protein sequences 

The polyprotein sequence of the Powassan virus was obtained from 

UniProt with the accession number Q04538. Since this research 

specifically focuses on the structural proteins, their sequence details 

were extracted from the PTM/Processing section within the UniProt 

entry. Additionally, the antigenicity and allergenicity of the structural 

proteins—namely, capsid, pre-membrane protein/membrane (prM/M), 

and envelope proteins—were evaluated using Vaxijen 2.0 and the 
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allergenFP tool, respectively (Dimitrov et al., 2013; Irini A. 

Doytchinova & Darren R. Flower, 2007).  

 

3.3.2. Prediction and evaluation of B-cell and T-cell epitopes 

The NetMHC 2.3 website predicted T-helper cell epitopes that could 

bind to MHC class II molecules (Jensen et al., 2018). Additionally, the 

NetMHCpan 4.0 website was utilized to forecast T-cytotoxic cell 

epitopes that could potentially bind to MHC class I molecules (Jurtz et 

al., 2017). The protein sequences were input in FASTA format, with 

selected peptide lengths of 9 and 15 (default), on the NetMHCpan 4.0 

and NetMHC 2.3 web servers, respectively. The default parameters of 

the NetMHCpan 4.0 and NetMHC 2.3 web servers were applied to 

establish the thresholds for strong and weak binders. For the 

prediction of multiple linear B-cell epitopes, the IEDB B-cell epitope 

prediction website, employing the BepiPred 3.0 linear epitope 

prediction approach, was operated (Larsen et al., 2006). The Vaxijen 

version 2.0 web server was employed to determine the antigenicity of 

the B-cell and T-cell epitopes (Irini A. Doytchinova & Darren R. 

Flower, 2007). The allergenFP, ToxinPred, and IFNepitope web 

servers were used to evaluate the epitopes' allergic potential, toxicity, 



72 
 

and interferon- activation potential, respectively (Dhanda, Vir, et al., 

2013b; Dimitrov et al., 2013; Gupta, Kapoor, Chaudhary, Gautam, 

Kumar, Open Source Drug Discovery, et al., 2013). The IL4Pred and 

IL-10Pred servers were utilized to assess the capability of the 

epitopes to induce interleukin-4 and interleukin-10 generation 

(Dhanda, Gupta, et al., 2013b; Nagpal et al., 2017a). 

 

3.3.3. Formulation of the vaccine candidate and determination 

of the properties 

The final epitopes, B-cell and T-cell, were joined to TpD adjuvant and 

Escherichia coli FimH protein with suitable linkers to formulate the 

final vaccine candidate. TpD is a universal adjuvant for CD4+ T cells, 

possibly outperforming “PADRE”, a peptide that binds to several HLA-

DR (Human Leukocyte Antigen-DR) molecules promiscuously 

(Alexander et al., 1994). TpD has been shown in vitro to protect 

mucosal membranes, as well as to stimulate the generation of 

neutralizing antibodies (Chawla et al., 2023). These results are 

consistent in many mammalian species and are characterized by the 

development of durable CD4 + T memory cells, the production of 

neutralizing antibodies, and the release of cytokines such as TNF-α 
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and interferon-gamma (IFN-). A T-helper cell (Th1)-dominant 

immunological response is indicated by this pattern (Fraser et al., 

2014). To further enhance the immune stimulation of the vaccine, I 

included the final subunit of the type 1 fimbria of Escherichia coli 

(FimH), which has been shown to interact in a dependent way with 

TLR4. In comparison to lipopolysaccharide (LPS), this interaction 

regulates MHC class I and class II molecules more advantageously and 

securely and fosters the maturation, activation, and proliferation of 

peripheral and dendritic cells in the local area. Like TpD, FimH also 

promotes IFN- and TNF-α production (Zhang et al., 2020; Zhang et 

al., 2022). Interestingly, FimH's application is effective in promoting 

mucosal immunity (Zhang et al., 2020). To form rigid or flexible protein 

configurations based on the desired biological activity, these adjuvants 

were linked by EAAAK linker; MHC-I and MHC-II epitopes were 

linked by KKK linker; and B-cell epitopes were linked by EAAAK 

linker as well. The physiochemical properties were analyzed by 

Expasy ProtParam webserver, whereas the antigenicity and allergic 

potential of the formulated vaccine candidate were determined by 

Vaxijen 2.0 and AllergenFP webservers (Dimitrov et al., 2013; Irini A. 

Doytchinova & Darren R. Flower, 2007; Gasteiger et al., 2005). The 

presence of a transmembrane helix in the vaccine candidate was 
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predicted by DeepTMHMM webserver (Hallgren et al., 2022). 

Furthermore, signal peptide in the vaccine construct was predicted by 

SignalP 4.1 tool (Nielsen, 2017). Finally, BLASTp analysis is 

performed to identify the homologous protein of the vaccine candidate 

in humans (taxon id: 9606; Homo sapiens) (Johnson et al., 2008).  

 

3.3.4. In-silico immune simulation of the vaccine candidate 

To assess the immune response induced by the formulated vaccine 

construct, I conducted an in-silico immune simulation using the C-

ImmSim software (Rapin et al., 2011). I employed the default software 

settings except for the time step. Generally, it is recommended to 

maintain a minimum interval of four weeks between consecutive 

vaccine doses, although in certain situations, a longer gap may also be 

considered (Castiglione et al., 2012; Robinson et al., 2017). Thus, I 

evaluated the immune response profile for the vaccine construct by 

administering three vaccine doses at four-week intervals. Time steps 

of 1, 84 (approximately 4 weeks), and 168 (approximately 8 weeks) 

were utilized in the simulation. 
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3.3.5. Modeling, refinement, and validation tertiary structure 

of the vaccine candidate 

The three-dimensional (3D) structure of the MEV construct was 

modeled using the AlphaFold (David et al., 2022; Jumper et al., 2021). 

Subsequently, to enhance the model's quality, the generated PDB file 

of the final vaccine from AlphaFold was submitted to the GalaxyRefine 

server for protein structure refinement (Heo et al., 2013). This server 

initiates the reconstruction of all side chain structures, followed by 

iterative relaxation of the structure through brief molecular dynamics 

(MD) simulations after side chain repackage perturbations. Evaluation 

metrics provided by the GalaxyRefine server encompass global 

distance test-high accuracy (GDT-HA), root-mean-square deviation 

(RMSD), MolProbity (indicating crystallographic resolution), and 

Ramachandran favored score. RMSD measures the distance between 

atoms, with lower values indicating greater stability. An RMSD score 

falling from 0 to 1.2 is typically considered acceptable (Heo et al., 

2013). To supplement refinement, I use the ERRAT program to verify 

protein structures obtained through crystallography. It assesses errors 

based on non-bonded atom–atom interactions compared to a database 

of reliable high-resolution structures (Colovos & Yeates). Additionally, 

the PROCHECK and ProSA-web servers were employed to assess the 
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validity and quality of the selected 3D structure (Laskowski et al., 1993; 

Wiederstein & Sippl, 2007). The Ramachandran plot analysis was 

conducted using the PROCHECK section of the UCLA-DOE LAB 

server. This plot illustrates the statistical distribution of backbone 

dihedral angles φ and , along with the percentage and count of 

residues in the most favored, additionally allowed, generously allowed, 

and disallowed regions, thereby delineating the modeled structure's 

quality (Laskowski et al., 1993). The ProSA-web server was also 

utilized to identify potential errors in the final vaccine structure 

(Wiederstein & Sippl, 2007). 

 

3.3.6. Molecular docking and molecular dynamics simulation 

studies  

For the docking of the vaccine with TLR4, we utilized the PatchDock 

webserver, adhering to default settings (Schneidman-Duhovny et al., 

2005). It is a protein-protein docking algorithm and server that is used 

to predict the three-dimensional structure of protein complexes. The 

PatchDock algorithm employs a shape complementarity approach, 

where it matches complementary surface patches on the interacting 

proteins to generate potential docking poses (Schneidman-Duhovny et 
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al., 2005). By submitting two protein structures (vaccine and TLR4) to 

the PatchDock server, I can obtain predictions for their possible 

docking orientations and interaction interfaces. From this server, I got 

10 models, which were ranked based on geometric shape 

complementarity and energy scoring. 

Afterward, to evaluate the stability of the docked complex, 

molecular dynamics (MD) simulations were conducted using the 

GROMACS 2023 software on a Linux operating system (Abraham et 

al., 2015). Three replicas throughout 100 ns of the MD simulation were 

performed for all-atom to ensure the reliability of the data. The 

CHARMM27 all-atom force field was used to model the parameters of 

the proteins. There are 16,182 atoms and 1037 residues in total. The 

TLR4 protein complexed with the vaccine was placed in a cubic box 

9 × 9 × 9 and solvated with SOL water molecules. The simulation box 

contained 380,145 atoms in the system. Charge neutralization was 

achieved by adding 2 Cl- ions. System energy minimization was 

performed using the steepest descent method, applying a position 

restraint of 1000 kJ/mol nm2 on the heavy atoms of the protein. The 

equilibration process was carried out in a phased manner. Initially, a 1 

ns NVT simulation was performed, followed by a 1 ns NPT simulation 

with restraints on the heavy atoms of the protein. Subsequently, a 10 
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ns equilibration without restraints on atoms was conducted using the 

NPT ensemble. The structure obtained after 10 ns of MD simulation 

was utilized as the starting structure for further equilibration and 

production simulations. Production simulations were run for 100 ns 

using the NPT ensemble, maintaining a temperature of 300 K with 

velocity rescaling and a coupling time of 0.1 ps. The pressure was 

maintained at 1 atm using a Parrinello-Rahman barostat with a coupling 

time of 2 ps. After the efficient completion of 100 ns MD simulations, 

calculations were performed for the RMSD of backbone residues, root 

mean square fluctuation (RMSF) of C-alpha, radius of gyration (Rg), 

and solvent accessible surface area (SASA). Besides, I conducted 

superimpositions of the complex structures extracted from selected 

snapshots during the simulation using GROMACS tools. Furthermore, 

to explore the interface connecting TLR4 and the vaccine construct, 

specific snapshots were analyzed using the COCOMAPS tool (Vangone 

et al., 2011). 

 

3.4. Results 

3.4.1. Retrieval and analysis of protein sequences 

The 3415 amino acid long polyprotein sequence reviewed has protein 
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level evidence and an annotation score of 5/5. In the polyprotein 

sequence, the capsid protein ranges between 1 and 94 amino acids, 

prM/M protein ranges between 116 and 278 amino acids, and envelope 

protein ranges between 279 and 775 amino acids. All the structural 

proteins were predicted as antigenic by the Vaxijen 2.0 tool. Similarly, 

all the structural protein except capsid protein was determined as non-

allergic by the AllergenFP webserver. 

 

3.4.2. Prediction and evaluation of B-cell and T-cell epitopes  

A total of 67 strong binding MHC-I epitopes were identified, including 

12 epitopes from capsid protein, 17 from prM/M protein, and 38 from 

envelope protein. Similarly, 40 strong binding MHC-II epitopes were 

predicted from the capsid protein, 14 from the prM/M protein, and 52 

from the envelope protein, taking the total of strong binding MHC-II 

epitopes to 106. Finally, from the structural protein, 19 B-cell epitopes 

were predicted. All these epitopes were then evaluated for their 

antigenicity, IL-4, and Interferon-gamma inducing ability, toxicity, and 

allergenicity (Supplementary Datasets). After all the analysis, 8 

epitopes were predicted: 2 from MHC-I, 4 from MHC-II, and 2 from 

B-cell epitopes that were antigenic, non-toxic, non-allergic, and could 
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activate IL-4 and Interferon-gamma (Table 3.1).  

 

Table 3.1 Final epitopes selected for the vaccine design 
 

Type of epitope Protein Epitope 

MHC-I Envelope 
DTVVMEVSY  

VEFGPPHAV  

MHC-II 

Capsid 
MFWKTVPLRQAEAVL  

MFWKTVPLRQAESAL 

Envelope 
GSTIGRMFEKTRRGL  

GSTIGRMFEKTRKGL 

B-cell Envelope 
KHKDNQDWNS  

EFGPPHAV   

 

3.4.3. Formulation of the vaccine candidate and determination 

of the properties 

Eight chosen epitopes highly suitable for vaccine design were 

connected with adjuvants via stable linkers. As a result, the final 

vaccine candidate has 442 amino acids (Figure 3.1).  
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Figure 3.1 Schematic representation of the vaccine design with linkers, 

adjuvant, and epitopes sequentially and appropriately. 

 
 

Furthermore, the vaccine candidate was predicted as antigenic 

by the Vaxijen 2.0 webserver and non-allergic by the AllergenFP 

webserver. The negative GRAVY score indicates that the vaccine 

candidate is hydrophilic, and the instability index of 29.45 below 40 

shows that the vaccine candidate is stable (Table 3.2). Also, the final 

vaccine construct has no transmembrane helices or signal peptides. 

Remarkably, in the BLASTp analysis, the vaccine candidate appears 

distinct from human proteins, suggesting that it has the potential to be 

used safely in humans without triggering an autoimmune response in 

the host. 
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Table 3.2 Physiochemical properties of the formulated vaccine 

candidate 
 
 
Features Assessment Remark 

Molecular weight 47250.12 Average 

Number of amino acids 442 - 

Signal peptide 0 - 

Transmembrane helix 0 - 

Total number of atoms 6685 - 

Extinction coefficient 54570 Average 

Theoretical pI 9.65 Slightly basic 

Aliphatic index (AI) 82.29 Thermostable 

Instability Index (II) 29.45 Stable 

Estimated half-life (mammalian 

reticulocytes, in vitro) 
20 hours 

Satisfactory 

Estimated half-life (yeast cells, in 

vivo) 
30 minutes 

Satisfactory 

Estimated half-life (Escherichia coli, 
in vivo) 

>10 hours 
Satisfactory 

Grand Average of hydropathicity 

(GRAVY) 
-0.099 

Hydrophilic 

Antigenicity 0.6346 (VaxiJen v2.0) Antigenic 

Allergenicity Non-allergen (AllergenFP) Non-allergen 

3.4.4. In-silico immune simulation of the vaccine candidate  

Figure 3.2 visually represents the anticipated immune response 

pattern resulting from the formulated vaccine, as determined through 

computational analysis. Successive administrations of the vaccine 

trigger an expansion in both the total B-cell population and B-memory 

cell populations, highlighting the stimulation of a robust secondary 

immune response (Figure 3.2a). Following each vaccination the total 

T-helper (TH) cell population and T-helper memory cells increased 

(Figure 3.2b). On the other hand, the T-cytotoxic (TC) memory cell 
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population rises after the first vaccination but notably decreases after 

the second and third doses (Figure 3.2c). Besides, the proliferation of 

natural killers (NK) was also observed, which is an essential mediator 

of T cell activation (Figure 3.2d). Furthermore when examining the 

impact of the initial dose (Figure 3.2e) in comparison to the subsequent 

second and third doses, it becomes evident that there is an increase in 

the concentrations of various antibodies, including IgM + IgG, IgM, 

IgG1 + IgG2, IgG1, and IgG2, indicating that immunization with the 

candidate vaccine leads to an augmented antibody response. 

Additionally, the Powassan vaccination using the formulated vaccine 

candidate can induce the generation of various cytokines, including 

IFN-, interleukin-10 (IL10), interleukin-12 (IL12), and transforming 

growth factor-beta (TGF-β) (Figure 3.2f). In comparison to the initial 

dose, the second dose of the vaccine results in increased populations 

of IFN-, IL-10 and IL-12 but showed a decrease in the population of 

TNF-α. After receiving the third dose of the vaccine construct, there 

is an overall decrease in the concentration of different cytokines and 

interleukins compared to the first and second doses. 



84 
 

 

Figure 3.2 Powassan virus vaccine immune-simulation. (a) B-cell 

population. (b) T-helper cell population. (c) T-cytotoxic cell population. 

