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Abstract

We investigate the theoretical and empirical relationship between Augmented

Inverse Probability Weighting (AIPW) and Weight Calibration (WC) esti-

mators, emphasizing their double-robust properties. Both methods are com-

monly employed for partially or selectively observed data, each integrating

auxiliary information either via an outcome model (AIPW) or through cali-

bration constraints (WC). Despite seeming differences, we show that—provided

either the inclusion probability model or the outcome model is correctly

specified—AIPW and WC estimators share the same first-order asymptotic

behavior, yielding consistent and efficient estimates with identical influence

functions. Building on these insights, we offer a general proof for M-estimation

parameters that unifies their equivalence. Through simulation studies under

both fully and partially correct models, we find that AIPW and WC main-

tain nearly identical finite-sample performance in bias and variance, con-

firming their double robustness. These findings suggest that practitioners

can choose either method without sacrificing optimality, as long as the same

auxiliary information is incorporated. We also discuss avenues for extend-

ing these approaches to more complex designs and survival analyses, where

calibration-based or augmented frameworks have shown promise.

Keywords: Augmented Inverse Probability Weighting, Weight Calibration,

Double Robustness, M-Estimation, Asymptotic Equivalence

Student Number: 2023-22449
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Chapter 1

Introduction

1.1 Introduction

It is often infeasible to obtain complete data from the target population due

to cost, time, or ethical constraints. As a result, observational and survey

data have only partial or selective information, leading to potential bias and

inefficiency if not addressed properly [1]. One well-known strategy to han-

dle such selective sampling or missing data is inverse probability weighting

(IPW), introduced by [2]. For each observation, a weight is assigned propor-

tional to the inverse of its inclusion probability, which would estimate popu-

lation parameters without bias if those probabilities were correctly specified

according to sampling design or missing mechanism. IPW have also been

extensively applied in other contexts, such as causal inference [3], where the

probability of treatment assignment can be similarly modeled.
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However, IPW alone is inefficient because only a complete subset is used

while additional information is available in the entire data [1]. To address this

shortcoming, [4] proposed augmented inverse probability weighting (AIPW),

which adds an extra augmentation term into the IPW estimator. Impor-

tantly, it is doubly robust in that AIPW estimators are consistent if either

(1) the inclusion probability model or (2) the outcome regression model is

correctly specified. Another popular approach to incorporating auxiliary in-

formation is weight calibration (WC) method, first introduced by [5]. It di-

rectly modifies the IPW weights such that weighted estimators satisfies cer-

tain calibration equations consisting of auxiliary information. Like AIPW,

WC estimators are also doubly robust as long as either the base inclusion

probability model or the specified outcome/auxiliary model is correct.

Despite their different schemes of using additional information, AIPW

and WC share strong theoretical connections. Under appropriate conditions,

particularly when the two methods use the same auxiliary variables captur-

ing the conditional mean of the outcome, they have the same point estimates

and asymptotic variances [6, 7, 8]. From a practical perspective, researchers

often choose between AIPW and WC based on implementation convenience,

available software, or personal familiarity with the methods. Demonstrating

that they have the same optimal performance under correct model specifi-

cation affirms that one can freely choose either approach without sacrificing

statistical efficiency.

Nevertheless, there are relatively few studies that jointly examine and

compare AIPW and WC; even among those that do, most have centered on

relatively simple estimands such as population totals or means. Perhaps the
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most direct comparison appears in [7], which highlights how AIPW and WC

share a closely related influence-function framework in estimating-equation

form, yet it stops short of proving their stochastic convergence. Likewise, [6]

and [8] discuss AIPW and calibration-based approaches in survey contexts

but chiefly in the setting of population-total estimation, with more emphasis

on how adding calibration ideas to existing estimators can improve efficiency.

Beyond these works, most papers appear to focus on either AIPW or WC

individually rather than systematically comparing the two. For instance, in

the AIPW literature, [1] and [9] present illustrative simulations but do not

fully explore WC counterparts. Meanwhile, the WC-focused works of [10,

11, 12, 13] primarily develop calibration-based methods in semiparametric

or survival contexts without systematically contrasting them against AIPW.

To our knowledge, no study has rigorously established, in a fully general

estimating-equation framework, whether AIPW and WC are theoretically

and empirically equivalent for parameters beyond simple population means.

In this study, we investigate the theoretical and empirical connections

between AIPW and WC, focusing on their doubly robust properties. We

first confirm that if the two estimators use the same auxiliary information

about the conditional expectation of the outcome, they are asymptotically

equivalent by having the same first-order behavior in point estimates and

asymptotic variance. We then present extensive numerical studies, ranging

from population total estimation to linear regression, to illustrate how AIPW

and WC perform when the inclusion probability model is correctly specified,

when the outcome model is correctly specified, and when either or both are

misspecified.

3



Chapter 2

Theoretical Background

2.1 Notation and Basic Setup

We consider a finite population of size N , indexed by i = 1, . . . , N . Let δi

be an indicator with δi = 1 if the ith unit is observed, and δi = 0 otherwise.

Denote πi = P (δi = 1 | Zi), where Zi is a vector of fully observed covariates

or design variables. Let n =
∑N

i=1 δi be the total number of observed units.

• MAR (Missing at Random). If δi depends only on Zi, then the

data are MAR.

