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Abstract 

 

 
Jaeyoon Kim 

Department of Linguistics 

The Graduate School 

Seoul National University 

 
Large language models (LLMs) that undergo extensive pretraining on massive 

datasets over long periods have become dominant nowadays. Since it is highly 

challenging for individuals to train such models from scratch, it has become common 

practice to fine-tune shared pretrained models for specific tasks. However, when the 

vocabulary distribution of the data used for fine-tuning significantly differs from the 

vocabulary which the existing tokenizer can process, issues can arise, such as the 

tokenizer failing to handle the data properly or excessively fragmenting words into 

overly short tokens. 

Extending the tokenizer by adding new vocabulary items can be an effective 

solution to mitigate these problems, however, there has been little in-depth research 

on the specific effects of tokenizer extension. Therefore, this study aimed to analyze 

the effects of tokenizer extension on domain-specific fine-tuning by training small 

models, using tokenizers extended with medical data and conducting several 

analyses. The medical domain, characterized by its frequent use of specialized 

terminology, was anticipated to benefit positively from tokenizer extension. 
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Experiments were conducted by extending BPE (Byte Pair Encoding)-based 

methods, including SentencePiece BPE, Byte-level BPE, and WordPiece, which uses 

a similar algorithm. The results showed that while the tokenizer's compression 

capability slightly improved, the memory and time required for model training 

increased. In addition, evaluated with 4-options multiple choice questions from 

MultiMedQA, models with extended tokenizer showed worse performance than the 

models with not extended ones. From these results, it could be concluded that 

tokenizer extension may not be helpful, when it comes to fine-tuning a language 

model with domain-specific data. 

 

Keywords : Tokenizer Extension, Medical Fine-tuning, Language Model, Byte Pair 

Encoding, WordPiece, SentencePiece BPE, Byte-level BPE, Compression  

Student Number : 2023-28898 
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1. Introduction 

 

 

Since the advent of the Transformer (Vaswani et al., 2017) architecture, which 

demonstrated high performance in natural language processing, numerous models 

such as GPT, BERT, and T5 have been developed based on variations of the 

Transformer. These models are now chosen and applied based on the specific 

requirements of a given task. However, with the introduction of the scaling laws for 

neural language models and the emergence of "emergent abilities" in causal language 

models of sufficient scale, large language models (LLMs) with billions of parameters 

have come into existence. LLMs of a sufficiently large scale can handle most tasks 

in a few-shot or zero-shot manner, leading to their widespread use across various 

tasks. However, training high-performing models requires access to vast amounts of 

well-curated data, large-scale computing resources, and extensive pretraining 

periods. Consequently, it is often impractical or highly inefficient for individual users 

to train their own models from scratch. This has led to the development of platforms 

for sharing pretrained models and advanced fine-tuning techniques that allow users 

to effectively adapt pretrained models for specific needs. 

One critical consideration when fine-tuning a pretrained model is vocabulary. This 

becomes particularly important, when fine-tuning a model for a new language or 

specialized domain. Significant differences between the vocabulary distributions of 

the pretraining corpus and the fine-tuning corpus can lead to out-of-vocabulary 

(OOV) issues or overly fragmented tokenization, where words are broken into too 

many tokens, making it difficult for the model to understand their meaning. To 
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address this, extending the vocabulary and merge rules of the tokenizer to better 

capture the words in the fine-tuning corpus can be an effective approach. However, 

the impact of such extensions has not been thoroughly analyzed in existing studies. 

In this research, the main goal was to analyze the effects of tokenizer extension on 

domain-specific fine-tuning of language models, focusing on its application in the 

medical domain. The medical field, characterized by an extensive use of specialized 

terminology, is a domain where such tokenizer extensions could be highly beneficial. 

For experiment, three models: BERT, MobileLLM, SmolLM2 with extended 

tokenizers were fine-tuned with medical texts and multiple choice questions. These 

models adopt BPE-based methods: WordPiece, SentencePiece BPE, and Byte-level 

BPE as tokenization respectively, which comprise the majority of recent NLP 

tokenizations. 

After training, the models were evaluated with 4-options multiple choice 

questions from MultiMedQA, and the effects of tokenizer extension on other factors 

such as compression and training costs were measured. By analyzing the results 

obtained from the above, this study provides insights toward tokenizer extension and 

clarify whether it is beneficial to extend tokenizers in case of domain-specific fine-

tuning of language models. 
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2. Related Works 

 

 

2.1. Subword Tokenizations 

 

2.1.1. Background of Tokenizers 

 

Regardless of their architecture, language models ultimately process numbers. 

This implies that all language models must first convert text into numerical 

representations before they can model language. This conversion process involves 

the following steps in Figure 1: 

 

 

Figure 1. Steps of converting input text into numerical representations 

 

The process of converting a token sequence into stacked embeddings (Step 2) is 

typically performed in parallel by first encoding the tokens into mapped indices, then 

transforming these indices into one-hot vectors, and finally multiplying them with 

embedding look-up table. Breaking this down further, the steps can be outlined as in 

Figure 2: 

Sequence of tokens 

Sequence of embeddings 

Input text 

1. Segment text into a sequence of tokens. 

2. Map tokens into corresponding embeddings. 
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Figure 2. Steps of converting input text into numerical representations (revised) 

 

Since dense vector representations of text—such as Word2Vec (Mikolov et al., 

2013), GloVe (Pennington et al., 2014)—were introduced, these steps have become 

a fixed component of all language models. Among the steps, Step 3 is typically 

handled directly by the models, as the embedding look-up tables are now commonly 

trainable or frozen matrices of parameter that is integrated into the models 

themselves. However, the processes up to Step 2—converting input text into a 

sequence of indices—require an external module, commonly referred to as a 

tokenizer. Language models acquire their understanding of language by working 

with the numerical arrays produced by the tokenizer, therefore it is essential to use 

the same tokenizer that was employed during the model's training, to exploit a 

language model's ability effectively. 

Some tokenizers perform normalization and pre-tokenization before 

segmenting and encoding the input text. Normalization involves tasks which are 

similar to text cleaning, ranging from simple substitutions—such as converting 

uppercase letters to lowercase, stripping accent symbols, or replacing all whitespace 

characters with spaces—to more complex processes like applying regular 

Sequence of tokens 

Sequence of embeddings 

Input text 

1. Segment text into a sequence of tokens. 

3. Transform indices into one-hot vectors and 

multiply with embedding look-up table. 
 

2. Encode tokens into corresponding indices. 

Sequence of indices 
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expressions or Unicode normalization methods such as NFC and NFD. Pre-

tokenization is the process of breaking the text into segments based on predefined 

rules prior to tokenization. This can include splitting text using whitespace or 

specific characters like ‘-’(hyphens) or ‘/’(slashes) as delimiters, isolating characters 

such as digits and punctuations from other adjacent characters, or separating 

character sequences from different Unicode categories and subcategories. 

A tokenizer then performs tokenization and encoding based on a predefined 

vocabulary. Through specific algorithms, tokens are registered in the vocabulary 

alongside their indices, and other components such as merge rules are obtained if 

they are required for tokenization, depending on the type of the tokenizer. 

Subsequently, texts can be segmented into tokens that match those in the vocabulary 

and converted into their mapped indices. The critical issue here is determining what 

units to use as tokens, when constructing the vocabulary and implementing 

segmentation. 

When segmenting text, one of the most intuitive units would be word. Words can 

be easily segmented using whitespace as a delimiter, aligning with the intuitive goal 

of tokenization, which is to break down a document or sentence into smaller 

meaningful units. Early language models often used words as tokens, and it was 

common to build vocabularies by segmenting a corpus based on whitespace, setting 

minimum frequency thresholds, and collecting unique items. However, using words 

as tokens has several limitations: it requires large number of tokens to capture 

inflected forms of words, and it often leads to out-of-vocabulary (OOV) issues (since 

the vocabulary is sensitive only to the training corpus), reducing the model's 

flexibility. 
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2.1.2. Subwords as Tokens 

 

As discussed above, using words as units for tokenization is intuitive but comes 

with significant limitations. This has led to the development of methods that use 

other units as tokens. The main issue with word-level tokenization arises from the 

sheer number of unique words, making it impractical. To address this, breaking text 

into smaller units than words to reduce diversity among tokens can be an effective 

solution. When splitting text into smaller units than words, a natural choice might be 

characters, thus methods using characters as units (Chung et al., 2016) or using both 

words and characters as units (Luong and Manning, 2016) had been proposed. 

However, using characters as units introduces several problems. First, converting 

each character in the input text into indices results in sequences that are excessively 

long. This reduces the amount of text that can be captured within a fixed-length index 

array and increases processing costs for texts with same length. Moreover, individual 

character tokens convey very little meaning. Considering that the goal of 

tokenization is to segment input text into smaller meaningful units to help the model 

process the text, characters are not ideal as units. To sum up, while words and 

characters are intuitive and convenient for segmenting text, they are not suitable as 

tokenization units. 

As a countermeasure, subwords, which are smaller than words but longer than 

characters, were proposed as tokenization units. Subwords strike a balance by being 

more flexible than words while containing more information than characters, and 

diverse approaches to building subword vocabularies and performing segmentation 

with them have emerged. As models using subword tokenization have demonstrated 

strong performance, subwords has been established as the standard tokenization unit, 
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and today, all well-known models rely on subword tokenization such as WordPiece 

and BPE. 