(d) Nature killer cell population. (e) Antigen count and antibody titer with 

specific subclass. (f) Concentration of cytokine and interleukins. Inset plot 

shows danger signal together with leukocyte growth factor IL-2.  
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3.4.5. Modeling, refinement, and validation tertiary structure 

of the vaccine candidate  

The vaccine construct was modeled using the cutting-edge AlphaFold 

program (David et al., 2022; Jumper et al., 2021). Given that the 

AlphaFold prediction yielded a local distance difference test score 

(pLDDT) below 70 (Figure S1) and the Ramachandran plot analysis 

revealed only 79.8% of residues in most favored regions (Figure S2), 

I conducted further structural refinement employing the GalaxyRefine 

server (Heo et al., 2013). Refer to Table 3.3 for the refined model's 

assessment, Model 2 demonstrated the highest global distance test-

high accuracy (GDT-HA) score of 0.9632 (the higher value, the more 

accurate), and the lowest root mean square deviation (RMSD) score of 

0.397 (lower value indicating greater stability).  

Table 3.3 Structure Information obtained from GalaxyWEB and ERRAT 

program 
 

Model GDT-HA RMSD MolProbity 
Clash 

score 

Poor 

rotamers 

Rama 

favored 

ERRAT 

value 

Model 1 0.9581 0.448 1.518 8.5 0.0 97.7 94.0789 

Model 2 0.9632 0.397 1.498 8.0 0.3 97.7 95.7790 

Model 3 0.9587 0.444 1.524 8.6 0.0 97.7 92.0630 

Model 4 0.9570 0.460 1.488 8.9 0.6 98.0 92.6984 

Model 5 0.9570 0.477 1.531 8.8 0.3 97.7 94.1558 

 

Besides, among the 5 models, only Model 2 had an ERRAT value 
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greater than 95% (Table 3.3 and Figure 3.3a). According to the ERRAT 

program, good high-resolution structures generally produce values 

around 95% or higher. Furthermore, to validate the model's quality, I 

analyzed the Ramachandran plot and calculated a Z-score. The 

Ramachandran plot analysis revealed that 94.7% of residues were 

situated in the favorable core region, with 5.3% in the allowed and 

generously allowed regions, and 0.0% in the disallowed region (Figure 

3.3b). Meanwhile, the Z-score had a value of -7.02 using the ProSA 

webserver (Figure 3.3c). Hence, I can infer that the tertiary structure 

of refined Model 2 (Figure 3.3d) exhibits a high level of quality suitable 

for subsequent docking studies. 
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Figure 3.3 Tertiary structure of the vaccine candidate. (a) ERRAT 

program plot. (b) Ramachandran plot by PROCHECK webserver. (c) Z-

score calculated by Pro-SA webserver. (d) Tertiary structure of 

refined Model 2 refined by GalaxyRefine, colored in rainbow from N- 

terminal (in blue) to C-terminal (in red). 

 

3.4.6. Molecular docking of the vaccine candidate and 

immune receptor 

Moving forward, I acquired the tertiary structure for the human TLR4 

receptor (Uniprot ID: O00206) from the AlphaFold database. In the 
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case of the TLR4 structure, I retained only the extracellular domain 

encompassing amino acids 30–624, excluding other regions. For the 

docking of the vaccine with TLR4, I utilized the PatchDock webserver, 

adhering to default settings (Schneidman-Duhovny et al., 2005). The 

docked structure is illustrated in Figure 3.4, with four representative 

interactions highlighted in stick representation formed between the 

vaccine and TLR4 complex.  

 

 

 

Figure 3.4 Docking and interaction analysis of the vaccine-TLR4 

complex. (a) Molecular docking. (b) Four distinct inter-molecular 

representative interactions between vaccine and TLR4 complex are in 

sticks representation. 

 

Besides, interacting residues between the vaccine and TLR4 
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were analyzed using the PDBsum web server (Laskowski et al., 2018). 

There are 67 and 58 residues interface, generating interface area 3270 

and 3521 (Å) between TLR4 and vaccine, respectively. As a result, a 

total of 16 hydrogen bonds (blue lines), 1 salt bridge (red line), and 

869 non-bonded contacts (orange dashed lines) were indicated in 

Figure 3.5. 
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Figure 3.5 Molecular docking between TLR4 (purple) and vaccine (red). 

(a) Three-dimensional representation of molecular docking. (b) Schematic 

diagram of interactions between protein chains. (c) Interface statistics. (d) 
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Residue interactions between TLR4 (chain A) and vaccine (chain B), salt-

bridge (red line), hydrogen bonds (blue lines), and non-bonded contacts 

(orange dashed lines) between residues on either side of the vaccine-

receptor interface. 

 

3.4.7. Molecular dynamics simulations 

To assess the stability of interactions in the vaccine and TLR4 

complex, three replicas with different initial velocities throughout 100 

ns of the MD simulations were run for all-atom using GROMACS 2023 

software. Highly conserved results were achieved in all three 

replicates, as shown in Figure 3.6. For clarity, I will only report the 

results for the first replication. The root mean square deviation (RMSD) 

from the backbone of the complex, TLR4, and MEV were analyzed with 

average values of 0.786 ± 0.087 nm, 0.259 ± 0.046 nm, and 

1.599 ± 0.375 nm respectively (Figures 3.6a–c). Besides, the root 

mean square fluctuation (RMSF) of the complexes was quantified to 

recognize the flexibility across the amino acid residues from the 

complexes. As depicted in Figure 3.6d, the RMSF values for TLR4 and 

MEV were calculated at 0.143 ± 0.057 nm and 1.109 ± 0.518 nm, 

respectively, indicating higher flexibility in the vaccine than TLR4. 

Subsequently, the radius of gyration in total (Rg) from the simulation 
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complex was also analyzed to examine the mobility and overall 

flexibility of the complex. Figure 3.6e shows that the complex had 

lower aberrations from 0 to 20 ns, and then the complex was stabilized 

and maintained the firm profile with a value of 3.565 ± 0.041 nm. 

Furthermore, the buried surface area (BSA) of the vaccine and TLR4 

complex was calculated. The BSA for each residue of the docking 

complex was averaged over 100 ns to ensure the system had reached 

an energy-minimized state. Throughout the simulation, the BSA at the 

interaction interface between the MEV and TLR4 remained stable in 

all three repetitions with an average value of 66.460 ± 8.982 nm2 

(Figure 3.6f). 
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Figure 3.6 Molecular dynamics simulation studies. (a–c) RMSD 

backbone of the docking complex, TLR4, and MEV, respectively. (d) 

RMSF of the docking complex. (e) Rg in total of the docking complex. 

(f) BSA of the docking complex. 

 
 

Additionally, the structural integrity's robustness was 

confirmed by aligning the entire complex involving the vaccine 

construct and the TLR4 receptor. Figure 3.7 illustrates a favorable 

alignment between these structures. The observed higher RMSD 

values in Figure 3.7a are attributed to the presence of unaligned, 

flexible regions, particularly the long and flexible loops within the 

vaccine construct. Despite these structural variations, the interaction 

pattern between the vaccine and TLR4 remains consistently stable. 
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Besides, to further explore the interface connecting TLR4 and the 

vaccine construct, like other researchers (Nguyen et al., 2022; Sharma 

et al.), specific snapshots were analyzed using the COCOMAPS tool as 

shown in Figure 3.7b. This analysis produced contact maps, visually 

representing the pairwise distances between residues of the vaccine 

construct and TLR4. In these contact maps, dots are color-coded: red, 

yellow, green, and blue signify distances below 7, 10, 13, and 16 Å, 

respectively. 
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Figure 3.7 Dynamics and interaction patterns of TLR4-Vaccine 

complex. (a) Overlaying specific snapshots of the TLR4 and vaccine 

construct, along with their corresponding RMSD values in the initial 

simulation run. (b) Contact maps visually represent intermolecular 

interactions, indicating proximity between atom pairs within defined 

distances. Dots at the junction of two residues are color-coded, with 

red, yellow, green, and blue denoting closeness within 7, 10, 13, and 

16 Å, respectively. 

 

3.5. Discussion 

POWV was discovered for the first time in Powassan, Canada, by an 



96 
 

encephalitis patient in 1958 (McLean Dm Fau - Donohue & Donohue). 

Usually, it causes sporadic infections, but since 2007, its cases have 

increased steadily in North America (Corrin et al., 2018). The 

frequency of POWV incidents stood at 0.7 per year between 1958 and 

1998, increased to 1.3 cases annually spanning 1999 to 2005, and 

surged to 7.7 cases per year from 2006 to 2015 (Campbell & Krause, 

2020). Moreover, the incidence rate of POWV has increased by 300% 

in the previous two decades (Choi et al., 2020). Unlike some other 

tick-borne diseases, POWV can be transmitted within 15 min after the 

bite of an infected tick (Della-Giustina et al., 2021). It leads to 

persistent neurological consequences in approximately 50% of 

documented cases and results in fatality in slightly over 10% of the 

cases (Campbell & Krause, 2020). 

There are already six licensed vaccines for the flavivirus tick-

borne encephalitis virus that can prevent the onset of neurological 

sequelae and severe disease; however, these vaccines are ineffective 

against POWV infection (Stone et al., 2022). No medicine or vaccine is 

currently approved for treating and preventing POWV disease. 

However, researchers continuously explore novel avenues to develop 

vaccine candidates or therapies for Powassan virus treatment. 

Antiviral molecules against flaviviruses, namely the adenosine 
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analogue NITD008 and NS5 capping enzyme inhibitor BG323, 

exhibited noteworthy reductions in POWV levels in vitro studies 

(Bullard et al., 2015; Yin et al., 2009). Intravenous immunoglobulin 

therapy has been utilized to manage POWV encephalitis for two 

patients. In both cases, the administration of intravenous 

immunoglobulin led to the survival of the patients with POWV infection. 

However, it's worth noting that one of the patients experienced 

considerable neurological complications following their recovery and 

discharge (Piantadosi et al., 2016). Recently, a vaccine candidate that 

uses the yellow fever virus vaccine strain as a vector expresses the 

prM/M and envelope proteins of POWV protected mice following lethal 

challenge and conferred a survival rate of 70% (Cheung et al., 2023). 

Similarly, in another study, an mRNA vaccine encoding PrM/M 

and envelope proteins of POWV encapsulated in lipid nanoparticles 

generated neutralizing antibodies and protected mice from the lethal 

challenge of POWV (VanBlargan et al., 2018). In another study, Choi 

et al. developed a synthetic DNA vaccine consisting of POWV prM and 

envelope proteins, which elicited T cell and B cell immunity in mice 

and also protected the mice from POWV lethal challenge (Choi et al., 

2020). Additionally, an immunogen displaying the domain III of the 

envelope glycoprotein of POWV presented on self-assembling protein 
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nanoparticle induced protective and neutralizing antibodies against 

POWV in mice (Malonis et al., 2022). 

Developing a vaccine against POWV is crucial due to the 

potential severity of its neurological infections, including encephalitis 

and meningitis, often leading to long-term health consequences or 

even death. As an emerging tick-borne virus with increasing incidence 

over the years, the absence of specific antiviral treatments highlights 

the urgent need for preventive measures. A vaccine candidate against 

the POWV would provide a proactive solution for safeguarding public 

health and reducing healthcare burdens, aiding in curtailing the virus's 

geographical expansion and protecting vulnerable populations. Hence, 

in this study, a vaccine candidate has been developed using 

immunoinformatics approaches by targeting the structural proteins of 

POWV. Previously, several studies have targeted the Powassan 

structural proteins, mainly prM/M and envelope proteins, for 

developing vaccine candidates using strategies (Cheung et al., 2023; 

Choi et al., 2020; VanBlargan et al., 2018). Lately, there has been a 

notable rise in the adoption of immunoinformatics in creating vaccine 

candidates. This computational methodology offers a time- and cost-

efficient means of developing innovative vaccine candidates. Another 

benefit of this method is its ability to identify numerous potential 
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vaccine candidates without the need for cultivating pathogenic 

organisms in a traditional laboratory setting (Mugunthan & Harish, 

2021; Sami et al., 2021). 

Moreover, comparable immunoinformatics techniques have 

been applied to formulate vaccine candidates targeting Monkeypox, 

Canine circovirus, Human cytomegalovirus, and Dengue virus (Akhtar 

et al., 2021; Akhtar et al., 2022; Kaushik, G, et al., 2022; Kaushik, Jain, 

et al., 2022). Previously, one study used the immunoinformatics 

approach to identify B-cell and T-cell epitopes only and did not 

evaluate the properties such as antigenicity, allergic potential, 

cytokine cytokine-inducing potential (Areeshi, 2018). Furthermore, 

the epitopes predicted in my study and the previous study were not 

similar, and the previous research did not design the final vaccine 

construct. The final epitopes selected in my study are antigenic, non-

allergic, non-toxic and can induce various cytokine generation. 

Furthermore, the vaccine candidate formulated could be effective in 

generating an immune response in both the POWV lineages as both 

MHC-I epitopes and B-cell epitopes used in the final vaccine design 

are present in both lineage I and lineage II of the POWV. Furthermore, 

the two MHC-II epitopes from POWV lineage II that have high 

sequence similarity with the final two MHC-II epitopes used in the 
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vaccine construct have been added to the formulated vaccine construct 

to make the vaccine effective against lineage II virus as well. 

To enhance the efficacy of the final vaccine construct, the final 

subunit of the Escherichia coli (E. coli) type 1 fimbria (FimH) and 

epitope of tetanus and diphtheria toxoid (TpD) adjuvants were used. 

Laboratory experiments have shown that TpD can stimulate the 

production of neutralizing antibodies and protect mucous membranes 

(Chan et al., 2020; Li et al., 2018). E. coli type 1 FimH has been 

reported to interact with TLR4, elicit the generation of IFN- and 

TNF-α, and play a role in the proliferation of local dendritic cells 

(Zhang et al., 2020; Zhang et al., 2022). Finally, the formulated POWV 

vaccine candidate was determined as antigenicity, toxicity, and 

allergenicity. Proteins with a molecular weight below 110 kDa are 

regarded as appropriate vaccine candidates (Sami et al., 2021). The 

formulated vaccine candidate had a molecular weight of 47.2 kDa, 

confirming its suitability as a vaccine candidate. Moreover, the vaccine 

candidate does not have homology with any human protein, thus 

minimizing the risk of autoimmune response to the hosts. The final 

vaccine protein exhibited an instability index of 29.45, suggesting its 

stability in biological conditions, as compounds with an instability 

index < 40 are considered stable. Additionally, according to 
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computational immune simulation, the formulated POWV vaccine 

candidate is expected to have the potential to trigger strong immune 

responses in those who receive it. 

To delve deeper into the relationship between the vaccine 

candidate and TLR4, I conducted molecular docking and molecular 

dynamics simulations which verified the stability of these interactions. 

Three-dimensional representation of molecular docking between the 

vaccine candidate and TLR4 is shown in Figure 3.5a. Interestingly, the 

area of each circle is proportional to the surface area of the 

corresponding protein chain. The extent of the interface region on 

each chain is represented by the black wedge whose size signifies the 

interface surface area (Figure 3.5b). Statistics for this interface are 

given in Figure 3.5c with numbers of interface residues 67 (TLR4) and 

58 (MEV), interface area of 3,270 Å2 and 3,521 Å2. Notably, interacting 

chains between two structures are joined by colored lines, each 

representing a different type of interaction, as per the key: salt-bridge 

(red line), hydrogen bonds (blue lines), and non-bonded contacts 

(orange dashed lines) (Figure 3.5d). 

