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Abstract

Topological Methods in Data Analysis

In recent years, data analysis has seen an increasing integration of advanced mathemati-

cal techniques to better understand and interpret complex datasets. This doctoral thesis

explores the topological methods in data analysis, focusing on the synergies Topological

Data Analysis (TDA), and deep learning. A central theme of this work is the development

and application of Persistent Homology, a tool from TDA, to capture the topological fea-

tures of data across multiple scales. This work examines how deep learning architectures

can be enriched by integrating these geometric and topological frameworks, leading to

more robust and interpretable models for various data-driven applications. By combining

these advanced mathematical tools, the thesis aims to provide new insights and method-

ologies that bridge the gap between theory and practical data analysis.

Key words: Data analysis, Topological Data Analysis, Persistent homology, Deep learn-

ing, Self-supervised learning, neural collapse, electrocardiography
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Chapter 1

Introduction

The explosive growth of data across diverse domains, from healthcare and finance to so-

cial networks and scientific research, necessitates the development of robust methods for

extracting meaningful insights. Machine learning, particularly deep learning, has demon-

strated remarkable success in analyzing and interpreting complex datasets. However, the

increasing complexity of data structures, such as high-dimensional spaces, temporal dy-

namics, and intricate geometric patterns, poses significant challenges to traditional ma-

chine learning approaches. To address these challenges, this thesis explores the integra-

tion of topological data analysis (TDA), deep learning, and self-supervised learning (SSL)

to develop advanced methods for extracting and leveraging intrinsic data properties.

Topological data analysis has emerged as a powerful framework for understanding

the shape and structure of data. By capturing global and local topological features,

TDA provides insights that are invariant to deformations, noise, and changes in scale.

Persistence diagrams, a fundamental representation in TDA, encode these features and

have been successfully applied in a wide range of applications, including material science,

biology, and image analysis. Despite its utility, integrating TDA with modern machine

learning techniques remains a non-trivial task due to the inherently non-Euclidean nature

of topological features.

Deep learning, with its ability to learn hierarchical representations from raw data, has

transformed many fields. Yet, its potential is often limited by the availability of labeled

data, which can be expensive or impractical to obtain in many scenarios. To overcome

this limitation, self-supervised learning has gained prominence as a paradigm that learns

meaningful representations without the need for extensive labeled datasets. By leveraging
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CHAPTER 1. INTRODUCTION

pretext tasks that use intrinsic properties of the data, SSL models have demonstrated

state-of-the-art performance in computer vision, natural language processing, and beyond.

This thesis aims to bridge the gap between TDA and modern deep learning frame-

works by developing methods that effectively combine topological insights with the repre-

sentational power of deep neural networks. The first part of this work investigates neural

collapse through the lens of persistent homology, translating neural collapse equations into

persistent homology-related formulas using the Wasserstein distance. A novel topological

loss function is proposed to enhance the effect of neural collapse, offering new perspec-

tives on the geometric and topological structure of neural network representations. In

the second part, we develop an extended persistence diagram transformer architecture.

Persistence diagrams (PDs), while rich in topological information, are often challenging to

integrate into machine learning workflows due to preprocessing complexities and hyper-

parameter tuning. To address this, we streamline the preprocessing steps and minimize

hyperparameter choices, enabling the use of extended persistence diagrams as inputs to

the transformer architecture. Finally, this thesis introduces a self-supervised model for

12-lead ECG data, leveraging innovative techniques to address domain-specific challenges

and enhance representation learning. These contributions collectively demonstrate the

potential of integrating TDA, deep learning, and self-supervised learning for analyzing

complex data structures.

The contributions of this thesis are threefold. First, we present a comprehensive study

of the integration of TDA with deep learning, addressing challenges such as scalability,

representation, and optimization. Second, we introduce novel self-supervised learning ap-

proaches tailored to topological and geometric data, focusing on tasks where labeled data

is scarce or unavailable. Finally, we validate our methods through extensive experiments

on real-world datasets, demonstrating their effectiveness in classification, clustering, and

representation learning tasks.

By synthesizing the strengths of topological data analysis, deep learning, and self-

supervised learning, this work aims to contribute to the advancement of machine learning

methodologies and their application to complex data structures. The findings of this

research have implications for a wide range of fields, from biosignal research to theoretical

understanding of deep learning, where understanding the shape and structure of data is

critical.
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Chapter 2

Preliminaries

In this chapter, we explain minimal basic notions and concepts that are essential for un-

derstanding the subsequent chapters. We introduce the fundamental concepts of persis-

tent homology, transformer architecture, and self-supervised learning. We also provide an

overview of the mathematical tools and techniques used in this thesis. Unless otherwise

stated, the poset T is considered to be [0,∞), and k denotes a vector space.

2.1 Persistent Homology

Definition 2.1.1 (Filtration). A filtration is a functor F : T → Top, where T is consid-

ered as a poset category, and Top is the category of topological spaces. For convenience,

denote Ft1,t2 = F(t1 ≤ t2).

Remark 2.1.2. Functoriality of the filtration implies that if t1, t2, t3 ∈ T and t1 ≤ t2 ≤ t3,

then Ft1,t3 = Ft2,t3 ◦ Ft1,t2, and Ft1,t1 = idFt1
.

Definition 2.1.3 (Persistent Homology). Let F : T → Top be a filtration, and H∗(−; k) :

Top → Vectk be the homology functor with coefficients in a field k. The persistent

homology of the filtration F is defined as the composite functor

H∗(−; k) ◦ F : T → Vectk.

A persistent homology is an example of a persistence module, which is a mathematical

structure that captures the evolution of vector spaces over a poset T .
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CHAPTER 2. PRELIMINARIES

Definition 2.1.4 (Persistence Module). A persistence module over k is a functor V : T →
Vectk. The morphism Vs → Vt is denoted as vs,t for s, t ∈ T with s ≤ t. A morphism

between two persistence modules U,V is a natural transformation φ : U→ V.

Definition 2.1.5 (Homomorphism). A homomorhism between two persistence modules

U,V is a natural transformation φ : U→ V. Two persistence modules U,V are isomorphic

if there exists a natural isomorphism φ : U → V. We write U ∼= V to denote that U and

V are isomorphic.

Remark 2.1.6. Naturality of φ : U → V implies that the if s, t ∈ T with s ≤ t, then

φt ◦ us,t = vs,t ◦ φs.

The simplest persistence module is the interval module.

Definition 2.1.7 (Interval Module). A persistence module I : T → Vectk is called an

interval module if there is an interval I such that

It =

k if t ∈ I,

0 otherwise,
and is,t =

id if s, t ∈ I with s ≤ t,

0 otherwise.

In such a case, we write I = II .

Definition 2.1.8 (Direct Sum). The direct sum W = U⊕ V of two persistence modules

U,V is defined as follows:

Wt = Ut ⊕ Vt, ws,t = us,t ⊕ vs,t for all s, t ∈ T with s ≤ t.

Interval modules are simple in the sense that they are indecomposable. A persistence

module W is indecomposable if the only decompositions of W are trivial, i.e., W = U⊕V
with U = 0 or V = 0. Interval modules are building blocks for general persistence modules,

as shown in the following theorem.

Theorem 2.1.9 (Gabriel, 1972). Let V be a persistence module such that dim(Vt) <∞.

Then V can be decomposed as a direct sum of interval modules in a unique way.

This theorem implies that any persistence module consists of finite vector spaces can

be decomposed into a direct sum of interval modules, which are the simplest building

blocks of persistence modules. This decomposition is known as the interval decomposition

of a persistence module.
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CHAPTER 2. PRELIMINARIES

If a persistence module V can be decomposed as

V ∼=
⊕
i

IIi ,

then the collection of intervals {Ii} is called the barcode of the persistence module V.

The barcode provides a concise representation of the topological features captured by

the persistence module. A persistence diagram is a visual representation of the barcode,

where each interval is represented as a point in the plane. The persistence diagram is a

powerful tool for summarizing the topological features of a dataset across multiple scales.

2.2 Transformer Encoder Architecture

The transformer encoder, introduced by Vaswani et al. in their paper ”Attention is

All You Need” (2017), is a foundational building block in deep learning. It is designed

to process sequential input data in parallel, making it highly efficient and capable of

modeling long-range dependencies. This section details the encoder’s structure, focusing

on how it transforms input data into meaningful representations through self-attention

and feedforward mechanisms.

2.2.1 Input Representation

The input to the encoder is a sequence of tokens, represented as X = {x1, x2, . . . , xN},
where N is the sequence length, and xi is the i-th token’s embedding. Each token em-

bedding is a vector of size dmodel, which represents the dimensionality of the model. We

consider X as a matrix X ∈ RN×dmodel .

Since the self-attention mechanism processes tokens without regard to their positions

in the sequence, positional encodings are added to the embeddings to encode order infor-

mation. The resulting input to the encoder is:

X ′ = X + PE

where PE represents the positional encoding matrix. Each token x′i in X ′ is then passed

through the encoder layers.

5



CHAPTER 2. PRELIMINARIES

2.2.2 Core Components of the Transformer Encoder

The encoder consists of a stack of identical layers, each comprising a multi-head self-

attention mechanism, a feedforward network, residual connections, and layer normaliza-

tion.

Construction of Q, K, and V from X

The self-attention mechanism operates on three matrices derived from the input X ′:

Queries (Q), Keys (K), and Values (V ). These matrices are constructed by linearly

projecting the input embeddings using learned weight matrices:

Q = X ′WQ, K = X ′WK , V = X ′W V

where WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , and W V ∈ Rdmodel×dv are the learnable pro-

jection matrices. Here, dk and dv denote the dimensions of the key and value vectors,

respectively. These projections allow the model to focus on specific aspects of the input

data during attention computation.

Self-Attention Mechanism

Once Q, K, and V are constructed, the self-attention mechanism computes the attention

scores and outputs. The attention mechanism captures relationships between all tokens

in the sequence. The attention scores are calculated as:

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V

The dot product QK> measures the similarity between query and key vectors, and the

scaling factor
√
dk prevents the scores from becoming too large. The softmax function

normalizes the scores into probabilities, which are then used to weight the value vectors

V .

Multi-Head Self-Attention

To improve the model’s ability to capture diverse patterns, the encoder uses multi-head

self-attention. Instead of using a single attention head, the input is split into multiple

6



CHAPTER 2. PRELIMINARIES

subspaces (or heads). Each head computes attention independently:

headi = Attention(QWQ
i , KW

K
i , V W

V
i )

where WQ
i , WK

i , and W V
i are separate learnable projection matrices for the i-th head.

The outputs of all heads are concatenated and linearly transformed:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

where WO is a learned output projection matrix.

Feedforward Neural Network

Each encoder layer includes a position-wise feedforward network (FFN) that applies two

fully connected layers with a non-linear activation function (e.g., ReLU):

FFN(x) = max(0, xW1 + b1)W2 + b2

This network processes each token independently and helps transform the embeddings

into higher-level representations.

Residual Connections and Layer Normalization

Each sub-layer in the encoder employs residual connections and layer normalization to

improve training stability and gradient flow. The output of each sub-layer is computed

as:

Output = LayerNorm(x+ SubLayer(x))

Residual connections mitigate the vanishing gradient problem, while layer normalization

stabilizes activations.

2.2.3 Encoder Workflow

The workflow of the transformer encoder can be summarized as follows:

1. The input sequence X is embedded into a continuous space and augmented with

positional encodings to produce X ′.

7



CHAPTER 2. PRELIMINARIES

2. The embeddings are passed through a stack of encoder layers. Each layer:

(a) Computes multi-head self-attention to capture token-to-token relationships.

(b) Processes the attention outputs through a feedforward network.

(c) Applies residual connections and layer normalization after each sub-layer.

3. The final encoder outputs are high-dimensional representations that encode both

local and global dependencies in the input sequence.

2.2.4 Applications of the Transformer Encoder

The transformer encoder has become a cornerstone in modern deep learning, powering

state-of-the-art models across various domains. In NLP, it forms the basis of pre-trained

models such as BERT and RoBERTa. In other fields like computer vision and time-

series analysis, encoder-based architectures like Vision Transformers (ViT) and time-series

transformers leverage its ability to process sequences efficiently and extract meaningful

features.
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Chapter 3

Neural Collapse Through the Lens of

Persistent Homology

The Neural Collapse (NC) phenomenon in deep neural network classifiers, first discovered

by [40], indicates that feature vectors in the last hidden layer converge to a geometrically

intriguing shape: a regular simplex, as the model enters the terminal phase of training.

This convergence raises pivotal questions in deep learning: Does NC in the training set

induce a similar collapse in the test set? Is it related to a model’s generalization abil-

ity? And can we harness NC to enhance classifiers? And can we utilize NC to optimize

classifiers? Given the inherent topological nature of a simplex, persistent homology—a

cornerstone of topological data analysis—emerges as a natural tool to dissect NC ’s ge-

ometric and topological properties. In this work, we present a detailed analysis of NC

through the lens of persistent homology. Additionally, we leverage this methodology to

affirmatively address the aforementioned questions and introduce a novel topological loss

term. Topological loss function encourages a more pronounced NC in both training and

test sets, resulting in superior model generalization.

3.1 Introduction

Deep learning, over the past decade, has emerged as a groundbreaking approach in a

myriad of applications, from image recognition to natural language processing. While

the successes of deep learning models are evident in various tasks, understanding the

intricate dynamics of their training remains an active area of research. One such intriguing
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HOMOLOGY

phenomenon observed during the training of deep classifiers is the Neural Collapse (NC )

[40].

The essence of NC lies in the behavioral pattern exhibited by the features in the

final layer of deep learning classifiers. As we enter the terminal phase of training, these

features demonstrate a tendency to converge towards their respective within-class means.

Intriguingly, when the dataset is balanced, these mean vectors position themselves in

a way that they are maximally separated, by being the vertices of a regular simplex.

This geometric arrangement is not only captivating but also provides intuition to better

understand deep learning.

In the realm of topology, a branch of mathematics that studies properties preserved

under continuous deformations, the simplex is a fundamental object. This offers the

opportunity to utilize topological data analysis tools, specifically persistent homology, to

gain deeper insights into the NC phenomenon. Persistent homology, a cornerstone of

topological data analysis, provides a robust framework to study the topological features

of data across various scales.

The relationship between NC and generalization has been a focal point of multiple

research endeavors, but these efforts have yielded divergent conclusions, likely attributed

to varying experimental setups. [40] suggested that NC works in favor with generaliza-

tion, but their assertions have been met with skepticism, particularly by studies like [24].

