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Abstract

Pattern Recognition-Based Analysis of
Free Surface Extensional Flow

Minhyuk Im

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Understanding and analyzing capillary-driven extensional flow dynamics is es-

sential for applications such as inkjet printing and emulsion formation. However, con-

ventional methods, which often focus on single-point measurements within the slen-

der jet approximation, only partially capture the spatio-temporal evolution of com-

plex fluid shapes during stretching. These shapes, however, contain valuable rheolog-

ical information. In this study, I introduce novel approaches that integrate machine

learning and flow visualization to characterize fluid flows without relying on tradi-

tional rheological models. These methods utilize images captured via Dripping Onto

Substrate Capillary Break-up Extensional Rheometry (DoS-CaBER), a technique op-

timized for observing the spatio-temporal dynamics of capillary-driven extensional

flows. By analyzing cumulative images and edge curvature, these approaches enable

comprehensive extraction of flow information, facilitating an enhanced analysis of

the singular dynamics in free-surface extensional flows.
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Chapter 1

Introduction

In Chapter 1, the capillary-thinning phenomenon of a mixed fluid is captured and

transformed into cumulative image data. Principal Component Analysis (PCA) is

then applied to extract the Eigenvector that holds the greatest statistical variance

across data sets. This approach enables quantification of feature distances of each

sample projected within the space aligned with the extracted Eigenvector, thereby

facilitating fluid classification and component estimation. Furthermore, this Eigen-

vector can be utilized for data augmentation, suggesting potential for designing a

more robust model. In Chapter 2, the sequence information that cannot be derived

from cumulative images is analyzed using a Transformer model, which incorporates

an internal attention mechanism. This attention mechanism is utilized to investigate

key sequence changes, examining fluid behavior transitions from a contextual per-

spective. To achieve this, the edge of the fluid curvature, which offers advantages in

positional invariance, is extracted and inputted into the model to assess the results.
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Chapter 2

Statistical approches from cumulative images

2.1 Introduction

Understanding and analyzing the dynamics of extensional flow driven by capillary

forces is essential due to its occurrence in various processes and its significant impact

on applications such as inkjet printing, dispensing, and emulsion formation (Dinic

et al. (2017)). However, the capillary thinning dynamics of fluids exhibit various

behaviors in the thinning thread profiles over time, depending on the intrinsic charac-

teristics of the fluid. To model these behaviors, various studies, such as linear stability

analysis, similarity solution, and local analysis, have been studied (McKinley (2005);

Chang et al. (1999); Eggers et al. (2020)).

Depending on the properties of fluids under analysis, an appropriate constitutive

equation is required. For instance, viscoelastic solutions like dilute poly-ethylene-

oxide (PEO) solutions, the Oldroyd-B model is commonly employed to predict their

behavior. In the context of local analysis, the Entov-Hinch theory explains the di-

ameter changes of these thinning fluid cylinders (Entov & Hinch (1997)). According

to this theory, the variation in the early phase is due to the solvent viscosity and the

variation in the middle/late phase follows the elasto-capillary dynamics or the viscous
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Newtonian behavior according to the extent of polymer stretching.

Importantly, these fluids are characterized by assuming a uniform slender jet

shape. Consequently, the dynamics of these fluids are relatively easy to analyze with

their minimum diameter. In this regard, capillary break-up extensional rheometry

(CaBER) is widely used for measuring the minimum diameter change over time and

this information is utilized to estimate the parameters of extensional rheological mod-

els (Rodd et al. (2005); McKinley & Sridhar (2002)).

However, complex fluids like shear-thinning fluids with an apparent yield stress

exhibit a concave capillary thinning shape influenced by varying Laplace pressures

associated with the volume of the extended fluid. This leads to distinct trends in

minimum diameter changes along the thread (Niedzwiedz et al. (2009)). Therefore,

the slender body approximation cannot be applied to these complex fluids.

Meanwhile, the traditional CaBER method analyzes the capillary-thinning dy-

namics of the liquid bridge formed after stretching the liquid sample loaded between

two parallel disks, but it is not applicable to low-viscosity complex fluids with low

elasticity(<∼ 20 mPa · s), where the pinch-off occurs during stretching and the mi-

crostructure of the complex fluid is disturbed by the step-strain (Zhang & Calabrese

(2022); Dinic et al. (2015)). In response to this challenge, the dripping onto substrate

capillary break-up extensional rheometry (DoS-CaBER) is proposed, as depicted in

Fig. 2.1a. This method involves placing a drop of low-viscosity fluid on a substrate

to induce extensional flow with minimal disturbance on its microstructure (Dinic &

Sharma (2020)).

However, a typical analysis using DoS-CaBER is also based on the minimum di-

ameter change over time, and the interpretation of the fluid behavior by estimating pa-

rameter with the proposed rheological model is not different from that of the CaBER

analysis. Consequently, it is difficult, or at least slow, to characterize the dynamic

behavior of the entire fluid filament, especially in the case of fluid mixtures such as

3



(a)

(b)

Figure 2.1: Schematic representation of the pattern recognition process of capillary-

driven extensional flow and image stacking process. (a) Image acquisition was per-

formed through dripping onto substrate capillary break-up extensional rheometry

(DoS-CaBER). Acquired images were stacked using custom Python code (OpenCV).
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particle suspensions and polymer solutions. A notable exception is the analysis of

the beads-on-a-string (BOAS) phenomenon, which is performed by computational

analysis rather than experimental methods(Bhat et al. (2010)).

In this study, we present a new technique that focuses on using capillary-driven

extensional flow visualization to observe the holistic dynamics of complex fluids,

and leveraging ML to extract rheological information from the accumulated images,

as depicted in Fig. 2.1a. By stacking all the frames taken by a high-speed camera,

through the processes shown in Fig. 2.1b, the temporal evolution of the flow shape

can be encapsulated in a single image. Notably, fluids with distinct properties ex-

hibit unique stacked images. Considering the complex interplay of surface tension

force, viscous force, and visco-elastic force affecting the fluid’s edge on liquid-air

interfaces, these stacked images could serve as a promising fountainhead for fluid

classification and estimation.