 

2.1.3. Byte Pair Encoding (BPE) 

 

Byte Pair Encoding (BPE) is a type of data compression technique that repeatedly 

replaces the most frequent pair of bytes in a sequence with an unused byte (Gage, 

1994). This method can also be applied to character sequences, making it suitable 

for tokenization. BPE forms the foundation of many tokenizers used in large 

language models nowadays, however it was introduced to natural language 

processing even before the rise of transformers. It was first utilized in neural machine 

translation to address the out-of-vocabulary (OOV) issue by breaking unknown and 

rare words into subwords (Sennrich et al., 2015). 

When used for tokenization, BPE follows a similar process to its original 

compression method: it learns a vocabulary by iteratively merging the most frequent 

pairs of characters or subwords. During this process, the merge operations are 

recorded as merge rules. To tokenize an input text, the text is first converted into a 

character sequence, and the merge rules are applied to the sequence to generate a 

sequence of tokens. 

 

2.1.4. WordPiece 

 

WordPiece is a tokenization method developed by Google Research, initially 

designed to address technical challenges in speech recognition systems. To be 

specific, languages like Korean and Japanese which blend diverse characters within 
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sentences and use few whitespaces, often result in a high number of homonyms, 

making text processing difficult. WordPiece was created to ease this by adding word 

boundary markers to the corpus segmented on spaces, and using a vocabulary trained 

to maximize the likelihood of character sequences in the corpus (Schuster & 

Nakajima, 2012). Inspired by the application of BPE, Google later adopted 

WordPiece for their neural machine translation system (Wu et al., 2016). WordPiece 

also became the tokenization method of BERT (Devlin et al., 2019), solidifying its 

position as a major tokenization method. 

Initially, Google did not release Python code for training WordPiece models due 

to dependencies with C##, leaving the details of how pairs were merged to maximize 

corpus likelihood unclear. There had been several failed attempts to replicate the 

original WordPiece vocabularies using the same corpora, and HuggingFace 

eventually succeeded to replicate the vocabulary with its WordPieceTrainer, 

revealing the specific training algorithm of a WordPiece model. Unlike BPE, which 

merges pairs based on raw frequency, WordPiece calculates a score for each pair as 

‘frequency / (product of the frequencies of the two elements)’ and merges the pair 

with the highest score. When it comes to segmentation, WordPiece identifies the 

longest possible token starting from the beginning of the words. If a word is too long 

or contains a part which cannot be covered by the vocabulary, a WordPiece model 

replace the word with an unknown token. 

 

2.1.5. SentencePiece BPE 

 

SentencePiece (Kudo & Richardson, 2018) is a pre-tokenization and decoding 
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method designed to achieve "lossless tokenization". Lossless tokenization ensures 

that: 

 

1. The token sequence generated from a given text is unique. 

2. The text restored from a given token sequence is also unique. 

 

Borrowing the expression from the original paper, this can be summarized as: 

 

Decode(Encode(Normalize(text))) = Normalize(text) 

 

Such a one-to-one correspondence requires that no information is lost during text 

segmentation. In WordPiece, however, spaces are used as delimiters and prefixes are 

added to continuing subwords, which results in the loss of space sequences 

(regardless of their length), introducing ambiguity during decoding. To avoid this, 

SentencePiece escapes spaces with a meta-symbol “_” (U+2581) and treats it as a 

single Unicode character equivalent to other characters. 

Since SentencePiece itself is a method which only guarantees lossless tokenization, 

it has to be combined with other tokenization models such as BPE or Unigram (Kudo, 

2018). As one of such combinations, SentencePiece BPE uses SentencePiece to pre-

tokenize the corpus, learns the vocabulary and merge rules using BPE, and follows 

SentencePiece's decoding process. Additionally, SentencePiece supports a strategy 

called Byte-fallback, which handles unknown tokens by replacing them with byte 

tokens according to their UTF-8 encoding. SentencePiece BPE adopts this strategy 

as well, ensuring that tokens not covered by the vocabulary can still be processed. 
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By combining the strengths of both SentencePiece and BPE, SentencePiece BPE has 

become one of the most widely used tokenization methods, being utilized in leading 

LLMs such as Llama(Touvron et al., 2023a), Llama 2(Touvron et al., 2023b) and 

Gemma(Team et al., 2024a), Gemma 2(Team et al., 2024b). 

 

2.1.6. Byte-level BPE 

 

Byte-Level BPE is a variant of BPE, first introduced as the tokenization method 

for GPT-2 (Radford et al., 2019). The core idea of Byte-Level BPE is to convert all 

Unicode characters in a corpus into byte sequences based on UTF-8 encoding before 

applying BPE. In other BPE tokenization methods, such as SentencePiece BPE, the 

training corpus’s unique Unicode characters must first be added to the initial 

vocabulary to learn the vocabulary and merge rules. However, Byte-Level BPE 

avoids the issue of an excessively large initial vocabulary. This is because UTF-8 

encoding represents characters using only 256 bytes, the initial vocabulary for Byte-

Level BPE needs to include only tokens representing these 256 bytes. Additionally, 

since all Unicode characters are mapped to code points and can be represented using 

UTF-8 encoding, Byte-Level BPE is inherently immune to the out-of-vocabulary 

(OOV) problem and does not require counteractive strategies like Byte-fallback. 

The 256 byte tokens in Byte-Level BPE correspond to the earliest Unicode 

characters, excluding control characters. Plus, Unicode characters with code points 

below 256 are directly represented by the corresponding byte token. Aside from 

converting text into byte sequences, the training process and segmentation in Byte-

Level BPE follow the same steps as other BPE methods. In addition, the original 

Byte-Level BPE introduced an additional mechanism to prevent suboptimal merges, 
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by discouraging merges between byte tokens representing different categories of 

Unicode characters. Thanks to its robust and powerful advantages, Byte-Level BPE 

has become an unquestionable major tokenization method. It is widely used in 

leading large language models such as Llama 3 (Dubey et al., 2024), Qwen (Bai et 

al., 2023), and Qwen 2.5 (Yang et al., 2024). 

 

2.2. BPE and Compression 

 

As described earlier, BPE was initially designed as a simple data compression 

method. While it has since been adopted in natural language processing through its 

use in neural machine translation and is now a core component of most tokenizers, 

its mechanism and effects remain closely tied to compression. Consequently, 

research into the relationship between BPE, compression, and its effects in NLP 

continues to gain attention. Below, key studies related to BPE and compression are 

summarized. 

Research on BPE’s connection to compression can be divided into two camps: 

those arguing that the effectiveness of BPE as a tokenizer stems from its compression 

capability and those who dispute this claim. To introduce a study from the former 

camp, in Gallé (2019), the author hypothesized that models would perform better if 

the same sentence could be captured with fewer tokens, assuming a fixed budget for 

vocabulary size. By applying BPE and other dictionary-based compression 

algorithms to tokenization, the study compared model performance on machine 

translation tasks. The results showed that models capturing sentences with fewer 

tokens achieved higher BLEU scores on the test set, leading to the conclusion that 
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BPE’s effectiveness is linked to its compression capability. 

Similarly, Goldman et al. (2024) investigated the relationship between BPE 

tokenizer compression and model performance. Keeping the vocabulary size fixed, 

they controlled the level of compression by varying the number of documents used 

to train the tokenizer. Models were then trained on these documents and evaluated 

on benchmarks such as QQP and MultiNLI, and it was found that models using 

tokenizers with higher compression performed better. Additional experiments 

suggested that the degree of compression could serve as an evaluation metric for 

tokenizers. 

On the other hand, Schmidt et al. (2024) presented a contrasting perspective. After 

varying the degree of compression through vocabulary size and training 64 models 

under some other controlled conditions, they evaluated model performance on 

several downstream tasks in a few-shot setting. Their findings showed minimal 

performance differences based on vocabulary size, while factors such as pre-

tokenization, vocabulary construction, and segmentation had a greater impact on 

performance. The study concluded that elements other than compression played a 

larger role in determining model performance and, casted doubt on the idea that 

BPE’s effectiveness is derived from its compression ability. 

While BPE remains an effective tokenization method, some studies argue that it 

is not optimal because it fails to account for morphology. In Bostrom & Durett (2020), 

the authors criticized BPE for its lack of alignment with morphological structure, 

making it less suitable for language model pretraining. They pretrained models using 

BPE and Unigram tokenizers on masked language modeling tasks and compared 

their downstream performance. On evaluation, models using Unigram outperformed 

those using BPE, leading the authors to conclude that BPE’s inability to reflect 
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morphology makes it suboptimal. 

Conversely, Gutierrez-Vasques et al. (2023) offered a different view. By training 

BPE tokenizers on languages with varying morphological typologies and analyzing 

the resulting vocabularies, the study suggested that BPE adapts its compression to 

align with morphological typology. In morphologically rich languages, productive 

subwords were prioritized, while in less inflected languages, idiosyncratic subwords 

were learned first. Regarding these results, the authors concluded that BPE generates 

subwords that characterize each language’s structure. 

The relationship between BPE and compression, as well as its connection to 

morphology and effectiveness, remains unclear and controversial. While 

compression is fundamental to BPE’s design, the reasons for its effectiveness may 

lie elsewhere, highlighting the need for further research. And in this study, among 

such research questions, the relation between extension of BPE-based tokenizers and 

improvement on compression is examined. 
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3. Datasets & Models 

 

 

This section provides detailed information about datasets and models, which will 

be repeatedly suggested on sections afterwards, and used throughout the entire 

process of experiment. 