• MCAR (Missing Completely at Random). If δi is independent

of both observed and unobserved outcomes, then the data are MCAR.

• MNAR (Missing Not at Random). If δi depends on yi (or other un-

observed variables) even after conditioning on Zi, the data are MNAR.
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We observe yi only when δi = 1. Our main task is to construct esti-

mators of population parameters using {δi, yi, Zi} that are consistent under

the assumptions above and ideally have small variance. In what follows, we

focus on two primary weighting approaches for handling selective samples:

Augmented Inverse Probability Weighting (AIPW) and Weight Calibration

(WC).

2.2 Inverse Probability Weighting (IPW)

Inverse Probability Weighting (IPW) is a general framework for handling

selective observation or unequal selection probabilities by weighting each

observed unit by the inverse of its sampling (or observation) probability.

Historically, a well-known example of such an approach in survey sampling is

the Horvitz–Thompson (HT) method [2], where each unit i in the population

has a known inclusion probability πi.

Under this design-based framework, a population quantity of interest

U(θ) =
N∑
i=1

Ui(θ)

is estimated by

ÛIPW (θ) =
N∑
i=1

δi
πi

Ui(θ), (2.1)

where δi = 1 if unit i is sampled (or observed) and 0 otherwise. When πi is

correctly specified, IPW of this form is unbiased with respect to the sampling

design.

In practice, however, small πi values can lead to large inverse weights

1/πi and inflate the variance significantly [1]. Furthermore, if there exist
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additional auxiliary variables that are not incorporated into πi, IPW may

lose efficiency by ignoring this extra information. These issues motivate more

general IPW approaches beyond the original design-based setting, where πi

may be modeled based on covariates or estimated from the data, rather than

being taken as a known inclusion probability.

In many observational studies, πi represents the probability of being ob-

served or treated, which is typically modeled rather than determined by

design [3]. Under this broader IPW framework, a misspecified model for πi

can yield biased estimates, and near-zero πi values can still cause numeri-

cal instability or high variance. These drawbacks motivate extensions such

as Augmented IPW (AIPW) and Weight Calibration (WC), which exploit

auxiliary variables more fully to improve both robustness and efficiency.

2.3 Augmented Inverse Probability Weighting (AIPW)

Augmented IPW (AIPW) was introduced by [4] to improve upon the basic

IPW estimator by adding an augmentation term. Let Ui(θ) be the quantity

of interest and πi = P
(
δi = 1 | Zi

)
. Define

ÛAIPW (θ) =

N∑
i=1

δi
πi

Ui(θ) +

N∑
i=1

(
1− δi

πi

)
ϕi(Z)

=
N∑
i=1

Ui(θ) +
N∑
i=1

δi − πi
πi

(
Ui(θ)− ϕi(Z)

)
, (2.2)

where ϕi(Z) is a function of fully observed covariates Z.
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2.3.1 Doubly Robust Consistency

Under MAR (Missing at Random) or a correctly modeled πi, taking expec-

tations of (2.2) yields

E
[
ÛAIPW (θ)

]
= E

[ N∑
i=1

Ui(θ)
]
+

N∑
i=1

E
[
δi−πi
πi

(
Ui(θ)− ϕi(Z)

)]
. (2.3)

If either

1. the missingness probability πi is correctly specified, or

2. ϕi(Z) = E
[
Ui(θ) | Zi

]
,

then the second summation in (2.3) vanishes, implying E[ÛAIPW (θ)] =

E
[∑N

i=1 Ui(θ)
]
. Hence, ÛAIPW (θ) is consistent under at least one correctly

specified model.

2.3.2 Variance Decomposition

Applying Var(·) to (2.2) yields

Var
[
ÛAIPW (θ)

]
=

N∑
i=1

Var
[
Ui(θ)

]
+

N∑
i=1

E
[
1−πi
πi

(
Ui(θ)− ϕi(Z)

)2] (2.4)

≥
N∑
i=1

Var[Ui(θ)]. (2.5)

We interpret the first summation,
∑N

i=1Var[Ui(θ)], as the variance we would

have if the data were fully observed, and the second summation,∑N
i=1E

[
1−πi
πi

(Ui(θ) − ϕi(Z))2
]
, as the additional variance contributed by

missingness or selective sampling. Equality holds if ϕi(Z) = E[Ui(θ) | Zi], in

which case (Ui(θ)−ϕi(Z)) has conditional mean zero and the extra variance
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term is minimized. For detailed proofs of the doubly robust property and the

variance decomposition, refer to [4].

2.4 Weight Calibration (WC)

The weight calibration estimation was introduced by [5] as a procedure of

minimizing a distance measure between initial weights and final weights sub-

ject to calibration equations. Let

ÛIPW (θ) =
N∑
i=1

δi ω
0
i Ui(θ)

denote the IPW estimator in (2), where ω0
i = 1/πi. Suppose we have auxiliary

variables Ai, and we define a set of calibrated weights ωi = ω0
i gi(λ) that

satisfy the calibration constraint
N∑
i=1

δi ωiAi =
N∑
i=1

Ai.