Another interesting quesiton is related to the imbalanced dataset. In an imbalanced set-

ting, [18] has pointed out that the regular simplex structure does not appear. A natural

follow-up question is is this irregularity favorable to generalization or is it an impediment

to better generalization.

Our contributions To shed light on this ambiguity, we conduct experiments in a simple

setting. Our research scrutinizes the NC phenomenon using the tools of topological data

analysis. Specifically:

• We present a novel perspective by characterizing NC using persistent homology,

marking a pioneering effort to meld these two domains.

• We introduce a topological loss function tailored to accentuate the NC effect in

both training and test datasets.

• Through empirical studies, we demonstrate that a model fortified with NC indeed

10
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showcases superior generalization capabilities compared to its conventional counter-

parts.

• Our empirical results substantiate that encouraging regularity in settings with im-

balanced datasets enhances the generalization capability of the model, implying that

any deviation from this regularity may hinder optimal model generalization.

3.1.1 Notation

Let X denote the input space and Y = {1, 2, . . . , K} = [K] represent the labels. The

dataset is defined as X =
⊔
Xi ⊂ X , where Xi includes samples of label i ∈ [K]. The

learned deep neural network is denoted by f : X → Y and the network mapping each

sample to its final-layer feature is represented by h : X → Rm. Therefore, f(x) =

W · h(x) + b, with W being a K ×m matrix and b ∈ RK as the bias vector. H = h(X)

is the collection of all final-layer features, and Hi = h(Xi) is the set of features labeled

i. The mean of the final-layer features labeled i is µi = 1
|Hi|
∑

h∈Hi
h, and µ = 1

K

∑
i µi

is the barycenter of each within-class mean. The normalized version of µi is defined

as µ̃i = (µi − µ)/‖µi − µ‖.
(
X(batch), Y (batch)

)
is a batched data of (X, Y ), and the

corresponding notations are H(batch), µ
(batch)
i , and µ(batch). We will sometimes call H, or

H(batch) to be clustered dataset.

3.2 Neural Collapse

Deep neural networks have underscored numerous breakthroughs in machine learning,

especially in tasks with large and intricate datasets. These networks inherently formulate

internal data representations within their hidden layers as they learn. These embeddings,

capturing the latent patterns and structures, empower the network for precise predictions

or classifications. Interestingly, on probing these internal representations, [40] have dis-

covered certain captivating behaviors, notably the Neural Collapse phenomenon.

Neural Collapse, at its core, is marked by a distinctive convergence pattern during

deep neural network training. As the network iteratively refines its weights, the embed-

dings of distinct data points—especially those of the same class—undergo a significant

transformation. Instead of preserving individualized and dispersed representations, these

embeddings tend to cluster, leading to a ”collapse”. Explicitly, within-class embeddings
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shift towards their class means. Simultaneously, these class means in the last-layer fea-

ture space aim for maximal separation, resulting in a Simplex Equiangular Tight Frame

(ETF)—indicating the class means as vertices of a regular simplex in the embedding

realm.

Delving into this behavior’s technical nuances:

NC1 (Variability collapse): For any x ∈ Xi, it’s last-layer feature h(x) converges to

µi for all i ∈ [K].

NC2 (Simplex ETF structure):∣∣∣∣ ‖µi − µ‖ − ‖µj − µ‖ ∣∣∣∣→ 0,∀i, j ∈ [k]

〈µ̃i, µ̃j〉 →
K

K − 1
δi,j −

1

K − 1
,∀i, j ∈ [K]

By “convergence” in this context, we mean the behavior “as the number of training

steps approaches infinity”. At a cursory look, NC2 might appear intricate. However,

it essentially conveys that the mean vectors are equidistant from their barycenter and

the angles between the normalized mean vectors remain a consistent −1/(K − 1). This

arrangement positions the mean vectors precisely as the vertices of a regular simplex with

K vertices.

This behavior of the last-layer features are very interesting, but at the same time, it

raises several questions. Does the network, through this ”collapse”, find a streamlined

understanding of data? Does this collapse also oberved in test set as well?Or might it

be a limitation, an over-simplification potentially affecting the network’s generalization

to unseen data? In this paper, we endeavor to provide insights, uniquely employing tools

from persistent homology.

3.2.1 Measurements of NC

Metrics to measure the neural collapse degree are defined as follows:

For NC1 :

NC1 =
E(x,y)∼D[‖h(x)− µy‖2]

Ei[‖µi − µ‖2]

This metric, utilized in [24, 51], has the numerator representing the average squared dis-

tance from the last-layer feature to its respective center, and the denominator serves as a

12
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normalizer, denoting the average squared distance from the mean vectors to the barycen-

ter. A smaller value suggests features clustering near their class-mean vectors.

For NC2 :

NC2 =

∥∥∥∥ MM t

‖MM t‖F
− 1√

K − 1
(IK −

1

K
1K1tK)

∥∥∥∥
F

This metric is used in [28,51]. Here, M is a K×m matrix whose i-th row is the normalized

mean vector µ̃i.

We will measure NC1 and NC2 in a batched manner, but NC2 can be employed only

if the batch contains samples of all labels. This is because the construction of M requires

the mean vectors of all labels. Instead, we will define another metric NCPH2 that makes

uses of persistent homology. Persistent homology provides a natural way to compare

two topological structures, and with this tool, we can measure how the shape of mean

vectors deviate from a regular simplex. Through out this paper, we will use ’NC ’ as a

phenominon, whereas NC as a metric.

3.3 Background on Persistent Homology

Persistent homology is a prominent technique in topological data analysis (TDA), en-

abling the study of topological features of shapes or data. By capturing the evolution of

topological features across varying scales, it provides a multi-scale topological perspective.

This section briefly revisits persistent homology’s foundational concepts, directing readers

to [17] for an exhaustive treatment. Notably, all topological objects discussed herein are

graphs, representing 1-dimensional simplicial complexes.

3.3.1 Simplicial Complex

A simplicial complex is a combinatorial object that serves as a versatile tool for the

approximation and representation of a diverse range of topological spaces.

Extended from the concept of triangles to arbitrary dimensions, simplices can be

understood as:

• 0-simplex: A point or vertex.

• 1-simplex: A line segment, spanned by its endpoints or 0-simplices.

• 2-simplex: A triangle, surrounded by three 1-simplices (edges) and three vertices.

13
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• 3-simplex: A tetrahedron, comprising four 2-simplices (faces), six edges, and four

vertices.

• Higher dimensions follow analogous patterns.

Within this framework, a face of a simplex denotes a subsimplex. For instance, a

triangle’s (2-simplex) faces include its edges (1-simplices) and vertices (0-simplices). A

simplicial complex, K, within space X, is a collection of simplices such that:

1. Every face of a simplex in K is also in K.

2. The intersection of any two simplices in K is a face common to both.

For example, a graph G = (V,E) is a 1-dimensional simplicial complex, with V de-

noting 0-simplices and E signifying 1-simplices.

When a deep learning model exhibits the NC property over a given dataset, the features

in its last layer can be seen to mirror the form of a 1-dimensional simplicial complex.

Specifically, within this topological representation, each within-class mean assumes the

role of a 0-simplex, effectively acting as a vertex. Also, the relations between these mean

vectors can be likened to 1-simplices, essentially serving as the line segments that bind

the vertices together. See Figure 3.3 for visual representation.

3.3.2 Simplicial Homology

Central to simplicial homology are chain groups. For a simplicial complex K, the n-th

chain group, Cn(K;Z2), embodies all Z2-coefficients linear combinations of n-simplices.

Boundary maps establish connections between successive chain groups. For an n-simplex

σ = [v0, . . . , vn], the boundary map ∂n : Cn(K;Z2)→ Cn−1(K;Z2) is:

∂n(σ) =
n∑
i=0

[v0, . . . , v̂i, . . . , vn].

With Z2 coefficients, the addition is modulo 2.

The crux of simplicial homology is to discern cycles that are not bound by boundaries.

Formally, the n-th simplicial homology group is:

Hn(K;Z2) =
ker(∂n)

im(∂n+1)
,

14
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where ker(∂n) and im(∂n+1) are the kernel and image of the boundary maps, respectively.

With Z2 coefficients, each Hn(K;Z2) is a vector space. In this paper, we will use Z2

coefficients, and write Hn(K) = Hn(K;Z2). Denote H·(K) =
⊕∞

n=0Hn(K) to be the

direct sum of homology groups of all dimension. Since we deal with only finite simplicial

complexes in this paper, the direct sum is actually a finite sum. An element of H·(K) is

called a homology class, and informally, it is a topological feature.

3.3.3 Persistent Homology

The essence of persistent homology is capturing the topological features of a space across

scales via a filtration. A filtration for a simplicial complex is a nested sequence of sub-

complexes:

K0 ⊂ K1 ⊂ · · · ⊂ Km−1 ⊂ Km = K.

As filtration progresses, topological features emerge, persist, and ultimately dissipate.

Each feature is ascribed an interval [b, d], marking its birth at stage b and death at d. In

order to precisely measure the borns and deaths of topological features, we take homology

at each level of filration to get

Hn(K0)→ Hn(K1)→ · · · → Hn(Km−1)→ Hn(Km),

which is called a n-th persistent homology of the filtration {Ki}mi=0. Each map Hn(Ki)→
Hn(Ki+1) is induced from the inclusion map Ki ↪−→ Ki+1. Monitoring the evolution of

homological features via these maps allows associating an interval of existence, typically

[b, d], where b and d are birth and death times, respectively. Beyond individual dimensions,

persistent homology can also be comprehensively expressed as

H·(K0)→ H·(K1)→ · · · → H·(Km−1)→ H·(Km).

3.3.4 Persistence Diagram

A persistence diagram is a visual representation of the birth and death times of topological

features obtained from persistent homology. Each feature is represented by a point in the

plane, where the x-coordinate denotes the feature’s birth time and the y-coordinate its

death time.

Formally, let’s consider a filtration of a simplicial complex K through which we’ve
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applied persistent homology. For each topological feature that appears (i.e., is ”born”) at

a certain stage of the filtration and subsequently disappears (i.e., ”dies”) at a later stage,

we place a point (b, d) in the plane, where b is the birth time and d is the death time.

Features that persist indefinitely (i.e., never die) can be represented by points lying on

the line y = ∞. We will denote PDn(K) be the persistence diagram obtained from the

persistent homology {Hn(Ki)}i≥0, and PD·(K) :=
⊔∞
n=0 PDn(K) be the disjoint union of

persistence diagrams of all dimension.

Noteworthy characteristics of the persistence diagram include:

1. Diagonal and Above: All points in the persistence diagram lie on or above the

diagonal line y = x. This is because a feature cannot die before it is born, ensuring

that d ≥ b for all points (b, d).

2. Stability: One of the key properties of persistence diagrams is their stability. Small

perturbations or changes in the input data will result in only minor changes in the

persistence diagram. This stability ensures that the persistence diagram is a robust

topological descriptor, resilient to noise in the data.

3. Comparability: Persistence diagrams provide a compact summary of the topo-

logical features of a dataset. They can be compared using various metrics, like the

bottleneck or Wasserstein distances, to quantify the topological difference between

two datasets.

Leveraging the comparability characteristic, we assess the topological divergence of

the last-layer features from an ideal regular simplex. This assessment serves as a gauge

for the intensity of the NC phenomenon.

Example Consider a weighted graph G = (V,E), where each weight is assigned to

an edge, which can be thought as a distance. Note that a graph is an example of a

1-dimensional simplicial complex. One can construct a filtration of the graph, (Gδ)δ≥0,

where V (Gδ) = V and E(Gδ) = {e ∈ E : weight(e) ≤ δ}. Initially, this filtration presents

the graph as isolated vertices. As the parameter δ increases, edges with weights less than

or equal to δ are incorporated, progressively revealing the structure of G. See Figure 3.1
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(a) G0 (b) G1 (c) G2

(d) G3 (e) G4 (f) G5

Figure 3.1: Graph filtration stages: (a) Discrete nodes. (b)-(d) Edges added, reducing
connected components. (e)-(f) Edges create cycles.

Figure 3.2: Persistence diagram: The diagram displays four blue dots (representing
connected components) and two red dots (indicating 1-cycles). A red point at (0, 1)
signifies that a connected component merges with another one at δ = 1. A blue point at
(4, 5) indicates the birth of a 1-cycle at δ = 4. Every persistence diagram derived from
a nonempty set includes a 0-dimensional feature at (0,∞), denoting the presence of at
least one connected component.
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The emergence of a new edge during the filtration can lead to one of two topological

changes:

1. Merging two distinct connected components, effectively reducing the number of

connected components. See Figure 3.1b, 3.1c, 3.1d. This phenomenon corresponds

to a point (0, δ) in the 0-dimensional persistence diagram PD0(G). This point

signifies a connected component’s existence from the start of the filtration up to the

moment it merges at δ.

2. Creating a cycle within the graph. See Figure 3.1e, 3.1f. This event is represented

by a point (δ,∞) in the 1-dimensional persistence diagram, PD1(G). It denotes

a cycle that emerges at the δ threshold and persists indefinitely, as cycles, once

formed, are enduring in this context.

Now, for conveience, suppose all edge weights in G are distinct. This distinction allows

for the identification of a unique minimal spanning tree (MST) — a tree that connects all

vertices in G while ensuring the total edge weight is minimized. See Figure 3.1d. Given

that an MST contains exactly (|V |− 1) edges, the 0-dimensional persistence diagram will

have (|V |− 1) points of the form (0, δ) and one point at (0,∞), where each δ corresponds

to the weights of edges within the MST. Concurrently, the 1-dimensional persistence

diagram, PD1(G), will feature points (δ′,∞) representing edge weights δ′ not included

in the MST, signifying cycles they induce. Persistence diagram from the graph filtration

can be seen in Figure 3.2. Four red dots correspond to 0-dimensional features(connected

components), and red dots correspond to 1-dimensional features(cycles).

3.3.5 Wasserstein Distance

The Wasserstein distance offers a robust metric for contrasting persistence diagrams, ac-

counting for both point location and multiplicity. It provides a comprehensive comparison

evaluating all the points in the diagrams.

For two persistence diagrams D and D′ of the same dimension, the (p, q)-Wasserstein

distance is:

Wp,q(D,D
′) =

 inf
matching M

∑
(x,y)∈M

‖x− y‖pq

 1
p

,

Here, ”matching” refers to a pairing of points between D and D′. A matching M

assigns each point in D to a point in D′ or to a point on the diagonal, with the objective
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of minimizing the cumulative distance between matched points. The cost of matching a

point to the diagonal is given by its `q distance from the diagonal, reflecting the lifespan

of the feature. In this matching, points of the form (a,∞) must be matched with (b,∞),

and their distance ‖(a,∞)− (b,∞)‖q is defined to be |a − b|. The Wasserstein distance

can be thought of as the minimal cost of matching two persistence diagrams.