 

3.1. Datasets 

 

3.1.1. PubMed 

 

PubMed is a free platform for browsing biomedical literature, which is developed 

and maintained by the U.S. National Library of Medicine (NLM) at the National 

Institutes of Health (NIH). It provides access to a vast database of citations and 

abstracts in the fields of biomedicine and life sciences, with the goal of enhancing 

global and personal health. PubMed was launched in January 1996 providing access 

to institutional facilities like university libraries, however from June 1997, it became 

freely available to the public, significantly broadening access to biomedical literature. 

As of December 2024, PubMed comprises more than 37 million citations from 

MEDLINE (a bibliographic database hosted by NLM), life science journals, and 

online books. While it does not include full-text articles, it often provides articles’ 

abstracts, or links to full-text available through publisher websites or PMC.  

PubMed also offers various search functionalities, including advanced search 

options, clinical queries, and a single citation matcher, in addition to tools for data 
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mining and bulk processing. Plus, since it ensures the entire database to be available 

for download in XML format, it facilitates large-scale analyses and the development 

of biomedical language models. While PubMed provides such diverse conveniences, 

only download service was exploited to collect abstracts from medical articles, for 

experiments on section 5. 

 

3.1.2. PMC (PubMed Central) 

 

PMC (PubMed Central) is a free digital repository which archives open access 

full-text scholarly articles from biomedical and life sciences journals. It offers direct 

access to full-text articles unlike PubMed (which only provides abstract, citations, 

and links to full-text), enhancing the public's ability to discover, read, and build upon 

biomedical knowledge. It is established by the U.S. National Institutes of Health's 

National Library of Medicine (NIH/NLM) in 2000, and it contains over 5.2 million 

articles from approximately 4,000 journals (including some publishers implementing 

delayed release) nowadays. PMC serves as a comprehensive resource for researchers, 

healthcare professionals, and the public to access a vast collection of biomedical 

literature. 

PMC utilizes standardized XML formats to ensure the longevity and accessibility 

of its content. Articles are submitted by publishers in XML or SGML formats and 

are converted to the NLM Archiving and Interchange DTD for consistency. This 

process facilitates linking to related data objects and integration with other NCBI 

databases, providing a robust platform for information retrieval and research. For 

researchers and developers interested in bulk data access, PMC also offers tools for 
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bulk download, text mining, and other machine analysis, supporting a wide range of 

scientific inquiries and applications. Among these services, bulk download was used 

to collect full-text medical articles for experiments on section 5. 

 

3.1.3. MultiMedQA subsets 

 

  MultiMedQA (Singhal et al., 2023) is a comprehensive benchmark introduced by 

Google Research to evaluate the performance of large language models in the 

medical domain. It combines six existing open question-answering datasets, 

encompassing professional medical exams, research, and consumer health queries, 

and was utilized to assess Med-PaLM, a large language model fine-tuned for medical 

question answering. Among 6 subsets of MultiMedQA, 3 of datasets are composed 

of 4-options multiple choice questions, and widely adopted for measuring language 

models’ medical knowledge. These 3 subsets are used for fine-tuning and evaluating 

models on later sections, since they share the number of options. 

 

3.1.3.1. MedQA 

 

MedQA (Jin et al., 2020) is a comprehensive open-domain question-answering 

dataset tailored for the medical field. It comprises multiple-choice questions 

designed to assess the professional knowledge and clinical decision-making abilities 

of physicians, covering a wide range of medical topics. The dataset presents a 

significant challenge for existing open-domain question-answering systems, as it 

requires models to retrieve relevant information from extensive medical literature 
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and perform complex reasoning to arrive at the correct answers. The dataset and 

baseline source code of MedQA are publicly available for research purposes, 

supporting the development and evaluation of advanced question-answering models 

in the medical domain. 

The questions of MedQA are sourced from professional medical board 

examinations across three regions: the United States, Mainland China, and Taiwan, 

and as result, the dataset includes 12,723 questions in English, 34,251 in simplified 

Chinese, and 14,123 in traditional Chinese. Among these, questions in English are 

used only. 

 

3.1.3.2. MedMCQA 

 

MedMCQA (Pal et al., 2022) is a large-scale Multiple-Choice Question 

Answering (MCQA) dataset specifically designed for the medical domain. It 

comprises over 194,000 high-quality multiple-choice questions, sourced from two 

postgraduate entrance exams in medicine, AIIMS(All India Institute of Medical 

Sciences) PG and NEET(National Eligibility cum Entrance Test) PG, which are 

conducted by AIIMS and NBE(National Board of Examinations). The questions 

cover 2,400 healthcare topics across 21 medical subjects, and is structured to test a 

model's reasoning abilities across a wide range of medical subjects and topics, 

contributing to advancements in natural language understanding within the medical 

field. MedMCQA is publicly available for research purposes, with data and code 

accessible through its GitHub repository. 

Each sample of MedMCQA contains question, options, and correct answer, and 
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most of samples additionally includes a detailed explanation of the correct answer 

by experts. The train and the validation split were used, while the test split which 

does not include correct labels was excluded. 

 

3.1.3.3. MMLU Clinical Topics 

 

The MMLU (Massive Multitask Language Understanding) benchmark 

(Hendrycks et al., 2020) is designed to evaluate the breadth and depth of a language 

model's knowledge across 57 diverse subjects, categorized into STEM, humanities, 

social sciences, and others. It comprises approximately 16,000 multiple-choice 

questions that range from elementary to advanced professional levels, assessing both 

world knowledge and problem-solving abilities. The data of MMLU are publicly 

available through online platforms such as GitHub and HuggingFace, and MMLU 

has become one of the standard benchmarks for evaluating large language models. 

MMLU Clinical Topics include 6 subjects from MMLU whose subcategories are 

either biology or health: Anatomy, Clinical Knowledge, College Biology, College 

Medicine, Medical Genetics, Professional Medicine. The 6 subjects contain samples 

with question, 4 options, and correct answer in common, and their test splits were 

used in later sections. 

 

3.2. Models 

 

While the following sections provide details of the models, Table 1 summarizes 

the configurations. 
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Model BERT Base Cased MobileLLM 125M SmolLM2 135M 

Architecture 
Transformer 

Encoder 

Transformer 

Decoder 

Transformer 

Decoder 

# of Layers 12 30 30 

Hidden Dimension 768 576 576 

Feed-Forward 

Dimension 
3,072 1,536 1,536 

# of Attention Heads 12 9 9 

# of Parameters 108, 310,272 124,635,456 134,515,008 

Tokenization WordPiece SentencePiece BPE Byte-level BPE 

Vocabulary Size 28,996 32,000 49,152 

 

Table 1: Summary of base model configurations 

 

3.2.1. BERT 

 

BERT (Devlin et al., 2019) is a model built using the encoder component of the 

Transformer architecture. The BERT Base configuration was designed to match the 

model configuration of OpenAI’s GPT-1 (Radford et al., 2018) for comparison 

purposes, with the following specifications: 

 

⚫ Number of layers: 12 

⚫ Hidden dimension: 768 

⚫ Feed-Forward hidden dimension: 3072 

⚫ Attention heads: 12 

 

Unlike GPT-1, which uses the Transformer decoder and is optimized for 

generative tasks, BERT specializes in encoding input texts and focuses on natural 

language understanding. Its pretraining involves two key tasks: Masked Language 

Modeling (MLM) and Next Sentence Prediction (NSP). MLM is a task where certain 

portion of tokens from the input texts are masked, and the model predicts the original 
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tokens. The masking strategy is as follows: 

 

◼ 15% of the words are selected for masking, where: 

➢ 80% (12% of the total) are replaced with the mask token([MASK]). 

➢ 10% (1.5% of the total) are replaced with random words. 

➢ 10% (1.5% of the total) are left unchanged. 

 

NSP involves taking a pair of sentences as input and predicting whether the second 

sentence naturally follows the first. To support this, BERT introduces two special 

features: the classification token ([CLS]) and segment embeddings, which indicate 

whether each token belongs to the first or second sentence in the pair. 

BERT uses a WordPiece tokenizer, with the prefix "##" prepended to subwords 

which are not word-initial tokens. The model was trained in two versions: Cased 

(case-sensitive) and Uncased (case-insensitive). While various versions of BERT 

with different configurations have been released since its introduction, BERT Base 

Cased with vocabulary size of 28,996 was used for experiment on section 5. 

 

3.2.2. MobileLLM 

 

MobileLLM (Liu et al., 2024) is a model released by Meta as part of its research 

into efficient language models for mobile devices. Although versions with more than 

1 billion parameters are available, the core focus of the research was on optimizing 

models with fewer than 1 billion parameters. The smallest version, with 125 million 

parameters, was used for experiments. Its configuration is as follows: 
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⚫ Number of layers: 30 

⚫ Hidden dimension: 576 

⚫ Feed-Forward hidden dimension: 1536 

⚫ Attention heads: 9 

 

The study emphasized that in smaller models, architecture has a more significant 

impact on performance than other factors. As a result, MobileLLM incorporates 

several architectural techniques, including: 

 

⚫ Embedding Sharing: The embedding table is reused as the language 

model (LM) head. 