Here, gi(λ) is a function of λ determined from the above constraint. The

resulting weight-calibrated (WC) estimator is

ÛWC(θ) =

N∑
i=1

δi ω
0
i gi(λ)Ui(θ). (2.6)

To define a unique estimator that satisfies the calibration constraint, [5]

introduced a distance function d
(
ω0
i , ωi

)
to measure the discrepancy between

ω0
i and ωi. They showed that minimizing

N∑
i=1

δi d
(
ω0
i , ωi

)
subject to

N∑
i=1

δi ωiAi =

N∑
i=1

Ai

leads to an asymptotically unbiased and consistent estimator. In this study,

we choose the following two examples of d(ω0
i , ωi):
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• Chi-squared distance:

d
(
ω0
i , ωi

)
=

(ωi − ω0
i )

2

2ω0
i

, which gives ωi = ω0
i

[
1 + λ⊤Ai

]
.

• Log-distance (Raking):

d
(
ω0
i , ωi

)
= ωi log

( ωi

ω0
i

)
− ωi + ω0

i , which gives ωi = ω0
i exp

(
λ⊤Ai

)
.

2.4.1 Doubly Robust Consistency

The weight-calibrated estimator ÛWC(θ) remains consistent if either the base

weights ω0
i = 1/πi are correctly specified or the auxiliary variables satisfy a

correct outcome model. Specifically, let

ÛWC(θ) =
N∑
i=1

δi ω
0
i gi(λ)Ui(θ),

as in (2.6), and suppose Ai is such that Ai = E
[
Ui(θ) | Zi

]
. We highlight

two scenarios:

1. If ω0
i = 1/πi is correctly specified, then the usual IPW estimator

ÛIPW (θ) =
N∑
i=1

δi ω
0
i Ui(θ)

is design-consistent in the sense that

E
[
ÛIPW (θ)

]
= E

[ N∑
i=1

Ui(θ)
]
.

By [5], multiplying these weights by the calibration factor gi(λ) does

not affect first-order consistency. Formally,

ÛWC(θ) − ÛIPW (θ) = Op

(
n−1/2

)
.
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Consequently,

E
[
ÛWC(θ)

]
− E

[
ÛIPW (θ)

]
= O

(
n−1/2

)
,

and hence ÛWC(θ) remains consistent at the O
(
n−1/2

)
scale.

2. If Ai = E
[
Ui(θ) | Zi

]
, then taking expectations of ÛWC(θ) yields

E
[
ÛWC(θ)

]
= E

[ N∑
i=1

δi ω
0
i gi(λ)E

[
Ui(θ) | Zi

]]
= E

[ N∑
i=1

δi ω
0
i gi(λ)Ai

]
.

By construction of the calibrated weights,

N∑
i=1

δi ω
0
i gi(λ)Ai =

N∑
i=1

Ai,

and

E
[ N∑
i=1

Ai

]
=

N∑
i=1

E
[
E
[
Ui(θ) | Zi

]]
= E

[ N∑
i=1

Ui(θ)
]
,

so

E
[
ÛWC(θ)

]
= E

[ N∑
i=1

Ui(θ)
]
.

Hence, ÛWC(θ) is consistent when at least one of these two models is specified

correctly.

2.4.2 Variance Decomposition

We now analyze the variance of the weight-calibrated estimator

ÛWC(θ) =

N∑
i=1

δi ω
0
i gi(λ)Ui(θ).
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The calibration constraint imposes
N∑
i=1

δi ω
0
i gi(λ)Ai =

N∑
i=1

Ai,

implying

ÛWC(θ) =

N∑
i=1

δi ω
0
i gi(λ)

[
Ui(θ)−Ai

]
+

N∑
i=1

Ai.

Define

Vi = δi ω
0
i gi(λ)

(
Ui(θ)−Ai

)
.

To derive Var[ÛWC(θ)], we apply the law of total variance to each Vi:

Var[Vi] = Var
(
E[Vi | Zi, Ui(θ)]

)
+ E

[
Var(Vi | Zi, Ui(θ))

]
.

Since δi | Zi ∼ Bernoulli(πi), we have Var(δi | Zi) = πi(1− πi), leading to

Vi = δi
1

πi
gi(λ)

(
Ui(θ)−Ai

)
.

Hence,

Var[Vi | Zi, Ui(θ)] =
(gi(λ)

πi

)2
(Ui(θ)−Ai)

2 πi(1− πi).

Next, we compute Var
(
E[Vi | Zi, Ui(θ)]

)
. Since E[δi | Zi] = πi, it follows that

E[Vi | Zi, Ui(θ)] = E
[
δi

1
πi

gi(λ)
(
Ui(θ)−Ai

) ∣∣∣ Zi, Ui(θ)
]

= gi(λ)
(
Ui(θ)−Ai

)
.

Therefore,

Var
(
E[Vi | Zi, Ui(θ)]

)
= Var

[
gi(λ) (Ui(θ)−Ai)

]
= gi(λ)

2Var
(
Ui(θ)−Ai

)
.

Putting these inner and outer parts together, we obtain

Var[Vi] = E
[
(Ui(θ)−Ai)

2
(gi(λ)

πi

)2
πi(1− πi)

]
+ gi(λ)

2
[
Var

(
Ui(θ)

)
+Var

(
Ai

)
− 2Cov

(
Ui(θ), Ai

)]
. (2.7)
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Summing over i = 1, . . . , N and assuming {Vi} are independent, we ob-

tain

Var
[
ÛWC(θ)

]
=

N∑
i=1

Var[Vi].

