

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

문학석사 학위논문

Exploring the Effects of Tokenizer

Extension on Domain-specific Fine-

tuning of Language Models

언어 모델의 전문 분야 미세 조정을 통한

토크나이저 확장의 효과 연구

 2025 년 02 월

서울대학교 대학원

언어학과 언어학전공

김 재 윤

Exploring the Effects of Tokenizer

Extension on Domain-specific Fine-

tuning of Language Models

지도 교수 신 효 필

이 논문을 문학석사 학위논문으로 제출함

2025년 02월

서울대학교 대학원

언어학과 언어학전공

김 재 윤

김재윤의 문학석사 학위논문을 인준함

2025년 02월

위 원 장 이 상 아 (인)

부위원장 신 효 필 (인)

위 원 김 문 형 (인)

Exploring the Effects of Tokenizer

Extension on Domain-specific Fine-

tuning of Language Models

Advising Professor, Dr. Hyopil Shin

Submitting a master’s thesis of Art

February 2025

Graduate School of Humanities

Seoul National University
Linguistics Major

Jaeyoon Kim

Confirming the master’s thesis written by

Jaeyoon Kim

February 2025

Chair Sangah Lee (Seal)

Vice Chair Hyopil Shin (Seal)

Examiner Munhyong Kim (Seal)

 i

Abstract

Jaeyoon Kim

Department of Linguistics

The Graduate School

Seoul National University

Large language models (LLMs) that undergo extensive pretraining on massive

datasets over long periods have become dominant nowadays. Since it is highly

challenging for individuals to train such models from scratch, it has become common

practice to fine-tune shared pretrained models for specific tasks. However, when the

vocabulary distribution of the data used for fine-tuning significantly differs from the

vocabulary which the existing tokenizer can process, issues can arise, such as the

tokenizer failing to handle the data properly or excessively fragmenting words into

overly short tokens.

Extending the tokenizer by adding new vocabulary items can be an effective

solution to mitigate these problems, however, there has been little in-depth research

on the specific effects of tokenizer extension. Therefore, this study aimed to analyze

the effects of tokenizer extension on domain-specific fine-tuning by training small

models, using tokenizers extended with medical data and conducting several

analyses. The medical domain, characterized by its frequent use of specialized

terminology, was anticipated to benefit positively from tokenizer extension.

 ii

Experiments were conducted by extending BPE (Byte Pair Encoding)-based

methods, including SentencePiece BPE, Byte-level BPE, and WordPiece, which uses

a similar algorithm. The results showed that while the tokenizer's compression

capability slightly improved, the memory and time required for model training

increased. In addition, evaluated with 4-options multiple choice questions from

MultiMedQA, models with extended tokenizer showed worse performance than the

models with not extended ones. From these results, it could be concluded that

tokenizer extension may not be helpful, when it comes to fine-tuning a language

model with domain-specific data.

Keywords : Tokenizer Extension, Medical Fine-tuning, Language Model, Byte Pair

Encoding, WordPiece, SentencePiece BPE, Byte-level BPE, Compression

Student Number : 2023-28898

 iii

Table of Contents

1. Introduction .. １

2. Related Works ... ３

2.1. Subword Tokenizations .. ３

2.1.1. Background of Tokenizers .. ３

2.1.2. Subwords as Tokens ... ６

2.1.3. Byte Pair Encoding (BPE) ... ７

2.1.4. WordPiece ... ７

2.1.5. SentencePiece BPE ... ８

2.1.6. Byte-level BPE .. １０

2.2. BPE and Compression ... １１

3. Datasets & Models .. １４

3.1. Datasets ... １４

3.1.1. PubMed ... １４

3.1.2. PMC (PubMed Central) .. １５

3.1.3. MultiMedQA subsets ... １６

3.1.3.1. MedQA .. １６

3.1.3.2. MedMCQA ... １７

3.1.3.3. MMLU Clinical Topics .. １８

3.2. Models ... １８

3.2.1. BERT ... １９

3.2.2. MobileLLM ... ２０

3.2.3. SmolLM2 ... ２１

4. Tokenizer Extension.. ２３

4.1. Details on the Original Tokenizers .. ２３

 iv

4.1.1. Normalizations & Pre-tokenizations ２４

4.1.1.1. BERT ... ２４

4.1.1.2. MobileLLM .. ２６

4.1.1.3. SmolLM2 .. ２６

4.1.2. Training Algorithms .. ２７

4.1.2.1. WordPiece ... ２８

4.1.2.2. SentencePiece BPE ... ３１

4.1.2.3. Byte-level BPE .. ３４

4.1.3. Tokenization Algorithms ... ３７

4.1.3.1. WordPiece ... ３８

4.1.3.2. SentencePiece BPE ... ４０

4.1.3.3. Byte-level BPE .. ４２

4.2. Training Supplement Tokenizers .. ４４

4.2.1. Training Corpus ... ４４

4.3. Extending the Original Vocabulary and Merge Rules ４６

4.3.1. WordPiece ... ４６

4.3.2. SentencePiece BPE ... ４７

4.3.3. Byte-level BPE .. ４８

5. Experiments .. ５１

5.1. Training Tasks ... ５１

5.1.1. Continual Pretraining .. ５１

5.1.2. Multiple Choice Fine-tuning ... ５２

5.1.3. Module Extensions ... ５３

5.2. Training Configurations .. ５５

5.2.1. Hyperparameters ... ５５

5.2.2. Optimization & Learning Rate Scheduling ５５

5.2.3. Device Settings .. ５６

6. Analyses ... ５８

6.1. Evaluation on MultiMedQA Subset .. ５８

 v

6.2. Measure on Compression ... ６４

6.3. Training Costs ... ６６

6.3.1. Train Runtime .. ６７

6.3.2. Maximum Memory Usage ... ６９

7. Conclusion ... ７４

Bibliography .. ７６

국문 초록 .. ８０

 vi

List of Algorithms

Algotirhm 1. Train a WordPiece tokenizer ... 30

Algotirhm 2. Train a SentencePiece BPE tokenizer 33

Algotirhm 3. Train a Byte-level BPE tokenizer.. 36

Algotirhm 4. WordPiece Tokenization .. 39

Algotirhm 5. SentencePiece BPE Tokenization .. 41

Algotirhm 6. Byte-level BPE Tokenization ... 43

Algotirhm 7. Extend BERT tokenizer with WordPiece supplement

tokenizer .. 47

Algorithm 8. Extend MobileLLM tokenizer with SentencePiece BPE

supplement tokenizer ... 48

Algorithm 9. Extend SmolLM2 tokenizer with Byte-level BPE supplement

tokenizer .. 49

 vii

List of Figures

Figure 1. Steps of converting input text into numerical representations 3

Figure 2. Steps of converting input text into numerical representations

(revised) ... 4

Figure 3. Train runtime for continual pretraining stage 68

Figure 4. Maximum memory usage during continual pretraining stage of

BERT Base Cased ... 70

Figure 5. Maximum memory usage during continual pretraining stage of

MobileLLM 125M .. 70

Figure 6. Maximum memory usage during continual pretraining stage of

SmolLM2 135M .. 71

Figure 7. Maximum memory usage during multiple choice fine-tuning stage

of BERT Base Cased ... 71

Figure 8. Maximum memory usage during multiple choice fine-tuning stage

of MobileLLM 125M .. 72

Figure 9. Maximum memory usage during multiple choice fine-tuning stage

of SmolLM2 135M .. 72

 viii

List of Tables

Table 1. Summary of base model configurations ... 19

Table 2. Punctuations in ASCII plane ... 26

Table 3. Summary of normalization and pre-tokenizations, implemented

by the tokenizers of BERT, MobileLLM, and SmolLM2 27

Table 4. Summary of vocabulary sizes of dummy tokenizers, trained with a

half of the model training corpus .. 44

Table 5. Summary of vocabulary sizes of dummy tokenizers, trained with

the list of medical terms crawled from Merriam-Webster Medical

Dictionary .. 46

Table 6. The number of tokens extended .. 50

Table 7. An example of formatted MedMCQA question 53

Table 8. Predefined random initialization methods of extended modules . 54

Table 9. Summary of number of parameters newly added to models

 .. 54

Table 10. Summary of learning rates selected by learning rate search

 .. 56

Table 11. Overview of the number of the correct answers chosen by models

 .. 60

Table 12. Overview of performances on MultiMedQA subset, variations of

BERT Base Cased ... 61

Table 13. Overview of performances on MultiMedQAsubset, variations of

MobileLLM 125M .. 62

 ix

Table 14. Overview of performances on MultiMedQA subset, variations of

SmolLM2 135M .. 63

Table 15. Average number of tokens in the sample batch, tokenized by ex

tended tokenizers .. 65

Table 16. Average number of characters captured by extended tokenizers

with 2,048 tokens, on sample batch ... 65

 １

1. Introduction

Since the advent of the Transformer (Vaswani et al., 2017) architecture, which

demonstrated high performance in natural language processing, numerous models

such as GPT, BERT, and T5 have been developed based on variations of the

Transformer. These models are now chosen and applied based on the specific

requirements of a given task. However, with the introduction of the scaling laws for

neural language models and the emergence of "emergent abilities" in causal language

models of sufficient scale, large language models (LLMs) with billions of parameters

have come into existence. LLMs of a sufficiently large scale can handle most tasks

in a few-shot or zero-shot manner, leading to their widespread use across various

tasks. However, training high-performing models requires access to vast amounts of

well-curated data, large-scale computing resources, and extensive pretraining

periods. Consequently, it is often impractical or highly inefficient for individual users

to train their own models from scratch. This has led to the development of platforms

for sharing pretrained models and advanced fine-tuning techniques that allow users

to effectively adapt pretrained models for specific needs.

One critical consideration when fine-tuning a pretrained model is vocabulary. This

becomes particularly important, when fine-tuning a model for a new language or

specialized domain. Significant differences between the vocabulary distributions of

the pretraining corpus and the fine-tuning corpus can lead to out-of-vocabulary

(OOV) issues or overly fragmented tokenization, where words are broken into too

many tokens, making it difficult for the model to understand their meaning. To

 ２

address this, extending the vocabulary and merge rules of the tokenizer to better

capture the words in the fine-tuning corpus can be an effective approach. However,

the impact of such extensions has not been thoroughly analyzed in existing studies.

In this research, the main goal was to analyze the effects of tokenizer extension on

domain-specific fine-tuning of language models, focusing on its application in the

medical domain. The medical field, characterized by an extensive use of specialized

terminology, is a domain where such tokenizer extensions could be highly beneficial.

For experiment, three models: BERT, MobileLLM, SmolLM2 with extended

tokenizers were fine-tuned with medical texts and multiple choice questions. These

models adopt BPE-based methods: WordPiece, SentencePiece BPE, and Byte-level

BPE as tokenization respectively, which comprise the majority of recent NLP

tokenizations.

After training, the models were evaluated with 4-options multiple choice

questions from MultiMedQA, and the effects of tokenizer extension on other factors

such as compression and training costs were measured. By analyzing the results

obtained from the above, this study provides insights toward tokenizer extension and

clarify whether it is beneficial to extend tokenizers in case of domain-specific fine-

tuning of language models.