⚫ Grouped Query Attention: Optimizes the exploitation of weights. 

⚫ Layer Sharing: Weights are shared between adjacent blocks, to scale up 

the model while not increasing the number of trainable parameters. 

 

Guided by previous researches highlighting the importance of depth in small 

models, MobileLLM is designed to have a deep-thin (many layers, with narrow 

widths) structure. Multiple versions of the model were released based on different 

configurations of embedding sharing and layer sharing, and a version with 

embedding sharing enabled but layer sharing disabled was adopted for the 

experiments. MobileLLM uses a SentencePiece BPE tokenizer, and its vocabulary 

size is 32,000 

 

3.2.3. SmolLM2 
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SmolLM2 (Allal et al., 2024) is a model developed by Hugging Face as an updated 

version of the SmolLM project, which focused on building small, fast models. 

Although no official paper has been published, the model and related information 

are available online through GitHub and HuggingFace. SmolLM2 emphasizes the 

use of high-quality, large-scale pretraining data, which has also been publicly 

released for use by others. 

Base and Instruct versions are available, for models with 3 different scales: 135M, 

360M and 1.7B. 135M Base model, which is used for the experiments on later 

sections, are built with the following configuration: 

 

⚫ Number of layers: 30 

⚫ Hidden dimension: 576 

⚫ Feed-Forward hidden dimension: 1536 

⚫ Attention heads: 9 

 

The project also supports tools such as summarizers, rewriters, and AI agents, 

based on the larger 1.7B Instruct model. These tools can be easily accessed through 

Python code, after a simple installation process. For tokenization, SmolLM2 uses a 

Byte-level BPE tokenizer with vocabulary size of 49,152. 
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4. Tokenizer Extension 

 

 

In this section, the methods of extending the original tokenizers of BERT, 

MobileLLM, SmolLM2 are explained step-by-step. The processes of extending the 

original tokenizers were conducted in two main stages: 

 

1. Training Supplement Tokenizers for tokenization methods (WordPiece, 

SentencePiece BPE, Byte-level BPE). 

2. Extending the Original Vocabulary and Merge Rules with the 

supplement tokenizer’s vocabulary and merge rules. 

 

To ensure the extended tokenizers to work flawlessly, vocabulary and merge rules 

of each supplement tokenizer must be compatible with those of the original tokenizer. 

Therefore, the steps above should be implemented with thorough consideration of 

the features of the original tokenizers. 

 

4.1. Details on the Original Tokenizers 

 

While the original tokenizers include a number of components, they can be broken 

down into 3 major parts: 1) Normalizations & Pre-tokenizations, 2) Training 

Algorithms, and 3) Tokenization Algorithms. The following sections explain the 

details of each part. 
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4.1.1. Normalizations & Pre-tokenizations 

 

In case of the normalization or pre-tokenization of the original tokenizer being 

stricter than that of a supplement tokenizer, some of non-overlapping tokens from 

the supplement tokenizer might not survive the normalization or pre-tokenization. 

For instance, even if a token spelled ‘The’ from a case-sensitive supplement 

tokenizer is appended to the original tokenizer’s case-insensitive vocabulary, it will 

never appear in the results of tokenization since all ‘The’ in the input text will be 

normalized into ‘the’. As result, the embedding mapped to ‘The’ becomes 

untrainable, which leads the extension to be meaningless. 

To avoid adding untrainable tokens to the original vocabulary, appropriate 

normalization and pre-tokenization should have been applied when training the 

supplement tokenizers. The normalization and pre-tokenization details for each 

tokenizer are as the followings. 

 

4.1.1.1. BERT 

 

BERT's tokenizer is designed to be capable of implementing various 

normalizations and pre-tokenizations, while all the normalization and pre-

tokenization steps can be included or excluded by users. BERT’s tokenizer can apply 

the following normalization steps: 

 

1. Remove control characters. 

Example: ‘\x7f’ (delete) → ‘’. 

2. Replace all whitespace with spaces. 
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Example: ‘\x0b’ (vertical tabulation) → ‘ ‘. 

3. Add spaces around each Chinese character. 

Example: ‘漢字’ → ‘ 漢  字 ’. 

4. Convert uppercase letters to lowercase. 

Example: ‘ABc’ → ‘abc’. 

5. Remove accent diacritics. 

Example: ‘áèõ’ → ‘aeo’. 

 

Control characters refer to characters which belong to Unicode general category 

‘others’, while whitespace includes characters which belong to general category 

‘separator, space (Zs)’ or one of the bidirectional categories like ‘B’, ‘S’, or ‘WS’. 

Horizontal tab (‘\t’), line feed (‘\n’), and carriage return (‘\r’) are treated as 

whitespace and replaced with spaces rather than being removed. The BERT base 

cased tokenizer used in the experiments applies only steps 1, 2, and 3. 

Next, BERT’s pre-tokenization includes: 

 

1. Split text by spaces as delimiters. 

Example: ‘a text’ → ‘a’, ‘text’. 

2. Isolate each punctuation from surrounding characters. 

Example: ‘a.!?b’ → ‘a’, ‘.’, ‘!’, ‘?’, ‘b’. 

 

Here, punctuations are defined as the characters which satisfy at least one of the 

followings: 1) belong to the ASCII code, but do not not belong to letters or digits, 2) 

belong to Unicode general category ‘punctuation’. For reference, the list of 

punctuations in ASCII plane are shown in Table 2. 



 

 ２６ 

Character Name Unicode Code Point Character Name Unicode Code Point 

! Exclamation Mark 33 ; Semicolon 59 

” Quotation Mark 34 < Less-than Sign 60 

# Number Sign 35 = Equals Sign 61 

$ Dollar Sign 36 > Greater-than Sign 62 

% Percent Sign 37 ? Question Mark 63 

& Ampersand 38 @ Commercial At 64 

' Apostrophe 39 [ Left Square Bracket 91 

( Left Parenthesis 40 \ Reverse Solidus 92 

) Right Parenthesis 41 ] Right Square Bracket 93 

* Asterisk 42 ^ Circumflex Accent 94 

+ Plus Sign 43 _ Low Line 95 

, Comma 44 ` Grave Accent 96 

- Hyphen-minus 45 { Left Curly Bracket 123 

. Full Stop 46 | Vertical Line 124 

/ Solidus 47 } Right Curly Bracket 125 

: Colon 58 ~ Title 126 

 

Table 2: Punctuations in ASCII plane 

 

4.1.1.2. MobileLLM 

 

MobileLLM’s tokenizer follows SentencePiece normalization, escaping spaces as 

meta symbols and appending a meta symbol at the beginning of the text. No pre-

tokenization is applied. 

 

4.1.1.3. SmolLM2 

 

SmolLM2’s tokenizer does not perform normalization. Its pre-tokenization 

isolates each digit (0–9), and converts all characters into one or more byte tokens 

based on UTF-8 encoding. 

 

Table 3 summarizes the normalization and pre-tokenization processes for the three 

tokenizers: 

 

 



 

 ２７ 

 Normalization Pre-tokenization 

BERT 

- Remove control characters 

- Replace all whitespaces with spaces 

- Prepend and append a space to Chinese 

 characters 

- Segment texts with spaces as delimiter 

- Isolate each punctuation 

MobileLLM 
- Replace spaces with meta symbol ‘▁’ 

- Prepend meta symbol ‘▁’ to texts 
- 

SmolLM2 - 

- Isolate each digit 

- Decompose Unicode characters into 

 UTF-8 byte tokens 

 

Table 3: Summary of normalization and pre-tokenizations, implemented 

by the tokenizers of BERT, MobileLLM, and SmolLM2 

 

When training supplement tokenizers, in addition to the unique processes of each 

tokenizer, two pre-tokenizations were applied universally: 1) isolating each 

punctuation, and 2) isolating each digit. 

 

4.1.2. Training Algorithms 

 

When incorporating vocabularies from 2 tokenizers, it must be guaranteed that the 

2 tokenizers share the algorithm with which they are trained. This is because what 

components tokenizers obtain during training and how the tokens in their 

vocabularies look like vary according to training algorithms, which makes a 

supplement vocabulary trained with a different algorithm to be not compatible with 

an original tokenizer. To illustrate, a token spelled ‘##able’ (which stands for word-

medial or word final suffix ‘able’) from a vocabulary trained with WordPiece 

algorithm, will not be properly processed by a SentencePiece BPE tokenizer, which 

expects the form of ‘able’ as representation of a token with such role. 

As mentioned above, BERT, MobileLLM, and SmolLM2’s tokenizer adopted 

WordPiece, SentencePiece BPE, Byte-level BPE as their tokenizations. The 3 



 

 ２８ 

tokenizations share the key training method, but their specific algorithms slightly 

differ. Detailed illustration of the training algorithms are as follows. 

 

4.1.2.1. WordPiece 

 

A WordPiece tokenizer is trained by iteratively searching and merging the pair 

with best merge score, starting from the processed training corpus decomposed into 

characters, until any of the stopping criteria is satisfied. The merge score is computed 

as follows:  

 

𝑚𝑒𝑟𝑔𝑒 𝑠𝑐𝑜𝑟𝑒 =  
(frequency of the pair)

(frequency of the1𝑠𝑡component) × (frequency of the2𝑛𝑑component)
 

 

For each iteration, the score above is computed for all the bigrams, and the pair 

with the best score is merged and registered as a new token alongside an index, and 

the corpus is updated by replacing bigrams match the pair with the token. The 

training procedure finishes, if the frequency of the pair with best merge score is lower 

than the predefined minimum frequency. Otherwise, the iteration continues until the 

number of tokens have been learned reaches the preferred vocabulary size.  