If D =
⊔
Dn and D′ =

⊔
D′n are the disjoint union of persistence diagrams of all di-

mensions, then the Wasserstein distance is defined as the sum of each individual Wasser-

stein distance:

Wp,q(D,D
′) :=

(
∞∑
n=0

W p
p,q(Dn, D

′
n)

) 1
p

.

The Wasserstein distance captures not only the differences in lifespans of matched

features but also accounts for features present in one diagram but absent in the other. In

this paper, we will specifically use p = 2 and q = 1. Henceforth, we’ll represent W(2,1)

simply as W .

3.4 Neural Collapse through Persistent Homology

The concept of a NC1 suggests that the last-layer feature vectors aggregate around their

mean vectors. In contrast, NC2 states that these mean vectors should be maximally

separated, inducing the shape of the vertices of a regular simplex. Essentially, as training

approaches its final phase, the geometric and topological structure of the feature vectors

increasingly aligns with that of a regular simplex. Persistent homology offers tools to

contrast the geometry and topology of feature vectors with that of a regular simplex. In

this section, after introducing some foundational concepts, the Wasserstein distance will

be employed as the primary tool to investigate NC.

3.4.1 Simplicial Complex of NC features

When the model enters the terminal phase of training, the last-layer features H =
⊔
Hi

exhibits the NC. Within-class features Hi collapse to its center, whereas between-class

features form the vertices of a regular simplex. This is a clustered dataset where each

cluster corresponds to vertices of a regular simplex. We want to construct a simplicial

complex that reflects the NC properties. That is, each cluster should be contractible
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Figure 3.3: Visualization of NC : Within each class, features form a tightly clustered
simplex. Each of these clusters, or small simplices, is interconnected by the shortest edges
between them. Topologically, this structure corresponds to the 1-skeleton of a simplex.
Each small colored simplex denotes features with distinct labels.

to its center, and the collection of edges between clusters should be similar to that of a

regular simplex.

Definition 3.4.1 (Simplicial Complex from Clustered Data). For a clustered dataset

H =
⊔
Hi, we construct a simplicial complex K based on H to depict both intra- and

inter-cluster relationships, defined as:

• The vertices of K is H.

• Each cluster Hi forms a simplex

• For each pair (Hi, Hj), there exists a unique edge between them; the shortest one

Figure 3.3 is an example simplicial complex of this type, where it consists of 4 clusters,

and there is only one edge between each clusters. Since each cluster forms a simplex, it is

contractible and it’s topological structure is same as the 1-skeleton of a regular simplex

with 4 vertices. Our goal is to force this simplicial complex to be similar to a 1-skeleton

of a regular complex, with the help of persistent homology. By a 1-skeleton L(1) of a

simplicial complex L , we mean the subcomplex of the L consisting of only vertices and

edges. For example, the 1-skeleton of a simplex is a clique graph.
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3.4.2 Filtration

We define a pseudo-Rips filtration (Kδ)δ≥0 on the induced simplicial complex K as follows.

For (m + 1) vertices {h0, · · · , hm}, they form a simplex in Kδ if their pairwise distances

are all less than or equal to δ. Note that if [h0, · · · , hm] is a simplex in Kδ for m ≥ 2,

then {h0, · · · , hm} should belong to the same class. One important remark is that since

there are only finitely many vertices in K, the filtration (Kδ)δ≥0 is actually isomorphic to

a filtration of discrete type (Ki)ni=0 for some n even though it seems there are infinitely

many distinct Kδ’s at first glance.

The pseudo-Rips filtration gives rise to a persistent homology {H·(Kδ)}δ≥0. Its persis-

tence diagram, represented as PD·(Kδ), simplifies the descriptions of NC1 and NC2. In-

formally speaking, NC1 and NC2 correspond to the convergence of persistence diagrams

from PD·(K) to PD·(σ
(1)) in some sense, with σ being the regular simplex consisting of

mean vectors and σ(1) is the 1-skeleton of σ. The reason we consider only up to 1-skeleton

σ(1), not the full simplex σ is that we are not interested in higher-dimensioal topological

features.

NC in terms of persistent homology Let H =
⊔K
i=1Hi be the clustered dataset

such that

Hi ⊂ Br(µi), ‖µi − µj‖ ∈ (R− ε, R + ε), and R > 4r,

where µi is the center of Hi, Br(µi) is the ball at µi with radius r > 0. The fisrt condition

corresponds to the Variability collapse(NC1 ), whereas the second condition means that

each pairwise distance between centers are close to R(NC2 ), and the final condition means

that each clusters are not too close. NC implies that r, ε → 0 as train step t → ∞. Let

G be the 1-skeleton of a regular simplex with K vertices with edge-length R. There is a

natural graph filtration (Gδ)δ≥0 where Gδ = V (G) if δ < R and Gδ = G if δ ≥ R.

In this situation, let’s calculate the Wasserstein distance:

W 2(PD·(K), PD·(G)) = W 2(PD0(K), PD0(G)) +W 2(PD1(K), PD1(G))
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Theorem 3.4.2. In the above setting,

W 2(PD·(K), PD·(G))→ 0 if and only if r, ε→ 0

Proof. See the appendix 3.A.2

3.4.3 Proposed Loss Function

To simultaneously foster within-class feature collapse (NC1 ) and class separation (NC2 )

at the same time, the Wasserstein distance Wp,q (PD·(K), PD·(σ)) can be employed as a

loss function. However, merely aiming for PD·(K) to approach PD·(σ) is impractical for

various reasons. For instance, K’s persistence diagram is highly susceptible to outliers. A

single off-trend data point in X can significantly alter the persistence diagram PD0(K),

and that is also reflected in the Wasserstein distance. Additionally, computing the per-

sistence diagram PD·(K) is computationally expensive for large |K|. To overcome these

challenges, we introduce a batched version of PD·(K)→ PD·(σ), aligning well with deep

learning models usually trained on batched data. In order to do this, let’s first define an

ideal simplex for a given batch.

Definition 3.4.3 (Ideal Simplex for Batched Data). Let (H(batch), Y (batch)) be the batched

data with l ≤ K distinct labels. Let µ
(batch)
i be the mean vector of features whose label is

i, i.e. µ
(batch)
i = mean(H

(batch)
i ) with H

(batch)
i = H(batch) ∩Hi for each i. Define:

1. G(batch) as the 1-skeleton of a simplex with vertices {µ(batch)
i1

, . . . , µ
(batch)
il

}.

2. G̃(batch) as the 1-skeleton of a regular simplex with l vertices. The edge-length d̃ in

G̃(batch) is given by the average edge-length of G(batch)

d̃ = E(j,k)

[∥∥∥µ(batch)
ij

− µ(batch)
ik

∥∥∥] .
Two aspects warrant further clarification:

1. Our primary focus is on the intrinsic shape, which makes the exact vertex positions

in G̃(batch) non-essential.

2. Although G(batch) bears a resemblance to a regular simplex G̃(batch) in a NC scenario,

it doesn’t perfectly mirror a regular simplex in real-world applications.
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To foster enhanced NC1 and NC2 properties, it is imperative to:

1. Ensure that within-class features converge to their respective mean vectors.

2. Endeavor to make G(batch) approximate G̃(batch) as closely as possible.

Both objectives can be simultaneously achieved by minimizing the squared-Wasserstein

distance between K(batch) and G̃(batch), where K(batch) is the induced simplicial complex

from clustered data H(batch).

Definition 3.4.4 (Topological Loss). The topological loss term is defined to be the

squared (2, 1)-Wasserstein distance

LT (X(batch), Y (batch)) := W 2(PD·(K(batch)), PD·(G̃
(batch)))

= W 2(PD0(K(batch)), PD0(G̃
(batch))) +W 2(PD1(K(batch)), PD1(G̃

(batch)))

We will apply this loss function on a well-trained deep network classifier.

3.4.4 Analysis of Topological Loss

To commence our analysis, we introduce a set of notations. Let K(batch)
i denote the simplex

derived from H
(batch)
i , where H

(batch)
i necessitates a clear definition. Similarly, T

(batch)
i

represents the minimal spanning tree ofK(batch)
i . In a manner akin to the minimal spanning

tree scenario, we select l − 1 edges, denoted by E = {e1, · · · , el−1}, between each class

K(batch)
i ensuring that the union

(⊔
K(batch)
i

)⊔
E is connected and the summation of edge

lengths is minimized.

Let E ′ denote the set of
(
l−1
2

)
edges between classes excluding {e1, · · · , el−1}. For

a visual representation, see Figure 3.4. Thick edges between clusters correspond to E,

whereas dashed edges are represented by E ′.

0-dimensional distance Expanding on the previous observations, the computation of

PD0(K(batch)) becomes evident. Excluding the trivial point (0,∞) ∈ PD0(K(batch)), it

comprises:

1. Intra-class: {(0, dintra) : dintra is the lengths of the edges in each T
(batch)
i }

2. Inter-class : {(0, dinter) : dinter is the lengths of the edges of E}
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Figure 3.4: Edges between classes correspond to {e1, · · · , el−1}. Dashed edges represent
the set E ′.

Given that PD0(G̃
(batch)) consists of (0, d̃) with a multiplicity of l − 1, the matching

between PD0(K(batch)) and PD0(G̃
(batch)) is evident. Intra-class features (0, dintra) should

align with the diagonal, while inter-class features (0, dinter) should match with (0, d̃).

The cost of this matching is:∥∥∥∥(0, dintra)−
(
dintra

2
,
dintra

2

)∥∥∥∥
1

= dintra,∥∥∥(0, dinter)− (0, d̃)
∥∥∥
1

= |dinter − d̃|.

From the above, the Wasserstein distance is:

W 2(PD0(K(batch)), PD0(G̃
(batch))) =

∑
d2intra +

∑
(dinter − d̃)2.

1-dimensional distance Likewise, the one-dimensional persistence diagram PD1(K(batch))

can be categorized into:

1. Intra-class : {(b, d) : 1-cycle in K(batch)
i is born at b and dies at d}

2. Inter-class : {(d′inter,∞) : d
′
inter is the length of the edges in E ′}

Once again, intra-class features should align with diagonal points, while inter-class
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should match with (0, d̃). The cost of this matching is:∥∥∥∥(b, d)−
(
d− b

2
,
d− b

2

)∥∥∥∥
1

= d− b,∥∥∥(d
′

inter,∞)− (d̃,∞)
∥∥∥
1

= |d′inter − d̃|.

From this, the Wasserstein distance can be formulated as:

W 2(PD1(K(batch)), PD1(G̃
(batch))) =

∑
(d− b)2 +

∑
(d
′

inter − d̃)2,

where the first summation spans the set of all within-class 1-cycles.

Approximation From the prior analysis, we deduce:

W 2(PD·(K(batch)), PD·(G̃
(batch))) =

∑
d2intra +

∑
(d− b)2 +

∑
(d(Hi, Hj)− d̃)2

Here, d(Hi, Hj) measures the distance between two clusters and can be either dinter or

d
′
inter. The first and third summations span all clusters, while the second summation spans

the set of all cluster pairs. The main challenge in computing the Wasserstein distance is

the second term, which calculates the 1-dimensional persistence within each class. Given

the distance matrix of H(batch), the first and third terms are not computationally intensive.

The within-class deaths can be determined using Kruskal’s algorithm, which has a worst-

case complexity of O(n2 · α(n2)), where n represents the number of within-class points,

and α is the inverse Ackermann function, which grows slowly. The third term can be

determined by examining the distance matrix. However, to compute the 1-dimensional

persistence (the second term) for each cluster, we must construct a Rips complex, which

is typically computationally intensive. Moreover, this term is substantially smaller than

the other terms. Therefore, we approximate our Wasserstein distance using only the first

and third terms.

3.4.5 Measurements of NC2

The limitations of employing NC2 with batched data are detailed in section 3.2.1. To

address this, we introduce a persistent homology variant to gauge the strength of NC2

via the Wasserstein distance, offering a more intuitive approach. The underlying principle
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is that, given mean vectors of a batch
(
H(batch), Y (batch)

)
, the 1-skeleton of the simplex

formed by these vectors should tend towards regularity. Assessing the deviation from a

regular simplex’s 1-skeleton allows for an evaluation of the strength of NC2. However, this

score is influenced by the number of classes and the scale of feature vectors, necessitating

normalization factors. In an ideal NC2 scenario where mean vectors are centered unit

vectors, the regular simplex generated by them has an edge-length of
√

2K
K−1 .

Definition 3.4.5 (Topological NC 2 MetricNCPH2 ). Given a batched data
(
H(batch), Y (batch)

)
with l = |Y (batch)| distinct labels, let G(batch) and µ

(batch)
i be as previously defined in def-

inition 3.4.3. Define µ(batch) as the barycenter of G(batch)’s vertices and c as the mean

distance from each µ
(batch)
ij

to µ(batch):

c = Ej
[∥∥∥µ(batch)

ij
− µ(batch)

∥∥∥] .
Construct G

(batch)
normal as the 1-skeleton of the simplex with vertices:{

1

c

(
µ
(batch)
i1

− µ(batch)
)
, · · · , 1

c

(
µ
(batch)
il

− µ(batch)
)}

.

The topological NC 2 metric, denoted as NCPH2 , is then defined as:

NCPH2 =
1

l
W 2

(
PD·(G

(batch)
normal), PD·(σ

(1))
)

= E(j,k)

(1

c

∥∥∥µ(batch)
ij

− µ(batch)
ik

∥∥∥−√ 2K

K − 1

)2
 ,

where σ represents a regular simplex with l vertices with edge-length
√

2K
K−1 .

3.5 Empirical Results

Our primary objective in introducing the topological loss term at the end of the training

process is to bolster the train-NC. To elaborate:

1. We initially train a base model for 200 epochs for each classification task.
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2. Subsequently, we modify the loss function, transitioning from cross-entropy to topo-

logical loss, and continue training for an additional 5 epochs. We refer to this as

the ”topology-optimized model.”

3. For a fair comparison, we also train the base model for an extra 5 epochs using the

cross-entropy loss. This model is denoted as the ”vanilla model.”

It is essential to note that the exclusive use of the topology-optimization step can

potentially degrade the model’s performance on both the training and testing sets. This

decline arises from eschewing the conventional cross-entropy in favor of solely relying on

the topological loss term. Contrary to expectations, however, this modification enhances

the model’s performance. Our findings indicate the following:

• The topological loss fosters a more robust NC behavior in both the training and

testing sets.