 ３

2. Related Works

2.1. Subword Tokenizations

2.1.1. Background of Tokenizers

Regardless of their architecture, language models ultimately process numbers.

This implies that all language models must first convert text into numerical

representations before they can model language. This conversion process involves

the following steps in Figure 1:

Figure 1. Steps of converting input text into numerical representations

The process of converting a token sequence into stacked embeddings (Step 2) is

typically performed in parallel by first encoding the tokens into mapped indices, then

transforming these indices into one-hot vectors, and finally multiplying them with

embedding look-up table. Breaking this down further, the steps can be outlined as in

Figure 2:

Sequence of tokens

Sequence of embeddings

Input text

1. Segment text into a sequence of tokens.

2. Map tokens into corresponding embeddings.

 ４

Figure 2. Steps of converting input text into numerical representations (revised)

Since dense vector representations of text—such as Word2Vec (Mikolov et al.,

2013), GloVe (Pennington et al., 2014)—were introduced, these steps have become

a fixed component of all language models. Among the steps, Step 3 is typically

handled directly by the models, as the embedding look-up tables are now commonly

trainable or frozen matrices of parameter that is integrated into the models

themselves. However, the processes up to Step 2—converting input text into a

sequence of indices—require an external module, commonly referred to as a

tokenizer. Language models acquire their understanding of language by working

with the numerical arrays produced by the tokenizer, therefore it is essential to use

the same tokenizer that was employed during the model's training, to exploit a

language model's ability effectively.

Some tokenizers perform normalization and pre-tokenization before

segmenting and encoding the input text. Normalization involves tasks which are

similar to text cleaning, ranging from simple substitutions—such as converting

uppercase letters to lowercase, stripping accent symbols, or replacing all whitespace

characters with spaces—to more complex processes like applying regular

Sequence of tokens

Sequence of embeddings

Input text

1. Segment text into a sequence of tokens.

3. Transform indices into one-hot vectors and

multiply with embedding look-up table.

2. Encode tokens into corresponding indices.

Sequence of indices

 ５

expressions or Unicode normalization methods such as NFC and NFD. Pre-

tokenization is the process of breaking the text into segments based on predefined

rules prior to tokenization. This can include splitting text using whitespace or

specific characters like ‘-’(hyphens) or ‘/’(slashes) as delimiters, isolating characters

such as digits and punctuations from other adjacent characters, or separating

character sequences from different Unicode categories and subcategories.

A tokenizer then performs tokenization and encoding based on a predefined

vocabulary. Through specific algorithms, tokens are registered in the vocabulary

alongside their indices, and other components such as merge rules are obtained if

they are required for tokenization, depending on the type of the tokenizer.

Subsequently, texts can be segmented into tokens that match those in the vocabulary

and converted into their mapped indices. The critical issue here is determining what

units to use as tokens, when constructing the vocabulary and implementing

segmentation.

When segmenting text, one of the most intuitive units would be word. Words can

be easily segmented using whitespace as a delimiter, aligning with the intuitive goal

of tokenization, which is to break down a document or sentence into smaller

meaningful units. Early language models often used words as tokens, and it was

common to build vocabularies by segmenting a corpus based on whitespace, setting

minimum frequency thresholds, and collecting unique items. However, using words

as tokens has several limitations: it requires large number of tokens to capture

inflected forms of words, and it often leads to out-of-vocabulary (OOV) issues (since

the vocabulary is sensitive only to the training corpus), reducing the model's

flexibility.

 ６

2.1.2. Subwords as Tokens

As discussed above, using words as units for tokenization is intuitive but comes

with significant limitations. This has led to the development of methods that use

other units as tokens. The main issue with word-level tokenization arises from the

sheer number of unique words, making it impractical. To address this, breaking text

into smaller units than words to reduce diversity among tokens can be an effective

solution. When splitting text into smaller units than words, a natural choice might be

characters, thus methods using characters as units (Chung et al., 2016) or using both

words and characters as units (Luong and Manning, 2016) had been proposed.

However, using characters as units introduces several problems. First, converting

each character in the input text into indices results in sequences that are excessively

long. This reduces the amount of text that can be captured within a fixed-length index

array and increases processing costs for texts with same length. Moreover, individual

character tokens convey very little meaning. Considering that the goal of

tokenization is to segment input text into smaller meaningful units to help the model

process the text, characters are not ideal as units. To sum up, while words and

characters are intuitive and convenient for segmenting text, they are not suitable as

tokenization units.

As a countermeasure, subwords, which are smaller than words but longer than

characters, were proposed as tokenization units. Subwords strike a balance by being

more flexible than words while containing more information than characters, and

diverse approaches to building subword vocabularies and performing segmentation

with them have emerged. As models using subword tokenization have demonstrated

strong performance, subwords has been established as the standard tokenization unit,

 ７

and today, all well-known models rely on subword tokenization such as WordPiece

and BPE.

2.1.3. Byte Pair Encoding (BPE)

Byte Pair Encoding (BPE) is a type of data compression technique that repeatedly

replaces the most frequent pair of bytes in a sequence with an unused byte (Gage,

1994). This method can also be applied to character sequences, making it suitable

for tokenization. BPE forms the foundation of many tokenizers used in large

language models nowadays, however it was introduced to natural language

processing even before the rise of transformers. It was first utilized in neural machine

translation to address the out-of-vocabulary (OOV) issue by breaking unknown and

rare words into subwords (Sennrich et al., 2015).

When used for tokenization, BPE follows a similar process to its original

compression method: it learns a vocabulary by iteratively merging the most frequent

pairs of characters or subwords. During this process, the merge operations are

recorded as merge rules. To tokenize an input text, the text is first converted into a

character sequence, and the merge rules are applied to the sequence to generate a

sequence of tokens.

2.1.4. WordPiece

WordPiece is a tokenization method developed by Google Research, initially

designed to address technical challenges in speech recognition systems. To be

specific, languages like Korean and Japanese which blend diverse characters within

 ８

sentences and use few whitespaces, often result in a high number of homonyms,

making text processing difficult. WordPiece was created to ease this by adding word

boundary markers to the corpus segmented on spaces, and using a vocabulary trained

to maximize the likelihood of character sequences in the corpus (Schuster &

Nakajima, 2012). Inspired by the application of BPE, Google later adopted

WordPiece for their neural machine translation system (Wu et al., 2016). WordPiece

also became the tokenization method of BERT (Devlin et al., 2019), solidifying its

position as a major tokenization method.

Initially, Google did not release Python code for training WordPiece models due

to dependencies with C##, leaving the details of how pairs were merged to maximize

corpus likelihood unclear. There had been several failed attempts to replicate the

original WordPiece vocabularies using the same corpora, and HuggingFace

eventually succeeded to replicate the vocabulary with its WordPieceTrainer,

revealing the specific training algorithm of a WordPiece model. Unlike BPE, which

merges pairs based on raw frequency, WordPiece calculates a score for each pair as

‘frequency / (product of the frequencies of the two elements)’ and merges the pair

with the highest score. When it comes to segmentation, WordPiece identifies the

longest possible token starting from the beginning of the words. If a word is too long

or contains a part which cannot be covered by the vocabulary, a WordPiece model

replace the word with an unknown token.

2.1.5. SentencePiece BPE

SentencePiece (Kudo & Richardson, 2018) is a pre-tokenization and decoding

 ９

method designed to achieve "lossless tokenization". Lossless tokenization ensures

that:

1. The token sequence generated from a given text is unique.

2. The text restored from a given token sequence is also unique.

Borrowing the expression from the original paper, this can be summarized as:

Decode(Encode(Normalize(text))) = Normalize(text)

Such a one-to-one correspondence requires that no information is lost during text

segmentation. In WordPiece, however, spaces are used as delimiters and prefixes are

added to continuing subwords, which results in the loss of space sequences

(regardless of their length), introducing ambiguity during decoding. To avoid this,

SentencePiece escapes spaces with a meta-symbol “_” (U+2581) and treats it as a

single Unicode character equivalent to other characters.

Since SentencePiece itself is a method which only guarantees lossless tokenization,

it has to be combined with other tokenization models such as BPE or Unigram (Kudo,

2018). As one of such combinations, SentencePiece BPE uses SentencePiece to pre-

tokenize the corpus, learns the vocabulary and merge rules using BPE, and follows

SentencePiece's decoding process. Additionally, SentencePiece supports a strategy

called Byte-fallback, which handles unknown tokens by replacing them with byte

tokens according to their UTF-8 encoding. SentencePiece BPE adopts this strategy

as well, ensuring that tokens not covered by the vocabulary can still be processed.

 １０

By combining the strengths of both SentencePiece and BPE, SentencePiece BPE has

become one of the most widely used tokenization methods, being utilized in leading

LLMs such as Llama(Touvron et al., 2023a), Llama 2(Touvron et al., 2023b) and

Gemma(Team et al., 2024a), Gemma 2(Team et al., 2024b).

2.1.6. Byte-level BPE

Byte-Level BPE is a variant of BPE, first introduced as the tokenization method

for GPT-2 (Radford et al., 2019). The core idea of Byte-Level BPE is to convert all

Unicode characters in a corpus into byte sequences based on UTF-8 encoding before

applying BPE. In other BPE tokenization methods, such as SentencePiece BPE, the

training corpus’s unique Unicode characters must first be added to the initial

vocabulary to learn the vocabulary and merge rules. However, Byte-Level BPE

avoids the issue of an excessively large initial vocabulary. This is because UTF-8

encoding represents characters using only 256 bytes, the initial vocabulary for Byte-

Level BPE needs to include only tokens representing these 256 bytes. Additionally,

since all Unicode characters are mapped to code points and can be represented using

UTF-8 encoding, Byte-Level BPE is inherently immune to the out-of-vocabulary

(OOV) problem and does not require counteractive strategies like Byte-fallback.

The 256 byte tokens in Byte-Level BPE correspond to the earliest Unicode

characters, excluding control characters. Plus, Unicode characters with code points

below 256 are directly represented by the corresponding byte token. Aside from

converting text into byte sequences, the training process and segmentation in Byte-

Level BPE follow the same steps as other BPE methods. In addition, the original

Byte-Level BPE introduced an additional mechanism to prevent suboptimal merges,

 １１

by discouraging merges between byte tokens representing different categories of

Unicode characters. Thanks to its robust and powerful advantages, Byte-Level BPE

has become an unquestionable major tokenization method. It is widely used in

leading large language models such as Llama 3 (Dubey et al., 2024), Qwen (Bai et

al., 2023), and Qwen 2.5 (Yang et al., 2024).

2.2. BPE and Compression

As described earlier, BPE was initially designed as a simple data compression

method. While it has since been adopted in natural language processing through its

use in neural machine translation and is now a core component of most tokenizers,

its mechanism and effects remain closely tied to compression. Consequently,

research into the relationship between BPE, compression, and its effects in NLP

continues to gain attention. Below, key studies related to BPE and compression are

summarized.