In advance of the iterations, special tokens and unique initial unigrams are added 

to the vocabulary, where initial unigrams contain the corpus decomposed into 

individual characters. The training algorithm can be briefly summarized into the 

following steps: 

 

1. Normalize, pre-tokenize the corpus 
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2. Decompose the corpus into initial unigrams (which are characters). 

3. Add special tokens and unique initial unigrams to the vocabulary 

4. Compute the merge score of bigrams 

5. Merge the pair with best merge score into a token and add it to the vocabulary. 

6. Replace all bigrams which match the pair with the merged token. 

7. Repeat 4-6 until: 

A. Frequency of the best pair ≥ Minimum frequency criterion 

B. Current vocabulary size ≤ Preferred vocabulary size 

 

It should be noted that, a prefix which identify continuing subwords is required 

for this procedure. The prefix is prepended to initial unigrams which are not on word-

initial position, and removed from the second component of the pair when a merge 

occurs. For example, with ‘##’ as the prefix (which is adopted by BERT), ‘Wo’ and 

‘##rd’ are merged into ‘Word’ while ‘##wo’ and ‘##rd’ are merged into ‘word’. The 

prefix may vary depending on the tokenizer, since any other symbol can be set as the 

prefix if needed. 

Including all the features mentioned above, the whole training procedure of 

WordPiece can be described as Algorithm 1. 
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4.1.2.2. SentencePiece BPE 

 
SentencePiece BPE tokenizers are trained by iteratively searching pairs and 

merging them, similarly to WordPiece. However, the training algorithm computes 

naïve frequencies rather than merge score, based on the merged form of pairs rather 

than pairs themselves. The training procedure breaks if any of the stopping criteria 

is met, which are same to those of WordPiece. 

BPE-based tokenizers require trained merge rules for tokenization, since they 

implement tokenization by applying those rules in order, to the initial unigrams of 

decomposed input text. Merge rules contain pairs of symbols indicating which 

bigrams to be merged next, and details about how these are applied are on section 

4.1.3. Merge rules can easily be obtained, by simply storing the merges occurred 
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during the training procedure. Since the training algorithm of SentencePiece BPE 

computes the frequency of merged forms of pairs, 2 or more pairs which build up 

the merged form could be learned as merge rules from 1 iteration. The following 

steps summarizes the training algorithm: 

 

1. Normalize, pre-tokenize the corpus 

2. Decompose the corpus into initial unigrams (which are characters). 

3. Add special tokens and unique initial unigrams to the vocabulary 

4. Compute the frequency of merged forms of bigrams 

5. Add the merged form with highest frequency to the vocabulary. 

6. Add all bigrams which build up the merged token to the merge rules 

7. Replace all bigrams which build up the merged token with the merged token. 

8. Repeat 4-7 until: 

A. Frequency of the merged token ≥ Minimum frequency criterion 

B. Current vocabulary size ≤ Preferred vocabulary size 

 

Unlike WordPiece which adopts prefix for continuing subwords, SentencePiece 

BPE does not prepend any symbol to tokens on step 2. The training procedure of a 

SentencePiece BPE tokenizer can be illustrated as Algorithm 2. 
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4.1.2.3. Byte-level BPE 

 

Just as SentencePiece BPE, Byte-level BPE tokenizers are trained by iteratively 

searching pairs with highest frequency and merging them. The only part where 

training algorithm of Byte-level BPE is different from SentencePiece BPE is that it 

computes the frequency of pairs before being merged. Since the pair with highest 

frequency is selected, only one merge rule is obtained per 1 iteration. Considering 

the distinction above, the training algorithm of Byte-level BPE can be summarized 

as follows: 



 

 ３５ 

 

1. Normalize, pre-tokenize the corpus 

2. Decompose the corpus into initial unigrams (which are characters). 

3. Add special tokens and unique initial unigrams to the vocabulary 

4. Compute the frequency of bigrams 

5. Merge the pair with highest frequency into a token and add it to the vocabulary. 

6. Add the pair with highest frequency to the merge rules 

7. Replace all bigrams which match the pair with the merged token. 

8. Repeat 4-7 until: 

A. Frequency of the merged token ≥ Minimum frequency criterion 

B. Current vocabulary size ≤ Preferred vocabulary size 

 

Byte-level BPE does not prepend any prefix to token on step 2, same as 

SentencePiece BPE. Algorithm 3 illustrates the training procedure of a Byte-level 

BPE tokenizer. 
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4.1.3. Tokenization Algorithms 

 

As well as the training algorithms, tokenization algorithms should be considered 

when integrating 2 tokenizers’ vocabularies and merge rules. This is because an 

extended tokenizer may fail to capture new tokens from the input text, if the 

tokenization algorithms of the two tokenizers are inconsistent. The details of the 

tokenization algorithms of WordPiece, SentencePiece BPE and Byte-level BPE are 

as follows. 
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4.1.3.1. WordPiece 

 

The tokenization algorithm of WordPiece captures the longest token from each 

pre-tokenized unit, by repeatedly trying to match the left part of the unit with tokens 

in the vocabulary. This key process can be described as below: 

 

1. Put the start and end offset on the leftmost and rightmost characters of the unit. 

2. Find a token which matches with the current window 

3. If there is no token matching, reduce the end offset by 1 

4. If there is a token matching, append the token’s index to the output array, replace 

the start offset with current end offset, and reset the end offset to the end of the unit. 

5. Repeat 2-4, until there is no character remaining in the unit. 

 

When the start offset is not on the initial character of the unit, or in other words, a 

token representing a continuing subword should be captured, the algorithm 

automatically prepends the predefined prefix which is mentioned on section 4.1.2.1. 

In addition to the algorithm above, WordPiece tokenization returns the unknown 

token, regrading a unit as OOV(Out of Vocabulary), on cases below: 

 

⚫ The unit is longer than the predefined maximum length of each unit. 

⚫ A part of unit cannot be capture by any of the tokens in the vocabulary 

 

The tokenization algorithm of WordPiece therefore requires the unknown token, 

unlike other BPE-based tokenizations. Algorithm 4 illustrates the tokenization 

algorithm of WordPiece. 
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4.1.3.2. SentencePiece BPE 

 

Since the procedure of obtaining tokens by merging bigrams is stored as merge 

rules, a SentencePiece BPE tokenizer only has to apply the merge rules to the input 

text for tokenization. The pre-tokenized units are decomposed into characters at first, 

and bigrams matching with each merge rule are replaced with the merged token. 

After all the rules are applied, tokens are captured from each unit and converted into 

indices. 

As mentioned, SentencePiece BPE utilizes Byte-fallback method to process 

unknown tokens, which disassemble the tokens into characters and convert each 

character into UTF-8 bytes. Thanks to the method, a SentencePiece BPE tokenizer 

does not require an unknown token in its vocabulary for tokenization, whose 

tokenization algorithm can be described as Algorithm 5. 
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4.1.3.3. Byte-level BPE 

 

Although the number of merge rules learned from a merge is different, Byte-level 

BPE tokenizers applies the merge rules for tokenization, similarly to SentencePiece 

BPE tokenizers. Tokens are captured after applying all the rules to decomposed units, 

and OOV(Out of Vocabulary) does not occur due Byte-level BPE tokenization’s 

immunity. The tokenization algorithm of Byte-level BPE can be illustrated as 

Algorithm 6. 
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4.2. Training Supplement Tokenizers 

 

As mentioned above, BERT, MobileLLM, and SmolLM2 each utilize different 

methods, resulting in distinct token structures within their vocabularies. Therefore, 

separate supplement tokenizers were trained for each tokenization type. 

 

4.2.1. Training Corpus 

 

Half of the data used for continual pretraining was selected as the training corpus 

for the supplement tokenizers. Though it is a standard practice to train a tokenizer 

using the same corpus as the model, the supplement tokenizers were trained using 

five different minimum frequency thresholds to examine the effect of the number of 

tokens extended. The vocabulary size of each supplement tokenizer trained with 

different thresholds is summarized in Table 4: 

 

Minimum Frequency WordPiece SentencePiece BPE Byte-level BPE 

1,000 80,624 83,655 78,216 

5,000 40,552 38,058 32,939 

10,000 30,807 27,458 22,327 

50,000 18,093 13,995 8,839 

100,000 15,131 10,926 5,763 

 

Table 4: Summary of vocabulary sizes of dummy tokenizers, 

trained with a half of the model training corpus 

 
During this process, alongside medical terms, non-medical tokens which build the 

context around the medical terms were naturally included in the vocabulary. This 

tendency was more obvious on supplement tokenizers trained with high minimum 

frequency criteria, since medical terms cannot build the context alone and they only 



 

 ４５ 

appear in special contexts. In other words, context words were mainly learned as 

tokens on minimum frequency of 100,000, while medical terms were also learned as 

tokens on minimum frequency of 1,000. 

To evaluate the direct impact of extending tokenizers with only medical terms, 

additional supplement tokenizers were trained using a list of medical terms as the 

training corpus. This list was created by crawling headwords from the Merriam-

Webster Medical Dictionary, applying the same pre-tokenization shared by 

supplement tokenizers, and deduplicating the entries. As result, 49,206 medical 

terms were collected. 