• With the increased feature collapse, the model’s generalization performance im-

proves.

• Pursuing regularity is advantageous even in an imbalanced setting, where the opti-

mal NC is elusive.

3.5.1 Experimental Setup

We evaluated our method in both balanced and imbalanced settings.

Datasets. We use three popular datasets, MNIST, FashionMNIST, and CIFAR10.

Their imbalanced version will be denoted as MNIST-I, FashionMNIST-I, and CIFAR10-I,

respectively. For the balanced setting, we used 3000 samples per class. In the imbalanced

setting, we utilized 3000 samples for the first 3 classes, 1000 samples for the next 4 classes,

and 500 samples for the remaining 3 classes. For test sets, we just use the whole set.

Architectures. We employed a modified ResNet18 architecture.
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Method. We train modified ResNet18 for MNIST, FashionMNIST, and CIFAR10 for

both balanced and unbalanced setting. For each dataset, we train the model 40 different

times for 200 epochs to measure the performance of the model more precisely.

We use Adam optimizer with cross-entropy loss for the base model. After 200 epochs,

we train 5 more epochs with topological loss, and with the same cross-entropy for com-

parison.

3.5.2 Results

Topological Loss Induces Stronger NC We compare the NC metric after applying

the topological loss. The experimental details can be found in Table 3.1 and 3.2. Exper-

iments show that the topological loss function effectively intensify the NC.

Topological Loss Improves Model Performance As the above experiments show,

topological loss effectively intensify the NC. The next question is, more importantly,

whether enhanced NC leads to better generalized model. We compare the model’s score

on the test set.

3.A Supplementary Materials

3.A.1 Experiments

Details of additional experiments can be mentioned here.

Train set Test set

Dataset Vanilla
Topology

optimized
Vanilla

Topology

optimized

MNIST 0.059 ± 0.006 0.025 ± 0.003 0.069 ± 0.006 0.034 ± 0.002

FashionMNIST 0.143 ± 0.009 0.070 ± 0.005 0.232 ± 0.014 0.143 ± 0.006

CIFAR10 0.282 ± 0.012 0.193± 0.011 0.533 ± 0.019 0.424 ± 0.015

MNIST-I 0.044 ± 0.010 0.025 ± 0.005 0.075 ± 0.009 0.052 ± 0.005

FashionMNIST-I 0.112 ± 0.016 0.070 ± 0.010 0.243 ± 0.018 0.192 ± 0.007

CIFAR10-I 0.245 ± 0.042 0.180± 0.023 0.685 ± 0.038 0.605 ± 0.020

Table 3.1: Comparing NC1 on Vanilla model with topology-optimized model
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Train set Test set

Dataset Vanilla
Topology

optimized
Vanilla

Topology

optimized

MNIST 0.087 ± 0.020 0.058 ± 0.009 0.094 ± 0.021 0.064 ± 0.009

FashionMNIST 0.156 ± 0.031 0.147 ± 0.020 0.265 ± 0.042 0.256 ± 0.024

CIFAR10 0.240 ± 0.032 0.210± 0.017 0.506 ± 0.051 0.478 ± 0.024

MNIST-I 0.178 ± 0.057 0.106 ± 0.016 0.173 ± 0.055 0.111 ± 0.016

FashionMNIST-I 0.245 ± 0.075 0.157 ± 0.026 0.385 ± 0.083 0.293 ± 0.029

CIFAR10-I 0.259 ± 0.058 0.210± 0.042 0.684 ± 0.081 0.660 ± 0.063

Table 3.2: Comparing NC2 on Vanilla model with topology-optimized model

3.A.2 Proof of Theorem 3.4.2

Proof. Since G is a graph with equal edge-lengths, the persistence diagram PD·(G) is

simple. For PD0(G) consists of a single (0,∞), and (0, R) with multiplicity K − 1. For

PD1(G), there is a (R,∞) with multiplicity
(
K−1
2

)
=
(
K
2

)
− (K − 1).

In PD0(K), there are within-class topological features and between-class topological

features. Note that each within-class features correspond to points of form (0, d), where

d < 2r. This is because each Hi in contained in a ball of radius r. These points should

be matched with diagonal points, with matching cost∥∥∥∥(0, d)−
(
d

2
,
d

2

)∥∥∥∥
1

= d < 2r.

If ni = |Hi|, then the number of within-class features in each Hi is ni−1. This implies

that the matching cost of all within-class features are less than

K∑
i=1

2r(ni − 1).

For between-class 0-dimensional features, they are K − 1 points of the form (0, R′),

where |R−R′| < 2ε. The total matching cost will be less than

K∑
i=1

2r(ni − 1) + 2ε(K − 1).
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Finally

W 2(PD0(K), PD0(G)) ≤
K∑
i=1

(2r)2(ni − 1) + (2ε)2(K − 1).
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Chapter 4

xPerT: Extended Persistence

Transformer

A persistence diagram provides a compact summary of persistent homology, which cap-

tures the topological features of a space at different scales. However, due to its nature as a

set, incorporating it as a feature into a machine learning framework is challenging. Several

methods have been proposed to use persistence diagrams as input for machine learning

models, but they often require complex preprocessing steps and extensive hyperparameter

tuning. In this paper, we propose a novel transformer architecture called the Extended

Persistence Transformer (xPerT), which is highly scalable than the compared to Pers-

former, an existing transformer for persistence diagrams. xPerT reduces GPU memory

usage by over 90% and improves accuracy on multiple datasets. Additionally, xPerT does

not require complicated preprocessing steps or extensive hyperparameter tuning, making

it easy to use in practice.

4.1 Introduction

Topological Data Analysis (TDA) uses ideas from topology to explore the shape and

structure of data, revealing patterns that traditional statistical methods may not fully

grasp. TDA is not only an active area of mathematical research, but it also has broad

practical applications across various fields. One of the key tools in TDA is persistent

homology, which captures the multi-scale topological features of a dataset. A summary of

persistent homology is provided by the persistence diagram, which is a multi-set of points
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in the plane.

Persistent homology has been utilized in a wide range of areas, including biomolecules [35,

58], material science [29, 39], meteorology [47], and image analysis [45, 49]. However, the

integration of TDA with machine learning models remains a challenge due to several

reasons: (1) persistence diagram is an unordered set, which is not a natural input for

machine learning models, (2) each persistence diagram has a different number of points,

which complicates batch processing. Several methods have been proposed to address this

issue by converting persistence diagrams into fixed-size feature vectors [1,8,43]. However,

these methods often require extensive hyperparameter tuning and may fail to capture

the full extent of topological information in the data. Another line of research explores

using neural networks to directly process persistence diagrams, such as PersLay [9] and

PLLay [26]. While these models have shown promising results, their application is limited

due to complex hyperparameter choices and implementation difficulties.

The transformer architecture [55] has recently emerged as a powerful model in many

domains, including natural language processing, computer vision, audio etc. Persistence

diagrams have also been incorporated into transformer models, as demonstrated by Pers-

former (Reinauer et al., 2022). However, Persformer faces scalability issues, and its train-

ing process is often unstable in practice. In this work, we propose a novel transformer

architecture for (extended) persistence diagrams called Extended Persistence Transformer

(xPerT). The xPerT can directly process persistence diagrams, without requiring common

preprocessing steps often needed in existing methods. The xPerT is highly scalable in

terms of training time and GPU memory usage, and it does not require extensive hyper-

parameter tuning. We demonstrate the effectiveness of the xPerT model on classification

tasks using two datasets: graph datasets and a dynamical system dataset.

4.1.1 Related Works

The use of persistent homology in machine learning has been explored in various studies.

One of the earliest approaches is the vectorization method, which converts a persistence

diagram into a fixed-size feature vector. The persistence landscape [8] and persistence

image [1] are two popular vectorization methods. The persistence image also transforms

a persistence diagram, but directly into a fixed-size vector by placing Gaussian kernels

at each point and summing the values over a predefined grid. Both methods require

the selection of numerous hyperparameters, which play a crucial role in determining the
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Figure 4.1: Scaling. Comparison of computational cost between persistence diagram
transformer models in terms of training time and GPU memory usage (GB). The exper-
iment was conducted using a batch size of 64 for the PROTEINS and IMDB-B datasets,
and a batch size of 16 for the ORBIT5K dataset, as Persformer could not fit on our GPU
(RTX 3090) with a batch size of 32.

quality of the resulting vector, making the cross-validation process complex. ATOL [43]

offers an unsupervised vectorization approach by leveraging k-means clustering.

While most existing methods focus on vectorizing single-parameter persistent homol-

ogy, extending these techniques to multi-parameter persistent homology is challenging

due to the lack of a natural representation. However, some recent approaches have begun

addressing these challenges, such as GRIL [59] and HSM-MP-SW [33].

Unlike vectorization methods, neural network-based approaches utilze persistence di-

agrams more directly. PersLay [9] maps a persistence diagram to a real number by:

PersLay(D) := op
(
{w(p) · φ(p)}p∈D

)
,

where D denotes a persistence diagram, w : R2 → R is a learnable weight function,

φ : R2 → Rd is a point transformation, and op is a permutation-invariant operator. While

PersLay processes persistence diagrams directly, PLLay [26] first computes the persistence

landscape and then applies a neural network to the resulting feature vector.

More recently, [41] introduced Persformer, a model that applies a transformer archi-

tecture to persistence diagrams. In this approach, each point in the diagram is treated as

a token, and the transformer operates without positional encodings. In batch processing,

Persformer pads dummy points during preprocessing to ensure uniformity in the number

of points across diagrams. Though simple, this method involves processing numerous
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tokens, leading to high computational costs and substantial GPU memory usage.

Contributions In this paper, we introduce the Extended Persistence Transformer (xPerT),

a novel transformer architecture tailored for handling (extended) persistence diagrams in

topological data analysis. Our main contributions are:

• Persistence Diagram Transformer: We propose xPerT, which bridges the gap

between persistence diagrams and transformer models by discretizing the diagrams

into pixelized representations suitable for tokenization and input into the trans-

former architecture.

• Scalability through Sparsity: By leveraging the inherent sparsity of persistence

diagrams, xPerT achieves high scalability in training time and GPU memory usage,

making it efficient for large-scale applications.

• Practical Implementation: Our method is easy to implement and requires min-

imal hyperparameter tuning, lowering the barrier for practitioners and facilitating

quick adoption.

4.2 Background

4.2.1 Persistent Homology

Persistent homology studies the evolution of a space, capturing its topological features

at different scales. This section briefly introduces the fundamental concepts of persistent

homology, and see 4.B for more information. For readers unfamiliar with persistent ho-

mology, we recommend [17] for a comprehensive treatment.

Let f : X → R be a continuous function from a topological space X. The c-sublevel

set of f , defined as Xc = {x ∈ X : f(x) ≤ c} for c ∈ R, is an essential object for the

understanding the topology of X. These sublevel sets (Xc)c∈R form an increasing sequence

of spaces, known as a sublevel set filtration as described in Figure 4.2. In particular,

sublevel sets are central in Morse theory, which analyzes the topology of X by studying

the function f .

A sequence of homology groups {Hk(Xc)}c∈R build upon the filtration (Xc)c∈sR is called

a k-dimensional persistent homology. Note that there is a natural map Hk(Xc)→ Hk(Xc′)
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Figure 4.2: Sublevel Set Filtration. Six sublevel sets of the height function are shown.
As c increases, the topology of Xc changes, which is captured by the ordinary persistence
diagram. However, ordinary persistence cannot detect the appearance of the blue upright
arm, which can instead be captured by the superlevel set filtration (Xc)c∈R as c decreases.

induced by the inclusion Xc ↪→ Xc′ for c ≤ c′. The evolution of topological features

through the maps Hk(Xc) → Hk(Xc′) is encoded in the persistence diagram, which is a

multiset of points in the extended plane R×(R∪{∞}). If a topological feature appears at

Xb and disappears at Xd for b < d, the point (b, d) is included in the persistence diagram.

If a topological feature appears at Xb and persists indefinitely, the point (b,∞) is added.

See the supplementary material in 4.B for more details.

However, standard persistence diagrams capture only limited topological information

since they focus solelyon the sublevel sets. To address this, extended persistence was

introduced in [14], incorporating additional information by utilizing the c-superlevel set

Xc = {x ∈ X : f(x) ≥ c}. An extended persistence diagram E consists of four compo-

nents: Ord0, Rel1, Ext+0 , and Ext−1 , capturing more topological information than ordinary

persistence. As shown in Figure 4.3, the extended persistence diagram does not contain

points at infinity, simplifying its use in machine learning models as well.

4.2.2 Wasserstein Distance

The collection of (ordinary) persistence diagrams forms a metric space with the Wasser-

stein distance, which provides a measure of dissimilarity between two persistence dia-

grams. The Wasserstein distance is defined to be the infimum of the cost between all

possible matchings γ between two persistence diagrams.

Definition 4.2.1 (Wasserstein Distance). Given a persistence diagram D, let aug(D)

be the union of D and all points in the diagonal ∆ = {(x, x) : x ∈ R} with infinite

multiplicity. For two persistence diagrams D and D′, the (p, q)-Wasserstein distance
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Figure 4.3: Persistence Diagram. The extended persistence diagram captures more
information than the ordinary persistence diagram. In this figure, the extended persistence
diagram includes information about the blue upright arm and the maximum value of f ,
which are not present in the ordinary persistence diagram. (Left) A topological space
equipped with a height function f . (Center) Extended persistence diagram. (Right)
Ordinary persistence diagram.

between D and D′ is defined as

Wp,q(D,D
′
) = inf

γ

 ∑
u∈aug(D)

‖u− γ(u)‖pq

1/p

,

where γ : aug(D)→ aug(D
′
) ranges over all bijections.

Intuitively, the Wasserstein distance measures how much ‘work’ is required to match

the points in one diagram to those in another, accounting for both the distance between

points and the number of points involved. Throughout this paper, we will use the (1, 2)-

Wasserstein distance W = W1,2.

4.2.3 Heat Kernel Signature

The Heat Kernel Signature (HKS) is a feature descriptor that captures the intrinsic geo-

metric properties of a shape. Originally defined for Riemannian manifolds [48], the dis-

crete version of HKS can also be applied to graphs, allowing us to analyze their structural

characteristics. We follow the approach in [9], using HKS values to generate extended

persistence diagrams.

To define HKS, we first introduce the graph Laplacian, a fundamental tool in graph
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analysis.

Definition 4.2.2 (Graph Laplacian). Let G = (V,E) be an undirected graph with n

vertices. The adjacency matrix A of G is the n× n matrix defined as

Aij =

1 if (i, j) ∈ E,

0 otherwise.