Research on BPE’s connection to compression can be divided into two camps:

those arguing that the effectiveness of BPE as a tokenizer stems from its compression

capability and those who dispute this claim. To introduce a study from the former

camp, in Gallé (2019), the author hypothesized that models would perform better if

the same sentence could be captured with fewer tokens, assuming a fixed budget for

vocabulary size. By applying BPE and other dictionary-based compression

algorithms to tokenization, the study compared model performance on machine

translation tasks. The results showed that models capturing sentences with fewer

tokens achieved higher BLEU scores on the test set, leading to the conclusion that

 １２

BPE’s effectiveness is linked to its compression capability.

Similarly, Goldman et al. (2024) investigated the relationship between BPE

tokenizer compression and model performance. Keeping the vocabulary size fixed,

they controlled the level of compression by varying the number of documents used

to train the tokenizer. Models were then trained on these documents and evaluated

on benchmarks such as QQP and MultiNLI, and it was found that models using

tokenizers with higher compression performed better. Additional experiments

suggested that the degree of compression could serve as an evaluation metric for

tokenizers.

On the other hand, Schmidt et al. (2024) presented a contrasting perspective. After

varying the degree of compression through vocabulary size and training 64 models

under some other controlled conditions, they evaluated model performance on

several downstream tasks in a few-shot setting. Their findings showed minimal

performance differences based on vocabulary size, while factors such as pre-

tokenization, vocabulary construction, and segmentation had a greater impact on

performance. The study concluded that elements other than compression played a

larger role in determining model performance and, casted doubt on the idea that

BPE’s effectiveness is derived from its compression ability.

While BPE remains an effective tokenization method, some studies argue that it

is not optimal because it fails to account for morphology. In Bostrom & Durett (2020),

the authors criticized BPE for its lack of alignment with morphological structure,

making it less suitable for language model pretraining. They pretrained models using

BPE and Unigram tokenizers on masked language modeling tasks and compared

their downstream performance. On evaluation, models using Unigram outperformed

those using BPE, leading the authors to conclude that BPE’s inability to reflect

 １３

morphology makes it suboptimal.

Conversely, Gutierrez-Vasques et al. (2023) offered a different view. By training

BPE tokenizers on languages with varying morphological typologies and analyzing

the resulting vocabularies, the study suggested that BPE adapts its compression to

align with morphological typology. In morphologically rich languages, productive

subwords were prioritized, while in less inflected languages, idiosyncratic subwords

were learned first. Regarding these results, the authors concluded that BPE generates

subwords that characterize each language’s structure.

The relationship between BPE and compression, as well as its connection to

morphology and effectiveness, remains unclear and controversial. While

compression is fundamental to BPE’s design, the reasons for its effectiveness may

lie elsewhere, highlighting the need for further research. And in this study, among

such research questions, the relation between extension of BPE-based tokenizers and

improvement on compression is examined.

 １４

3. Datasets & Models

This section provides detailed information about datasets and models, which will

be repeatedly suggested on sections afterwards, and used throughout the entire

process of experiment.

3.1. Datasets

3.1.1. PubMed

PubMed is a free platform for browsing biomedical literature, which is developed

and maintained by the U.S. National Library of Medicine (NLM) at the National

Institutes of Health (NIH). It provides access to a vast database of citations and

abstracts in the fields of biomedicine and life sciences, with the goal of enhancing

global and personal health. PubMed was launched in January 1996 providing access

to institutional facilities like university libraries, however from June 1997, it became

freely available to the public, significantly broadening access to biomedical literature.

As of December 2024, PubMed comprises more than 37 million citations from

MEDLINE (a bibliographic database hosted by NLM), life science journals, and

online books. While it does not include full-text articles, it often provides articles’

abstracts, or links to full-text available through publisher websites or PMC.

PubMed also offers various search functionalities, including advanced search

options, clinical queries, and a single citation matcher, in addition to tools for data

 １５

mining and bulk processing. Plus, since it ensures the entire database to be available

for download in XML format, it facilitates large-scale analyses and the development

of biomedical language models. While PubMed provides such diverse conveniences,

only download service was exploited to collect abstracts from medical articles, for

experiments on section 5.

3.1.2. PMC (PubMed Central)

PMC (PubMed Central) is a free digital repository which archives open access

full-text scholarly articles from biomedical and life sciences journals. It offers direct

access to full-text articles unlike PubMed (which only provides abstract, citations,

and links to full-text), enhancing the public's ability to discover, read, and build upon

biomedical knowledge. It is established by the U.S. National Institutes of Health's

National Library of Medicine (NIH/NLM) in 2000, and it contains over 5.2 million

articles from approximately 4,000 journals (including some publishers implementing

delayed release) nowadays. PMC serves as a comprehensive resource for researchers,

healthcare professionals, and the public to access a vast collection of biomedical

literature.

PMC utilizes standardized XML formats to ensure the longevity and accessibility

of its content. Articles are submitted by publishers in XML or SGML formats and

are converted to the NLM Archiving and Interchange DTD for consistency. This

process facilitates linking to related data objects and integration with other NCBI

databases, providing a robust platform for information retrieval and research. For

researchers and developers interested in bulk data access, PMC also offers tools for

 １６

bulk download, text mining, and other machine analysis, supporting a wide range of

scientific inquiries and applications. Among these services, bulk download was used

to collect full-text medical articles for experiments on section 5.

3.1.3. MultiMedQA subsets

 MultiMedQA (Singhal et al., 2023) is a comprehensive benchmark introduced by

Google Research to evaluate the performance of large language models in the

medical domain. It combines six existing open question-answering datasets,

encompassing professional medical exams, research, and consumer health queries,

and was utilized to assess Med-PaLM, a large language model fine-tuned for medical

question answering. Among 6 subsets of MultiMedQA, 3 of datasets are composed

of 4-options multiple choice questions, and widely adopted for measuring language

models’ medical knowledge. These 3 subsets are used for fine-tuning and evaluating

models on later sections, since they share the number of options.

3.1.3.1. MedQA

MedQA (Jin et al., 2020) is a comprehensive open-domain question-answering

dataset tailored for the medical field. It comprises multiple-choice questions

designed to assess the professional knowledge and clinical decision-making abilities

of physicians, covering a wide range of medical topics. The dataset presents a

significant challenge for existing open-domain question-answering systems, as it

requires models to retrieve relevant information from extensive medical literature

 １７

and perform complex reasoning to arrive at the correct answers. The dataset and

baseline source code of MedQA are publicly available for research purposes,

supporting the development and evaluation of advanced question-answering models

in the medical domain.

The questions of MedQA are sourced from professional medical board

examinations across three regions: the United States, Mainland China, and Taiwan,

and as result, the dataset includes 12,723 questions in English, 34,251 in simplified

Chinese, and 14,123 in traditional Chinese. Among these, questions in English are

used only.

3.1.3.2. MedMCQA

MedMCQA (Pal et al., 2022) is a large-scale Multiple-Choice Question

Answering (MCQA) dataset specifically designed for the medical domain. It

comprises over 194,000 high-quality multiple-choice questions, sourced from two

postgraduate entrance exams in medicine, AIIMS(All India Institute of Medical

Sciences) PG and NEET(National Eligibility cum Entrance Test) PG, which are

conducted by AIIMS and NBE(National Board of Examinations). The questions

cover 2,400 healthcare topics across 21 medical subjects, and is structured to test a

model's reasoning abilities across a wide range of medical subjects and topics,

contributing to advancements in natural language understanding within the medical

field. MedMCQA is publicly available for research purposes, with data and code

accessible through its GitHub repository.

Each sample of MedMCQA contains question, options, and correct answer, and

 １８

most of samples additionally includes a detailed explanation of the correct answer

by experts. The train and the validation split were used, while the test split which

does not include correct labels was excluded.

3.1.3.3. MMLU Clinical Topics

The MMLU (Massive Multitask Language Understanding) benchmark

(Hendrycks et al., 2020) is designed to evaluate the breadth and depth of a language

model's knowledge across 57 diverse subjects, categorized into STEM, humanities,

social sciences, and others. It comprises approximately 16,000 multiple-choice

questions that range from elementary to advanced professional levels, assessing both

world knowledge and problem-solving abilities. The data of MMLU are publicly

available through online platforms such as GitHub and HuggingFace, and MMLU

has become one of the standard benchmarks for evaluating large language models.

MMLU Clinical Topics include 6 subjects from MMLU whose subcategories are

either biology or health: Anatomy, Clinical Knowledge, College Biology, College

Medicine, Medical Genetics, Professional Medicine. The 6 subjects contain samples

with question, 4 options, and correct answer in common, and their test splits were

used in later sections.

3.2. Models

While the following sections provide details of the models, Table 1 summarizes

the configurations.

 １９

Model BERT Base Cased MobileLLM 125M SmolLM2 135M

Architecture
Transformer

Encoder

Transformer

Decoder

Transformer

Decoder

of Layers 12 30 30

Hidden Dimension 768 576 576

Feed-Forward

Dimension
3,072 1,536 1,536

of Attention Heads 12 9 9

of Parameters 108, 310,272 124,635,456 134,515,008

Tokenization WordPiece SentencePiece BPE Byte-level BPE

Vocabulary Size 28,996 32,000 49,152

Table 1: Summary of base model configurations

3.2.1. BERT

BERT (Devlin et al., 2019) is a model built using the encoder component of the

Transformer architecture. The BERT Base configuration was designed to match the

model configuration of OpenAI’s GPT-1 (Radford et al., 2018) for comparison

purposes, with the following specifications:

⚫ Number of layers: 12

⚫ Hidden dimension: 768

⚫ Feed-Forward hidden dimension: 3072

⚫ Attention heads: 12

Unlike GPT-1, which uses the Transformer decoder and is optimized for

generative tasks, BERT specializes in encoding input texts and focuses on natural

language understanding. Its pretraining involves two key tasks: Masked Language

Modeling (MLM) and Next Sentence Prediction (NSP). MLM is a task where certain

portion of tokens from the input texts are masked, and the model predicts the original

 ２０

tokens. The masking strategy is as follows:

◼ 15% of the words are selected for masking, where:

➢ 80% (12% of the total) are replaced with the mask token([MASK]).

➢ 10% (1.5% of the total) are replaced with random words.

➢ 10% (1.5% of the total) are left unchanged.

NSP involves taking a pair of sentences as input and predicting whether the second

sentence naturally follows the first. To support this, BERT introduces two special

features: the classification token ([CLS]) and segment embeddings, which indicate

whether each token belongs to the first or second sentence in the pair.

BERT uses a WordPiece tokenizer, with the prefix "##" prepended to subwords

which are not word-initial tokens. The model was trained in two versions: Cased

(case-sensitive) and Uncased (case-insensitive). While various versions of BERT

with different configurations have been released since its introduction, BERT Base

Cased with vocabulary size of 28,996 was used for experiment on section 5.

