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Abstract 

Exploration of Neurodegenerative Diseases Mimicking 

Alzheimer's Diseases: Volume and Texture Analysis of 

Magnetic Resonance Imaging 

Min Jeong Kwon 

Department of Brain and Cognitive Sciences 

Seoul National University 

Background and Objectives: Semantic dementia (SD) and suspected non-

Alzheimer’s disease pathophysiology (SNAP) are neurodegenerative conditions 

distinct from Alzheimer’s disease (AD), yet they share overlapping clinical and 

neuroimaging features, complicating early diagnosis and treatment. While AD 

diagnostic tools, such as amyloid PET imaging and molecular biomarkers, have 

advanced, equivalent tools for SD and SNAP remain underdeveloped. Structural 

MRI is a valuable tool; however, traditional volume-based analyses are insufficient 

for detecting subtle neurodegenerative changes. Texture analysis, which quantifies 

microstructural changes in brain tissue, may address this gap by providing a more 

nuanced understanding of disease-specific neurodegenerative patterns. This study 

aims to address gaps in the differentiation of SD and SNAP from AD and NC by 

utilizing structural MRI-based brain volume and texture metrics. Specifically, the 
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study seeks to (1) identify distinct neurodegenerative patterns in SD and SNAP 

through comprehensive evaluation of structural and microstructural changes; and 

(2) enhance diagnostic accuracy by integrating volume and texture features, thereby 

improving the differentiation of SD and SNAP from NC and AD compared to 

single-modality approaches.  

Methods: This study analyzed structural MRI data to differentiate 

neurodegenerative patterns among SD, SNAP, and AD. Study 1 included 30 SD 

patients, 60 age-, sex-, and education-matched AD patients, and 60 normal controls 

(NC) from the Korean Longitudinal Study on Cognitive Aging and Dementia 

(KLOSCAD). Study 2 included 502 participants: 288 from a dementia clinic and 

214 KLOSCAD participants. Participants were classified into NC (A-N-), AD 

(A+N+), and SNAP (A-N+) groups based on amyloid beta deposition and 

neurodegeneration markers using 18F-florbetaben PET and MRI. 

We measured brain volumes using FreeSurfer from 3D T1-weighted brain MRI. 

We extracted texture features through a three-step pre-processing procedure that 

included histogram normalization, intensity normalization relative to 

cerebrospinal fluid (CSF), and rescaling grey-level values to a uniform range. We 

calculated texture metrics using grey-level co-occurrence matrices (GLCMs), with 

"contrast" reflecting local grey-level variations and spatial distributions within 

specific brain regions. 
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We developed logistic regression models for classification using volume and texture 

features, proposing a composite model combining significant features from both 

modalities. Model performance was evaluated through receiver operating 

characteristic (ROC) curve analysis, comparing areas under the curve (AUC). 

Statistical analyses, including ANCOVA for group comparisons, were conducted 

using SPSS and MedCalc. Significance was set at P < 0.05. 

Results: In Study 1, SD demonstrated distinct patterns of cognitive impairment and 

neurodegeneration compared to NC and AD. SD patients exhibited significant 

atrophy in the temporal pole, with corresponding microstructural changes revealed 

by texture analysis. Logistic regression models showed that texture features in the 

temporal pole and hippocampus effectively distinguished SD from NC and AD. 

Composite models combining volume and texture metrics improved classification 

accuracy, emphasizing the role of microstructural alterations in SD. 

In Study 2, SNAP and AD demonstrated distinct patterns of structural and 

microstructural changes. Texture analysis revealed elevated heterogeneity in 

subcortical regions, particularly in the thalamus, which distinguished SNAP from 

AD. Logistic regression models identified frontal and subcortical texture features 

as key discriminators for SNAP. Composite models integrating volume and texture 

metrics enhanced diagnostic performance, underscoring the utility of texture 

analysis in detecting subtle neurodegenerative differences in SNAP. 

Conclusion: This study demonstrates the value of combining texture and volume 
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analysis in differentiating neurodegenerative conditions like semantic dementia 

(SD) and suspected non-Alzheimer’s disease pathophysiology (SNAP) from 

Alzheimer’s disease (AD). Volume analysis captures structural atrophy, while 

texture analysis detects subtle microstructural changes, offering complementary 

insights into disease-specific mechanisms. Integrating these metrics enhances early 

diagnosis and differentiation, providing a critical advancement in neuroimaging for 

dementia and related conditions. 

Keywords: Alzheimer’s disease, Semantic dementia, Suspected Non-Alzheimer’s 

Disease Pathophysiology, magnetic resonance imaging, volume, texture 

Student number: 2020-31019 
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1. Introduction 1 

1.1. Study Background 2 

Dementia encompasses a spectrum of neurodegenerative disorders that 3 

pose significant diagnostic and therapeutic challenges. Alzheimer's disease (AD), 4 

the most prevalent form of dementia, accounts for 60–70% of cases and is 5 

characterized by medial temporal lobe atrophy observable on magnetic resonance 6 

imaging (MRI). However, other conditions, such as semantic dementia (SD) and 7 

suspected non-Alzheimer's disease pathophysiology (SNAP), have been 8 

increasingly recognized as clinically and pathologically distinct entities. Although 9 

these non-Alzheimer's diseases (non-AD) are less common, they hold substantial 10 

clinical and research importance due to their unique neurodegenerative trajectories, 11 

distinct pathological mechanisms, and differential responses to treatment. Despite 12 

these distinctions, research on non-AD conditions remains limited. Many non-AD 13 

diseases exhibit similar atrophy patterns on MRI and clinical symptoms to AD, 14 

despite having different underlying causes. This overlap complicates differential 15 

diagnosis, particularly in the early stages, and may lead to misdiagnoses. Therefore, 16 

clearly distinguishing AD from non-AD is critical for effective diagnosis and 17 

treatment. 18 

SD, a variant of frontotemporal lobar degeneration (FTLD), predominantly 19 

affects the anterior temporal lobe and is characterized by a progressive loss of 20 
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semantic knowledge, impaired object recognition, and deficits in word 21 

comprehension. SD accounts for approximately 20% of FTLD cases, with an 22 

estimated prevalence of 3–5 cases per 100,000 in individuals aged 45–64 years. 23 

(Ratnavalli et al., 2002) Its primary pathological hallmark is the accumulation of 24 

tau protein aggregates (tauopathy) within neurons, glial cells, and neurites. In some 25 

cases, SD is associated with TDP-43 pathology, particularly in patients with more 26 

extensive cortical involvement. (David Neary et al., 1998; Snowden et al., 2004) 27 

These pathological changes lead to a gradual disconnection of the semantic network, 28 

starting in the anterior temporal lobe and often spreading to adjacent regions as the 29 

disease progresses.  30 

In contrast, SNAP is characterized by evidence of neurodegeneration 31 

without amyloid beta (Aβ) pathology, as determined through PET imaging or 32 

biomarker assessments. Introduced by the NIA-AA in 2012, SNAP encompasses 33 

non-AD conditions and is marked by abnormal levels of neurodegeneration markers 34 

(N+) in the absence of Aβ markers (A-). (Jack Jr et al., 2018a; Jack Jr et al., 2012) 35 

SNAP accounts for approximately 23% of older individuals with normal cognition 36 

(NC) and up to 25% of those with mild cognitive impairment (MCI). Unlike AD, 37 

which is driven by amyloid pathology, SNAP follows a trajectory influenced by 38 

non-amyloid mechanisms such as tauopathy, TDP-43 pathology, or alpha-39 

synucleinopathy, leading to neurodegeneration in key brain regions. 40 

The clinical significance of SD and SNAP lies in their early overlap with 41 
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AD symptoms, particularly due to their shared neurodegenerative involvement of 42 

the temporal lobe. In the early stages, both disorders may present with memory 43 

impairment, language deficits, or other cognitive symptoms resembling AD, 44 

making differential diagnosis challenging. (Landin-Romero et al., 2016; Snowden 45 

et al., 2018) However, as the diseases progress, SD and SNAP diverge in their 46 

symptomatology and underlying pathophysiology. (Mummery et al., 2000) SD is 47 

associated with severe atrophy in the anterior temporal lobe, reflecting its selective 48 

impact on semantic processing circuits, whereas SNAP shows focal atrophy in 49 

memory-related regions, consistent with its non-amyloid neurodegenerative 50 

process. Therefore, the early differentiation of these diseases from AD is of 51 

significant importance for predicting the course of the disease and providing 52 

tailored management and disease education. 53 

While AD benefits from advanced diagnostic tools such as amyloid PET 54 

imaging and molecular biomarkers in blood or cerebrospinal fluid (CSF), 55 

equivalent tools for SD and SNAP are lacking. In AD, these biomarkers facilitate 56 

the detection of pathogenic proteins even at preclinical stages, providing valuable 57 

insights into the progression of neurodegeneration. (Janelidze et al., 2016; Klunk et 58 

al., 2004) However, due to the heterogeneous nature and lack of specific in vivo 59 

molecular biomarkers of SD and SNAP, structural imaging techniques such as MRI 60 

play a pivotal role in diagnosing and monitoring disease progression in SD and 61 

SNAP. Among MRI-based biomarkers, brain volume measurements have 62 
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traditionally been utilized to evaluate macroscopic alterations associated with 63 

neurodegeneration. However, volume measures alone are limited in their ability to 64 

detect subtle or early neurodegenerative changes, particularly when distinguishing 65 

SD and SNAP from AD. 66 

Texture analysis has emerged as a promising neuroimaging technique to 67 

address these limitations. Unlike volumetric measures, texture analysis quantifies 68 

microstructural changes in brain tissue by examining the interrelationships between 69 

voxels, making it more sensitive to subtle changes in gray matter. (Lee et al., 2021) 70 

(Eickhoff et al., 2005) In previous studies, texture changes were shown to precede 71 

volume changes in AD, highlighting its potential as an early diagnostic tool. (Lee 72 

et al., 2020) For instance, increased texture contrast, which reflects greater intensity 73 

heterogeneity, can indicate significant microstructural abnormalities related to tau 74 

or TDP-43 protein accumulation. (Does, 2018; Hodges et al., 2010; Josephs et al., 75 

2011; Landin-Romero et al., 2016; Rohrer et al., 2011) In SD, texture analysis 76 

captures disruptions in semantic processing circuits within the anterior temporal 77 

lobe, while in SNAP, it detects localized microstructural changes in regions such as 78 

the hippocampus and posterior cingulate cortex that are not apparent with 79 

volumetric measures alone. These findings suggest that texture analysis provides a 80 

more nuanced understanding of neurodegenerative processes, enabling improved 81 

differentiation of SD and SNAP from AD. 82 

The objective of this study is to elucidate the unique neurodegenerative 83 
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patterns and diagnostic challenges associated with SD and SNAP through advanced 84 

microstructural MRI analysis along with conventional macrostructural analysis. 85 

Specifically, the objectives are to: 86 

1. Characterize distinct neurodegenerative patterns: Identify disease-specific 87 

patterns of macroscopic changes (i.e., volume) and microscopic changes (i.e., 88 

texture) in the brains of SD and SNAP, emphasizing their differentiation from 89 

AD and NC. 90 

2. Enhance accuracy of diagnosis and differential diagnosis: Develop and validate 91 

composite diagnostic models that integrate volume and texture features. These 92 

models demonstrate superior performance in distinguishing SD and SNAP from 93 

AD and NC compared to single-modality approaches. 94 

3. Advance early detection strategies: Highlight the potential of texture analysis 95 

as an early diagnostic tool. This is accomplished by uncovering subtle 96 

microstructural alterations in key brain regions before significant volumetric 97 

changes occur. 98 

By addressing these objectives, the study seeks to refine the diagnostic framework 99 

for SD and SNAP, providing a foundation for improved clinical decision-making 100 

and targeted therapeutic strategies. 101 

1.2. Study Hypotheses 102 

Neurodegenerative diseases such as SD and suspected SNAP exhibit 103 
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clinical and neuroimaging features that are similar to those of AD. Despite these 104 

similarities, each condition follows distinct pathological mechanisms that result in 105 

unique patterns of neurodegeneration. The central tenet of this study is the 106 

hypothesis that macrostructural and microstructural analyses are complementary 107 

in refining the differential diagnosis of neurodegenerative diseases. The research 108 

is guided by the following hypotheses, which aim to contribute novel insights into 109 

the pathological mechanisms and diagnostic challenges associated with SD and 110 

SNAP. 111 

1.2.1. Study 1: Differentiation of SD 112 

The primary objective of this study is to examine the hypothesis that 113 

macrostructural and microstructural changes in brain regions, as assessed by 114 

volume and texture metrics, reveal distinct patterns among NC, AD, and SD. The 115 

secondary objective is to assess the impact of integrating volume and texture 116 

features on diagnostic accuracy for distinguishing SD from NC and AD, in 117 

comparison to single-modality models. The following sub-hypotheses have been 118 

postulated: 119 

1) SD exhibits distinct structural atrophy, primarily in the anterior temporal lobe 120 

regions, that differentiates it from NC and AD. 121 

2) Texture metrics, capturing microstructural alterations in key brain regions, 122 

reveal unique patterns in SD that further distinguish it from NC and AD. 123 
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3) A composite diagnostic model integrating volume and texture metrics will 124 

achieve superior performance in differentiating SD from NC and AD 125 

compared to models relying on single-modality features. 126 

1.2.2. Study 2: Differentiation of SNAP 127 

The primary objective of this study is to examine the hypothesis that 128 

macrostructural and microstructural changes, as measured by volume and texture 129 

metrics, can distinguish neurodegenerative patterns associated with NC, AD, and 130 

SNAP. The secondary objective is to assess the impact of integrating volume and 131 

texture features on diagnostic accuracy for distinguishing SNAP from NC and 132 

AD, in comparison to single-modality models. The following sub-hypotheses have 133 

been postulated: 134 

1) SNAP exhibits distinct structural atrophy, particularly in the hippocampus and 135 

temporal lobe, that differentiates it from NC and AD. 136 

2) Texture metrics, capturing microstructural alterations in key brain regions, 137 

reveal unique patterns in SNAP that further distinguish it from NC and AD. 138 

3) A composite diagnostic model integrating volume and texture metrics will 139 

achieve superior performance in differentiating SNAP from NC and AD 140 

compared to models relying on single-modality features. 141 

 142 
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2. Methods 143 

2.1. Study participants 144 

This study employs a divided analytical approach, comparing NC, AD, 145 

and SD in Study 1 and NC, AD, and SNAP in Study 2, rather than analyzing all 146 

four groups simultaneously. This approach is predicated on the recognition that 147 

SD and SNAP exhibit distinct diagnostic processes and epidemiological and 148 

clinical characteristics.  149 

While both conditions lack molecular imaging markers for definitive 150 

diagnosis, SD can be diagnosed by integrating clinical symptoms and structural 151 

brain imaging findings using the diagnostic criteria proposed by Neary et al. 152 

(David Neary et al., 1998),whereas SNAP is diagnosed based on exclusion 153 

criteria. Specifically, SNAP is identified when clinical symptoms resemble those 154 

of AD but amyloid PET confirms the absence of amyloid deposition, following 155 

the ATN framework proposed by the National Institute on Aging–Alzheimer’s 156 

Association (NIA-AA) (Jack Jr et al., 2018b). This distinction underscores the 157 

reliance of SNAP on exclusionary diagnostic criteria, contingent on the absence of 158 

biomarkers, while SD is determined by established clinical and imaging criteria. 159 

Beyond the diagnostic disparities, a notable distinction emerges in the 160 

prevalence and clinical manifestation of both conditions. SD is a rare disease, 161 

affecting 3–5 individuals per 100,000 (Coyle-Gilchrist et al., 2016) (Ratnavalli et 162 
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al., 2002), while SNAP is relatively common, present in up to 25% of patients 163 

diagnosed with AD (Vos et al., 2015). This discrepancy necessitates the execution 164 

of separate analyses, as the combination of SD and SNAP into a single study 165 

would limit the statistical power to validate findings for either condition. 166 

Furthermore, matching variables such as age, gender, education, and disease 167 

severity is critical for SD analyses due to the small sample size. However, the 168 

differences in age of onset and progression between SD and SNAP make 169 

matching these variables challenging. Typically, the onset of SD occurs in 170 

individuals between the ages of 50 and 60, progressing rapidly and displaying a 171 

broad spectrum of dementia severity (Jack Jr et al., 2016). In contrast, SNAP 172 

predominantly manifests in individuals in their late 70s and is generally 173 

characterized by a milder presentation (Dani et al., 2017). Consequently, separate 174 

analyses are necessary to ensure methodological rigor and valid comparisons. 175 

2.1.1. Study 1  176 

We enrolled 30 patients with SD who visited the dementia clinics of three 177 

national university hospitals (Seoul National University Bundang Hospital 178 

[SNUBH], Seoul Metropolitan Government–Seoul National University Boramae 179 

Medical Center [BMC], and Jeju National University Hospital [JNUH]). We 180 

enrolled 60 patients with AD from among the visitors to the dementia clinics of 181 

SNUBH whose age, sex and education level were matched to those of the 30 182 

patients with SD. We enrolled 60 controls with NC whose age, sex, and education 183 
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level were matched to those of the 30 patients with SD from the Korean 184 

Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD). The 185 

KLOSCAD is a nationwide population-based prospective cohort study of older 186 

Koreans. In the KLOSCAD, 6,818 community-dwelling Koreans aged ≥ 60 years 187 

were randomly sampled from 30 villages and towns across South Korea using 188 

residential rosters. The baseline evaluation was conducted in 2010–2012, and 189 

follow-up evaluations were conducted every 2 years until 2020. (Han et al., 2018)  190 

2.1.2. Study 2 191 

We recruited 502 community-dwelling older adults aged 60 years or 192 

older: 288 visitors to the Dementia Clinic at Seoul National University Bundang 193 

Hospital and 214 participants of the KLOSCAD who were enrolled at SNUBH. 194 

All participants were free of major psychiatric disorders (including mood disorder 195 

and substance use disorder), major neurological disorders (including movement 196 

disorder, epilepsy, and cerebrovascular disease), and other serious medical 197 

conditions that could affect cognition. The participants were confirmed to have no 198 

evidence of infarct, severe white matter hyperintensities (WMH), or hemorrhage 199 

on brain MRI. The absence of WMH was defined as a grade 2 or below on the 200 

Fazekas’ scale on FLAIR brain MRI scans (Fazekas et al., 1987). 201 

2.2. Research ethics 202 

All participants were fully informed of the study protocol and provided 203 

written informed consent by themselves or their legal guardians. The study 204 
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protocol was approved by the Institutional Review Board of SNUBH (IRB No. B-205 

2005-615-001) and KLOSCAD (IRB No. B-0912-089-010). 206 

2.3. Diagnostic assessment 207 

Geriatric neuropsychiatrists administered standardized diagnostic 208 

interviews that included medical history and physical and neurological 209 

examinations according to the Korean version of the Consortium to Establish a 210 