The normalized Laplacian matrix of G is given by

L = I −D−1/2AD−1/2,

where I is the identity matrix, and D is the diagonal matrix with Dii =
∑n

j=1Aij.

Definition 4.2.3 (Heat Kernel Signature). Given a graph G with a diffusion parameter

t > 0, the Heat Kernel Signature is the function Ht : V → R defined at each node v ∈ V
by

Ht(v) =
n∑
i=1

exp(−λit)〈φi, v〉2,

where λi are the eigenvalues and 〈φi, v〉 is the value of the i-th eigenvector at node v.

For a fixed diffusion parameter t > 0, Ht assigns a real number to each node of the

graph, encoding the intrinsic geometric properties of the graph. The diffusion parameter

t controls the scale at which the graph’s geometric features are captured, with smaller

values of t focusing on local structures and larger values capturing global properties. By

assigning a real number to each node, Ht encodes essential structural information of the

graph.

4.3 Pixelized Persistence Diagram

In this section, we introduce the Pixelized Persistence Diagram (PPD), an efficient rep-

resentation of persistence diagrams designed for transformer inputs. The PPD is con-

structed by first applying instance normalization to handle varying scales and then pro-

jecting the normalized diagram onto a discrete grid. This approach ensures that diagrams

of different scales are represented consistently, facilitating their use in machine learning
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models while retaining the stability properties of the original diagrams. The process is

straightforward and can be implemented in just a few lines of code.

The PPD shares similarities with the Persistence Image (PI) but offers specific ad-

vantages when integrated with transformer architectures: (1) PPD requires less or no

hyperparameter tuning, and (2) more importantly, PPD contains many zero-value pix-

els, allowing only non-zero pixels to be utilized. This sparsity significantly reduces the

number of tokens processed by the transformer, improving computational efficiency and

scalability.

4.3.1 Projection of Persistence Diagrams

Given a rotated persistence diagram Dr, we aim to project it onto a discrete grid to create

a pixelized representation. For a fixed grid size δ > 0, we discretize the birth-persistence

plane into grid cells:

Ik,l = [kδ, (k + 1)δ)× [lδ, (l + 1)δ), k, l ∈ N.

Each point (b, p) ∈ Dr is associated with the grid cell Ik,l containing it.

Definition 4.3.1 (Projection of Persistence Diagram). The projection map Πδ : R2
≥0 →

R2
≥0 is defined by mapping each point (b, p) ∈ Dr to the center of the grid cell containing

it:

Πδ(b, p) =
((
k + 1

2

)
δ,
(
l + 1

2

)
δ
)
, where (b, p) ∈ Ik,l.

The projected persistence diagram is then Πδ(Dr) = {Πδ(b, p) : (b, p) ∈ Dr}.

This projection maps each point to the center of its grid cell, effectively quantizing

the diagram.

Stability of the Projected Persistence Diagram The projection operation Πδ ap-

plied to any rotated persistence diagram preserves stability with respect to the Wasser-

stein distance.

Proposition 4.3.2. Let D and D′ be two persistence diagrams, and let δ < W (D,D′).

Then we have:

W (Πδ(Dr),Πδ(D
′
r)) ≤

(√
|D|+

√
|D′ |√

2
+
√

3

)
W (D,D′).
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Figure 4.4: Projection of Persistence Diagram. Each point in Dr is projected onto
the center of its corresponding grid cell using the projection map Πδ. The arrows indicate
the mapping.

Proof. See Appendix 4.A.1.

4.3.2 Pixelized Persistence Diagram

The projected persistence diagram Πδ(Dr) is a digital-image-like representation, where

each point corresponds to the center of a grid cell. However, the scale of Dr can vary

between different persistence diagrams, leading to inconsistencies in the representation.

To address this, we apply instance normalization before projecting the diagram.

We define the instance-nomalized diagram as

Norm(Dr) =

{(
b

bmax

,
p

pmax

)
: (b, p) ∈ Dr

}
,

where bmax = max{b : (b, p) ∈ Dr}, pmax = max{p : (b, p) ∈ Dr} are the maximum values

of birth, and persistence in Dr, respectively. This maps the rotated diagram into the unit

square.

Remark 4.3.3. If bmax = 0 (e.g., in 0-dimensional diagrams where all birth times are

zero), we set bmax = 1 to avoid division by zero. Since all b values are zero, this normal-

ization leaves them unchanged.

The Pixelized Persistence Diagram (PPD) is then the pixelized representation of
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Πδ

(
Norm(Dr)

)
, with δ = 1/H. Concretely, let H > 0 be a positive integer represent-

ing the grid resolution. We partition the unit square [0, 1]× [0, 1] into H ×H grid cells:

Ii,j =

[
i− 1

H
,
i

H

)
×
[
j − 1

H
,
j

H

)
, i, j = 1, 2, . . . , H.

Definition 4.3.4 (Pixelized Persistence Diagram). The Pixelized Persistence Dia-

gram (PPD) PH(D) ∈ NH×H is an integer matrix where each entry PH(D)i,j represents

the number of points from Norm(Dr) that fall into the (i, j)-th grid cell:

PH(D)i,j = |{(b, p) ∈ Norm(Dr) : (b, p) ∈ Ii,j}| .

4.3.3 Extended Pixelized Persistence Diagram

Having defined the PPD for a single diagram, we now extend the definition to the extended

persistence diagram. The extended pixelized persistence diagram PH(E) of an extended

persistence diagram E = {Ord0,Rel1,Ext+0 ,Ext−1 } is obtained discretizing each diagram:

1. Transpose the diagrams Rel1 and Ext−1 so that all four diagrams are positioned in

the upper half-plane, above the diagonal.

2. Rotate the diagrams {Ord0, (Rel1)
T ,Ext+0 , (Ext−1 )T} to obtain the set of rotated

diagrams:

{Rord, Rrel, Rext+ , Rext−}.

3. Compute the pixelized persistence diagrams (PPDs) for each rotated diagram:

PH(E) = {PH(Rord),PH(Rrel),PH(Rext+),PH(Rext−)}1.

4.4 xPerT

We now describe the Extended Persistence Transformer (xPerT), illustrated in Figure

4.5. The xPerT model processes a set of persistence diagrams by transforming them into

sequences of tokens, which are then fed into a transformer model.

1When computing the PPDs for the extended persistence diagram, the same bmax and pmax values are

applied to all four diagrams to ensure consistency.
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Figure 4.5: xPerT Overview. The persistence diagram is pixelized and split into fixed-
size patches (left, top). These patches are linearly transformed into token vectors, with
a [cls] token added (left, bottom). Empty patches are excluded from the transformer
input.(Right) The token vectors are processed by the transformer model, and the output
of the [cls] token is fed to the linear head for classification.

4.4.1 Tokenization

To feed persistence diagrams into a transformer, they must first be converted into se-

quences of tokens. Here, we describe the tokenization process for extended persistence

diagrams. Due to the unique nature of 0-dimensional persistence diagrams, where points

typically lie along the y-axis, a slightly different tokenization method is used, as detailed

in Section 4.B.1 of the supplementary material.

Given an extended persistence diagram E, we first discretize it into an extended PPD

PH(E) (section 4.3.3), where H > 0 is the resolution. Let P ∈ N4×H×H be the tensor

obtained by stacking individual PPD in PH(E) along the channel dimension. This multi-

channel representation is then divided into N = (H/P )2 patches, where each patch is of

size 4 × P × P , and P is the patch size. Each patch is then flattened into a vector in

N4P 2
, resulting in the sequence {P1

patch, . . . ,PNpatch}.
Finally, we apply a linear transformation to each patch to obtain token embeddings:

Tokens =
{
EP1

patch, . . . ,EPNpatch
}
, EP ipatch ∈ RD,

where E ∈ RD×(4P 2) is a learnable projection matrix, and D is the embedding dimension.

Note that this tokenization approach closely parallels the process used in the Vision
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Transformer [16], where images are similarly divided into patches and transformed into

token embeddings.

After tokenization, we prepend a classification [cls] token to the sequence, which

aggregates information for downstream tasks. To retain spatial relationships, we add

standard 2D sinusoidal positional encodings to the token embeddings.

Sparsity of Patches. One of the key advantages of xPerT is its ability to leverage

the inherent sparsity in persistence diagrams. Points in persistence diagrams are often

distributed non-uniformly, resulting in many patches being zero vectors. The xPerT

model takes advantage of this sparsity by processing only the non-zero patches, which

significantly reduces the number of tokens and computational costs.

Classification Head. For classification, we use the [cls] token combined with max

pooling over all token embeddings, which slightly improves performance compared to

using the [cls] token alone. Specifically, we apply a single-layer linear head to the sum

of the [cls] token and the pooled token embeddings, followed by a softmax layer to

output the probability distribution over the classes.

4.5 Experiments

In this section, we present the experimental results of the xPerT model on graph and

dynamical system classification tasks. We compare xPerT’s performance with state-of-the-

art methods related to persistent homology, including both single-parameter and multi-

parameter approaches.

Architecture. We use the same xPerT architecture for all experiments to demonstrate

that it performs well without extensive hyperparameter tuning.2 The transformer model

used in the experiments consists of 5 layers with 8 attention heads, with a token dimension

set to 192. The resolution of the pixelized persistence diagram (PPD) is H = 50, with a

patch size of P = 5, resulting in at most 100 patches per (extended) persistence diagram.

However, due to the sparsity of the diagrams, the actual number of patches is often much

smaller. For instance, the average number of non-zero patches in the ORBIT5K dataset is

8.4 for the 0-dimensional diagrams and 23.2 for the 1-dimensional diagrams.

2Further hyperparameter optimization could improve performance, as shown in the ablation study.
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Table 4.1: Graph classification. The average classification accuracy across different
datasets over 10-fold cross-validation. (Top) Methods leveraging single or multi-parameter
persistent homology. (Bottom) Methods that combine persistent homology with Graph
Isomorphism Network (GIN) models. The best results are highlighted in bold, and the
second-best are underlined.

Method IMDB-B IMDB-M MUTAG PROTEINS COX2 DHFR

PersLay† 71.2 48.8 89.8 74.8 80.9 80.3

ATOL 69.2 ± 4.1 42.9 ± 2.3 88.3 ± 3.9 72.6 ± 1.9 80.0 ± 7.6 81.2 ± 4.8

HSM-MP-SW† 74.7 ± 5.0 50.3 ± 3.5 86.8 ± 7.1 74.1 ± 2.0 77.9 ± 1.3 82.8 ± 5.0

GRIL† 65.2 ± 2.6 −3 87.8 ± 4.2 70.9 ± 3.1 79.8 ± 2.9 77.6 ± 2.5

Persformer 68.9 ± 8.8 51.7 ± 3.3 89.4 ± 4.0 72.0 ± 6.7 78.2 ±0.8 4 64.8 ± 2.3

xPerT 72.6 ± 3.4 50.0 ± 2.0 91.0 ± 5.2 75.7 ± 3.8 84.4 ± 3.5 81.9 ± 2.9

GIN 75.3 ± 4.8 52.3 ± 3.6 94.1 ± 3.8 76.6 ± 3.0 85.4 ± 3.4 84.5 ± 3.6

+ GRIL(sum)† 74.2 ± 2.8 −3 89.3 ± 4.8 71.9 ± 3.2 79.2 ± 4.9 78.5 ± 5.8

+ xPerT(sum) 76.1 ± 2.7 51.1 ± 1.9 93.7 ± 3.9 77.6 ± 4.7 85.9 ± 2.9 83.5 ± 3.4

+ xPerT(cat) 75.7 ± 2.3 52.1 ± 2.0 94.7 ± 5.3 78.4 ± 5.1 85.7 ± 3.9 81.9 ± 2.6

4.5.1 Classification on Graph Datasets

Given a graph, we compute the heat kernel signature (HKS) on the graph with diffusion

parameter t = 1.0, which is used to generate the extended persistence diagram. For

detailed hyperparameters, see the supplementary material in 4.A.2.

Graph Datasets. We evaluate xPerT on several widely used graph classification datasets:

IMDB-BINARY , IMDB-MULTI, MUTAG, PROTEINS, COX2, and DHFR. The IMDB datasets con-

sist of social network graphs, while the remaining datasets are derived from biological and

medical domains (see [36] for details).

Baselines and Results. Table 4.1 summarizes the results of xPerT compared with

state-of-the-art persistent homology-related methods, as described in Section 5.2.3. We

compare xPerT with PersLay [9], ATOL [43], and Persformer [41], which, as previously

discussed, use extended persistence diagrams generated from the HKS function. Addi-

3GRIL was not evaluated on the IMDB-MULTI dataset.
4The model consistently predicts the majority class, leading to inflated accuracy due to class imbalance.
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r = 2.5 r = 3.5 r = 4.0 r = 4.1 r = 4.3

Figure 4.6: Examples of orbit datasets with different value of r.

tionally, we compare xPerT with GRIL [59] and HSM-MP-SW [33], which employ multi-

parameter persistent homology without relying on persistence diagrams. This allows us

to evaluate xPerT’s performance relative to both single-parameter and multi-parameter

persistent homology approaches. Detailed settings for each model are provided in Ta-

ble 4.7 in the supplementary material.

In summary, xPerT demonstrates strong and consistent performance across various

datasets, often surpassing or matching state-of-the-art methods. Furthermore, xPerT is

flexible and can be seamlessly combined with models like GIN, making it adaptable for

use with other deep learning architectures.

4.5.2 Dynamical System Dataset.

Table 4.2 shows the average classification accuracy of xPerT on the dynamical system

datasets over 5 independent runs. We evaluate xPerT on two commonly used datasets in

topological data analysis: ORBIT5K and ORBIT100K. These datasets consist of simulated

orbits with distinct topological characteristics, generated using the recursive equations:

xn+1 = xn + ryn(1− yn) mod 1

yn+1 = yn + rxn+1(1− xn+1) mod 1

Each orbit is initialized with a random starting point (x0, y0) ∈ [0, 1]2 and a parameter r ∈
{2.5, 3.5, 4.0, 4.1, 4.3}. The task is to predict the parameter r that generated each orbit,

reflecting distinct topological behaviors in the system. The ORBIT5K dataset contains

5,000 point clouds, each with 1,000 points per orbit, while the larger ORBIT100K dataset

consists of 100,000 point clouds, with 20,000 orbits for each r value. Both datasets are

split into 70% training and 30% testing sets.
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Table 4.2: Orbit Classification. Mean
classification accuracy over 5 indepen-
dent runs for the ORBIT5K and ORBIT100K

datasets. Results marked with † are taken
from the original papers.