3.2.2. MobileLLM

MobileLLM (Liu et al., 2024) is a model released by Meta as part of its research

into efficient language models for mobile devices. Although versions with more than

1 billion parameters are available, the core focus of the research was on optimizing

models with fewer than 1 billion parameters. The smallest version, with 125 million

parameters, was used for experiments. Its configuration is as follows:

 ２１

⚫ Number of layers: 30

⚫ Hidden dimension: 576

⚫ Feed-Forward hidden dimension: 1536

⚫ Attention heads: 9

The study emphasized that in smaller models, architecture has a more significant

impact on performance than other factors. As a result, MobileLLM incorporates

several architectural techniques, including:

⚫ Embedding Sharing: The embedding table is reused as the language

model (LM) head.

⚫ Grouped Query Attention: Optimizes the exploitation of weights.

⚫ Layer Sharing: Weights are shared between adjacent blocks, to scale up

the model while not increasing the number of trainable parameters.

Guided by previous researches highlighting the importance of depth in small

models, MobileLLM is designed to have a deep-thin (many layers, with narrow

widths) structure. Multiple versions of the model were released based on different

configurations of embedding sharing and layer sharing, and a version with

embedding sharing enabled but layer sharing disabled was adopted for the

experiments. MobileLLM uses a SentencePiece BPE tokenizer, and its vocabulary

size is 32,000

3.2.3. SmolLM2

 ２２

SmolLM2 (Allal et al., 2024) is a model developed by Hugging Face as an updated

version of the SmolLM project, which focused on building small, fast models.

Although no official paper has been published, the model and related information

are available online through GitHub and HuggingFace. SmolLM2 emphasizes the

use of high-quality, large-scale pretraining data, which has also been publicly

released for use by others.

Base and Instruct versions are available, for models with 3 different scales: 135M,

360M and 1.7B. 135M Base model, which is used for the experiments on later

sections, are built with the following configuration:

⚫ Number of layers: 30

⚫ Hidden dimension: 576

⚫ Feed-Forward hidden dimension: 1536

⚫ Attention heads: 9

The project also supports tools such as summarizers, rewriters, and AI agents,

based on the larger 1.7B Instruct model. These tools can be easily accessed through

Python code, after a simple installation process. For tokenization, SmolLM2 uses a

Byte-level BPE tokenizer with vocabulary size of 49,152.

 ２３

4. Tokenizer Extension

In this section, the methods of extending the original tokenizers of BERT,

MobileLLM, SmolLM2 are explained step-by-step. The processes of extending the

original tokenizers were conducted in two main stages:

1. Training Supplement Tokenizers for tokenization methods (WordPiece,

SentencePiece BPE, Byte-level BPE).

2. Extending the Original Vocabulary and Merge Rules with the

supplement tokenizer’s vocabulary and merge rules.

To ensure the extended tokenizers to work flawlessly, vocabulary and merge rules

of each supplement tokenizer must be compatible with those of the original tokenizer.

Therefore, the steps above should be implemented with thorough consideration of

the features of the original tokenizers.

4.1. Details on the Original Tokenizers

While the original tokenizers include a number of components, they can be broken

down into 3 major parts: 1) Normalizations & Pre-tokenizations, 2) Training

Algorithms, and 3) Tokenization Algorithms. The following sections explain the

details of each part.

 ２４

4.1.1. Normalizations & Pre-tokenizations

In case of the normalization or pre-tokenization of the original tokenizer being

stricter than that of a supplement tokenizer, some of non-overlapping tokens from

the supplement tokenizer might not survive the normalization or pre-tokenization.

For instance, even if a token spelled ‘The’ from a case-sensitive supplement

tokenizer is appended to the original tokenizer’s case-insensitive vocabulary, it will

never appear in the results of tokenization since all ‘The’ in the input text will be

normalized into ‘the’. As result, the embedding mapped to ‘The’ becomes

untrainable, which leads the extension to be meaningless.

To avoid adding untrainable tokens to the original vocabulary, appropriate

normalization and pre-tokenization should have been applied when training the

supplement tokenizers. The normalization and pre-tokenization details for each

tokenizer are as the followings.

4.1.1.1. BERT

BERT's tokenizer is designed to be capable of implementing various

normalizations and pre-tokenizations, while all the normalization and pre-

tokenization steps can be included or excluded by users. BERT’s tokenizer can apply

the following normalization steps:

1. Remove control characters.

Example: ‘\x7f’ (delete) → ‘’.

2. Replace all whitespace with spaces.

 ２５

Example: ‘\x0b’ (vertical tabulation) → ‘ ‘.

3. Add spaces around each Chinese character.

Example: ‘漢字’ → ‘ 漢 字 ’.

4. Convert uppercase letters to lowercase.

Example: ‘ABc’ → ‘abc’.

5. Remove accent diacritics.

Example: ‘áèõ’ → ‘aeo’.

Control characters refer to characters which belong to Unicode general category

‘others’, while whitespace includes characters which belong to general category

‘separator, space (Zs)’ or one of the bidirectional categories like ‘B’, ‘S’, or ‘WS’.

Horizontal tab (‘\t’), line feed (‘\n’), and carriage return (‘\r’) are treated as

whitespace and replaced with spaces rather than being removed. The BERT base

cased tokenizer used in the experiments applies only steps 1, 2, and 3.

Next, BERT’s pre-tokenization includes:

1. Split text by spaces as delimiters.

Example: ‘a text’ → ‘a’, ‘text’.

2. Isolate each punctuation from surrounding characters.

Example: ‘a.!?b’ → ‘a’, ‘.’, ‘!’, ‘?’, ‘b’.

Here, punctuations are defined as the characters which satisfy at least one of the

followings: 1) belong to the ASCII code, but do not not belong to letters or digits, 2)

belong to Unicode general category ‘punctuation’. For reference, the list of

punctuations in ASCII plane are shown in Table 2.

 ２６

Character Name Unicode Code Point Character Name Unicode Code Point

! Exclamation Mark 33 ; Semicolon 59

” Quotation Mark 34 < Less-than Sign 60

Number Sign 35 = Equals Sign 61

$ Dollar Sign 36 > Greater-than Sign 62

% Percent Sign 37 ? Question Mark 63

& Ampersand 38 @ Commercial At 64

' Apostrophe 39 [Left Square Bracket 91

(Left Parenthesis 40 \ Reverse Solidus 92

) Right Parenthesis 41] Right Square Bracket 93

* Asterisk 42 ^ Circumflex Accent 94

+ Plus Sign 43 _ Low Line 95

, Comma 44 ` Grave Accent 96

- Hyphen-minus 45 { Left Curly Bracket 123

. Full Stop 46 | Vertical Line 124

/ Solidus 47 } Right Curly Bracket 125

: Colon 58 ~ Title 126

Table 2: Punctuations in ASCII plane

4.1.1.2. MobileLLM

MobileLLM’s tokenizer follows SentencePiece normalization, escaping spaces as

meta symbols and appending a meta symbol at the beginning of the text. No pre-

tokenization is applied.

4.1.1.3. SmolLM2

SmolLM2’s tokenizer does not perform normalization. Its pre-tokenization

isolates each digit (0–9), and converts all characters into one or more byte tokens

based on UTF-8 encoding.

Table 3 summarizes the normalization and pre-tokenization processes for the three

tokenizers:

 ２７

 Normalization Pre-tokenization

BERT

- Remove control characters

- Replace all whitespaces with spaces

- Prepend and append a space to Chinese

 characters

- Segment texts with spaces as delimiter

- Isolate each punctuation

MobileLLM
- Replace spaces with meta symbol ‘▁’

- Prepend meta symbol ‘▁’ to texts
-

SmolLM2 -

- Isolate each digit

- Decompose Unicode characters into

 UTF-8 byte tokens

Table 3: Summary of normalization and pre-tokenizations, implemented

by the tokenizers of BERT, MobileLLM, and SmolLM2

When training supplement tokenizers, in addition to the unique processes of each

tokenizer, two pre-tokenizations were applied universally: 1) isolating each

punctuation, and 2) isolating each digit.

4.1.2. Training Algorithms

When incorporating vocabularies from 2 tokenizers, it must be guaranteed that the

2 tokenizers share the algorithm with which they are trained. This is because what

components tokenizers obtain during training and how the tokens in their

vocabularies look like vary according to training algorithms, which makes a

supplement vocabulary trained with a different algorithm to be not compatible with

an original tokenizer. To illustrate, a token spelled ‘##able’ (which stands for word-

medial or word final suffix ‘able’) from a vocabulary trained with WordPiece

algorithm, will not be properly processed by a SentencePiece BPE tokenizer, which

expects the form of ‘able’ as representation of a token with such role.

As mentioned above, BERT, MobileLLM, and SmolLM2’s tokenizer adopted

WordPiece, SentencePiece BPE, Byte-level BPE as their tokenizations. The 3

 ２８

tokenizations share the key training method, but their specific algorithms slightly

differ. Detailed illustration of the training algorithms are as follows.

4.1.2.1. WordPiece

A WordPiece tokenizer is trained by iteratively searching and merging the pair

with best merge score, starting from the processed training corpus decomposed into

characters, until any of the stopping criteria is satisfied. The merge score is computed

as follows:

𝑚𝑒𝑟𝑔𝑒 𝑠𝑐𝑜𝑟𝑒 =
(frequency of the pair)

(frequency of the1𝑠𝑡component) × (frequency of the2𝑛𝑑component)

For each iteration, the score above is computed for all the bigrams, and the pair

with the best score is merged and registered as a new token alongside an index, and

the corpus is updated by replacing bigrams match the pair with the token. The

training procedure finishes, if the frequency of the pair with best merge score is lower

than the predefined minimum frequency. Otherwise, the iteration continues until the

number of tokens have been learned reaches the preferred vocabulary size.

In advance of the iterations, special tokens and unique initial unigrams are added

to the vocabulary, where initial unigrams contain the corpus decomposed into

individual characters. The training algorithm can be briefly summarized into the

following steps:

1. Normalize, pre-tokenize the corpus

 ２９

2. Decompose the corpus into initial unigrams (which are characters).

3. Add special tokens and unique initial unigrams to the vocabulary

4. Compute the merge score of bigrams

5. Merge the pair with best merge score into a token and add it to the vocabulary.

6. Replace all bigrams which match the pair with the merged token.

7. Repeat 4-6 until:

A. Frequency of the best pair ≥ Minimum frequency criterion

B. Current vocabulary size ≤ Preferred vocabulary size

It should be noted that, a prefix which identify continuing subwords is required

for this procedure. The prefix is prepended to initial unigrams which are not on word-

initial position, and removed from the second component of the pair when a merge

occurs. For example, with ‘##’ as the prefix (which is adopted by BERT), ‘Wo’ and

‘##rd’ are merged into ‘Word’ while ‘##wo’ and ‘##rd’ are merged into ‘word’. The

prefix may vary depending on the tokenizer, since any other symbol can be set as the

prefix if needed.

Including all the features mentioned above, the whole training procedure of

WordPiece can be described as Algorithm 1.

 ３０

 ３１

4.1.2.2. SentencePiece BPE

SentencePiece BPE tokenizers are trained by iteratively searching pairs and

merging them, similarly to WordPiece. However, the training algorithm computes

naïve frequencies rather than merge score, based on the merged form of pairs rather

than pairs themselves. The training procedure breaks if any of the stopping criteria

is met, which are same to those of WordPiece.