Under certain orthogonality conditions—e.g. if Ai is the correct outcome

model E[Ui(θ) | Zi], or πi is correctly specified—we reach the simpler form

Var
[
ÛWC(θ)

]
=

N∑
i=1

gi(λ)
2
{
Var[Ui(θ)] + E

[
(Ui(θ)−Ai)

2 1−πi
πi

]}
,

which can also be written as

Var
[
ÛWC(θ)

]
=

N∑
i=1

gi(λ)
2Var

(
Ui(θ)

)
+

N∑
i=1

gi(λ)
2 E

[
1−πi
πi

(Ui(θ)−Ai)
2
]
.

In this expression, the first summation represents the baseline variance under

full observation, while the second summation captures the extra variance due

to missingness or unequal sampling. If Ai is chosen as E
[
Ui(θ) | Zi

]
, then

(Ui(θ) − Ai) is conditionally orthogonal to the sampling process and this

additional term can be minimized.
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Chapter 3

Equivalence of AIPW and
Calibration Estimators

In this chapter, we investigate the relationship between the AIPW estimator

and the weight calibration estimator. We first demonstrate that these two

estimators are exactly equivalent in the well-known example of estimating

the population total, and then extend the result to a general M-estimation

framework.

3.1 Population Total

As a concrete illustration, consider estimating the population total

T =
N∑
i=1

yi.

Define X as the n×2 matrix with rows (1, xi) for the observed units, and let

Y = (y1, . . . , yn)
⊤. We set W to be the n × n diagonal matrix with entries

13



1/πi. Using weighted least squares (WLS), one obtains

β̂ = (X⊤WX)−1 (X⊤WY ), and define ϕ̂i(x) = xi β̂.

Substituting ϕ̂i(x) into the usual AIPW form yields

T̂AIPW =

N∑
i=1

δi
πi

yi −
N∑
i=1

δi − πi
πi

(
xi β̂

)
.

To simplify this expression, note that Tx =
∑N

i=1 xi and T̂x =
∑n

i=1
δi
πi

xi.

After a short algebraic rearrangement involving these terms and (X⊤WX)−1,

we find

T̂AIPW =

N∑
i=1

δi
1 + (Tx − T̂x) (X

⊤WX)−1 xi
πi

yi.

From a weight-calibration (WC) perspective, we take the same base weights

ω0
i = 1/πi and apply a chi-square distance function d(a, b) = (a−b)2

2 b , with

auxiliary variable Ai = xi. Solving the calibration equations yields

ωi = ω0
i

(
1 + λxi

)
=

1 + (Tx − T̂x) (X
⊤WX)−1 xi

πi
.

The resulting WC estimator is

T̂WC =
N∑
i=1

δi ωi yi.

Consequently„ T̂WC coincides exactly with the T̂AIPW expression above.

Therefore, under the assumptions of linear regression and chi-square calibra-

tion, both approaches produce the same point estimate for the population

total. A detailed derivation of these steps can be found in [7].

14



3.2 General M-Estimation Framework

We now extend these ideas to more general parameters, such as regression

coefficients obtained via estimating equations. Our goal is to show that the

AIPW-based estimator and the calibration-based estimator remain asymp-

totically equivalent under suitable conditions on the auxiliary information.

Let θ ∈ Rd be a finite-dimensional parameter of interest, and denote the

full-data estimating function by

N∑
i=1

Ui

(
θ
)

= 0,

which would be solvable if all units {1, . . . , N} had fully observed data. How-

ever, only a subset is available in practice, necessitating a weighted estimating

equation.

3.2.1 Inverse Probability Weighting (IPW)

If we adopt the IPW form, the estimator θ̂IPW satisfies

N∑
i=1

δi
πi

Ui

(
θ̂IPW

)
= 0, (3.1)

where δi ∈ {0, 1} indicates whether unit i is observed, and πi = P (δi = 1 |

Zi).

3.2.2 Augmented Inverse Probability Weighting (AIPW)

The AIPW estimator θ̂AIPW solves

N∑
i=1

[
δi
πi

Ui

(
θ̂AIPW

)
+

(
1− δi

πi

)
ϕi(Z)

]
= 0, (3.2)
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where ϕi(Z) is an augmentation term. The optimal choice is ϕi(Z) = E
[
Ui(θ) |

Zi

]
, which minimizes variance and guarantees double robustness. Under these

standard conditions, θ̂AIPW is consistent if either πi or ϕi(Z) is correctly

specified.

3.2.3 Weight Calibration (WC)

The calibration estimator θ̂WC solves

N∑
i=1

δiwi(λ)Ui

(
θ̂WC

)
= 0, (3.3)

where wi(λ) are calibrated weights satisfying the constraint

N∑
i=1

δiwi(λ)Ai =

N∑
i=1

Ai,

for some auxiliary variables Ai. Typically, one starts from w0
i = 1/πi, and

applies a minimal “distance” adjustment subject to the above calibration

equation. Analogously, the optimal auxiliary vector is Ai = E
[
Ui(θ) | Zi

]
,

which ensures double robustness.

3.3 Asymptotic Equivalence under Correct Specifi-
cation

3.3.1 Assumptions

We assume the following throughout our proof:

(A1) Regularity conditions from [14] hold.