Furthermore, the root mean square deviation (RMSD) of the 

backbone and root mean square fluctuations (RMSF) of the C-alpha 

atoms for each residue were calculated to assess the structural 
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stability and flexibility. Figures 3.6a–c show that all of the docking 

complex's, TLR4's, and MEV's physical and chemical characteristics 

have reached equilibrium, meaning that their averages no longer vary 

with time. At the initial phase, the RMSD of the docking complex was 

lower, and then, it began to rise to 20 ns before reaching a stable 

plateau from 50 ns (Figure 3.6a). Meanwhile, because of the presence 

of adjuvants, the extremely flexible MEV construct has a significant 

RMSD (Figure 3.6c). Conversely, the TLR4 receptor appears to be 

extremely stable right from the beginning of the MD simulation (Figure 

3.6b). Besides, the RMSF values for TLR4 and MEV were calculated 

at 0.143 ± 0.057 nm and 1.109 ± 0.518 nm, respectively, indicating 

higher flexibility in the vaccine than TLR4 (Figure 3.6d). I also studied 

the compactness of the receptor TLR4 interaction with the MEV using 

Rg. The receptor remains compact, and no unusual folding or unfolding 

was observed throughout the 100 ns. Finally, the following formula 

was used to determine the buried surface area (BSA) at the TLR4-

MEV interface, where the solvent accessible surface area (SASA) 

values were obtained by the GROMACS program: 

BSAinterface = (SASATLR4 + SASAMEV) – SASATLR4-MEV 

At the interaction interface between the MEV and TLR4, the 

BSA averaged 66.460 ± 8.982 nm2 in all three replicates of the 
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simulation (Figure 3.6f). Notably, Figure 3.7 highlights the interface's 

enduring stability across the sampled snapshots, as demonstrated by 

the inter-residue interactions. The above analyses indicate the 

stability of interface interactions between the TLR4 and the vaccine 

construct. In summary, the MEV exhibited robust interactions and 

stability with the TLR4 receptor, as demonstrated by our triplicate MD 

simulations and molecular docking investigations. 
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This chapter was published in Synthetic and Systems Biotechnology 

as a partial fulfillment of Nguyen Thi Truc Ly’s Ph.D program. 

 

 

 

 

 

 

 

Chapter 4 Discovering peptides and 

computational investigations of a multi-epitope 

vaccine target Mycobacterium tuberculosis 
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4.1. Abstract 

Mycobacterium tuberculosis is the causative agent of tuberculosis, a 

prevalent airborne infectious disease. Despite the availability of the 

Bacille Calmette-Guerin vaccine, its global efficacy remains modest, 

and tuberculosis persists as a significant global public health threat. 

Addressing this challenge and advancing towards the End 

Mycobacterium tuberculosis Strategy, I developed a multi-epitope 

vaccine based on immunoinformatics and computational approaches. 

Immunoinformatics screening of Mycobacterium tuberculosis protein 

identified immune-dominant epitopes based on major 

histocompatibility complex allele binding, immunogenicity, antigenicity, 

allergenicity, toxicity, and cytokine inducibility. Selected epitopes 

were integrated into a multi-epitope vaccine construct with adjuvant 

and linkers, forming a fully immunogenic vaccine candidate. 

Comprehensive analyses encompassed the evaluation of 

immunological and physicochemical properties, determination of 

tertiary structure, molecular docking with toll-like receptors, 

molecular dynamics simulations for all atoms, and immune simulations. 

Our MEV comprises 534 amino acids, featuring 6 cytotoxic T 

lymphocyte, 8 helper T lymphocyte, and 7 linear B lymphocyte 

epitopes, demonstrating high antigenicity and stability. Notably, 
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molecular docking studies and triplicate molecular dynamics 

simulations revealed enhanced interactions and stability of multi-

epitope vaccine with the toll-like receptor 4 complex compared to 

toll-like receptor 2. In addition, the immune simulation indicated the 

capacity to effectively induce elevated levels of antibodies and 

cytokines, emphasizing the vaccine's robust immunogenic response. 

This study presents a promising multi-epitope vaccine against 

tuberculosis, exhibiting favorable immunological and physicochemical 

attributes. The findings provide theoretical support for tuberculosis 

vaccine development. My study aligns with the global initiative of the 

End Mycobacterium tuberculosis Strategy, emphasizing its potential 

impact on addressing persistent challenges in tuberculosis control. 

 

4.2. Introduction 

Tuberculosis (TB), a bacterial disease that primarily affects the lungs, 

is preventable and treatable, but 10 million people still catch it annually, 

and 1.6 million people died from TB in 2021, almost entirely in low and 

middle-income countries (Chakaya et al., 2022). TB has long been the 

world's deadliest infectious disease treatment, although it has suffered 

a setback and has been disrupted due to the COVID-19 pandemic 

(Zimmer et al., 2022). Like the Bacillus Calmette-Guerin (BCG) 
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vaccine, tools to fight TB are imperfect. However, there is “hopeful” 

innovation in vaccines like DNA vaccines, live attenuated and killed 

whole-cell vaccines (WCVs), multi-epitope vaccines (MEVs), etc. 

Among them, the therapeutic DNA vaccine is a promising vaccine, 

which is a promising strategy against tuberculosis. However, 

challenges with the delivery and expression of the DNA vaccine and 

potential issues with inducing an adequate immune response in all 

individuals may limit its efficacy (Li & Zhu, 2006). Live attenuated and 

killed whole-cell vaccines (WCVs) also offer promising vaccination 

strategies against tuberculosis. However, their efficacy may be 

compromised in immunocompromised individuals, and there is a risk 

of virulence reversion in live attenuated vaccines, leading to the 

potential for disease transmission (Scriba et al., 2016). MEVs are a 

type of vaccine that can be composed of cytotoxic T lymphocyte (CTL), 

helper T lymphocyte (HTL), and linear B lymphocyte (LBL) epitopes 

in a series or overlapping epitope peptides (Zhang, 2018). They are 

designed to induce multi antigenic immunity against significant 

complex pathogens with different strain variants (Khairkhah et al., 

2022). MEVs can be used to prevent and treat tumors or viral 

infections (Mao et al., 2023; Truc Ly Nguyen & Heebal Kim, 2024a; 

Zhang, 2018). Besides, the advantage of epitope vaccines over 
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traditional subunit vaccines lies in the ability to combine 

immunodominant human HTL, CTL, and LBL epitopes from different 

antigens, thereby enhancing immunogenicity and reducing adverse 

effects. Currently, many MEVs based on epitope designs from multiple 

antigens against tuberculosis are being researched (Andongma et al., 

2023; Bellini et al., 2023; Bibi et al., 2021b; Cheng et al., 2023; Cheng 

et al., 2022; Gong et al., 2021; Jiang, Peng, et al., 2023; Khan et al., 

2023a; Nayak et al., 2023; Ruaro-Moreno et al., 2023; Sharma et al., 

2021a). Among them, Jiang et al. selected 17 latent tuberculosis 

infection and regions of difference (LTBI-RD) antigens (Rv1511, 

Rv1736c, Rv1737c, Rv1980c, Rv1981c, Rv2031c, Rv2626c, Rv2653c, 

Rv2656c, Rv2659c, Rv2660c, Rv3425, Rv3429, Rv3872, Rv3873, 

Rv3878, and Rv3879) to identify immunodominant epitopes (Jiang, 

Peng, et al., 2023). Similarly, Bellini et al. designed and characterized 

a multistage peptide-based vaccine from 15 protein antigens 

associated with various activities of the MTB life cycle, including 

Rv3908c, Rv1886c, Rv1384, Rv1436, Rv3874, Rv0288, Rv0867c, 

Rv1174c, Rv1334, Rv0475, Rv0440, Rv0125, Rv1733c, Rv1039c, and 

Rv1039c (Bellini et al., 2023). In addition, a novel peptide-based 

vaccine was designed based on HTL, CTL, and B-cell epitopes 

predicted from 17 protective antigens of MTB. These 17 candidate 
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antigens were Ag85A, Ag85B, ESAT6, EspA, Mpt63, MTB32A, PPE18, 

RpfB, TB10.4, CFP10, MPT51, MPT64, MTB8.4, PPE44, PPE68, RpfA, 

and RpfB (Cheng et al., 2023). Notably, Bibi et al. showed that MEV 

might activate humoral and cellular immune responses and may be a 

possible tuberculosis vaccine candidate (Bibi et al., 2021b). In that 

work, a novel MEV designed by targeting Rv2608, Rv2684, Rv3804c 

(Ag85A), and Rv0125 (MTB 32A) which has been predicted to have 

different B-cell and T-cell epitopes. Another promising candidate is 

an MEV against MTB exploiting secreted exosome proteins (Voysey 

et al.) (Sharma et al., 2021a). However, the potential for immune 

evasion by MTB through antigenic variation may limit the vaccine's 

effectiveness, and there is a need for ongoing monitoring and updating 

of vaccine components to address this challenge. 

Beyond these considerations, H37Rv is the most widely used 

MTB strain, and its protein Rv0256c, also known as PPE2 (Proline-

Proline-Glutamate 2), has an essential role in immune activation and 

infection of the host (Pal et al., 2021). Rv0256c has been found to 

translocate to the nucleus of host cells and bind to the promoter region 

of inducible nitric oxide synthase (iNOS), suppressing iNOS gene 

transcription (Bhat et al., 2013; Bhat et al., 2017), ultimately protecting 

the mycobacterium from nitric oxide (NO) mediated killing. 
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Additionally, Rv0256c has been found to inhibit myeloid hematopoiesis 

and reactive oxygen species (ROS) production (Pal & Mukhopadhyay, 

2021; Srivastava et al., 2019). In a previous study, Rv0256c induces a 

strong B cell response in tuberculosis patients (Abraham et al., 2014). 

These findings suggest that Rv0256c is a crucial protein contributing 

to MTB survival and pathogenesis. Therefore, in the present study, I 

aim to select the Rv0256c protein as the target sequence to design an 

MEV candidate. Through immunoinformatics techniques, I predicted 

CTL, HTL, and LBL epitopes. These epitopes were shown to be highly 

antigenic, nontoxic, and nonallergic. The potential for these epitopes 

to cause autoimmunity was also examined. In addition, the Toll-Like 

Receptor 4 (TLR4) agonist (RpfE) peptide was added to the vaccine 

design as an adjuvant to boost its immunogenicity. We further 

evaluated the vaccine construct's population coverage, antigenicity, 

allergenicity, toxicity, and physicochemical features. Afterwards, the 

tertiary structures of the vaccine construct were predicted, refined, 

and validated. The resultant tertiary structure was then docked with 

immune receptors TLR2 and TLR4. Furthermore, the stability of 

interactions was verified using molecular dynamics (MD) simulations 

for all atoms of the docking complexes in triplicate. Finally, to assess 

the immunogenicity and immunological response of the MEV, in silico 
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immune simulations were carried out. This study provides valuable 

insights for MTB vaccine development and contributes towards the 

End MTB Strategy. 

 

4.3. Materials and Methods  

4.3.1. Retrieval sequence, screening antigenicity, and 

allergenicity of target protein 

The FASTA sequence of Rv0256c was obtained from the UniProt 

database (https://www.uniprot.org/) with accession number P9WI47. 

To screen for antigenicity, I employed VaxiJen v2.0 to predict the 

antigenicity of the Rv0256c protein, with a threshold value of 0.4 set 

up (http://www.ddg-pharmfac.net/VaxiJen/VaxiJen/VaxiJen.html) 

(Irini A Doytchinova & Darren R Flower, 2007). This server is focused 

on auto cross-covariance (ACC) transformation and alignment-

independent prediction that maintains predictive accuracy of 70–89%. 

Protein Rv0256c showed antigenicity above the threshold value and 

was selected for further analysis (Irini A Doytchinova & Darren R 

Flower, 2007). For predicting allergenicity, the Rv0256c protein 

sequence was expanded for further analysis based on AllergenFP v.1.0, 

a bioinformatics tool for allergenicity prediction (https://ddg-
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pharmfac.net/AllergenFP/) (Dimitrov et al., 2013). The result with a 

non-allergen property was selected for further analysis. To enhance 

humoral and cell-mediated immunity, both B-cell and T-cell antigens 

were predicted. 

 

4.3.2. CTL epitopes prediction and assessment 

The Immune Epitope Database and Analysis Resources (IEDB) MHC I 

server was used to predict CTL epitopes (http://tools.iedb.org/mhci/) 

(Fleri et al., 2017). This server predicts CD8+ T-cell epitopes based 

on proteasomal C-terminal cleavage, MHC-I binding, and TAP 

transport efficiency. The 9-mer and 10-mer epitopes were predicted 

using the ANN 4.0 algorithm weight matrix, artificial neural networks, 

and IC50 value. I used the entire human HLA allele reference set. 

Finally, the predicted peptides were sorted as per the predicted IC50. 

As in the previous study, only epitopes with an IC50 over 500 were 

chosen (Al Tbeishat, 2022).  

 

4.3.3. HTL epitopes prediction and assessment 

The MHC II server of IEDB was used to predict HTL epitopes 

(http://tools.iedb.org/mhcii/) (Fleri et al., 2017). NN-align 2.3 (Net 
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MHC II 2.3) algorithm was used to predict the epitopes. The entire 

HLA human reference set was used. A 15mer epitope length was 

defined. Finally, the results were then arranged as per their modified 

ranks. Additionally, the ability to secrete IFN-, IL-4 and IL-10 of 

these chosen epitopes was predicted using the servers IFNepitope 

(http://crdd.osdd.net/raghava/ifnepitope/) (Dhanda, Vir, et al., 2013a), 

IL4pred (https://webs.iiitd.edu.in/raghava/il4pred/) (Dhanda, Gupta, et 

al., 2013a), and IL-10 pred (http://crdd.osdd.net/raghava/IL-10pred/) 

(Nagpal et al., 2017b), respectively. All chosen epitopes showed the 

ability to secrete these cytokines. 

 

4.3.4. B-cell epitopes prediction and assessment 

An online server ABCpred was used to predict linear B-cell epitopes 

(http://crdd.osdd.net/raghava/abcpred/) (Saha & Raghava, 2006). The 

ABCpred uses an artificial neural network to predict linear B-cell 

epitopes in an antigen sequence. A 0.51 threshold was applied 

individually to each selected protein. Epitopes were chosen to have a 

16mer length. 
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4.3.5. Antigenicity, allergenicity, and toxicity prediction of 

chosen epitopes 

All chosen epitopes were tested to assess their antigenicity, 

allergenicity, and toxicity. For antigenicity prediction, CTL epitopes, 

HTL epitopes, and conformational B-cell epitopes amino acid 

sequences were submitted to the VaxiJen v2.0 server (Irini A 

Doytchinova & Darren R Flower, 2007). Both a threshold of 0.4 and 

bacteria were explicitly mentioned. Highly antigenic epitopes were 

selected for further analysis. Consequently, the allergenicity of the B 

cell, CTL, and HTL epitopes was predicted using the freely available 

allergenicity prediction tool AllerTOP v.2.0 (https://www.ddg-

pharmfac.net/AllerTOP/index.html). AllerTOP v.2.0 predicts the 

allergens based on machine learning methods like auto and cross-

covariance transformation, k nearest neighbors, and amino acid E-

descriptors (Gonzalez-Galarza et al., 2019). All settings were left at 

their default values. Lastly, the toxicity of the B cell, CTL, and HTL 

epitopes was predicted using the freely server ToxinPred 

(http://crdd.osdd.net/raghava/toxinpred/) (Gupta, Kapoor, Chaudhary, 

Gautam, Kumar, & Raghava, 2013). Only the epitopes identified as 

antigenic, non-allergenic, and non-toxic were retained for further 

research. 
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4.3.6. Population coverage of the epitopes 

The diversity in MHC allele distribution reflects the world's 

geographical and cultural diversity. As a result, vaccination coverage 

is determined by the MHC alleles that its epitopes recognize. By using 

the population coverage tool in the IEDB database 

(http://tools.iedb.org/population/) (Bui et al., 2006), the epitopes and 

their corresponding MHC class I and class II alleles as input, we 

calculated the combined coverage of our T lymphocyte epitopes. 

These alleles genotypic frequencies employed in the IEDB database 

were obtained from the Allele Frequency Net Database (AFND) 

(http://www.allelefrequencies.net/) (Gonzalez-Galarza et al., 2019). 

Currently, AFND offers allele frequencies for 115 countries and 21 

different ethnicities grouped into 16 different geographical areas. 

 

4.3.7. Multi-epitope vaccine design and its properties evaluation 

Highly antigenic, nonallergenic, and nontoxic epitopes were selected 

to design the vaccine. These best epitopes were linked through 

EAAAK, GPGPG, KK, and AAY linkers to construct a potential MEV. 

These linkers were incorporated into separate domains to let them act 

separately and enhance the vaccine's immunogenicity (Hajighahramani 

et al., 2017) as they are cleavable, flexible, and rigid (Chawla et al., 
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2023). Apart from these epitopes and linkers, the TLR4 agonist (RpfE) 

peptide was added to the vaccine design as an adjuvant for increasing 

the immune response (Lee et al., 2014). 

The ability to elicit humoral-cellular immune responses and the 

knowledge of a particular antigen associated with an immune response 

are referred to as immunogenicity and antigenicity, respectively. 