BPE-based tokenizers require trained merge rules for tokenization, since they

implement tokenization by applying those rules in order, to the initial unigrams of

decomposed input text. Merge rules contain pairs of symbols indicating which

bigrams to be merged next, and details about how these are applied are on section

4.1.3. Merge rules can easily be obtained, by simply storing the merges occurred

 ３２

during the training procedure. Since the training algorithm of SentencePiece BPE

computes the frequency of merged forms of pairs, 2 or more pairs which build up

the merged form could be learned as merge rules from 1 iteration. The following

steps summarizes the training algorithm:

1. Normalize, pre-tokenize the corpus

2. Decompose the corpus into initial unigrams (which are characters).

3. Add special tokens and unique initial unigrams to the vocabulary

4. Compute the frequency of merged forms of bigrams

5. Add the merged form with highest frequency to the vocabulary.

6. Add all bigrams which build up the merged token to the merge rules

7. Replace all bigrams which build up the merged token with the merged token.

8. Repeat 4-7 until:

A. Frequency of the merged token ≥ Minimum frequency criterion

B. Current vocabulary size ≤ Preferred vocabulary size

Unlike WordPiece which adopts prefix for continuing subwords, SentencePiece

BPE does not prepend any symbol to tokens on step 2. The training procedure of a

SentencePiece BPE tokenizer can be illustrated as Algorithm 2.

 ３３

 ３４

4.1.2.3. Byte-level BPE

Just as SentencePiece BPE, Byte-level BPE tokenizers are trained by iteratively

searching pairs with highest frequency and merging them. The only part where

training algorithm of Byte-level BPE is different from SentencePiece BPE is that it

computes the frequency of pairs before being merged. Since the pair with highest

frequency is selected, only one merge rule is obtained per 1 iteration. Considering

the distinction above, the training algorithm of Byte-level BPE can be summarized

as follows:

 ３５

1. Normalize, pre-tokenize the corpus

2. Decompose the corpus into initial unigrams (which are characters).

3. Add special tokens and unique initial unigrams to the vocabulary

4. Compute the frequency of bigrams

5. Merge the pair with highest frequency into a token and add it to the vocabulary.

6. Add the pair with highest frequency to the merge rules

7. Replace all bigrams which match the pair with the merged token.

8. Repeat 4-7 until:

A. Frequency of the merged token ≥ Minimum frequency criterion

B. Current vocabulary size ≤ Preferred vocabulary size

Byte-level BPE does not prepend any prefix to token on step 2, same as

SentencePiece BPE. Algorithm 3 illustrates the training procedure of a Byte-level

BPE tokenizer.

 ３６

 ３７

4.1.3. Tokenization Algorithms

As well as the training algorithms, tokenization algorithms should be considered

when integrating 2 tokenizers’ vocabularies and merge rules. This is because an

extended tokenizer may fail to capture new tokens from the input text, if the

tokenization algorithms of the two tokenizers are inconsistent. The details of the

tokenization algorithms of WordPiece, SentencePiece BPE and Byte-level BPE are

as follows.

 ３８

4.1.3.1. WordPiece

The tokenization algorithm of WordPiece captures the longest token from each

pre-tokenized unit, by repeatedly trying to match the left part of the unit with tokens

in the vocabulary. This key process can be described as below:

1. Put the start and end offset on the leftmost and rightmost characters of the unit.

2. Find a token which matches with the current window

3. If there is no token matching, reduce the end offset by 1

4. If there is a token matching, append the token’s index to the output array, replace

the start offset with current end offset, and reset the end offset to the end of the unit.

5. Repeat 2-4, until there is no character remaining in the unit.

When the start offset is not on the initial character of the unit, or in other words, a

token representing a continuing subword should be captured, the algorithm

automatically prepends the predefined prefix which is mentioned on section 4.1.2.1.

In addition to the algorithm above, WordPiece tokenization returns the unknown

token, regrading a unit as OOV(Out of Vocabulary), on cases below:

⚫ The unit is longer than the predefined maximum length of each unit.

⚫ A part of unit cannot be capture by any of the tokens in the vocabulary

The tokenization algorithm of WordPiece therefore requires the unknown token,

unlike other BPE-based tokenizations. Algorithm 4 illustrates the tokenization

algorithm of WordPiece.

 ３９

 ４０

4.1.3.2. SentencePiece BPE

Since the procedure of obtaining tokens by merging bigrams is stored as merge

rules, a SentencePiece BPE tokenizer only has to apply the merge rules to the input

text for tokenization. The pre-tokenized units are decomposed into characters at first,

and bigrams matching with each merge rule are replaced with the merged token.

After all the rules are applied, tokens are captured from each unit and converted into

indices.

As mentioned, SentencePiece BPE utilizes Byte-fallback method to process

unknown tokens, which disassemble the tokens into characters and convert each

character into UTF-8 bytes. Thanks to the method, a SentencePiece BPE tokenizer

does not require an unknown token in its vocabulary for tokenization, whose

tokenization algorithm can be described as Algorithm 5.

 ４１

 ４２

4.1.3.3. Byte-level BPE

Although the number of merge rules learned from a merge is different, Byte-level

BPE tokenizers applies the merge rules for tokenization, similarly to SentencePiece

BPE tokenizers. Tokens are captured after applying all the rules to decomposed units,

and OOV(Out of Vocabulary) does not occur due Byte-level BPE tokenization’s

immunity. The tokenization algorithm of Byte-level BPE can be illustrated as

Algorithm 6.

 ４３

 ４４

4.2. Training Supplement Tokenizers

As mentioned above, BERT, MobileLLM, and SmolLM2 each utilize different

methods, resulting in distinct token structures within their vocabularies. Therefore,

separate supplement tokenizers were trained for each tokenization type.

4.2.1. Training Corpus

Half of the data used for continual pretraining was selected as the training corpus

for the supplement tokenizers. Though it is a standard practice to train a tokenizer

using the same corpus as the model, the supplement tokenizers were trained using

five different minimum frequency thresholds to examine the effect of the number of

tokens extended. The vocabulary size of each supplement tokenizer trained with

different thresholds is summarized in Table 4:

Minimum Frequency WordPiece SentencePiece BPE Byte-level BPE

1,000 80,624 83,655 78,216

5,000 40,552 38,058 32,939

10,000 30,807 27,458 22,327

50,000 18,093 13,995 8,839

100,000 15,131 10,926 5,763

Table 4: Summary of vocabulary sizes of dummy tokenizers,

trained with a half of the model training corpus

During this process, alongside medical terms, non-medical tokens which build the

context around the medical terms were naturally included in the vocabulary. This

tendency was more obvious on supplement tokenizers trained with high minimum

frequency criteria, since medical terms cannot build the context alone and they only

 ４５

appear in special contexts. In other words, context words were mainly learned as

tokens on minimum frequency of 100,000, while medical terms were also learned as

tokens on minimum frequency of 1,000.

To evaluate the direct impact of extending tokenizers with only medical terms,

additional supplement tokenizers were trained using a list of medical terms as the

training corpus. This list was created by crawling headwords from the Merriam-

Webster Medical Dictionary, applying the same pre-tokenization shared by

supplement tokenizers, and deduplicating the entries. As result, 49,206 medical

terms were collected.

Among the collected medical terms, some of terms contained overlapping parts,

for instance:

⚫ hepa-: hepatic, hepatis, hepatitis, hepatectomy, hepaticotomy & etc.

⚫ jejun-: jejuna, jejunitis, jejunogastric, jejunoileal, jejunostomy & etc.

⚫ pelv-: pelvis, pelvigraph, pelvimeter, pelviscope, pelviolithotomy & etc.

These subwords turned out to be prefixes from Latin language related to certain

parts of human body, which are:

⚫ hepa-: a prefix which indicates something related to liver

⚫ jejun-: a prefix which indicates something related to a part of intestine

⚫ pelv-: a prefix which indicates something related to pelvic bone

Likewise, a number of subwords which seem to be derived from Latin were found

in the list. Regarding this, to control how subwords were captured, supplement

 ４６

tokenizers were also trained using four different minimum frequency thresholds. All

unique terms were registered as tokens when the minimum frequency was set to 1,

while only highly frequent subwords were learned when the minimum frequency

was set to 10. The resulting vocabulary sizes are shown in Table 5:

Minimum Frequency WordPiece SentencePiece BPE Byte-level BPE

1 72,932 72,415 72,549

2 17,137 16,903 17,010

5 7,167 7,078 7,239

10 3,782 3,694 3,852

Table 5: Summary of vocabulary sizes of dummy tokenizers, trained with the list of medical

terms crawled from Merriam-Webster Medical Dictionary

4.3. Extending the Original Vocabulary and Merge Rules

Non-overlapping tokens and merge rules from the supplement tokenizers were

added to the original vocabularies, reflecting the algorithms of WordPiece,

SentencePiece BPE, and Byte-level BPE.

4.3.1. WordPiece

WordPiece does not use merge rules during tokenization, as it captures the longest

possible token from the start of the text. The supplement tokenizer for WordPiece

does not learn merge rules either, thus the extension of BERT’s tokenizer with

WordPiece supplement tokenizer reduces to a simple procedure: appending non-

overlapping tokens to the original vocabulary in index order. The extension BERT’s

vocabulary using the WordPiece supplement tokenizer can be expressed as

 ４７

Algorithm 7:

4.3.2. SentencePiece BPE

SentencePiece BPE uses merge rules during both training and tokenization. Unlike

traditional BPE, SentencePiece BPE incorporates all possible combinations of

tokens into the merge rules. Since single-character tokens are registered without

merge rules, they must be added to the vocabulary first to correctly derive subsequent

merge rules. The process for extending MobileLLM’s vocabulary using the

SentencePiece BPE supplement tokenizer can be expressed as Algorithm 8:

 ４８

4.3.3. Byte-level BPE

Byte-level BPE learns one merge rule per token during training, incorporating the

highest-frequency pair. Single-character tokens should be added to the vocabulary

first just as SentencePiece BPE, followed by tokens derived from merge rules. The

process for extending SmolLM2’s vocabulary using the Byte-level BPE supplement

tokenizer can be expressed as Algorithm 9:

 ４９

 Table 6 summarizes the number of tokens newly added to the vocabulary, through

the extension algorithms above. The tokenizers extended using supplement

tokenizers trained with continual pretraining data are indicated by the prefix ‘Auto’,

while the tokenizers extended using supplement tokenizers trained with medical

terms are indicated by the prefix ‘Crawled’. The numeric suffixes such as ‘5’ or

‘10,000’ indicate the minimum frequency criteria applied when training supplement

tokenizers. For instance, supplement tokenizers trained with medical terms with

minimum frequency criterion of 2 are indicated by ‘Crawled-2’

 ５０

Model BERT MobileLLM SmolLM2

Auto-1000
91,705

(+ 62,709)

98,413

(+ 66,413)

93,884

(+ 44,732)

Auto-5000
56,887

(+27,891)

57,055

(+ 25, 055)

60,542

(+ 11,390)

Auto-10000
49,247

(+20,251)

48,369

(+ 16,369)

54,753

(+ 5,601)

Auto-50000
40,954

(+11,958)

38,999

(+ 6,999)

50,097

(+ 945)

Auto-100000
39,439

(+ 10,443)

37,411

(+5,411)

49,644

(+492)

Crawled-1
94,776

(+65,780)

97,829

(+ 65,829)

109,122

(+59,970)

Crawled-2
42,934

(+ 13,938)

44,684

(+12,684)

59,984

(10,832)

Crawled-5
34,167

(+ 5,171)

36,397

(+ 4,397)

52,888

(+3,436)

Crawled-10
31,351

(+2,355)

33,828

(+ 1,828)

50,396

(+ 1,244)

Original 28,996 32,000 49,152

Table 6: The number of tokens extended

 ５１

5. Experiments

5.1. Training Tasks

To validate the effectiveness of tokenizer extension, the models with extended

tokenizer, as well as the base model with not extended one, were trained in two stages:

1) Continual Pretraining and 2) Multiple Choice Fine-Tuning. The following

sections provide details of the training process.