Inspired by the eigenface technique, which extracts facial features for human face

recognition (Zhang et al. (1997); Singh & Kumar (2012)), we introduce the concept

of eigenthinning. In this study, we use principal component analysis (PCA) to ex-

tract these modes and apply for classification and composition estimation using the

k-nearest neighbor (kNN) classifier method (Abdi & Williams (2010); Dino & Ab-

dulrazzaq (2019)). Furthermore, we could generate artificial images through modes

and enhance the accuracy of the model using this reinforced dataset.

Some studies have been conducted to analyze and predict the complex and tran-

sient dynamics of droplets in the air stream, visualizing them by in-line digital holog-

raphy and characterizing them by analytical model and ML-based method (Ade et al.

(2024, 2023); Gao et al. (2013); Guildenbecher et al. (2017)).

Similarly, this study provides a new perspective for analyzing the behavior of flu-

ids that are difficult to analyze solely on the basis of minimum radius due to their

irregularity at the pinch-off region. It could also be used for quality control in in-
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dustrial settings where rapid analysis is required, as it can identify the approximate

composition or state of unknown fluids based on trained data without reference to a

rheological model.

2.2 Materials and Methods

Sample preparation

Table 2.1: Class-wise weight ratio of the multicomponent fluids. The total weight is

set to 1 representing the weight ratios of each solution. The conctration of aqueous

Carbopol (Lubrizol Korea, Inc.) solution is 0.14 %. The concentration of aqueous

sodium carboxymethyl cellulose (Mw ∼ 2.5× 105 g/mol, Sigma Aldrich, Germany)

solution is 1 %. The concentration of aqueous poly ethylene oxide (Mv ∼ 2.0× 106

g/mol, Sigma Aldrich, Germany) solution is 1 %.

Solution Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Carbopol 1 0 0 1/2 1/2 0 1/3

CMC 0 1 0 1/2 0 1/2 1/3

PEO 0 0 1 0 1/2 1/2 1/3

DoS-CaBER measurment.

Extensional flows and pinch-off dynamics were observed using the dripping onto sub-

strate capillary break-up extensional rheometry(DoS-CaBER) system, as depicted in

Fig. 2.1a. For monitoring fluid capillary thinning and pinch-off dynamics, an op-

tical system was employed. This system consisted of a high-speed camera (VEO

710L, Phantom, USA), a long-distance microscope lens (5×; 59876, Edmund Op-

tics, USA), and an illuminator (125W, LED light source, NeXber, Korea). In the flow
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system, a 5 ml syringe (NORM-JECT, Henke Sass Wolf, Germany) acted as a fluid

reservoir, and a syringe pump (Harvard Apparatus, USA) controlled the fluid flow

rate. A stainless-steel nozzle (18 gauge; ID: 0.000833 m, OD: 0.00127 m, Hamilton,

USA) was used to deliver the fluid to a substrate (76×26×1 mm, Microscope slides,

Marienfeld, Germany). The syringe was connected to the stainless-steel nozzle via

a Tygon tube (ID: 0.00127 m, OD: 0.00228 m, TYGONTM). The distance between

the nozzle end and the top of the substrate was set to three times the nozzle OD.

The fluid was delivered at a flow rate of 0.2 ml/hour, and the pumping was halted

as soon as the fluid contacted the substrate. Subsequently, a liquid bridge formed

between the nozzle and the substrate, undergoing capillary thinning and pinch-off.

These phenomena were recorded using the high-speed camera at a speed of 10,000

fps, with an exposure time of 1 µs. The recorded images were processed using

OpenCVOpenCV Development Team (2021) and custom Python code(https://

github.com/ttackpoo/capillary_thinning).

Image preprocessing.

The images obtained from the DoS-CaBER system underwent several processing

steps. First, the outline of the capillary thinning image was extracted using Canny

edge detection (Canny (1986)) implemented in OpenCV (OpenCV Development

Team (2021)). Then, the interior of this outline was whitened to eliminate any noise

stemming from the lighting and shooting conditions.

To store information proportional to the number of stacking images, the accumu-

lated pixel intensity values were rescaled by dividing them by the scaling parameter.

The scaling parameter was set to 8,000, which corresponds to the number of frames

captured during the longest process time observed in the Carbopol solution, prevent-

ing any loss of information due to the accumulated intensity values exceeding the

upper limit of 255.

7
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Because PCA depends on the pixel coordinate in which the data is represented,

image alignment and cropping are necessary for consistent results. To do this, the

minimum and maximum values of the x-coordinates of the images are collected ac-

cording to the y-coordinates and then averaged to calculate the center line. Based on

this measurement, the image was cropped and aligned around this center line.

PCA, kNN and data augmentation.

Principal component analysis (PCA) and k-nearest neighbour (kNN) methods were

implemented using the scikit-learn library (Pedregosa et al. (2011)). The process

involved vectorizing each accumulated sample image to create an n-by-m matrix,

where n represents the number of pixels and m represents the number of samples.

Mean subtracted image matrix B is determined as

B = X− X̄ =


x11 − µ x12 − µ · · · x1m − µ

x21 − µ x22 − µ · · · x2m − µ
...

...
. . .

...

xn1 − µ xn2 − µ · · · xnm − µ

 (2.1)

where X and X̄ represent the matrices of the images and the mean matrix, respectively, while

x and µ denote the pixel intensities of the images and their mean, respectively.

The matrix B can be decomposed using singular value decomposition (SVD) into

B = UΣVT =
[
u1 u2 · · · un

]

σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · 0




vT
1

vT
2

...

vT
m

 . (2.2)

where the columns of U are called left singular vectors of B and the columns of V are

right singular vectors. The diagonal elements of Σ are singular values and they are ordered

from largest to smallest.
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The rank of B is equal to the number of nonzero singular values. After selecting an

appropriate value of r, which represents the desired number of singular vectors, truncated

SVD can be performed, resulting in an approximated matrix B̃ :

B̃ = ŨΣ̃ṼT =
[
u1 u2 · · · ur.