Therefore, the antigenicity and immunogenicity of a candidate vaccine 

are vital (Ilinskaya & Dobrovolskaia, 2016). ToxinPred and AllerTOP 

2.0 were used to predict the toxicity and allergenicity of the vaccine 

construct. Allergenicity was checked to ensure that the vaccine did 

not exhibit any reactions (allergic) once injected into the body. The 

vaccine candidate should have a high level of antigenicity because this 

attribute defines an antigen's capacity to trigger an immune response 

and the development of memory cells. Antigenicity prediction was 

made using VaxiJen v2.0 and ANTIGENpro server (Magnan et al., 

2010). Both methods are alignment-free. VaxiJen v2.0 functions by 

utilizing several physicochemical properties of the protein, while 

ANTIGENpro is a machine learning algorithm-based microarray 

analysis data-based server. Using the open web server ProtParam, 

many physiochemical features, including amino acid composition, 

Aliphatic Index (AI), molecular weight, Instability Index (II), Grand 
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Average of Hydropathicity (GRAVY), and theoretical isoelectric point 

(pI) were evaluated (Gasteiger et al., 2005). 

 

4.3.8. Structure prediction, refinement, and validation of the 

vaccine construct 

The vaccine's secondary structure motifs calculated with PDBsum 

(Laskowski et al., 2018) were computed using v.3.0 of Gail 

Hutchinson's PROMOTIF program (Hutchinson & Thornton, 1996). 

PDBsum is a web server (http://www.ebi.ac.uk/pdbsum) that offers 

structural details about the entries in the Protein Data Bank (PDB). 

Protein secondary structure, interactions between proteins and ligands 

and DNA, PROCHECK structural quality evaluations, and numerous 

more analyses are among the mostly image-based analyses. The 

PROMOTIF program examines a protein coordinate file and gives 

information regarding the structural motifs present in the protein. 

Currently, the program evaluates the following structural features: 

secondary structure, β- and -turns, helical geometry and interactions, 

β-strands and β-sheet topology, β-hairpins, etc. In order to illustrate 

each type of motif in the protein, PROMOTIF generates postscript files 

along with a summary page. 

For predicting the three-dimensional (3D) structure of the 
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vaccine, I used several servers such as SWISS-MODEL 

(https://swissmodel.expasy.org/) - a fully automated protein structure 

homology-modeling server (Waterhouse et al., 2018), Iterative 

Threading ASSEmbly Refinement (I-TASSER) 

(https://zhanggroup.org/I-TASSER/) (Zhang, 2008), or a deep learning 

approach AlphaFold2 via ColabFold v1.5.5 

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/

main/AlphaFold2.ipynb) (Jumper et al., 2021; Mirdita et al., 2021). 

Afterwards, the GalaxyRefine module of the GalaxyWEB server 

(http://galaxy.seoklab.org/) was used to refine the vaccine's 3D 

structures (Ko et al., 2012). Through the process of 3D structural 

refinement, the vaccine's near-accurate native structure was 

preserved while local mistakes were corrected and the accuracy of 

initially anticipated structures was improved. Subsequently, ProSA-

web (https://prosa.services.came.sbg.ac.at/prosa.php) (Wiederstein & 

Sippl, 2007) and PROCHECK v.3.5 (https://www.ebi.ac.uk/thornton-

srv/software/PROCHECK/) (Laskowski et al., 1993) were two of the 

many publicly available tools utilized for 3D structural validation. 

ProSA-web is a web server that evaluates the overall quality and local 

model quality of 3D models based on the Z-score value (Akhtar et al., 

2023; Sharma et al., 2023). Meanwhile, the PROCHECK program 
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analyzes the Ramachandran plot for the 3D structure of the vaccine 

construct to assess residual coverage in favored, allowed, and 

disallowed regions. A good quality structure would be expected to 

have over 90% of residues in the most favored regions. 

 

4.3.9. Molecular docking and molecular dynamics simulations 

studies 

The structure of TLR2 and TLR4 were downloaded from the Protein 

Data Bank (PDB) with ID 2Z7X and 3FXI, respectively. The 3D 

structure of MEV and immune receptors were docked using the 

ClusPro server (https://cluspro.bu.edu) - a widely used protein-

protein docking server that predicts the 3D structures of protein 

complexes (Kozakov et al., 2017b). The following three steps are used 

by ClusPro to examine the molecular docking of vaccine with TLRs: 

(Rando et al.) rigid body docking by sampling billions of conformations, 

(2) grouping of the 1000 lowest energy structures generated to 

identify the largest clusters based on root-mean-square deviation 

(RMSD), (3) energy minimization for steric clash removal. Accordingly, 

the server provided 30 model complexes, out of which the model 

having the lowest binding energy (kcal/mol) was selected for dynamics. 
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Subsequently, PDBsum was used for analysis and to find interacting 

residues between the vaccine and TLR2, 4 

(https://www.ebi.ac.uk/thornton-

srv/databases/pdbsum/Generate.html) (Laskowski et al., 2018). 

MD simulations were conducted using the GROMACS program 

on a Linux operating system to assess the stability of the complexes 

(Abraham et al., 2015). The CHARMM27 force field and spce water 

were employed to generate topology files, resulting in a system with 

24,783 atoms from 1603 residues for the MEV-TLR2 complex and 

26,709 atoms from 1736 residues for the MEV-TLR4 complex. Each 

complex was placed in a cubic box (12x12x12 for MEV-TLR2 and 

11x11x11 for MEV-TLR4) to maintain integrity with 297,338 and 

227,396 solvent molecules, respectively. To neutralize the charge, 27 

Cl- ions were added to the MEV-TLR2 complex, and 5 Na+ ions were 

added to the MEV-TLR4 complex. The energy minimization utilized 

the steepest descent algorithm with 50,000 steps, stopping when the 

maximum force was <1000.0 kJ/mol/nm. Position restraints were 

applied during equilibration, including NVT equilibration at 300 K with 

50,000 steps (100 ps) and NPT equilibration at 1 bar reference 

pressure with an additional 50,000 steps (100 ps). Production 

simulations for all-atom systems (916,797 atoms in MEV-TLR2 and 
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708,897 atoms in MEV-TLR4) were carried out using the NPT 

ensemble for 50,000,000 steps (100 ns). After completing the 100 ns 

MD simulation, analyses were performed, including calculating the root 

mean square deviation (RMSD) of backbone residues, root mean 

square fluctuation (RMSF) of C-alpha, radius of gyration (Rg), and 

solvent accessible surface area (SASA). Each complex was simulated 

in triplicate to ensure result accuracy, robustness, and dependability. 

 

4.3.10. Immunological responses induced by the vaccine 

construct 

C-IMMSIMversion 10.1 is an immune simulation tool that can assess 

the vaccine's immunological response (https://kraken.iac.rm.cnr.it/C-

IMMSIM/) (Rapin et al., 2012). It predicts a position-specific scoring 

matrix used to understand immune response magnitude, which shows 

the result of vaccine dosage concerning different time intervals. This 

server describes a mammalian immune system's humoral and cellular 

response against vaccine construct. To quantify the impact of antigens 

and foreign particles on immune activity, an agent-based method 

based on the position-specific scoring matrix and machine learning 

techniques was applied. Except for the time steps, which were set at 

1, 84, and 168, the simulation was run using the default parameters. 
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Injection occurs at time = 0 in time step 1, and each time step lasts for 

8 hours. The entire simulation consisted of 1050 steps. Since most 

commercial vaccines prescribe a four-week delay between doses, 

three injections were anticipated to be needed at four-week intervals 

(Dey et al., 2023). 

 

4.4. Results  

4.4.1. Retrieval sequence, screening antigenicity, and 

allergenicity of target protein 

After retrieving the FASTA sequence of the Rv0256c protein from the 

UniProt database, immunoinformatics analysis was used to predict the 

antigenicity and allergenicity of the protein. The Rv0256c protein was 

predicted as a probable antigen (0.4302) based on the VaxiJen v2.0 

server with a threshold of 0.4. AllergenFP v.1.0 results indicated that 

the protein had non-allergenic properties as it held the highest 

Tanimoto similarity index of 0.94. Thus, I confirmed that the Rv0256c 

protein sequence could be considered for CTL, HTL, and B-cell 

epitope prediction. 
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4.4.2. CTL, HTL, and B-cell epitopes prediction and 

assessment 

The Rv0256c protein sequence predicted CTL epitopes using the 

MHC-I tool from the IEDB server. From the IEDB server, the 

completed human HLA allele reference set was selected for epitope 

prediction. Epitopes with IC50 over 500 were chosen for further study. 

Further on, epitopes were checked for toxicity, antigenicity, and 

allergenicity. Only non-toxic, antigenic, and non-allergenic epitopes 

were chosen (Supplementary Data Sheet 1). An immunogenicity check 

was done using the IEDB server, and immunogenic epitopes with 

scores ≥0.3 were selected. Finally, six epitopes were included in the 

vaccine construct (Table 4.1).  

 

Table 4.1 CTL epitopes for vaccine construction 
 

Peptide Length 
Antigenicity 

scoresa Toxicity  Allergenicity 
Immunogenicity 

scoresb  

LMATNFFGIN 10 0.9704  Non-Toxin Non-Allergen 0.37602 

FSGFDPWLPS 10 0.9231  Non-Toxin Non-Allergen 0.33227 

PANIAFALGY 10 0.6439  Non-Toxin Non-Allergen 0.33119 

VIQPFINWL 9 0.5510  Non-Toxin Non-Allergen 0.31448 

SPANIAFALG 10 0.5157  Non-Toxin Non-Allergen 0.31063 

GNPATIAFT 9 1.0466  Non-Toxin Non-Allergen 0.30027 
aScores ≥ 0.4; bScore ≥ 0.3 

 

The IEDB MHC II server was used for HTL epitope prediction. 

Epitopes were checked for toxicity, antigenicity, and allergenicity. 
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Only non-toxic, antigenic, and non-allergenic epitopes were chosen. 

Epitopes were checked and selected based on their ability to induce 

Il-4, Il-10, and IFN- (Supplementary Data Sheet 2). Finally, I included 

eight possible epitopes in the vaccine that induced the abovementioned 

cytokines (Table 4.2). 
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Table 4.2 HTL epitopes for vaccine construction 
 

Peptide Il-4 inducer IFN- scores Il-10 inducer Toxicity Antigenicity scoresa  Allergenicity 

AQARKAVGTGVRKKT Yes 0.08 Yes Non-Toxin 1.1876  Non-Allergen 

ARKAVGTGVRKKTPE Yes 0.02 Yes Non-Toxin 1.2335  Non-Allergen 

LNSAAQARKAVGTGV Yes 0.41 Yes Non-Toxin 0.8428  Non-Allergen 

QAMFSGFDPWLPSLG Yes 0.02 Yes Non-Toxin 0.6122  Non-Allergen 

QARKAVGTGVRKKTP Yes 0.07 Yes Non-Toxin 1.1250  Non-Allergen 

SAAQARKAVGTGVRK Yes 0.39 Yes Non-Toxin 1.1115  Non-Allergen 

VGDLNSAAQARKAVG Yes 0.16 Yes Non-Toxin 0.5454  Non-Allergen 

AAQARKAVGTGVRKK Yes 0.16 Yes Non-Toxin 1.0585  Non-Allergen 
aScores ≥ 0.4 
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B-cell epitopes having a rank <10 predicted using the ABCpred 

webserver were selected for further studies. Furthermore, I selected 

only those epitopes that were non-toxic, non-allergenic, and antigenic 

to further incorporate into the vaccine design (Supplementary Data 

Sheet 3). I used the web servers ToxinPred, AllerTOP, and VaxiJen, 

in that order. Finally, seven epitopes were selected for the vaccine 

construct (Table 4.3). 

 

Table 4.3 LBL epitopes for vaccine construction 
 

Peptide Antigenicity scoresa  Toxicity Allergenicity 

TGVRKKTPEPDSAEAP 0.8432 Non-Toxin Non-Allergen 

PVAAIAPSIPTPTPTP 0.9063  Non-Toxin Non-Allergen 

TGSPQGAGTLGFAGTT 0.8953  Non-Toxin Non-Allergen 

RGYEYLDLDPETGHDP 0.9490  Non-Toxin Non-Allergen 

AQARKAVGTGVRKKTP 1.1161  Non-Toxin Non-Allergen 

APQIVKANAPTAASDE 0.7838  Non-Toxin Non-Allergen 

AWLVQASANSAAMATR 0.6719 Non-Toxin Non-Allergen 
aScores ≥ 0.4 

 

4.4.3. Population coverage analysis  

The population coverage of the 14 T-lymphocyte epitopes (combined 

CTL and HTL) employed in this designed vaccine was evaluated using 

IEDB population coverage analysis. The IEDB database assessed the 

distribution of their 55 corresponding MHC alleles in 16 geographical 

areas and 101 countries. The region-wise coverage of alleles is 
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represented in Figure 4.1. Notably, our vaccine demonstrates a global 

coverage rate of 99.74%.  

 

 

 

Figure 4.1 Population coverage for T-lymphocytes. 

 

4.4.4. Multi-epitope vaccine design and its properties evaluation 

For the MEV construction, highly antigenic, non-allergenic, and non-

toxic epitopes were selected. According to the results in Table 4.1, 

Table 4.2, and Table 4.3, six CTL epitopes, eight HTL epitopes, and 

seven B-cell epitopes were selected. The selected epitopes were 

linked with amino acid linkers like EAAAK, GPGPG, KK, and AAY. 

Furthermore, to increase the immune response, the TLR4 agonist 
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(RpfE) peptide was added as an adjuvant to the N-terminal of the 

vaccine since, in their study, Lee et al. discovered the new finding that 

MTB directly binds TLR4 and initiates TLR4 signaling, which in turn 

causes DCs to produce IL-1 beta and express co-stimulatory and MHC 

antigen presentation molecules (Lee et al., 2014). As a result, the 

amino acid sequence of the constructed vaccine is mentioned in Figure 

4.2.  

  

 

 

Figure 4.2 Structural details of MEV. Schematic representation (A) and 

sequence (B) of the final vaccine construct with linkers, adjuvant, and 

epitopes sequentially and appropriately. 
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The antigenicity, allergenicity, toxicity, and physicochemical 

analyses have been listed in Table 4.4. The vaccine was predicted to 

be antigenic by VaxiJen and ANTIGENpro with scores of 0.9363 and 

0.9399, respectively. The vaccine was expected to be non-allergenic 

by AllerTOP. It was found to be non-toxic by ToxinPred. The 

ProtParam server determined the vaccine construct's molecular 

weight to be 53.80 kDa, and its 10.10 pI suggested that it had basic 

properties. Of those residues, there were 534 amino acids; 64 were 

positively charged, and 33 were negatively charged. The II was 

calculated to be 28.63 in terms of instability, indicating that the 

construct is stable following expression (a value above 40 predicts 

that the protein may be unstable). According to the AI calculation, the 

construct is thermostable, with a value of 62.77. The Grand Average 

of Hydropathicity (GRAVY), which indicates how hydrophilic a 

substance is, was estimated to be negative (−0.354). Based on these 

results, this MEV construct can be predicted as a potential vaccine 

candidate. 
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Table 4.4 Evaluation of antigenicity, toxicity, allergenicity, toxicity, 

and physicochemical properties of the vaccine construct 
 
 
Features Assessment Remark 

Number of amino acids 534 - 

Molecular weight 53797.90 Average 

Total number of atoms 7580 Average 

Theoretical pI 10.10 Basic nature 

Total number of negatively charged residues 

(Asp + Glu) 
33 - 

Total number of positively charged residues 

(Arg + Lys) 
64 - 

Aliphatic index (AI) 62.77 Thermostable 

Instability Index (II) 28.63 Stable 

Estimated half-life (mammalian 

reticulocytes, in vitro) 
30 hours Satisfactory 

Estimated half-life (yeast cells, in vivo) >20 hours Satisfactory 

Estimated half-life (Escherichia coli, in vivo) >10 hours Satisfactory 

Grand Average of hydropathicity (GRAVY) -0.351 Hydrophilic 

Antigenicity 
0.9363  

(VaxiJen v2.0) 
Antigenic 

 
0.9399  

(ANTIGENPro) 
Antigenic 

Allergenicity 
Non-allergen  

(AllerTOP v2.0) 
Non-allergen 

Toxicity  ToxicPred  Non-toxic  
   

4.4.5. Structure prediction, refinement, and validation of the 

vaccine construct 

The vaccine's secondary structure motifs are shown in Figure 4.3 

which were computed using v.3.0 of Gail Hutchinson's PROMOTIF 

program. Particularly, among 534 residues, there are 0.7% β-strand, 

25.5% α-helix, 1.1% 310-helix, 10.5% β-turn, 1.2% -turn, 0.7% β- 

hairpins, and 60.3% others.  
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Figure 4.3 Secondary structure prediction of the vaccine construct, 

representation in schematic “wiring diagram” including strands (pink 

arrows), helices (purple springs), and other motifs in red (e.g., β-hairpins, 

-turns, etc). 