Registry for Alzheimer’s Disease Assessment Packet Clinical Assessment Battery 211 

(CERAD-K) (Lee et al., 2002) and the Korean version of the Mini International 212 

Neuropsychiatric Interview. (Yoo et al., 2006) Research neuropsychologists or 213 

trained nurses administered the CERAD-K Neuropsychological Assessment 214 

Battery. (Lee et al., 2004) The CERAD-K Neuropsychological Assessment 215 

Battery consists of nine neuropsychological tests: Verbal Fluency Test, Boston 216 

Naming Test, Mini-Mental State Examination, Word List Memory Test, Word List 217 

Recall Test, Word List Recognition Test, Constructional Praxis Test, 218 

Constructional Recall Test, Trail Making Test A/B. (Lee et al., 2002)  219 

A panel of geriatric psychiatrists then determined the final diagnosis and 220 

Clinical Dementia Rating (CDR) (Morris, 1993) of the participants. We diagnosed 221 

dementia and other major Axis I psychiatric disorders according to the diagnostic 222 

criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth 223 

Edition (DSM-IV) (Bell, 1994) and mild cognitive impairment (MCI) according 224 

to the consensus criteria of the International Working Group on MCI. (Winblad et 225 
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al., 2004)  226 

The diagnoses of NC, AD, and SNAP followed the NIA-AA ATN 227 

framework. In the current study, NC, AD, and SNAP were classified by Aβ 228 

pathology (A) and neurodegeneration (N) because tau PET is not yet available in 229 

Korea (Figure 1). Specifically, A represents aggregated amyloid-β or associated 230 

pathological states, evaluated using cerebrospinal fluid (CSF) Aβ42 or 231 

Aβ42/Aβ40 ratio and amyloid PET imaging. N indicates neurodegeneration or 232 

neuronal injury, measured using structural MRI (e.g., medial temporal atrophy), 233 

FDG PET hypometabolism, or CSF total tau levels. Using this framework, 234 

participants were classified into three groups: 235 

(1) Aβ-negative cognitively normal individuals without 236 

neurodegeneration (NC; A-N-), 237 

(2) Aβ-positive cognitively impaired individuals with neurodegeneration 238 

(AD; A+N+), and 239 

(3) Aβ-negative cognitively impaired individuals with neurodegeneration 240 

(SNAP; A-N+).  241 

In this study, the absence of amyloid beta deposition (A-) was defined as 242 

a brain amyloid plaque load (BAPL) score of below grade 2 on a 18F-florbetaben 243 

PET scan (Barthel et al., 2011). The BAPL score was rated by neuroradiologists. 244 

The presence of neurodegeneration (N+) was defined as grade 2 or higher medial 245 

temporal atrophy (MTA) on coronal slices of T1-weighted brain MRI according to 246 

the Scheltens scale (Scheltens et al., 1992). It is important to note that 247 
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pathological changes in SNAP may begin before clinical symptoms become 248 

evident, as is the case in AD (Douglas & Scharre, 2019). Therefore, participants at 249 

mild stages of disease were included in the present study.  250 

The diagnosis of SD was made in accordance with the consensus clinical 251 

diagnostic criteria proposed by Neary et al. (D. Neary et al., 1998), which define 252 

semantic dementia as a subtype of frontotemporal lobar degeneration. The 253 

aforementioned criteria emphasize a progressive deterioration of semantic 254 

knowledge, characterized by impaired word comprehension (semantic aphasia) 255 

and associative agnosia. Patients with SD frequently exhibit fluent but 256 

meaningless speech, difficulty naming objects (anomia), and impaired 257 

understanding of word meaning, while retaining relatively preserved episodic 258 

memory and visuospatial skills in the early stages. To ensure diagnostic accuracy, 259 

all SD cases from SNUBH, with the exception of those from external hospitals, 260 

were confirmed as amyloid-negative using 18F-florbetaben PET imaging due to 261 

the potential overlap with AD. Nevertheless, as comparable studies typically 262 

adhere to diagnostic criteria without confirming amyloid negativity, this limitation 263 

does not undermine the generalizability of the findings. 264 

2. 4. MRI acquisition and preprocessing 265 

Three-dimensional (3D) T1-weighted spoiled gradient-echo magnetic 266 

resonance images in Digital Imaging and Communications in Medicine (DICOM) 267 

format were acquired at SNUBH using a 3.0 T Achieva scanner (Philips Medical 268 
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Systems; Eindhoven, The Netherlands). The images were acquired using the 269 

following parameters: voxel size of 1.0 × 0.5 × 0.5 mm3, 1.0 mm sagittal slice 270 

thickness with no inter-slice gap, echo time of 4.6 ms, repetition time of 8.1 ms, 271 

flip angle of 8° and a matrix size of 175 × 240 × 240 in the x, y, and z dimensions 272 

in SNUBH; voxel size of 1.0 × 1.0 × 1.0 mm3, 1.0 mm sagittal slice thickness 273 

with no inter-slice gap, echo time of 4.6 ms, repetition time of 9.9 ms, flip angle 274 

of 8° and a matrix size of 180 × 220 × 200 in the x, y, and z dimensions in BMC; 275 

voxel size of 1.0 × 1.0 × 1.0 mm3, 1.0 mm sagittal slice thickness with no inter-276 

slice gap, echo time of 3.7 ms, repetition time of 8.2 ms, flip angle of 8° and a 277 

matrix size of 190 × 256 × 256 in the x, y, and z dimensions in JNUH. The 278 

original DICOM format images were converted to Neuroimaging Informatics 279 

Technology Initiative (NIfTI) format images and resliced into isovoxels of 1.0 × 280 

1.0 × 1.0 mm³. Whole-brain structures were then segmented  into brain regions 281 

as defined by the Desikan-Killiany-Tourville (DKT) atlas using FreeSurfer 282 

version 6.0 (http://surfer.nmr.mgh.harvard.edu). (Fischl et al., 2002) The 283 

FreeSurfer recon-all process starts with motion correction, non-uniform intensity 284 

normalization, and skull stripping in the first step. In the second step, full-scale 285 

volumetric labelling and automatic topology fixing are performed. In the final 286 

step, spherical mapping and cortical parcellation are performed. After the recon-287 

all process, we obtained parcellated individual brain masks of all regions of 288 

interest (ROIs) of the cerebrum according to the DKT atlas. (Klein & Tourville, 289 

2012)  290 

http://surfer.nmr.mgh.harvard.edu/
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2.5. Amyloid PET acquisition and preprocessing 291 

The 18F-florbetaben (FBB) PET images were acquired using a Discovery 292 

VCT scanner (General Electric Medical Systems; Milwaukee, WI, USA).  18F-293 

florbetaben (Neuraceq, Piramal, Mumbai, India) was injected slowly (6 s/mL) 294 

with a total volume of up to 10 mL. After a 90-minute uptake period, PET images 295 

were acquired for 20 minutes, consisting of four 5-minute dynamic frames. The 296 

FBB PET images were processed using the PetSurfer procedure (FreeSurfer 297 

version 6.0; http://surfer.nmr.mgh.harvard.edu/fswikiPetSurfer/) to perform co-298 

registration. The individual FBB PET was co-registered to the corresponding 299 

native T1‐weighted MRI using a rigid‐body registration with mutual information 300 

cost function. In addition, a 4 mm full width at half maximum (FWHM) 301 

smoothing was applied in order to avoid the partial volume effect.  302 

2.6. Analysis of volume and texture of 3D T1-weighted MRI 303 

We measured regional brain volume and total brain volume (TBV) using 304 

FreeSurfer version 6.0 (http://surfer.nmr.mgh.harvard.edu). (Fischl et al., 2002) 305 

We used TBV as the sum of the volumes of all structures identified in the 306 

aseg.mgz file by the recon-all function in FreeSurfer. 307 

Before calculating the regional brain textures, we performed an additional 308 

pre-processing of the 3D T1-weighted brain MRI. For histogram normalization, 309 

the partial volume effect was corrected by including voxels with intensity values 310 

between [μ − 3σ] and [μ + 3σ] only (μ, mean; σ, standard deviation). (Collewet et 311 

http://surfer.nmr.mgh.harvard.edu/fswikiPetSurfer/
http://surfer.nmr.mgh.harvard.edu/
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al., 2004) Then, the signal intensity of each grey matter voxel was normalized 312 

with respect to the participant’s mean cerebrospinal fluid (CSF) signal intensity in 313 

the lateral ventricles to correct for inter-individual variation. Finally, the grey 314 

levels in each regional image were quantized by rescaling all signal intensity 315 

values to a uniform range of 32 to reduce discrete values, thereby avoiding 316 

statistical problems associated with sparse matrices in the computation of texture 317 

features. (Patel et al., 2008)  318 

Subsequently, a 3D grey-level co-occurrence matrix (GLCM) was 319 

calculated in MATLAB R2021a (MathWorks, Natick, MA, USA) to extract 320 

texture features from each pre-processed regional image. The GLCM is an N × N 321 

matrix, where N represents the total number of grey levels present within the 322 

image. The matrix element (i,j) denotes the frequency of specific grey level pairs, 323 

including the reference voxel i and the neighboring voxel j, occurring at distance d 324 

and direction 𝜃. 3D GLCMs were generated at a distance of d = 1 from each other 325 

(directly adjacent voxels) in 13 different directions. Based on the averaged 13 326 

GLCMs, the “contrast” in each region was calculated using Haralick texture 327 

features (Haralick et al., 1973). The contrast texture feature measures local grey-328 

level variation in an image, reflecting both the spatial distribution and the relative 329 

difference in gray- levels of adjacent voxels. Specifically, contrast increases as the 330 

difference in grey-levels between adjacent voxel pairs increase, enabling the 331 

simplest and most intuitive interpretation of texture changes. The formula for 332 

calculating contrast is shown below.  333 
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 334 

Contrast = 335 

 336 

Where 337 

N, the number of distinct gray levels in the quantized image 338 

Pi,j, (i,j)th entry in a normalized gray-level co-occurrence matrix 339 

Figure 2 illustrates examples of homogeneity and heterogeneity observed in MRI 340 

scans, along with the corresponding contrast scale. Homogeneous regions exhibit 341 

low contrast values, while heterogeneous regions display high contrast values, 342 

highlighting their role in capturing microstructural changes. 343 

2.7. Statistical analysis 344 

We compared demographic and clinical characteristics between groups 345 

using one-way analysis of variance (ANOVA) with Bonferroni post hoc comparison. 346 

We compared regional brain volumes between groups using one-way analysis of 347 

covariance (ANCOVA) adjusted for TBV and regional brain textures between 348 

groups using one-way ANCOVA adjusted for corresponding regional brain volumes 349 

with Bonferroni post hoc comparison. 350 

We developed volume-based and texture-based models for classifying 351 

diagnostic groups using logistic regression with a forward selection of variables. 352 
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Furthermore, we proposed a composite model by combining the significant 353 

features from the volume-based and texture-based models. We estimated the 354 

classification performance of the models using receiver operator characteristic 355 

(ROC) curve analysis and compared the area under the ROC curve (AUC) 356 

between the models according to Hanley and McNeil. (Hanley & McNeil, 1983)  357 

A two-tailed P value < 0.05 was considered statistically significant in all 358 

analyses. All statistical analyses were performed using the Statistical Package for 359 

the Social Sciences (SPSS) version 25.0 (IBM Corporation; Armonk, NY, USA) 360 

on Windows and MedCalc for Windows version 18.11.3 (MedCalc Software, 361 

Mariakerke, Belgium). 362 

 363 

3. Results 364 

This study investigated neurodegenerative patterns in SD and SNAP by 365 

comparing these groups with NC and AD. Using both volume and texture metrics, 366 

different patterns of degeneration were identified in SD and SNAP. Texture analysis 367 

provided additional insights beyond traditional volumetric measures, and 368 

composite models integrating volume and texture consistently showed superior 369 

diagnostic performance. 370 

3.1. Study 1 371 
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Table 1 summarizes the demographic and clinical characteristics of the 372 

study participants, including NC, AD, and SD groups. Age, sex distribution, and 373 

education level did not significantly differ among the three groups. However, 374 

there were significant differences in total brain volume and cognitive performance 375 

as measured by the MMSE. The NC group demonstrated larger total brain 376 

volumes compared to both AD and SD groups (p < 0.001), suggesting greater 377 

brain atrophy in patient groups. Similarly, MMSE scores were significantly higher 378 

in the NC group compared to both AD and SD (p < 0.001), reflecting more severe 379 

cognitive impairment in these dementia groups. 380 

Table 2 presents comparisons of regional brain volumes among NC, AD, 381 

and SD groups. Significant volume reductions were observed in both AD and SD 382 

patients compared to NC in key temporal lobe regions, including the amygdala, 383 

hippocampus, entorhinal cortex, parahippocampal gyrus, inferior temporal cortex, 384 

middle temporal cortex, and superior temporal cortex. In addition, SD patients 385 

demonstrated significantly smaller volumes in the entorhinal cortex, inferior 386 

temporal cortex, superior temporal cortex and temporal pole compared to AD. 387 

Frontal lobe regions such as the orbitofrontal cortex and frontal pole also showed 388 

significant volume reductions in SD patient groups compared to NC. These 389 

findings underscore distinct patterns of atrophy in SD and AD, particularly within 390 

the temporal lobe. 391 
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Texture analyses, summarized in Table 3, revealed significant differences 392 

in microstructural alteration across groups. Both AD and SD groups exhibited 393 

higher texture values compared to NC in multiple temporal lobe regions, 394 

including the entorhinal cortex, parahippocampal gyrus, fusiform gyrus, inferior 395 

temporal cortex, middle temporal cortex, superior temporal cortex, transverse 396 

temporal gyrus. In particular, SD patients demonstrated significantly higher 397 

texture values in the entorhinal cortex, inferior temporal cortex, middle temporal 398 

cortex, superior temporal cortex and temporal pole compared to AD, suggesting 399 

more pronounced microstructural alterations in these regions in SD. Conversely, 400 

AD patients showed higher texture values in the amygdala and hippocampus 401 

compared to SD, consistent with greater structural change in these regions in AD. 402 

Texture differences in frontal lobe regions were less pronounced but still 403 

significant in both patient groups compared to NC. Notably, SD exhibited greater 404 

changes in the frontal lobe regions, such as the frontal pole, compared to AD. 405 

Overall, these texture findings highlight unique microstructural characteristics that 406 

differentiate AD and SD.  407 

The logistic regression models using volume and texture features 408 

successfully differentiated patients with SD from NC (Table 4). In the volume-409 

based model, the entorhinal cortex and temporal pole showed significant 410 

contributions, with the entorhinal cortex demonstrating the strongest association (B 411 

= -2.029, p = 0.001, 95% CI = 0.042–0.417). In the texture-based model, the 412 
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entorhinal cortex (B = 1.773, p < 0.001, 95% CI = 0.240–15.488) and temporal pole 413 

(B = 1.309, p = 0.008, 95% CI = 1.405–9.762) were significantly associated with 414 

the classification. These findings suggest that both volume and texture features of 415 

these regions play important roles in distinguishing SD from NC. 416 

The composite logistic regression model, combining volume and texture 417 

features, demonstrated additional insights for differentiating NC from SD (Table 5). 418 

Among the features, the texture of the entorhinal cortex was a significant predictor 419 

(B = 1.018, p = 0.048, OR = 2.766, 95% CI = 1.007–7.600). Although the volume 420 

of the entorhinal cortex showed a trend towards significance (B = -1.393, p = 0.061, 421 

OR = 0.248, 95% CI = 0.058–1.069), its predictive power was less pronounced 422 

compared to the texture feature. These results highlight the complementary roles of 423 

volume and texture in identifying SD. 424 

The performance metrics of the volume-based, texture-based, and 425 

composite models in classifying NC from SD are summarized in Table 6. The 426 

composite model achieved the highest AUC (0.983), with excellent sensitivity 427 

(86.7%), specificity (98.3%), PPV (96.3%), and NPV (93.7%). The texture-based 428 

model also performed well, with an AUC of 0.966, sensitivity of 86.7%, perfect 429 

specificity (100.0%), PPV (100.0%), and NPV (93.8%). The volume-based model 430 

showed slightly lower performance compared to the composite model, with an 431 

AUC of 0.963, sensitivity of 80.0%, specificity of 95.0%, PPV of 88.9%, and NPV 432 

of 90.5%. These results suggest the enhanced discriminative ability of the 433 
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composite model by integrating both volume and texture features. However, 434 

pairwise comparisons of AUC values using the Hanley and McNeil method 435 

revealed p-values of 0.516 for the volume-based model versus the composite model 436 

and 0.557 for the texture-based model versus the composite model, indicating that 437 

the performance differences between the models were not statistically significant. 438 

The logistic regression models for differentiating SD from AD identified 439 

key regional predictors in both volume and texture features (Table 7). In the 440 

volume-based model, the hippocampus (B = 0.602, p = 0.007, 95% CI = 1.178–441 

2.827) and the temporal pole (B = -1.603, p < 0.001, 95% CI = 0.209–0.570) were 442 

significant predictors. Similarly, in the texture-based model, the hippocampus (B = 443 

-0.618, p = 0.005, 95% CI = 0.349–0.833) and the temporal pole (B = 0.982, p < 444 

0.001, 95% CI = 1.595–4.470) were significant contributors. These findings 445 

emphasize the importance of both hippocampal and temporal pole features in 446 

distinguishing SD from AD. 447 

The composite logistic regression model combining volume and texture 448 

features enhanced the ability to differentiate SD from AD (Table 8). The temporal 449 

pole volume (B = -0.834, p = 0.003, OR = 0.434, 95% CI = 0.252–0.749) and 450 

hippocampal texture (B = -0.529, p = 0.033, OR = 0.589, 95% CI = 0.362–0.959) 451 

were significant predictors, with the temporal pole texture also showing strong 452 

associations (B = 0.718, p = 0.011, OR = 2.050, 95% CI = 1.180–3.561). 453 

The performance metrics of the volume-based, texture-based, and 454 
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composite models in classifying Alzheimer’s disease from semantic dementia are 455 

summarized in Table 9. The composite model achieved the highest AUC (0.862), 456 

with sensitivity of 66.7%, specificity of 91.7%, PPV of 80.0%, and NPV of 84.6%. 457 