(A2) λ̂ = Op

(
n−1/2

)
, following [5].
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(A3) Ui(θ0) and ϕi(Zi) each have finite second moments.

(A4) max ∥zi∥ < ∞, ensuring λ̂⊤zi = Op

(
n−1/2

)
.

(A5) πi > σ > 0 with probability 1, preventing extreme weights.

In (A1), we adopt standard M-estimation regularity conditions [14], en-

suring
√
n-consistency and asymptotic linearity. Next, (A2) follows [5, Sec-

tion 2], where λ̂ converges at the n−1/2 rate via minimal-distance calibration.

For (A3), we require Ui(θ0) and ϕi(Zi) to have finite second moments, align-

ing with AIPW-type arguments [4, Section 2.4]. Moving to (A4), we assume

{zi} is bounded so that λ̂⊤zi remains Op(n
−1/2) [5, Results 3–5], though

unbounded zi might still be feasible if λ̂ converges to zero sufficiently fast.

Finally, (A5) ensures δi/πi does not blow up, preventing extreme inverse-

probability weights.

We also note that the inclusion probability model is correct if πi =

P (δi = 1 | Zi), while the outcome model is correct if, under AIPW, ϕi(Zi) =

E
[
Ui(θ) | Zi

]
, or under WC, Ai = E

[
Ui(θ) | Zi

]
. In both cases, the additional

information is incorporated as an influence function.

3.3.2 Asymptotic Equivalence

Under Assumptions (A1)–(A5), suppose that either the inclusion probabil-

ity model or the outcome model is correctly specified for both the AIPW

estimator and the WC estimator. Then they satisfy

√
n
(
θ̂AIPW − θ̂WC

)
= op(1).

Proof. From (A1), both θ̂AIPW and θ̂WC can be viewed as M-estimators θ̂

17



satisfying
1

n

n∑
i=1

U
(
θ̂; zi

)
= 0

for some estimating function U(θ; zi). Each θ̂ has an asymptotic linear ex-

pansion of the form

√
n
(
θ̂ − θ0

)
= −

{
∂θ E

[
U(θ0; z)

]}−1 1√
n

n∑
i=1

U
(
θ0; zi

)
+ op(1),

where θ0 is the true parameter value. First, we aim to show that

1√
n

n∑
i=1

UA(θ0; zi) =
1√
n

n∑
i=1

UW (θ0; zi) + op(1).

From Equations 3.2 and 3.3, the above can be written as

1√
n

n∑
i=1

δiwi(λ̂)Ui(θ0) =
1√
n

n∑
i=1

{
δi
πi

Ui(θ0) +
(
1− δi

πi

)
ϕi(Zi)

}
+ op(1).

Under assumptions (A2) and (A4), Deville–Särndal’s expansion [5] shows

wi(λ̂) =
1

πi

[
1 + λ̂⊤zi + O

(
(λ̂⊤zi)

2
)]
.

Substituting this expansion and computing the difference between the two

estimators, we get

∆i =
[ δi
πi
Ui(θ0)

(
1 + λ̂⊤zi +O

(
(λ̂⊤zi)

2
))]

−
[ δi
πi

Ui(θ0) +
(
1− δi

πi

)
ϕi(Zi)

]
=

δi
πi

(
λ̂⊤zi

)
Ui(θ0)︸ ︷︷ ︸

(a) Term

−
(
1− δi

πi

)
ϕi(Zi)︸ ︷︷ ︸

(b) Term

+
δi
πi

O
(
(λ̂⊤zi)

2
)
Ui(θ0)︸ ︷︷ ︸

(c) Term

.

(a) Term. Rewrite term as

λ̂⊤
( 1√

n

n∑
i=1

δi
πi

zi Ui(θ0)
)
.
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Under (A5), δi/πi is bounded in probability, so

1√
n

n∑
i=1

δi
πi

zi Ui(θ0) = Op(1),

by a standard Central Limit Theorem (CLT) argument, provided zi is bounded

and Ui(θ0) is mean-zero with finite variance. Including the factor δi/πi (bounded

by (A5)) does not affect the
√
n rate in the sum, so dividing by

√
n yields

Op(1) overall. Next, by (A2) and (A4), we have ∥λ̂∥ = Op(n
−1/2). Therefore,

λ̂⊤
(

1√
n

n∑
i=1

δi
πi

zi Ui(θ0)
)

= Op

(
n−1/2

)
× Op(1) = Op

(
n−1/2

)
= op(1).

(b) Term. We rewrite it as

1√
n

[ n∑
i=1

ϕi(Zi) −
n∑

i=1

δi
πi

ϕi(Zi)
]
.

Because ϕi(Zi) can serve as a calibration variable (see [5] for details), we

have by weak calibration that

n∑
i=1

(
ϕi(Zi)− δiwi(λ̂)ϕi(Zi)

)
= op(

√
n).

Moreover, with baseline weights w0
i = 1/πi and the fact that wi(λ̂) − w0

i =

Op(n
−1/2), one shows

n∑
i=1

{
δi
πi

ϕi(Zi)− δiwi(λ̂)ϕi(Zi)
}

= op(
√
n).