Among the collected medical terms, some of terms contained overlapping parts, 

for instance: 

 

⚫ hepa-: hepatic, hepatis, hepatitis, hepatectomy, hepaticotomy & etc. 

⚫ jejun-: jejuna, jejunitis, jejunogastric, jejunoileal, jejunostomy & etc. 

⚫ pelv-: pelvis, pelvigraph, pelvimeter, pelviscope, pelviolithotomy & etc. 

 

These subwords turned out to be prefixes from Latin language related to certain 

parts of human body, which are: 

 

⚫ hepa-: a prefix which indicates something related to liver 

⚫ jejun-: a prefix which indicates something related to a part of intestine 

⚫ pelv-: a prefix which indicates something related to pelvic bone 

 

Likewise, a number of subwords which seem to be derived from Latin were found 

in the list. Regarding this, to control how subwords were captured, supplement 
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tokenizers were also trained using four different minimum frequency thresholds. All 

unique terms were registered as tokens when the minimum frequency was set to 1, 

while only highly frequent subwords were learned when the minimum frequency 

was set to 10. The resulting vocabulary sizes are shown in Table 5: 

 

Minimum Frequency WordPiece SentencePiece BPE Byte-level BPE 

1 72,932 72,415 72,549 

2 17,137 16,903 17,010 

5 7,167 7,078 7,239 

10 3,782 3,694 3,852 

 

Table 5: Summary of vocabulary sizes of dummy tokenizers, trained with the list of medical 

terms crawled from Merriam-Webster Medical Dictionary 

 

4.3. Extending the Original Vocabulary and Merge Rules 

 

Non-overlapping tokens and merge rules from the supplement tokenizers were 

added to the original vocabularies, reflecting the algorithms of WordPiece, 

SentencePiece BPE, and Byte-level BPE. 

 

4.3.1. WordPiece 

 

WordPiece does not use merge rules during tokenization, as it captures the longest 

possible token from the start of the text. The supplement tokenizer for WordPiece 

does not learn merge rules either, thus the extension of BERT’s tokenizer with 

WordPiece supplement tokenizer reduces to a simple procedure: appending non-

overlapping tokens to the original vocabulary in index order. The extension BERT’s 

vocabulary using the WordPiece supplement tokenizer can be expressed as 
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Algorithm 7: 

 

 

 

4.3.2. SentencePiece BPE 

 

SentencePiece BPE uses merge rules during both training and tokenization. Unlike 

traditional BPE, SentencePiece BPE incorporates all possible combinations of 

tokens into the merge rules. Since single-character tokens are registered without 

merge rules, they must be added to the vocabulary first to correctly derive subsequent 

merge rules. The process for extending MobileLLM’s vocabulary using the 

SentencePiece BPE supplement tokenizer can be expressed as Algorithm 8: 
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4.3.3. Byte-level BPE 

 

Byte-level BPE learns one merge rule per token during training, incorporating the 

highest-frequency pair. Single-character tokens should be added to the vocabulary 

first just as SentencePiece BPE, followed by tokens derived from merge rules. The 

process for extending SmolLM2’s vocabulary using the Byte-level BPE supplement 

tokenizer can be expressed as Algorithm 9: 
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  Table 6 summarizes the number of tokens newly added to the vocabulary, through 

the extension algorithms above. The tokenizers extended using supplement 

tokenizers trained with continual pretraining data are indicated by the prefix ‘Auto’, 

while the tokenizers extended using supplement tokenizers trained with medical 

terms are indicated by the prefix ‘Crawled’. The numeric suffixes such as ‘5’ or 

‘10,000’ indicate the minimum frequency criteria applied when training supplement 

tokenizers. For instance, supplement tokenizers trained with medical terms with 

minimum frequency criterion of 2 are indicated by ‘Crawled-2’ 
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Model BERT MobileLLM SmolLM2 

Auto-1000 
91,705 

(+ 62,709) 

98,413 

(+ 66,413) 

93,884 

(+ 44,732) 

Auto-5000 
56,887 

(+27,891) 

57,055 

(+ 25, 055) 

60,542 

(+ 11,390) 

Auto-10000 
49,247 

(+20,251) 

48,369 

(+ 16,369) 

54,753 

(+ 5,601) 

Auto-50000 
40,954 

(+11,958) 

38,999 

(+ 6,999) 

50,097 

(+ 945) 

Auto-100000 
39,439 

(+ 10,443) 

37,411 

(+5,411) 

49,644 

(+492) 

Crawled-1 
94,776 

(+65,780) 

97,829 

(+ 65,829) 

109,122 

(+59,970) 

Crawled-2 
42,934 

(+ 13,938) 

44,684 

(+12,684) 

59,984 

(10,832) 

Crawled-5 
34,167 

(+ 5,171) 

36,397 

(+ 4,397) 

52,888 

(+3,436) 

Crawled-10 
31,351 

(+2,355) 

33,828 

(+ 1,828) 

50,396 

(+ 1,244) 

Original 28,996 32,000 49,152 

 

Table 6: The number of tokens extended 
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5. Experiments 

 

 

5.1. Training Tasks 

 

To validate the effectiveness of tokenizer extension, the models with extended 

tokenizer, as well as the base model with not extended one, were trained in two stages: 

1) Continual Pretraining and 2) Multiple Choice Fine-Tuning. The following 

sections provide details of the training process. 

 

5.1.1. Continual Pretraining 

 

The models were pretrained using the following methods: 

 

• BERT’s variations were trained with masked language modeling. 

• MobileLLM and SmolLM2’s variations were trained with causal language 

modeling. 

 

For BERT and SmolLM2, the pretrained weights of their language modeling heads 

were publicly available, so these were loaded and further trained. For MobileLLM, 

since embedding sharing was used, the language modeling head was not trained 

separately.  

The training data consisted of medical texts collected from PMC and PubMed. 

As PMC provides full article data, there was a concern that only the beginning 
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sections (e.g., abstracts, introductions) of articles might be overly utilized due to the 

limited context length. To address this, the articles were divided into sections and 

sampled accordingly. A total of 3.8 billion words were collected, with an average 

word count per sample of 444.24 words. 

 

5.1.2. Multiple Choice Fine-tuning 

 

To train the models to be capable of answering 4-option multiple choice questions, 

the MedMCQA train split (182,822 questions) was formatted using a consistent 

template for fine-tuning. 

 

• MobileLLM and SmolLM2 were fine-tuned using causally formatted data, 

including explanations, via causal language modeling. 

• BERT was fine-tuned using data formatted only up to the options and paired 

with labels, via text classification. 

 

Examples of MedMCQA questions formatted as templates for each case were 

provided on Table 7. 
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Options Only **Instruction** 

The following is a question about medical knowledge. Please choose the right 

answer. 

 

**Question** 

Which vitamin is supplied from only animal source: 

 

**Options** 

A) Vitamin C 

B) Vitamin B7 

C) Vitamin B12 

D) Vitamin D 

Explanation 

Added 

**Instruction** 

The following is a question about medical knowledge. Please choose the right 

answer. 

 

**Question** 

Which vitamin is supplied from only animal source: 

 

**Options** 

A) Vitamin C 

B) Vitamin B7 

C) Vitamin B12 

D) Vitamin D 

 

**Answer** 

C) Vitamin B12. Ans. (c) Vitamin B12 Ref: Harrison's 19th ed. P 640* Vitamin 

B12 (Cobalamin) is synthesized solely by microorganisms.* In humans, the only 

source for humans is food of animal origin, e.g., meat, fish, and dairy products.* 

Vegetables, fruits, and other foods of nonanimal origin doesn't contain Vitamin 

B12 .* Daily requirements of vitamin Bp is about 1-3 pg. Body stores are of the 

order of 2-3 mg, sufficient for 3-4 years if supplies are completely cut off. 

 

Table 7: An example of formatted MedMCQA Question 

 

5.1.3. Module Extensions 

 

With the extension of the tokenizer, the modules of the models with extended 

tokenizer associated with the vocabulary size—such as the embedding lookup table 

and the language modeling heads—were also extended and initialized randomly. 

• For the language modeling heads, additional parameters were initialized 

randomly based on predefined methods for each model. 

• New embeddings were initialized using a multivariate normal distribution 

which shared the mean and covariance of the original embeddings. 
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• Since BERT was not pretrained for text classification, a linear classifier head 

was added during the multiple choice fine-tuning stage, and it was initialized 

in the same way as the language modeling heads. 

A summary of the initialization methods for the modules in each model was 

provided on Table 8. 

 

Model BERT MobileLLM SmolLM2 

Distribution Normal Normal Normal 

Mean 0.0 0.0 0.0 

Std. 1/50 1/50 1/24 

Embeddings 
Multivariate normal distribution with 

mean and covariance of original embeddings 

 

Table 8: Predefined random initialization methods of extended modules 

 

The number of additional parameters introduced by the module extensions, as well 

as the total number of parameters in each model after these changes, were detailed 

on Table 9. 