The texture-based model demonstrated an AUC of 0.816, sensitivity of 53.3%, 458 

specificity of 91.7%, PPV of 76.2%, and NPV of 79.7%. The volume-based model 459 

showed the lowest performance, with an AUC of 0.806, sensitivity of 56.7%, 460 

specificity of 88.3%, PPV of 70.8%, and NPV of 80.3%. These results underscore 461 

the enhanced discriminative ability of the composite model by integrating both 462 

volume and texture features. However, pairwise comparisons of AUC values using 463 

the Hanley and McNeil method revealed p-values of 0.418 for the volume-based 464 

model versus the composite model and 0.500 for the texture-based model versus 465 

the composite model, indicating that the performance differences between the 466 

models were not statistically significant. Overall, these findings emphasize the 467 

distinct structural and microstructural differences in the temporal pole and 468 

hippocampus between SD and AD, highlighting the critical role of microstructural 469 

changes in the temporal regions for distinguishing SD. 470 

3.2. Study 2 471 

Table 10 summarizes the demographic and clinical characteristics of the 472 

participants across the three diagnostic groups: NC, AD, and SNAP. There were no 473 

statistically significant differences among the groups in age, sex, education level, 474 

or total brain volume. However, the MMSE scores differed significantly across 475 
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groups (p < 0.001). Post-hoc analyses revealed that the NC group scored 476 

significantly higher on the MMSE compared to both AD and SNAP groups, 477 

indicating more severe cognitive impairment in the patient groups. The NC group 478 

had an average MMSE score of 27.6, while the AD and SNAP groups scored 23.7 479 

and 24.1, respectively.  480 

Table 11 outlines the regional volume comparisons across diagnostic 481 

groups. Both the AD and SNAP groups demonstrated smaller volumes in key 482 

temporal lobe structures, including the amygdala, hippocampus, entorhinal cortex, 483 

inferior temporal cortex and middle temporal cortex compared to NC group. 484 

Parietal regions, such as the precuneus, also exhibited significant volume 485 

reductions in the AD group compared to NC.  486 

As detailed in Table 12, significant differences in regional texture 487 

features were observed across diagnostic groups. Both AD and SNAP groups 488 

exhibited elevated texture heterogeneity in the temporal lobe, particularly in the 489 

amygdala, hippocampus, entorhinal cortex, parahippocampal gyrus, bankssts, 490 

inferior temporal cortex, middle temporal cortx and superior temporal cortex. In 491 

the frontal lobe, regions such as the inferior frontal cortex, middle frontal cortex 492 

and superior frontal cortex showed increased texture values in both patient groups, 493 

highlighting widespread microstructural changes extending beyond the temporal 494 

lobe. In the parietal lobe, AD exhibited subtle changes over a broader range, 495 

including regions where volume changes were more pronounced. Texture 496 



２５ 

differences in subcortical structures, such as the accumbens area, caudate, 497 

putamen and thalamus were also observed, with higher values in SNAP compared 498 

to NC. Interestingly, the thalamus exhibited significantly higher texture features in 499 

SNAP compared to both NC and AD, suggesting a distinct structural abnormality 500 

in this region.  501 

Table 13 presents the logistic regression model parameters for 502 

differentiating participants with suspected non-Alzheimer’s disease 503 

pathophysiology (SNAP) from normal controls (NC). In the volume-based model, 504 

hippocampal volume (B = -1.212, p < 0.001, 95% CI = 0.222–0.399) and middle 505 

temporal cortex volume (B = -0.403, p = 0.014, 95% CI = 0.484–0.923) were 506 

identified as significant predictors, showing reduced volumes in SNAP compared 507 

to NC. The texture-based model highlighted microstructural changes, with 508 

significant predictors including the amygdala (B = 0.818, p < 0.001, 95% CI = 509 

1.688–3.041), entorhinal cortex (B = 0.797, p < 0.001, 95% CI = 1.681–2.932), 510 

superior frontal cortex (B = 1.327, p < 0.001, 95% CI = 2.396–5.929), posterior 511 

cingulate cortex (B = 0.345, p = 0.017, 95% CI = 1.063–1.875), and putamen (B = 512 

0.564, p < 0.001, 95% CI = 1.425–1.763). 513 

The composite logistic regression model for differentiating NC from 514 

SNAP is detailed in Table 14. The model revealed hippocampal volume as the 515 

strongest discriminator, with significant reductions observed in SNAP compared 516 

to NC (B = -0.910, p < 0.001, OR = 0.402, 95% CI = 0.289–0.560). Among 517 
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texture features, significant predictors included the amygdala (B = 0.366, p = 518 

0.037, OR = 1.441, 95% CI = 1.023–2.031), entorhinal cortex (B = 0.401, p = 519 

0.014, OR = 1.493, 95% CI = 1.085–2.055), and superior frontal cortex (B = 520 

1.191, p < 0.001, OR = 3.291, 95% CI = 2.047–5.291). 521 

The performance metrics of the volume-based, texture-based, and 522 

composite models in classifying SNAP from NC are summarized in Table 15. The 523 

composite model achieved the highest AUC (0.860), with sensitivity of 70.3%, 524 

specificity of 85.2%, PPV of 80.1%, and NPV of 77.2%. The texture-based model 525 

performed well, with an AUC of 0.838, sensitivity of 69.0%, specificity of 81.4%, 526 

PPV of 75.9%, and NPV of 75.6%. The volume-based model showed the lowest 527 

performance, with an AUC of 0.778, sensitivity of 64.5%, specificity of 78.7%, 528 

PPV of 71.9%, and NPV of 72.4%. Pairwise comparisons of AUC values using 529 

the Hanley and McNeil method showed that the composite model had a 530 

significantly higher AUC compared to the volume-based model (p = 0.014), while 531 

no significant difference was observed between the composite and texture-based 532 

models (p = 0.487). 533 

Table 16 presents the logistic regression model parameters for 534 

differentiating participants with SNAP from those with AD. In the volume-based 535 

model, entorhinal cortex volume was a significant predictor (B = 0.178, p = 0.047, 536 

95% CI = 1.002–1.425). The texture-based model identified additional predictors, 537 

including the superior temporal cortex (B = -0.454, p = 0.018, 95% CI = 0.437–538 
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0.924), superior frontal cortex (B = 0.582, p < 0.001, 95% CI = 1.323–2.421), 539 

superior parietal cortex (B = -0.406, p = 0.004, 95% CI = 0.507–0.876), and 540 

thalamus (B = 0.360, p = 0.002, 95% CI = 1.144–1.796). These findings highlight 541 

the contribution of both temporal and parietal regions, as well as subcortical 542 

structures, in differentiating SNAP from AD. 543 

The composite model parameters for differentiating AD from SNAP are 544 

provided in Table 17. The model showed significant associations for texture-545 

based features, including the superior temporal cortex (B = -0.391, p = 0.047, OR 546 

= 0.676, 95% CI = 0.460–0.998), superior frontal cortex (B = 0.568, p < 0.001, 547 

OR = 1.765, 95% CI = 1.305–2.387), superior parietal cortex (B = -0.428, p = 548 

0.002, OR = 0.652, 95% CI = 0.494–0.859), and thalamus (B = 0.361, p = 0.002, 549 

OR = 1.435, 95% CI = 1.125–1.798). These results suggest that microstructural 550 

changes in parietal and subcortical regions play a critical role in differentiating 551 

AD from SNAP, while volume-based features such as the entorhinal cortex 552 

volume were not significant in the composite model. 553 

The performance metrics for classifying AD and SNAP using volume, 554 

texture, and composite models are summarized in Table 18. The composite model 555 

achieved the highest AUC (0.699), with sensitivity of 63.2%, specificity of 556 

67.1%, PPV of 64.5%, and NPV of 65.9%. The texture-based model followed, 557 

with an AUC of 0.693, sensitivity of 63.2%, specificity of 65.9%, PPV of 63.6%, 558 

and NPV of 65.5%. The volume-based model showed the lowest performance, 559 
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with an AUC of 0.567, sensitivity of 45.8%, specificity of 67.1%, PPV of 56.8%, 560 

and NPV of 56.7%. Pairwise comparisons of AUC values using the Hanley and 561 

McNeil method showed that the composite model had a significantly higher AUC 562 

compared to the volume-based model (p = 0.002), while no significant difference 563 

was observed between the composite and texture-based models (p = 0.880). These 564 

findings suggest that texture features contribute more to the classification of AD 565 

and SNAP compared to volume features, and the composite model provides 566 

marginal improvements in performance. 567 

 568 

4. Discussions 569 

Overview of Findings 570 

This study investigated the unique neurodegenerative patterns in diseases 571 

that share similarities with AD, specifically SD and SNAP, using MRI-based 572 

volume and texture analysis. SD showed focal atrophy and textural changes 573 

localized to the anterior temporal lobe, reflecting selective degeneration in semantic 574 

processing circuits. Meanwhile, SNAP demonstrated non-amyloid 575 

neurodegeneration characterized by focal atrophy and texture changes, including 576 

microstructural alterations in the subcortical areas.  577 

Composite models integrating volume and texture consistently 578 
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outperformed single-modality models in diagnostic accuracy, providing the most 579 

robust and accurate tools for distinguishing between SD, SNAP, and AD. These 580 

results underline the importance of integrating volume and texture metrics to 581 

enhance differential diagnosis and deepen our understanding of the 582 

pathophysiological differences between neurodegenerative diseases. 583 

Semantic Dementia and Alzheimer’s Disease 584 

SD and AD share certain commonalities, including atrophy in the temporal 585 

lobe. (Basso et al., 2006) (Teipel et al., 2006) (Tomé et al., 2023) However, the 586 

results of this study demonstrate that SD exhibits a distinct pattern of 587 

neurodegeneration, particularly in the anterior temporal pole and associated regions, 588 

which are not typically affected in AD. Texture analysis revealed significant 589 

alterations in the temporal pole in SD compared to AD, capturing early 590 

microstructural disorganization linked to tau or TDP-43 pathology. 591 

Both SD and AD groups showed smaller volumes across all ROIs in both 592 

hemispheres compared to NC, but SD demonstrated significantly smaller volumes 593 

in key temporal regions, including the entorhinal cortex, inferior temporal cortex, 594 

superior temporal cortex, and temporal pole. These structural differences were 595 

further complemented by texture findings, as SD showed elevated texture values in 596 

these regions, indicating pronounced microstructural alterations. In AD, atrophy 597 

appears to start in the hippocampus and gradually spread to other temporal 598 

structures as the disease progress. In contrast, in SD, cortical atrophy is most 599 
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prominent in temporal poles, where atrophy does not usually occur in normal aging. 600 

(Collins et al., 2017; Rogalski et al., 2014; Scahill et al., 2002) 601 

Figure 2 provides a three-dimensional visualization of volume and texture 602 

changes in AD and SD groups, showing both lateral and medial views. In the SD 603 

group, significant volume reductions and texture changes were observed in the 604 

temporal pole and parts of the frontal lobe, reflecting the focal atrophy characteristic 605 

of semantic dementia. In contrast, AD exhibited more diffuse changes in medial 606 

temporal regions, such as the hippocampus and amygdala, where pronounced 607 

volume loss and texture abnormalities were identified. In summary, atrophy in AD 608 

was most prominent in the hippocampus and amygdala, with texture changes 609 

extending beyond these structures to surface regions, indicating a medial-to-lateral 610 

progression. However, in SD, marked atrophy and texture changes were observed 611 

in the temporal lobe, with alterations spreading from the temporal pole to other 612 

regions, suggesting an anterior-to-posterior progression. 613 

Figure 3 illustrates the performance of volume-based, texture-based, and 614 

composite models for differentiating SD from NC and AD. The composite model 615 

consistently achieved the highest AUC for both NC vs. SD (0.983) and AD vs. SD 616 

(0.862) classifications, demonstrating the complementary value of integrating 617 

texture and volume features. Texture-based models outperformed volume-based 618 

models in both comparisons, highlighting the sensitivity of texture analysis to subtle 619 

microstructural changes.  620 
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The MMSE, a global cognitive assessment, showed similar scores between 621 

AD and SD patients, but differences were observed in specific cognitive domains 622 

(Supplementary table 1). SD patients demonstrated significantly lower scores in 623 

language-related tasks, such as VFT and BNT, compared to AD patients, indicating 624 

more severe deficits in language functions. To examine the association between 625 

cognitive performance and regional volume and texture in SD, we performed 626 

Pearson correlation analysis. (Supplementary table 2 and table 3). Certain regional 627 

volumes showed strong correlations with VFT, BNT, and DST tasks. Examining the 628 

influence of verbal fluency, naming tests, and the digit span, which measures verbal 629 

short-term memory, highlights the pronounced language-related deficits in SD. 630 

Similarly, regional texture also demonstrated correlations with VFT, BNT, DST, as 631 

well as TMT-A. Considering the association with TMT-A, which is related to 632 

executive function, the findings suggest the presence of executive function 633 

impairments in SD. Longitudinal analyses would be valuable for tracking the 634 

detailed cognitive impacts over time. 635 

Suspected Non-Alzheimer’s Disease Pathophysiology and 636 

Alzheimer’s Disease 637 

Our study reveals that texture analysis of brain MRI is more effective than 638 

traditional volumetric measures in detecting early neurodegenerative changes in 639 

SNAP. Significant textural differences in multiple brain regions indicate that 640 

microstructural alterations precede volumetric loss and cognitive impairment. 641 
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Texture analysis revealed significant microstructural changes in the subcortical 642 

regions in SNAP, which were less pronounced in AD. These differences suggest 643 

distinct underlying mechanisms, such as TDP-43 or alpha-synuclein pathology, 644 

contributing to SNAP’s neurodegenerative trajectory. (Wisse et al., 2021) (Vos et 645 

al., 2024) Although hippocampal atrophy has been consistently reported in both AD 646 

and SNAP, (Burnham et al., 2016; Chung et al., 2017; Gordon et al., 2016) 647 

(Vijayakumar & Vijayakumar, 2013) Texture analysis in this study revealed that 648 

microstructural changes extend to non-traditional regions, with alterations in the 649 

thalamus being particularly discriminative for SNAP. This emphasizes the 650 

sensitivity of texture metrics in capturing early neurodegeneration, aligning with 651 

previous studies demonstrating the ability of MRI texture to detect subtle tissue 652 

changes indicative of early neurodegenerative processes. (Kwon et al., 2023; Lee 653 

et al., 2020)  654 

The present study revealed that texture differences in the parietal lobe were 655 

relatively minor between the control group and the SNAP group, whereas previous 656 

neuroimaging studies on AD have consistently reported significant atrophy in this 657 

region. (Pyun et al., 2017; Scahill et al., 2002) For instance, volumetric analyses 658 

have demonstrated reductions in grey matter volume in the parietal lobule and 659 

cingulate regions in AD patients, with extensive atrophy also observed in regions 660 

such as the precuneus, superior parietal cortex, inferior parietal cortex, and 661 

supramarginal gyrus as the disease progresses to dementia. (Guo et al., 2010) While 662 
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AD exhibited significant texture alterations in the parietal regions, SNAP showed 663 

elevated texture values in subcortical areas such as the thalamus. These findings 664 

suggest that SNAP may involve distinct neurodegenerative mechanisms, potentially 665 

driven by non-amyloid pathologies like TDP-43 or alpha-synuclein, which differ 666 

from the amyloid-driven pathology in AD. Despite the shared neurodegeneration in 667 

the temporal lobe, the differentiation between SNAP and AD becomes clearer when 668 

considering other brain regions. This supports the hypothesis that SNAP follows a 669 

unique pathological trajectory or resilience mechanisms not observed in AD. (Pyun 670 

et al., 2017)  671 

Figure 4 further elucidates regional volume and texture changes in AD and 672 

SNAP. While volume reductions in SNAP are less pronounced compared to AD, 673 

particularly in the hippocampus and temporal lobe regions, significant texture 674 

alterations are evident in the subcortical areas, such as the thalamus. This suggests 675 

that SNAP involves unique microstructural changes compared to AD, which may 676 

reflect distinct underlying neurodegenerative mechanisms. These observations 677 

highlight the potential of texture analysis as a sensitive tool for identifying and 678 

tracking neurodegenerative processes in SNAP. 679 

Figure 5 highlights the performance of volume-based, texture-based, and 680 

composite models for classifying SNAP. The composite model consistently 681 

achieved the highest AUC for both NC vs. SNAP (0.860) and AD vs. SNAP (0.699) 682 

comparisons. These findings underscore the sensitivity of texture analysis in 683 
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capturing early microstructural changes in SNAP and the value of combining 684 

texture and volume features. Future studies should explore the integration of texture 685 

metrics with biomarkers to improve the stratification of SNAP subtypes. 686 

The cognitive test performance by diagnostic groups is summarized in 687 

Supplementary table 4. Most cognitive domains show similar performance between 688 

the AD and SNAP groups, but the AD group demonstrates more severe deficits in 689 

memory-related tasks, such as WLRT. Volume features of SNAP, particularly 690 

regional volumes in the temporal lobe, strongly correlate with language, memory, 691 

and executive function tasks (Supplementary table 5). However, texture features 692 

exhibit weaker correlations compared to volume features (Supplementary table 6). 693 

This may be attributed to the pathological heterogeneity of SNAP and the subtle 694 

changes characterizing its early stages. Additionally, texture alterations in specific 695 

regions may not adequately explain associations with cognitive performance, 696 

potentially due to the mild state of patients within the SNAP group. Furthermore, 697 

while texture analysis effectively captures microstructural changes, it may not 698 

consistently influence all cognitive domains, resulting in limited correlations. 699 

Moreover, the heterogeneity of the disease makes it difficult to identify specific 700 

patterns of cognitive impairment. Future longitudinal studies should aim to clarify 701 

the temporal relationship between texture alterations and cognitive decline in SNAP. 702 

Implications of the Study 703 

This study highlights the complementary roles of volume and texture 704 
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analysis in differentiating SD and SNAP from AD and NC. Volume reflects 705 

macroscopic structural changes due to neuronal loss and atrophy, while texture is 706 

sensitive to subtle microstructural changes that may occur earlier in disease 707 

progression. The combination of these metrics improves diagnostic accuracy by 708 

capturing changes that volume alone may miss, particularly in diseases like SNAP 709 

where atrophy is less pronounced. In clinical practice, MRI-based volume and 710 

texture analysis can serve as a valuable tool for diagnosing SD and SNAP. For SD, 711 

texture abnormalities in regions such as the entorhinal cortex and temporal pole 712 

align with its known pathology. For SNAP, texture analysis provides a non-invasive 713 

way to identify subtle changes in the brain, which is particularly useful when 714 

amyloid PET imaging is unavailable or not feasible. This approach reduces reliance 715 

on costly or invasive biomarker assessments, making MRI a practical alternative. 716 

Specifically, texture analysis contributes to the clinical diagnostic process by aiding 717 

early prediction and classification, particularly in initial stages where volume-based 718 

methods may face limitations. For instance, texture analysis may improve the early 719 

detection of subtle microstructural changes that traditional approaches might 720 

overlook. While its contribution might be limited in mild conditions like SNAP, 721 

texture metrics could offer greater utility in rapidly progressing diseases such as SD, 722 

providing valuable diagnostic insights. The findings also emphasize the clinical 723 

implications of distinguishing SD and SNAP. In early stages, texture analysis may 724 

help identify these conditions more accurately, guiding appropriate diagnostic and 725 

treatment strategies. Additionally, recognizing SNAP’s slower progression and 726 