 

Subsequently, the 3D structure of the vaccine construct was 

predicted utilizing SWISS-MODEL, I-TASSER, and AlphaFold2. Firstly, 

when employing SWISS-MODEL, the value of Global Model Quality 

Estimate (GMQE) and QMEANDisCo Global of the two models were too 

low, only 0.25 and 0.09 for model 1 and model 2, respectively (Figure 

S1). As I know, GMQE and QMEANDisCo Global scores give an overall 

model quality measurement between 0 and 1, with higher numbers 

indicating higher expected quality. Therefore, I moved to the I-

TASSER server to predict and acquire the top five final 3D models. 

Structure information, including C-score, estimated TM-score, 

estimated root-mean-square deviation (RMSD), number of structural 

decoys, and cluster density, of these 5 models is shown in Table S1. 

C-score is a confidence score for estimating the quality of predicted 

models. In general, the C-score is typically in the range of [−5, 2], 

where the higher value signifies the higher confidence of the model. 

TM-score and RMSD are usually used to measure the accuracy of 

structure modeling when the native structure is known. Based on that, 
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I chose model 1 (Figure S2A) with the C-score of −2.08, TM score of 

0.47 ± 0.15, and estimated RMSD was 12.5 ± 4.3 Å. However, 

analyzing the Ramachandran plot of this model disclosed only 55.0% 

of residues in the most favored regions (Figure S2B). Hence, I 

conducted structural refinement using the GalaxyRefine server and got 

five refined models with the structure information displayed in Table 

S2. Refer to Table S2, model 2 demonstrated the highest global 

distance test-high accuracy (GDT-HA) score of 0.9148 (the higher 

value, the more accurate), and the lowest root mean square deviation 

(RMSD) score of 0.524 (lower value indicating greater stability) 

(Figure S2C). Nonetheless, when I applied the PROCHECK tool to 

validate the stereochemical quality of this model structure, there were 

only 76.0% of residues in the most favored regions (Figure S2D). A 

good quality model would be expected to have over 90% of residues 

in the most favored regions. For that reason, I could not use the 

prediction result obtained from I-TASSER. Consequently, I employed 

the deep learning approach of AlphaFold2 and predicted the top five 

3D structure models of the vaccine via ColabFold v2.3.2 based on the 

local distance difference test (pLDDT) ranking (Figure S3). Among 

them, the 1st rank_model 2 with the best estimated reliability, was 

selected as the predicted structure (Figure S3A). Nevertheless, this 



134 
 

prediction yielded a pLDDT score below 50 (Figure S3B) and the 

Ramachandran plot analysis revealed only 44.2% of residues in most 

favored regions (Figure S3C), I performed further structural 

refinement employing the GalaxyRefine server which generated five 

refined models and their properties (Table 4.5). 

 

Table 4.5 Structure information obtained from GalaxyWEB 
 

Model GDT-HA RMSD MolProbity 
Clash 

score 

Poor 

rotamers 

Rama 

favored 

Initial 1.0000 0.000 3.593 27.4 7.7 45.3 

MODEL 1 0.8095 0.862 1.211 1.9 0.3 96.2 

MODEL 2 0.8071 0.885 1.295 2.3 0.0 95.9 

MODEL 3 0.8062 0.882 1.454 2.8 0.0 94.4 

MODEL 4 0.8038 0.883 1.376 2.2 0.3 94.4 

MODEL 5 0.7949 0.911 1.214 1.4 0.3 95.1 

 

As the result shows in Table 4.5, model 1 held the highest GDT-

HA score of 0.8095, the lowest RMSD score of 0.862, and the lowest 

MolProbity score of 1.211 (lower MolProbity value indicates better 

model quality), and its 3D structure was represented in the cartoon in 

Figure 4.4A. Subsequently, to validate the quality of this 3D structure 

after the refining process, ProSA-web and PROCHECK tools were 

utilized. As shown in Figure 4.4B, the Z-score was determined to be 

−5.98. Notably, after refinement, the Ramachandran plot showed 

92.8%, 5.0%, and 2.2% of residues were present in the favored, 

allowed, and disallowed regions, respectively (Figure 4.4C). 
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Additionally, corresponding quality scores assessed through QMEAN4 

are presented in Figure 4.4D with a value of −5.58. Overview, model 

1 (Figure 4.4A) was the best compared to other models and was 

selected as the vaccine candidate for further study, including 

molecular docking and simulations.  
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Figure 4.4 Prediction, refinement, and validation of the tertiary 

structure of the vaccine. (A) The 3D structure representation in the 

cartoon by PyMOL. (B) The Z-score was obtained from ProSA-Web. 

(C) Ramachandran plot gained from PROCHECK. (D) Normalized 

QMEAN score composed of four statistical potential terms (QMEAN4) 

of the vaccine. 
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4.4.6. Molecular docking of vaccine construct with immune 

receptors 

The molecular docking was performed for two complex systems, 

MEV-TLR2 and MEV-TLR4, using the ClusPro server, which 

generated the top 30 models for each system. Among these models, 

the model with the lowest negative docking score was selected as the 

best-docked complex. Specifically, the models with −1376.3 kcal/mol 

(MEV-TLR2) and −1545.0 kcal/mol (MEV-TLR4) were selected for 

further analysis (Table 4.6). 
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Table 4.6 Molecular docking of the vaccine with TLR2 and TLR4 
 

Target 

(PDB ID) 

Center 

(kcal/mol) 

Lowest energy  

(kcal/mol) 
 

No. of  

interface residues 

Interface  

area (Å2) 

No. of  

hydrogen bonds 

No. of  

salt bridges 

TLR2 (2Z7X) -1079.1 -1376.3 

Chain A 
TLR2A: 8  

Vaccine: 8 

TLR2A: 414 

Vaccine: 406 
13 6 

Chain B 
TLR2B: 46  

Vaccine: 35 

TLR2B: 1716 

Vaccine: 1954 
23 4 

TLR4 (3FXI) -1441.9 -1545.0 

Chain A 
TLR4A: 48  

Vaccine: 46 

TLR4A: 2298 

Vaccine: 2278 
44 8 

Chain B 
TLR4B: 39 

Vaccine: 30 

TLR4B: 1486 

Vaccine: 1641 
24 5 
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A 3D representation of the surface and cartoon of the docking 

complex MEV-TLR2 was presented in Figures 4.5A and B, and MEV-

TLR4 was shown in Figures 4.6A and B. In addition, interacting 

residues between MEV-TLR2 (Figures 4.5C–F) and MEV-TLR4 

(Figures 4.6C–F) were visualized using PDBsum. Our results showed 

that 36 hydrogen bonds and 10 salt bridges were formed between the 

residues of MEV and two chains of TLR2 (Figures 4.5E and F). 

Similarly, 68 hydrogen bonds and 13 salt bridges were formed between 

the residues of the vaccine and two chains of TLR4 (Figures 4.6E and 

F). Based on these findings, MEV had excellent performance in 

strongly binding to TLR2 and 4 to produce a strong immune response.  
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Figure 4.5 Molecular docking between TLR2 chains A (purple) and B 

(red) with the vaccine construct (chain C – dark yellow). (A–B) Three-

dimensional representation of the docking complex in surface and 

cartoon, respectively. (C–D) Schematic diagram of interactions 

between TLR2 and the vaccine. (E–F) Residue interactions between 

TLR2 and the vaccine construct. Salt-bridges (red lines), hydrogen 

bonds (blue lines), and non-bonded contacts (orange dashed line) 

between residues on either side of the vaccine-receptor interface. 
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Figure 4.6 Molecular docking between TLR4 chains A (purple) and B 

(red) with the vaccine construct (chain C – dark yellow). (A–B) Three-

dimensional representation of the docking complex in surface and 

cartoon, respectively. (C–D) Schematic diagram of interactions 

between TLR4 and the vaccine. (E–F) Residue interactions between 

TLR4 and the vaccine construct. Salt-bridges (red lines), hydrogen 

bonds (blue lines), and non-bonded contacts (orange dashed line) 

between residues on either side of the vaccine-receptor interface. 

 

4.4.7. Molecular dynamic simulations of vaccine with immune 

receptors 

In order to obtain the stability and dynamic behavior of the interactions 

between MEV with TLR2 and TLR4 receptors during 100 ns simulation, 

statistical parameters such as root mean square deviation (RMSD), 

root mean square fluctuation (RMSF), the radius of gyration (Rg), and 

solvent accessible surface area (SASA) were examined in triplicate 

(Figure 5.7). After 50 ns, the RMSD values for both remained stable, 

indicating that the complexes maintained a comparatively stable 

structure, according to Figures 4.7A and B, the complexes consistently 

retained moderate structural stability. During the simulation, the 
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average RMSD values of the MEV-TLR2 and MEV-TLR4 complexes 

were 1.767 ± 0.127 and 1.634 ± 0.151 nm, respectively.  

Referring to the trajectories of Figures 4.7C and D, the MEV 

regions displayed the most significant fluctuations and an increasing 

trend in RMSF values, suggesting that the MEV regions were more 

dynamic or flexible than the TLRs regions. Besides, the Rg offers 

valuable information regarding the tendency of complex structures to 

expand during MDs. For the MEV-TLR2 complex (Figure 4.7E), the 

Rg values slightly increased from the start of the simulations until 10 

ns, indicating compaction or tightening of the complex. The Rg values 

gradually decreased, then stable after 50 ns until they reached 100 ns. 

For the MEV-TLR4 complex (Figure 4.7F), the Rg gradually reduced 

from the beginning of the simulation up to 40 ns, then stabilized until 

it reached 100 ns. Throughout the simulation, the complexes 

maintained an overall relatively compact structure, as indicated by the 

average Rg value of 4.889 ± 0.187 and 4.663 ± 0.044 nm for MEV-

TLR2 and MEV-TLR4, respectively. 
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Figure 4.7 MD simulations of the docking complexes between MEV 

and TLR2/4. (A–B) Root mean square deviation plot for MEV-TLR2 

and MEV-TLR4 complex, respectively. (C–D) Root mean square 

fluctuation of MEV-TLR2 and MEV-TLR4 complex, respectively. (E–

F) Radius of gyration analysis between MEV-TLR2 and MEV-TLR4 

complex, respectively. (G–H) Solvent-accessible surface area of 

MEV-TLR2 and MEV-TLR4 complex during MD simulations, 

respectively. 

 

In addition, Figures 4.7G and H show the average SASA values 

of MEV-TLR2 and MEV-TLR4 complex were 889.117 ± 21.779 and 

915.881 ± 7.935 nm2, respectively. The SASA values gradually 

decreased throughout the simulation, indicating that the complexes got 

more compact or less exposed to solvent. Significant structural 

rearrangement may have occurred during the beginning of simulation 

until 40 ns (for MEV-TLR2) and 30 ns (MEV-TLR4) period, as 

evidenced by the significant and quick decrease in SASA during this 

time frame. After that, both were stable until the end of the simulation 

period. 
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4.4.8. Immune responses induced by the vaccine 

The immunological simulation data was produced by the C-

IMMSIMserver following three successive injections of the vaccine 

candidate. Figure 4.8A shows that a vaccine's initial exposure 

produces a relatively low immunoglobulin response, whereas a 

subsequent exposure produces an increased immunoglobulin response. 

Additionally, Figure 4.8A shows that immunoglobulins such as IgM and 

IgG are more abundant than other immunoglobulins such as IgM, IgG1, 

and IgG1 + IgG2. Details of the cytokine levels, especially IFN-g, 

increased significantly and were above 400,000 ng/ml, which are 

visualized in Figure 4.8B, while Figure 4.8C indicates responses of B 

lymphocytes. Our simulation study also identified helper T-cell and 

cytotoxic T-cell responses (Figures 4.8D and E), confirming the 

realistic character of the server-predicted immune response because 

helper T-cell activity is crucial for activating B-cells. During the self-

memorization process following pathogen exposure, memory cells play 

a crucial role in preventing and regulating viral infection and 

reinfection. The successful injection of the vaccine candidate resulted 

in an increase in the regulatory components of the immune system, 

including DC cells, macrophages, NK cells, interleukins, and cytokines 

(Figures 4.8C–H). These results imply that the MEV is a highly 
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effective next-generation vaccine based on peptides that can stimulate 

a robust immune response against MTB infection.  
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Figure 4.8 The innate and adaptive immune responses induced by the 

MEV in the C-IMMSIMserver. (A) Immunoglobulin responses upon 

exposure to the vaccine. (B) Concentration of cytokines and 

interleukins. (C) B cell population. (D) T helper cell population. (E) T 

cytotoxic cell population. (F) Behavior of the population of Natural 

Killer cells. (G) Behavior of the population of Dendritic cells. (H) The 

population of macrophages after vaccination. 

 

4.5. Discussion 

Despite advances in vaccine technology, there are still no vaccines 

against some infectious diseases, including tuberculosis. The 

infectious pathogens underlying these diseases evade and alter host 

immune responses, making vaccine development difficult. In this study, 

I aim to design an MEV candidate against tuberculosis to contribute 

towards the End MTB Strategy. Several vaccines for MT have been 

developed to provide possible candidates for novel vaccine designs 

(Albutti, 2021b; Bibi et al., 2021b; Ruaro-Moreno et al., 2023; Sharma 

et al., 2021a). While a few new proteins with antigenic qualities were 

chosen for the current study to identify epitopes and develop the 

vaccine, most known antigenic proteins or proteins found in exosome 

vesicles were used in these previous studies to uncover antigenic 
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epitopes. Besides, although many vaccine candidates are available, 

each vaccine employs different algorithms and features. The in vitro 

and in vivo vaccination production process is far more complex, 

expensive, and time-consuming than the MEV. A range of laboratory 

medical studies are also required for the final epitope selection. A 

computational technique that saves time and predicts a peptide or 

epitope sequence that might be used to make a lab-based MEV is 

called in silico methodology. 

The present study focuses on a PPE family protein, Rv0256c 

(PPE2), which induced a strong B cell response in tuberculosis patients 

(Abraham et al., 2014). I carried out a computer analysis using a range 

of immunoinformatics techniques to find 21 potent epitopes that could 

be helpful in the fight against tuberculosis. Therefore, using this 

method, I may reduce the cost and length of wet lab investigations. 

Finally, I speculate that the designed vaccine is extracellular, highly 

immunogenic, antigenic, nontoxic, and nonallergic; as such, it could be 

a promising MEV candidate for MTB based on computational analysis. 

Additional wet-lab validation is required to confirm the 21 epitopes' 

effectiveness as MEV in this study. 

Firstly, I retrieved the protein sequence and evaluated 

antigenicity and allergenicity. Then, the immunoinformatic techniques 
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were used to screen and construct potential epitopes from the 

sequence of Rv256c protein for B and T cells. The antigenicity, 

allergenicity, and several physiochemical properties of the developed 

multi-epitope vaccination were then evaluated. The vaccine construct 

contains 534 amino acids, comprising six cytotoxic T lymphocyte, 

eight helper T lymphocyte, and seven linear B lymphocyte epitopes, 

along with adjuvants and linkers. The antigenicity score of MEV 

predicted by VaxiJen 2.0 and ANTIGENpro was 0.9363 and 0.9399, 

respectively. The MEV was predicted as stable and thermostable with 

an instability index and aliphatic index of 28.64 and 62.77, respectively. 

Afterwards, tertiary structure prediction, refinement, and validation 

were conducted. Ramachandran plot analysis reveals that 97.8% of the 

amino acid residues were in the most favored and allowed regions. 

