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The coastline is increasingly vulnerable to environmental changes, such as sea 

level rise, global warming, and human activities, which exacerbate coastal erosion 

and pose significant social challenges. Due to the high utilization of coastal spaces 

and the growing risk of natural disasters, effective coastal management is crucial in 
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South Korea. The littoral cell approach offers a promising framework for managing 

sediment transport and mitigating erosion. Existing systems in Korea need more 

regional oceanographic characteristics and sediment transport mechanisms in 

demarcation, which can be an objective reason for divided results. 

This study aims to cluster the boundaries of the East Sea littoral cells in South 

Korea using unsupervised machine learning techniques, focusing on coastal 

sediment transport parameters. A comprehensive dataset was constructed, 

standardized, and subjected to dimensionality reduction. Clustering methods were 

applied to identify spatially distinct littoral cells, and results were saved and 

visualized using GIS (Geographic Information System) data. The newly defined 

littoral cells are utilized to examine the feasibility of defining mesoscale littoral cells. 

They also serve as a basis to suggest a management scope for coastal erosion grade 

D, which represents the most severely eroded areas as reported in The 

Comprehensive Report on Coastal Erosion Status. This research will contribute to 

sustainable coastal management and adaptive strategies for addressing coastal 

erosion. 

Key words: Coastal Erosion, Littoral Cell, Sediment Transport, Unsupervised 

Machine Learning, Coastal Management 

Student Number: 2023-28970  
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1. Introduction 

1.1 Background and necessities of study 

 

The coastline is the land that meets the sea and is the first area to be impacted 

by oceanic processes. Korea has an extensive coastline with a high density of coastal 

space utilization. Increased human activities led to diverse and concentrated 

demands on coastal areas, including those for industry, ports, and residential 

complexes. Also, the coastal area plays a crucial role not only in helping humans 

maintain life with dwellings and economic resources but also in protecting the 

natural environment. However, environmental changes such as sea level rise, global 

warming, and human activities have made coastal regions susceptible to erosion. 

In South Korea, coastal erosion sites are classified into grades based on the 

severity of erosion. As defined by the Ministry of Oceans and Fisheries, Grade D 

erosion sites represent the most critically eroded coastal areas requiring urgent 

intervention due to their high vulnerability to natural disasters and the potential for 

various unforeseen issues. This classification system helps prioritize areas for coastal 

management and restoration. Therefore, the preservation of the coastline is important, 

while the increasing risk of natural disasters along the coast can become a serious 

social issue. To prevent this from happening, understanding the coastal system is 

crucial. Although structures like groins and breakwaters are constructed to prevent 

shoreline erosion, these efforts sometimes fail and even accelerate shoreline changes 

because of the designs that do not fit well with the characteristics of the coastal 
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sediment transport system (Lim et al., 2021; Rahmawati et al., 2021). 

Factors causing coastal erosion can be broadly categorized into three types: 

long-term background erosion, midterm redistribution erosion, and short-term 

episodic erosion (Lim et al., 2021). First, background erosion primarily occurs due 

to long-term changes in the sand budget of the sediment system (Foley et al., 2017). 

Second, redistribution erosion occurs due to mid-term changes in the wave 

environment at the breaking point, caused by alterations in wave direction or the 

construction of structures, leading to consistent coastal sediment transport and 

subsequent shoreline changes (Komar & Inman, 1970; Hsu & Evans, 1989; 

Kamphuis, 2003). Lastly, short-term episodic erosion is caused by cross-shore 

sediment transport due to high waves striking perpendicular to the shoreline, leading 

to coastal retreat. However, because this is a short-term change, the shoreline usually 

recovers to its original state (Wright et al., 1985; Miller & Dean, 2004; Yates et al., 

2009; Lim et al., 2021). 

The shoreline changes due to these complex factors can be managed more 

efficiently with littoral cell units. South Korea's current littoral cell system is divided 

into three scales: macroscale, mesoscale, and unit littoral cells, which are categorized 

based on their size and management purpose. Among these, mesoscale littoral cells 

are classified according to watersheds, while unit littoral cells are established along 

the coast that are detailed enough to allow for sediment budget analysis based on 

natural headlands or protruded rocky coastlines. However, these currently used 

systems did not consider the objective data from distinct marine characteristics, 

regional conditions, and sediment transport mechanisms of the East Sea 
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simultaneously. This limitation hinders the ability to explain hydrodynamic and 

sedimentary phenomena specific to each region and to identify the causes of erosion. 

Therefore, by considering both the coastal environment and sediment transport 

parameters together, the coastal sediment transport system will be better understood, 

and the cause of erosion will be more easily identified. Moreover, effective coastal 

management will be available. 

Various studies have been conducted focusing on the mechanisms of coastal 

sediment dynamics and littoral cells (Table 1); however, few studies explored the 

relationship between coastal sediment transport parameters and littoral cells using 

unsupervised machine learning techniques. In north-central Oregon, the dynamics of 

littoral cell rotations were analyzed using a statistical downscaling framework and 

shoreline change model to assess the longshore sediment transport (Anderson et al., 

2018). California's coastal headlands were classified using k-means clustering to 

improve coastal management by understanding headland dynamics and littoral cell 

boundaries (George et al., 2015). Reef (2023) employed hierarchical clustering to 

classify coastal cells based on sediment assemblages, revealing the sediment sharing 

among sub-embayment beaches. Southwestern Australia's coast was examined using 

cluster analysis and auto-correlation to define littoral cell boundaries and sediment 

compartmentalization (Sanderson & Eliot, 1999), while the impact of climate 

variability on the longshore sediment transport in southeast Queensland was 

modeled using the spectral wave analysis and regression models correlating climate 

indices with the sediment transport (Splinter et al., 2012). 
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Table 1. Literature review of coastal sediment dynamics and littoral cell 

References Research Object Region 

Sanderson & 

Eliot, 1999 
Investigate the applicability of auto-correlation and cluster analysis for defining littoral cell boundaries Australia 

Anfuso et al., 

2008 

Analyze the morphodynamic behavior and short-term coastal trends by monitoring beach profiles to calculate volumetric 

budgets and group beaches into different erosive/accreting sectors 
Spain 

Romans et al., 

2009 
Evaluate the relative contributions and history of controls on sediment flux through a source-to-sink system U.S. 

Splinter et al., 

2012 
Understand the influence of large-scale climate variability on longshore sediment transport and resulting coastal evolution Australia 

George et al., 

2015 
Classify headlands along the coast to enhance the understanding of headland dynamics and littoral cell boundaries U.S. 

Sickmann et al., 

2016 
Understand the controls that sedimentary processes exert on detrital-zircon provenance U.S. 

Utizi et al., 2016 
Assess the impacts of a mixed intervention (beach nourishment, feeder berm construction, and artificial reef placement) on 

coastal erosion and beach stability 
Italy 

Garzanti et al., 

2018 
Investigate the causes, modalities, and obstacles of sediment transfer along the longest documented cell of littoral sand drift 

Nambia to 

Angola 

Díez et al., 2018 Quantify and understand the intra-annual and interannual variations in the dry-beach profile shape U.S. 

Anderson et al., 

2018 

Investigate the dynamics resulting in persistent (multi-decadal) rotations of littoral cells 

Develop a framework to characterize historical wave conditions for understanding longshore sediment transport 
U.S. 

Antolínez et al., 

2019 

Develop and apply a hybrid shoreline change and foredune erosion model (COCOONED) to inform coastal planning and 

adaptation 
U.S. 

Avnaim-Katav, 

2021 

Explore the impact of the Nile River damming on the recent benthic ecology by analyzing the spatial distribution and diversity 

patterns 
Israeli 

Reef, 2023 
Elucidate sediment dynamics and sharing among sub-embayment beaches using a coastal sediment cell framework combined 

with high-resolution satellite-derived rates of coastal change 
Australia 
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1.2 Research objectives 

 

Establishing the boundary of each littoral cell and understanding sediment 

transport systems are essential for effective coastal erosion management. Managing 

coasts by littoral cells offers several benefits, including ease of local management, 

varied and targeted research opportunities, increased efficiency in resource 

allocation, and enhanced stakeholders’ cooperation. While international studies often 

incorporate sediment budget analyses that reflect the characteristics of each littoral 

cell, domestic research is lacking, particularly in incorporating physical and 

environmental properties into littoral cell classifications. 

This study aims to cluster the unit littoral cells in the East Sea based on 

coastal sediment transport parameters through the application of unsupervised 

machine learning. The research focuses on South Korea's eastern coastal regions, 

including the Gangwon (Gangwon-do) and BUG (Busan-Ulsan-Gyeongsang-do) 

coastal areas. As shown in Figure 1, a database was built, standardized, and subjected 

to dimensionality reduction to analyze each various parameter across space. 

Dendrograms were drawn based on each maximum value of the cophenetic 

correlation coefficient to visualize hierarchical linkages between data. The optimal 

cluster number was determined by considering the silhouette index and used to 

divide the whole data point. Results were stored in GIS DB and illustrated on a map, 

indicating an assigned cluster of each littoral cell that reflects distinct oceanographic 

characteristics and sediment transport mechanisms. The new boundaries of the 

littoral cell were defined when an allocated cluster of each littoral cell was altered. 
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Additionally, the mapped results were compared with previously divided unit littoral 

cells. The newly defined littoral cells examine the feasibility of defining mesoscale 

littoral cells and suggest management scope for coastal erosion ‘Grade D’. This 

research will contribute to sustainable coastal management and adaptive strategies 

for addressing erosion.
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Figure 1. Flowchart of the research
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2. Theoretical background 

2.1 Sediment transport 

2.1.1 Transport processes 

 

Coastal features, such as beach profiles and planform shapes, are primarily 

shaped by the interaction of waves and nearshore currents. Waves suspend sediment 

and generate currents that transport these sediments alongshore or cross-shore. 

Longshore currents, induced by waves breaking obliquely to the shoreline, typically 

flow in the same direction as the waves and can occasionally turn offshore, forming 

rip currents that transport sediment away from the coast. 