5.1.1. Continual Pretraining

The models were pretrained using the following methods:

• BERT’s variations were trained with masked language modeling.

• MobileLLM and SmolLM2’s variations were trained with causal language

modeling.

For BERT and SmolLM2, the pretrained weights of their language modeling heads

were publicly available, so these were loaded and further trained. For MobileLLM,

since embedding sharing was used, the language modeling head was not trained

separately.

The training data consisted of medical texts collected from PMC and PubMed.

As PMC provides full article data, there was a concern that only the beginning

 ５２

sections (e.g., abstracts, introductions) of articles might be overly utilized due to the

limited context length. To address this, the articles were divided into sections and

sampled accordingly. A total of 3.8 billion words were collected, with an average

word count per sample of 444.24 words.

5.1.2. Multiple Choice Fine-tuning

To train the models to be capable of answering 4-option multiple choice questions,

the MedMCQA train split (182,822 questions) was formatted using a consistent

template for fine-tuning.

• MobileLLM and SmolLM2 were fine-tuned using causally formatted data,

including explanations, via causal language modeling.

• BERT was fine-tuned using data formatted only up to the options and paired

with labels, via text classification.

Examples of MedMCQA questions formatted as templates for each case were

provided on Table 7.

 ５３

Options Only **Instruction**

The following is a question about medical knowledge. Please choose the right

answer.

Question

Which vitamin is supplied from only animal source:

Options

A) Vitamin C

B) Vitamin B7

C) Vitamin B12

D) Vitamin D

Explanation

Added

Instruction

The following is a question about medical knowledge. Please choose the right

answer.

Question

Which vitamin is supplied from only animal source:

Options

A) Vitamin C

B) Vitamin B7

C) Vitamin B12

D) Vitamin D

Answer

C) Vitamin B12. Ans. (c) Vitamin B12 Ref: Harrison's 19th ed. P 640* Vitamin

B12 (Cobalamin) is synthesized solely by microorganisms.* In humans, the only

source for humans is food of animal origin, e.g., meat, fish, and dairy products.*

Vegetables, fruits, and other foods of nonanimal origin doesn't contain Vitamin

B12 .* Daily requirements of vitamin Bp is about 1-3 pg. Body stores are of the

order of 2-3 mg, sufficient for 3-4 years if supplies are completely cut off.

Table 7: An example of formatted MedMCQA Question

5.1.3. Module Extensions

With the extension of the tokenizer, the modules of the models with extended

tokenizer associated with the vocabulary size—such as the embedding lookup table

and the language modeling heads—were also extended and initialized randomly.

• For the language modeling heads, additional parameters were initialized

randomly based on predefined methods for each model.

• New embeddings were initialized using a multivariate normal distribution

which shared the mean and covariance of the original embeddings.

 ５４

• Since BERT was not pretrained for text classification, a linear classifier head

was added during the multiple choice fine-tuning stage, and it was initialized

in the same way as the language modeling heads.

A summary of the initialization methods for the modules in each model was

provided on Table 8.

Model BERT MobileLLM SmolLM2

Distribution Normal Normal Normal

Mean 0.0 0.0 0.0

Std. 1/50 1/50 1/24

Embeddings
Multivariate normal distribution with

mean and covariance of original embeddings

Table 8: Predefined random initialization methods of extended modules

The number of additional parameters introduced by the module extensions, as well

as the total number of parameters in each model after these changes, were detailed

on Table 9.

Model
BERT Base Cased

Masked LM

BERT Base Cased

Text Classification

MobileLLM 125M

Causal LM

SmolLM2 135M

Causal LM

Auto-1000
156,564,025

(+ 48,223,221)
156,472,322

(+ 48,160,512)
162,889,344

(+ 38,253,888)
160,280,640

(+ 25,765,632)

Auto-5000
129,788,983

(+ 21,448,179)

129,732,098

(+ 21,420,288)

139,067,136

(+ 14,431,680)

141,075,648

(+ 6,560,640)

Auto-10000
123,913,823

(+ 15,573,019)

123,864,578

(+ 15,552,768)

134,064,000

(+ 9,428,544)

137,741,184

(+ 3,226,176)

Auto-50000
117,536,506

(+ 9,195,702)
117,495,554

(+ 9,183,744)
128,666,880
(+ 4,031,424)

135,059,328
(+ 544,320)

Auto-100000
116,371,471

(+ 8,030,667)

116,332,034

(+ 8,020,224)

127,752,192

(+ 3,116,736)

134,798,400

(+ 283,392)

Crawled-1
158,925,624

(+ 50,584,820)

158,830,850

(+ 50,519,040)

162,552,960

(+ 37,917,504)

169,057,728

(+ 34,542,720)

Crawled-2
119,059,126

(+ 10,718,322)
119,016,194

(+ 10,704,384)
131,941,440
(+ 7,305,984)

140,754,240
(+ 6,239,232)

Crawled-5
112,317,303

(+ 3,976,499)

112,283,138

(+ 3,971,328)

127,168,128

(+ 2,532,672)

136,494,144

(+ 1,979,136)

Crawled-10
110,151,799

(+ 1,810,995)

110,120,450

(+ 1,808,640)

125,688,384

(+ 1,052,928)

135,231,552

(+ 716,544)

Baseline 108,340,804 108,311,810 124,635,456 134,515,008

Table 9: Summary of number of parameters newly added to models

 ５５

5.2. Training Configurations

5.2.1. Hyperparameters

The hyperparameters used during training are as follows:

◼ Training Epochs

⚫ Continual Pretraining : 1

⚫ Multiple Choice Fine-tuning : 5

◼ Batch Size : 512

◼ Maximum Input Length

⚫ BERT : 512

⚫ MobileLLM : 2,048

⚫ SmolLM2 : 2,048

◼ Random Seed : 42

Sequences exceeding the maximum input length were truncated, and all samples

were padded to the length of the longest sequence within each batch. Although

SmolLM2 is capable of handling up to 8,192 tokens at once, the maximum input

length was set to 2,048 to align with MobileLLM, considering the distribution of the

number of words in the training data.

5.2.2. Optimization & Learning Rate Scheduling

AdamW was used as the optimizer with the following configurations:

◼ Weight decay : 0.0

 ５６

◼ Adam 𝛃𝟏 : 0.9

◼ Adam 𝛃𝟐 : 0.999

◼ Adam 𝛜 : 1𝑒 − 8

Learning rate scheduling was set as follows:

◼ 1% of total steps as warmup steps (increasing from 0 to the peak)

◼ Peak learning rate determined through the learning rate search

◼ Cosine decay from the peak learning rate to 1/100

To identify the optimal peak learning rate, experiments were conducted with the

following values: 5 × 10−3 , 1 × 10−3 , 5 × 10−4 , 1 × 10−4 , 5 × 10−5 , 1 ×

10−5, and 5 × 10−6. The base models (with unexpanded tokenizer) were trained for

100 steps, using same learning rate scheduling with each learning rate as the peak

value, and the losses were computed on 512 unseen samples (1 batch) from training

data. The results of this search are summarized on Table 10.

Model / Task
Continual

Pretraining

Multiple Choice

Fine-tuning

BERT Base Cased 5 × 10−4 1 × 10−4

MobileLLM 125M 5 × 10−4 5 × 10−4

SmolLM2 135M 1 × 10−3 1 × 10−3

Table 10: Summary of learning rates selected by learning rate search

5.2.3. Device Settings

All training processes were conducted on a single NVIDIA A100 80GB GPU. To

 ５７

accommodate limited RAM, gradients were accumulated before being passed to the

optimizer, ensuring the training batch size (model input batch size × gradient

accumulation steps) consistently to be 512. Brain Float 16 (bfloat16) precision was

adopted, for all computations performed throughout the entire training as well as the

representation of the model.

 ５８

6. Analyses

6.1. Evaluation on MultiMedQA Subset

After completing the training process, the models were evaluated on three subsets

of MultiMedQA: MedQA, MedMCQA, and MMLU clinical topics. For all

benchmarks except MedMCQA, the test splits were used for evaluation. Since

MedMCQA’s test split is publicly available but not labeled, its validation split was

used instead. For measuring performances, macro accuracy was used. The number

of questions in the subjects are as follows:

- MedQA: 1,273

- MedMCQA: 4,183

- MMLU Anatomy: 135

- MMLU Clinical Knowledge: 265

- MMLU College Biology: 144

- MMLU College Medicine: 173

- MMLU Medical Genetics: 100

- MMLU Professional Medicine: 272

- Total 6,545

Tables 12, 13, and 14 present the evaluation results for variations of BERT,

MobileLLM, and SmolLM2, respectively. In these tables:

• Blue blocks indicate the performance of the base models.

• Orange blocks represent the highest performance in specific subjects.

 ５９

• Green blocks highlight cases where models with extended tokenizers

outperformed their base models.

• Purple blocks in Tables 12 and 13 represent the performance of untrained

MobileLLM and SmolLM2 models.

The following tendencies are observed from the results:

• Variations of BERT trained with extended tokenizers tended to perform

worse than the base model in certain subjects, while they usually

outperformed the base model in the other subjects. There was little

difference in performance between the two groups of models that used

different corpora for tokenizer extension.

• For MobileLLM, models whose tokenizers were extended with continual

pretraining data performed worse than the base model. However, models

whose tokenizers were expanded with medical terms frequently

outperformed the base model. Notably, in all cases where a model with an

extended tokenizer achieved the highest subject-level performance, the

tokenizer had been extended using medical terms.

• For SmolLM2, models with an extended tokenizer outperformed the base

model in many subjects.

• Across all three models, the highest average accuracy was consistently

achieved by models with tokenizers extended using medical terms.

However, base models still achieved the highest performance in at least one

subject in each case.

• No specific tokenizer extension method showed consistent superiority

 ６０

across all conditions.