３６ 

mild clinical symptoms highlights the need for non-invasive tools like MRI to assist 727 

in its identification. 728 

Broader Implications of Texture Analysis  729 

MRI texture has been shown to correlate with radiographic pathologies 730 

validating its utility as an indicator of early neurodegenerative changes. (Lee et al., 731 

2021) For example, texture features in the medial pulvinar have been found to 732 

distinguish dementia with Lewy bodies (DLB) from control groups, despite 733 

comparable volumes, underscoring the broader applicability of texture analysis 734 

across diverse neurodegenerative diseases. (Tak et al., 2020) These findings 735 

highlight that subtle microstructural changes, such as variations in neuronal density, 736 

myelin, and tissue integrity, may be detectable before volumetric loss and cognitive 737 

impairment. (Zhang et al., 2013) 738 

The ability of texture analysis to reveal microstructural alterations in 739 

subcortical and cortical regions underscores its potential as a broadly applicable 740 

neuroimaging tool. For instance, the elevated texture heterogeneity observed in the 741 

thalamus in SNAP, and in the temporal pole in SD, highlights its utility in capturing 742 

pathology-specific patterns across neurodegenerative diseases. These findings 743 

suggest that texture metrics could complement existing biomarkers, particularly in 744 

the early and differential diagnosis of conditions such as SNAP and SD, where 745 

traditional volumetric measures may be insufficient. Furthermore, recent studies 746 

suggest that TDP-43 pathology interacts with tau aggregation, exacerbating 747 
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neurofibrillary tangle formation (Tomé et al., 2023). This interaction underscores 748 

the potential for texture analysis to detect early microstructural changes driven by 749 

synergistic pathologies. Future work should prioritize integrating texture metrics 750 

with pathological and molecular markers for a more comprehensive understanding 751 

of disease mechanisms. Specifically, future studies should examine the associations 752 

between tau PET imaging, myelin content, and texture metrics to elucidate their 753 

potential relationships. This could reveal how texture analysis serves not only as a 754 

complementary tool to volumetric measures but also as a potential link to 755 

pathological markers, providing deeper insights into disease processes. 756 

SNAP is a heterogeneous condition linked to various non-Aβ pathologies, 757 

such as α-synucleinopathy, tau, and TDP-43 proteinopathy, which are associated 758 

with non-AD dementias. (Wisse et al., 2021) (Vos et al., 2024) For instance, α-759 

synuclein pathology is present in dementia with Lewy bodies and Parkinson's 760 

disease dementia, with observations of the pathology in the putamen, frontal, and 761 

temporal regions. (Borghammer et al., 2010; Burton et al., 2002; Camicioli et al., 762 

2009; Cousins et al., 2003; Reetz et al., 2009; Seidel et al., 2017) Tau or TDP-43 763 

each are responsible for approximately 50% of frontotemporal dementia cases. Tau 764 

pathology is observed in the frontal lobe and thalamus, while TDP-43 is found in 765 

the frontal and temporal cortex and hippocampus. (Cairns et al., 2007; Davidson et 766 

al., 2007; Rohrer & Rosen, 2013) TDP-43 is also identified in ALS, affecting 767 

similar brain regions. (Geser et al., 2009; Leigh et al., 1991; Neumann et al., 2006) 768 
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These findings suggest that texture may serve as an early neuroimaging marker for 769 

non-AD, offering a more sensitive metric for differentiating it from age-related 770 

cognitive decline and AD. 771 

Clinical Implications of Early Disease Classification Using MRI 772 

The capacity to differentiate between SNAP and SD through MRI-based volume 773 

and texture analysis holds significant clinical implications for diagnosis, prognosis, 774 

and treatment. Primarily, distinguishing between these conditions at early stages 775 

reduces reliance on invasive and costly diagnostic procedures, such as amyloid PET 776 

imaging. This streamlines the diagnostic process, enhances clinical workflow 777 

efficiency, and ensures broader accessibility for patients. Secondly, identifying 778 

distinct neurodegenerative patterns facilitates tailored predictions of disease 779 

progression. For instance, SNAP typically manifests with a more gradual 780 

progression and less severe symptoms compared to SD, which is marked by a rapid 781 

decline in cognitive abilities. The ability to distinguish between these conditions 782 

enables clinicians to provide precise prognostic information, helping patients and 783 

caregivers prepare for potential outcomes and necessary interventions. Lastly, 784 

precise differentiation informs targeted therapeutic strategies. Specifically, SD 785 

patients may benefit from interventions targeting deficits in semantic processing 786 

and language function, while SNAP patients require treatments that focus on non-787 

amyloid pathologies, such as TDP-43 or tau-related mechanisms. Furthermore, 788 

early diagnosis facilitates the identification of candidates suitable for emerging 789 
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therapies targeting specific pathological substrates. This early classification 790 

framework ensures optimized patient management and supports the development 791 

of personalized treatment approaches. 792 

Limitations and Future Directions 793 

This study offers significant insights into neurodegenerative conditions; however, 794 

several limitations must be addressed to contextualize the findings. First, the 795 

cross-sectional design limits the ability to determine the temporal relationship 796 

between texture changes, volume loss, and cognitive decline. Longitudinal studies 797 

are necessary to evaluate whether texture changes precede volume alterations, 798 

offering deeper insights into disease progression and early diagnostic markers. 799 

Secondly, the lack of histopathological data hinders the establishment of direct 800 

correlations between texture alterations and specific pathological markers, such as 801 

tau or TDP-43, which would offer stronger biological validation for the observed 802 

imaging features. Thirdly, the study's capacity to perform internal and external 803 

validation was constrained due to the limited sample sizes. The rarity of SD (3–5 804 

individuals per 100,000) resulted in a small sample size, precluding both internal 805 

and external validation. For SNAP, while the sample size allowed for internal 806 

validation, these results were not presented in the main analysis to maintain 807 

methodological consistency between Study 1 and Study 2. External validation for 808 

SNAP, as well as for SD, remains necessary and should be a focus of future 809 

research.  810 
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Additionally, the study did not consider potential confounding variables, 811 

such as lifestyle factors (e.g., diet, exercise, and smoking), or the impact of 812 

concurrent neurological or psychiatric conditions (e.g., depression or anxiety), 813 

which could influence brain structure and texture metrics. Incorporating these 814 

variables in future analyses would strengthen the generalizability and accuracy of 815 

findings. Furthermore, the reliance on a single imaging modality, although 816 

enhanced with texture and volume analyses, may have limited the ability to 817 

capture complex interactions between structural, functional, and molecular 818 

changes. Integrating multimodal imaging, such as fMRI, PET, or diffusion-819 

weighted imaging, could provide a more comprehensive understanding of the 820 

disease mechanisms. Additionally, the lack of stratification based on disease 821 

subtypes or progression stages may have obscured specific trends or correlations 822 

unique to particular patient groups. Tailored subgroup analyses could provide 823 

more targeted insights into disease pathophysiology. 824 

Finally, differences in MRI acquisition protocols, scanner hardware, and 825 

processing pipelines across sites may introduce variability, suggesting the need for 826 

standardized imaging procedures in multicenter studies. This variability 827 

underscores the importance of developing robust harmonization techniques or 828 

statistical adjustments to minimize inter-site differences. 829 

To address these limitations, future research should explore enhancing the 830 

robustness of diagnostic models. One approach could be utilizing multicenter 831 
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datasets to enable external validation, particularly for rare conditions like SD. 832 

Expanding the integration of multimodal imaging techniques, such as diffusion-833 

weighted imaging and molecular imaging, would provide a more comprehensive 834 

view of the microstructural changes underlying neurodegeneration. The 835 

development of machine-learning classifiers that incorporate texture and volume 836 

metrics, while accounting for variability in clinical presentations, has the potential 837 

to yield more accurate and reliable diagnostic tools. Additionally, incorporating 838 

advanced statistical techniques, such as latent class analysis or mediation modeling, 839 

could help identify hidden patterns or mechanisms underlying neurodegenerative 840 

processes. Longitudinal studies will also be crucial for assessing the clinical 841 

progression of these imaging changes and their temporal association with cognitive 842 

decline. Furthermore, combining texture analysis with biomarkers, such as fluid-843 

based or genetic markers, will provide a more holistic approach to diagnosis and 844 

disease monitoring. 845 

 846 

5. Conclusions 847 

This study highlights the value of combining texture and volume analysis 848 

in exploring neurodegenerative diseases that mimic AD, such as SD and SNAP. 849 

While volume analysis captures macroscopic structural changes due to neuronal 850 

loss and atrophy, texture analysis detects early microstructural changes in key brain 851 

regions, offering complementary insights into the distinct pathological mechanisms 852 
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underlying these conditions. By integrating these approaches, it becomes possible 853 

to improve early diagnosis, enable more accurate differentiation of non-AD 854 

conditions from AD, and inform targeted therapeutic strategies. As such, the 855 

combined use of texture and volume analysis represents a critical advancement in 856 

the neuroimaging of dementia and other neurodegenerative diseases.857 
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Table 1. Demographic and clinical characteristics between normal controls and patients with Alzheimer’s disease 

and semantic dementia 

 NC a AD b SD c Statistics* 

 (n = 60) (n = 60) (n = 30) p Post-hoc 

Age, years, mean (SD) 73.1 (6.0) 75.0 (7.5) 71.5 (8.3) 0.084 - 

Sex, female, % 55.0 70.0 50.0 0.114 - 

Education, years, mean (SD) 12.9 (4.0) 11.6 (4.9) 12.5 (5.4) 0.349 - 

Total brain volume†, cc, mean (SD) 1009.8 (100.7) 935.7 (80.1) 961.2 (112.1) <0.001 a > b 

MMSE, points, mean (SD) 28.1 (1.8) 19.5 (5.3) 19.3 (5.2) <0.001 a > b, c 

AD, Alzheimer’s disease; SD, semantic dementia; MMSE, Mini Mental State Examination;  

†Sum of the volume of the structures identified in the Freesurfer aseg.mgz volume 

*One-way analysis of variance for continuous variables and chi-square test for categorical variables with Bonferroni post 

hoc comparisons 
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Table 2. Comparison of regional volumes between normal controls and patients with Alzheimer’s disease and 

semantic dementia 

 NC a AD b SD c Statistics* 

 (n = 60) (n = 60) (n = 30) NC-AD NC-SD AD-SD 

Temporal Lobe       

Amygdala 2740.5 (383.6) 2111.7 (346.4) 1979.2 (510.0) <0.001 <0.001 0.017 

  Hippocampus 7220.4 (625.8) 5786.6 (715.3) 6170.8 (1329.1) <0.001 <0.001 0.196 

Entorhinal cortex 3895.5 (605.1) 2820.7 (605.7) 2467.3 (697.7) <0.001 <0.001 0.006 

Para hippocampal 3392.3 (420.2) 2942.8 (451.4) 2836.6 (518.3) <0.001 <0.001 0.186 

Fusiform 16461.8 (1709.4) 14682.9 (1897.4) 13981.5 (2143.9) <0.001 <0.001 0.104 

Bankssts 3872.9 (477.5) 3518.4 (432.0) 3534.7 (627.0) 0.018 0.042 0.704 

Inferior temporal 19869.0 (2883.7) 16866.0 (2510.3) 15270.8 (3215.0) <0.001 <0.001 0.001 

Middle temporal 20188.8 (2390.9) 17418.7 (2445.9) 15925.3 (2994.3) <0.001 <0.001 0.002 

Superior temporal 20925.8 (2492.2) 18651.4 (1920.5) 17567.9 (2757.0) 0.001 <0.001 0.002 

Transverse temporal 1759.5 (323.4) 1658.0 (268.2) 1655.6 (334.2) 0.447 0.237 0.594 

Temporal pole 4840.8 (610.4) 4348.1 (690.7) 3520.5 (907.4) 0.100 <0.001 <0.001 

Frontal Lobe       

Orbitofrontal 22511.1 (2334.2) 20893.8 (1988.3) 19549.8 (3207.0) 0.102 <0.001 <0.001 

Inferior frontal 18451.2 (2094.3) 17014.2 (1763.3) 17191 (2053.9) 0.305 0.304 0.862 

Middle frontal 36210.0 (4395.7) 33362.0 (3595.1) 34505.8 (5490.0) 0.309 0.412 0.657 

Superior frontal 37387.4 (4134.0) 34589.5 (3588.5) 34442.3 (4793.9) 0.305 0.203 0.239 

Precentral 24927.9 (2483.0) 24316.6 (1941.1) 24358.7 (2690.6) 0.795 0.761 0.523 

Paracentral 6908.9 (877.7) 6699.3 (715.8) 6808.8 (763.3) 0.790 0.859 0.890 

Frontal pole 1906.7 (219.7) 1837.3 (245.3) 1723.7 (248.6) 0.155 0.001 0.030 
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Anterior cingulate 7032.9 (984.9) 6618.1 (993.2) 6324.2 (1245.3) 0.596 0.109 0.403 

Parietal Lobe       

Inferior parietal 23182.5 (2995.2) 21349.6 (2257.2) 21822.6 (3201.2) 0.010 0.141 0.948 

Superior parietal 23103.6 (2272.2) 21552.8 (2109.3) 22311.7 (3012.2) 0.024 0.491 0.397 

Postcentral 16471.1 (2049.9) 16333.9 (1912.6) 16807.1 (2287.9) 0.254 0.114 0.722 

Precuneus 17276.2 (2108.1) 15690.7 (1707.7) 16152.9 (2637.8) 0.072 0.288 0.718 

Supra marginal 18742.1 (2556.3) 17185.8 (2082.1) 17348.5 (2461.6) 0.018 0.054 0.741 

Isthmus cingulate 4471.0 (609.7) 4055.0 (517.2) 4162.2 (792.4) 0.119 0.229 0.745 

Posterior cingulate 5687.9 (710.8) 5169.5 (791.4) 5240.7 (945.4) 0.038 0.056 0.874 

Occipital Lobe       

Cuneus 5305.2 (926.1) 5153.6 (573.6) 5482.2 (795.9) 0.500 0.106 0.061 

Lingual 11205.5 (1449.5) 10822.5 (1409.0) 10982 (1561.0) 0.990 0.827 0.975 

Lateral occipital 20417.7 (2982.2) 18907.9 (2310.2) 20019.4 (2705.7) 0.198 0.954 0.117 

  Pericalcarine 3726.3 (721.8) 3851.0 (668.3) 3858.9 (551.4) 0.074 0.217 0.895 

Subcortical Regions       

Accumbens area 862.3 (159.0) 793.7 (116.4) 783.9 (183.6) 0.197 0.103 0.548 

Caudate 6448.3 (899.6) 6298.7 (885.8) 6198.2 (938.4) 0.679 0.648 0.325 

Putamen 8314.0 (993.3) 7873.0 (1004.9) 7649 (1085.8) 0.739 0.023 0.113 

Pallidum 3342.9 (391.0) 3203.7 (481.0) 3279.6 (437.2) 0.961 0.943 0.965 

Thalamus 11980.9 (1283.8) 11256.7 (1028.9) 11910.4 (1965.1) 0.130 0.365 0.083 

Note. All values are presented as mean (standard deviation) in mm3.   

AD, Alzheimer’s disease; SD, semantic dementia 

*One-way analysis of covariance adjusting for total brain volume with Bonferroni post hoc comparisons 
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Table 3. Comparison of regional textures between normal controls and patients with Alzheimer’s disease and 

semantic dementia 

 NC a AD b SD c Statistics* 

 (n = 60) (n = 60) (n = 30) NC-AD NC-SD AD-SD 

Temporal Lobe       

Amygdala 22.6 (2.3) 24.6 (2.2) 23.2 (3.4) 0.021 0.065 0.003 

  Hippocampus 26.5 (2.1) 27.6 (2.2) 26.1 (3.3) 0.020 0.147 0.009 

Entorhinal cortex 24.2 (2.3) 29.6 (3.6) 32.6 (4.9) <0.001 <0.001 0.031 

Para hippocampal 25.2 (2.2) 29.0 (3.5) 29.7 (4.1) <0.001 <0.001 0.951 

Fusiform 21.1 (2.4) 24.4 (2.2) 24.6 (2.8) <0.001 0.002 0.815 

Bankssts 24.4 (3.3) 25.9 (2.7) 26.1 (2.4) 0.085 0.072 0.681 

Inferior temporal 19.7 (2.0) 22.9 (1.7) 24.2 (2.9) <0.001 <0.001 0.006 

Middle temporal 19.0 (1.9) 22.0 (1.8) 23.1 (3.1) <0.001 <0.001 0.011 

Superior temporal 20.3 (1.7) 22.9 (1.5) 23.7 (3.0) <0.001 <0.001 0.039 

Transverse temporal 32.5 (4.5) 34.8 (4.4) 35.0 (4.7) 0.026 0.043 0.815 

Temporal pole 24.0 (2.5) 26.2 (2.4) 29.7 (4.5) 0.059 <0.001 0.001 

Frontal Lobe       

Orbitofrontal 22.3 (2.7) 24.4 (1.9) 24.8 (2.8) <0.001 0.034 0.946 

Inferior frontal 24.4 (1.8) 25.6 (1.5) 26.1 (2.4) 0.001 0.002 0.211 

Middle frontal 23.4 (2.0) 24.4 (2.0) 24.0 (2.7) 0.106 0.372 0.589 

Superior frontal 20.7 (2.1) 21.8 (2.2) 21.8 (2.9) 0.057 0.171 0.982 

Precentral 21.6 (1.6) 21.5 (2.4) 21.7 (2.1) 0.373 0.842 0.699 

Paracentral 26.3 (2.7) 26.1 (3.0) 26.3 (4.6) 0.531 0.912 0.745 

Frontal pole 28.1 (2.6) 29.2 (2.8) 31.6 (5.6) 0.078 0.012 0.041 
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Anterior cingulate 23.6 (2.0) 23.9 (1.6) 24.4 (2.6) 0.464 0.448 0.518 

Parietal Lobe       

Inferior parietal 23.7 (2.3) 24.8 (2.5) 24.6 (2.2) 0.048 0.094 0.791 

Superior parietal 25.4 (2.6) 26.0 (2.9) 26.3 (3.3) 0.596 0.282 0.555 

Postcentral 25.6 (2.1) 25.1 (2.6) 25.5 (3.7) 0.148 0.965 0.392 

Precuneus 23.9 (2.9) 23.8 (3.6) 22.5 (3.6) 0.319 0.060 0.144 

Supra marginal 20.8 (1.7) 21.7 (2.0) 21.9 (2.2) 0.071 0.065 0.661 

Isthmus cingulate 24.0 (1.9) 25.4 (2.4) 25.1 (2.8) 0.007 0.107 0.726 

Posterior cingulate 24.6 (1.9) 26.2 (2.2) 26.1 (2.3) 0.001 0.002 0.980 

Occipital Lobe       

Cuneus 36.0 (4.7) 34.4 (5.1) 33.4 (4.4) 0.055 0.063 0.589 

Lingual 29.4 (3.5) 30.1 (3.2) 29.2 (4.2) 0.392 0.673 0.274 

Lateral occipital 27.0 (3.3) 28.7 (2.3) 28.1 (3.0) 0.063 0.152 0.675 

Pericalcarine 41.6 (6.6) 41.1 (5.4) 38.9 (6.0) 0.751 0.085 0.077 

Subcortical Regions       

Accumbens area 27.4 (4.9) 26.2 (3.8) 25.8 (5.4) 0.377 0.274 0.749 

Caudate 19.9 (1.8) 21.0 (2.2) 20.6 (3.8) 0.205 0.285 0.500 

Putamen 22.5 (3.0) 23.8 (3.3) 23.4 (4.8) 0.133 0.122 0.842 

Pallidum 25.4 (4.1) 26.6 (3.4) 26.1 (4.6) 0.158 0.588 0.676 

Thalamus 14.9 (1.4) 15.3 (1.3) 14.8 (1.9) 0.339 0.871 0.413 

Note. All values are presented as mean (standard deviation).  