The movement of sediment along the coast, referred to as littoral drift, is 

measured as littoral transport or longshore sediment transport, commonly expressed 

in cubic meters per year. Although the direction of sediment transport can shift due 

to seasonal wave changes, most coastlines have a dominant direction of transport, 

known as downdrift, with the opposite referred to as updrift. Additionally, cross-

shore transport, driven by wave- or wind-induced flows, plays a critical role in 

forming sandbars and altering beach profiles. These changes may occur gradually 

over the years or rapidly during storm events within hours. 
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2.1.2 Sediment transport 

 

Sediment transport in coastal environments is a crucial process that shapes 

shorelines, with most coastlines featuring a predominant direction of sediment 

movement. This transport is influenced by various mechanisms and actions, 

primarily classified into three types: longshore sediment transport, cross-shore 

sediment transport, and aeolian sediment transport. Longshore sediment transport, 

known as littoral drift, is the movement of sediments such as sand and gravel along 

the shoreline due to various mechanisms, including bedload, suspended load, and 

swash load. Littoral drift is influenced by wave actions and longshore currents and 

plays a significant role in shaping coastal landscapes, influencing the formation and 

evolution of various coastal features like beaches, spits, and barrier islands. 

In Longshore sediment transport, sediment along the coastline can vary in 

two directions, depending on the direction of the waves. At any given site, longshore 

transport comprises both positive and negative drift; the net drift represents the 

algebraic sum of these components, while the gross drift is the aggregate of the 

absolute values of the drift magnitudes. Understanding these dynamics is crucial for 

coastal management. While longshore sediment transport primarily occurs due to 

currents generated by waves, cross-shore transport is influenced by wave actions and 

undertow and is the movement perpendicular to the shoreline. Undertow is the 

oceanward movement of wave-driven mass transport, which carries suspended 

sediment out to sea and generates seaward-directed shear stresses that facilitate the 

transport of bedload offshore. Seasonal variations in shoreline are typically linked to 
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increased storm activity during the winter season, leading to enhanced seaward 

movement and deposition of sand in nearshore bars and other beach profiles. 

Elevated wave heights during storms cause these bars to form at greater offshore 

depths, increasing their overall size and necessitating a larger amount of sand, which 

is partly sourced from the erosion of the beach's subaerial profile. 

Aeolian transport, the wind-driven movement of sand, also plays a critical 

role in coastal sediment dynamics. This process not only removes sand from the 

beach but also deposits it into dunes, which can either stay fixed or migrate 

significantly inland, sometimes threatening infrastructure and settlements. Typically, 

aeolian transport replenishes dunes with sand eroded during storms. Storms cause 

high water levels and vigorous waves that erode dunes and move sand to offshore 

bars. After a storm event, as normal wave conditions return, this sand is shifted back 

towards the land, forming a broad, dry berm ideal for wind transport. The prevalent 

landward sea breezes facilitate this movement. Strong onshore winds during storms 

help transport sand landward over the berm, where it is often captured by dune 

vegetation, promoting dune recovery. Aeolian processes typically leave behind a lag 

layer of coarser particles, having selectively removed finer sands from the berm. 

Given the complexity of sediment transport dynamics, understanding the 

spatial and temporal variations in sediment movement requires physical observations 

and advanced analytical approaches. While effective in describing general transport 

processes, traditional methods often fall short in capturing patterns influenced by 

multiple interacting factors such as wave energy, current variability, and seasonal 

changes. Data-driven techniques such as clustering algorithms enable the 
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identification of hidden patterns within large datasets (Xu & Tian, 2015), providing 

new interpretations about sediment transport that might not be apparent through 

conventional analysis. Applying clustering algorithms makes it possible to classify 

and interpret sediment transport trends more effectively, supporting coastal 

management and erosion mitigation policies. 
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2.2 Littoral cell 

2.2.1 Littoral cell 

 

 “A littoral cell is a coastal compartment that contains a complete cycle of 

sedimentation, including sources, transport paths, and sinks" (Inman, 2003). The cell 

boundaries sketch the geographical boundary within the balanced sediment budget 

that helps the quantitative analysis of coastal erosion and accretion. Thus, a littoral 

cell represents the smallest component of a cyclic mass system, affected by the input 

of sand from rivers and the erosion caused by wave activity, and is identified as an 

independent area with distinct information on the sediment's entry and exit. 

 Inman and Chamberlain introduced the concept at the International 

Geological Conference in 1960s(Inman & Frautschy, 1965; Chamberlain, 1968). In 

1971, Inman and Nordstrom classified coasts based on tectonic settings and linked 

the littoral cell concept with geomorphological classifications, enhancing the 

understanding of coastal complexities. Inman and Jenkins (1984) highlighted how 

human interventions disrupt the natural balance of littoral cells, while Inman and 

Masters (1991) conducted a comprehensive analysis of sediment sources, transport 

mechanisms, and deposition areas, providing insights into effective coastal 

management strategies. Cooper and Pontee (2006) evaluate the impact of the 

sediment cell concept on coastal management, emphasizing its practicality through 

case studies of its application in England and Wales. 

 Bowen and Inman (1966) categorized the southern California coast into 
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various subareas, defining them as littoral cells based on the presence of headlands 

and the patterns of coastal sediment movement. Inman (2003) defined a littoral cell 

as a region experiencing a distinct cycle of sediment transportation. Motyka and 

Brampton (1993) suggested that the limits of a littoral cell are marked by headlands 

with contrasting directions of sediment transport and by submarine canyons serving 

as sediment traps. Meanwhile, Sanderson and Eliot (1999) developed a statistical 

approach to identify littoral cells using cluster analysis that considers the regional 

similarities in geomorphological characteristics, the physical attributes of seabed 

materials, and prevailing natural conditions like wave patterns. 

 

2.2.2 Importance of littoral cell in coastal management 

 

 Sediments enter a littoral cell from various sources, such as riverine inputs, 

sedimentation, and erosion. The quantity and quality of sediments introduced into 

the cell significantly influence the coastal morphology. The balance between 

sediment deposition and erosion within a littoral cell determines the shape and 

stability of the coastline. Areas experiencing net deposition may see the growth of 

beach width and coastal landforms, while areas with net erosion may require 

intervention to prevent loss of land and infrastructure (Motyka & Brampton, 1993; 

Inman, 2003). 

 The notion of littoral cells assists in precisely understanding behaviors and 

quantitatively assessing current conditions, proving advantageous for engineering 
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purposes. Nonetheless, since sediment transport is just one aspect of the coastal 

system, focusing solely on littoral cells is inadequate for forecasting the long-term 

dynamics of larger coastal systems. Therefore, it is crucial to consider the 

interactions among all elements that form the coastal framework, and understanding 

interactions between sedimentation and erosion requires a comprehensive 

understanding of sediment sources, transport mechanisms, and deposition patterns, 

which is crucial for effective coastal management. 

 

2.2.3 Littoral cell system in Korea 

 

 In Korea, littoral cells are classified into macro-scale littoral cells, meso-

scale littoral cells, and unit littoral cells, depending on their size and management 

objectives. Nine macro-scale littoral cells are divided based on the jurisdictional 

boundaries of local governments: three in the East Sea, three in the West Sea, and 

three in the South Sea and Jeju. Specifically, these are Gangwon-do, 

Gyeongsangbuk-do, and the East Sea region of Gyeongsangnam-do, which are along 

the East Sea; Incheon and Gyeonggi-do including Anmyeon island, 

Chungcheongnam-do below Anmyeon island centered around the Geum River 

estuary, and the West Sea region of Jeollanam-do, which are along the West Sea; and 

the South Sea region of Jeollanam-do, the South Sea region of Gyeongsangnam-do, 

and Jeju Island which are along the South Sea. Unit littoral cells are divided in detail 

along the coast based on natural headlands or protruding rocky coastlines to enable 



24 

 

detailed sediment budget analysis. 

 

2.2.4 Littoral cell system in other nations 

 Region-specific sediment management based on littoral cell systems has 

been adopted in coastal nations, such as the U.S., U.K., and Japan, where coastal 

erosion is a significant concern. In the U.S., According to the Virginia Institute of 

Marine Science and Bureau of Ocean Energy Management, Southern California, the 

Chesapeake Bay in Virginia, and San Francisco have addressed coastal erosion with 

littoral cell management since the 1970s. In the U.K., The Shoreline Management 

Plan (SMP) was established from 1996 to 1999, dividing the coasts of England and 

Wales into 11 major littoral cells. Each major littoral cell contains 3 to 7 sub-cells 

(DEFRA, 2006). Japan has implemented a comprehensive and large-scale approach 

through Sato-umi, a comprehensive approach to integrated coastal management that 

emphasizes the harmonious coexistence of humans and nature since 2000 (Ministry 

of the Environment, 2010). 
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2.3 Factors related to sediment transport 

2.3.1 Sediment size 

 

 Sediment size of surficial sediments differs based on the sampling location. 

These spatial variations and trends in grain size are influenced by sediment transport 

processes, including abrasion, selective transport, and the mixing of sediments from 

various sources (Russell, 1939). This suggests that specific grain size trends are 

likely to be related to sediment transport pathways (Gao et al., 1994). Geologists 

have created size classifications to define what constitutes sand, gravel, and other 

sediment types. One widely used classification system is the Wentworth scale, which 

categorizes sediment sizes in millimeters based on powers of two. Krumbein (1936) 

introduced the phi (𝜙) scale as an alternative size measure. The phi size is related to 

the grain size by the formula 𝜙 = − log2 𝑑, which is 2−𝜙 = 𝑑, where d is the grain 

diameter in millimeters. The phi scale is extensively used, especially in coastal 

geology, because it provides a convenient way to represent grain size distributions. 

 A common measure of grain samples is 𝑑50 (or 𝜑50), which represents 

the median grain size. This size can be directly obtained from the cumulative 

distribution curve, as it indicates the size at which half of the sample's weight is 

coarser and the other half is finer. Consequently, the phi sizes 𝜑84  and 𝜑16 

correspond to 𝜑
(50±

68

2
)
 . Otto (1939) and Inman (1952) suggested that the mean 

diameter be defined as   

𝑀𝑑𝜙 =
(𝜙84 + 𝜙16)

2
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Other methods for determining the mean diameter have been proposed. Folk 

and Ward (1957), who analyzed sand samples with both large and small sizes, 

suggested the following measurement for bimodal distributions:  

𝑀𝑑𝜙 =
(𝜙84 + 𝜙50 + 𝜙16)

3
 

These two definitions differ little for distributions that approximate a log-

normal distribution. The mean and median sizes are identical in the case of sand with 

a symmetrical size distribution. 

Offshore sands are generally finer than those found in the nearshore region, 

which is more dynamic due to the impact of shoaling and breaking waves. Variations 

along the beach can result from various nonuniform processes. Differences in wave 

energy affecting the beach can lead to variations in sand size and beach face slope. 

Bascom (1951) demonstrated that sand diameter decreases with reduced exposure to 

waves and that beach face slope decreases as sand size diminishes. 