]

σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σr




vT
1

vT
2

...

vT
r

 . (2.3)

PCA is conducted by determining the covariance matrix C̃ as

C̃ = B̃B̃T = ŨΣ̃2ŨT (2.4)

where C̃ is

C̃ =
[
u1 u2 · · · ur

]

σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
r




uT
1

uT
2

...

uT
r

 . (2.5)

where eigenvectors ui(i = 1, ..., r) are the principal components. The first principal com-

ponent u1 is the eigenvector of the covariance matrix corresponding to the largest squared

singular value σ2
1 .

The score matrix Z, determined as

Z = BT Ũ =


x11 − µ x21 − µ · · · xn1 − µ

x12 − µ x22 − µ · · · xn2 − µ
...

...
. . .

...

x1m − µ x2m − µ · · · xnm − µ


[
u1 · · · ur

]
=


Z11 · · · Z1r

... · · ·
...

Zm1 · · · Zmr

 .

(2.6)

where Z represents the scores of each sample in the r-dimensional space of the principal

components.

The approximately regenerated dataset matrix X̃ can be determined as

X̃ = ZŨT + X̄ (2.7)
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and the artificial dataset matrix Xnew can be determined as

X̃new = ZrandŨ
T + X̄. (2.8)

In this study, Zrand is the normally distributed randomized score matrix, where the appropriate

scores Z are chosen with reference to their means and half of their standard deviations.

In kNN, the class of a test sample is predicted based on the number of nearest neigh-

bors from the training set in the space of principal components. The threshold value for this

determination is denoted as k. The classification model makes its final decision through a

majority vote rule. In the estimation model, the probability of belonging to a specific class

is determined by considering the ratio of nearest neighbor samples selected from the total k

value. The Euclidean distance serves as the criterion for identifying the nearest neighbors to

the test sample, determined as

d(zpr , z
q
r) =

√
(Zq

1 − Zp
1 )

2 + (Zq
2 − Zp

2 )
2 + · · ·+ (Zq

r − Zp
r )2. (2.9)

where zpr and zqr represents row vectors of the score matrix Z of the image p and q, respec-

tively. This calculation involves summing the squares of the differences between the coordi-

nate values in each dimension in which the sample is projected and then taking the square

root.

Rheological properties.

The loss modulus G′′ was measured using a stress-controlled rheometer (Discovery HR-2,

TA Instruments Inc.) equipped with parallel 40-mm plates and a gap of approximately 1

mm. To prevent water evaporation from the samples, an acrylic cover was employed. The

amplitude sweep test was performed with strain oscillations of ∼ 10 % at a frequency of

6.27 rad/s, a range in which the target fluids exhibit only linear viscoelasticity. The results are

briefly attached in Fig. S7. The extensional viscosity η can be determined as

ηE =
σ

ε̇R
=

σ

−2dR(t)/dt
. (2.10)

where σ, ε̇ and R are the surface tension, hencky strain rate, and minimum radius of the

thread, respectively. The extension rate ε̇ = −2d lnR(t)/dt is obtained from the radius

evolution plots. The point at which the extensional viscosity-Hencky strain plot exhibits a

constant region was selected as the representative extensional viscosity.
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2.3 Results

Eigenthinning Analysis

For clarity of characterization, each unique and distinct fluid was chosen as a demonstra-

tion sample: polyethylene oxide (PEO) solution for viscoelastic fluids, carboxymethylcel-

lulose (CMC) for shear-thinning fluids, and Carbopol 941 solution for shear-thinning with

yield stress fluids (McKinley (2005)). Each single-component fluid with different proper-

ties is mixed in predetermined weight ratios and categorized into seven classes as shown in

Tab. 2.1. For each class, a total of 30 videos are recorded and processed to create cumula-

tive images according to the procedure shown in Fig. 2.1b. Then, each image is vectorized

and subjected to mean subtraction and matrixsified, as illustrated in (2.1). Through principal

component analysis (PCA) based on singular value decomposition (SVD), the principal com-

ponents(PC), which represents eigenthinning mode, are extracted and visualized as shown in

the Fig. 2.2a.

The first principal component (PC1) represents the direction of the largest variance in the

image dataset. The second principal component (PC2) is orthogonal to PC1 and represents

the direction of the next largest variance. This pattern continues for subsequent PCs and

each principal component explains the variance that is not captured by the other principal

components.

High-rated PCs, such as PC1 and PC2, effectively capture significant features like con-

cave shapes and uniform thread shapes. On the contrary, low-rated principal components,

particularly those beyond PC3, highlight more intricate details, such as the boundaries of

the main droplet and the profiles of threads. Local heterogeneities of complex fluids make

their filaments more sensitive to perturbations than others, leading to irregularities in these

features. These nuances have typically been studied in the context of linear stability analysis

(Muddu et al. (2012)).

By projecting each stacked image onto PCs, as shown in (2.6), the samples with similar

shape to PCs are assigned to get the higher score value or coordinate value, otherwise to get

the lower score value, so that the image data is placed in the space characterized by PCs. This

allows us to use the kNN algorithm with a a Euclidean distance defined by (2.9).

To determine the interpretability for PCs, a relative comparison with rheological proper-
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ties was examined. The average score value for each PC was compared with the loss modulus

in linear viscoelastic region and extensional viscosity. As depicted in Fig. 2.2b, the average

score values for PC1 across different classes exhibit a similarity to the variation in the loss

modulus. The shape of the PC1 image, shown on the left, exhibits a similarity to the early

stages of capillary thinning of viscoelastic fluid, described in Entov-Hinch theory, which are

influenced by the shear viscosity of the fluid (Entov & Hinch (1997)).

As described in the Materials and Methods section, the comparative loss modulus was

measured in the linear viscoelasticity region at a frequency of 6.27 rad/s, with a strain oscil-

lation of ∼ 10 % in the amplitude sweep. The loss modulus in this region can be related to

the shear viscosity, indicating that through PC1, a relative comparison of the loss modulus

between the measured fluids can be made, even though it does not provide absolute values.

Likewise, PC2 can be regarded as containing information that determines the distinction

in extension viscosity among samples.

The results presented above demonstrate that the feature information extracted from the

several eigenthinning modes can be effectively correlated with rheological property informa-

tion.