Hence, combining these two results,

1√
n

[ n∑
i=1

ϕi(Zi)−
n∑

i=1

δi
πi

ϕi(Zi)
]

= op(1).
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(c) Term. Finally, for

1√
n

n∑
i=1

δi
πi

O
(
(λ̂⊤zi)

2
)
Ui(θ0),

note that (λ̂⊤zi)
2 = Op(n

−1) by (A2) and (A4). Hence

δi
πi

O
(
(λ̂⊤zi)

2
)
Ui(θ0) = Op

(
n−1

)
× Ui(θ0),

and summing n such terms yields a total of Op(1). Dividing by
√
n therefore

gives Op(n
−1/2), which is op(1).

Combining (a), (b), and (c) shows that

1√
n

n∑
i=1

∆i = op(1).

We now want to show that if either the inclusion probability model or the

outcome model is correctly specified for both the AIPW estimator and the

WC estimator, then

∂θ E
[
UA(θ; z)

]
= ∂θ E

[
UW (θ; z)

]
.

From Sections 2.3.1 and 2.4.1, we already have the following two key scenar-

ios:

Case 1: Correct inclusion probability model. If the inclusion proba-

bility model πi is correctly specified, then the AIPW estimator satisfies

E
[
UA(θ; z)

]
= E

[ N∑
i=1

Ui(θ)
]
,

while for WC, we have

E
[
ÛWC(θ)

]
− E

[ N∑
i=1

Ui(θ)
]

= O
(
n−1/2

)
,
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Thus, to first order, the small calibration factor gi(λ̂) in w(λ̂) does not change

the derivative at θ0. Consequently,

∂

∂θ
E
[
UA(θ; z)

]∣∣∣
θ0

=
∂

∂θ
E
[
UW (θ; z)

]∣∣∣
θ0
.

Case 2: Correct outcome model. If the outcome model is correctly

specified, then both

UA(θ; z) and UW (θ; z)

are unbiased for
∑N

i=1 Ui(θ) to first order. Indeed,

E
[
UA(θ; z)

]
= E

[ N∑
i=1

Ui(θ)
]
, E

[
UW (θ; z)

]
= E

[ N∑
i=1

Ui(θ)
]
.

Hence again,
∂

∂θ
E
[
UA(θ; z)

]∣∣∣
θ0

=
∂

∂θ
E
[
UW (θ; z)

]∣∣∣
θ0
.

Thus, either correct inclusion probability model or correct outcome model

suffices to make AIPW and WC share the same first-order derivative in their

M-estimation equations. By Slutsky’s theorem, it then follows that

√
n
(
θ̂AIPW − θ0

)
−

√
n
(
θ̂WC − θ0

)
= op(1),

and hence
√
n
(
θ̂AIPW − θ̂WC

)
= op(1).

□

These results demonstrate that although θ̂AIPW and θ̂WC may not be

exactly the same in finite samples due to their iterative construction, un-

der either the correct inclusion probability model or the correct outcome

model, they converge to the same distribution asymptotically. In particular,
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specifying the auxiliary variables as the projection of Ui(θ) onto the auxil-

iary information, that is ϕi(Zi) = E
[
Ui(θ) | Zi

]
, ensures that both θ̂AIPW

and θ̂WC make optimal use of the observed data, and thus they coincide

asymptotically.
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Chapter 4

Simulation Study

4.1 Setup

We generate a population of size N = 5000. Each unit i has covariates

(X1i, Z1i, Z2i), which, for simplicity, are assumed to follow a trivariate nor-

mal distribution. Specifically, we set (X1, Z1, Z2) ∼ N
(
µ, Σ

)
, where the

mean vector µ = (2, 0, 1)⊤ and the covariance matrix Σ has unit vari-

ances on the diagonal and moderate correlations (e.g., around 0.1–0.5) on

the off-diagonals. Thus, each of X1, Z1, Z2 has variance 1, while their pair-

wise correlations lie in a moderate range. We generate a partially observed

regressor X2 via X2 = 0.8 + 0.1X1 + Z1 +N (0, 0.22), and then define the

outcome Y = 1 +X1 +X2 +N (0, 1).

To induce selective sampling, we assign each unit i an inclusion probabil-

ity πi according to a logistic model with the linear predictor logit(πi) =
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−0.8 + Z1i − Z2i + N (0, 0.12). We then sample δi ∼ Bernoulli(πi). Here,

δi = 1 indicates that we observe (Yi, X1i, X2i), whereas δi = 0 means X2i is

unobserved. This design follows a Missing at Random (MAR) mechanism,

since δi depends only on the fully observed variables (Z1i, Z2i).

We wish to study doubly robustness by allowing either the outcome model

(generating X2 and thus Y ) or the inclusion-probability model (π) to be

correct or misspecified.

• Outcome Model:

(i) Correct: X2 = η0 + η1X1 + η2 Z1 + ϵ.

(ii) Misspecified: Xmis
2 = η0 + η1X1 + η2 (Z1 ·X1) + ϵ.

• Inclusion Probability:

(i) Correct: logit(π) = γ0 + γ1 Z1 + γ2 Z2.

(ii) Misspecified: logit(π) = γ0 + γ1 sign(Z1) + γ2 sign
(
Z2 − 1

)
.