 

2.3.2 Constructive and destructive forces acting on beach 

 

The beach profile is the variation of water depth with distance offshore from 

the shoreline. The equilibrium profile is a conceptual result of the balance of 

destructive versus constructive forces (Dean, 1991). The equilibrium profile is 

considered a dynamic concept in nature, as the incident wave field and water level 

change continuously in nature; therefore, the profile responds continuously. A mean 
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equilibrium can be defined by averaging these profiles over a long period (Lanzoni 

& Seminara, 2002). An equilibrium beach profile represents a balance of destructive 

and constructive forces acting on the beach (Dean, 1991; Dean & Dalrymple, 2004). 

Many different destructive and constructive forces affect beach profiles. 

Beaches with gentle slopes experience lower turbulence because wave 

breaking is distributed across a wider area of the surf zone. In contrast, steep-sloped 

beaches release concentrated wave energy over a smaller area, resulting in more 

substantial turbulent fluctuations that penetrate deeper into the water column. 

Different sediment types' ability to withstand varying levels of turbulent energy 

impacts beach stability, which results in fine sediments typically found on milder 

slopes and coarse sediments on steeper slopes. Gravity is a persistent destructive 

force, continuously working to even out irregular profiles. Additionally, high 

turbulence in the surf zone, where breaking waves transform structured wave energy 

into turbulent fluctuations, is a significant destructive element. These fluctuations 

dislodge sediment particles, helping gravity move them seaward (Dean, 1991; Dean, 

1995; Dean & Dalrymple, 2004). 

Three distinct constructive forces influence the formation of beach profiles. 

One is the average streaming velocities at the seabed, which result from energy 

dissipation within the bottom boundary layer and cause local momentum transfer. 

Another force comes from the net onshore shear stresses at the seabed caused by 

shallow-water waves. Lastly, the intermittent suspension and selective transport of 

particles driven by shoreward velocities contribute to constructive forces. If the fall 

time of the particles is less than half a wave period, there is a net onshore sediment 
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transport. However, if the fall time is greater than half but less than an entire wave 

period, it results in net offshore sediment transport (Dean & Galvin, 1976; Dean, 

1991; Dean, 1995). 

 

2.3.3 Coastal landforms: Spit, Tombolo, inlet 

 

Coastlines exhibit remarkable diversity in their forms and characteristics, 

shaped by the local environments and geological processes that influence the 

formation and evolution of coastal landforms. Classifying shorelines is beneficial 

because it reveals consistent patterns in how different shorelines react to natural 

forces (Stive et al., 2002). Consequently, analyzing shorelines based on their 

classification helps comprehension of how they respond to various environmental 

pressures. This approach forms a fundamental part of understanding the dynamics of 

shoreline changes. 

A spit is a subaerial depositional feature formed by waves and currents 

transporting sediment from sources like eroding headlands into an elongated shape 

parallel to the shoreline. Its growth depends on sediment supply and water depth at 

the terminal end. A faster sediment supply promotes spit growth, while a slower 

supply may lead to bayside or bayhead beach formation. Spits can develop into 

various shapes, including recurved spits, which form when wave directions change, 

or complex spits, where protected sections curve further back. Elevation differences 

on spits, influenced by wave run-up, can create features like beach ridges or broader 
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formations like beach planes (Dean & Dalrymple, 2004). 

Tidal currents at inlets often limit spit growth. Strong currents may balance 

sediment deposition, forming equilibrium inlets or preventing inlet closure. If 

currents are weak, the inlet may close, forming bay mouth barriers. Other 

depositional features include midbay barriers along embayment shorelines and 

unique formations like winged headlands or lagoons around isolated hills submerged 

by rising sea levels. These processes highlight the dynamic interaction of sediment 

transport, wave energy, and tidal currents in shaping coastal landforms. 

A tombolo is a depositional feature that forms a subaerial connection 

between an offshore island and the shoreline. This occurs due to wave sheltering by 

the island, which modifies wave crests to curve inward toward the sheltered area 

behind the island. Depending on sediment availability, a tombolo can grow either 

from the shoreline toward the island or vice versa. In some cases, elongated islands 

close to the shore can lead to the formation of double tombolos, and even triple 

tombolos are known to exist. If the offshore island is too far from the coastline, a 

salient (a shoreline protrusion) may form instead of a tombolo (Dean & Dalrymple, 

2004). 

Tidal inlet morphology varies due to interactions between sediment supply, 

wave characteristics, and tidal flow. Inlets typically migrate downdrift with 

longshore sediment transport as sediment accumulates on the updrift side, narrowing 

the channel and increasing current velocity, which erodes the downdrift side. 

Occasionally, deposition on the updrift side overlaps the downdrift shoreline, 

causing inefficiencies and potential breakthroughs during storms, and it forms barrier 
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islands or modifies spit features. Offsets between updrift and downdrift shorelines 

are common, with ebb-tidal shoals playing a key role. These shoals trap sediment, 

reduce wave energy, and promote downdrift shoreline growth. 
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2.4 Dimensionality reduction 

 

Dimensionality reduction techniques convert a dataset 𝑋  with a 

dimensionality of 𝐷  into a new dataset 𝑌  with a dimensionality of 𝑊 , while 

trying to preserve the original geometry of the data as much as possible (Van der 

Maaten et al., 2009). As can be seen in Figure 2, the dimensionality reduction method 

is divided into two methods: linear methods and nonlinear methods. Linear methods 

reduce dimensionality by embedding the data into a lower-dimensional linear 

subspace. Principal Components Analysis (PCA) is one of the most commonly used 

linear dimensionality reduction techniques. It utilizes an orthogonal transformation 

to project the data onto a low-dimensional space while preserving as much variance 

as possible (Van der Maaten et al., 2009; Reddy et al., 2020). 

Nonlinear methods are often more effective than linear ones, as the 

relationship between the latent and observed variables can be more complex than 

just a simple matrix multiplication. However, these models usually involve 

numerous parameters, which require a large dataset for accurate identification (Lee 

& Verleysen, 2007). Nonlinear dimensionality reduction techniques can be classified 

into three main categories: (1) methods that preserve local structures of the original 

data in the low-dimensional representation, (2) methods that focus on capturing 

global structures, and (3) methods that achieve global alignment through a 

combination of linear models (Van Der Maaten et al, 2009). 

Coastal sediment datasets often have multiple correlated variables, 



32 

 

reflecting the complex interactions between environmental factors such as wave 

energy, current patterns, and sediment properties. This high dimensionality can 

disturb data analysis by introducing noise, redundancy, and increased computational 

demands, which may degrade the quality of outcomes and reduce the efficiency of 

clustering algorithms. Therefore, dimensionality reduction techniques are crucial in 

enhancing the performance of subsequent clustering analyses by reducing noise. In 

this section, Principal Component Analysis (PCA), t-distributed Stochastic Neighbor 

Embedding (t-SNE), and Uniform Manifold Approximation Projection (UMAP) will 

be discussed, which are widely considered representatives of dimensionality 

reduction. 
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Figure 2. Taxonomy of dimensionality reduction 
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2.4.1 Principal Component Analysis (PCA) 

The most widely recognized linear dimensionality reduction technique is 

PCA (Principal Component Analysis), which creates a low-dimensional 

representation of data by identifying a linear basis of reduced dimensionality that 

maximizes variance. PCA addresses this by solving the eigenvalue problem that is 

𝑐𝑜𝑣(𝑋)𝑀 = 𝜆𝑀 

to determine a linear mapping 𝑀  that maximizes 𝑀𝑇𝑐𝑜𝑣(𝑋)𝑀 , where 𝑐𝑜𝑣(𝑋) 

represents the covariance matrix of the data 𝑋, 𝑀 is eigenvector matrix, and 𝜆 is 

the eigenvalue corresponding to 𝑀. PCA has been widely applied in various fields. 

However, as the dimensionality of the data points increases, the covariance matrix 

grows larger, making computation difficult for very high-dimensional datasets. 

Iterative methods such as Simple PCA or probabilistic PCA can be employed as 

alternatives (Van Der Maaten et al., 2009; Hasan & Abdulazeez, 2021) 

 

2.4.2 t-Distributed Stochastic Neighbor Embedding (t-SNE) 

 

Stochastic Neighborhood Embedding (SNE), introduced by Hinton and 

Roweis (2002), is a well-known non-linear technique. Despite producing reasonably 

good visualizations, SNE is limited by a cost function that is difficult to optimize 

and a crowding issue. t-SNE addresses these challenges by employing a symmetrized 

version of the SNE cost function with simpler gradients (Cook et al., 2007) and by 
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using a fatter-tailed student-t distribution with one degree of freedom instead of a 

Gaussian for similarity calculation between two points in the low-dimensional space 

(Pal & Sharma, 2020; Wang et al., 2021; Ghojogh et al., 2020) and overcome the 

crowding problem (van der Maaten & Hinton, 2008; Sainburg et al., 2021). 

t-SNE, a variant of Stochastic Neighbor Embedding, is much easier to 

optimize as it reduces the tendency to cluster points in the center of the map, resulting 

in significantly improved visualizations. Typically, t-SNE employs random walks on 

neighborhood graphs to visualize the structure of large datasets. This approach 

ensures that the inherent structure of the entire dataset influences how the subset of 

data is displayed (Pal & Sharma, 2020). 

 

2.4.3 Uniform Manifold Approximation Projection (UMAP) 

 

UMAP is another non-linear dimensionality reduction technique used for 

visualization. It is based on a theoretical framework grounded in Riemannian 

geometry and algebraic topology. A Riemannian manifold is a mathematical concept 

in Riemannian geometry, representing a smooth and curved space where curvature, 

distance, and angles can be defined at each point. It extends the notion of Euclidean 

space, which is a flat space, enabling geometric computations on curved surfaces and 

higher-dimensional curved spaces. There are three assumptions about the data: (1) 

The data is uniformly distributed on Riemannian manifold, (2) The Riemannian 

metric is locally constant, and (3) The manifold is locally connected (McInnes et al., 
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2018; Trozzi et al., 2021; UMAP-learn, n.d.). UMAP offers several useful features, 

including the capability to project new data into an existing embedding space and 

the ability to utilize labels for dimensionality reduction (Trozzi et al., 2021). Biology, 

Medicine, and Virology use UMAP to visualize cellular development processes, 

analyze mutation data, and assist clustering (Packer et al., 2019; Hurley et al., 2019; 

Cao et al., 2020; Hozumi et al., 2020) 

The UMAP algorithm considers a few hyper-parameters: n-epochs, n, min-

dist, and d. n-epochs refers to the number of training epochs, a training cycles used 

for optimization in the low-dimensional subspace. n is the number of neighbors 

considered while approximating the local metric. Lower values of n focus more on 

local structure, while higher values capture more global structure. min-dist 

represents the required separation in the embedding space between close points. 