Classification Problem

The primary objective of the classification problem is to achieve precise differentiation among

the seven distinct classes detailed in Tab. 2.1, utilizing the k-Nearest Neighbors (kNN) algo-

rithm illustrated in Fig. 2.3a. This problem can be solved by projecting the data set onto an

eigenthinning extracted by Principal Component Analysis (PCA) from a seven-class training

set, and then comparing the distance between the train and the test data using the kNN algo-

rithm. This algorithm assumes that the closer the Euclidean distance between the projected

data points in the eigenspace, the more similar the samples are to each other.

Model accuracy was computed as the ratio of correct predictions, determined by the

majority vote rule of the kNN algorithm, to the total number of test samples. The ratio of test

samples to training samples was set at 10 %.

The accuracy graphs, depicted in Fig. 2.4a, showcase the impact of the number of prin-

cipal components (PCs) and the hyperparameter k on classification accuracy. Notably, the
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results indicate that fluid classification attains nearly 100 % accuracy using fewer than 10

PCs and an appropriate value of k. However, as the number of PCs and k increase beyond

this optimal point, accuracy gradually diminishes. This observed trend is attributed to the

potential for overfitting or underfitting as the values of PCs and k change.

An increase in the number of PCs leads to an expansion of the eigenspace, resulting

in larger distances between data points. Consequently, the model becomes more sensitive

to variations within training sets, potentially leading to overfitting. Conversely, an elevated

value of k, as shown in Fig. 2.4b, results in the opinions of other next nearest neighbors

overshadowing those of the nearest neighbors. This scenario, indicative of underfitting, leads

to suboptimal results. In our specific case, the graph highlights that approximately 10 key PCs

effectively capture the primary features essential for accurate classification. Optimal values

for the number of PCs and the k parameter can be determined through other robust methods

such as bootstrapping or cross-validation (James et al. (2013)).

In sum, this analysis underscores the straightforward yet effective nature of the classi-

fication model, setting the stage for subsequent discussions in the study. Interestingly, the

subsequent estimation model discussed in the following section requires a higher number of

PCs compared to the classification model. This observation emphasizes the need for a more

comprehensive set of features to handle more intricate problems.

Component Estimation Problem

The component estimation problem involves accurately estimating the proportions of com-

ponents in a multicomponent test sample that includes untrained samples. Unlike the classi-

fication problem, this problem can be solved using eigenthinning modes extracted from only

three classes of single-component liquids listed in Tab. 2.1. The k-nearest neighbors (kNN)

algorithm calculates the probabilities, which are considered to be the mixing ratios of the test

samples, of belonging to each single-component class for all seven-class test samples.

The output of the model consists of a tuple with three elements expressed by the proba-

bility of belonging to these classes. The design described above enables each element of the

tuple to represent the model’s estimation. Compared to the error-filtering effect driven by the

majority vote principle within the classification model, it interestingly offers the advantage
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of conducting a more detailed examination of the impact of bias and hyperparameter settings

on model accuracy improvement.

We set the hyperparameter k to 6 to represent the denominators of the component ratios

for each sample. Here, 6 is the least common multiple of the possible denominators in the

output. The fractions we aim to predict with this model include 0, 1, 1/2, and 1/3, as indicated

in Tab. 2.1. For example, if the test sample belongs to class 7 with the label (1/3, 1/3, 1/3),

and the model correctly estimates it, the output will be (2/6, 2/6, 2/6), as illustrated in Fig.

2.3b. Like the classification model, the ratio of test samples to training samples was set at 10

%.

The results of estimating the composition of test samples are shown in Fig. 2.5a. As

depicted in Fig. 2.5a(PC15-0F-0W), the model successfully estimates the trained single-

component fluid classes. However, it exhibits some errors for untrained classes, which are

multi-component fluids. For instance, the model erroneously predicts class 4 as class 2, which

is single-component fluid CMC. Apparently, the model failed to capture the distinguishing

feature between class 2 and class 4, which is the beads-on-a-string (BOAS) caused by per-

turbation before the breakup (McKinley (2005)).

This limitation is attributed to our model’s reliance on the pixel intensity of the stacked

image, where cumulative values of intensities for temporal characteristics like BOAS, oc-

curring in a brief moment of about a microsecond, can be overshadowed by other snapshot

frames. Such features need to be highlighted in order for principal components (PCs) to cap-

ture them effectively. Specifically, we emphasize several frames that possibly contains BOAS

features. In this study, the pixel intensity of the last 10, 30, and 50 frames before the pinch-off

are multiplied by the prescribed weight. The weight value is set to 100 because it yields the

smallest mean square error (MSE) of the estimates comparing to other weight values, accord-

ing to the numerical experiment summarized in Fig. S11-S12 in the Supporting Information.

The estimation setup is labeled ’PC-F-W’, which is explained in Fig. 2.5, and we will

use this notation throughout. As shown in Fig. 2.5a(PC15-10F-100W), there is some im-

provement in the estimation accuracy for class 4, but the accuracy for the remaining multi-

component fluids remains low. To address this issue, we choose the number of PCs different

from the original unweighted model because the emphasized featured need additional PCs to

be captured properly.

14



As a result, the added PCs slightly decreased the accuracy for some single component

fluids, but increased the accuracy for multi-component fluids, as shown in the PC25-10F-

100W, PC25-30F-100W and PC35-10F-100W setup.

The reduced accuracy in single-component fluids results from overfitting, stemming from

the inclusion of minor principal components (PCs) that contain detailed information, as pre-

viously explained in the classification model. However, these components remain essential

for accurate estimation of multi-component fluids.

The method described earlier is basically a bias setting based on user observations with

a prior knowledge for enhancing the distinguishment of Class 2 and Class 4 classes. In gen-

eral, it is better to find the optimal frame and pixel intensity that captures important features

adaptively. This adaptive weighting can be achieved by applying a recurrent neural network

(RNN) model that takes each frame as input (Medsker & Jain (2001)).

Since the above result is an example of one of the pseudo-randomized training-test sam-

ple splits, we plotted a boxplot of the mean square error over 30 random splits as part of a

k-fold cross-validation to increase confidence in our model performance evaluation, and the

results are shown in Fig. 2.5b. The number of PCs is increased by 10 from 5 to 55, and the

visualized 5th, 15th, 25th, 35th PCs are described in Fig. S13 - S15 in Supporting Information.