Besides the evaluation on macro accuracy, the number of questions where the

models provided right answer (which is close to micro accuracy) were counted. The

results are as in Table 11:

 BERT Base Cased MobileLLM 125M SmolLM2 135M

Auto-1000 1991 1908 2103

Auto-5000 1982 1798 2136

Auto-10000 2062 1746 2087

Auto-50000 1923 1824 2106

Auto-100000 2032 1667 2046

Crawled-1 2066 2229 2090

Crawled-2 1924 2223 2062

Crawled-5 2079 2174 2135

Crawled-10 1997 2216 2105

No extension 1998 2225 2124

Table 11: Overview of the number of the correct answers chosen by models

While some of the extended models showed better performance than the base

model, most of them failed to outperform the base model as well as in macro average.

In summary, according to the evaluation results, tokenizer extension did not

improve model performances in most of cases. While some of the variation models

outperformed the base model, most of them showed poor performance. Thus, also

considering that no extension method consistently helped the model to achieve better

performance, it could be concluded that tokenizer extension may have negative

effects on model performances.

 ６１
 Table 12

T
ab

le
 1

2
:

O
v

er
v

ie
w

 o
f

p
er

fo
rm

an
ce

s
o

n
 M

u
lt

iM
ed

Q
A

 s
u

b
se

ts
,

v
ar

ia
ti

o
n

s
o

f
B

E
R

T
 B

as
e

C
a
se

d

 ６２
 Table 13

T
ab

le
 1

3
:

O
v

er
v

ie
w

 o
f

p
er

fo
rm

an
ce

s
o

n
 M

u
lt

iM
ed

Q
A

 s
u

b
se

ts
,

v
ar

ia
ti

o
n

s
o

f
M

o
b

il
eL

L
M

 1
2
5
M

 ６３
 Table 14

T
ab

le
 1

4
:

O
v

er
v

ie
w

 o
f

p
er

fo
rm

an
ce

s
o

n
 M

u
lt

iM
ed

Q
A

 s
u

b
se

ts
,

v
ar

ia
ti

o
n

s
o

f
S

m
o

lL
M

2
 1

3
5

M

 ６４

6.2. Measure on Compression

The compression abilities of tokenizers were measured, to estimate their efficiency.

The measurement was done with a batch (512) of samples from the continual

pretraining, in the following ways:

• The average number of tokens to which each tokenizer segments the batch

of samples was measured. (Table 15)

• The average length of the texts captured by each tokenizer with 2,048 tokens

were measured. (Table 16)

The batch of samples include relatively long samples (Avg. 35,043 words), to

ensure that none of the tokenizers segment any of the samples into a sequence shorter

than 2,048 tokens. The results are shown on Table 15 and 16.

 ６５

Model BERT MobileLLM SmolLM2

Auto-1000
50796.04

(84.37%)

59219.74

(84.30%)

59334.67

(95.31%)

Auto-5000
53047.58

(88.11%)

61829.26

(88.00%)

60743.11

(97.57%)

Auto-10000
54166.84

(89.97%)

63031.42

(89.72%)

61230.94

(98.36%)

Auto-50000
56873.87

(94.46%)

66022.09

(93.97%)

61996.99

(99.59%)

Auto-100000
58007.60

(96.35%)

67386.34

(95.91%)

62125.66

(99.79%)

Crawled-1
54205.07

(90.03%)

64524.85

(91.84%)

61181.67

(98.28%)

Crawled-2
56779.98

(94.31%)

67643.05

(96.28%)

61856.12

(99.36%)

Crawled-5
57863.62

(96.11%)

68567.18

(97.59%)

62050.02

(99.67%)

Crawled-10
58542.42

(97.24%)

69132.15

(98.40%)

62154.71

(99.84%)

No
60207.04

(100%)

70257.11

(100%)

62254.73

(100%)

Table 15: Average number of tokens in the sample batch,

tokenized by extended tokenizers

Model BERT MobileLLM SmolLM2

Auto-1000
10052.71

(117.90%)

8849.59

(119.73%)

8877.70

(104.45%)

Auto-5000
9691.38

(113.66%)

8500.62

(115.01%)

8699.93

(102.36%)

Auto-10000
9503.46

(111.45%)

8328.49

(112.68%)

8631.39

(101.55%)

Auto-50000
9045.33

(106.08%)

7904.12

(106.94%)

8525.04

(101.55%)

Auto-100000
8864.21

(103.96%)

7728.57

(104.56%)

8510.92

(100.14%)

Crawled-1
9465.69

(111.01%)

8088.73

(109.44%)

8638.88

(101.64%)

Crawled-2
9030.18

(105.90%)

7687.54

(104.01%)

8550.32

(100.60%)

Crawled-5
8871.82

(104.05%)

7576.90

(102.51%)

8525.61

(100.31%)

Crawled-10
8771.72

(102,87%)

7513.79

(101.66%)

8512.00

(100.15%)

No
8526.79

(100%)

7391.17

(100%)

8499.33

(100%)

Table 16: Average number of characters captured by extended tokenizers,

with 2,048 tokens, on sample batch

 ６６

The extended tokenizer demonstrated the ability to capture up to approximately

15.7% fewer tokens for texts of the same length, and up to approximately 19.73%

more characters for token sequences of the same length. The degrees of compression

reinforced per extended token were:

• The number of tokens needed to capture texts was reduced by 0.00095%

on average.

• The number of characters captured by fixed number (2,048 here) of tokens

was increased by 0.00085% on average.

While the improvement in compression ability is not entirely proportional to the

number of added tokens, it is evident that the extended tokenizers exhibit enhanced

compression capabilities. However, the extent of compression increased per

extended token is very small, and significant improvement of compression may

require plenty of extended tokens.

Meanwhile, it should be noted that since the vocabulary size of the extended

tokenizer varies depending on the original tokenizer, the degree of improvement in

compression also differed accordingly.

6.3. Training Costs

To evaluate the efficiency of tokenizer extension, the following training costs from

the training process were measured:

 ６７

• Train Runtime: The total time required for the continual pretraining stage.

• Maximum Memory Usage: The peak GPU memory required during

training, measured at each stage for input batch sizes (512 / gradient

accumulation steps).

6.3.1. Train Runtime

The train runtimes for continual pretraining are summarized in Figure 3. For all

three models, while the results were not perfectly consistent, the additional training

time compared to the base model was generally proportional to the amount of

vocabulary and merge rules added to the original tokenizer. The amount of time for

continually pretraining the models was increased by 0.0025% per 1 extended token

on average.

 ６８

 Figure 3

F
ig

u
re

 3
:

T
ra

in
 r

u
n

ti
m

e
fo

r
co

n
ti

n
u

al
 p

re
tr

ai
n

in
g

 s
ta

g
e

 ６９

6.3.2. Maximum Memory Usage

The maximum memory usage is detailed in Figures 4–9. Bars that reach the ceiling

of the chart indicate out-of-memory (OOM), which means the amount of memory

required for training exceeded the available device memory (80 GiB), with respect

to the input batch size. Observations are as follows:

• Continual Pretraining: During the continual pretraining stage, similar to

the train runtime, the memory required to train the model increased

proportionally with the amount of vocabulary and merge rules added to the

original tokenizer.

• Multiple Choice Fine-tuning: A similar trend was observed during the

multiple-choice fine-tuning stage, though in the case of BERT, differences

between tokenizer extensions were negligible.

 ７０

Figure 4: Maximum memory usage during continual

pretraining stage of BERT Base Cased

Figure 5: Maximum memory usage during continual

pretraining stage of MobileLLM 125M

 ７１

Figure 6: Maximum memory usage during continual

pretraining stage of SmolLM2 135M

Figure 7: Maximum memory usage during multiple choice

fine-tuning stage of BERT Base Cased

 ７２

Figure 8: Maximum memory usage during multiple choice

fine-tuning stage of MobileLLM 125M

Figure 9: Maximum memory usage during multiple choice

fine-tuning stage of SmolLM2 135M

 ７３

Overall, adding tokens to the tokenizer generally increases the training time and

GPU memory usage proportionally to the number of added tokens. This highlights

that excessive tokenizer extensions can lead to substantial training costs, warranting

careful consideration.

 ７４

7. Conclusion

 In this study, the effects of extending a tokenizer using medical text data or list of

medical terms are analyzed. The medical field is characterized by the frequent use

of specialized terminology, and tokenizers trained on general data may encounter

challenges such as out-of-vocabulary (OOV) issues or segmenting text into

excessively long sequences when processing medical texts. While extending a

tokenizer prior to training models on such domain-specific data may offer

advantages, there has been limited in-depth research on this topic. This study aimed

to fill that gap, and through experiments and analyses, the following findings were

uncovered:

• Negative Effect on Performance: Evaluation results showed that models

trained with an extended tokenizer mostly performed worse than the base

model, besides the performance inconsistency according to extension

methods. In other words, extending the tokenizer does not guarantee

improved performance or even possibly hinders model’s performance,

regardless of the extension method.

• Improved Compression: Extending the tokenizer enhances its compression

capability, but the extent of enhancement was small. In addition, the number

of added tokens varies depending on the vocabulary distribution of the

original tokenizer, which affects the degree of improvement in compression.

Therefore, it is necessary to take the original tokenizer’s vocabulary into

 ７５

account when performing an extension.

• Increased Training Costs: Since the modules related to vocabulary size

must also be extended to accommodate the larger tokenizer, extending a

tokenizer inevitably increases training costs. For this reason, it is essential

to consider the device's memory capacity and the available time for

experiments, and only extend the tokenizer by a reasonable number of

tokens.

In summary, extending a tokenizer for domain-specific fine-tuning seems to have

negative impact on model performance. While it helps language models to capture

longer texts with shorter sequence of tokens, the benefit remains insignificant unless

thousands of tokens are extended, and excessive extension of tokenizer leads to large

increase in training costs. Therefore, it could be concluded that tokenizer extension

is may not be helpful, with respect to domain-specific fine-tuning of language

models.

 ７６

Bibliography

Allal, L. B., Lozhkov, A., Bakouch, E., Blázquez, G. B., Tunstall, L., Piqueres, A.,

Marafioti, A., Zakka C., Werra, L., & Wolf, T. (2024). SmolLM2 - with great

data, comes great performance.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., ... & Zhu, T. (2023). Qwen

technical report. ArXiv, abs/2309.16609.

Bostrom, K., & Durrett, G. (2020). Byte Pair Encoding is Suboptimal for Language

Model Pretraining. Findings.

Chung, J., Cho, K., & Bengio, Y. (2016). A Character-level Decoder without Explicit

Segmentation for Neural Machine Translation. ArXiv, abs/1603.06147.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. North American

Chapter of the Association for Computational Linguistics.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., ... &

Ganapathy, R. (2024). The llama 3 herd of models. ArXiv, abs/2407.21783.

Gage, P. (1994). A new algorithm for data compression. The C Users Journal archive,

12, 23-38.

Gallé, M. (2019). Investigating the Effectiveness of BPE: The Power of Shorter

Sequences. Conference on Empirical Methods in Natural Language Processing.