Lower min-dist values create more distinct clusters, while higher values result in less 

distinct clusters. d is the target embedding dimension, which is generally set to 2 or 

3 for visualization (Pal & Sharma, 2020).  

 

2.4.4 Comparison between PCA, t-SNE, and UMAP 

 

t-SNE and UMAP are types of manifold learning, while PCA is not. 

Manifold learning assumes that there is a subspace that encompasses high-

dimensional data well when it is represented in data space. With adequate manifold, 

a space that can effectively represent high-dimensional data in lower dimensions 
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(Han et al., 2022). This means t-SNE and UMAP are better suited than PCA. UMAP 

and t-SNE operate on similar concepts and are both commonly used dimensionality 

reduction techniques for visualization. However, several points make UMAP 

superior to t-SNE: (1) It better preserves the global structure in high-dimensional 

topological space by capturing both local structure and global structure between 

distinct clusters, while t-SNE preserves only local structure, (2) It can also be utilized 

for model training, including supervised learning. In particular, Parametric UMAP 

leverages neural networks to learn data embeddings, and (3) It offers better runtime 

performance and no computational limitations regarding embedding dimensions. 

(McInnes et al., 2018; Pal & Sharma, 2020; Sainburg et al., 2021; Wang et al., 2021). 

 

  



38 

 

2.5 Clustering algorithm 

2.5.1 Clustering algorithms 

 

Clustering plays a vital role in understanding data structure and discovering 

patterns. Clustering organizes data instances into subsets such that similar instances 

are grouped together, while dissimilar instances are placed in separate groups. This 

process arranges the instances into an efficient representation that reflects the 

sampled population. The clustering structure is defined as a set of subsets 𝐶 =

𝐶1, … , 𝐶𝑘 of 𝑆𝑎𝑙𝑙, such that 𝑆𝑎𝑙𝑙 = 𝑈𝑖=1
𝑘 𝐶𝑖 and  𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗. As a result, 

each instance in S belongs to precisely one subset (Reddy et al., 2020). 

Figure 3 is a taxonomy of clustering algorithms, each employing different 

approaches to categorize data based on its properties and goals. These have been 

classified into two categories: the Hierarchical Clustering Algorithm and the 

Partitional Clustering Algorithm. In hierarchical clustering algorithms, data are 

divided into levels in a hierarchical format and clusters are designed to generate a 

top-down or bottom-up approach (Saxena et al., 2017). In a partitional clustering 

algorithm, data is arranged in a series of nested groups that do not follow any 

hierarchical structure. (Jain and Dubes, 1988; Ezugwu et al., 2022) 

Table 2 describes hierarchical and partitional clustering methods. 

Hierarchical clustering is divided into agglomerative and divisive methods. In 

agglomerative clustering, clusters are merged into larger clusters, while in divisive 

clustering, every cluster is divided into smaller levels. Partitional clustering includes 

hard/crisp, mixture resolving, and the Fuzzy methods. In hard/crisp clustering, data 
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belongs to only one cluster, while Fuzzy method assigns data to two or more clusters 

based on fuzzy sets (Ezugwu et al., 2022). Mixture resolving clusters objects based 

on probabilities from predefined probabilistic clusters. 

The most commonly used clustering methods are hierarchical clustering, 

DBSCAN, mean shift clustering, and k-means clustering. Table 3 explains each 

method’s description, advantages, and disadvantages. Hierarchical clustering 

organizes data points into a hierarchical structure specialized in understanding the 

hierarchical relationship between data points. It can visualize cluster structures using 

dendrograms and is widely used in bioinformatics and document clustering. 

DBSCAN categorizes data points based on density and is frequently employed in 

fields related to density, such as geographic information systems and anomaly 

detection. Mean shift clustering forms clusters by shifting data points toward higher-

density areas. It is known for its simplicity and stability in computation. It is mainly 

used in real-time processing tasks like video tracking. K-means clustering group data 

points into clusters by minimizing the distance between data points with centroid. It 

is relatively simple to implement compared to other clustering methods, making it 

widely used in various fields such as image segmentation, computer vision, 

geostatistics, astronomy, and agriculture. The clustering method should be chosen 

appropriately based on the characteristics of the dataset and research objective to 

achieve the best results. 
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Figure 3. A taxonomy of clustering algorithms (Ezugwu et al., 2022) 
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Table 2. Hierarchical (Agglomerative, Divisive) and Partitional (Hard/Crisp, Fuzzy, and Mixture Resolving) clustering methods and descriptions 

Clustering Method Description 

Hierarchical  

 
Agglomerative Merge into larger clusters 

Divisive Divide into smaller level 

Partitional  

 

Hard/Crisp Assigned to only one cluster 

Fuzzy Assigned to two or more clusters, Defined in fuzzy sets 

Mixture Resolving Clustered based on probabilities from predefined probabilistic clusters 

 

Table 3. Description, advantages, and disadvantages of Clustering Algorithms (Hierarchical, DBSCAN, Mean-shift, and k-means) 

Clustering 

Algorithm 
Description Advantages Disadvantages 

Hierarchical 
Organizes data points into a hierarchical 

structure 

No need to pre-define the number of clusters 

Visualize the relationship between clusters 

Versatile and applicable to various data types 

Robust to outliers 

Computationally expensive 

Challenging at large datasets 

DBSCAN Categorize data points based on density 
No need to pre-define the number of clusters 

No limitation on the size or shape of the data 

Difficult to find parameters with high-

density data 

Mean-shift 
Form cluster by shifting data points 

toward areas of higher density 
No need to pre-define the number of clusters 

Slower than DBSCAN and k-means 

Unsmooth behavior of the kernel density 

k-means 

Group into clusters by minimizing the 

distance between data points with 

centroid 

Fast and simple 

Suitable for large datasets 

Require a prior number of clusters(K) 

Results can vary depending on the initial 

centroid selection 
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2.5.2 Hierarchical clustering algorithm 

 

Hierarchical clustering is a cluster analysis method that shows a hierarchy 

between clusters. This method is divided into two categories: (1) Agglomerative, a 

bottom-up approach where each observation starts in its own cluster and merge pairs 

of clusters as one moves up the hierarchy (Seid & Mulatu Mengesha, 2022) and (2) 

Divisive, a top-down approach where all observations start in one cluster and then 

splits are formed recursively as one moves down the hierarchy. Generally, the merges 

and splits are determined in a greedy manner, which means the algorithm decides 

which cluster to merge and split at each stage of the process (Nielsen, 2016; Murtagh 

& Contreras, 2012). The results of hierarchical clustering are represented in a 

dendrogram (Nielsen, 2016; Murtagh & Contreras, 2012; Jain et al., 1999), which 

illustrates the nested grouping of objects and the similarity levels at which these 

groupings change. Clustering of the data is achieved by cutting the dendrogram at 

the chosen similarity level. The merging or splitting of clusters is performed with 

similarity measurement. 

Maimon and Rokach (2005) stated that hierarchical methods generally 

possess two strengths and two weaknesses. The first strength is versatility. For 

example, single-link methods perform well on datasets containing non-isotropic 

clusters, such as well-separated, chain-like, and concentric clusters. The second 

strength is multiple partitions. Hierarchical methods produce multiple nested 

partitions rather than a single partition, enabling different users to select similarity 

levels according to their desire. However, hierarchical methods also have 
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weaknesses. The first one is an inability to scale well. The time complexity of 

hierarchical algorithms is at least O(m2), where m is the total number of objects. 

Clustering a large number of objects using a hierarchical algorithm incurs substantial 

costs. In addition, it is lack of reversibility. Hierarchical methods cannot undo 

previous steps, meaning there is no backtracking capability. 

Figure 4 is an example result of hierarchical agglomerative clustering, where 

a sequence of irreversible algorithmic steps constructs a structured dendrogram from 

n objects. Each step involves merging pairs of clusters into progressively larger 

groups. This process results in two equivalent representations. One is a series of n-1 

partitions evolving from individual data to collective groups in a dendrogram that 

offers a binary tree. The other is an ultrametric topology, which emphasizes the 

hierarchical relationships within the data. These frameworks are crucial for analysis, 

as they enable a detailed examination of the data’s intrinsic hierarchical organization 

(Murtagh & Contreras, 2012). 
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Figure 4. Example result of hierarchical clustering, Dendrogram
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2.5.3 Similarity measurement 

 

In hierarchical clustering, similarity measurement between clusters can be 

performed by setting linkage and metric. Linkage refers to setting a datum point that 

will be measured, and metric measures distance. Linkage includes Single, Complete, 

Average, Weighted, and Ward (Murtagh & Contreras, 2012). Table 4 has formulas 

for each linkage, which calculate the distance between the newly formed cluster 𝑈, 

𝑉, and 𝑊 while 𝑖 and 𝑗 are points in the cluster. In the case of Ward, 𝑈 denotes 

the newly joined cluster consisting of clusters 𝑆 and 𝑇, 𝑉 is an unused cluster, and 

𝑇𝑜𝑡𝑎𝑙 = |𝑣| + |𝑠| + |𝑡| defines the total number of points within the new cluster. 

Metric includes Euclidean, Manhattan, Chebyshev, and Cosine. Table 5 has formulas 

for each distance measurement metric for two points, 𝑎(𝑥1, 𝑦1) and 𝑏(𝑥2, 𝑦2). 

Single, known as the minimum method or nearest neighbor method, merges 

clusters based on minimum distance (Sneath & Sokal, 1957), while complete, also 

referred to as furthest neighbor method, merges based on the maximum distance 

between two clusters and average, which is known as the minimum variance method 

is based on average distance literally (Sokal & Rohlf, 1962). Weighted gives equal 

weight to each cluster (Sokal & Rohlf, 1962), which helps balance the influence of 

differently sized clusters. Ward is another clustering method that is based on a 

classical sum-of-squares criterion, merging clusters that minimize the increase in 

total within-cluster variance (Ward, 1963). It has been widely used and generalized 

since its first description (Murtagh & Legendre, 2014). 
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Numerous studies have compared various Hierarchical Agglomerative 

Clustering (HAC) methods. Most findings suggest that despite being the only 

feasible option for large document sets, the single-link method generally produces 

suboptimal results (El-Hamdouchi & Willett, 1989; Willett, 1988; Steinbach et al., 

2000). Among the HAC methods, the group average method is often considered 

superior to both the complete link and Ward's methods (El-Hamdouchi & Willett, 

1989; Steinbach et al., 2000; Zhao & Karypis, 2002). This advantage is likely due to 

the single link method relying on minimal information and the complete link method 

treating clusters as highly dissimilar. In contrast, the group average method mitigates 

these issues by calculating the average distance between clusters (Steinbach et al., 

2000). 