The box plots plotted on each PCs are color-coded according to the number of weighted

frames. The results indicate that the lowest median values were observed when we applied

weights equivalent to 100, which is multiplied to the pixel intensity to the last 10 frames

before the break and used 35 PCs for estimation.

Among the weighted frame setups, the 50-frame setup tends to have an increased MSE

compared to the 10-frame and 30-frame setups. For this setup, the increased error can be at-

tributed to pixel values saturating in the vicinity of important frames when additional weighted

frames are introduced, as depicted in Fig. S16. This saturation blurs the interfacial shape,

which in turn has a negative impact on the accuracy of concentration estimation.

The approach presented in this section is simple yet effective for concentration estima-

tion, allowing for intuitive parameter optimization. Furthermore, additional methods can be

explored to further minimize the persistent error, such as implementing adaptive weights per

frame. This will improve the accuracy of the model, allowing it to better capture subtle dif-

ferences between classes.
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Data augmentation

In addition to the findings mentioned earlier, principal components (PCs) can be a valuable

tool for creating augmented training datasets. As shown in Fig. 2.5a(PC25-30F-100W(aug))

and Fig. 2.5b(bottom), we see some improvement when we estimate the concentration after

augmenting the training sets by 130 %.

Box plots of mean squared error (MSE) show decreased trend compared to normal data

set. Among them, PC25-30F-100W setup shows the lowest mean value of MSE. Possibly, the

PCs extracted from the augmented training set can provide more diversity to the estimation

model, so that fewer PCs are needed for the best estimation.

The process of data augmentation involves making the score matrix (denoted as the ma-

trix Z), as indicated by (2.6). Each column of the matrix corresponds to the scores of samples

for each principal components. By randomizing the scores with a normal distribution refer-

enced by mean and standard deviation of them, artificial sample images can be generated

as shown in (2.8). The effectiveness of this approach is illustrated in Fig. 2.5c, where the

augmented samples demonstrate enhanced detail as more principal components (PCs) are

employed in the reconstruction.

This data augmentation method holds particular relevance for learning models that de-

mand substantial amounts of data, such as neural networks. Furthermore, the efficiency of the

reconstruction method underscores the capacity of principal components (PCs) to efficiently

store image data, even when dealing with datasets that consume significant memory.

2.4 Discussion

The main difference in the eigenthinning mode between the two models lies in whether the

multi-component fluids are included in the training set. Multi-component fluids exhibit more

pronounced characteristics during capillary thinning. As thinning flow progresses, the space

available for fluid flow narrows, making even well-mixed mixtures highly sensitive to minor

experimental perturbations, as localized heterogeneities emerge within this confined geome-

try.

Such characteristic of mixture may complicate the phenomena like BOAS by introduc-
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ing beads in irregular positions and showing motions quite different even within the same

classes, as depicted in Fig. 2.6. This complexity can negatively impact classification accuracy

as the model learns, especially when lower-ranked principal components are employed for

classification, potentially leading to overfitting. The difficulty in quantifying these minor PCs

with conventional rheological properties is also attributed to this complexity.

Although not directly related to rheological properties, high-ranked PCs in the classifi-

cation model, especially those higher than ten, are thought to contribute to classification by

capturing distinctive shapes caused by perturbations. These distinctive shapes appear to arise

from the rheological properties of complex fluids. These nuances can be difficult to classify

using traditional methods. Meanwhile, PCs below about the top ten are expected to capture

not only small details of the thinning flow, but also variations due to experimental noise as

discussed above, potentially leading to model overfitting. In this way, significant PCs that

are challenging to define using conventional rheological properties can be cherry-picked and

utilized for fluid classification.

On the other hand, the concentration estimation model was trained using single-component

fluids, which are relatively stable in comparison. Therefore, extracted eigenthinning modes,

despite lower ranks, can not only better differentiate the variations induced by complex fluid

samples but also enhance the accuracy of the model with weighted important frames. Ac-

cording to our results, these PCs from pure samples are enough for estimating the fluid’s

composition, even when dealing with untrained samples.

While we may not provide comprehensive rheological explanations for the lower rank

PCs in both problems, it is important to recognize that these eigenthinning modes capture

subtle differences primarily induced by perturbations from material inhomogeneity or ex-

perimental noise. These nuances, although challenging for human observation, may contain

essential information about the behavior of complex fluids. This insight underscores the im-

portance of our study’s approach, which leverages these subtle differences to do certain in-

teresting applications such as fluid classification and predicting composition, beyond what is

achievable with standard rheological methods.

Additionally, the PCs can be utilized for data augmentation, strengthening the estimation

model. This implies that PCs inherently contain information from the actual data.

Furthermore, the models used in this study successfully achieved accurate results despite
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the variables introduced by the fluid mixture, such as the stability of the Carbopol hydrogel

system, which can be crucially affected by the salt present in CMC solutions(Kolarova Raskova

et al. (2016)). In other words, despite our model relying on linear predictions, it successfully

produced reasonable results for a complex phenomenon wherein the viscosity of complex

fluids actually decreases as single-component fluids mix.

Compared to advanced image classification models utilizing convolutional neural net-

works (CNNs) (O’shea, Keiron and Nash, Ryan (2015)), whose feature analysis is relatively

challenging, this study emphasizes intuitiveness and explainability. It aligns with the current

trend of creating interpretable models, serving as an initial step towards crafting explainable

deep learning models like explainable visual attention networks (VANs) (Guo et al. (2022))

for image captioning or explainable recurrent neural networks (RNNs) for video analysis

(Medsker & Jain (2001)).

The pattern recognition machine learning model proposed in this study could find appli-

cations in inspecting inkjet printing and contactless dispensing processes, where fluid prop-

erties change over time, and quick repeatability is crucial. These approaches also have the

potential to enhance the estimation of rheological properties in complex fluids, offering more

comprehensive insights compared to conventional methods that rely on minimal diameter

measurements. Overall, these findings open avenues for the rapid characterization of fluid

properties and the automated adjustment of optimal process conditions.
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(a) Top twenty principal components(eigenthinning) of the processed cap-

illary thinning images.

(b) Comparison between PCA score and rheological properties.