Method ORBIT5K ORBIT100K

PersLay† 87.7 ± 1.0 89.2 ± 0.3

ATOL 72.2 ± 1.5 68.8 ± 8.0

Persformer† 91.2 ± 0.8 92.0 ± 0.4

Persformer5 28.2 ± 7.3 −
xPerT 87.0 ± 0.7 91.1 ± 0.1

Table 4.3: Ablating patch size (Orbit).
Impact of varying patch sizes on classifi-
cation performance for the ORBIT5K and
ORBIT100K datasets. The results show that
xPerT benefits from smaller patch sizes,
with mean accuracy reported over 5 inde-
pendent runs.

Patch Size ORBIT5K ORBIT100K

P = 2 88.1 ± 0.4 90.8 ± 0.1

P = 5 87.0 ± 0.7 90.2 ± 0.1

P = 10 80.5 ± 1.2 89.8 ± 0.3

4.6 Ablation Study

4.6.1 Patch Size.

Tables 4.3 and 4.4 show the effect of patch size on the dynamical system and graph

datasets, respectively. Reducing the patch size increases the number of patches, providing

a finer resolution for the pixelized persistence diagrams. We observe that the ORBIT5K

dataset benefits significantly from smaller patch sizes, as they allow the model to capture

more detailed topological information. However, the effect of decreasing the patch size

is less pronounced on the ORBIT100K dataset, likely due to the increased scale of the

dataset.

In contrast, the effect of patch size on the graph datasets is less evident. This may

be due to the fact that persistence diagrams generated from graph datasets tend to have

much fewer points compared to those from the dynamical system datasets. As a result,

reducing the patch size may not provide significant additional information, since the

smaller number of points limits the amount of detail that can be captured in the pixelized

representation.

5Reproduced result. The model was not trainable in both ORBIT5K and ORBIT100K. We used the code

from https://github.com/giotto-ai/giotto-deep.
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Table 4.4: Ablating patch size (Graph). Average accuracies over 10-fold cross-
validation. The effect of patch size is less clear in graph datasets.

Patch Size IMDB-B IMDB-M MUTAG PROTEINS COX2 DHFR

P = 2 71.9 ± 3.8 48.1 ± 4.0 89.4 ± 5.7 75.7 ± 3.0 82.6 ± 4.6 80.7 ± 2.4

P = 5 72.6 ± 3.4 50.0 ± 2.0 90.0 ± 5.2 75.7 ± 3.8 84.4 ± 3.5 81.9 ± 2.9

P = 10 74.5 ± 4.1 49.2 ± 3.3 89.9 ± 6.1 75.5 ± 3.4 82.7 ± 3.6 81.6 ± 4.2

4.6.2 Model Size.

Tables 4.5 and 4.6 show the impact of model depth and width on classification performance

across the orbit and graph datasets. While the effects of depth and width are less evident

in the graph datasets, we observe that xPerT performs robustly across a range of model

configurations in the ORBIT datasets. Models with 5 layers and a width of 192 showed

solid performance, but overall, the model achieves consistent results across different depths

and widths. This suggests that xPerT is flexible and performs well without being overly

sensitive to model size.

Table 4.5: Effect of depth.

Depth PROTEINS COX2 ORBIT5K

2 75.0 ± 1.9 83.1 ± 3.4 86.2 ± 0.9

5 75.7 ± 2.7 83.3 ± 4.3 87.0 ± 0.7

8 75.1 ± 4.3 83.9 ± 4.1 86.3 ± 0.9

Table 4.6: Effect of width.

Width PROTEINS COX2 ORBIT5K

96 75.5 ± 4.9 83.1 ± 5.6 86.4 ± 1.0

192 75.7 ± 2.7 83.3 ± 4.3 87.0 ± 0.7

384 75.5 ± 2.1 82.9 ± 3.0 86.6 ± 1.0
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4.7 Conclusion and Limitations

In this work, we introduced xPerT, a novel transformer architecture specifically designed

for persistence diagrams, enabling efficient handling of topological information in data.

xPerT’s design allows for easy integration with other machine learning models while effi-

ciently handling the sparse nature of persistence diagrams, significantly reducing compu-

tational complexity compared to previous transformer models for persistence diagrams.

We demonstrated the effectiveness of xPerT on both graph classification and dynam-

ical system classification tasks, where it outperforms other methods that use (extended)

persistence diagrams as machine learning features in several datasets. Furthermore, we

conducted an ablation study to investigate the effects of patch size and model size on

performance. Our results indicate that xPerT performs robustly across a wide range of

hyperparameters and is resilient to changes in model size and grid resolution.

While xPerT shows great promise for topological data analysis, a key limitation of our

study is that the model was tested on a limited number of datasets. In future work, we

plan to evaluate xPerT on a more diverse set of datasets from different domains to better

understand its generalizability and scalability.

In conclusion, xPerT offers a promising approach to utilizing topological data for

machine learning tasks. Its ease of integration with other models, combined with its

robust performance, makes xPerT a valuable tool for a wide range of applications, with

the potential for further improvements through future research.

4.8 Reproducibility Statement

We are committed to ensuring that the experiments conducted in this paper can be fully

reproduced. To this end, we provide the following resources and information:

• Code Availability: All code necessary to replicate our results, including the xPerT

model implementation, data preprocessing scripts, and evaluation metrics, will be

made publicly available on GitHub. The codebase is implemented in [language/framework],

and instructions for setting up the environment are included in the repository’s

README.

• Datasets: The datasets used in this work, including the graph datasets (IMDB-

BINARY, IMDB-MULTI, MUTAG, PROTEINS, COX2, and DHFR) and the dy-
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namical system datasets (ORBIT5K and ORBIT100K), are either publicly available

or will be provided along with the code. Detailed instructions for downloading and

preprocessing these datasets are included in the repository.

• Hyperparameters and Model Configurations: All hyperparameters, such as

learning rates, batch sizes, and the number of epochs, are clearly specified in the

code repository. Additionally, model configurations, including depth, width, patch

size, and grid resolution, are explicitly documented to ensure consistent replication

of our results. An ablation study exploring the effect of various hyperparameter

settings is provided in the paper.

• Computing Resources: The experiments were conducted on a machine with an

NVIDIA RTX3090 GPU.

We encourage others to use the provided resources to replicate our findings and build

upon our work.
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4.A Supplementary Material for xPerT

4.A.1 Proofs

Proof of Proposition 4.3.2

We first state and prove two lemmas that will be used in the proof of Proposition 4.3.2.

Lemma 4.A.1. Let Dr be a rotated persistence diagram. Then

W (Πδ(Dr), Dr) ≤
√
|D|
2
δ.

Proof. The cost of the matching Πδ : Dr → Πδ(Dr) is given by(∑
u∈Dr

‖u− Πδ(u)‖22

)1/2

≤

(∑
u∈Dr

1

2
δ2

)1/2

=

√
|D|
2
δ.

Lemma 4.A.2. Let D and D′ be two persistence diagrams. The Wasserstein distance

between their rotated versions Dr and D′r satisfies the following inequality:

W (Dr, D
′
r) ≤

√
3W (D,D′).

Proof. Let γ̃ be the optimal matching between D and D′ that achieves the Wasserstein

distance W (D,D′). We decompose the persistence diagrams into disjoint unions:

D = Dmatch tDdiag, D′ = D′match tD′diag,

where Dmatch is the set of points matched to D′match, and Ddiag, D
′
diag are the points

matched to the diagonal. Let Dmatch = {u1, . . . , uk}, D′match = {v1, . . . , vk}, and assume

without loss of generality that Dmatch 6= ∅ and vi = γ̃(ui) for 1 ≤ i ≤ k. The Wasserstein

distance between D and D′ is given by

W 2(D,D′) =
k∑
i=1

‖ui − vi‖22 +
k+l∑

i=k+1

‖ui − π(ui)‖22 +
k+m∑
i=k+1

‖vi − π(vi)‖22, (4.A.1)

where π denotes the projection onto the diagonal.
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Now, consider the Wasserstein distance between the rotated diagrams Dr and D′r.

Using the matching γ = Rγ̃R−1 between Dr and D
′
r, we have

W 2(Dr, D
′
r) ≤

k∑
i=1

‖Rui −Rvi‖22 +
k+l∑

i=k+1

‖Rui − πx(Rui)‖22 +
k+m∑
i=k+1

‖Rvi − πx(Rvi)‖22,

where R is the rotation matrix and πx is the projection in the birth-persistence plane.

Since rotation preserves distances, ‖Rui−Rvi‖2 = ‖ui−vi‖2, and the Frobenius norm

‖R‖F ≤
√

3 implies

W 2(Dr, D
′
r) ≤

k∑
i=1

3‖ui − vi‖22 + 2
k+l∑

i=k+1

‖ui − π(ui)‖22 + 2
k+m∑
i=k+1

‖vi − π(vi)‖22.

Thus, we obtain

W 2(Dr, D
′
r) ≤ 3W 2(D,D′),

which gives the desired inequality

W (Dr, D
′
r) ≤

√
3W (D,D′).

The same proof holds when Dmatch = ∅ if we use only the last two terms in the equation

4.A.1.

Now, the proof of Proposition 4.3.2 follows directly from Lemmas 4.A.1 and 4.A.2.

Proposition 4.3.2. Let D and D′ be two persistence diagrams, and suppose that δ <

W (D,D′). Then the following inequality holds:

W
(
πr(D), πr(D

′)
)
≤

(√
|D|+

√
|D′|√

2
+
√

3

)
W (D,D′)

Proof. We begin by applying the triangle inequality in the Wasserstein metric space:

W (πr(D), πr(D
′)) ≤ W (πr(D), Dr) +W (Dr, D

′
r) +W (D′r, πr(D

′)) .

The terms W (πr(D), Dr) and W (D′r, πr(D
′)) can be bounded using Lemma 4.A.1, which
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gives

W (πr(D), Dr) ≤
√
|D|
2
δ and W (D′r, πr(D

′)) ≤
√
|D′|

2
δ.

Next, using Lemma 4.A.2, we bound the middle term:

W (Dr, D
′
r) ≤

√
3W (D,D′).

Thus, combining these inequalities, we obtain

W (πr(D), πr(D
′)) ≤

√
|D|
2
δ +
√

3W (D,D′) +

√
|D′ |

2
δ,

which simplifies to

W (πr(D), πr(D
′)) ≤

(√
|D|+

√
|D′|√

2
+
√

3

)
W (D,D′).

This completes the proof.

4.A.2 Experimental Details

Comparison of Baselines in Graph Classification

Table 4.7 shows the descriptions of the baseline models in graph classification in section

4.5.1. Note that even though the models in Table 4.1 are based on persistent homology

related inputs, the specific inputs of each model are different.

Hyperparameters

Table 4.8 and 4.9 show the hyperparameters and the architecture of the xPerT and Pers-

former used in the experiments. The hyperparameters are chosen based on the perfor-

mance of the models on the mean accuracy over 10-fold cross validations. The architec-

ture of the xPerT is the same for all experiments, while the Persformer uses different

architectures for graph and orbit datasets as in the original paper.
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Method MP Filtration Explanation

PersLay

ATOL
×

- HKS0.1

- HKS10.

Each diagram in the extended persistence diagrams

is transformed into a vector. Resulting 8 vectors in

total are concatenated to generate a representation.

Persformer

xPerT
× - HKS1.0 Extended diagram is transformed to a vector.

GRIL ◦
- HKS1.0 + HKS10.

- Ricci curvature

Persistence landscape is computed based on

the generalized rank invariant.

HSM-MP-SW ◦
- HKS10.

- Ricci curvature

Sliced Wasserstein kernel is computed based on

the signed barcode.

Table 4.7: Summary of topological baselines in graph classification. MP indicates the
model is based on multi-parameter persistent homology.

Table 4.8: Hyperparameters for the training of xPerT and Persformer on graph and orbit
datasets.

config
xPerT

Graph

xPerT

Orbit

Persformer

Graph

Persformer

Orbit

optimizer AdamW AdamW AdamW AdamW

learning rate 1e-3 1e-4 1e-3 1e-3

weight decay 5e-2 5e-2 5e-2 5e-2

batch size 64 64 64 16

lr schedule cosine decay cosine decay cosine decay cosine decay

warmup epochs 50 50 50 50

epochs 300 300 300 300
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Table 4.9: Transformer architecture for xPerT and Persformer used in the experiments.
Note that the persformer uses different architectures for graph and orbit datasets as in
the original paper.

xPerT
Persformer

graph

Persformer

orbit

# layers 5 2 5

# heads 8 4 8

token dim. 192 32 128

4.B Persistent Homology

This section provides a brief introduction to persistent homology, which is a mathemat-

ical tool for studying the topological features of a space. A filtration is a key object in

construction of persistent homology, which is an increasing sequence (X)t>0 of subspaces

of a space X. The persistent homology of dimension k is a sequence of vector spaces

{Hk(Xt;F)}t>0 and linear maps {Hk(Xt;F) → Hk(Xt′ ;F)}t≤t′ , which captures the topo-

logical features of the space as the filtration parameter t varies. Here, F is a field, which

is usually taken to be the finite feild Z2, and Hk denotes the k-th homology group. Moni-

toring the evolution of homological features via linear maps {Hk(Xt;F)→ Hk(Xt′ ;F)}t≤t′
allows associating an interval [b, d], where b and d are birth and death times, respectively.

For a detailed introduction to homology and persistent homology, see [17].

Filtration on Graphs Given a graph G = (V,E), lef f : V → R be a function defined

on the vertices of the graph. A sublevel set filtration
(
Gt

)
t>0

is an increasing sequence of

subgraphs of G defined as follows. For each t > 0, the sublevel set Gt is a subgraph of G

whose vertices are the vertices in V , and whose edges are the edges in E that connect the

vertices whose function values are less than or equal to t. Formally,

V (Gt) = {v ∈ V | f(v) ≤ t}, E(Gt) = {(u, v) ∈ E | f(u) ≤ t, f(v) ≤ t}.

In this paper, we use the heat kernel signature (HKS) as the function f , which is a

function defined on the vertices of the graph that provides the local geometric information

of the graph. The usual sublevel set filtration is used for generate the ordinary persistent
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homology.

For extended persistent homology, we use a filtration that combines the sublevel set

and superlevel set filtrations. Given a value t ∈ R, the superlevel set Gt of the graph G

is defined as

V (Gt) = {v ∈ V | f(v) ≥ t}, E(Gt) = {(u, v) ∈ E | f(u) ≥ t, f(v) ≥ t}.