Euclidean is the most common metric that measures the straight-line 

distance between two points. Manhattan measures distance by summing the absolute 

differences between the coordinates, which works well when movement is restricted 

to grid-like paths, such as city navigation or text processing. Chebyshev measures 

distance using the maximum absolute difference between coordinates, while cosine 

takes the angle between two vectors that cannot measure the actual physical distance. 
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Table 4. Linkage (Single, Complete, Average, Weighted, and Ward) and its formula 

Linkage Formula 

Single 𝑑(𝑈, 𝑉) =  min (𝑑(𝑈[𝑖], 𝑉[𝑗])) 

Complete 𝑑(𝑈, 𝑉) =  max (𝑑(𝑈[𝑖], 𝑉[𝑗])) 

Average 𝑑(𝑈, 𝑉) =  ∑
𝑑(𝑈[𝑖], 𝑉[𝑗])

(|𝑈| ∗ |𝑉|)
𝑖𝑗

 

Weighted 𝑑(𝑈, 𝑉) =
(𝑑(𝑈, 𝑊) + 𝑑(𝑉, 𝑊))

2
 

Ward 𝑑(𝑈, 𝑉) = √
|𝑉| + |𝑆|

𝑁𝑇

𝑑(𝑉, 𝑆)2 +
|𝑉| + |𝑇|

𝑁𝑇

𝑑(𝑉, 𝑇)2 −
|𝑉|

𝑁𝑇

𝑑(𝑆, 𝑇)2 
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Table 5. Metric (Euclidean, Manhattan, Chebyshev, and cosine) and its formula 

Metric Formula 

Euclidean 𝑑(𝑎, 𝑏) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1
 

Manhattan 𝑑(𝑎, 𝑏) = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛

𝑖=1
 

Chebyshev 𝑑(𝑎, 𝑏) = max (|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|) 

Cosine 𝑑(𝑎, 𝑏) = 1 − 𝑐𝑜𝑠𝜃 = 1 −
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1 ∙ √∑ 𝑦𝑖
2𝑛

𝑖=1
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2.6 Performance evaluation criteria 

Validating the quality of clustering is essential to ensure the 

accuracy and reliability of the outcomes. This section includes two 

performance evaluation indices: the cophenetic correlation coefficient to 

evaluate how well each similarity measurement combination explains the 

whole data and Silhouette scores to determine the optimal number of 

clusters. 

 

2.6.1 Cophenetic correlation coefficient 

Cophenetic correlation coefficients evaluate clustering solutions 

by determining how well a dendrogram retains the pairwise distances from 

the original distance matrix (Saracli et al., 2013). These coefficients are 

computed by comparing the original distance matrix to the cophenetic 

distance matrix, in which the original object distances are substituted with 

the distances between clusters when they are merged. Each clustering 

solution has its cophenetic correlation coefficient calculated separately, 

with higher values indicating superior clustering. This allows for quick 

and easy comparison of different clustering combinations. However, this 

method is sensitive to outliers (Sokal & Rohlf, 1962). The cophenetic 

correlation coefficient CPH is given by 
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𝐶𝑃𝐻 =
∑ [𝑑(𝑖, 𝑗) − 𝑑̅]⌈𝑡𝑑𝑒𝑛(𝑖, 𝑗) − 𝑡̅⌉𝑖<𝑗

√∑ 𝑑(𝑖, 𝑗) − 𝑑̅2 ∑ 𝑡𝑑𝑒𝑛(𝑖, 𝑗)𝑖<𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑖<𝑗 − 𝑡̅2
 

 

Original data {𝐷}  was clustered to produce a dendrogram {𝑇𝑖} . Here, 

𝑑(𝑖, 𝑗) represents the Euclidean distance between the ith and jth points. At 

the same time, 𝑡𝑑𝑒𝑛(𝑖, 𝑗)  is the dendrogramatic distance between the 

model points 𝑇𝑖  and 𝑇𝑗 . The averages of 𝑑(𝑖, 𝑗)  and 𝑡𝑑𝑒𝑛(𝑖, 𝑗)  are 

denoted by 𝑑̅ and 𝑡̅, respectively. This value ranges from 0 to 1, meaning 

a higher value stands for a better combination in similarity measurement. 

 

2.6.2 Cluster validity indices and Silhouette index 

A few cluster validity measures evaluate clustering results, such 

as the Dunn index, Adjusted Rand index, Calinski-Harabasz index, and 

Silhouette index (Table 6). In Dunn index, 𝑑(𝐶𝑖, 𝐶𝑗)  is the distance 

between the two closest points from different clusters i and j. 𝑑(𝐶𝑖) is the 

maximum distance within a cluster i. In Adjusted Rand index, 𝑛𝑖𝑗 

denotes the number of points in predicted and true cluster i, and 𝑎𝑖 and 

𝑏𝑗  are the sum of points in true cluster i and predicted cluster j, 

respectively. In the Calinski-Harabasz index, K is the number of clusters, 

𝑛𝑘 is data in cluster k, 𝑐𝑘 is the centroid of cluster k, 𝑥𝑖
𝑘 is the ith data 

point in cluster k, and ‖𝑎‖2
2  is the squared Euclidean distance. In the 
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Silhouette index, 𝑎(𝑖) =
∑ 𝑑𝑖𝑗𝑗∈{𝐶𝑟\𝑖}

𝑛𝑟−1
 is the average dissimilarity of the ith 

object to all other objects within cluster 𝐶𝑟 , which means cohesion. 

𝑏(𝑖) = 𝑚𝑎𝑥𝑠≠𝑟{𝑑𝑖𝐶𝑠},  and 𝑑𝑖𝐶𝑠 =
∑ 𝑑𝑖𝑗𝑗∈𝐶𝑠

𝑛𝑠
 are the average dissimilarity 

of the ith object to all other objects within cluster 𝐶𝑠 , representing 

separation (Rousseeuw, 1987; Gere, 2023). 

The Dunn index evaluates the compactness between two clusters 

by the ratio of the minimum inter-cluster distance to the maximum intra-

cluster (Dunn, 1973). The value increases when the distance between 

clusters is large and the variance within clusters is small. A higher value 

indicates better clustering quality. The adjusted Rand index measures the 

similarity between two clustering results by the proportion of pairs 

consistently classified in both clustering (Hubert & Arabie, 1985). The 

Rand index’s accuracy decreases as the number of clusters increases (Rand, 

1971), so the Adjusted Rand index adjusts for the expected similarity, 

compensating for the Rand index's limitations. The Calinski-Harabasz 

index considers both the cohesion within clusters and the separation 

between clusters by putting each in numerator and denominator (Chou et 

al., 2004). The silhouette index is used to evaluate the quality of clustering 

for individual data points by measuring how similar an object is to its own 

cluster compared to others. It assesses the quality of individual data points 

within clusters. (Hubert & Arabie, 1985; Chou et al., 2004; Pakhira et al., 

2004; Rui Xu et al., 2012; Arbelaitz et al., 2013). 

Cluster validity indices can be employed to determine the number 
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of clusters to mathematically validate the clustering. The Silhouette index 

measures how well an object is matched to its own cluster compared to 

other clusters (Rousseeuw, 1987). The Silhouette index varies between -1 

and 1, with a score of 1 showing that the object is correctly grouped within 

its cluster.
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Table 6. Clustering validity indices (Dunn, Adjusted Rand index, CS index, Silhouette index) and its formula 

Cluster Validity Indices Formula 

Dunn Index 

(Dunn, 1973) 
𝐷𝐼 =

min
1≤𝑖<𝑗≤𝑘

𝑑(𝐶𝑖 , 𝐶𝑗)

max
1≤𝑖≤𝑘

𝑑(𝐶𝑖)
 

Adjusted Rand Index 

(Hubert & Arabie, 1985) 
𝐴𝑅𝐼 =

∑ (
𝑛𝑖𝑗

2
) − [∑ (

𝑎𝑖

2
)𝑖 ∑ (

𝑏𝑗

2
)𝑗 ]𝑖𝑗 /(

𝑛
2

)

1
2

[∑ (
𝑎𝑖

2
)𝑖 + ∑ (

𝑏𝑗

2
)𝑗 ] − [∑ (

𝑎𝑖

2
)𝑖 ∑ (

𝑏𝑗

2
)𝑗 ]/(

𝑛
2

)
 

Calinski-Harabasz Index 

(Chou et al., 2004) 
𝐶𝐻 = [

∑ 𝑛𝑘‖𝑐𝑘 − 𝑐‖2
2𝐾

𝑘=1

𝐾 − 1
] / [

∑ ∑ ‖𝑥𝑖
𝑘 − 𝑐𝑘‖

2

2𝑛𝑘
𝑖=1

𝐾
𝑘=1

𝑛 − 𝐾
] 

Silhouette Index 

(Rousseeuw, 1987; Charrad et al, 2014) 
𝑆(𝑖) =

1

𝑁
∑

𝑏𝑖 − 𝑎𝑖

max (𝑎𝑖 , 𝑏𝑖)

𝑁

𝑖=1
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3. Data 

 

The data for this study were obtained from the annual first-year report titled Cyclic Adaptive 

Coastal Erosion Management Technology Development (Ministry of Oceans and Fisheries, 2023) and 

the annual report titled Coastal Erosion Status Report (Ministry of Oceans and Fisheries, 2023). Table 

7 summarizes the list of data for each previously divided unit littoral cell, and Figures 5 and 6 represent 

the example tables from which the data were extracted in the report. In this study, we define the right 

with criterion facing the coast and the left side as the opposite direction within the unit littoral cell. For 

the East Coast, data were extracted, including left coordinates, right coordinates, length of coastline, 

beach width, representative sediment characteristics, grain size (𝑑50) of the left, center, and right side 

of the site, coastal morphology, and beach slope of the left, center, and right side for each littoral cell. 

As distinct data existed for Gangwon and BUG, the analysis was conducted by dividing the 

East Coast into two regions: Gangwon and BUG, which encompasses Busan, Ulsan, and Gyeongbuk. 

The number of analyzed littoral cells was 42 for Gangwon and 62 for BUG (three for Busan, five for 

Ulsan, and 54 for Gyeongbuk). Figure 7 shows the distribution of unit littoral cells for Gangwon and 

BUG. 