Figure 2.2: Eigenthinning Analysis. (a)The components are orthogonal to each other

in the eigenspace and each component explains the variance that is not captured by the

other components.(b) The left column represents visualized eigenthinning mode, the

middle column shows PCA scores (calculated based on (2.6)), and the right column

displays rheological properties.
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(a) Classification problem.

(b) Estimation problem.

Figure 2.3: Graphical illustration of an example classification and estimation model

using the k-nearest neighbor method with two axes and classification results. Note

that each circle represents a data point projected using eigenthinning modes, and for

simplicity, the number of modes (PC axes) being projected is limited to two. (a) The

classification model, the gray circles represent the radius centered on the test image

score, and within this radius, the projected scores for each class are depicted. The

table on the right displays the outcomes of the majority vote, determined with k set

to 6. Consequently, Class 4, which received the highest number of votes, is the clas-

sification result. (b) The estimation model, it expresses the results by calculating the

ratio of the nearest neighbors of each class to the hyperparameter k, which represents

the probability of the test sample belonging to each class in the right table.

20



(a)

(b)

Figure 2.4: (a) Classification accuracy with respect to the number of eigenthinning

modes(PC) and neighborhoods(k). ’PC’ stands for the number of the PCs used start-

ing from the first in incremental order. (b) The kNN classifier results according to k

parameter. When the k increases, the classification results changed from Class 1 to

Class 2 as shown on the right table.
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(a) (b)

(c)

Figure 2.5: (a) Concentration estimation results for different weighting strategies.

The labels include ’PC’ for the number of principal components, ’F’ for emphasized

frames, ’W’ for the weight factor applied to these frames, ’L’ as the dataset label, ’E’

for estimation results, and ’(aug)’ for results from the augmented dataset. (b) Box

plots depict the mean squared error of the estimation model based on the number of

principal components used. The top panel displays results labeled as 0F-100W (in

red), 10F-100W (in green), 30F-100W (in light blue), and 50F-100W (in pink). The

bottom panel shows corresponding box plots with a 30 percent train set augmentation.

(c) Artificial image samples were generated using the first three modes (3 PCs), 30

modes, and 60 modes, progressing from left to right.
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(a)

(b)

Figure 2.6: Last frames before the pinch-off captured by DoS-CaBER. (a) The last

frames captured by DoS-CaBER before the pinch-off of the CMC solution (Class 2)

samples exhibit a long straight thread shape. (b) In contrast, the Carbopol and CMC

mixture solution (Class 4) shows the irregular thread structure.
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Chapter 3

Contextual approach with time series evolving curva-

ture

3.1 Introduction

The approach of extracting information from accumulated images lacks robustness in terms

of position invariance and misses information about critical moments. To address these limi-

tations, we extract information based on curvature.

The curvature of a fluid undergoing extensional flow can be defined as follows.

κaxial =
1

Raxial
= − hzz

(1 + h2
z )

3/2
(3.1)

κazimuthal =
1

Razimuthal
=

1

h
√
1 + h2

z

(3.2)

where hzz and hz are the second and first derivatives of the radius with respect to the

z-direction, respectively.

The p can be defined as

p = σ(κazimuthal + κaxial) (3.3)

where σ is surface tension, so the p can represent capillary pressure.
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The 1D approximation of momentum equation of the flow can be expressed as

ρ(ut + uuz) = −pz + 3µ
(h2uz)z

h2
− ρg (3.4)

where ρ is density, u is velocity, pz is pressure gradient with repect to z-axis, µ is viscos-

ity and g is gravitational constant. Each variables can be scaled as

t = t∗
√

ρR3

σ
, z = z∗R, h = h∗R, u = u∗R

t
, p = p∗

σ

R
Oh (3.5)

Then dimensionless formulation of the (3.4) can be expressed as

ut + uuz =

(
−pz + 3

(h2uz)z
h2

)
Oh− Bo (3.6)

In the demonstration complex fluids, the Ohnesorge number, (Oh = µ√
ρσR

) is ≫ 1,

meaning that the viscous force dominates over inertial and gravitational force, and Bond

number, (Bo = ρgR2

σ ) is ≪ 1, meaning that surface tension dominates gravitatinal force. So

the (3.6) can be simplified as,

pz = 3µ
(h2uz)z

h2
(3.7)

The pressure gradient, pz , determines the flow in the capillary-thinning thread, and the

surface tension, σ, in the (3.3), is similar across all demonstration samples.

This implies that the curvatures of the thinning fluids and viscosity µ contain crucial

information for predicting and estimating complex free surface flows.

Based on the above premise, we used a transformer model that specializes in deriving

outputs while taking into account the context of the sequence. Using teacher forcing, we

provided the model with time series curvatures as inputs and fluid mixing ratios as outputs.

This approach allowed us to observe which sequences the model was paying attention to, and

to more accurately identify regime transition points in complex fluids.

In this study, a blend of Carbopol, which has a distinct yield stress, and PEO, known for

its viscoelastic properties, was selected as a demonstration sample.
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3.2 Materials and Methods

Sample preparation

Table 3.1: Class-wise weight ratio of the multicomponent fluids. The total weight is

set to 1 representing the weight ratios of each solution. The conctration of aqueous

Carbopol (Lubrizol Korea, Inc.) solution is 0.14 %. The concentration of aqueous

poly ethylene oxide (Mv ∼ 2.0× 106 g/mol, Sigma Aldrich, Germany) solution is 1

%.

Solution rey = 0 rey = 0.25 rey = 0.50 rey = 0.75 rey = 1.00

Carbopol 1.00 0.75 0.50 0.25 0

PEO 0 0.25 0.50 0.75 1.00

Curvature extraction

Before the curvature acquisition, captured images were processed using Canny edge detec-

tion. Two axisymmetric fluid edges were averaged and further post-processed through spline

interpolation module in scipy of Python. The spline was interpolated with a degree of 5,

defining the polynomial order of the spline, and 4 equally spaced knots, dividing the spline

into segments. The curvature along the z-axis was obtained at 60 evenly spaced intervals, the

curvature was calculated as the sum of κaxial + κazimuthal.