We repeat this entire data generation and sampling procedure B = 3000

times to compare the estimators under four different scenarios. Specifically,

we consider all combinations of whether the inclusion probability model π

is correct or misspecified, and whether the outcome model is correct or mis-

specified.

4.2 Estimation Procedure

Once a sample is drawn, we observe δi = 1 units (of size n) and fit a linear

regression of Y on (X1, X2). Three estimators are considered:
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• IPW: We perform a weighted least squares with weights wi = 1/π̂i,

where π̂i is fitted from either the correct or misspecified logistic model.

If π̂i is correctly specified, IPW can be unbiased, but it may lose effi-

ciency when additional variables are not fully exploited.

Both the AIPW and Weight Calibration estimators use imputation to handle

missing X2. To maximize efficiency, we incorporate the imputed X̂2 into an

augmentation term designed to approximate E[Ui(β) | Zi].

• AIPW: We solve

N∑
i=1

[
δi
π̂i

Ui(β) +
(
1− δi

π̂i

)
ϕi

]
= 0,

where Ui(β) = xi
(
yi − x⊤i β

)
is the usual regression score function,

where xi = (1, X1i, X2i)
⊤. The ϕi = ximp

i

(
yi −

(
ximp
i

)⊤
β̂
)

is built

from the imputed X̂2 as a pseudo-influence function. AIPW is doubly

robust, meaning it remains consistent if either π̂i is correctly specified

or the outcome model is correctly specified.

• WC: We start with w0
i = 1/π̂i and adjust them to wi by imposing

N∑
i=1

δiwi Ui(β) = 0,

N∑
i=1

δiwi
˜IF i =

N∑
i=1

˜IF i,

where ˜IF i is a pseudo-influence function derived from the same impu-

tation. Minimizing
∑

δi d(wi, w
0
i ) subject to these constraints yields a

WC estimator that is also doubly robust. In large samples, AIPW and

WC are asymptotically equivalent under the same conditions.
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Table 4.1: Both correctly specified

Metric Full IPW WC AIPW

β0

Mean 0.000 0.004 0.001 0.001

Bias 0.000 0.004 0.001 0.001

SD 0.033 0.113 0.052 0.059

RE 1.000 0.295 0.644 0.563

β1

Mean 1.000 0.999 1.000 1.000

Bias 0.000 -0.002 -0.001 0.000

SD 0.015 0.058 0.025 0.030

RE 1.000 0.251 0.587 0.482

β2

Mean 2.000 1.999 2.000 1.999

Bias 0.000 -0.001 0.000 0.000

SD 0.014 0.062 0.027 0.038

RE 1.000 0.228 0.515 0.374

Table 4.2: π: Misspecified, E[U(β) | Z]: Correct

Metric Full IPW WC AIPW

β0

Mean 0.000 0.002 0.000 0.000

Bias 0.000 0.002 0.000 0.000

SD 0.033 0.085 0.044 0.048

RE 1.000 0.393 0.765 0.702

β1

Mean 1.000 0.999 1.000 1.000

Bias 0.000 -0.001 0.000 0.000

SD 0.015 0.041 0.021 0.022

RE 1.000 0.355 0.714 0.657

β2

Mean 2.000 1.999 2.000 2.000

Bias 0.000 -0.001 0.000 0.000

SD 0.014 0.038 0.021 0.023

RE 1.000 0.365 0.684 0.615

Table 4.3: π: Correct, E[U(β) | Z]: Misspecified

Metric Full IPW WC AIPW

β0

Mean 0.000 0.004 -0.004 -0.004

Bias 0.000 0.004 -0.004 -0.004

SD 0.033 0.113 0.096 0.191

RE 1.000 0.295 0.349 0.175

β1

Mean 1.000 0.999 1.008 1.003

Bias 0.000 -0.002 0.007 0.003

SD 0.015 0.058 0.045 0.079

RE 1.000 0.251 0.324 0.184

β2

Mean 2.000 1.999 1.992 1.996

Bias 0.000 -0.001 -0.008 -0.003

SD 0.014 0.062 0.049 0.116

RE 1.000 0.228 0.288 0.121

Table 4.4: Both misspecified

Metric Full IPW WC AIPW

β0

Mean 0.000 0.002 -0.095 -0.363

Bias 0.000 0.002 -0.095 -0.364

SD 0.033 0.085 0.073 0.115

RE 1.000 0.393 0.460 0.291

β1

Mean 1.002 1.006 1.062 1.160

Bias 0.000 0.004 0.060 0.158

SD 0.019 0.056 0.046 0.044

RE 1.000 0.338 0.410 0.427

β2

Mean 1.997 1.986 1.971 1.946

Bias 0.000 -0.011 -0.026 -0.051

SD 0.013 0.049 0.033 0.049

RE 1.000 0.267 0.394 0.264
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4.3 Simulation Results

Tables 4.1–4.4 summarize the simulation results. As illustrated by Tables 4.2

and 4.3, whenever at least one of the two models—the inclusion probability

model π or the outcome model—is correctly specified, the AIPW and WC es-

timators remain nearly unbiased. This observation confirms their well-known

double-robust property. In contrast, the IPW estimator can be more sensi-

tive to whether π is accurately modeled, because its construction relies solely

on the correctness of the inclusion probability. At the same time, IPW may

still perform reasonably if its implicit augmentation (treating E[Ui(β) | Zi]

as zero) happens to be close to the truth in practice, for example if the true

outcome structure inadvertently aligns with that simplification.