Table 7. List of available data for Gangwon and BUG region 

Region 

Available Data 

Distinct Common 

Gangwon Coastal morphology 
Coordinates of coast, 

Length of coastline, 

Beach width, 

Representative sediment characteristic, 

𝑑50 
BUG Beach slope 
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Figure 5. Example table of the report titled Coastal Erosion Status Report (Ministry of 

Oceans and Fisheries, 2023) 
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Figure 6. Example table of the report titled Cyclic Adaptive Coastal Erosion Management Technology 

Development (Ministry of Oceans and Fisheries, 2023) 
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Figure 7. Distribution of unit littoral cells for Gangwon and BUG 
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Figure 10 visualizes the length of the coastline for each littoral cell and Figure 11 shows the 

beach width at each site. Figures 12, 13, and 14 show the 𝑑50 for each unit littoral cell's left, center, 

and right sides, connected by line graphs. Figures 15, 16, and 17 show the Beach Slope for each unit 

littoral cell's left, center, and right side, connected by line graphs. 

Pearson correlation coefficients were calculated on the raw data used in the study. The sample 

sizes were 42 for Gangwon and 62 for BUG. The results are presented in Figures 8 and 9. In Gangwon 

and BUG, Leftside Latitude, Leftside Longitude, Rightside Latitude, and Rightside Longitude exhibited 

strong positive and negative correlations. As such, high correlations can lead to redundancy problems, 

so latitude and longitude data were averaged, reducing redundancy and improving data integrity for the 

analysis. 

Correlation analysis of D50(L), D50(M), and D50(R) yielded values of 0.67, 0.80, and 0.78 in 

Gangwon, and 0.74, 0.75, and 0.78 in BUG, respectively. However, these values were not entirely 

reliable due to the presence of numerous missing values in the raw data. To maintain consistency in the 

sample size, missing values were imputed with the average 𝑑50  values of D50(L), D50(M), and 

D50(R). 

It is important to note that Pearson correlation measures linear relationships, which limits its 

effectiveness in capturing non-linear relationships. Therefore, hasty decisions about data selection based 

solely on these correlation values could lead to misinterpretations in data analysis. Moreover, since 

UMAP does not work with missing values (cases with missing data are excluded from the analysis), it 

was essential to fill in. Therefore, 𝑑50  was newly introduced, representing the average of D50(L), 

D50(M), and D50(R) to avoid redundancy problems and to enhance accuracy. 
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Figure 8. Pearson Correlation Matrix for Gangwon 
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Figure 9. Pearson Correlation Matrix for BUG 
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Figure 10. Length of coastline for Gangwon and BUG 

 

 

Figure 11. Beach width for Gangwon and BUG 
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Figure 12. D50 of left side of unit littoral cell for Gangwon and BUG 

 

 

Figure 13. D50 of center of unit littoral cell for Gangwon and BUG 
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Figure 14. D50 of right side of unit littoral cell for Gangwon and BUG 

 

 

Figure 15. Beach slope of left side of unit littoral cell for Gangwon and BUG 
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Figure 16. Beach slope of center of unit littoral cell for Gangwon and BUG 

 

 

 

 

Figure 17.  Beach slope of right side of unit littoral cell for Gangwon and BUG
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4. Results 

This section presents the results of the analysis conducted on clustering unit 

littoral cells. The findings are organized into three key steps: dimensionality 

reduction, clustering and its validation, and GIS-based revising. First, the results of 

dimensionality reduction using UMAP are presented to reduce high-dimensional 

sediment transport parameter data in a lower-dimensional space. Next, clustering and 

its validation are conducted using the cophenetic correlation coefficient and 

silhouette scores to enhance the quality of outcomes. Finally, GIS-based spatial 

revising is employed to double-check the spatial distribution of designated clusters 

of unit littoral cells with observed coastal features. 

  



66 

 

4.1 UMAP projection 

 

To facilitate algorithm execution and improve performance, UMAP reduced 

high-dimensional datasets with different features into new-dimensional data objects. 

The results were visualized on a two-dimensional plane, as shown in Figures 18 and 

19. Overall, clusters are formed by data points from the same or adjacent regions 

grouping together.  

To evaluate how well UMAP preserves the distance structure of the original data, we 

compared the Mean Squared Error (MSE) between the UMAP embedding results 

and random embedding. The comparison showed that UMAP outperformed random 

embedding regarding distance preservation in both Gangwon and BUG. Specifically, 

the MSE for UMAP was 7.916 in Gangwon, compared to 9.465 for random 

embedding. Similarly, in BUG, the MSE for UMAP was 5.510, while random 

embedding resulted in an MSE of 6.598. These results indicate that UMAP maintains 

the original data structure better after dimensionality reduction. 
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4.2 Cophenetic correlation coefficient 

 

Tables 8 and 9 show the calculated cophenetic correlation coefficient for 

different linkage methods: Single, Complete, Average, Weighted, and Ward, with the 

four metrics: Euclidean, Manhattan, Chebyshev, and Cosine. Table 8 shows the 

Cophenetic correlation coefficient of Gangwon. As a higher value means better 

performance combination, Single-Manhattan shows the worst combination value of 

0.35. The Complete-Chebyshev, Average-Chebyshev, Single-Cosine, and Average-

Cosine metrics showed the highest value of 0.67. Compared with other metrics, 

including Euclidean, the Complete-Euclidean metric exhibited the highest score of 

0.66. Table 9 is the result of BUG. Euclidean metrics, except for single-Euclidean, 

showed the highest value of 0.85, while cosine metrics showed the worst. 

Random seeds were controlled using tf.random.set_seed(42) for TensorFlow, 

np.random.seed(42) for NumPy, and random.seed(42) for Python’s random module. 

This approach guarantees reproducibility, as repeated executions consistently yield 

the same results. Therefore, the observed cophenetic correlation coefficients are not 

the outcome of random chance but reflect stable and meaningful clustering patterns 

in the data. 
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Figure 18. UMAP of Gangwon 
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Figure 19. UMAP of BUG 
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Table 8. Cophenetic correlation coefficient for Gangwon 

 Euclidean Manhattan Chebyshev Cosine 

Single 0.84 0.83 0.83 0.81 

Complete 0.85 0.84 0.84 0.81 

Average 0.85 0.84 0.84 0.81 

Weighted 0.85 0.84 0.84 0.81 

Ward 0.85 Euclidean only Euclidean only Euclidean only 

 

Table 9. Cophenetic correlation coefficient for BUG 

 Euclidean Manhattan Chebyshev Cosine 

Single 0.41 0.35 0.52 0.67 

Complete 0.66 0.62 0.67 0.54 

Average 0.65 0.64 0.67 0.67 

Weighted 0.64 0.6 0.66 0.54 

Ward 0.65 Euclidean only Euclidean only Euclidean only 
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4.3 Dendrogram 

 

By clustering sites using hierarchical agglomerative clustering, a 

dendrogram that visualizes hierarchical linkage and clusters directly can be obtained. 

Since only the Euclidean metric can be applied to Ward, the cophenetic correlation 

coefficient values were compared by fixing the metric to Euclidean in both cases. 

For Gangwon, the Complete linkage showed the highest value, while for Bug, all 

linkage methods except for Single exhibited equally high values. Therefore, linkage 

as Complete and metric as Euclidean was used for both cases. The site number with 

colored index represents the region allocated to each unit littoral cell (site). The 

colored linkage in the dendrogram is set to have its own region color when data 

points from the same region meet. Figure 22 is leaf cut dendrogram of BUG for 

closure observation. 
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Figure 20. Dendrogram of Gangwon using linkage as Ward and metric as Euclidean 
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Figure 21. Dendrogram of BUG using linkage as Ward and metric as Euclidean 
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Figure 22. Enlarged dendrogram of BUG using linkage as Ward and metric as Euclidean 
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4.4 Silhouette score and optimal cluster number 

 

The silhouette index was calculated to determine the optimal number of 

clusters that best explain the individual data points and clusters. The number of tested 

clusters range from two to a whole number of data points, with each littoral cell have 

its own cluster. Figures 23 to 24 are the silhouette scores of each number of clusters. 

Top five results with the highest reliability were found for each case. For Gangwon, 

silhouette scores were 0.42, 0.42, 0.41, 0.41, and 0.40 when the whole data was 

divided into 6, 5, 7, 4, and 8 clusters, respectively (Table 10). As clusters with high 

silhouette scores align with well-divided clustering results, Gangwon was divided 

into 6 clusters. For BUG, silhouette scores were 0.63, 0.50, 0.49, 0.47, and 0.46 when 

the whole data was divided into 2, 3, 9, 8, and 10 clusters, respectively (Table 11). 

Although BUG ranks third, it was divided into 9 clusters to see the detailed clustered 

results because they are better for examining the feasibility of defining mesoscale 

littoral cells. 

Table 10. Top 5 optimal number of clusters and silhouette score of Gangwon 

Top 5 Clusters by Silhouette Score 

Rank 1: 6 clusters, Silhouette Score: 0.4159 

Rank 2: 5 clusters, Silhouette Score: 0.4131 

Rank 3: 7 clusters, Silhouette Score: 0.4085 

Rank 4: 4 clusters, Silhouette Score: 0.4052 

Rank 5: 8 clusters, Silhouette Score: 0.3999 
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Table 11. Top 5 optimal number of clusters and silhouette score of BUG 

Top 5 Clusters by Silhouette Score 

Rank 1: 2 clusters, Silhouette Score: 0.6284 

Rank 2: 3 clusters, Silhouette Score: 0.4987 

Rank 3: 9 clusters, Silhouette Score: 0.4923 

Rank 4: 8 clusters, Silhouette Score: 0.4684 

Rank 5: 10 clusters, Silhouette Score: 0.4598 

 

 

Figure 23. The silhouette score of each number of clusters for Gangwon 

 

 

Figure 24. The silhouette score of each number of clusters for BUG 
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4.5 Mapping and comparing with previously divided unit littoral cell 

 

Figures 25 and 26 illustrate the mapped results of the allocated clusters based 

on latitude and longitude data. To compare these results with previously divided unit 

littoral cell, interpretation rule and steps were established: (1) If the allocated cluster 

changes between adjacent littoral cells, the boundary is designated as a new 

boundary for the newly demarcated littoral cells, (2) The clustering results were 

refined using satellite imagery. Natural capes and man-made structures, such as 

harbors and sediment control facilities, were considered as the factor that limit the 

sediment transport. (3) The clustering outcomes are meticulously examined through 

close observation to ensure accuracy and alignment with these geomorphological 

characteristics. Figure 27 is an example of a refinement process. 