AD, Alzheimer’s disease; SD, semantic dementia 

*One-way analysis of covariance adjusting for corresponding regional volume with Bonferroni post hoc comparisons 
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Table 4. Logistic regression model parameters for differentiating patients with semantic dementia patients from 

normal controls 

 Volume-based model*  Texture-based model* 

 B (SE) p 95% CI   B (SE) p 95% CI   

Intercept -4.708 (2.071) - -   -4.062 (0.915) - -   

Amygdala          

  Hippocampus          

Entorhinal -2.029 (0.588) 0.001 0.042-0.417  1.773 (0.493) <0.001 0.240-15.488   

Para hippocampal          

Fusiform          

Bankssts          

Inferior temporal          

Middle temporal          

Superior temporal          

Transverse temporal          

Temporal pole -1.105 (0.454) 0.015 0.136-0.806  1.309 (0.495) 0.008 1.405-9.762   

Orbitofrontal          

Inferior frontal          

Middle frontal          

Superior frontal          

Precentral          

Paracentral          

Frontal pole -0.853 (0.448) 0.057 0.177-1.026       

Anterior cingulate          
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Inferior parietal          

Superior parietal          

Postcentral          

Precuneus          

Supra marginal          

Isthmus cingulate          

Posterior cingulate          

Cuneus          

Lingual          

Lateral occipital          

Pericalcarine          

Accumbens area          

Caudate          

Putamen          

Pallidum          

Thalamus          

B, regression coefficient; SE, standard error; CI, confidence interval 

*Binary logistic regression analysis with forward selection 
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Table 5. Composite model parameters for differentiating normal controls from semantic dementia 

  Composite model 

 B (SE) p OR 95% CI  

Intercept -4.644 (1.175) - - -  

Volume   Entorhinal -1.393 (0.745) 0.061 0.248 0.058-1.069 

Temporal pole -0.590 (0.680) 0.386 0.554 0.146-2.102 

Frontal pole -0.829 (0.666) 0.213 0.437 0.118-1.610 

Texture   Entorhinal 1.018 (0.516) 0.048 2.766 1.007-7.600 

Temporal pole 1.119 (0.676) 0.098 3.063 0.815-11.515 

B, regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval 
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Table 6. Performance metrics for volume, texture, and composite models in classifying normal controls from 

semantic dementia 

 Sensitivity Specificity PPV NPV AUC 

Volume-based model 0.800 0.950 0.889 0.905 0.963a 

Texture-based model 0.867 1.000 1.000 0.938 0.966b 

Composite model 0.867 0.983 0.963 0.937 0.983 

PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve 

Pairwise AUC comparisons by Hanley & McNeil's method: 

a) Volume-based model vs. Composite model, p = 0.516 

b) Texture-based model vs. Composite model, p = 0.557 
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Table 7. Logistic regression model parameters for differentiating patients with semantic dementia patients from 

patients with Alzheimer’s disease 

 Volume-based model*  Texture-based model* 

 B (SE) p 95% CI   B (SE) p 95% CI   

Intercept -0.997(0.514) - -   -1.897 (0.465) - -   

Amygdala          

  Hippocampus 0.602 (0.223) 0.007 1.178-2.827  -0.618 (0.222) 0.005 0.349-0.833   

Entorhinal          

Para hippocampal          

Fusiform          

Bankssts          

Inferior temporal          

Middle temporal          

Superior temporal          

Transverse temporal          

Temporal pole -1.603 (2.256) <0.001 0.209-0.570  0.982 (0.263) <0.001 1.595-4.470   

Orbitofrontal          

Inferior frontal          

Middle frontal          

Superior frontal          

Precentral          

Paracentral          

Frontal pole          

Anterior cingulate          
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Inferior parietal          

Superior parietal          

Postcentral          

Precuneus          

Supra marginal          

Isthmus cingulate          

Posterior cingulate          

Cuneus          

Lingual          

Lateral occipital          

Pericalcarine          

Accumbens area          

Caudate          

Putamen          

Pallidum          

Thalamus          

B, regression coefficient; SE, standard error; CI, confidence interval 

*Binary logistic regression analysis with forward selection 
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Table 8. Composite model parameters for differentiating Alzheimer’s disease from semantic dementia 

   Composite model 

 B (SE) p OR 95% CI  

Intercept -1.743 (0.674) - - -  

Volume   Hippocampus 0.462 (0.251) 0.066 1.586 0.970-2.594 

Temporal pole -0.834 (0.278) 0.003 0.434 0.252-0.749 

Texture   Hippocampus -0.529 (0.248) 0.033 0.589 0.362-0.959 

Temporal pole 0.718 (0.282) 0.011 2.050 1.180-3.561 

B, regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval 
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Table 9. Performance metrics for volume, texture, and composite models in classifying Alzheimer’s disease from 

semantic dementia 

 Sensitivity Specificity PPV NPV AUC 

Volume-based model 0.567 0.883 0.708 0.803 0.806 a 

Texture-based model 0.533 0.917 0.762 0.797 0.816 b 

Composite model 0.667 0.917 0.800 0.846 0.862 

PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve 

Pairwise AUC comparisons by Hanley & McNeil's method: 

a) Volume-based model vs. Composite model, p = 0.418 

b) Texture-based model vs. Composite model, p = 0.500 
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Table 10. Demographic and clinical characteristics of the participants by diagnostic groups 

 NC a AD b SNAP c Statistics* 

 (n = 183) (n = 164) (n = 155) p Post-hoc 

Age, years, mean (SD) 74.4 (4.5) 75.3 (4.4) 74.8 (4.4) 0.224  

Sex, female, % 63.4 51.4 61.9 0.102  

Education, years, mean (SD) 12.0 (4.8) 12.1 (5.0) 10.9 (5.2) 0.061  

Total brain volume†, cc, mean (SD) 985.5 (86.8) 980.7 (91.5) 962.7 (91.2) 0.055  

MMSE, points, mean (SD) 27.6 (2.1) 23.7 (4.1) 24.1 (3.5) < 0.001 a > b, c 

NC, normal cognition; AD, Alzheimer’s disease; SNAP, Suspected Non-Alzheimer’s Disease Pathophysiology; MMSE, 

Mini-Mental State Examination 

†Sum of the volume of the structures identified in the Freesurfer aseg.mgz volume 

*One-way analysis of variance for continuous variables and chi-square test for categorical variables with Bonferroni post 

hoc comparisons 
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Table 11. Comparison of regional volumes between diagnostic groups 

 NC a AD b SNAP c Statistics* 

 (n = 183) (n = 164) (n = 155) NC-AD NC-SNAP AD-SNAP 

Temporal Lobe       

Amygdala 2713.8 (364.8) 2396.4 (406.7) 2476.2 (512.8) <0.001 <0.001 0.097 

  Hippocampus 7162.4 (680.0) 6278.9 (813.6) 6391.7 (893.0) <0.001 <0.001 0.243 

Entorhinal 3801.1 (600.2) 3228.6 (680.5) 3399.2 (834.9) <0.001 <0.001 0.044 

Para hippocampal 3311.4 (358.6) 3174.7 (519.3) 3211.3 (476.7) 0.061 0.140 0.585 

Fusiform 16285.4 (1748.1) 15688.3 (2015.8) 15775.6 (1871.2) 0.159 0.196 0.843 

Bankssts 3917.0 (502.3) 3729.9 (478.8) 3771.6 (555.6) 0.102 0.171 0.541 

Inferior temporal 19237.2 (2607.8) 17977.5 (2559.3) 18068.7 (2742.8) 0.001 0.001 0.972 

Middle temporal 19743.4 (2357.0) 18481.6 (2382.7) 18648.6 (2493.0) <0.001 0.001 0.629 

Superior temporal 20179.8 (2166.2) 19551.7 (2089.5) 19745.9 (2530.4) 0.263 0.902 0.503 

Transverse temporal 1704.3 (270.0) 1636.3 (242.4) 1644.5 (262.6) 0.189 0.254 0.913 

Temporal pole 4686.3 (513.1) 4550.5 (636.6) 4568.0 (688.7) 0.189 0.279 0.899 

Frontal Lobe       

Orbitofrontal 21922.7 (2208.2) 21520.3 (2286.4) 21420.5 (2210.8) 0.315 0.758 0.233 

Inferior frontal 17843.3 (2215.4) 17379.5 (2125.5) 17197.2 (1907.7) 0.995 0.099 0.151 

Middle frontal 35335.3 (4079.9) 34246.6 (4165.5) 34892.9 (4396.5) 0.713 0.081 0.078 

Superior frontal 36572.8 (3793.9) 35767.4 (3810.8) 36330.7 (3944.9) 0.718 0.057 0.124 

Precentral 23811.7 (2408.7) 24221.9 (2798.5) 24364.6 (2663.4) 0.072 0.083 0.779 

Paracentral 6798.7 (772.4) 6603.9 (828.3) 6713.3 (810.3) 0.436 0.668 0.224 

Frontal pole 1868.6 (216.0) 1845.9 (228.2) 1837.0 (217.0) 0.970 0.501 0.623 

Anterior cingulate 6946.1 (1060.4) 6714.9 (1110.5) 6689.6 (1123.5) 0.796 0.479 0.564 
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Parietal Lobe       

Inferior parietal 22894.6 (2911.9) 21976.3 (3069.7) 22322.1 (3021.4) 0.189 0.987 0.317 

Superior parietal 22816.5 (2594.2) 22750.8 (3211.3) 23038.0 (2833.7) 0.230 0.067 0.451 

Postcentral 16188.0 (1828.4) 15972.6 (1730.9) 16202.6 (1880.0) 0.292 0.073 0.235 

Precuneus 16673.9 (1778.0) 15969.4 (1854.5) 16332.3 (1826.9) 0.030 0.995 0.030 

Supra marginal 18239.7 (2108.0) 17473.6 (2302.7) 17895.7 (2166.3) 0.070 0.951 0.058 

Isthmus cingulate 4400.2 (585.4) 4164.5 (600.0) 4287.1 (579.1) 0.103 0.625 0.055 

Posterior cingulate 5503.6 (686.9) 5276.0 (842.6) 5300.9 (881.9) 0.180 0.219 0.961 

Occipital Lobe       

Cuneus 5361.1 (752.4) 5275.5 (740.2) 5352.8 (757.4) 0.533 0.186 0.398 

Lingual 11282.9 (1441.8) 10946.7 (1589.5) 10967.8 (1480.7) 0.680 0.406 0.909 

Lateral occipital 19811.0 (2553.3) 19290.5 (2520.7) 19776.0 (2587.6) 0.792 0.069 0.073 

  Pericalcarine 3870.7 (715.8) 3852.5 (690.8) 3858.8 (690.5) 0.350 0.436 0.944 

Subcortical Regions       

Accumbens area 836.3 (153.2) 795.8 (132.9) 786.0 (160.7) 0.075 0.077 0.405 

Caudate 6462.1 (984.7) 6528.0 (1006.4) 6504.6 (1117.8) 0.063 0.149 0.726 

Putamen 8404.7 (1090.0) 8304.6 (978.6) 8226.9 (1191.3) 0.416 0.883 0.324 

Pallidum 3297.0 (411.5) 3309.5 (390.8) 3239.1 (447.6) 0.055 0.838 0.055 

Thalamus 11740.5 (1119.0) 11482.4 (1112.4) 11470.2 (1118.8) 0.910 0.521 0.541 

Note. All values are presented as mean (standard deviation) in mm3.   

NC, normal cognition; AD, Alzheimer’s disease; SNAP, Suspected Non-Alzheimer’s Disease Pathophysiology 

*One-way analysis of covariance adjusting for total brain volume with Bonferroni post hoc comparisons 
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Table 12. Comparison of regional textures between diagnostic groups 

 NC a AD b SNAP c Statistics* 

 (n = 183) (n = 164) (n = 155) NC-AD NC-SNAP AD-SNAP 

Temporal Lobe       

Amygdala 24.2 (3.1) 24.7 (3.4) 24.8 (3.2) 0.038 0.040 0.549 

  Hippocampus 27.0 (2.0) 27.6 (2.9) 27.6 (2.2) 0.027 0.035 0.758 

Entorhinal 25.8 (2.9) 29.5 (4.4) 29.0 (4.1) <0.001 <0.001 0.938 

Para hippocampal 26.9 (2.7) 29.6 (3.4) 28.9 (3.5) <0.001 <0.001 0.077 

Fusiform 23.3 (3.0) 24.1 (3.0) 24.1 (2.5) 0.060 0.045 0.920 

Bankssts 24.5 (2.8) 26.7 (3.2) 25.6 (2.9) <0.001 0.001 0.004 

Inferior temporal 21.4 (2.2) 22.8 (2.3) 22.6 (2.2) <0.001 <0.001 0.571 

Middle temporal 20.3 (2.2) 21.8 (2.3) 21.5 (2.3) <0.001 <0.001 0.196 

Superior temporal 21.8 (2.0) 23.0 (1.8) 22.5 (1.7) <0.001 0.008 0.007 

Transverse temporal 34.3 (5.0) 35.7 (5.0) 35.7 (5.2) 0.058 0.061 0.990 

Temporal pole 26.0 (2.0) 26.3 (3.1) 26.5 (2.8) 0.435 0.103 0.595 

Frontal Lobe       

Orbitofrontal 23.2 (2.6) 23.9 (2.9) 23.3 (3.2) 0.069 0.716 0.108 

Inferior frontal 24.7 (2.1) 25.8 (2.7) 25.8 (2.0) <0.001 <0.001 0.832 

Middle frontal 23.2 (2.0) 24.2 (2.2) 24.1 (2.0) <0.001 <0.001 0.686 

Superior frontal 20.6 (2.2) 21.6 (2.5) 22.3 (2.2) <0.001 <0.001 0.008 

Precentral 21.7 (2.0) 21.8 (2.4) 21.9 (2.3) 0.338 0.071 0.576 

Paracentral 26.4 (3.4) 26.7 (3.5) 26.9 (3.7) 0.720 0.331 0.379 

Frontal pole 28.5 (2.2) 29.1 (3.4) 29.0 (2.8) 0.073 0.076 0.706 

Anterior cingulate 23.6 (2.1) 24.1 (1.9) 24.0 (1.7) 0.106 0.178 0.613 
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Parietal Lobe       

Inferior parietal 23.8 (2.2) 24.9 (2.5) 24.4 (2.2) <0.001 0.105 0.116 

Superior parietal 25.6 (2.5) 26.3 (3.1) 25.6 (2.6) 0.043 0.964 0.050 

Postcentral 25.2 (2.7) 25.4 (2.9) 25.1 (2.6) 0.922 0.730 0.682 

Precuneus 22.7 (3.0) 22.8 (3.5) 22.3 (3.1) 0.861 0.240 0.287 

Supra marginal 21.2 (1.9) 22.0 (2.2) 21.6 (1.9) 0.002 0.062 0.178 

Isthmus cingulate 24.1 (1.8) 24.9 (2.9) 24.3 (2.1) 0.010 0.445 0.043 

Posterior cingulate 24.9 (1.8) 26.2 (2.5) 25.7 (1.9) <0.001 0.001 0.023 

Occipital Lobe       

Cuneus 34.0 (4.8) 33.1 (4.7) 33.0 (4.9) 0.107 0.116 0.808 

Lingual 29.0 (3.2) 29.6 (3.1) 29.9 (3.4) 0.231 0.107 0.270 

Lateral occipital 28.1 (2.7) 28.9 (2.8) 28.6 (2.5) 0.071 0.090 0.872 

Pericalcarine 40.5 (6.0) 40.3 (4.9) 40.8 (5.4) 0.701 0.613 0.340 

Subcortical Regions       

Accumbens area 27.7 (4.0) 26.9 (4.4) 26.5 (4.5) 0.059 0.022 0.486 

Caudate 20.6 (2.1) 21.4 (2.5) 21.5 (2.0) 0.069 0.031 0.757 

Putamen 23.4 (3.4) 25.0 (4.0) 25.4 (3.6) 0.081 <0.001 0.325 

Pallidum 26.8 (3.8) 27.2 (4.2) 27.0 (3.9) 0.252 0.783 0.337 

Thalamus 15.0 (1.4) 15.1 (2.0) 15.5 (1.5) 0.878 0.002 0.020 

Note. All values are presented as mean (standard deviation).  