When both models are correctly specified, AIPW and WC not only elim-

inate bias but also exhibit an efficiency gain compared to IPW. Specifically,

we observe lower standard deviations (SD) and higher relative efficiencies

(RE) under these scenarios, reflecting the benefit of incorporating the cor-

rect conditional expectation E[Ui(β) | Zi] into the estimation process. More-

over, AIPW and WC produce almost identical point estimates and variances,

illustrating their asymptotic equivalence.

When exactly one of the two models is misspecified, the pattern depends

on which component is wrong. If the inclusion probability π is incorrect while

the outcome model is correct, IPW becomes visibly biased or yields higher

variance, because it has no reliable way to compensate for the erroneous

propensity. By contrast, AIPW and WC still rely on the correct outcome

specification, so they remain robust in terms of bias and maintain relatively

stable efficiency. On the other hand, if π is correct but the outcome model
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is misspecified, AIPW and WC do not always surpass IPW. In some cases,

their incorrect augmentation term might inflate the variance, underscoring

that a poorly chosen ϕi can do more harm than good.

Finally, when both π and the outcome model are misspecified, the last

columns of Table 4.4 show that all three estimators experience considerable

bias. In such a fully misspecified environment, no method can consistently

recover the true parameters, underscoring that double robustness cannot

succeed if neither model is close to correct.
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Chapter 5

Conclusion

5.1 Conclusion

In this study, we explored the theoretical and empirical connections be-

tween Augmented Inverse Probability Weighting (AIPW) and Weight Cali-

bration (WC) methods. Our findings indicate that, under appropriate condi-

tions—namely, when either the inclusion probability model or the outcome

model is correctly specified—both AIPW and WC estimators achieve con-

sistent and efficient estimation. Through simulation experiments, we demon-

strated that these two approaches exhibit comparable performance in terms

of bias and variance, and that they can even coincide asymptotically when

the same auxiliary information is employed.

Despite these promising results, there remain certain limitations to our

work. One important concern is that, in many practical scenarios—including
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both simulations and real-world applications—one must estimate the inclu-

sion probabilities rather than assume they are known or perfectly modeled.

This additional layer of estimation introduces extra variability that is not

fully captured by the theoretical arguments presented here. Future research

should therefore examine how to rigorously account for the variability aris-

ing from weight estimation processes, possibly through more comprehensive

asymptotic analysis or resampling-based inference. Also, although our sim-

ulation designs featured moderate population sizes and correlations, further

exploration under varying sample sizes, sampling designs, or strongly cor-

related covariates would be beneficial to corroborate the generality of our

conclusions.

An important avenue for future work is to extend these methods to sur-

vival contexts. Previous studies have shown that AIPW can be employed to

estimate regression coefficients in Cox proportional hazards models [15] and

provided asymptotic results in survival analyses [9]. Meanwhile, [10, 11] have

studied the asymptotic properties of weighted likelihood methods in more

general semiparametric frameworks, particularly under two-phase sampling

designs. Further research has also explored how calibration-type methods

can be adapted to nested case-control studies [13], demonstrating notable ef-

ficiency gains over simpler inverse probability weighting approaches. Building

on these lines of inquiry, it would be natural to investigate how the equiv-

alences and robust properties discussed in this paper translate to survival

data, especially in the presence of time-to-event outcomes, censoring mech-

anisms, and complex sampling schemes.
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Supplementary Material

All R code used for our simulation studies is available in the public GitHub

repository: https://github.com/taeyeon98/GraduateThesis_KTY_SNU.
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요약

본 논문은 부분 관측 혹은 선택적 관측 데이터에 적용되는 보강 역확률 가중

(AIPW) 추정량과 가중 보정(WC) 추정량의 이론적 ·실증적 관련성을 탐색하

며, 이들의 이중견고성(double-robustness)을 강조한다. 두 방법은 각각 결과

모델(AIPW) 혹은 보정 제약(WC)을 통해 보조 정보를 활용하는 형태로 달라

보이지만, 관측확률 모델 또는 결과 모델 중 하나만 정확히 지정되어 있어도,

AIPW와 WC 추정량은 동일한 영향함수를 갖고 1차 점근적 거동이 일치하여

일관적이고효율적인추정량을제공함을보인다.이러한통찰을토대로,일반적

M-추정 문제에서 두 방법의 동등성을 통합하는 이론적 증명을 제시한다. 완전

혹은 부분적으로 맞는 모델을 사용한 시뮬레이션 연구 결과, AIPW와 WC는

편향 및 분산 면에서 거의 동일한 유한표본 성능을 보여주어, 이들의 이중견고

성이 확인되었다. 이는 동일한 보조 정보를 활용한다면, 연구자가 어느 방법을

택하더라도 최적성을 크게 훼손하지 않는다는 점을 시사한다. 아울러 보정 기

반 혹은 보강된 방법이 이미 활용되고 있는 복잡한 설계나 생존분석(survival

analysis) 분야에 이들을 확장할 가능성도 논의한다.

주요어: AIPW (보강된 역확률 가중), 가중보정, 이중견고성, M-추정, 점근적

동등성

학번: 2023-22449
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