Goldman, O., Caciularu, A., Eyal, M., Cao, K., Szpektor, I., & Tsarfaty, R. (2024).

Unpacking Tokenization: Evaluating Text Compression and its Correlation with

Model Performance. Annual Meeting of the Association for Computational

 ７７

Linguistics.

Gutierrez-Vasques, X., Bentz, C., & Samardžić, T. (2023). Languages through the

looking glass of bpe compression. Computational Linguistics, 49(4), 943-1001.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D.X., & Steinhardt,

J. (2020). Measuring Massive Multitask Language Understanding. ArXiv,

abs/2009.03300.

Jin, D., Pan, E., Oufattole, N., Weng, W. H., Fang, H., & Szolovits, P. (2021). What

disease does this patient have? a large-scale open domain question answering

dataset from medical exams. Applied Sciences, 11(14), 6421.

Kudo, T. (2018). Subword Regularization: Improving Neural Network Translation

Models with Multiple Subword Candidates. ArXiv, abs/1804.10959.

Kudo, T., & Richardson, J. (2018). SentencePiece: A simple and language

independent subword tokenizer and detokenizer for Neural Text

Processing. Conference on Empirical Methods in Natural Language Processing.

Liu, Z., Zhao, C., Iandola, F.N., Lai, C., Tian, Y., Fedorov, I., Xiong, Y., Chang, E.,

Shi, Y., Krishnamoorthi, R., Lai, L., & Chandra, V. (2024). MobileLLM:

Optimizing Sub-billion Parameter Language Models for On-Device Use

Cases. ArXiv, abs/2402.14905.

Luong, M., & Manning, C.D. (2016). Achieving Open Vocabulary Neural Machine

Translation with Hybrid Word-Character Models. ArXiv, abs/1604.00788.

Merriam-Webster. (2016). Merriam-Webster medical dictionary. Merriam Webster.

Mikolov, T., Chen, K., Corrado, G.S., & Dean, J. (2013). Efficient Estimation of

Word Representations in Vector Space. International Conference on Learning

Representations.

Pal, A., Umapathi, L. K., & Sankarasubbu, M. (2022, April). Medmcqa: A large-scale

 ７８

multi-subject multi-choice dataset for medical domain question answering.

In Conference on health, inference, and learning (pp. 248-260). PMLR.

Pennington, J., Socher, R., & Manning, C.D. (2014). GloVe: Global Vectors for Word

Representation. Conference on Empirical Methods in Natural Language

Processing.

PubMed. https://pubmed.ncbi.nlm.nih.gov/

PubMed Central. https://pmc.ncbi.nlm.nih.gov/

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving

Language Understanding by Generative Pre-Training.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Schmidt, C.W., Reddy, V., Zhang, H., Alameddine, A., Uzan, O., Pinter, Y., & Tanner,

C. (2024). Tokenization Is More Than Compression. Conference on Empirical

Methods in Natural Language Processing.

Schuster, M., & Nakajima, K. (2012, March). Japanese and korean voice search. In

2012 IEEE international conference on acoustics, speech and signal processing

(ICASSP) (pp. 5149-5152). IEEE.

Sennrich, R., Haddow, B., & Birch, A. (2015). Neural Machine Translation of Rare

Words with Subword Units. ArXiv, abs/1508.07909.

Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J., Chung, H. W., ... & Natarajan,

V. (2023). Large language models encode clinical

knowledge. Nature, 620(7972), 172-180.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., ... &

Kenealy, K. (2024). Gemma: Open models based on gemini research and

technology. ArXiv, abs/2403.08295.

 ７９

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., ... & Garg,

S. (2024). Gemma 2: Improving open language models at a practical size. ArXiv,

abs/2408.01108.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... &

Lample, G. (2023). Llama: Open and efficient foundation language

models. ArXiv, abs/2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., ... & Scialom,

T. (2023). Llama 2: Open foundation and fine-tuned chat models. ArXiv,

abs/2307.09288.

Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,

Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. Neural

Information Processing Systems.

Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., … & Dean, J.

(2016). Google's Neural Machine Translation System: Bridging the Gap

between Human and Machine Translation. ArXiv, abs/1609.08144.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., ... & Qiu, Z. (2024). Qwen2.

5 Technical Report. ArXiv, abs/2412.15115.

 ８０

국문 초록

 최근 들어 대량의 데이터로 장시간 사전 훈련된 LLM들이 유행하고

있으며, 개인이 이러한 모델을 처음부터 훈련하여 사용하기란 대단히 어

려우므로 공유된 모델을 미세 조정(fine-tuning)하여 사용하는 것이 일반

적이게 되었다. 그런데 미세 조정에 활용하려는 데이터의 어휘 분포가

기존의 토크나이저(tokenizer)가 처리할 수 있는 토큰 목록에서 크게 벗어

날 경우, 토크나이저가 이를 처리하지 못하거나 너무 잘게 분절하는 문

제가 발생한다. 토크나이저에 새로운 어휘들을 추가하는 토크나이저 확

장(extension)이 이러한 문제를 완화하는 좋은 해결책이 될 수 있으나, 토

크나이저 확장이 어떤 효과를 불러오는지에 대한 면밀한 연구는 아직 이

루어진 바가 없다.

본 연구에서는 따라서 의학 데이터를 통해 확장한 토크나이저를 사용

해 소형 모델들을 훈련하고, 몇 가지 분석을 통해 전문 분야에 대한 미

세 조정에서의 토크나이저 확장의 효과를 확인하고자 하였다. 의학 분야

는 다양한 전문용어가 빈번히 사용되는 분야로, 토크나이저 확장으로부

터 긍정적인 효과를 얻을 수 있을 것으로 예상하였다. 그러나 BPE(Byte

Pair Encoding) 기반의 SentencePiece BPE, Byte-level BPE 및 비슷한 알고리

즘을 사용하는 WordPiece를 확장하여 실험을 수행한 결과, 토크나이저의

압축(compression) 능력이 소폭 향상된 반면 모델 훈련에 필요한 메모리

와 시간이 증가하였다. 또한 MultiMedQA의 4지선다형 문제들로 모델들

 ８１

을 평가한 결과, 토크나이저를 확장한 대부분의 모델의 성능이 확장하지

않은 모델의 성능보다 낮았다. 이러한 결과들로 미루어 볼 때, 전문 분야

에 대해 언어 모델을 미세 조정할 때의 토크나이저 확장이 유리하지는

않은 것으로 생각된다.

	1. Introduction
	2. Related Works
	2.1. Subword Tokenizations
	2.1.1. Background of Tokenizers
	2.1.2. Subwords as Tokens
	2.1.3. Byte Pair Encoding (BPE)
	2.1.4. WordPiece
	2.1.5. SentencePiece BPE
	2.1.6. Byte-level BPE
	2.2. BPE and Compression
	3. Datasets & Models
	3.1. Datasets
	3.1.1. PubMed
	3.1.2. PMC (PubMed Central)
	3.1.3. MultiMedQA subsets
	3.1.3.1. MedQA
	3.1.3.2. MedMCQA
	3.1.3.3. MMLU Clinical Topics
	3.2. Models
	3.2.1. BERT
	3.2.2. MobileLLM
	3.2.3. SmolLM2
	4. Tokenizer Extension
	4.1. Details on the Original Tokenizers
	4.1.1. Normalizations & Pre-tokenizations
	4.1.1.1. BERT
	4.1.1.2. MobileLLM
	4.1.1.3. SmolLM2
	4.1.2. Training Algorithms
	4.1.2.1. WordPiece
	4.1.2.2. SentencePiece BPE
	4.1.2.3. Byte-level BPE
	4.1.3. Tokenization Algorithms
	4.1.3.1. WordPiece
	4.1.3.2. SentencePiece BPE
	4.1.3.3. Byte-level BPE
	4.2. Training Supplement Tokenizers
	4.2.1. Training Corpus
	4.3. Extending the Original Vocabulary and Merge Rules
	4.3.1. WordPiece
	4.3.2. SentencePiece BPE
	4.3.3. Byte-level BPE
	5. Experiments
	5.1. Training Tasks
	5.1.1. Continual Pretraining
	5.1.2. Multiple Choice Fine-tuning
	5.1.3. Module Extensions
	5.2. Training Configurations
	5.2.1. Hyperparameters
	5.2.2. Optimization & Learning Rate Scheduling
	5.2.3. Device Settings
	6. Analyses
	6.1. Evaluation on MultiMedQA Subset
	6.2. Measure on Compression
	6.3. Training Costs
	6.3.1. Train Runtime
	6.3.2. Maximum Memory Usage
	7. Conclusion
	Bibliography
	국문 초록

<startpage>14
1. Introduction １
2. Related Works ３
2.1. Subword Tokenizations ３
2.1.1. Background of Tokenizers ３
2.1.2. Subwords as Tokens ６
2.1.3. Byte Pair Encoding (BPE) ７
2.1.4. WordPiece ７
2.1.5. SentencePiece BPE ８
2.1.6. Byte-level BPE １０
2.2. BPE and Compression １１
3. Datasets & Models １４
3.1. Datasets １４
3.1.1. PubMed １４
3.1.2. PMC (PubMed Central) １５
3.1.3. MultiMedQA subsets １６
3.1.3.1. MedQA １６
3.1.3.2. MedMCQA １７
3.1.3.3. MMLU Clinical Topics １８
3.2. Models １８
3.2.1. BERT １９
3.2.2. MobileLLM ２０
3.2.3. SmolLM2 ２１
4. Tokenizer Extension ２３
4.1. Details on the Original Tokenizers ２３
4.1.1. Normalizations & Pre-tokenizations ２４
4.1.1.1. BERT ２４
4.1.1.2. MobileLLM ２６
4.1.1.3. SmolLM2 ２６
4.1.2. Training Algorithms ２７
4.1.2.1. WordPiece ２８
4.1.2.2. SentencePiece BPE ３１
4.1.2.3. Byte-level BPE ３４
4.1.3. Tokenization Algorithms ３７
4.1.3.1. WordPiece ３８
4.1.3.2. SentencePiece BPE ４０
4.1.3.3. Byte-level BPE ４２
4.2. Training Supplement Tokenizers ４４
4.2.1. Training Corpus ４４
4.3. Extending the Original Vocabulary and Merge Rules ４６
4.3.1. WordPiece ４６
4.3.2. SentencePiece BPE ４７
4.3.3. Byte-level BPE ４８
5. Experiments ５１
5.1. Training Tasks ５１
5.1.1. Continual Pretraining ５１
5.1.2. Multiple Choice Fine-tuning ５２
5.1.3. Module Extensions ５３
5.2. Training Configurations ５５
5.2.1. Hyperparameters ５５
5.2.2. Optimization & Learning Rate Scheduling ５５
5.2.3. Device Settings ５６
6. Analyses ５８
6.1. Evaluation on MultiMedQA Subset ５８
6.2. Measure on Compression ６４
6.3. Training Costs ６６
6.3.1. Train Runtime ６７
6.3.2. Maximum Memory Usage ６９
7. Conclusion ７４
Bibliography ７６
국문 초록 ８０
</body>