NC, normal cognition; AD, Alzheimer’s disease; SNAP, Suspected Non-Alzheimer’s Disease Pathophysiology 

*One-way analysis of covariance adjusting for corresponding regional volume with Bonferroni post hoc comparisons 
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Table 13. Logistic regression model parameters for classifying participants with Suspected Non-Alzheimer’s Disease 

Pathophysiology from normal cognition 

 Volume-based model*  Texture-based model* 

 B (SE) p 95% CI   B (SE) p 95% CI   

Intercept 0.893 (0.155) - -   -1.138 (0.175) - -   

Amygdala     0.818 (0.150) <0.001 1.688-3.041   

  Hippocampus -1.212 (0.149) <0.001 0.222-0.399       

Entorhinal     0.797 (0.142) <0.001 1.681-2.932   

Para hippocampal          

Fusiform          

Bankssts          

Inferior temporal          

Middle temporal -0.403 (0.165) 0.014 0.484-0.923       

Superior temporal          

Transverse temporal          

Temporal pole          

Orbitofrontal          

Inferior frontal          

Middle frontal          

Superior frontal     1.327 (0.231) <0.001 2.396-5.929   

Precentral          

Paracentral          

Frontal pole          

Anterior cingulate          
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Inferior parietal          

Superior parietal          

Postcentral          

Precuneus          

Supra marginal          

Isthmus cingulate          

Posterior cingulate     0.345 (0.145) 0.017 1.063-1.875   

Cuneus          

Lingual          

Lateral occipital          

Pericalcarine          

Accumbens area          

Caudate          

Putamen     0.564 (0.149) <0.001 1.425-1.763   

Pallidum          

Thalamus          

B, regression coefficient; SE, standard error; CI, confidence interval 

*Binary logistic regression analysis with forward selection 
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Table 14. Composite model parameters for differentiating normal controls from Suspected Non-Alzheimer’s Disease 

Pathophysiology 

  Composite model* 

 B (SE) p OR 95% CI  

Intercept -1.287 (0.185) - - -  

Volume   Hippocampus -0.910 (0.168) <0.001 0.402 0.289-0.560 

Middle frontal -0.549 (0.183) 0.003 0.577 0.403-0.826 

Texture   Amygdala 0.366 (0.175) 0.037 1.441 1.023-2.031 

         Entorhinal 0.401 (0.163) 0.014 1.493 1.085-2.055 

         Superior frontal 1.191 (0.242) <0.001 3.291 2.047-5.291 

         Posterior cingulate 0.133 (0.180) 0.458 1.143 0.803-1.625 

Putamen 0.257 (0.174) 0.140 1.293 0.919-1.820 

B, regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval 
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Table 15. Performance metrics for volume, texture, and composite models in classifying normal controls from 

Suspected Non-Alzheimer’s Disease Pathophysiology 

 Sensitivity Specificity PPV NPV AUC 

Volume-based model 0.645 0.787 0.719 0.724 0.778 a* 

Texture-based model 0.690 0.814 0.759 0.756 0.838 b 

Composite model 0.703 0.852 0.801 0.772 0.860 

PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve 

Pairwise AUC comparisons by Hanley & McNeil's method: 

a) Volume-based model vs. Composite model, p = 0.014 

b) Texture-based model vs. Composite model, p = 0.487 

*p < 0.05 
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Table 16. Logistic regression model parameters for classifying participants with Suspected Non-Alzheimer’s Disease 

Pathophysiology from participants with Alzheimer’s disease 

 Volume-based model*  Texture-based model* 

 B (SE) p 95% CI   B (SE) p 95% CI   

Intercept 0.088 (0.134) - -   -0.086 (0.155) - -   

Amygdala          

  Hippocampus          

Entorhinal 0.178 (0.090) 0.047 1.002-1.425       

Para hippocampal          

Fusiform          

Bankssts     -0.255 (0.148) 0.086 0.580-1.037   

Inferior temporal          

Middle temporal          

Superior temporal     -0.454 (0.191) 0.018 0.437-0.924   

Transverse temporal          

Temporal pole          

Orbitofrontal          

Inferior frontal          

Middle frontal          

Superior frontal     0.582 (0.154) <0.001 1.323-2.421   

Precentral          

Paracentral          

Frontal pole          

Anterior cingulate          
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Inferior parietal          

Superior parietal     -0.406 (0.139) 0.004 0.507-0.876   

Postcentral          

Precuneus          

Supra marginal          

Isthmus cingulate          

Posterior cingulate          

Cuneus          

Lingual          

Lateral occipital          

Pericalcarine          

Accumbens area          

Caudate          

Putamen          

Pallidum          

Thalamus     0.360 (0.115) 0.002 1.144-1.796   

B, regression coefficient; SE, standard error; CI, confidence interval 

*Binary logistic regression analysis with forward selection 
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Table 17. Composite model parameters for differentiating Alzheimer’s disease from Suspected Non-Alzheimer’s 

Disease Pathophysiology 

  Composite model* 

 B (SE) p OR 95% CI  

Intercept 0.003 (0.170) - - -  

Volume   Entorhinal 0.130 (0.099) 0.189 1.139 0.938-1.383 

Texture   Bankssts -0.261 (0.149) 0.080 0.770 0.575-1.031 

Superior temporal -0.391 (0.197) 0.047 0.676 0.460-0.998 

         Superior frontal 0.568 (0.154) <0.001 1.765 1.305-2.387 

         Superior parietal -0.428 (0.141) 0.002 0.652 0.494-0.859 

Thalamus 0.361 (0.115) 0.002 1.435 1.125-1.798 

B, regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval 
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Table 18. Performance metrics for volume, texture, and composite models in classifying Alzheimer’s disease from 

Suspected Non-Alzheimer’s Disease Pathophysiology  

 Sensitivity Specificity PPV NPV AUC 

Volume-based model 0.458 0.671 0.568 0.567 0.567 a** 

Texture-based model 0.632 0.659 0.636 0.655 0.693 b 

Composite model 0.632 0.671 0.645 0.659 0.699 

PPV, positive predictive value; NPV, negative predictive value; AUC, area under curve 

Pairwise AUC comparisons by Hanley & McNeil's method: 

a) Volume-based model vs. Composite model, p = 0.002 

b) Texture-based model vs. Composite model, p = 0.880 

**p < 0.01 
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Figure 1. ATN biomarker grouping according to the NIA-AA framework 
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Figure 2. Illustration of homogeneity and heterogeneity in MRI scans with corresponding contrast scale 
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Figure 3. 3D brain visualization of regional volume and texture alterations in Alzheimer’s disease and semantic 

dementia groups with lateral and medial views. 
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Figure 4. Comparison of the performance of the volume-based, texture-based and composite models for 

differentiating patients with semantic dementia from normal controls and patients with Alzheimer’s disease 

A. Models for differentiating patients semantic dementia from normal controls; B. Models for differentiating patients 

with semantic dementia from those with Alzheimer’s disease 
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Figure 5. 3D brain visualization of regional volume and texture alterations in Alzheimer’s Disease and Suspected 

Non-Alzheimer’s Disease Pathophysiology groups with lateral and medial views. 
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Figure 6. Comparison of the performance of the volume-based, texture-based and composite models for 

differentiating patients with Suspected Non-Alzheimer’s Disease Pathophysiology from normal controls and 

Alzheimer’s disease 
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A. Models for differentiating patients with Suspected Non-Alzheimer’s Disease Pathophysiology from normal controls; 

B. Models for differentiating patients with Suspected Non-Alzheimer’s Disease Pathophysiology from those with 

Alzheimer’s disease 
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Supplementary table 1. Cognitive performance scores for normal controls, Alzheimer's Disease and semantic 

dementia 

 NC a AD b SD c Statistics* 

 (n = 60) (n = 60) (n = 30) p Post-hoc 

VFT, point 18.3 (4.3) 10.6 (4.3) 8.1 (3.8) < 0.001 a > b > c 

BNT, point 14.4 (0.8) 12.1 (2.8) 8.0 (4.0) < 0.001 a > b > c 

WLMT, point 19.8 (3.9) 11.1 (3.6) 11.1 (5.5) < 0.001 a > b, c 

WLRT, point 6.8 (2.1) 1.1 (1.4) 1.3 (2.0) < 0.001 a > b, c 

CPT, point 10.6 (0.7) 9.0 (1.8) 9.0 (2.0) < 0.001 a > b, c 

CRT, point 7.9 (2.6) 1.1 (1.6) 1.5 (1.7) < 0.001 a > b, c 

TMT-A, second 46.0 (21.7) 113.8 (99.6) 118.6 (84.9) < 0.001 a > b, c 

TMT-B, second 133.6 (75.9) 278.5 (98.0) 299.9 (103.8) < 0.001 a > b, c 

DST, point 13.7 (4.0) 9.8 (3.7) 9.5 (3.8) < 0.001 a > b, c 

FAB, point 16.6 (1.3) 11.7 (3.5) 10.7 (3.5) < 0.001 a > b, c 

Note. All values are presented as mean (standard deviation) 

VFT, Verbal fluency test; BNT, Boston naming test; WLMT, Word list memory test; WLRT, Word list recall test; CPT, 

Constructional praxis test; CRT, Constructional recall test; TMT-A, Trail making test A; TMT-B, Trail making test B; DST, 

Digit span test; FAB, Frontal assessment battery 

*One-way analysis of variance with Bonferroni post hoc comparisons 
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Supplementary table 2. Association of regional volume with cognitive performance in semantic dementia 

 

 VFT BNT WLMT WLRT CPT CRT TMT-A TMT-B DST FAB 

Amygdala -0.022 .475* 0.223 0.225 0.230 -0.048 -0.358 -0.150 .647** 0.236 

Hippocampus -0.234 0.187 0.237 0.140 0.093 0.014 -0.353 -0.028 .530** 0.293 

Entorhinal 0.244 .488* 0.353 0.349 0.121 0.104 -0.323 -.470* .616** 0.265 

Para hippocampal -0.120 0.289 0.012 0.127 0.125 -0.040 -0.249 -0.281 .445* 0.048 

Fusiform -0.144 0.058 0.063 0.196 0.196 0.005 -0.228 -0.386 0.176 -0.164 

Bankssts -0.176 0.084 -0.126 0.015 -0.105 -0.190 -0.105 -0.015 0.006 -0.382 

Inferior temporal 0.051 0.305 0.142 0.342 0.161 0.211 -0.099 -0.363 0.009 -0.028 

Middle temporal 0.090 0.225 0.175 0.327 0.128 0.267 -0.111 -0.288 -0.090 -0.114 

Superior temporal -0.095 0.227 0.033 0.131 0.083 0.074 -0.151 -0.070 0.237 -0.126 

Transverse temporal -0.119 -0.152 0.042 0.175 0.177 -0.120 0.009 0.224 0.324 -0.185 

Temporal pole 0.070 0.346 0.228 0.251 0.214 0.388 -0.157 -0.355 0.263 0.171 

Orbitofrontal 0.100 0.225 0.107 0.084 0.166 0.140 0.059 -0.130 0.155 -0.045 

Inferior frontal -0.295 -0.165 -0.311 -0.042 0.329 -0.256 -0.155 0.129 0.264 -0.136 

Middle frontal -.411* -0.097 -0.211 -0.106 0.381 -0.147 0.018 -0.021 0.300 -0.234 

Superior frontal -0.259 -0.044 -0.11 -0.120 0.382 -0.035 -0.056 0.072 0.291 -0.053 

Precentral -0.096 0.042 -0.261 -0.032 0.296 -0.180 -0.056 0.163 0.064 -0.132 

Paracentral -0.045 -0.123 -0.06 0.131 0.096 0.047 -0.063 -0.02 0.012 -0.321 
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Frontal pole 0.065 0.355 -0.004 -0.177 -0.036 0.237 0.251 -0.241 0.109 -0.061 

Anterior cingulate 0.001 0.275 0.124 0.162 .411* 0.198 -0.066 -0.302 0.374 0.035 

Inferior parietal -0.374 -0.096 -0.104 -0.033 0.066 -0.170 -0.084 0.045 0.061 -0.366 

Superior parietal -0.372 -0.030 -0.015 0.056 0.121 -0.178 -0.188 -0.093 0.091 -0.217 

Postcentral -.452* 0.055 -0.251 -0.308 0.121 -0.297 -0.111 0.242 0.393 -0.204 

Precuneus -0.238 -0.004 -0.083 0.125 0.277 -0.157 -0.248 -0.153 0.125 -0.191 

Supra marginal -0.369 -0.256 -0.248 -0.086 0.090 -0.188 0.243 0.240 -0.167 -.427* 

Isthmus cingulate -0.047 0.002 -0.157 0.034 0.358 -0.055 -0.174 -0.145 0.196 -0.186 

Posterior cingulate 0.181 0.181 0.094 0.326 .440* 0.186 -0.051 -0.28 0.261 -0.045 

Cuneus -0.377 0.158 -0.108 -0.180 .413* -0.106 -0.327 -0.136 .520** 0.287 

Lingual -0.231 0.101 -0.052 -0.090 0.358 -0.070 -.394* -0.209 .416* 0.114 

Lateral occipital -.406* -0.037 -0.197 -0.142 0.257 -0.251 -0.273 -0.105 0.305 -0.013 

Pericalcarine -0.188 0.228 -0.327 -.394* 0.243 -0.124 -0.189 -0.120 .602** 0.157 

Accumbens area 0.357 0.301 0.325 0.274 -0.231 0.013 -0.288 -.674** 0.170 0.130 

Caudate -.394* -0.021 -0.184 -0.208 0.164 -0.295 0.025 0.189 0.171 -0.193 

Putamen 0.179 0.277 .439* 0.177 0.032 0.196 -0.299 -0.137 0.206 0.203 

Pallidum -.601** -0.204 -0.073 -0.307 -0.069 -0.043 -0.133 .407* 0.198 -0.062 

Thalamus -.593** -0.179 -0.171 -0.193 0.167 -0.195 0.000 0.322 0.335 0.069 

***p < 0.001; **p < 0.01; *p < 0.05 
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Supplementary table 3. Association of regional texture with cognitive performance in semantic dementia 

 

 VFT BNT WLMT WLRT CPT CRT TMT-A TMT-B DST FAB 

Amygdala .501** -0.147 0.151 0.246 -0.253 0.213 0.265 -0.137 -0.401 -0.101 

Hippocampus 0.188 0.206 -0.292 -0.316 -0.165 -0.089 0.087 0.033 -0.091 -0.171 

Entorhinal -0.064 -0.294 -0.146 -0.108 -0.324 -0.129 0.225 .406* -0.400 -0.261 

Para hippocampal 0.190 -0.230 0.070 0.095 -0.133 0.030 0.375 0.119 -.513* -0.298 

Fusiform 0.243 -.449* -0.093 0.012 -0.138 0.008 .537** 0.120 -0.243 -0.254 

Bankssts -0.029 0.112 0.201 0.037 0.158 0.091 0.085 0.031 0.174 0.386 

Inferior temporal 0.032 -0.110 -0.115 -0.174 -0.300 -0.249 0.330 0.215 -0.037 -0.131 

Middle temporal -0.087 -0.041 -0.172 -0.172 -0.249 -0.315 .452* 0.100 -0.103 -0.095 

Superior temporal -0.092 -0.113 -0.229 -0.259 -0.285 -0.294 .466* 0.047 -0.160 -0.153 

Transverse temporal -0.069 -0.015 -0.074 -0.287 -0.116 0.017 0.102 0.050 -0.145 0.043 

Temporal pole -.395* -.409* -0.314 -0.343 0.108 -0.349 -0.072 0.362 0.160 -0.188 

Orbitofrontal -0.297 -0.190 -.425* -0.354 -0.246 -.463* 0.187 0.254 -0.207 -0.336 

Inferior frontal 0.178 0.113 0.011 -0.086 -0.263 0.157 0.206 -0.003 -0.080 -0.153 

Middle frontal 0.136 0.073 -0.071 -0.121 -0.285 -0.195 0.135 -0.159 -0.181 -0.111 

Superior frontal -0.126 -0.144 -0.231 -0.160 -0.357 -0.294 .495* -0.101 -0.336 -0.391 

Precentral -0.086 0.103 0.060 -0.064 -0.033 -0.176 -0.072 -0.140 -0.090 0.140 

Paracentral -0.120 -0.125 -0.209 -0.141 -0.042 0.022 .599** -0.176 -0.224 -0.184 
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Frontal pole -.514** -0.359 -0.150 -0.299 0.159 -0.362 -0.118 0.395 0.339 0.003 

Anterior cingulate -0.247 -0.212 -.397* -0.308 -0.242 -0.343 0.379 0.137 -.480* -0.262 

Inferior parietal 0.037 -0.008 -0.045 -0.159 -0.245 -0.210 0.304 0.041 0.185 -0.136 

Superior parietal 0.084 0.089 -0.023 -0.098 0.030 -0.017 0.018 -0.248 0.089 0.040 

Postcentral 0.144 0.033 0.042 -0.021 -0.053 -0.018 0.319 -0.175 -0.311 0.077 

Precuneus -0.064 -0.115 -0.178 -0.232 -0.108 -0.097 0.271 -0.047 -0.202 -0.214 

Supra marginal 0.215 0.053 0.048 0.007 -.419* -0.124 0.152 -0.229 0.049 0.054 

Isthmus cingulate -0.071 -0.159 -0.069 -0.104 -0.263 -0.026 0.360 0.024 -0.253 -0.185 

Posterior cingulate -0.063 -0.093 -0.200 -0.312 -.506** -0.044 0.376 0.091 -0.186 -0.248 

Cuneus .449* 0.136 0.319 .397* -0.120 0.289 0.105 0.003 -0.337 -0.003 

Lingual .540** 0.156 0.228 0.262 -0.305 0.233 0.333 -0.137 -0.350 -0.069 

Lateral occipital 0.386 -0.172 -0.039 0.117 -0.129 0.040 0.256 0.153 -0.359 -0.210 

Pericalcarine .555** 0.041 0.101 0.241 -0.086 0.089 -0.042 0.040 -0.177 -0.030 

Accumbens area 0.134 0.129 0.252 0.344 0.218 0.145 -0.022 0.102 -0.144 0.016 

Caudate 0.375 -0.012 0.001 0.086 -0.289 0.151 .456* -0.175 -.446* -0.250 

Putamen 0.299 0.143 -0.072 0.039 -0.161 -0.03 0.057 -0.165 -0.052 -0.229 

Pallidum 0.311 -0.115 -0.092 0.046 -0.177 -0.115 -0.038 -0.180 -0.035 -0.251 

Thalamus 0.216 0.135 0.038 -0.030 0.022 0.185 0.245 -0.161 -0.247 0.016 

***p < 0.001; **p < 0.01; *p < 0.05 
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Supplementary table 4. Cognitive performance scores for normal controls, Alzheimer's Disease and Suspected Non-

Alzheimer’s Disease Pathophysiology 

 NC a AD b SNAP c Statistics* 

 (n = 183) (n = 164) (n = 155) p Post-hoc 

VFT, point 17.7 (4.9) 11.9 (4.2) 12.1 (4.4) < 0.001 a > b, c 

BNT, point 12.7 (1.9) 12.1 (2.4) 11.7 (2.1) < 0.001 a > b, c 

WLMT, point 19.1 (3.9) 12.6 (3.6) 13.6 (3.7) < 0.001 a > b, c 

WLRT, point 6.2 (2.0) 1.7 (1.8) 2.7 (1.9) < 0.001 a > c > b 

CPT, point 10.2 (1.1) 9.5 (1.6) 9.6 (1.3) < 0.001 a > b, c 

CRT, point 7.2 (2.7) 2.8 (2.7) 3.5 (3.0) < 0.001 a > b, c 

TMT-A, second 50.1 (23.6) 81.2 (66.6) 72.6 (51.7) < 0.001 a > b, c 

TMT-B, second 156.4 (83.6) 248.1 (104.5) 243.6 (99.6) < 0.001 a > b, c 

DST, point 10.3 (2.4) 9.9 (3.4) 9.3 (2.4)  0.004 a > c 

FAB, point 15.8 (1.8) 13.6 (3.0) 13.4 (2.6) < 0.001 a > b, c 

Note. All values are presented as mean (standard deviation) 

VFT, Verbal fluency test; BNT, Boston naming test; WLMT, Word list memory test; WLRT, Word list recall test; CPT, 

Constructional praxis test; CRT, Constructional recall test; TMT-A, Trail making test A; TMT-B, Trail making test B; DST, 