Without loss of generality, assume that the minimum value of f is 0. Then the extended

filtration is given by

G̃t =


Gt if t ≤M,

G/G2M−t otherwise,

where M is the maximum value of the function f . Here G/G2M−t is the quotient graph

obtained by contracting the vertices in G2M−t to a single vertex. Note that the extended

filtration is not a true filtration, as it does not satisfy the monotonicity condition. Still,

we can apply the homology to the sequence of graphs
(
G̃t

)
t>0

to compute the extended

persistence diagram, which reflects the topological features of the graph at different scales.

Filtration on Point Cloud Given a point cloud X = {x1, . . . , xn} ⊂ Rd, the Rips

filtration
(
Rt(X)

)
t>0

is an increasing sequence
(
Rt(X)

)
t>0

of simplicial complexes defined

as follows. For each t > 0, the Rips complex Rt(X) is a simplicial complex whose vertices

are the points in X, and whose simplices are the subsets of X that are pairwise within

distance t. Formally, a simplex σ ⊂ X is in Rt(X) if the diameter of σ is less than or

equal to t.

However, the computation of the Rips filtration can be quite costly even in a low-

dimensional space. To reduce the computational cost, following [41]6, we use the weak

alpha complex, which is a Rips complex defined on the Delaunay triangulation of the point

cloud.

Persistence Diagram A persistence diagram is a collection of the pairs of birth and

death times of topological features obtained from persistent homology. More concretely,

6The paper mentions that the authors have used the alpha filtration, but their code uses weak alpha

filtration.
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the persistence diagram is a multiset of points in the extended plane R × (R ∪ {∞}),
where each point (b, d) represents a topological feature that is born at time b and dies at

time d.

4.B.1 Tokenization of Ordinary Persistence Diagrams

Given a point cloud X, let Dk be its k-dimensional persistence diagram, computed using

one of the point cloud filtrations (e.g., Rips filtration or weak alpha filtration). For

machine learning input, we typically use more than one diagram, D = {D0, . . . , Dk}. As

with the extended persistence diagram, we could stack the corresponding PPDs. However,

the points in the 0-dimensional persistence diagram D0 typically lie only along the y-axis,

while points from higher-dimensional diagrams are distributed in the 2D plane. This

makes it unnatural to apply the channel-stacking tokenization method described in 4.4.1.

Instead, we tokenize each diagram separately and combine them into a single sequence.

More concretely, let {PH(D0), . . . ,PH(Dk)} be the PPDs of D0, . . . , Dk, respectively.

Each PPD is treated as a single-channel image, and we apply the same tokenization

method to each PPD as described in 4.4.1. Finally, we collect all tokens from each

diagram into a single sequence.
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ECG-JEPA

Electrocardiogram (ECG) captures the heart’s electrical signals, offering valuable infor-

mation for diagnosing cardiac conditions. However, the scarcity of labeled data makes

it challenging to fully leverage supervised learning in medical domain. Self-supervised

learning (SSL) offers a promising solution, enabling models to learn from unlabeled data

and uncover meaningful patterns. In this paper, we show that masked modeling in the

latent space can be a powerful alternative to existing self-supervised methods in the ECG

domain. We introduce ECG-JEPA, a SSL model for 12-lead ECG analysis that learns

semantic representations of ECG data by predicting in the hidden latent space, bypassing

the need to reconstruct raw signals. This approach offers several advantages in the ECG

domain: (1) it avoids producing unnecessary details, such as noise, which is common in

ECG; and (2) it addresses the limitations of näıve L2 loss between raw signals. Another

key contribution is the introduction of Cross-Pattern Attention (CroPA), a specialized

masked attention mechanism tailored for 12-lead ECG data. ECG-JEPA is trained on

the union of several open ECG datasets, totaling approximately 180,000 samples, and

achieves state-of-the-art performance in various downstream tasks including ECG classi-

fication and feature prediction.

5.1 Introduction

Electrocardiography is a non-invasive method to measure the electrical activity of the

heart over time, serving as a crucial tool for diagnosing various cardiac conditions. While

numerous supervised methods have been developed to detect heart diseases using ECG
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data [21, 42, 46], these models often face significant performance degradation when ap-

plied to data distributions different from those on which they were trained. This chal-

lenge points to the need for more flexible approaches that can learn robust, transferable

representations from ECG data.

Self-supervised learning (SSL) offers an alternative approach by learning general rep-

resentations in diverse domains, such as natural language processing (NLP) [7, 15, 53],

computer vision (CV) [2, 10, 22], and video analysis [5, 52]. Despite this promise, the ap-

plication of SSL to ECG data presents unique challenges. For instance, data augmenta-

tion, which is essential in many SSL architectures, is more complex for ECG than for com-

puter vision data. Simple transformations like rotation, scaling, and flipping, effective in

CV, can distort the physiological meaning of ECG signals. Additionally, ECG recordings

often contain artifacts and noise, which cause autoencoder-based SSL models to struggle

with reconstructing raw signals. These architectures may also miss visually subtle but

diagnostically critical features, such as P-waves and T-waves, which are imperative for

diagnosing certain cardiac conditions.

In this work, we propose ECG Joint-Embedding Predictive Architecture (ECG-JEPA)

tailored for 12-lead ECG data, effectively addressing the aforementioned challenges. ECG-

JEPA utilizes a transformer architecture to capture the semantic meaning of the ECG.

By masking several patches of the ECG, ECG-JEPA predicts abstract representations of

the missing segments, indicating a high-level understanding of the data. Additionally, we

develop a novel masked-attention for multi-lead ECG data, chich we call Cross-Pattern

Attention (CroPA). CroPA incorporates clinical knowledge into the model as an inductive

bias, guiding it to focus on clinically relevant patterns and relationships across leads.

Our contributions are as follows:

• ECG-JEPA achieves notable improvements in linear evaluation and fine-tuning on

classification tasks compared to existing SSL methods without hand-crafted aug-

mentations.

• CroPA introduces a specialized masked attention mechanism, allowing the model

to focus on clinically relevant information in multi-lead ECG data, resulting in

improved downstream task performance.

• ECG-JEPA can also recover important ECG features, including heart rate and

QRS duration, which are classical indicators used in ECG evaluation. This is the
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I II III

aVR aVL aVF

V1 V2 V3

V4 V5 V6

Figure 5.1: 12-lead ECG with baseline wander artifact.

first work to demonstrate that learned representations can effectively recover ECG

features.

• ECG-JEPA is highly scalable, allowing efficient training on large datasets. For

instance, ECG-JEPA is trained for only 100 epochs, yet outperforms other ECG

SSL models on most downstream tasks, taking approximately 22 hours on a single

RTX 3090 GPU.

In summary, ECG-JEPA introduces a robust SSL framework for 12-lead ECG analy-

sis, overcoming traditional SSL limitations with clinically inspired design elements, scal-

able architecture, and demonstrated effectiveness on a wide range of tasks. Our code is

available at https://github.com/sehunfromdaegu/ECG_JEPA.

5.2 Background

Self-Supervised Learning (SSL) facilitates learning abstract representations from input

data without the need for labeled data, which is particularly beneficial in medical domains

where labeled data is scarce and expensive. SSL leverages inherent data patterns to learn

useful representations, allowing models to adapt to various downstream tasks with greater

robustness to data imbalances [32]. We begin in Section 5.2.1 with an overview of the ECG

and its key features, highlighting the critical characteristics essential for understanding

ECG data. In Sections 5.2.2 and 5.2.3, we briefly explain key SSL techniques and their

specific applications to ECG, respectively.
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5.2.1 Electrocardiogram (ECG)

The electrocardiogram (ECG) is a non-invasive diagnostic method that records the heart’s

electrical activity over time using electrodes placed on the skin. The standard 12-lead

ECG captures electrical activity of the heart from multiple angles. These 12 leads are

categorized into limb leads (I, II, III), augmented limb leads (aVR, aVL, aVF), and chest

leads (V1-V6). Each lead provides unique information about the heart’s electrical activity,

offering a comprehensive view that aids in diagnosing various cardiac conditions. Refer

to Figure 5.1 for an illustration.

ECG features are specific characteristics of ECG signals that are critical for summa-

rizing the overall signal. These features play an essential role in monitoring a patient’s

health status and are instrumental in the application of statistical machine learning mod-

els for diagnosing heart diseases. Key ECG features include heart rate, QRS duration,

PR interval, QT interval, and ST segment. These features are identified by measuring

specific time intervals or amplitude levels in the ECG waveform. For instance, heart rate

is calculated using the formula 1000× (60/RR interval) in beats per minute (bpm), where

the RR interval is measured in milliseconds (ms). Refer to Figure 5.2 for a visual repre-

sentation of these features.

In this work, we use only 8 leads (I, II, V1-V6) as the remaining 4 leads (III, aVR, aVL,

aVF) can be derived from linear combinations of the 8 leads following the Einthoven’s law

[50]:

III = II− I

aVR = −(I + II)/2

aVL = (I− II)/2

aVF = (II− I)/2.

This choice maintains the necessary diagnostic information while optimizing computa-

tional efficiency.

5.2.2 Self-Supervised Learning Architectures

Self-supervised learning can be broadly categorized into contrastive and non-contrastive

methods. Non-contrastive methods can be further divided into generative and non-

generative architectures. For a broader introduction to SSL, see [3].
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Figure 5.2: Key ECG Features.
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Figure 5.3: ECG-JEPA training overview. For illustration, we use L = 3, N = 5 subin-
tervals and Q = 3 unmasked subintervals.

In contrastive learning, the model is encouraged to produce similar representations for

semantically related inputs x
′
and x

′′
, while pushing apart the representations of unrelated

inputs x
′

and y
′
. SimCLR [10] is one of the most popular contrastive methods, using two

different augmentations of a single input x to form semantically similar pairs x
′

and x
′′
.

Beyond contrastive methods, generative architectures have been particularly success-

ful in recent large language models [7, 15, 53] and in computer vision [22]. Generative

architectures involve reconstructing a sample x from its degraded version x′ using an

encoder-decoder framework. The premise is that reconstructing clean data from a cor-

rupted version reflects the model’s deep understanding of the underlying data structure.

The encoder maps the perturbed input x′ into a latent representation, which the decoder

then uses to reconstruct the original input x [56]. Recently, the authors of [4] observed

that generative architectures prioritize learning principal subspaces of the data, which

may limit their capacity to capture semantic representations for perceptual tasks.

As an alternative, non-generative methods have shown promise across domains, includ-
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ing computer vision [2,6,11,20] and video analysis [5]. Among these, the Joint-Embedding

Predictive Architecture (JEPA) [30] processes an input pair x and its corrupted versions

x′ to obtain representations z and z′ through encoders. Unlike generative architectures

that make predictions in the input space, JEPA performs prediction in the latent space

by reconstructing z from z′. This approach effectively avoids the challenge of predicting

unpredictable details, a common issue in biological signals.

5.2.3 Related Works

Several studies have worked on capturing semantically meaningful representations of 12-

lead ECG data. Contrastive Multi-segment Coding (CMSC) [27] splits an ECG into two

segments, encouraging similar representations for compatible segments while separating

incompatible ones. Contrastive Predictive Coding (CPC) [54], applied in [34], predicts

future ECG representations in a contrastive manner, but its reliance on LSTM mod-

ules makes it inefficient for large datasets. More recently, [60] introduced masked au-

toencoders for ECG, proposing temporal and channel masking strategies, Masked Time

Autoencoder (MTAE) and Masked Lead Autoencoder (MLAE). Similarly, [38] proposed

ST-MEM, which masks random time intervals for each lead. However, both MLAE and

ST-MEM may struggle with the high correlations between ECG leads, potentially over-

simplifying the prediction task.

5.3 Methodology

ECG-JEPA is trained by predicting masked representations of ECG data in the hidden

representation space, using only a partial view of the input. The proposed architec-

ture utilizes a student-teacher framework, as illustrated in Figure 5.3. We subdivide the

multi-channel ECG into non-overlapping patches and sample a subset of these patches for

masking. However, reconstructing the raw signals of masked patches can be particularly

challenging in the ECG domain due to the prevalence of noise in biological signals. In-

stead, our model predicts the masked patches in the hidden representation space, where

this challenge can be effectively addressed. We validate the quality of the learned rep-

resentations through various downstream tasks, including linear probing, fine-tuning on

classification tasks, and ECG feature extraction tasks.
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5.3.1 Patch Masking

Let x ∈ RL×T represent a multi-lead ECG of length T with L channels. We divide the

interval [0, T ] into N non-overlapping subintervals of length t. Each subinterval in each

channel constitutes a patch of x, resulting in L × N patches. The masking strategy in

multi-lead ECG must be carefully chosen because patches in different leads at the same

temporal position are highly correlated, potentially making the prediction task too easy.

To address this, we mask all patches across different leads in the same temporal space.

With this in mind, we employ two masking strategies: random masking and multi-block

masking.

In random masking, we randomly select a percentage of subintervals to mask, while

in multi-block masking, we select multiple consecutive subintervals to mask. Note that

we allow these consecutive subintervals to overlap, which requires the model to predict

much longer sequences of representations. In this paper, we use both masking strategies

to evaluate the effectiveness of ECG-JEPA, with a random masking ratio of (0.6, 0.7) and

a multi-block masking ratio of (0.175, 0.225) with a frequency of 4. The unmasked patches

serve as the contextual input for the student networks, while the masked patches are the

ones for which we aim to predict the representations.

The patches are converted into sequences of token vectors using a linear layer, and

augmented with positional embeddings. We employ the conventional 2-dimensional si-

nusoidal positional embeddings for the student and teacher networks, while we use 1-

dimensional sinusoidal positional embeddings for the predictor network.

5.3.2 Teacher, Student, and Predictor

ECG-JEPA consists of three main components: the teacher network, the student net-

work, and the predictor network. Both the teacher and student networks are based on

standard transformer architectures. The weights of the teacher network are updated us-

ing an exponential moving average (EMA) of the student network, as detailed in 5.A.2.

The predictor network, a smaller transformer, operates on single-channel representations,

which still encode information from all leads due to the self-attention mechanism.

The teacher network handles the entire L×N patches, generating fully contextualized

L × N representations. The student network, however, processes only L × Q visible

(unmasked) patches, where Q < N represents the number of visible time intervals. These

L×Q representations from the student are then concatenated with the (learnable) mask
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Figure 5.4: Cross-Pattern Attention (CroPA). The patch in the middle attends only to
the colored patches.

tokens, resulting in L×N representations. Subsequently, each lead’s representations are

passed to the predictor, which processes single-channel representations. The predictor’s

output, the predicted representations of the target patches, is compared with the target

representations using a smooth L1 loss function.