 

Model 
BERT Base Cased 

Masked LM 

BERT Base Cased 

Text Classification 

MobileLLM 125M 

Causal LM 

SmolLM2 135M 

Causal LM 

Auto-1000 
156,564,025 

(+ 48,223,221) 
156,472,322 

(+ 48,160,512) 
162,889,344 

(+ 38,253,888) 
160,280,640 

(+ 25,765,632) 

Auto-5000 
129,788,983 

(+ 21,448,179) 

129,732,098 

(+ 21,420,288) 

139,067,136 

(+ 14,431,680) 

141,075,648 

(+ 6,560,640) 

Auto-10000 
123,913,823 

(+ 15,573,019) 

123,864,578 

(+ 15,552,768) 

134,064,000 

(+ 9,428,544) 

137,741,184 

(+ 3,226,176) 

Auto-50000 
117,536,506 

(+ 9,195,702) 
117,495,554 

(+ 9,183,744) 
128,666,880 
(+ 4,031,424) 

135,059,328 
(+ 544,320) 

Auto-100000 
116,371,471 

(+ 8,030,667) 

116,332,034 

(+ 8,020,224) 

127,752,192 

(+ 3,116,736) 

134,798,400 

(+ 283,392) 

Crawled-1 
158,925,624 

(+ 50,584,820) 

158,830,850 

(+ 50,519,040) 

162,552,960 

(+ 37,917,504) 

169,057,728 

(+ 34,542,720) 

Crawled-2 
119,059,126 

(+ 10,718,322) 
119,016,194 

(+ 10,704,384) 
131,941,440 
(+ 7,305,984) 

140,754,240 
(+ 6,239,232) 

Crawled-5 
112,317,303 

(+ 3,976,499) 

112,283,138 

(+ 3,971,328) 

127,168,128 

(+ 2,532,672) 

136,494,144 

(+ 1,979,136) 

Crawled-10 
110,151,799 

(+ 1,810,995) 

110,120,450 

(+ 1,808,640) 

125,688,384 

(+ 1,052,928) 

135,231,552 

(+ 716,544) 

Baseline 108,340,804 108,311,810 124,635,456 134,515,008 

 

Table 9: Summary of number of parameters newly added to models 
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5.2. Training Configurations 

 

5.2.1. Hyperparameters 

 

The hyperparameters used during training are as follows: 

◼ Training Epochs 

⚫ Continual Pretraining  : 1 

⚫ Multiple Choice Fine-tuning : 5 

◼ Batch Size : 512 

◼ Maximum Input Length 

⚫ BERT : 512 

⚫ MobileLLM : 2,048 

⚫ SmolLM2 : 2,048 

◼ Random Seed : 42 

Sequences exceeding the maximum input length were truncated, and all samples 

were padded to the length of the longest sequence within each batch. Although 

SmolLM2 is capable of handling up to 8,192 tokens at once, the maximum input 

length was set to 2,048 to align with MobileLLM, considering the distribution of the 

number of words in the training data. 

 

5.2.2. Optimization & Learning Rate Scheduling 

 

AdamW was used as the optimizer with the following configurations: 

 

◼ Weight decay : 0.0 
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◼ Adam 𝛃𝟏 : 0.9 

◼ Adam 𝛃𝟐 : 0.999 

◼ Adam 𝛜  : 1𝑒 − 8 

 

Learning rate scheduling was set as follows: 

 

◼ 1% of total steps as warmup steps (increasing from 0 to the peak) 

◼ Peak learning rate determined through the learning rate search 

◼ Cosine decay from the peak learning rate to 1/100 

 

To identify the optimal peak learning rate, experiments were conducted with the 

following values: 5 × 10−3 , 1 × 10−3 , 5 × 10−4 , 1 × 10−4 , 5 × 10−5 , 1 ×

10−5, and 5 × 10−6. The base models (with unexpanded tokenizer) were trained for 

100 steps, using same learning rate scheduling with each learning rate as the peak 

value, and the losses were computed on 512 unseen samples (1 batch) from training 

data. The results of this search are summarized on Table 10. 

 

Model / Task 
Continual 

Pretraining 

Multiple Choice 

Fine-tuning 

BERT Base Cased 5 × 10−4 1 × 10−4 

MobileLLM 125M 5 × 10−4 5 × 10−4 

SmolLM2 135M 1 × 10−3 1 × 10−3 

 

Table 10: Summary of learning rates selected by learning rate search 

 

5.2.3. Device Settings 

 

All training processes were conducted on a single NVIDIA A100 80GB GPU. To 
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accommodate limited RAM, gradients were accumulated before being passed to the 

optimizer, ensuring the training batch size (model input batch size × gradient 

accumulation steps) consistently to be 512. Brain Float 16 (bfloat16) precision was 

adopted, for all computations performed throughout the entire training as well as the 

representation of the model. 

 

  



 

 ５８ 

6. Analyses 

 

 

6.1. Evaluation on MultiMedQA Subset 

 

After completing the training process, the models were evaluated on three subsets 

of MultiMedQA: MedQA, MedMCQA, and MMLU clinical topics. For all 

benchmarks except MedMCQA, the test splits were used for evaluation. Since 

MedMCQA’s test split is publicly available but not labeled, its validation split was 

used instead. For measuring performances, macro accuracy was used. The number 

of questions in the subjects are as follows: 

 

- MedQA:    1,273 

- MedMCQA:    4,183 

- MMLU Anatomy:   135 

- MMLU Clinical Knowledge:  265 

- MMLU College Biology:   144 

- MMLU College Medicine:   173 

- MMLU Medical Genetics:   100 

- MMLU Professional Medicine: 272 

- Total    6,545 

 

Tables 12, 13, and 14 present the evaluation results for variations of BERT, 

MobileLLM, and SmolLM2, respectively. In these tables: 

 

• Blue blocks indicate the performance of the base models. 

• Orange blocks represent the highest performance in specific subjects. 
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• Green blocks highlight cases where models with extended tokenizers 

outperformed their base models. 

• Purple blocks in Tables 12 and 13 represent the performance of untrained 

MobileLLM and SmolLM2 models. 

 

The following tendencies are observed from the results: 

 

• Variations of BERT trained with extended tokenizers tended to perform 

worse than the base model in certain subjects, while they usually 

outperformed the base model in the other subjects. There was little 

difference in performance between the two groups of models that used 

different corpora for tokenizer extension. 

• For MobileLLM, models whose tokenizers were extended with continual 

pretraining data performed worse than the base model. However, models 

whose tokenizers were expanded with medical terms frequently 

outperformed the base model. Notably, in all cases where a model with an 

extended tokenizer achieved the highest subject-level performance, the 

tokenizer had been extended using medical terms. 

• For SmolLM2, models with an extended tokenizer outperformed the base 

model in many subjects. 

• Across all three models, the highest average accuracy was consistently 

achieved by models with tokenizers extended using medical terms. 

However, base models still achieved the highest performance in at least one 

subject in each case. 

• No specific tokenizer extension method showed consistent superiority 
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across all conditions. 

 

Besides the evaluation on macro accuracy, the number of questions where the 

models provided right answer (which is close to micro accuracy) were counted. The 

results are as in Table 11: 

 

 BERT Base Cased MobileLLM 125M SmolLM2 135M 

Auto-1000 1991 1908 2103 

Auto-5000 1982 1798 2136 

Auto-10000 2062 1746 2087 

Auto-50000 1923 1824 2106 

Auto-100000 2032 1667 2046 

Crawled-1 2066 2229 2090 

Crawled-2 1924 2223 2062 

Crawled-5 2079 2174 2135 

Crawled-10 1997 2216 2105 

No extension 1998 2225 2124 

 

Table 11: Overview of the number of the correct answers chosen by models 

 

While some of the extended models showed better performance than the base 

model, most of them failed to outperform the base model as well as in macro average. 

In summary, according to the evaluation results, tokenizer extension did not 

improve model performances in most of cases. While some of the variation models 

outperformed the base model, most of them showed poor performance. Thus, also 

considering that no extension method consistently helped the model to achieve better 

performance, it could be concluded that tokenizer extension may have negative 

effects on model performances. 
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 Table 13 
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 Table 14 
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6.2. Measure on Compression 

 

The compression abilities of tokenizers were measured, to estimate their efficiency. 