In order to set the same initial internal pressure for the fluid regardless of the fluid type,

the initial capturing time has been set from the point at which a specific curvature is formed

at the minimum radius. This is the moment when the curvature of the minimum radius of the

fluid is equal to the curvature corresponding to the nozzle radius. The curvature at the time

tinit is defined as follows

1

Rmin,niddle
=

1

Rmin,azimuthal
+

1

Rmin,axial
(3.8)

Finally, the end of the sequence is defined as the moment when capillary pressure of the

minimum radius point reaches 5,000 Pa, which typically marks the onset of the beads-on-a-
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(a) Captured image

(b) Radius acquisition

Figure 3.1: Schematic process of radius acquisition.
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(a) Radius acquisition with 60-intervals

(b) Curvature acquisition with 60-intervals

Figure 3.2: Schematic process of curvature acquisition.
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string phenomenon. In this region, the azimuthal curvature dominates over the axial curvature

and could therefore signal the end of the sequence.

Figure 3.3: End of sequence

Model structure

In this study, only the encoder structure of the Transformer model was used. While the general

structure of large language models (LLMs) is sequence-to-sequence, here we implemented

a sequence-to-one structure to output a single value, specifically the ratio of PEO, from the

time-series curvature. Additionally, layers and parameters were minimized to clarify the val-

ues extracted from the attention output.

In the multi-head attention mechanism, the model employs the concepts of query, key,

and value to compute the attention output. The weights associated with the query, key, and

value are multiplied with the embedded and the positional-encoded time-series curvature.

Following this, the results are computed as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3.9)

where Q, K and V represents the query, key and value, respectively, while dk denotes

model dimension, which serves as scaling factor. In this context, the operations involving the

Q and K are utilized in the self-attention mechanism, which signifies the relationships among

sequences. Meanwhile, V represents the crucial sequences for deriving the output. By com-

bining these three parameters, the contextual information and significance of the sequences

can be effectively represented in the attention output. After that, attention output add to input

and layer normalized as
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Figure 3.4: Transformer Encoder Structure

30



Output = LayerNorm(x+ Attention) (3.10)

where x is input vecter before pass through the (1), and LayerNorm is defined as

LayerNorm(x) =
x− µ√
σ2 + ϵ

· γ + β (3.11)

where µ is the mean and σ is the variance of the vector x with respect to dmodel = 64 in

this study. ϵ is a small constant for numerical stability, and γ and β are learnable parameters

that adjust the scale and shift of the normalized outputs. The dimensions and parameters of

the model are described in the table.

Table 3.2: Dimensions of the model.

dinput dembedding dquery dkey dvalue dfcl dout

seq × 60 seq × dmodel seq × dmodel seq × dmodel seq × dmodel 1× (seq · 60) 1

Table 3.3: Parameters of the model.

Loss Function Epoch Learning rate Data Optimizer

MSE 103 10−5 10 pcs each Adam

All input sequences were padded to match the maximum sequence length. In this study,

we focused on the Output value, which allowed us to more clearly identify the differences

present among the samples through the aforementioned process.

3.3 Results and Discussion

Attention Output

The output values for the sequence are L1 norm normalized by class in the direction of the

dmodel. It can be seen that as the ratio of PEO increases, the time tc at which the maximum

output appears, arrives quickly, and we define the interval between t0 and tc as λeff.
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λeff = t0 − tc (3.12)

We assumed this λeff to be the region where relaxation occurs as the fluid undergoes

extension, and we found that it increases linearly with the proportion of PEO.

Physical meaning of tc

To investigate the physical significance of tc, a qualitative analysis was first conducted using

recorded video footage. The results revealed that, prior to tc, the fluid exhibited a concave

and asymmetrical shape, centered around the minimum radius. After tc, the fluid transitioned

to a locally cylindrical and symmetrical shape, as shown in Fig. 3.6.

In order to quantify the observed qualitative features, the temporal changes in p were

measured at the minimum radius and at two points symmetrical to the minimum radius. The

locations for evaluating p at tc are shown in Fig. 3.8, and the graphs illustrating the maximum

p values at each location over time are presented in Fig. 3.9. As shown in Fig. 3.9, it was ob-

served that at tc, p exhibits symmetry around the minimum radius. From this point onward,

the thread transitions into a cylindrical structure, and the stress was found to develop exponen-

tially after this point. Furthermore, the observation that the fluid shape becomes symmetrical

after the tc suggests that the gravitational influence on the fluid remaining in the thread is

minimized as the fluid initially within the thread drains toward the substrate. Beyond this

point, the flow of the fluid within the thread is governed by the competition between the cap-

illary pressure and the inherent rheological properties of the fluid resisting it. The analysis of

the exponentially increasing capillary pressure p after tc means that it focuses on the dynamic

interplay between the capillary pressure driving the flow within the cylindrical fluid structure

and the inherent viscoelasticity of the fluid opposing it. In other words, the analysis of the

exponentially increasing capillary pressure p after tc means that it focuses on the dynamic

interplay between the capillary pressure driving the flow within the cylindrical fluid structure

and the inherent viscoelasticity of the fluid opposing it. As shown in Fig. 3.7, it is assumed

that a significant change occurs at the tc time point depending on the fluid composition. By

applying the pixel intensity emphasis point discussed in Chapter 2, it was found that the

method yields higher accuracy.
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The following section decomposes the stress components and derives the rheological

properties accordingly.

Explicit model of Henky strain

In this section, the stress, σ, is decomposed using the Kelvin-Voigt model (Bulıcek et al.

(2012)), and the parameter k, associated with the resistance to stress growth, named as

stressresistancetime in this research, is determined. The viscosity, η, and relaxation time,

λ, are then calculated, and the Hencky strain after tc is derived based on these parameters.

The internal thread stress, σ, after tc, is experimentally observed to increase exponentially.

This behavior can be expressed with an ansatz as follows,

σ = σ0e
t/k (3.13)

Where σ0 is the stress at tc and k is the stress resistance parameter, and σ can be decom-

posed as follows based on the Kelvin-Voigt model.