Subsequently, molecular docking and MD simulations were 

utilized in evaluating the complex stability. There were a total of 46 

interaction sites in MEV-TLR2 and 81 interaction sites in MEV-TLR4 

(Figures 4.5 and 4.6). These results showed that the interactions 

between MEV and TLR2, 4 were strong, and the docking effect was 

good, especially, the MEV-TLR 4 complex. Triplicate MD simulations 

were calculated to confirm the poses found by docking results. The 

MD calculation lets us establish if MD finds the most populated cluster 
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from docking. The static view provided by docking should be verified 

by using MD. In this study, an MD simulation could be helpful to 

confirm if the primary contacts found will be maintained during the MD 

to present more reliable results. In general, combining two in silico 

techniques (docking, MD) could improve the reliability of the results. I 

need to ensure that all the system's chemical and physical properties 

have reached an equilibrium where their averages no longer change 

as a function of time. A simple way to test this is by measuring the 

RMSD of the backbone concerning the start (Figures 4.7A and B). For 

the RMSD, the average is taken over the particles, giving time-specific 

values; for RMSF, the latter is averaged over time, giving each particle 

(residue) value. RMSF is a simple tool to measure the rigidity of the 

polypeptide chain. It calculates the deviations of the C-alpha atom's 

coordinates from their average position. The flexibility pattern reflects 

the location of secondary structure elements in the protein structure 

(Figures 4.7C and D). Besides, I studied the compactness of the 

receptors TLR2 and TLR4 interaction with the vaccine using Rg. The 

receptor remains compact, and no unusual folding or unfolding was 

observed throughout the 100 ns. The vaccine with TLR4 is more 

tightly packed than TLR2 (Figures 4.7E and F). Furthermore, I 

calculated the total solvent-accessible surface area to understand the 
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system's SASA of the binding region. I observed that initially, the area 

of structures contact by the solvent molecules was higher, and it 

decreased gradually with time and showed stable values, showing 

significant interaction can be assumed between the vaccine and TLR2, 

4. In particular, the complex between the vaccine and TLR4 showed 

more stability than TLR2 (Figures 4.7G and H). To sum up, our 

molecular docking studies and triplicate MD simulations revealed 

superior interactions and stability of the vaccine with the TLR4 

complex compared to the TLR2 complex. This aligns with the 

outcomes of a previous investigation (Alderwick et al., 2015). 

Alderwick et al. in that study, demonstrated that human immune cells 

that were infected with MTB express more TLR4, which played a role 

in the interaction with MTB and activated TLR4 related signaling, 

which in turn enhanced Th2 signaling and led to the development of 

tuberculosis disease. 

Finally, I performed in silico immune simulation to characterize 

the immunogenicity and immune response of the vaccine. Figure 4.8 

shows the outcomes of the immunological simulation after the MEV 

was administered. After the host immune system was exposed to MEV 

several times, there was a discernible rise in secondary and tertiary 

antibody levels, which were higher than primary antibody detection 
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levels. As a result, there was a quick drop in antigen concentration, 

which suggests quick clearance (Figure 4.8A). Interestingly, T-cells 

were found to have increased initially but then somewhat decreased. 

Moreover, cytokine levels, especially IFN-g, increased significantly 

and were above 400,000 ng/ml (Figure 4.8B). Figures 4.8C–H show 

the distribution of immune cell populations in different states. These 

immune cell populations showed a notable overall increase, 

exemplified by the maturation of memory cells. These results 

demonstrate that the vaccine designs can provide immunity against the 

MTB and strongly suggest the formation of immunological memory. 
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Chapter 5 Integrating immunoinformatics and 

computational epitope prediction for a vaccine 

candidate against respiratory syncytial virus 

 
 

 

 

 

 

 

 



157 
 

5.1. Abstract 

Respiratory syncytial virus poses a significant global health threat, 

especially affecting infants and the elderly. Addressing this, the 

present study proposes an innovative approach to vaccine design, 

utilizing immunoinformatics and computational strategies. I analyzed 

respiratory syncytial virus's structural proteins across both subtypes 

A and B, identifying potential helper T lymphocyte, cytotoxic T 

lymphocyte, and linear B lymphocyte epitopes. Criteria such as 

antigenicity, allergenicity, toxicity, and cytokine-inducing potential 

were rigorously examined. Additionally, I evaluated the conservancy 

of these epitopes and their population coverage across various 

respiratory syncytial virus strains. The comprehensive analysis 

identified six major histocompatibility complex class I binding, five 

major histocompatibility complex class II binding, and three B-cell 

epitopes. These were integrated with suitable linkers and adjuvants to 

form the vaccine. Further, molecular docking and molecular dynamics 

simulations demonstrated stable interactions between the vaccine 

candidate and human toll-like receptors 4 and 5, with a notable 

preference for TLR4. Immune simulation analysis underscored the 

vaccine's potential to elicit a strong immune response. This study 

presents a promising respiratory syncytial virus vaccine candidate and 
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offers theoretical support, marking a significant advancement in 

vaccine development efforts. However, the promising in silico findings 

need to be further validated through additional in vivo studies. 

 

5.2. Introduction 

Respiratory syncytial virus (RSV) is a significant viral pathogen, 

particularly affecting the respiratory system, and is a leading cause of 

upper and lower respiratory tract infections, especially in infants and 

young children globally (Broor et al., 2018). Furthermore, RSV infects 

individuals with weakened immune systems or chronic lung/heart 

diseases and the elderly, where it can exacerbate the underlying 

diseases and account for the development of asthma, chronic 

obstructive pulmonary disease, and congestive heart failure (Falsey et 

al., 2005; Nam & Ison, 2019). First identified in 1956, RSV has since 

garnered attention due to its widespread prevalence, causing seasonal 

outbreaks and contributing to substantial morbidity and mortality 

worldwide (Borchers et al., 2013; Morris et al., 1956). RSV is 

ubiquitous and triggers outbreaks of respiratory infections, which tend 

to peak during the winter in temperate regions and the rainy season in 

tropical areas (Nam & Ison, 2019; Obando-Pacheco et al., 2018). The 

virus spreads through respiratory droplets, making it highly contagious 
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(Bergeron & Tripp, 2021). Virtually all children will have been infected 

with RSV by the age of two, and re-infections are common throughout 

life (Ruckwardt et al., 2019). In infants, RSV infections can cause 

crepitation, chest wall indrawing, hypoxemia, wheezing, and tachypnea, 

whereas, in adults, it can aggravate the underlying cardiopulmonary 

diseases (Broor et al., 2018; Ruckwardt et al., 2019). Premature birth, 

congenital heart disease, neuromuscular diseases, bronchopulmonary 

dysplasia, and male gender are the major risk factors of RSV infection 

(Messina et al., 2022). Among infants, RSV stands as the primary cause 

of hospitalizations worldwide and the second most prevalent cause of 

mortality in low- and middle-income nations. On a global scale, it has 

been approximated that RSV gives rise to 33 million new cases of 

acute lower respiratory tract infection in children under the age of five, 

leading to around 3 million hospitalizations and 120,000 deaths each 

year (Colosia et al., 2023; Mejias et al., 2019). In adults who contract 

RSV infection, mild cold-like symptoms are typical, and a few cases 

may progress to pneumonia or lung infection. Annually, approximately 

60,000 to 160,000 older adults in the United States are hospitalized 

due to RSV infection, resulting in 6000 to 10,000 deaths (Harris, 2023). 

While RSV infections are often mild and self-limiting, severe 

cases can lead to significant morbidity and mortality, particularly in 
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infants and older adults. Due to the health risks and mortality linked to 

RSV, there has been a persistent demand for effective therapeutics for 

either treating or preventing RSV infections and associated illnesses 

(Colosia et al., 2023). The SARS-CoV-2 pandemic has heightened the 

awareness within the scientific community to prepare for highly 

contagious human viruses proactively. Therefore, it is imperative to 

explore innovative strategies for developing potential therapies 

against RSV, aiming to avert potential calamities in the future. Hence, 

in this study, the immunoinformatics and computational approaches 

have been integrated to develop a potential vaccine candidate against 

RSV. Firstly, the structural proteins from both subtypes of RSV were 

employed to identify antigenic B-cell and T-cell epitopes. 

Subsequently, the epitopes' properties were predicted, including 

allergic potential, antigenic potential, toxic property, and their capacity 

to elicit interferon-gamma (IFN-) and interleukin-4 (IL4). Then, the 

conservancy of these epitopes was determined in different RSV strains 

belonging to subtype A and subtype B of RSV, followed by the 

population coverage analysis of the T-cell epitopes. Afterward, 

chosen epitopes were linked with adjuvants and linkers to formulate 

an RSV vaccine candidate, for which I predicted physicochemical 

properties, stability, antigenicity, toxicity, and allergenicity. Following 
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this, the vaccine candidate's tertiary structure was expected, then 

molecular docking and molecular dynamics simulation studies were 

conducted to elucidate its interactions with immune cells. Finally, an 

immune simulation study was carried out to assess how the designed 

RSV vaccine triggers immune responses in humans at various dosages. 

This research contributes to the ongoing efforts to address the 

challenges posed by RSV and underscores the potential of 

immunoinformatics in advancing vaccine design against respiratory 

pathogens. 

 

5.3. Materials and Methods 

5.3.1. Protein sequence retrieval and epitope prediction 

Protein sequences of RSV structural proteins were retrieved from the 

UniProt database (Consortium, 2022). T-helper cell epitopes, capable 

of binding to MHC class II molecules, were predicted using the 

NetMHCII 2.3 server (Jensen et al., 2018). Similarly, T-cytotoxic cell 

epitopes with potential for MHC class I molecule binding were 

predicted using the NetMHCpan 4.0 web server (Andreatta & Nielsen, 

2016). Protein sequences were input in FASTA format into the 

NetMHCpan 4.0 and NetMHCII 2.3 servers, with chosen peptide 
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lengths of 9 and 15 (default) respectively. Default parameters of the 

NetMHCpan 4.0 and NetMHCII 2.3 servers were applied to establish 

thresholds for strong and weak binders. For predicting multiple linear 

B-cell epitopes, the BepiPred 2.0 server was employed (Larsen et al., 

2006). Subsequently, the antigenicity of predicted B-cell and T-cell 

epitopes was determined using the VaxiJen v2.0 web server (Irini A. 

Doytchinova & Darren R. Flower, 2007). The epitope's allergic 

potential, toxicity, and IFN- activation potential were assessed using 

the AllergenFP v1.0, ToxinPred, and IFNepitope web servers, 

respectively (Dhanda, Vir, et al., 2013b; Dimitrov et al., 2013; Gupta, 

Kapoor, Chaudhary, Gautam, Kumar, Open Source Drug Discovery, et 

al., 2013). Additionally, the IL4pred server was employed to evaluate 

the epitopes' capability to induce interleukin-4 (IL4) production 

(Dhanda, Gupta, et al., 2013b). 

 

5.3.2. Conservancy analysis and population coverage analysis 

The study aims to develop a vaccine candidate against both the 

subtypes of RSV. Hence, the conservancy of the predicted epitopes 

that were antigenic, non-toxic, non-allergic, and induced cytokine 

generation was performed by employing the Immune Epitope Database 
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and Analysis Resources (IEDB) tool (Bui et al., 2007). Within this tool, 

epitope and protein sequences from various RSV strains of both 

subtypes were inputted in FASTA format, and opting for the default 

settings for all other parameters. The IEDB population coverage 

analysis tool was utilized to ascertain population coverage for the 

selected T-cell epitopes in the design of the vaccine candidate (Bui et 

al., 2006). Notably, determining population coverage analysis for the 

final B-cell epitopes proved challenging due to the absence of web 

servers or software capable of predicting B-cell epitope population 

coverage. The IEDB population coverage analysis tool employed 

default values for the “number of epitopes” and “query by” parameters. 

The selection “World” was made for “select area(s) and population(s)”, 

and the combined Class I and II options were chosen under the “select 

calculation option”. 

 

5.3.3. Vaccine candidate engineering and physiochemical 

properties prediction 

The selected B-cell and T-cell epitopes were conjugated with flagellin, 

RS09 adjuvants, and the PADRE (Pan HLA DR-binding epitope) 

sequence through the use of GGS linkers, forming the final vaccine 
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construct. The GGS linker, chosen for its flexibility and 

biocompatibility, facilitated the integration of adjuvants and epitopes, 

enhancing the vaccine's immunogenic potential. The Expasy 

ProtParam tool was used to evaluate the vaccine construct's 

physicochemical properties, such as molecular weight, isoelectric 

point, aliphatic index, and stability. Antigenicity was predicted using 

the VaxiJen v2.0 tool, assessing the vaccine's potential to elicit an 

immune response (Irini A. Doytchinova & Darren R. Flower, 2007; 

Gasteiger et al., 2005).  

 

5.3.4. Prediction, refinement, and validation of the tertiary 

structure of the vaccine candidate 

The tertiary structure of the vaccine candidate was predicted using 

AlphaFold2's deep learning algorithm through ColabFold v1.5.5 

(Jumper et al., 2021), with subsequent structural refinement performed 

on the GalaxyWEB server (Ko et al., 2012). Model quality and 

validation were thoroughly assessed using ProSA-web (Wiederstein & 

Sippl, 2007), PROCHECK program (Laskowski et al., 1993), and 

QMEAN4 (Benkert et al., 2010; Chawla et al., 2023), ensuring a 

comprehensive evaluation of the vaccine candidate's structure.  
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5.3.5. Molecular docking studies between the vaccine and 

immune receptors 

The structure of the human TLR4 (UniProt ID: O00206) and TLR5 

receptor (UniProt ID: O60602) were predicted by AlphaFold2. For both 

receptors, I retained only the extracellular domain encompassing 

amino acids 30–624 of TLR4 and 21–639 of TLR5, while excluding 

other regions. The 3D structure of the multi-epitope vaccine (MEV) 

candidate and immune receptors were docked using the ClusPro 

server (Kozakov et al., 2017b). ClusPro conducts molecular docking 

analysis through a multi-step process that includes rigid body docking, 

clustering of low-energy structures, and energy minimization. Initially, 

it employs rigid body docking, where billions of conformations are 

sampled. Subsequently, the 1000 lowest energy structures are 

grouped to identify the largest clusters, based on root-mean-square 

deviation (RMSD). Finally, energy minimization is conducted to 

eliminate steric clashes, refining the docking results (Truc Ly Nguyen 

& Heebal Kim, 2024b). Accordingly, the complex displaying the lowest 

binding energy (in kcal/mol) was selected for visualization. PDBsum 

was subsequently employed to analyze and identify interacting 

residues between the vaccine and TLR4/TLR5 receptors (Laskowski 

et al., 2018). 
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5.3.6. Molecular dynamics simulations of the vaccine-receptor 

complex 

To investigate the stability of the vaccine-receptor complex, all-atom 

molecular dynamics (MD) simulations were performed using the 

GROMACS 2023 software on a Linux operating system employing the 

CHARMM27 force field (Abraham et al., 2015). The docking complex 

MEV-TLR4 was solvated in a cubic box (12 × 12 × 12) using the SPCE 

water model, surrounded by 325,909 solvent molecules. Subsequently, 

to neutralize the charge, 24 Na+ ions were added. The system 

underwent energy minimization, using the steepest descent algorithm 

with 50,000 steps, and the minimization process ceased when the 

maximum force reached <1000.0 kJ/mol/nm. Following that, position 

restraints were applied during the equilibration process. NVT 

equilibration was executed at 300 K with 50,000 steps (100 ps), 

followed by NPT equilibration at 1 bar reference pressure with an 

additional 50,000 steps (100 ps). Afterward, a production simulation 

for all-atom (995,112 atoms) was conducted using the NPT ensemble 

for 50,000,000 steps (100 ns). Upon completing the 100 ns MD 

simulation, I computed the root mean square deviation (RMSD) of 

backbone residues, root mean square fluctuation (RMSF) of C-alpha, 

the solvent-accessible surface area (SASA) and the buried surface 
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area (BSA) for the system. To validate result accuracy and reliability, 

three replicate MD simulations were performed over 100 ns with a 

different starting velocity (Akhtar et al., 2022; Kaushik, G, et al., 2022). 