The measurement was done with a batch (512) of samples from the continual 

pretraining, in the following ways: 

 

• The average number of tokens to which each tokenizer segments the batch 

of samples was measured. (Table 15) 

• The average length of the texts captured by each tokenizer with 2,048 tokens 

were measured. (Table 16) 

 

The batch of samples include relatively long samples (Avg. 35,043 words), to 

ensure that none of the tokenizers segment any of the samples into a sequence shorter 

than 2,048 tokens. The results are shown on Table 15 and 16. 
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Model BERT MobileLLM SmolLM2 

Auto-1000 
50796.04 

(84.37%) 

59219.74 

(84.30%) 

59334.67 

(95.31%) 

Auto-5000 
53047.58 

(88.11%) 

61829.26 

(88.00%) 

60743.11 

(97.57%) 

Auto-10000 
54166.84 

(89.97%) 

63031.42 

(89.72%) 

61230.94 

(98.36%) 

Auto-50000 
56873.87 

(94.46%) 

66022.09 

(93.97%) 

61996.99 

(99.59%) 

Auto-100000 
58007.60 

(96.35%) 

67386.34 

(95.91%) 

62125.66 

(99.79%) 

Crawled-1 
54205.07 

(90.03%) 

64524.85 

(91.84%) 

61181.67 

(98.28%) 

Crawled-2 
56779.98 

(94.31%) 

67643.05 

(96.28%) 

61856.12 

(99.36%) 

Crawled-5 
57863.62 

(96.11%) 

68567.18 

(97.59%) 

62050.02 

(99.67%) 

Crawled-10 
58542.42 

(97.24%) 

69132.15 

(98.40%) 

62154.71 

(99.84%) 

No 
60207.04 

(100%) 

70257.11 

(100%) 

62254.73 

(100%) 
 

Table 15: Average number of tokens in the sample batch, 

tokenized by extended tokenizers 

Model BERT MobileLLM SmolLM2 

Auto-1000 
10052.71 

(117.90%) 

8849.59 

(119.73%) 

8877.70 

(104.45%) 

Auto-5000 
9691.38 

(113.66%) 

8500.62 

(115.01%) 

8699.93 

(102.36%) 

Auto-10000 
9503.46 

(111.45%) 

8328.49 

(112.68%) 

8631.39 

(101.55%) 

Auto-50000 
9045.33 

(106.08%) 

7904.12 

(106.94%) 

8525.04 

(101.55%) 

Auto-100000 
8864.21 

(103.96%) 

7728.57 

(104.56%) 

8510.92 

(100.14%) 

Crawled-1 
9465.69 

(111.01%) 

8088.73 

(109.44%) 

8638.88 

(101.64%) 

Crawled-2 
9030.18 

(105.90%) 

7687.54 

(104.01%) 

8550.32 

(100.60%) 

Crawled-5 
8871.82 

(104.05%) 

7576.90 

(102.51%) 

8525.61 

(100.31%) 

Crawled-10 
8771.72 

(102,87%) 

7513.79 

(101.66%) 

8512.00 

(100.15%) 

No 
8526.79 

(100%) 

7391.17 

(100%) 

8499.33 

(100%) 
 

Table 16: Average number of characters captured by extended tokenizers, 

with 2,048 tokens, on sample batch 
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The extended tokenizer demonstrated the ability to capture up to approximately 

15.7% fewer tokens for texts of the same length, and up to approximately 19.73% 

more characters for token sequences of the same length. The degrees of compression 

reinforced per extended token were: 

 

• The number of tokens needed to capture texts was reduced by 0.00095% 

on average. 

• The number of characters captured by fixed number (2,048 here) of tokens 

was increased by 0.00085% on average. 

 

While the improvement in compression ability is not entirely proportional to the 

number of added tokens, it is evident that the extended tokenizers exhibit enhanced 

compression capabilities. However, the extent of compression increased per 

extended token is very small, and significant improvement of compression may 

require plenty of extended tokens. 

Meanwhile, it should be noted that since the vocabulary size of the extended 

tokenizer varies depending on the original tokenizer, the degree of improvement in 

compression also differed accordingly. 

 

6.3. Training Costs 

 

To evaluate the efficiency of tokenizer extension, the following training costs from 

the training process were measured: 
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• Train Runtime: The total time required for the continual pretraining stage. 

• Maximum Memory Usage: The peak GPU memory required during 

training, measured at each stage for input batch sizes (512 / gradient 

accumulation steps). 

 

6.3.1. Train Runtime 

 

The train runtimes for continual pretraining are summarized in Figure 3. For all 

three models, while the results were not perfectly consistent, the additional training 

time compared to the base model was generally proportional to the amount of 

vocabulary and merge rules added to the original tokenizer. The amount of time for 

continually pretraining the models was increased by 0.0025% per 1 extended token 

on average.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ６８ 

 Figure 3 

F
ig

u
re

 3
: 

T
ra

in
 r

u
n

ti
m

e 
fo

r 
co

n
ti

n
u

al
 p

re
tr

ai
n

in
g

 s
ta

g
e
 



 

 ６９ 

6.3.2. Maximum Memory Usage 

 

The maximum memory usage is detailed in Figures 4–9. Bars that reach the ceiling 

of the chart indicate out-of-memory (OOM), which means the amount of memory 

required for training exceeded the available device memory (80 GiB), with respect 

to the input batch size. Observations are as follows: 

 

• Continual Pretraining: During the continual pretraining stage, similar to 

the train runtime, the memory required to train the model increased 

proportionally with the amount of vocabulary and merge rules added to the 

original tokenizer. 

• Multiple Choice Fine-tuning: A similar trend was observed during the 

multiple-choice fine-tuning stage, though in the case of BERT, differences 

between tokenizer extensions were negligible. 
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Figure 4: Maximum memory usage during continual 

pretraining stage of BERT Base Cased 

 

 

Figure 5: Maximum memory usage during continual 

pretraining stage of MobileLLM 125M 
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Figure 6: Maximum memory usage during continual 

pretraining stage of SmolLM2 135M 

 

 

Figure 7: Maximum memory usage during multiple choice 

fine-tuning stage of BERT Base Cased 
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Figure 8: Maximum memory usage during multiple choice 

fine-tuning stage of MobileLLM 125M 

 

 

Figure 9: Maximum memory usage during multiple choice 

fine-tuning stage of SmolLM2 135M 
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Overall, adding tokens to the tokenizer generally increases the training time and 

GPU memory usage proportionally to the number of added tokens. This highlights 

that excessive tokenizer extensions can lead to substantial training costs, warranting 

careful consideration.  
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7. Conclusion 

 

 

  In this study, the effects of extending a tokenizer using medical text data or list of 

medical terms are analyzed. The medical field is characterized by the frequent use 

of specialized terminology, and tokenizers trained on general data may encounter 

challenges such as out-of-vocabulary (OOV) issues or segmenting text into 

excessively long sequences when processing medical texts. While extending a 

tokenizer prior to training models on such domain-specific data may offer 

advantages, there has been limited in-depth research on this topic. This study aimed 

to fill that gap, and through experiments and analyses, the following findings were 

uncovered: 

 

• Negative Effect on Performance: Evaluation results showed that models 

trained with an extended tokenizer mostly performed worse than the base 

model, besides the performance inconsistency according to extension 

methods. In other words, extending the tokenizer does not guarantee 

improved performance or even possibly hinders model’s performance, 

regardless of the extension method. 

• Improved Compression: Extending the tokenizer enhances its compression 

capability, but the extent of enhancement was small. In addition, the number 

of added tokens varies depending on the vocabulary distribution of the 

original tokenizer, which affects the degree of improvement in compression. 

Therefore, it is necessary to take the original tokenizer’s vocabulary into 
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account when performing an extension. 

• Increased Training Costs: Since the modules related to vocabulary size 

must also be extended to accommodate the larger tokenizer, extending a 

tokenizer inevitably increases training costs. For this reason, it is essential 

to consider the device's memory capacity and the available time for 

experiments, and only extend the tokenizer by a reasonable number of 

tokens. 

 

In summary, extending a tokenizer for domain-specific fine-tuning seems to have 

negative impact on model performance. While it helps language models to capture 

longer texts with shorter sequence of tokens, the benefit remains insignificant unless 

thousands of tokens are extended, and excessive extension of tokenizer leads to large 

increase in training costs. Therefore, it could be concluded that tokenizer extension 

is may not be helpful, with respect to domain-specific fine-tuning of language 

models.  
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국문 초록 

 

  최근 들어 대량의 데이터로 장시간 사전 훈련된 LLM들이 유행하고 

있으며, 개인이 이러한 모델을 처음부터 훈련하여 사용하기란 대단히 어

려우므로 공유된 모델을 미세 조정(fine-tuning)하여 사용하는 것이 일반

적이게 되었다. 그런데 미세 조정에 활용하려는 데이터의 어휘 분포가 

기존의 토크나이저(tokenizer)가 처리할 수 있는 토큰 목록에서 크게 벗어

날 경우, 토크나이저가 이를 처리하지 못하거나 너무 잘게 분절하는 문

제가 발생한다. 토크나이저에 새로운 어휘들을 추가하는 토크나이저 확

장(extension)이 이러한 문제를 완화하는 좋은 해결책이 될 수 있으나, 토

크나이저 확장이 어떤 효과를 불러오는지에 대한 면밀한 연구는 아직 이

루어진 바가 없다. 

본 연구에서는 따라서 의학 데이터를 통해 확장한 토크나이저를 사용

해 소형 모델들을 훈련하고, 몇 가지 분석을 통해 전문 분야에 대한 미

세 조정에서의 토크나이저 확장의 효과를 확인하고자 하였다. 의학 분야

는 다양한 전문용어가 빈번히 사용되는 분야로, 토크나이저 확장으로부

터 긍정적인 효과를 얻을 수 있을 것으로 예상하였다. 그러나 BPE(Byte 

Pair Encoding) 기반의 SentencePiece BPE, Byte-level BPE 및 비슷한 알고리

즘을 사용하는 WordPiece를 확장하여 실험을 수행한 결과, 토크나이저의 

압축(compression) 능력이 소폭 향상된 반면 모델 훈련에 필요한 메모리

와 시간이 증가하였다. 또한 MultiMedQA의 4지선다형 문제들로 모델들
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을 평가한 결과, 토크나이저를 확장한 대부분의 모델의 성능이 확장하지 

않은 모델의 성능보다 낮았다. 이러한 결과들로 미루어 볼 때, 전문 분야

에 대해 언어 모델을 미세 조정할 때의 토크나이저 확장이 유리하지는 

않은 것으로 생각된다. 
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