A chart was drawn to visualize the differences between the two systems by 

aligning the data points and assigning varying heights to each based on their 

allocated clusters (Figures 28 and 29). Each circle indicates the original unit littoral 

cells demarcated in the report. When a single unit littoral cell needed to be 

subdivided into smaller units, a line across the circle was drawn. In cases where 

multiple unit littoral cells were assigned to the same cluster (indicating they were 

considered as part of the same system) but were determined to need separation into 

different clusters (indicating they should be distinguished as distinct sedimentary 

systems), a line between the circles was drawn. Additionally, when multiple unit 

littoral cells were determined to form a single littoral cell, pink labels were assigned 

to distinguish them. Below, the clustering results using machine learning are 
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presented with pink labels, each representing a single littoral cell.

Figure 25. Mapping with 6 clusters of Gangwon, Silhouette Score: 0.4159 
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Figure 26. Mapping with 9 clusters of BUG, Silhouette Score: 0.4923 
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Figure 27. Example of a refinement using geomorphological images and information 
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Figure 28. Refined result of unit littoral cells and comparison with current littoral cell system for Gangwon 
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Figure 29. Refined result of unit littoral cells and comparison with current littoral cell system for BUG 
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5. Discussion 

5.1 Coastal erosion grade D 

 

The Comprehensive Report on Coastal Erosion Status established evaluation 

criteria to assess the sedimentation and erosion conditions of each monitoring site, 

which are 360 primary coastal erosion monitoring areas. Based on these criteria, the 

report assigned coastal erosion grades from A to D to each site. Sites classified as 

Grade D erosion are shown in Table 12. 

Table 12 List of Beaches Classified as Grade D in Coastal Erosion Evaluation 

Administrative 

District 
Region Name Type of Erosion 

Gangwon 

Goseong-gun Cheonhakjeong Beach Erosion 

Sokcho-si Yeongnang-dong Beach Erosion 

Sokcho-si Deungdae Beach Erosion 

Gangneung-si Hasi-dong Beach Erosion 

Samcheok-si Gungchon Beach Erosion 

Samcheok-si Wolcheon Beach Erosion 

Gyeongbuk 

Uljin-gun Jiksan Beach Erosion 

Yeongdeok-gun Geumjin ~ Hajeo Beach Erosion 

Yeongdeok-gun Woncheok ~ Buheung Sediment Loss 

 Gyeongju-si Naa Beach Erosion 

Total 10 
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5.2 Management scope suggestion for Gangwon 

In this section, the clustering results for beaches with erosion grade D were 

revised using satellite imagery, cross-checking the initial clustering outcomes with 

specific coastal characteristics and existing research for accuracy and relevance. 

Natural capes were considered as they significantly influence sediment transport 

patterns compared to open coastlines. Additionally, the impact of coastal structures 

was considered, especially areas reported as having sheltered zones due to harbors 

or other artificial structures. Such structures can create localized changes in current 

flow and sediment deposition. Furthermore, existing studies on current flow 

dynamics near D-grade erosion beaches or ports were incorporated to validate the 

clustering. Through this methodology, management boundaries were suggested for 

each erosion grade D site and six key regions in Gangwon were examined: (1) 

Goseong-gun Cheonhakjeong, (2) Sokcho-si Yeongnang-dong, (3) Sokcho-si 

Deungdae, (4) Gangneung-si Hasi-dong, (5) Samcheok-si Gungchon, and (6) 

Samcheok-si Wolcheon. 
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Figure 30 is a satellite image of the Chunhakjeong Beach. According to Kim 

and Song (2019a), Munamcheon, which used to be a sediment source to 

Chunhakjeong Beach, altered its flow direction to Baekdo Beach, blocking sediment 

supply. The construction of the Munam2ri Port disrupted the seasonal equilibrium 

state, accelerating coastal erosion in Gyoam Beach. Based on the long-period wave 

data in Gyoam Beach, the dominant wave direction is northeast (Kim and Song, 

2019b). Therefore, sediment is unlikely migrate beyond Ayajin Beach toward Ayajin 

Port. The boundary of the littoral cell that includes Chunhakjeong Beach can be 

inferred from the yellow dotted line in Figure 30. 

  

Figure 30. Satellite image of Chunhakjeong Beach 
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Figure 31.  Satellite image of Yeongnang Beach and Deungdae Beach 

 

 

Figure 32. Zoomed-in satellite image of Yeongnang Beach and Deungdae Beach 

 

Figures 31 and 32 are satellite images of Yeongrang Beach and Deungdae 
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Beach. The yellow dotted line indicates the boundaries of the littoral cell used for 

the analysis. However, Yeongnang Beach and Deungdae Beach exhibit stable 

pocket-shaped beach morphology and the sediment transport from Yeongnang Lake 

is restricted by the groin, observed from the deposits on the northern side of 

Yeongnang Beach. Therefore, when managing Yeongnang Beach and Deungdae 

Beach, which are classified as Grade D erosion sites, it is assumed that a more 

efficient management boundary would range from the magenta dotted line to the 

yellow dotted line on the southern side of Deungdae Beach, rather than adhering to 

the original littoral cell boundaries. 

 

 

Figure 33. Satellite image of Hasidong Beach 
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Figure 34. Zoomed-in satellite image of Hasidong Beach 

 

Figures 33 and 34 are satellite images of Hasidong Beach. In Figure 34, the 

area marked by the magenta dotted line indicates Hasidong Beach, where the cause 

of erosion is identified as beach erosion. According to the Comprehensive Report on 

Coastal Erosion Status, continuous erosion damage has been caused by the thermal 

power plant. Hasidong Beach receives sediment from the Gangneungnamdae River 

and the structures installed at the thermal power plant, located south of the Hasidong 

beach, are likely to restrict sediment movement. Therefore, to efficiently manage 

Hasidong Beach, it can be inferred that the management boundary should extend 

from Gangneung Port to the thermal power plant as indicated by the yellow dotted 

line in the Figure 33. 
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Figure 35. Satellite image of Gungchon Beach 

 

 

Figure 36. Zoomed-in satellite image of Gungchon Beach 

 

Figures 35 and 36 are satellite images of Gungchon Beach. The cause of 

erosion at Gungchon Beach is identified as beach erosion, and it receives sediment 

supply from the Chu River. Gungchon Port restricts the movement of northward 
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littoral drift, while a natural cape is located at Chogok Port. Therefore, to efficiently 

manage erosion at Gungchon Port, the management boundary should be set from 

Gungchon Port to Chogok Port, as indicated by the yellow dotted line in Figure 35. 

 

 

Figure 37. Satellite image of Wolchon Beach 

 

 

Figure 38. Zoomed-in satellite image of Wolcheon Beach 
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Figures 37 and 38 are satellite images of Wolcheon Beach. The cause of 

erosion at Wolcheon Beach is beach erosion, which has been continuously classified 

as Grade D following the construction of a nearby LNG production facility. Although 

the erosion grade temporarily improved after restoration work in 2022, sediment 

supply to Wolcheon Beach remains restricted due to the surrounding structures. To 

efficiently manage Wolcheon Beach, the management boundary should include the 

area within the dotted lines in Figure 37, which encompasses GagokStream. 
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5.3 Management scope suggestion for BUG 

 

In this section, the clustering results for beaches with erosion grade D in 

BUG were revised using the same criteria applied in the Gangwon. Four key regions 

for BUG requiring targeted management strategies were identified: (1) Uljin-gun 

Jiksan, (2) Yeongdeok-gun Geumjin to Hajeo, (3) Yeongdeok-gun Woncheok to 

Buheung, and (4) Gyeongju-si Naa. However, unlike the Gangwon, the littoral cells 

in the Gyeongbuk were initially set on a larger scale, which means surveys have not 

been conducted on all beaches. As a result, even if multiple beaches are included 

within a single littoral cell, only one or several beaches were often surveyed. 

Therefore, it is assumed that the surveyed beach represents the entire littoral cell in 

this study and all analyses were conducted based on this assumption. 

 

 

Figure 39. Satellite image of Littoral cell that contains Jiksan Port 
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Figure 40. Zoomed-in satellite image of Jiksan 

 

Figures 39 and 40 are satellite images of Jiksan, Uljin-gun. As shown in 

Figure 39, there are no natural capes or structures along the coastline that restrict 

sediment movement, indicating that combining multiple littoral cells for new littoral 

cell is appropriate for effective management. Based on clustering result that was 

refined using satellite imagery and objective information, the littoral cell that 

includes Jiksan extends to the yellow dotted line encompassing GB-08. In addition, 

according to Kwak et al. (2005), the numerical modeling results predicting current 

direction near Hupo Port are divided into opposite direction, suggesting that between 

GB-11 and GB-12 should serve as boundary of the new littoral cell. Jiksan is 

represented by the area marked with a magenta dotted line in Figure 39 and Figure 

40 is enlarged image of magenta dotted box. 
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Figure 41. Satellite image of Littoral cell of Yeongdeok-gun Geumjin ~ Hajeo 

 

 

Figure 42. Zoomed-in satellite image of near Osip River 
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Figure 41 is a satellite image of the Geumjin to Hajeo in Yeongdeok-gun. 

GB-19 and GB-20 were assigned to different clusters based on the clustering results. 

However, since the coastline directions are similar each other and there are no 

structures or natural capes restricting sediment flow, they were adjusted into the same 

cluster. Additionally, as shown in Figure 42, both GB-20 and GB-21 receive 

sediment supply from the Osip River. Therefore, when managing erosion in the 

Geumjin to Hajeo, GB-19, 20, and 21 should be considered together. 

 

 

Figure 43. Satellite image of Littoral cell of Yeongdeok-gun Woncheok ~ Buheung 
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Figure 44. Zoomed-in satellite image of Yeongdeok-gun Woncheok ~ Buheung 

 

 

Figures 43 and 44 are satellite images of the Woncheok to Buheung in 

Yeongdeok-gun. In Figure 43, the magenta dotted box indicates the Woncheok to 

Buheung area, which includes multiple beaches. However, only the area shown in 

Figure 44 was surveyed. While natural capes are well-developed, restricting 

sediment supply, erosion is likely to occur during high wave events that may affected 

its classification as a severely eroded area. Since natural capes are well-developed, 

the littoral cells can be delineated based on each cape, resulting in a more detailed 

segmentation compared to the original littoral cells. 
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Figure 45. Satellite image of Littoral cell of Naa, Gyeongju-si 

 

Figure 45 is a satellite image of Naa, Gyeongju-si, with the area outlined in 

magenta dotted lines representing Naa. According to the clustering results, it was 

assigned to the same cluster as GB-56, GB-58, and GB-59. Therefore, to manage 

Naa, it is necessary to manage the surrounding areas together that is different way 

from the past. 
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6. Conclusion 

 

A littoral cell refers to an independent zone where there is no sediment 

exchange with adjacent littoral cells or where information about the inflow and 

outflow of sediment at the boundaries is clear. Therefore, a littoral cell is the 

minimum unit of a cyclic mass system influenced by the supply of sand through 

rivers and wave action. Korea's current littoral cell system is classified into 

macroscale, mesoscale, and unit littoral cells based on size and management 

purposes. Mesoscale littoral cells are divided based on watersheds, while unit littoral 

cells are divided based on natural formations such as capes or bays along the 

coastline, allowing for sediment budget analysis. 