Digit span test; FAB, Frontal assessment battery 

*One-way analysis of variance with Bonferroni post hoc comparisons 
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Supplementary table 5. Association of regional volume with cognitive performance in Suspected Non-Alzheimer’s 

Disease Pathophysiology 

 VFT BNT WLMT WLRT CPT CRT TMT-A TMT-B DST FAB 

Amygdala .189* 0.029 0.080 .170* .215** .269** -0.119 -0.132 -0.036 0.056 

Hippocampus .191* 0.006 .175* .316** .229** .393** -0.148 -0.112 0.048 0.102 

Entorhinal .236** 0.056 0.115 .199* .226** .333** -0.117 -0.114 0.001 0.100 

Para hippocampal .332** 0.084 0.112 .267** .177* .228** -.207** -0.153 -0.018 0.138 

Fusiform .221** -0.015 .279** .314** .200* .292** -.201* -.174* 0.073 .228** 

Bankssts .272** 0.052 .158* .285** .242** .278** -.242** -.231** 0.036 .217** 

Inferior temporal .174* 0.042 0.123 .198* .168* .191* -.187* -.229** -0.021 0.145 

Middle temporal 0.153 0.032 0.098 0.136 .173* .172* -.209** -0.155 -0.044 .164* 

Superior temporal .231** 0.046 0.086 0.143 .256** .191* -.201* -.188* -0.020 0.119 

Transverse temporal 0.106 0.099 0.027 0.042 0.096 0.049 -0.079 -0.082 -0.086 0.009 

Temporal pole -0.017 0.082 0.062 0.045 0.093 0.031 -0.046 0.112 -0.075 0.047 

Orbitofrontal .204* 0.152 0.083 0.140 .265** 0.150 -.210** -.229** 0.063 0.111 

Inferior frontal 0.081 0.095 0.031 0.074 .194* 0.112 -0.072 -0.126 -0.015 0.041 

Middle frontal 0.111 0.128 0.009 0.057 .178* 0.142 -0.076 -0.159 0.013 0.051 

Superior frontal 0.019 0.124 0.04 0.005 .177* 0.069 -0.061 -0.034 0.013 0.004 

Precentral .166* 0.046 0.077 0.156 0.136 0.107 -0.125 -0.111 0.061 0.083 

Paracentral 0.121 0.157 0.093 0.157 .170* 0.139 -0.044 -0.047 0.039 0.008 
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Frontal pole -0.066 .173* 0.016 -0.024 0.037 -0.003 0.023 -0.010 -0.064 -0.103 

Anterior cingulate 0.146 0.084 0.085 0.139 .303** .193* -.197* -.198* 0.066 0.093 

Inferior parietal 0.149 0.102 .161* .172* .173* .188* -0.081 -.211** 0.145 .159* 

Superior parietal .158* 0.128 0.055 0.065 .181* 0.139 -0.076 -0.114 0.145 0.026 

Postcentral 0.023 0.009 -0.023 0.009 0.096 0.053 0.036 -0.036 -0.053 -0.038 

Precuneus .184* 0.145 0.107 .159* .193* .208** -0.108 -.195* 0.059 0.064 

Supra marginal .219** .158* 0.133 0.123 .171* 0.121 -.236** -.241** 0.012 .187* 

Isthmus cingulate .184* 0.021 0.025 .161* .181* .237** -0.127 -0.144 -0.070 0.140 

Posterior cingulate .169* -0.008 0.110 0.085 .229** 0.123 -.207* -0.144 0.056 .192* 

Cuneus 0.030 0.124 0.045 0.091 .215** .170* -0.137 -.240** 0.094 0.120 

Lingual 0.077 0.147 -0.069 0.068 .158* 0.137 -0.024 -0.148 0.108 0.012 

Lateral occipital 0.051 0.079 0.142 0.099 .223** 0.151 -.170* -.218** 0.103 .205* 

Pericalcarine 0.024 0.072 -0.048 0.010 0.151 0.113 -0.031 -0.102 0.061 -0.022 

Accumbens area .161* 0.139 0.033 .189* 0.092 .238** 0.005 -0.117 -0.005 -0.001 

Caudate -0.070 0.080 -0.097 -0.059 0.029 0.042 .297** -0.045 -0.011 0.010 

Putamen 0.046 0.028 -0.010 0.054 0.052 0.078 .199* -0.050 -0.071 -0.027 

Pallidum 0.156 0.055 0.031 0.115 .214** 0.154 0.019 -.182* 0.068 0.047 

Thalamus 0.122 0.085 0.124 .165* .232** .274** -0.136 -.235** .174* 0.142 

***p < 0.001; **p < 0.01; *p < 0.05 
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Supplementary table 6. Association of regional texture with cognitive performance Suspected Non-Alzheimer’s 

Disease Pathophysiology 

 VFT BNT WLMT WLRT CPT CRT TMT-A TMT-B DST FAB 

Amygdala -0.059 -0.155 -0.148 -.171* 0.045 -0.072 0.005 -0.003 -0.132 0.062 

Hippocampus -0.034 -0.028 -0.057 -0.049 0.010 -0.043 0.047 0.088 -0.068 -0.004 

Entorhinal -0.134 -0.146 -.221** -.291** -0.112 -.282** 0.081 0.035 0.022 -0.003 

Para hippocampal -0.090 -0.132 -0.028 -.228** -0.032 -0.123 -0.006 -0.047 0.074 0.051 

Fusiform 0.000 -0.054 -0.062 -0.094 -0.033 -0.060 0.054 -0.016 -0.111 0.065 

Bankssts 0.006 -0.040 -0.006 -0.074 -0.028 -0.072 0.009 -0.026 0.074 0.038 

Inferior temporal -0.068 -0.043 -0.124 -0.156 -.176* -0.127 .199* 0.100 -0.035 -0.074 

Middle temporal -0.085 -0.114 -0.157 -.197* -.208** -.189* .174* 0.132 -0.074 -0.122 

Superior temporal -0.087 -0.131 -0.155 -.174* -0.128 -.172* .201* 0.148 -0.118 -0.078 

Transverse temporal -0.129 -.242** -0.043 -0.098 -0.089 -0.056 -0.024 0.117 -0.126 -0.085 

Temporal pole -0.019 0.017 -0.094 -0.063 -0.017 -0.032 -0.011 -0.034 0.073 0.008 

Orbitofrontal -0.023 -0.007 -0.043 -0.036 0.023 -0.054 0.121 0.125 -0.020 -0.107 

Inferior frontal -0.017 -0.028 -0.069 -0.097 -0.048 -0.034 0.028 0.114 -0.064 -0.062 

Middle frontal 0.021 -0.073 0.035 0.001 0.054 0.014 -0.003 -0.029 -0.029 0.090 

Superior frontal 0.033 -0.059 0.061 -0.051 0.036 -0.019 -0.028 -0.13 -0.082 0.055 

Precentral -0.022 -0.103 0.015 -0.012 -0.006 -0.013 -0.016 0.026 -0.117 0.099 

Paracentral -0.043 -0.132 -0.067 -0.067 0.110 -0.004 0.034 -0.003 -0.057 0.056 
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Frontal pole 0.059 -0.105 0.086 0.100 0.103 0.064 -0.018 -0.038 -0.027 0.065 

Anterior cingulate -0.053 -0.112 0.000 0.004 0.024 0.036 0.083 -0.007 0.036 0.004 

Inferior parietal -0.025 -0.101 -0.007 -0.058 0.097 -0.045 -0.049 -0.006 0.034 -0.001 

Superior parietal 0.116 -0.096 0.073 0.055 .174* 0.039 -0.139 -0.088 0.035 .160* 

Postcentral 0.077 -0.078 0.099 0.093 0.070 0.008 -0.126 -0.060 -0.059 .213** 

Precuneus 0.051 -0.082 0.097 0.052 0.157 0.042 -0.036 -0.016 0.059 0.082 

Supra marginal -0.061 -.251** -0.072 -0.081 -0.085 -0.015 0.088 .171* -0.065 -0.032 

Isthmus cingulate -0.001 -.203* 0.056 -0.058 0.015 -0.050 -0.020 0.042 0.009 0.049 

Posterior cingulate -0.079 -0.039 -0.12 -.181* -0.017 -0.043 0.141 0.034 -0.047 -0.122 

Cuneus 0.109 -0.078 .176* 0.099 0.034 0.074 -0.062 -0.011 0.002 0.130 

Lingual -0.085 -.176* 0.051 -0.019 -0.010 -0.058 0.006 0.077 -0.133 0.026 

Lateral occipital 0.031 -0.147 -0.103 -0.050 0.050 0.011 0.020 0.072 -0.095 -0.063 

Pericalcarine 0.054 -0.133 0.088 0.037 0.045 -0.050 -0.053 -0.019 0.048 0.077 

Accumbens area 0.135 0.118 .207** 0.135 0.066 0.073 -0.158 -.234** 0.087 .164* 

Caudate -0.043 -0.094 -.166* -0.099 -0.123 -0.140 -0.048 -0.027 -0.013 -.183* 

Putamen 0.047 -0.125 -0.06 -0.116 -0.034 -0.021 -0.049 -0.030 0.067 0.062 

Pallidum 0.046 -0.102 0.035 -0.008 -0.069 -0.015 -0.100 0.088 0.056 0.102 

Thalamus -0.123 -0.076 -0.031 -0.129 -0.073 -0.089 0.140 0.065 -0.010 -0.017 

***p < 0.001; **p < 0.01; *p < 0.05 



86 

Bibliography 

 

Barthel, H., Gertz, H. J., Dresel, S., Peters, O., Bartenstein, P., Buerger, K., Hiemeyer, F., 

Wittemer-Rump, S. M., Seibyl, J., Reininger, C., Sabri, O., & Florbetaben Study, G. 

(2011). Cerebral amyloid-beta PET with florbetaben (18F) in patients with 

Alzheimer's disease and healthy controls: a multicentre phase 2 diagnostic study. 

Lancet Neurol, 10(5), 424-435. https://doi.org/10.1016/S1474-4422(11)70077-1  

Basso, M., Yang, J., Warren, L., MacAvoy, M. G., Varma, P., Bronen, R. A., & van Dyck, C. 

H. (2006). Volumetry of amygdala and hippocampus and memory performance 

in Alzheimer's disease. Psychiatry Research: Neuroimaging, 146(3), 251-261.  

Bell, C. C. (1994). DSM-IV: diagnostic and statistical manual of mental disorders. Jama, 

272(10), 828-829.  

Borghammer, P., Østergaard, K., Cumming, P., Gjedde, A., Rodell, A., Hall, N., & 

Chakravarty, M. (2010). A deformation‐based morphometry study of patients 

with early‐stage Parkinson’s disease. European journal of neurology, 17(2), 314-

320.  

Burnham, S. C., Bourgeat, P., Doré, V., Savage, G., Brown, B., Laws, S., Maruff, P., Salvado, 

O., Ames, D., & Martins, R. N. (2016). Clinical and cognitive trajectories in 

cognitively healthy elderly individuals with suspected non-Alzheimer's disease 

pathophysiology (SNAP) or Alzheimer's disease pathology: a longitudinal study. 

The Lancet Neurology, 15(10), 1044-1053.  

Burton, E. J., Karas, G., Paling, S., Barber, R., Williams, E. D., Ballard, C., McKeith, I. G., 

Scheltens, P., Barkhof, F., & O'Brien, J. T. (2002). Patterns of cerebral atrophy in 

dementia with Lewy bodies using voxel-based morphometry. Neuroimage, 17(2), 

618-630.  

Cairns, N. J., Neumann, M., Bigio, E. H., Holm, I. E., Troost, D., Hatanpaa, K. J., Foong, C., 

White III, C. L., Schneider, J. A., & Kretzschmar, H. A. (2007). TDP-43 in familial 

and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. The 

American journal of pathology, 171(1), 227-240.  

Camicioli, R., Gee, M., Bouchard, T. P., Fisher, N. J., Hanstock, C. C., Emery, D. J., & Martin, 

https://doi.org/10.1016/S1474-4422(11)70077-1


87 

W. W. (2009). Voxel-based morphometry reveals extra-nigral atrophy patterns 

associated with dopamine refractory cognitive and motor impairment in 

parkinsonism. Parkinsonism & related disorders, 15(3), 187-195.  

Chung, J. K., Plitman, E., Nakajima, S., Caravaggio, F., Iwata, Y., Gerretsen, P., Kim, J., 

Takeuchi, H., Shinagawa, S., & Patel, R. (2017). Hippocampal and clinical 

trajectories of mild cognitive impairment with suspected non-Alzheimer’s 

disease pathology. Journal of Alzheimer's Disease, 58(3), 747-762.  

Collewet, G., Strzelecki, M., & Mariette, F. (2004). Influence of MRI acquisition protocols 

and image intensity normalization methods on texture classification. Magnetic 

resonance imaging, 22(1), 81-91.  

Collins, J. A., Montal, V., Hochberg, D., Quimby, M., Mandelli, M. L., Makris, N., Seeley, W. 

W., Gorno-Tempini, M. L., & Dickerson, B. C. (2017). Focal temporal pole atrophy 

and network degeneration in semantic variant primary progressive aphasia. 

Brain, 140(2), 457-471. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278308/pdf/aww313.pdf  

Cousins, D., Burton, E., Burn, D., Gholkar, A., McKeith, I., & O’Brien, J. (2003). Atrophy of 

the putamen in dementia with Lewy bodies but not Alzheimer’s disease: an MRI 

study. Neurology, 61(9), 1191-1195.  

Coyle-Gilchrist, I. T., Dick, K. M., Patterson, K., Vázquez Rodríquez, P., Wehmann, E., Wilcox, 

A., Lansdall, C. J., Dawson, K. E., Wiggins, J., & Mead, S. (2016). Prevalence, 

characteristics, and survival of frontotemporal lobar degeneration syndromes. 

Neurology, 86(18), 1736-1743.  

Dani, M., Brooks, D. J., & Edison, P. (2017). Suspected non-Alzheimer's pathology–Is it 

non-Alzheimer's or non-amyloid? Ageing Research Reviews, 36, 20-31.  

Davidson, Y., Kelley, T., Mackenzie, I. R., Pickering-Brown, S., Du Plessis, D., Neary, D., 

Snowden, J. S., & Mann, D. M. (2007). Ubiquitinated pathological lesions in 

frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-

43. Acta neuropathologica, 113, 521-533.  

Does, M. D. (2018). Inferring brain tissue composition and microstructure via MR 

relaxometry. Neuroimage, 182, 136-148.  

Douglas, W., & Scharre, M. (2019). Preclinical, prodromal, and dementia stages of 

Alzheimer’s disease. Pract. Neurol, 2019, 36-42.  

Eickhoff, S., Walters, N. B., Schleicher, A., Kril, J., Egan, G. F., Zilles, K., Watson, J. D., & 

Amunts, K. (2005). High‐resolution MRI reflects myeloarchitecture and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278308/pdf/aww313.pdf


88 

cytoarchitecture of human cerebral cortex. Human brain mapping, 24(3), 206-

215.  

Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., & Zimmerman, R. A. (1987). MR signal 

abnormalities at 1.5 T in Alzheimer's dementia and normal aging. American 

Journal of Neuroradiology, 8(3), 421-426.  

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, 

A., Killiany, R., Kennedy, D., & Klaveness, S. (2002). Whole brain segmentation: 

automated labeling of neuroanatomical structures in the human brain. Neuron, 

33(3), 341-355. https://www.cell.com/neuron/pdf/S0896-6273(02)00569-X.pdf  

Geser, F., Martinez-Lage, M., Robinson, J., Uryu, K., Neumann, M., Brandmeir, N. J., Xie, S. 

X., Kwong, L. K., Elman, L., & McCluskey, L. (2009). Clinical and pathological 

continuum of multisystem TDP-43 proteinopathies. Archives of neurology, 66(2), 

180-189.  

Gordon, B. A., Blazey, T., Su, Y., Fagan, A. M., Holtzman, D. M., Morris, J. C., & Benzinger, 

T. L. (2016). Longitudinal β-amyloid deposition and hippocampal volume in 

preclinical Alzheimer disease and suspected non–Alzheimer disease 

pathophysiology. JAMA neurology, 73(10), 1192-1200.  

Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., Yao, L., & Chen, K. (2010). Voxel-based 

assessment of gray and white matter volumes in Alzheimer's disease. 

Neuroscience letters, 468(2), 146-150.  

Han, J. W., Kim, T. H., Kwak, K. P., Kim, K., Kim, B. J., Kim, S. G., Kim, J. L., Kim, T. H., Moon, 

S. W., Park, J. Y., Park, J. H., Byun, S., Suh, S. W., Seo, J. Y., So, Y., Ryu, S. H., Youn, 

J. C., Lee, K. H., Lee, D. Y., . . . Kim, K. W. (2018). Overview of the Korean 

Longitudinal Study on Cognitive Aging and Dementia. Psychiatry Investig, 15(8), 

767-774. https://doi.org/10.30773/pi.2018.06.02  

Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver 

operating characteristic curves derived from the same cases. Radiology, 148(3), 

839-843.  

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image 

classification. IEEE Transactions on systems, man, and cybernetics(6), 610-621.  

Hodges, J. R., Mitchell, J., Dawson, K., Spillantini, M. G., Xuereb, J. H., McMonagle, P., 

Nestor, P. J., & Patterson, K. (2010). Semantic dementia: demography, familial 

factors and survival in a consecutive series of 100 cases. Brain, 133(1), 300-306.  

Jack Jr, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., 

https://www.cell.com/neuron/pdf/S0896-6273(02)00569-X.pdf
https://doi.org/10.30773/pi.2018.06.02


89 

Holtzman, D. M., Jagust, W., Jessen, F., & Karlawish, J. (2018a). NIA-AA research 

framework: toward a biological definition of Alzheimer's disease. Alzheimer's & 

Dementia, 14(4), 535-562.  

Jack Jr, C. R., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., 

Holtzman, D. M., Jagust, W., Jessen, F., & Karlawish, J. (2018b). NIA‐AA research 

framework: toward a biological definition of Alzheimer's disease. Alzheimer's & 

Dementia, 14(4), 535-562.  

Jack Jr, C. R., Knopman, D. S., Chételat, G., Dickson, D., Fagan, A. M., Frisoni, G. B., Jagust, 

W., Mormino, E. C., Petersen, R. C., & Sperling, R. A. (2016). Suspected non-

Alzheimer disease pathophysiology—concept and controversy. Nature Reviews 

Neurology, 12(2), 117-124.  

Jack Jr, C. R., Knopman, D. S., Weigand, S. D., Wiste, H. J., Vemuri, P., Lowe, V., Kantarci, 

K., Gunter, J. L., Senjem, M. L., & Ivnik, R. J. (2012). An operational approach to 

National Institute on Aging–Alzheimer's Association criteria for preclinical 

Alzheimer disease. Annals of neurology, 71(6), 765-775.  