Additionally, superimpositions of the docking complex were created 

using selected snapshots from the MD simulations. Finally, the 

COCOMAPS tool (Vangone et al., 2011) was employed to examine 

interface connectivity between the MEV and TLR4 through specific 

snapshots. 

 

5.3.7. Computational immune simulation of RSV vaccine 

candidate 

An in silico immune simulation was performed using the C-IMMSIM 

online tool, applying default settings with the exception of the time 

step adjustment, to explore the immune response elicited by the RSV 

vaccine construct (Rapin et al., 2011). Although the recommended 

interval between two vaccine doses is typically four weeks, intervals 

ranging from 8 weeks to 6 months can also be considered, depending 

on the instance (Castiglione et al., 2012; Robinson et al., 2017). 

Accordingly, to assess the immune response to the RSV vaccine 

construct, three doses were administered at four-week intervals. The 
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time steps used in the simulation were 1, 84 (representing 4 weeks), 

and 168 (corresponding to 8 weeks). 

 

5.4. Results 

5.4.1. Protein sequence retrieval and epitope prediction 

The UniProt IDs of the structural proteins of RSV strain A2 belonging 

to subtype A have been provided in Table 5.1. All retrieved proteins 

were verified at the protein level, each receiving a top annotation 

score of 5/5, with the exception of the M2-2 protein. A total of 749 

strong-binding MHC-I epitopes, 1621 high-affinity MHC-II epitopes, 

and 36 linear B-cell epitopes were predicted from the RSV structural 

proteins (Supplementary Data Sheets). Then, these epitopes 

underwent further analysis for antigenicity (VaxiJen score above 0.4), 

allergenicity, toxicity, and ability to induce IFN- and IL-4. These 

comprehensive analyses led to the identification of 22 MHC-I epitopes 

and 72 MHC-II epitopes, with only 6 B-cell epitopes meeting the 

specified criteria.  
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Table 5.1 UniProt IDs of the structural proteins of RSV strain A2 
 

Protein  UniProt ID Identification method 
Annotation 

score 

N: Nucleoprotein  P03418 Evidence at protein level 5/5 

P: Phosphoprotein  P03421 Evidence at protein level 5/5 

M: Matrix protein  P0DOE7 Evidence at protein level 5/5 

SH: Small hydrophobic 

protein  
P0DOE5 Evidence at protein level 5/5 

G: Major surface 

glycoprotein  
P03423 Evidence at protein level 5/5 

F: Fusion glycoprotein  P03420 Evidence at protein level 5/5 

M2-1  P04545 Evidence at protein level 5/5 

M2-2  P88812 Inferred from homology 2/5 

L: RNA-directed RNA 

polymerase  
P28887 Evidence at protein level 5/5 

 

5.4.2. Conservancy analysis and population coverage analysis 

Epitope conservancy was assessed across the S2 strain (A subtype), 

9320 strain (B subtype), and B1 strain (B subtype) RSV strains. 

Sequences of all the structural proteins are available in UniProt for 

only these RSV strains, whereas other strains have only 1 or 2 protein 

sequences documented. Among the 22 MHC-I epitopes, 14 showed 

conservancy in all the selected strains. Likewise, 31 of the 72 MHC-

II epitopes were conserved across these RSV strains. Three of the 6 

B-cell epitopes were conserved in the tested RSV strains. To narrow 

down the epitope selection for the vaccine construct, a further 

parameter - a VaxiJen score above 1.1 - was applied. Consequently, 

6 MHC-I and 5 MHC-II binding epitopes were selected for the final 
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construct, achieving a global population coverage of 52.07%, as 

detailed in Table S1. 

 

5.4.3. Vaccine candidate engineering and physiochemical 

properties prediction 

Following comprehensive analysis in the earlier sections, 6 MHC-I 

binding epitopes, 5 MHC-II binding epitopes, and 3 B-cell epitopes 

were shortlisted for the vaccine design (Table 5.2). Each selected 

epitope is antigenic, non-allergic, non-toxic, capable of inducing IFN-

 and IL-4, and conserved in all tested strains. These selected epitopes 

were then integrated with flagellin adjuvant, RS09 adjuvant, and 

PADRE sequence using appropriate linkers GGS, as outlined in the 

methodology, to form an RSV vaccine candidate composed of 545 

amino acids (Table S2). Additionally, Table S3 presents the 

physicochemical parameters of the vaccine candidate, which is 

characterized by its antigenicity, non-allergenicity, non-toxicity, and 

stability.  
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Table 5.2 Epitopes for the design of the final RSV vaccine candidate 
 

Protein 
MHC 

type 
Epitopes 

Binding MHC 

alleles 

VaxiJen 

scorea 

Nucleoprotein 

MHC-I 

EMKFEVLTL HLA-B*08:01 1.1076 

Matrix protein EKDDDPASL HLA-B*39:01 1.343 

Fusion 

glycoprotein 
ASISQVNEK HLA-A*03:01 1.3852 

RNA-directed 

RNA 

polymerase 

DIRYIYRSL HLA-B*08:01 1.3203 

ELEYRGESL HLA-B*08:01 1.6945 

YHAQDDIDF HLA-B*39:01 1.3715 

Nucleoprotein 

 

 

MHC-II 

VFVHFGIAQSSTRGG  DRB1_0901 1.1723 

Fusion 

glycoprotein 
TDRGWYCDNAGSVSF DRB3_0101 1.1909 

RNA-directed 

RNA 

polymerase 

TVVELHPDIRYIYRS DRB1_0301 1.1211 

PWVVNIDYHPTHMKA DRB1_0301 1.2262 

CPWVVNIDYHPTHMK DRB1_0301 1.4633 

Phosphoprotein 
 

B-cell 

 

ETFDNNEEESSYSYEEI

NDQTNDNI 
Not applicable 0.5306 

RNA-directed 

RNA 

polymerase 

ISNKSNRYNDNYN Not applicable 0.8783 

SRPCEFPASIPAYRT Not applicable 0.4767 

aVaxiJen score above 1.1 for MHC epitopes and 0.4 for B-cell epitopes 

 

5.4.4. Prediction, refinement, and validation of the tertiary 

structure of the vaccine candidate 

The multi-epitope vaccine (MEV) construct was predicted using the 

cutting-edge AlphaFold2 via ColabFold v1.5.5. Given that, the 

AlphaFold2 prediction yielded a low score for specific residues (Figure 

S1), and the calculated scores for Ramachandran plots yielded 60.4% 

residues in core acceptable region, 35.6% in allowed and generously 

allowed regions and 4.0% residues in disallowed regions (Figure S2). 

To enhance the model's quality, I pursued further structural refinement 
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using the GalaxyWEB server. Among models 1–5, model 1 (Figure 5.1A) 

was determined to be the most accurately refined. The results in terms 

of improvement of model 1 over initial input models for backbone 

structure accuracy measured by GDT-HA, side-chain structure 

accuracy measured by RMSD, and physical correctness measured by 

MolProbity score were summarized in Table S4. Furthermore, to 

validate the model's quality, I calculated Z-Score with a value of −6.8 

(Figure 5.1B), analyzed the Ramachandran plot (Figure 5.1C), and 

determined QMEAN4 value of −4.27 (Figure 5.1D). According to the 

Ramachandran plot, 94.5% of residues were situated in the favorable 

core region, 5.1% in the allowed and generously allowed regions, and 

only 0.4% in the disallowed region. Hence, the refined MEV model 

(Figure 5.1A) demonstrates a high quality, making it suitable for 

further studies. 
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Figure 5.1 Tertiary structure of the vaccine construct.  (A) Refined 

model representation in a cartoon by the GalaxyWEB server. (B) Z-

Score was obtained from the ProSA-web of the refined model. (C) 

Ramachandran plot using PROCHECK program. (D) Normalized 

QMEAN score composed of four statistical potential terms (QMEAN4) 

of the vaccine construct. 
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5.4.5. Molecular docking of the vaccine candidate with immune 

TLR4 and TLR5 receptors 

 

The tertiary structure of human TLR4 (UniProt ID: O00206) and TLR5 

receptor (UniProt ID: O60602) were determined using AlphaFold2. 

The yield of high pLDDT values with confidence scores exceeding 90 

for most residues indicated a high prediction confidence level for TLR4 

(Figure S3) and TLR5 (Figure S4). The molecular docking was 

performed for two complex systems, MEV-TLR4 and MEV-TLR5, 

using the ClusPro server, which generated the top 30 models for each 

system. From these models, the ones with the lowest negative docking 

score were selected as the best-docked complexes. Specifically, the 

models with −1257.4 kcal/mol (MEV-TLR4) and −1542.7 kcal/mol 

(MEV-TLR5) were chosen for further analysis. Interactions between 

MEV and TLR4/TLR5 were illustrated in Figure 5.2, visualized using 

the PDBsum database with default threshold values of 3.5 Å. Analysis 

revealed the formation of 60 hydrogen bonds and 8 salt bridges 

between MEV and TLR4 (Figure 5.2A and Table S5), while MEV and 

TLR5 demonstrated only 19 hydrogen bonds (Figure 5.2B and Table 

S6). These findings indicate MEV's strong binding affinity to TLR4, 

suggesting its potential to elicit an immune response. 
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Figure 5.2 Molecular docking between the MEV (red) and TLR4/TLR5 

(purple).  (A) Docking complex representation in cartoon and residue 

interactions between TLR4 (chain A) and MEV (chain B). (B) Docking 

complex representation in cartoon and residue interactions between 
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TLR5 (chain A) and MEV (chain B). Salt bridges (red lines), hydrogen 

bonds (blue lines), and nonbonded contacts (orange dashed line) 

between residues on either side of the vaccine-receptor interface. 

 

5.4.6. Molecular dynamics simulation studies 

Following the molecular docking outcomes, the MEV-TLR4 complex, 

identified as the optimal docking configuration, was selected for MD 

simulation studies. Three replicates of MD simulations 100 ns were 

conducted for all-atom to investigate the stability of the vaccine-

receptor complex using GROMACS 2023 software on a Linux operating 

system, which provides real-life environmental conditions for various 

biological models (T. L. Nguyen & H. Kim, 2024). RMSD from the 

backbone of the complex showed an average value of 0.84 ± 0.16 nm, 

achieving stability after 20 ns simulation time (Figure 5.3A). Besides, 

the RMSF was quantified to evaluate the flexibility across the amino 

acid residues within the complex. Figure 5.3B shows RMSF values of 

0.53 ± 0.32 nm for the vaccine (residues 1 to 545) and 0.34 ± 0.08 nm 

for TLR4 (residues 546 to 1140), indicating the vaccine exhibits 

greater flexibility than TLR4. Significant fluctuations were observed 

particularly in the N- and C-terminal regions of flagellin within the 

vaccine. Another measure of docking complex MEV-TLR4 behavior is 
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the solvent-accessible surface area (SASA).  The SASA is governed 

by the interactions (or lack of) of hydrophobic and hydrophilic amino 

acids with water. Figure 5.3C presents an average SASA value of 

591.27 ± 16.35 nm2, with the complex achieving a steady state after 

40 ns and maintaining it throughout the simulation. Moreover, the 

buried surface area (BSA) at the MEV-TLR4 interface remained stable 

throughout the simulation, suggesting consistent interface interactions 

with a value of 45.61 ± 9.99 nm2 (Figure 5.3D). 
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Figure 5.3 Molecular dynamics simulation of the vaccine and TLR4 

complex.  (A) Root mean square deviation (RMSD). (B) Root mean 

square fluctuation (RMSF). (C) Solvent-accessible surface area 

(SASA). (D) Buried surface area (BSA). 

 

To further assess the complex's stability throughout the 

simulation, I calculated the RMSD of the MEV-TLR4 complex at 

various time steps. By comparing the stability of the MEV-TLR4 

complex, I was able to determine their respective stability (Figure 
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5.4A). Subsequently, the COCOMAPS tool was employed to thoroughly 

study and visualize the contact points at the MEV-TLR4 interface 

(Figure 5.4B). Using intermolecular contact maps to find hot spot 

residues, COCOMAPS makes it possible to analyze and visualize the 

interaction interface in protein complexes (Vangone et al., 2011). 

While the study is presented for the chosen snapshots (Figure 5.4A), 

where the interaction pattern with the contacts is maintained, it is clear 

from Figure 5.4B that overall contacts remained steady (Akhtar et al., 

2023; Kaushik, Jain, et al., 2022). 
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Figure 5.4 Stability of the docking complex MEV-TLR4.  (A) 

Superimposition of selected snapshots of MEV-TLR4 and their 

respective RMSD values. (B) Contact maps showing the conservation 

of contacts between residues in MEV and TLR4. 

 
 

Remarkably, the interface area and percentage of polar to non-

polar residues at the interface of modeled complexes were found to 

be nearly the same across all instances (Table 5.3). Besides, across 

all model complexes, employing a cut-off distance of 5 Å to define two 

residues in contact, the distribution of hydrophilic-hydrophobic, 

hydrophilic-hydrophilic, hydrophobic-hydrophobic, and hydrogen 

bonds exhibited minimal variation in the four selected structures 

(Table 5.3). All the above analyses demonstrate that the interaction 
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patterns between TLR4 and MEV maintained stability throughout the 

simulation period.  
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Table 5.3 The stability of interface interactions between MEV and TLR4 
 
Modeled 

complex 

Interface 

area (Å2) 

Polar 

residue (%) 

Nonpolar 

residue (%) 

Hydrophilic-Hydrophobic 

contacts 

Hydrophilic-Hydrophilic 

contacts 

Hydrophobic-Hydrophobic 

contacts 

H-bonds 

20 ns 2767.55  58.48 41.52 129 105 28 32 

40 ns 2572.0 59.14 40.86 128 98 30 29 

60 ns 2604.95 57.54 42.46 140 99 26 30 

80 ns 2407.7 57.35 42.65 128 86 22 29 
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5.4.7. Computational immune simulation of RSV vaccine 

candidate 

A computational immune simulation was conducted to assess the 

immune responses elicited by the designed RSV vaccine. Figure 5.5 

displays the immune response patterns predicted from the 

computational analysis of the vaccine. Analysis of the initial dose 

(Figure 5.5A) compared to subsequent doses reveals a significant 

increase in antibody concentrations, encompassing IgM + IgG, IgM, 

IgG1 + IgG2, and IgG1. This signifies that immunization with the 

candidate vaccine instigates an enhanced antibody response. 

Additionally, successive vaccine doses result in an increase in the total 

B-cell population, B-memory cell populations, and B isotype IgM 

population, underscoring the stimulation of a robust secondary immune 

response (Figure 5.5B). Following each vaccination, there is an 

increase in the plasma B lymphocyte population as well (Figure 5.5C). 

Furthermore, the active TH cell population increases after each 

immunization (Figure 5.5D). However, the duplicating and resting TH 

cell population increases up to the second dose of the vaccine but 

decreases after the third dose of vaccination (Figure 5.5D). Moreover, 

the vaccine candidate stimulates the production of various cytokines, 
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including IFN-, interleukin-10 (IL10), interleukin-12 (IL12), and 

transforming growth factor-beta (TGF-β) (Figure 5.5E). Compared to 

the initial dose, the second dose of the vaccine results in an increased 

population of IFN-, IL-10, TGF-β, and IL-12. Following the third 

dose of the vaccine construct, there is an overall decrease in the 

concentration of different cytokines and interleukins compared to the 

first and second doses (Figure 5.5E). 
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Figure 5.5 Immune simulation of the RSV vaccine construct. (A) 

Antigen and immunoglobulins. Antibodies are sub-divided per isotype. 

(B) B lymphocytes: total count, memory cells, and sub-divided in 

isotypes IgM, IgG1 and IgG2. (C) Plasma B lymphocytes count sub-
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divided per isotype (IgM, IgG1 and IgG2). (D) CD4+ T-helper 

lymphocytes count sub-divided per entity-state (i.e., active, resting, 

anergic, and duplicating). (E) Concentration of cytokines and 

interleukins. D in the inset plot is danger signal. 

 

5.5. Discussion 

RSV is an enveloped RNA virus belonging to the Paramyxoviridae 

family. There are two antigenically distinct RSV subtypes: A and B. 