With the acceleration of coastal erosion due to climate change and human 

activities, the importance of sustainable and effective erosion management and 

response and the increased necessity for littoral cells have been emphasized. 

Including physical mechanisms that represent coastal characteristics in establishing 

littoral cell systems is expected to help manage the coast efficiently and stably and 

better explain various sediment transport phenomena occurring along the coast. 

This study constructed a dataset comprising coastal environmental 

characteristics and sediment transport parameters for each unit littoral cell, followed 

by standardization and dimensionality reduction. Unit littoral cells with high 

similarity were clustered with HAC, and their distribution was evaluated by the 

Cophenetic correlation coefficient and the Silhouette score, with six clusters for 
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Gangwon and nine for BUG. Results were mapped with GIS to visualize each 

allocated unit littoral cell cluster and compared with previously divided littoral cells. 

This research examines the feasibility of defining mesoscale littoral cells, providing 

a theoretical basis for clustering unit littoral cells, and suggests management scope 

for coastal erosion ‘Grade D’. The methodology and outcomes will contribute to 

setting effective, adaptive, and sustainable strategies for addressing coastal 

management. 
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Appendix. A 

Python Code for the analysis 

import numpy as np 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pandas as pd 

import tensorflow as tf 

import random 

from tensorflow.keras.layers import Input, Embedding, Flatten 

from tensorflow.keras.models import Model 

import umap 

from scipy.cluster.hierarchy import linkage, cophenet, dendrogram, fcluster 

from scipy.spatial.distance import pdist 

from sklearn.metrics import silhouette_score 

 

# Set random seeds for reproducibility 

tf.random.set_seed(42) 

np.random.seed(42) 

random.seed(42) 

 

# Load Data (User should replace 'data.xlsx' with their own dataset file) 

file_path = 'path_to_your_data.xlsx'  # Replace with your data file path 

sheet_name = 'Sheet1'  # Replace with your sheet name if necessary 

factor = pd.read_excel(file_path, sheet_name=sheet_name, header=1) 

 

# Drop missing values 

factor = factor.dropna() 

 

#%% Encode categorical data (example: attribute of sand) 

label_encoder = LabelEncoder() 

factor['sand_label'] = label_encoder.fit_transform(factor['attribute of sand']) 
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# Create embedding model for encoded categorical feature 

input_dim = factor['sand_label'].nunique() 

output_dim = min(50, input_dim // 2) 

 

input_layer = Input(shape=(1,)) 

embedding_layer = Embedding(input_dim=input_dim, output_dim=output_dim, 

input_length=1)(input_layer) 

flatten_layer = Flatten()(embedding_layer) 

 

embedding_model = Model(inputs=input_layer, outputs=flatten_layer) 

embedding_model.compile(optimizer='adam', loss='mse') 

embedding_model.fit(factor['sand_label'], np.zeros((factor.shape[0], output_dim)), 

epochs=50, verbose=0) 

 

embedding_matrix = embedding_model.predict(factor['sand_label']) 

 

# Reset factor and drop temporary label column 

factor_reset = factor.reset_index(drop=True).drop(columns=['sand_label']) 

 

# Select numeric columns 

numeric_cols = factor_reset.select_dtypes(include=[np.number]).columns.tolist() 

 

# Concatenate embeddings with other numerical data 

full_data = pd.concat( 

    [factor_reset[numeric_cols], 

     pd.DataFrame(embedding_matrix, columns=[f'attribute_{i}' for i in 

range(output_dim)])], axis=1 

) 

 

#%% Apply UMAP for dimensionality reduction 

reducer = umap.UMAP(random_state=0, n_components=2) 

factor_data = full_data.values 

scaled_data = StandardScaler().fit_transform(factor_data) 

embedding = reducer.fit_transform(scaled_data) 
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# Plot UMAP result (generalized for categorical groups) 

plt.figure(figsize=(20, 14)) 

sns.scatterplot(x=embedding[:, 0], y=embedding[:, 1], s=130, edgecolor='w') 

plt.title('Dimensionality Reduction Result by UMAP') 

plt.xticks([]) 

plt.yticks([]) 

plt.show() 

 

#%% Calculate and display cophenetic correlation for linkage and distance metrics 

linkage_methods = ['single', 'complete', 'average', 'weighted', 'ward'] 

distance_metrics = ['euclidean', 'cityblock', 'chebyshev', 'cos'] 

cph_results = [] 

 

for method in linkage_methods: 

    for metric in distance_metrics: 

        try: 

            Z = linkage(embedding, method=method, metric=metric) 

            c, _ = cophenet(Z, pdist(embedding, metric=metric)) 

            cph_results.append([method, metric, round(c, 2)]) 

        except Exception as e: 

            cph_results.append([method, metric, np.nan]) 

 

cph_df = pd.DataFrame(cph_results, columns=['linkage_method', 'distance_metric', 

'Cophenetic Correlation']) 

 

#%% Dendrogram Plot (generalized, example linkage: complete and euclidean) 

plt.figure(figsize=(10, 9)) 

dendro = dendrogram(linkage(embedding, method='method', metric='metric')) 

plt.title("Hierarchical Clustering Dendrogram") 

plt.xlabel('Data Points') 

plt.show() 

 

#%% Silhouette analysis for optimal clusters(example: ) 

silhouette_avgs = [] 

for n_clusters in range(2, 10):  
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    cluster_labels = fcluster(linkage(embedding, method='complete', 

metric='euclidean'), n_clusters, criterion='maxclust') 

    silhouette_avg = silhouette_score(embedding, cluster_labels) 

    silhouette_avgs.append((n_clusters, silhouette_avg)) 

    print(f"Clusters: {n_clusters}, Silhouette Score: {silhouette_avg:.4f}") 

 

# Plot silhouette scores 

plt.figure(figsize=(20, 8)) 

plt.plot([x[0] for x in silhouette_avgs], [x[1] for x in silhouette_avgs], marker='o') 

plt.title('Silhouette Scores by Number of Clusters') 

plt.xlabel('Number of Clusters') 

plt.ylabel('Average Silhouette Score') 

plt.grid(True) 

plt.show() 

 

#%% Assign clusters and save to Excel 

cluster_labels = fcluster(linkage(embedding, method='complete', 

metric='euclidean'), 2, criterion='maxclust') 

full_data['Cluster'] = cluster_labels 

output_file_path = 'generalized_clustered_data.xlsx' 

full_data.to_excel(output_file_path, index=False) 

 

print(f"Clustered data saved to {output_file_path}") 
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국문초록 

 

 

비지도 기계학습을 활용한 연안 유사이송 매개변수 기반 

대한민국 표사계의 경계 설정 

 

서울대학교 대학원 

건설환경공학부 

김 도 현 

 

기후 변화와 인간활동으로 인해 연안침식이 가속화됨에 따라 지속 가능하고 

효율적인 침식 관리 및 대응의 필요성이 증대되었다. 표사계 단위로 연안을 

구분하여 관리하는 것은 효율적인 연안 관리 방법 중 하나이며, 국부적 관리와 

이해관계자 간 협력을 용이하게 하고 대상지에 특화된 국지적 연구를 

활성화하는 등의 이점이 있다. 현재 국내의 표사계는 크기와 관리 목적에 따라 

광역 표사계, 중역 표사계, 단위 표사계의 세 단계로 나뉘며, 특히 강원도권 

표사계의 경우 중역 표사계는 유역을 중심으로, 단위 표사계는 연안에 위치한 

자연 곶이나 돌출된 암석해안을 기준으로 표사 수지분석이 가능하도록 

상세하게 나누어져 있다. 본 연구는 표사계 설정에 있어서 새로운 방법론을 

정립하기 위한 기초연구로서 연안 유사 이송 변수와 비지도 기계학습을 

활용하여 동해안의 단위표사계를 군집화한 결과를 해석하고, 해당 결과로 

중역표사계의 경계를 설정하는 것이 가능한지 탐구하였다.  

유사이송 매개변수로 위도, 경도, 중앙입경, 해빈폭, 해안선 길이, 

대표저질특성, 전빈경사, 해안형태를 취득하였다. 차원 축소를 위해 비선형 차원 
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축소 기법 중 하나인 UMAP 을 채택하였으며, 데이터 간 상대적 거리 구조가 잘 

보존되도록 차원 축소된 결과를 얻었다. 이후, 평균제곱오차 값에 대하여 

원자료를 무작위로 임베딩하였을 때와 비교하여 UMAP 의 차원 축소 결과가 

신뢰할만함을 증명하였다. 연안의 크기와 관리 목적에 따라 표사계의 크기를 

쉽게 설정할 수 있도록 군집간 계층적 관계가 덴드로그램으로 나타나는 계층적 

병합형 군집화 기법을 선택하였다. 군집화 결과는 성능 평가를 거쳐 GIS DB 로 

저장된 후 그 결과를 알기 쉽게 시각화하였다. 결과 해석을 위해 유사도가 높은 

개체끼리 동일한 군집으로 분류된다는 군집화의 특징을 활용하였는데, 결과 

분석시 해안선을 따라 단위 표사계를 차례로 나열하였을 때 할당된 군집이 

서로 다른 두 인접한 표사계의 사이를 표사계간 경계로 두며 표사 이동에 

경계가 생기는 지점이라 해석하였다. 또, 위성 영상으로 확인되는 자연 곶이나 

인공 구조물 및 하천의 영향 등을 종합적으로 고려하여 모든 군집화 결과를 

재검토하였다. 검토 결과는 연안침식 실태조사 종합보고서에 보고된 연안침식 

등급 ‘D’ 지역에 대한 연안 관리 범위를 제안하는 데에 활용되었다. 본 연구의 

방법론은 국내 표사계 설정시 실용 표사계와 함께 이론적 기반으로 활용되어, 

효율적인 해안 지형 변화 예측 및 대응 방안 수립에 기여할 것으로 기대된다. 

주요어: 연안 침식, 표사계, 퇴적물 이동, 비지도 학습, 해안 관리 

학번: 2023-28970 
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