Janelidze, S., Zetterberg, H., Mattsson, N., Palmqvist, S., Vanderstichele, H., Lindberg, O., 

van Westen, D., Stomrud, E., Minthon, L., & Blennow, K. (2016). CSF Aβ42/Aβ40 

and Aβ42/Aβ38 ratios: better diagnostic markers of Alzheimer disease. Annals 

of clinical and translational neurology, 3(3), 154-165.  

Josephs, K. A., Hodges, J. R., Snowden, J. S., Mackenzie, I. R., Neumann, M., Mann, D. M., 

& Dickson, D. W. (2011). Neuropathological background of phenotypical 

variability in frontotemporal dementia. Acta neuropathologica, 122(2), 137-153. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232515/pdf/401_2011_Article_

839.pdf  

Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent human cortical 

labeling protocol. Frontiers in neuroscience, 6, 171.  

Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergström, M., 

Savitcheva, I., Huang, G. F., & Estrada, S. (2004). Imaging brain amyloid in 

Alzheimer's disease with Pittsburgh Compound‐B. Annals of Neurology: Official 

Journal of the American Neurological Association and the Child Neurology 

Society, 55(3), 306-319.  

Kwon, M. J., Lee, S., Park, J., Jo, S., Han, J. W., Oh, D. J., Lee, J.-Y., Park, J. H., Kim, J. H., & 

Kim, K. W. (2023). Textural and Volumetric Changes of the Temporal Lobes in 

Semantic Variant Primary Progressive Aphasia and Alzheimer’s Disease. Journal 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232515/pdf/401_2011_Article_839.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232515/pdf/401_2011_Article_839.pdf


90 

of Korean Medical Science, 38(41).  

Landin-Romero, R., Tan, R., Hodges, J. R., & Kumfor, F. (2016). An update on semantic 

dementia: genetics, imaging, and pathology. Alzheimer's research & therapy, 

8(1), 1-9.  

Lee, D. Y., Lee, K. U., Lee, J. H., Kim, K. W., Jhoo, J. H., Kim, S. Y., Yoon, J. C., Woo, S. I., Ha, 

J., & Woo, J. I. (2004). A normative study of the CERAD neuropsychological 

assessment battery in the Korean elderly. Journal of the International 

Neuropsychological Society, 10(1), 72-81. 

https://www.cambridge.org/core/journals/journal-of-the-international-

neuropsychological-society/article/abs/normative-study-of-the-cerad-

neuropsychological-assessment-battery-in-the-korean-

elderly/67046A1077EE7CA2CD41FBA2A9933360  

Lee, J. H., Lee, K. U., Lee, D. Y., Kim, K. W., Jhoo, J. H., Kim, J. H., Lee, K. H., Kim, S. Y., Han, 

S. H., & Woo, J. I. (2002). Development of the Korean version of the Consortium 

to Establish a Registry for Alzheimer's Disease Assessment Packet (CERAD-K): 

clinical and neuropsychological assessment batteries. J Gerontol B Psychol Sci 

Soc Sci, 57(1), P47-53. https://doi.org/10.1093/geronb/57.1.p47  

Lee, S., Kim, K. W., & Initiative, A. s. D. N. (2021). Associations between texture of T1‐

weighted magnetic resonance imaging and radiographic pathologies in 

Alzheimer’s disease. European journal of neurology, 28(3), 735-744.  

Lee, S., Lee, H., & Kim, K. W. (2020). Magnetic resonance imaging texture predicts 

progression to dementia due to Alzheimer disease earlier than hippocampal 

volume. Journal of Psychiatry and Neuroscience, 45(1), 7-14.  

Leigh, P., Whitwell, H., Garofalo, O., Buller, J., Swash, M., Martin, J., Gallo, J.-M., Weller, R., 

& Anderton, B. (1991). Ubiquitin-immunoreactive intraneuronal inclusions in 

amyotrophic lateral sclerosis: morphology, distribution, and specificity. Brain, 

114(2), 775-788.  

Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring 

rules. Neurology.  

Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S., & Hodges, J. R. 

(2000). A voxel‐based morphometry study of semantic dementia: relationship 

between temporal lobe atrophy and semantic memory. Annals of neurology, 

47(1), 36-45.  

Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., Freedman, M., 

https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/normative-study-of-the-cerad-neuropsychological-assessment-battery-in-the-korean-elderly/67046A1077EE7CA2CD41FBA2A9933360
https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/normative-study-of-the-cerad-neuropsychological-assessment-battery-in-the-korean-elderly/67046A1077EE7CA2CD41FBA2A9933360
https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/normative-study-of-the-cerad-neuropsychological-assessment-battery-in-the-korean-elderly/67046A1077EE7CA2CD41FBA2A9933360
https://www.cambridge.org/core/journals/journal-of-the-international-neuropsychological-society/article/abs/normative-study-of-the-cerad-neuropsychological-assessment-battery-in-the-korean-elderly/67046A1077EE7CA2CD41FBA2A9933360
https://doi.org/10.1093/geronb/57.1.p47


91 

Kertesz, A., Robert, P., & Albert, M. (1998). Frontotemporal lobar degeneration: 

a consensus on clinical diagnostic criteria. Neurology, 51(6), 1546-1554.  

Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., Freedman, M., 

Kertesz, A., Robert, P. H., Albert, M., Boone, K., Miller, B. L., Cummings, J., & 

Benson, D. F. (1998). Frontotemporal lobar degeneration: a consensus on clinical 

diagnostic criteria. Neurology, 51(6), 1546-1554. 

https://doi.org/10.1212/wnl.51.6.1546  

Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., 

Bruce, J., Schuck, T., Grossman, M., & Clark, C. M. (2006). Ubiquitinated TDP-43 

in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 

314(5796), 130-133.  

Patel, M. B., Rodriguez, J. J., & Gmitro, A. F. (2008). Effect of gray-level re-quantization 

on co-occurrence based texture analysis. 2008 15th IEEE International 

Conference on Image Processing,  

Pyun, J.-M., Park, Y. H., Kim, H.-R., Suh, J., Kang, M. J., Kim, B. J., Youn, Y. C., Jang, J.-W., 

Kim, S., & Initiative, A. s. D. N. (2017). Posterior atrophy predicts time to 

dementia in patients with amyloid-positive mild cognitive impairment. 

Alzheimer's Research & Therapy, 9, 1-9.  

Ratnavalli, E., Brayne, C., Dawson, K., & Hodges, J. (2002). The prevalence of 

frontotemporal dementia. Neurology, 58(11), 1615-1621.  

Reetz, K., Gaser, C., Klein, C., Hagenah, J., Büchel, C., Gottschalk, S., Pramstaller, P. P., 

Siebner, H. R., & Binkofski, F. (2009). Structural findings in the basal ganglia in 

genetically determined and idiopathic Parkinson's disease. Movement Disorders, 

24(1), 99-103.  

Rogalski, E., Cobia, D., Martersteck, A., Rademaker, A., Wieneke, C., Weintraub, S., & 

Mesulam, M.-M. (2014). Asymmetry of cortical decline in subtypes of primary 

progressive aphasia. Neurology, 83(13), 1184-1191. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176026/pdf/NEUROLOGY2014

583930.pdf  

Rohrer, J. D., Lashley, T., Schott, J. M., Warren, J. E., Mead, S., Isaacs, A. M., Beck, J., Hardy, 

J., De Silva, R., & Warrington, E. (2011). Clinical and neuroanatomical signatures 

of tissue pathology in frontotemporal lobar degeneration. Brain, 134(9), 2565-

2581.  

Rohrer, J. D., & Rosen, H. J. (2013). Neuroimaging in frontotemporal dementia. 

https://doi.org/10.1212/wnl.51.6.1546
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176026/pdf/NEUROLOGY2014583930.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176026/pdf/NEUROLOGY2014583930.pdf


92 

International Review of Psychiatry, 25(2), 221-229.  

Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N., & Fox, N. C. (2002). Mapping the 

evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-

registered serial MRI. Proceedings of the National Academy of Sciences, 99(7), 

4703-4707.  

Scheltens, P., Leys, D., Barkhof, F., Huglo, D., Weinstein, H., Vermersch, P., Kuiper, M., 

Steinling, M., Wolters, E. C., & Valk, J. (1992). Atrophy of medial temporal lobes 

on MRI in" probable" Alzheimer's disease and normal ageing: diagnostic value 

and neuropsychological correlates. Journal of Neurology, Neurosurgery & 

Psychiatry, 55(10), 967-972.  

Seidel, K., Bouzrou, M., Heidemann, N., Krüger, R., Schöls, L., den Dunnen, W. F., Korf, H. 

W., & Rüb, U. (2017). Involvement of the cerebellum in Parkinson disease and 

dementia with Lewy bodies. Annals of neurology, 81(6), 898-903.  

Snowden, J. S., Harris, J. M., Thompson, J. C., Kobylecki, C., Jones, M., Richardson, A. M., 

& Neary, D. (2018). Semantic dementia and the left and right temporal lobes. 

Cortex, 107, 188-203.  

Snowden, J. S., Thompson, J., & Neary, D. (2004). Knowledge of famous faces and names 

in semantic dementia. Brain, 127(4), 860-872.  

Tak, K., Lee, S., Choi, E., Suh, S. W., Oh, D. J., Moon, W., Kim, H. S., Byun, S., Bae, J. B., & 

Han, J. W. (2020). Magnetic resonance imaging texture of medial pulvinar in 

dementia with Lewy bodies. Dementia and Geriatric Cognitive Disorders, 49(1), 

8-15.  

Teipel, S. J., Pruessner, J. C., Faltraco, F., Born, C., Rocha-Unold, M., Evans, A., Möller, H.-

J., & Hampel, H. (2006). Comprehensive dissection of the medial temporal lobe 

in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and 

parahippocampal cortices using MRI. Journal of neurology, 253, 794-800.  

Tomé, S. O., Tsaka, G., Ronisz, A., Ospitalieri, S., Gawor, K., Gomes, L. A., Otto, M., von 

Arnim, C. A., Van Damme, P., & Van Den Bosch, L. (2023). TDP-43 pathology is 

associated with increased tau burdens and seeding. Molecular 

Neurodegeneration, 18(1), 71.  

Vijayakumar, A., & Vijayakumar, A. (2013). Comparison of hippocampal volume in 

dementia subtypes. International Scholarly Research Notices, 2013(1), 174524.  

Vos, S. J., Delvenne, A., Jack Jr, C. R., Thal, D. R., & Visser, P. J. (2024). The clinical 

importance of suspected non-Alzheimer disease pathophysiology. Nature 



93 

Reviews Neurology, 1-10.  

Vos, S. J., Verhey, F., Frölich, L., Kornhuber, J., Wiltfang, J., Maier, W., Peters, O., Rüther, E., 

Nobili, F., & Morbelli, S. (2015). Prevalence and prognosis of Alzheimer’s disease 

at the mild cognitive impairment stage. Brain, 138(5), 1327-1338.  

Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., Nordberg, A., 

Bäckman, L., Albert, M., & Almkvist, O. (2004). Mild cognitive impairment–

beyond controversies, towards a consensus: report of the International Working 

Group on Mild Cognitive Impairment. Journal of internal medicine, 256(3), 240-

246.  

Wisse, L., De Flores, R., Xie, L., Das, S., McMillan, C., Trojanowski, J., Grossman, M., Lee, 

E., Irwin, D., & Yushkevich, P. (2021). Pathological drivers of neurodegeneration 

in suspected non-Alzheimer’s disease pathophysiology. Alzheimer's Research & 

Therapy, 13(1), 100.  

Yoo, S.-W., Kim, Y.-S., Noh, J.-S., Oh, K.-S., Kim, C.-H., NamKoong, K., Chae, J.-H., Lee, G.-

C., Jeon, S.-I., & Min, K.-J. (2006). Validity of Korean version of the mini-

international neuropsychiatric interview. Anxiety and Mood, 2(1), 50-55.  

Zhang, Y., Moore, G. W., Laule, C., Bjarnason, T. A., Kozlowski, P., Traboulsee, A., & Li, D. 

K. (2013). Pathological correlates of magnetic resonance imaging texture 

heterogeneity in multiple sclerosis. Annals of neurology, 74(1), 91-99.  

 

 

 

 

 

 

 

 

 

 

 



94 

국문 초록 

알츠하이머병과 유사한 신경 퇴행성 질환의 

탐구: 자기공명영상의 부피 및 텍스처 분석 

서울대학교 대학원 

뇌인지과학과 

권민정 

 

연구 배경 및 목적: 의미 치매(SD)와 비알츠하이머병 병리(SNAP)는 

알츠하이머병(AD)과는 구별되는 신경 퇴행성 질환이지만, 임상적 및 신경 

영상적 특징이 겹쳐 조기 진단과 치료가 어렵다. AD 진단 도구인 아밀로이드 

PET 영상 및 분자 바이오 마커는 발전했으나, SD와 SNAP에 해당하는 동등한 

도구는 여전히 개발이 부족하다. 구조적 MRI는 유용한 도구이지만, 기존의 

부피 기반 분석만으로는 미세한 신경 퇴행 변화를 탐지하기에 한계가 있다. 

뇌 조직의 미세구조 변화를 정량화하는 텍스처 분석은 질환별 신경퇴행 

패턴을 보다 정교하게 이해할 수 있도록 돕는 방법으로 이 격차를 해소할 수 

있다. 본 연구는 1) 텍스처 및 부피 지표를 사용해 SD와 SNAP의 신경 퇴행 

패턴을 특성화하고, 2) 부피 기반, 텍스처 기반, 그리고 복합 모델의 진단 

성능을 평가하며, 3) 텍스처와 부피 지표를 결합함으로써 단일 방식 모델보다 

진단 정확도가 향상되는지를 확인하였다. 본 연구의 결과로 SD와 SNAP을 

AD와 구별하고, 맞춤형 진단 도구와 치료 전략 개발에 기여할 것을 기대한다. 
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연구 방법: 본 연구는 구조적 MRI 데이터를 분석하여 SD, SNAP, AD 간 신경 

퇴행 패턴을 구별하였다. 연구 1에서는 SD 환자 30명, 연령, 성별, 교육 

수준을 일치시킨 AD 환자 60명, 정상 대조군(NC) 60명을 한국 노인 종단 

연구(KLOSCAD)에서 등록하였다. 연구 2에서는 치매 클리닉 방문자 288명과 

KLOSCAD 참여자 214명을 포함한 총 502명을 연구 대상으로 하였다. 

참가자들은 18F-florbetaben PET 및 MRI를 사용하여 아밀로이드 베타 침착 및 

신경 퇴행 지표를 기반으로 NC(A-N-), AD(A+N+), SNAP(A-N+) 그룹으로 

분류되었다. 

뇌 부피는 3D T1 강조 MRI에서 FreeSurfer를 사용하여 측정하였고, 텍스처 

특징은 히스토그램 정규화, 뇌척수액(CSF) 대비 강도 정규화, 회색조 값을 

균일한 범위로 재조정하는 3단계 전처리를 통해 추출하였다. 회색조 

공행렬(GLCM)을 사용하여 텍스처 지표를 계산하였으며, "대비(contrast)"는 

특정 뇌 영역 내의 회색조 변화와 공간적 분포를 반영하였다. 

부피 및 텍스처 특징을 사용하여 분류를 위한 로지스틱 회귀 모델을 개발하고, 

두 가지 방식의 유의미한 특징을 결합한 복합 모델을 제안하였다. 모델 

성능은 수신자 조작 특성(ROC) 곡선 분석으로 평가되었으며, 곡선 아래 

면적(AUC)을 비교하였다. 그룹 간 비교를 위한 ANCOVA와 같은 통계 분석은 

SPSS와 MedCalc를 사용하여 수행되었으며, 모든 분석에서 유의 수준은 P < 

0.05로 설정하였다. 

연구 결과: 연구 1에서는 SD가 NC 및 AD와 비교하여 뚜렷한 인지 장애와 
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신경 퇴행 패턴을 보였다. SD 환자는 측두엽의 전두극에서 현저한 위축을 

보였으며, 텍스처 분석에서 해당 부위의 미세구조 변화가 확인되었다. 

로지스틱 회귀 모델은 전두극과 해마의 텍스처 특징이 SD를 NC 및 AD와 

효과적으로 구별하는 데 유용함을 보여주었다. 부피와 텍스처 지표를 결합한 

복합 모델은 분류 정확도를 향상시켜 SD의 미세구조 변화를 강조하였다. 

연구 2에서는 SNAP과 AD가 구조적 및 미세 구조적 변화에서 뚜렷한 차이를 

보였다. 텍스처 분석은 특히 시상에서 이질성이 증가한 것을 밝혀내어 

SNAP을 AD와 구별할 수 있음을 보여주었다. 로지스틱 회귀 모델은 SNAP을 

구별하는 데 있어 전두엽 및 피질하 텍스처 특징이 중요한 역할을 한다고 

확인하였다. 부피 및 텍스처 지표를 통합한 복합 모델은 진단 성능을 

향상시켰으며, SNAP에서의 미세 신경 퇴행 차이를 탐지하는 데 텍스처 분석의 

유용성을 입증하였다. 

결론: 본 연구는 SD와 SNAP과 같이 AD를 모방하는 신경 퇴행성 질환에서 

텍스처 분석의 유용성을 보여주었다. 텍스처 분석은 초기 미세구조 변화를 

탐지하여 AD와 비알츠하이머병 상태를 보다 정확하게 구별할 수 있는 유용한 

진단 도구로, 조기 진단을 개선하고 맞춤형 치료 전략에 기여할 가능성을 

제시한다. 

키워드: 알츠하이머병, 의미 치매, 비알츠하이머병 병리, 자기공명영상, 부피, 

텍스처 

학번: 2020-31019 


	1. Introduction 
	1.1. Study Background 
	1.2. Study Hypotheses 
	1.2.1. Study 1 
	1.2.2. Study 2 
	2. Methods        
	2.1. Study participants
	2.2. Research ethics 
	2.3. Assessments
	2.4. MRI acquisition and preprocessing 
	2.5. Amyloid PET acquisition and preprocessing
	2.6. Analysis of volume and texture of 3D T1-weighted MRI 
	2.7. Statistical analyses 
	3. Results        
	3.1. Study 1         
	3.2. Study 2  
	4. Discussions 
	5. Conclusions 
	Bibliography 
	국문초록 


<startpage>16
1. Introduction  1
1.1. Study Background  1
1.2. Study Hypotheses  5
1.2.1. Study 1  6
1.2.2. Study 2  7
2. Methods         8
2.1. Study participants 8
2.2. Research ethics  10
2.3. Assessments 11
2.4. MRI acquisition and preprocessing  13
2.5. Amyloid PET acquisition and preprocessing 15
2.6. Analysis of volume and texture of 3D T1-weighted MRI  15
2.7. Statistical analyses  17
3. Results         18
3.1. Study 1          18
3.2. Study 2   23
4. Discussions  28
5. Conclusions  41
Bibliography  86
국문초록  94
</body>