These subtypes co-circulate within the same season, with one 

prevailing over the other. While specific studies indicate that subtype 

A is linked to heightened disease severity, others suggest that subtype 

B may have higher severity or that both subtypes exhibit comparable 

severity (Ciarlitto et al., 2019; Laham et al., 2017; Shen et al., 2022; 

Vandini et al., 2017). RSV possesses a single-stranded, negative-

sense RNA genome, encoding for 11 proteins of which three are non-

structural (NS1, NS2, M2–2), and 8 are structural proteins namely 

major surface glycoprotein (G), fusion glycoprotein (F), small 

hydrophobic protein (SH), nucleoprotein (N), phosphoprotein (P), 

matrix protein (M), M2-1 and RNA-directed RNA polymerase (L) (Kiss 

et al., 2014). Two major surface glycoproteins, the F and G proteins, 

play crucial roles in viral entry and fusion with host cells. The F protein 
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is particularly interested in vaccine development due to its role in 

entry into host cells, high conservation in RSV A and B subtypes, and 

the induction of protective immune responses. The G protein also 

bears antigenic determinants that trigger the production of neutralizing 

antibodies (Mejias et al., 2019). The L, N, M2-1, and P proteins 

envelop the viral RNA, creating a helical assembly known as the 

ribonucleoprotein complex, which protects the RNA (Cosentino et al., 

2022; Kiss et al., 2014). The M2-1 protein helps regulate RSV 

organization and transcription process (Cosentino et al., 2022; Kiss et 

al., 2014). The M protein envelops the inner surface of the viral 

membrane, forming a protective layer around the viral genomic 

material (Conley et al., 2022). The deletion of the SH protein has 

slowed apoptosis in the infected cells and caused attenuation of the 

virus, suggesting the role of the protein in the pathogenesis of RSV (Li 

et al., 2015). Given these structural proteins' role in RSV's infection 

and pathogenesis, my study targeted them to identify epitopes for the 

potential vaccine design against RSV. 

The US Food and Drug Administration (FDA) approved using 

the antiviral ribavirin in the aerosolized form for treating RSV infection 

in 1998. However, ribavirin offers limited clinical advantages in RSV 

and is not commonly prescribed as a routine treatment (Colosia et al., 
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2023; Mir et al., 2021). Similarly, the FDA approved the monoclonal 

antibody palivizumab to prevent RSV-associated severe lower 

respiratory tract infections in pediatric patients in 1996 (Garegnani et 

al., 2021). Presently, extensive research, encompassing clinical trials, 

is underway to develop treatments or preventive measures for RSV. 

One of the extensively researched areas for developing therapies 

against RSV is the area of vaccine development. Different vaccine 

candidates, such as subunit-based, live attenuated, nucleic acid, and 

vector-based, have been explored to protect infants, children, and 

elderly patients (Bergeron & Tripp, 2021; Ruckwardt, 2023; Topalidou 

et al., 2023). Currently, the FDA has licensed two vaccines, Abrysvo 

and Arexvy, developed by Pfizer and GSK, respectively, and the 24 

other candidates are under clinical trial stages (Topalidou et al., 2023). 

Furthermore, different groups have also explored the 

immunoinformatics approach to design a vaccine candidate against 

RSV (Dar et al., 2022; Moin et al., 2023; Naqvi et al., 2021; Tahir Ul 

Qamar et al., 2020). Nevertheless, my study's methodology, tools, and 

targeted proteins differ from those in previous research. Dar et al. 

focused on RSV's F and G proteins to predict antigenic epitopes (Dar 

et al., 2022). Moin et al. targeted the N, P, F, and G proteins to predict 

T-cell and B-cell epitopes for making vaccine candidates against both 
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RSV subtypes. Still, the computational tools utilized in my study differ 

from those in Moin et al.'s paper (Moin et al., 2023). Similarly, Naqvi 

et al. targeted the F, G, and SH proteins to predict only T-cell epitopes 

for the RSV vaccine candidate design (Naqvi et al., 2021). Additionally, 

Tahir et al. targeted the RSV F and G proteins to design a vaccine 

candidate following a methodology different from mine (Tahir Ul 

Qamar et al., 2020). 

This study's immunoinformatics analysis identified 6 MHC-I, 5 

MHC-II, and 3 B-cell epitopes within RSV's structural proteins. These 

selected epitopes were found to be antigenic, non-toxic, conserved 

among both the subtypes of RSV, non-allergic, and elicited the 

generation of IFN- and IL-4. The induction of the IFN- and IL-4 by 

the epitopes suggests the potential role of the epitopes in thwarting 

viral replication and activation of innate and adaptive immune activities 

(Cordeiro et al., 2022; Dittmer et al., 2001). The selected epitopes' 

conservancy suggests that my vaccine candidate could offer effective 

protection against both the RSV subtypes. Flagellin protein, RS09, and 

PADRE adjuvants were implemented to enhance the vaccine 

construct's efficacy. RS09 functions as an agonist of TLR4, while the 

flagellin protein acts as a TLR5 agonist (Forstnerič et al., 2017; Gupta 

et al., 2014; Shanmugam et al., 2012). The TLR agonists play a crucial 
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role in activating innate and adaptive immunity. Incorporating PADRE 

into the MEV can elevate its immunogenicity and efficacy (Ma et al., 

2020). PADRE exhibits a high-affinity binding ability to various MHC 

class II molecules, facilitating the generation of antigen-specific CD4+ 

T-cell responses (Ghaffari-Nazari et al., 2015). Additionally, it has 

also been reported to elicit CD8+ T-cell responses (Ma et al., 2020). 

This attribute has led to its widespread utilization in the construction 

of MEVs. Proteins under 110 kDa are considered suitable for vaccine 

candidates (Shen et al., 2022), and my RSV vaccine's molecular weight 

is 57.22 kDa, affirming its appropriateness. Furthermore, the designed 

vaccine exhibits no homology with human proteins, thereby minimizing 

the risk of autoimmune responses in the vaccine recipients. The final 

vaccine protein displays an instability index of 38.74, suggesting 

stability in biological conditions, as compounds with an instability 

index below 40 are considered stable. 

Moreover, molecular docking and dynamics simulations were 

performed to understand the MEV's interactions with TLR4 and TLR5, 

confirming these interactions' stability. Significantly, my results 

showed stronger and more stable interactions between the MEV and 

TLR4 than with TLR5. This aligns with the outcomes of previous 

investigations (Marzec et al., 2019; Monick et al., 2003). In that study, 
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Monick et al. demonstrated that TLR4 was more highly expressed and 

found in the membrane when lung epithelial cells (primary and 

transformed cell lines) were infected with RSV (Monick et al., 2003). 

Meanwhile, J. Marzec et al. suggested that TLR4 played a role in the 

pathogenesis of pulmonary RSV and the activation of cellular immunity 

caused by the inflammasome complex and vascular damage. 

Additionally, in line with computational immune simulation, the 

designed RSV vaccine construct is anticipated to have the potential to 

induce robust immune responses in recipients. 
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Chapter 6 General Discussion 
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This thesis aimed to design and evaluate multi-epitope vaccine 

candidates to combat infectious diseases using bioinformatics 

approaches. The computational techniques applied across the three 

case studies provided valuable insights into the potential of multi-

epitope vaccines to induce robust immune responses. For 

Mycobacterium tuberculosis (MTB), the selected Rv0256c protein 

epitopes demonstrated strong antigenicity and stability, offering a 

promising approach to addressing other strains. Similarly, the vaccines 

designed for respiratory syncytial virus (RSV) and Powassan virus 

showed immunogenic potential through predicted interactions with 

immune receptors.  

By adapting a common computational framework, this thesis 

highlights the potential of multi-epitope vaccines to address a wide 

range of global health challenges with precision and efficiency. The 

computational approaches employed consistently predicted highly 

antigenic, non-allergenic, and non-toxic epitopes across pathogens. 

The combination of T-cell and B-cell epitopes, along with appropriate 

adjuvants and linkers, contributed to the strong immunogenic profiles 

of these multi-epitope vaccines. 

Additionally, one key finding was the broad applicability of 

multi-epitope vaccine design to both viral and bacterial pathogens. 
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The RSV and Powassan virus studies highlighted the importance of 

viral proteins in epitope selection, while the MTB study emphasized 

the value of intracellular antigens for effective immune targeting. This 

demonstrated the flexibility of bioinformatics tools in generating 

diverse vaccine candidates across a wide spectrum of infectious 

diseases. 

The use of bioinformatics approaches played a pivotal role in 

the success of these studies. Immunoinformatics tools allowed for the 

rapid identification and evaluation of epitopes, which would have been 

time-consuming and resource-intensive through experimental 

methods alone. Tools such as IEDB, NetMHCIIpan, NetMHCpan, and 

BepiPred facilitated the efficient screening of large antigen datasets 

to identify the most promising candidates for vaccine development. 

Computational approaches, including molecular modeling, molecular 

docking, and molecular dynamics simulations, provided critical insights 

into the designed vaccine’s 3D structures and their interactions with 

immune receptors such as Toll-like receptors (TLRs). The GROMACS 

simulations confirmed the vaccine's structural stability and flexibility 

under physiological conditions and revealed stable interactions 

between the vaccine and immune receptors. As bioinformatics tools 

continue to evolve, they will have a profound impact on clinical and 
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public health applications. The ability to rapidly design safe and 

effective vaccines will be essential in tackling future pandemics, 

positioning this research at the forefront of global health innovation. 

Despite the promising results, several limitations must be 

acknowledged. First, the predictions made through computational tools 

require validation through experimental methods, including in vitro and 

in vivo testing. While in silico immune simulations indicated strong 

immune responses, actual biological systems may present unforeseen 

challenges, such as immune evasion by pathogens or unexpected 

toxicity. Additionally, the selection of epitopes depended on available 

databases and computational predictions, which might miss epitopes 

crucial for specific populations or contexts. Broader population 

coverage analysis and further refinement of epitope selection criteria 

will be necessary to address these limitations. 

However, the impact of this research extends well beyond the 

specific vaccines developed in these studies. The computational 

framework presented here provides a flexible and scalable approach 

that can be applied to other infectious diseases, especially those with 

high antigenic variability, such as influenza and HIV. Quickly 

identifying and evaluating epitope candidates enables multi-epitope 

vaccine platforms to be rapidly adapted for emerging and re-emerging 
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pathogens, making this strategy highly relevant to pandemic 

preparedness.  

Future research should focus on the experimental validation of 

the vaccine constructs developed in this thesis. In vitro studies are 

needed to confirm the antigenicity and immune-stimulating capacity of 

the selected epitopes, while in vivo studies will be critical for 

assessing the vaccines’ safety and efficacy in animal models. Clinical 

trials would then be the next step, particularly for vaccine candidates 

that show promise in preclinical testing. Additionally, further 

refinement of the bioinformatics pipeline could enhance the precision 

of epitope prediction and vaccine design. The integration of artificial 

intelligence and machine learning tools into immunoinformatics could 

improve the accuracy of epitope selection, particularly for novel 

pathogens or less-studied antigens. Expanding the range of 

computational tools to include more advanced immune simulation 

platforms may also improve predictions of vaccine-induced immune 

responses. 

In conclusion, this dissertation focuses on the design and 

evaluation of multi-epitope vaccine candidates to combat infectious 

diseases. The research integrates advanced bioinformatics techniques 

to predict and validate epitopes, design and optimize vaccine 
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constructs, and evaluate their potential efficacy and safety. The 

present study utilizes a comprehensive scientific approach, including 

immunoinformatics and computational vaccinology, to develop novel 

vaccine designs targeting the Powassan virus, Mycobacterium 

tuberculosis, and respiratory syncytial virus. The dissertation 

addresses the limitations of traditional vaccine development by 

utilizing computationally optimized epitopes with high immunogenic 

potential. The designs employed in the study effectively activate both 

cellular and humoral immune responses while minimizing the risk of 

adverse effects compared to single-epitope or whole-pathogen 

vaccines, as they include only the most immunogenic regions of 

antigens. The findings demonstrate significant advancements in the 

area of computational vaccine design, offering broad implications for 

addressing global health challenges.  
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Abstract in Korean (국문초록) 

 

생물정보학적 접근을 통한  

다중 항원결정기 백신 후보물질의 설계 및 평가 

 

Nguyen Thi Truc Ly 

농생명공학부 바이오모듈레이션 전공 

서울대학교 대학원 

 

백신은 감염성 질병 예방 및 통제에 중요한 기초 역할을 해왔으며, 역사상 

가장 성공적인 공중 보건 개입 중 하나로 간주된다. 천연두의 박멸에서 

COVID-19의 통제에 이르기까지, 백신은 전 세계적으로 수백만 명의 생명을 

구한 것으로 평가된다. 그러나 이러한 주목할 만한 성공에도 불구하고, 세균 

및 바이러스 감염을 포함한 여러 병원체는 여전히 글로벌 건강에 심각한 

위협이 되고 있다. 새로운 감염병의 출현 및 재유행이 주요 사망 원인으로 

자리 잡으면서, 이러한 변화하는 문제를 해결할 수 있는 혁신적인 백신 

전략의 개발이 절실하다. 

전통적인 백신 개발은 약독화 또는 불활화 병원체에 의존하며 여러 

한계를 가진다. 이러한 백신은 면역이 약화된 개인에서 원하는 면역 반응을 

항상 유도하지 못할 수 있으며, 생백신의 경우 병원성으로 다시 변환될 
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위험이 존재한다. 또한 SARS-CoV-2 와 같은 빠르게 변이하는 바이러스의 

경우 전통적인 접근 방식이 항원 다양성을 따라잡기 어렵다. 따라서 이러한 

한계를 극복하고 감염성 질병에 대해 지속적인 보호를 제공할 수 있는 

혁신적인 백신 설계 접근법이 필요하다. 

이러한 상황에서 생물정보학은 백신 개발을 촉진하는 강력한 도구로 

부상하였다. 면역정보학(Immunoinformatics)은 생물정보학의 하위 분야로, 

면역 반응을 분석하고 세포성 및 체액성 면역을 자극할 수 있는 항원을 

예측하는 데 중점을 둔다. 이 분야는 면역계에 의해 인식되는 특정 단백질 

단위인 항원결정기를 식별하여 백신의 전략적 설계를 가능하게 하였다. 

이러한 항원결정기는 여러 면역원성 항원결정기를 결합하여 강력하고 

표적화된 면역 반응을 유도하는 다중 항원결정기 백신을 만드는 데 사용될 

수 있다. 전산학적 방법의 사용은 백신 개발에 소요되는 시간과 비용을 크게 

줄이며, 안전하고 효과적인 백신을 설계할 수 있는 플랫폼을 제공한다. 

다중 항원결정기 백신은 백신 설계의 새로운 영역이다. 기존 백신이 

전체 병원체 또는 큰 서브유닛에 의존하는 반면, 다중 항원결정기 백신은 

항원의 가장 면역원이 높은 부분만을 포함하도록 설계된다. 이러한 

항원결정기는 세포독성 T 림프구(CTL), 보조 T 림프구(HTL), B 세포를 

자극하여 보다 표적화된 면역 반응을 생성한다. 또한, 여러 항원에서 

항원결정기를 선택함으로써 다중 항원결정기 백신은 바이러스에서 자주 

나타나는 항원 변이를 해결할 수 있어, 더 광범위한 보호 효과를 제공한다. 

본 논문은 생물정보학 접근법을 사용하여 세 가지 중요한 감염병인 
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Powassan 바이러스(POWV), 결핵(TB), 호흡기 세포융합 바이러스(RSV)에 

대한 다중 항원결정기 백신 후보의 설계 및 평가에 중점을 둔다. 이러한 

질병들은 중대한 글로벌 보건 문제를 야기하며, 효과적인 백신의 부재로 

인해 높은 사망률을 기록하고 있다. 본 연구에서는 면역정보학과 계산 

백신학 도구를 활용하여 잠재적인 백신 후보를 개발하고, 철저한 전산학적 

평가를 통해 이들의 면역원성 잠재력을 탐구하였다. 연구 결과는 새로운 

건강 위협에 신속히 적응할 수 있는 차세대 백신 설계의 가능성을 보여주며, 

감염성 질병에 대한 효과적이고 적응 가능한 백신 개발에 기여하고자 한다. 

 

주요어: 다중 항원결정기 백신, 면역정보학, 생물정보학, 감염병, 전산학적 

백신학 
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