σ0

η
et/k =

ϵ

λ
+ ϵ̇ (3.14)

Where η, ϵ, λ, and ϵ̇ are viscosity, Henky strain, relaxation time, and Henky strain rate,

respectively. When integrating the equation with respect to time,

ϵ =
σ0

η

et/k

1
k + 1

λ

(3.15)

As shown in (3.3), an explicit expression for Henky strain can be obtained. The proposed

rheological properties determining the Hencky strain were obtained first by fitting k through

(3.3) and the measured p at the minimum radius, and subsequently by fitting through (3.3)

and the measured ϵ. As shown in Fig. 3.10, it was observed that the exponential development

of stress after tc matches well, except for the pure Carbopol fluid. This trend is presumed

to result from the influence of PEO, which relaxes the stress generated during the extension

of the fluid. As mentioned in the previous section, this is thought to begin when p becomes

symmetrical around the minimum radius. The value of k corresponds to λE , which depends
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on the concentration of PEO, as derived in the study by the Sharma group (Dinic & Sharma

(2019)).

The value of k obtained through the above process is substituted into (3.3), and η and λ

are determined through fitting with the measured ϵ. The results are plotted in Fig. 3.11

Table 3.4: Rheological parameters derived from experimental data and model fitting.

Solution rey = 0 rey = 0.25 rey = 0.50 rey = 0.75 rey = 1.00

k 0.0124 0.0137 0.0187 0.0159 0.0345

η 3.1764 3.8068 7.6906 2.0628 7.7533

λ 17× 104 0.0076 0.0150 0.0033 0.0081

The final rheological properties obtained for each fluid are summarized in Tab. 3.3 The

stress resistance time k has a more significant impact on the p and Hencky strain after tc than

the λ derived from the Kelvin-Voigt model. The value of k can serve as a measure of how

much the formation of curvature within the thread is delayed, which is related to the delay

in BOAS formation caused by perturbations in complex fluids. On the other hand, η, being

an anisotropic tensor according to the rate of deformation tensor, was fitted as a fixed scalar

value under the assumption that the change of η after tc is negligible. For further improvement

in parameter derivation, a model suitable for numerical analysis, such as the Giesekus model,

could be used to achieve more accurate parameter estimation (Gauri & Koelling (1997)).

34



(a) Time evolution of output value.

(b) Effective relaxation time according to rey.

35



(a) rey = 0.0 (b) rey = 0.25

(c) rey = 0.5 (d) rey = 0.75

(e) rey = 1.0

Figure 3.6: Comparative images of the shape at tinit and tc for each sample show that,

compared to tinit , the fluid transitions to a symmetric and locally cylindrical shape

around the minimum diameter at tc.
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Figure 3.7: The boxplot showing the accuracy of composition ratio prediction using

cumulative images. By emphasizing the images after the tc time point, it was found

that a lower MSE (Mean Squared Error) was achieved.
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(a) rey = 0.0 (b) rey = 0.25

(c) rey = 0.5 (d) rey = 0.75

(e) rey = 1.0

Figure 3.8: The p values along the z-axis at tc and the range of p for symmetry

verification are shown. The direction of gravity is to the right, with 1 indicating the

nozzle and 3 indicating the substrate.
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(a) rey = 0.0 (b) rey = 0.25

(c) rey = 0.5 (d) rey = 0.75

(e) rey = 1.0

Figure 3.9: The p graphs for each thread position over time for each sample are

shown, with the positions corresponding to those indicated in Fig. 3.8
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(a) rey = 0.0 (b) rey = 0.25

(c) rey = 0.5 (d) rey = 0.75

(e) rey = 1.0

Figure 3.10: The fitting results between the capillary pressure measured through cur-

vature and (3.3).
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(a) rey = 0.0 (b) rey = 0.25

(c) rey = 0.5 (d) rey = 0.75

(e) rey = 1.0

Figure 3.11: The fitting results between the Henky strain measured through radius

and (3.3).
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Chapter 4

Final remarks

This thesis investigates the capillary thinning dynamics of complex fluids using innovative

visualization techniques and machine learning. Chapter 2 presents an analysis based on cu-

mulative images and statistical approaches, which reveal the relative rheological properties

of fluids within a dataset. This approach allows for the classification of fluids and estimation

of their approximate composition without relying on traditional rheological models. How-

ever, composition estimation required user expertise, cumulative images lacked sequential

information, and PCA methods based on pixel variation were limited in handling position

invariance.

To address these limitations, Chapter 3 describes a study where fluid curvature was ex-

tracted from edge shapes across the sequence and analyzed using the transformer model,

which excels at capturing contextual information within sequences. This method enabled the

identification of critical turning points, facilitating focused analysis at these points and offer-

ing the opportunity for a more comprehensive investigation of the pressure distribution within

the filament, especially in previously difficult-to-analyze singularity regions.

This work aims to contribute to the quantitative differentiation and analysis of fluid prop-

erties in extensional flow at free interfaces, thereby advancing our understanding of free sur-

face extensional flow.
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국문초록

미세유체의 자유계면 신장 유동 역학은 잉크젯 인쇄, 에멀젼 형성 등 다양한 응용 분

야에서중요한연구주제이다.그러나기존의 Slender-Jet근사는단일지점에서의측정에

집중하여 복잡한 유체 형상의 시공간적 진화를 부분적으로만 포착하는 한계가 있다. 이

러한 형상은 유변학적 특성을 포함하고 있음에도, 기존의 분석 방법으로는 해당 정보를

온전히추출하기어렵다.

본연구에서는유변학적모델에의존하지않고유체흐름을정량적으로특성화하기위

해머신러닝과유동시각화를결합한새로운접근법을제안한다.제안된방법은자유계면

신장흐름의시공간적특성을관찰하기에최적화된 DoS-CaBER (Dripping onto Substrate

Capillary-Breakup Extensional Rheometry)기법으로캡처한이미지를활용한다.이기법을

통해누적이미지와가장자리곡률을분석함으로써유동에대한포괄적인정보를추출할

수 있으며, 자유 표면 신장 유동의 특이 동역학을 보다 정밀하게 분석할 수 있다. 본 접

근법은 비뉴턴 유체의 복잡한 유동 역학을 이해하는 데 중요한 분석 도구가 될 것으로

기대된다.

주요어:신장유동,흐름시각화,알고리즘,기계학습

학번: 2021-36497
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