5.3.3 Cross-Pattern Attention (CroPA)

Multi-lead ECG signals require careful analysis of patterns that are often consistent across

different leads, which is crucial for identifying potential cardiac abnormalities. This de-

mands attention mechanisms that prioritize relationships within the same lead and within

relevant time windows.

To incorporate this structural insight, we introduce Cross-Pattern Attention (CroPA),

a masked self-attention mechanism designed for multi-lead ECG data. CroPA imposes

an inductive bias by allowing each patch to attend only to patches within the same lead

and temporal space (Figure 5.4). This aligns with the way ECG signals are typically

interpreted, where intra-lead and temporally adjacent signals hold the most significance.

By incorporating this inductive bias, CroPA helps the model focus on relevant intra-

lead relationships, reducing interference from unrelated signals across different channels

and time points. Compared to the standard self-attention mechanism, which treat all

patches equally, CroPA reflects a structured approach that mirrors the process of multi-

lead signal interpretation, leading to improved performance in downstream tasks.
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Figure 5.5: Squares following the encoder represent the representations of ECG patches.
The representations are subsequently averaged through a pooling layer, with the resulting
vector (highlighted in cyan) serving as an abstract representation of the ECG data.

5.3.4 ECG representation

After training, we use only the student network as the encoder. The encoder outputs are

average-pooled to obtain the final ECG representation, which serves as the feature vector

for downstream tasks. See Figure 5.5 for an illustration.

5.4 Experimental Settings

In all experiments, 10-second multi-lead ECG signals were resampled to 250Hz, yielding

T = 2500 time points. We divided the interval [0, T ] into N = 50 non-overlapping

subintervals, each of length t = 50. The model was trained for 100 epochs without

data augmentation, and the final checkpoint was used for downstream tasks. Additional

experimental details are provided in Appendix 5.A.1.

5.4.1 Pretraining Datasets

Training SSL models with large datasets is crucial for developing generalized represen-

tations. However, most previous works have used relatively small datasets, with the ex-

ception of [38], where an SSL model was trained with a large number of 12-lead ECGs.

Following [38], we use the Chapman [62], Ningbo [61], and CODE-15 [12] datasets for

pretraining ECG-JEPA. The Chapman and Ningbo datasets collectively consist of 45,152

10-second 12-lead ECGs at 500Hz. CODE-15 includes 345,779 12-lead ECGs from 233,770

patients at 400Hz, with 143,328 being 10-second recordings. After excluding recordings

with missing values, we have 43,240 ECGs from Chapman and Ningbo and 130,900 ECGs
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from CODE-15.

5.4.2 Downstream Datasets

We use the PTB-XL [57] and CPSC2018 [31] datasets to evaluate the performance of

ECG-JEPA on downstream tasks. PTB-XL contains 21,837 clinical 10-second 12-lead

ECG records from 18,885 patients, recorded at 500Hz and annotated with 71 diagnostic

labels, which are aggregated into five superclasses. We use these superclass labels for

our experiments. The CPSC2018 dataset includes 6,877 12-lead ECG recordings with

nine annotated cardiac conditions. These datasets are multi-label in nature, where each

recording can have multiple labels simultaneously. The details of the datasets are provided

in Appendix 5.A.1.

5.4.3 Architecture

Our model employs transformer encoder architectures for the student, teacher, and pre-

dictor networks. Both the teacher and student networks consist of 12 layers with 16 atten-

tion heads and a hidden dimension of 768. The predictor network, designed as a smaller

transformer encoder, comprises 6 layers with 12 attention heads and a hidden dimension

of 384. While the teacher and student networks process the multi-lead ECG data holisti-

cally, the predictor operates on each lead independently to reconstruct the masked repre-

sentations. Importantly, this does not imply that the predictor relies solely on single-lead

information for the reconstruction task; due to the self-attention mechanism, the input

representations for each lead still encapsulate information from all leads.

5.4.4 Downstream Tasks

We conduct extensive experiments to show that ECG-JEPA effectively captures semantic

representations. Its performance is evaluated on classification tasks using linear probing

and fine-tuning. Furthermore, we assess its capability in low-shot learning settings, as

well as under reduced-lead conditions where the downstream dataset is limited to single

or two leads. Reduced-lead configurations are common in clinical practice, especially in

scenarios like wearable devices or remote monitoring, where using the full 12-lead ECG

setup is impractical.
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Table 5.1: Linear evaluation on multi-label and multi-class tasks. Our proposed method
outperforms all baselines, achieving the highest AUC and F1 scores across both tasks and
datasets.

Multi-label Task Multi-class Task

Method Epochs
PTB-XL CPSC2018 PTB-XL CPSC2018

AUC F1 AUC F1 AUC F1 AUC F1

ST-MEM 800 0.896 0.662 0.964 0.752 0.888 0.566 0.973 0.805

SimCLR 300 0.866 0.624 0.890 0.523 0.842 0.496 0.918 0.624

CMSC 300 0.802 0.472 0.767 0.206 0.796 0.442 0.787 0.391

CPC 100 0.620 0.167 0.687 0.091 0.600 0.201 0.672 0.210

MoCo v31 800 - - - - 0.739 0.142 0.712 0.080

MTAE1 800 - - - - 0.807 0.437 0.818 0.349

MLAE1 800 - - - - 0.779 0.382 0.794 0.263

ECG-JEPArb 100 0.906 0.690 0.969 0.769 0.894 0.616 0.974 0.805

ECG-JEPAmb 100 0.912 0.712 0.971 0.789 0.896 0.628 0.973 0.819

1 Scores reported in [38]; results for multi-label tasks were not available.

To validate the expressiveness of the learned representations, we predict key ECG

features such as heart rate and QRS duration. Notably, this work is the first to show that

these learned representations can recover a variety of ECG features. The ability to predict

these features highlights the informativeness of the representations and their potential to

capture clinically relevant characteristics, which is crucial for reliable ECG analysis.

ECG datasets, such as PTB-XL and CPSC2018, often include multiple simultaneous

labels for a single recording, making them multi-label tasks. However, many prior studies

have simplified this into a multi-class classification problem by focusing on single-label

subsets of the data. To ensure a fair comparison, we pretrain competing methods using

publicly available code and evaluate them on the multi-label classification task. In cases

where the code is unavailable, we will convert our task into a multi-class problem to align

with the reported performance in the literature.
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5.5 Experiments

In this section, we evaluate the performance of the learned representations across various

downstream tasks to demonstrate their generalizability and ability to capture essential

ECG features. ECG-JEPA is compared against several state-of-the-art self-supervised

learning (SSL) methods.

For classification tasks, we use AUC (Area Under the ROC Curve) and F1 scores

as evaluation metrics. AUC provides a comprehensive measure of discriminative ability

by considering performance across all classification thresholds, making it more robust to

variations in decision boundaries. In contrast, the F1 score balances precision and recall at

a fixed threshold, offering insights into the model’s performance when a specific decision

boundary is chosen.

In multi-label classification, we compute AUC by averaging the scores from binary

classification for each label, while for multi-class classification, AUC is calculated using

the one-vs-rest approach. For both tasks, F1 scores are macro-averaged across all classes

to ensure equal weighting of each class in the final score.

In most cases, ECG-JEPA consistently outperforms other SSL methods that rely on

hand-crafted augmentations, highlighting its effectiveness in learning generalizable rep-

resentations. In our experiments, ECG-JEPArb and ECG-JEPAmb refer to ECG-JEPA

models trained using random masking and multi-block masking strategies, respectively.

5.5.1 Linear Evaluation

Table 5.1 present the results of our linear evaluation on the PTB-XL and CPSC2018

datasets. We train a linear classifier on top of the frozen representations for 10 epochs and

evaluate its performance on downstream tasks. Further training beyond 10 epochs does

not lead to any significant improvement in performance. As shown in the tables, ECG-

JEPA consistently outperforms other SSL methods, demonstrating superior efficiency and

effectiveness with substantially reduced computational resources.

5.5.2 Fine-tuning

Fine-tuning is another method to evaluate the quality of learned representations, as it

tests the model’s ability to adapt its pre-trained features to new tasks. We add a linear

classification head at the end of the encoder and train the entire network for 10 epochs.
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Similar to linear evaluation, training for 10 epochs is sufficient, as further training does not

lead to additional performance gains. Fine-tuning can potentially enhance performance

beyond what is achieved with linear evaluation alone.

Table 5.2 presents the results of fine-tuning on the PTB-XL and CPSC2018 datasets.

ECG-JEPA is compared with other SSL methods as well as supervised methods in a

multi-class classification setting, where the student network is trained directly from the

scratch. The results indicate that ECG-JEPA achieves the highest AUC and F1 scores

on PTB-XL and the highest AUC on CPSC2018.

5.5.3 Low-shot Linear Evaluation

Table 5.3 presents the performance comparison on the low-shot task. Low-shot learning is

particularly challenging, as models must generalize effectively with limited labeled data.

Given the difficulty and resource-intensive nature of obtaining labeled data in medical

research, low-shot learning represents a realistic and critical scenario in the medical field.

In this experiment, we evaluate the performance of ECG-SSL models on the PTB-XL

multi-label task with only 1% and 10% of the training set, while keeping the test set

fixed. As shown in the table, ECG-JEPA demonstrates a clear advantage over other SSL

methods, with its effectiveness becoming particularly evident in low-shot learning tasks.

This suggests that ECG-JEPA can be particularly well-suited for transfer learning where

labeled data is scarce.

5.5.4 Reduced Lead Evaluation

Since transformer architectures can handle variable input lengths, we evaluated ECG-

JEPA’s performance with reduced leads. In this experiment, we conducted a linear eval-

uation on the PTB-XL multi-label task using only a single lead (Lead II) and two leads

(Lead II and V1), training linear classifiers on the learned representations for 10 epochs1.

Table 5.4 presents the results. Notably, ECG-JEPA maintains strong performance even

with fewer leads, which is valuable for practical applications in mobile health monitoring,

where most devices typically output only one or two leads.

1We compare only with ST-MEM, as it is a transformer-based model whose pretrained weights are

publicly available.
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Table 5.2: Fine-tuning on multi-class task.

Method Epochs
PTB-XL CPSC2018

AUC F1 AUC F1

Supervised 100 0.887 0.608 0.893 0.566

MoCo v31 800 0.913 0.644 0.967 0.838

MTAE1 800 0.910 0.613 0.961 0.769

MLAE1 800 0.915 0.625 0.973 0.816

CMSC1 800 0.877 0.510 0.938 0.717

ST-MEM 800 0.929 0.668 0.977 0.820

SimCLR 300 0.905 0.650 0.934 0.693

CPC2 100 - - - -

ECG-JEPArb 100 0.944 0.710 0.980 0.821

ECG-JEPAmb 100 0.937 0.680 0.983 0.799

1 Scores reported in [38].
2 We did not fine-tune CPC due to its slow training process.

Table 5.3: Low-shot linear evaluation on the multi-label PTB-XL. The mean and standard
deviation of macro AUCs are reported for 1% (192 samples) and 10% (1923 samples) of
the training set, selected three times independently.

PTB-XL

Method Epochs 1% 10%

ST-MEM 800 0.807 ± 0.005 0.872 ± 0.001

SimCLR 300 0.803 ± 0.002 0.843 ± 0.001

CMSC 300 0.750 ± 0.008 0.792 ± 0.001

CPC 100 0.523 ± 0.006 0.560 ± 0.005

ECG-JEPArb 100 0.836 ± 0.006 0.887 ± 0.000

ECG-JEPAmb 100 0.843 ± 0.004 0.894 ± 0.003
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Table 5.4: Reduced lead evaluation. Linear evaluation of PTB-XL multi-label classifica-
tion in single-leade (II) and dual-lead (II and V1).

1-Lead 2-Lead

Method AUC F1 AUC F1

ST-MEM 0.832 0.571 0.848 0.597

ECG-JEPArb 0.846 0.596 0.877 0.647

ECG-JEPAmb 0.849 0.593 0.880 0.657

5.5.5 ECG Feature Extraction

Extracting ECG features is crucial for diagnosing and monitoring cardiac conditions.

In this experiment, we assess the model’s ability to extract key features such as heart

rate and QRS duration from the learned representations of the PTB-XL dataset. Unlike

classification tasks, which focus on perceptual patterns, ECG features are directly tied to

the signal’s morphology.

Various methods exist for segmenting ECG signals [13,25,37,44], which can be used to

extract ECG features. For this experiment, we utilized a publicly available segmentation

model [25] to generate ground truth labels for heart rate and QRS duration from the PTB-

XL dataset. We then trained a linear regression model on the learned representations to

predict these features, using mean squared error (MSE) as the loss function.

Table 5.5 shows the performance comparison, reporting the means and standard devi-

ations of the absolute differences between the predicted and extracted values for the heart

rate and QRS duration across the PTB-XL test set.

Interestingly, although the model’s representations are designed to capture high-level

features, they retain the capacity to recover low-level ECG features. This dual ability to

encode both high-level semantics and low-level morphology underscores the versatility of

ECG-JEPA, highlighting its potential in both diagnostic and real-world applications.

5.6 Ablation Study

5.6.1 Effect of CroPA

Table 5.6 presents the results of our evaluation of the effectiveness of CroPA. CroPA

introduces a “human-like” inductive bias, enabling the model to be trained more efficiently
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Table 5.5: ECG feature prediction results on PTB-XL multi-lable test set. The mean heart
rate and QRS duration in the test set are 70.01 BPM (±17.65) and 90.48 ms (±17.02),
respectively.

Mean Absolute Error

Method Heart Rate (BPM) QRS Dur. (ms)

ST-MEM 1.35 ± 2.38 4.60 ± 4.16

SimCLR 1.87 ± 2.81 6.14 ± 5.80

CMSC 7.20 ± 7.43 10.12 ± 9.98

CPC 11.40 ± 11.04 11.55 ± 11.55

ECG-JEPArb 1.54 ± 2.62 4.81 ± 4.29

ECG-JEPAmb 1.45 ± 2.44 4.41 ± 4.08

Table 5.6: Effect of CroPA. Linear evaluation (lin) and fine-tuning (ft) results on PTB-
XL multi-class task.

lin ft

Mask CroPA Epochs AUC AUC

Random x 100 0.888 0.930

Random x 200 0.887 0.927

Random o 100 0.894 0.944

Multi-block x 100 0.872 0.924

Multi-block x 200 0.886 0.914

Multi-block o 100 0.896 0.937

on multi-lead ECG data. Without CroPA, models may require more epochs to converge.

For a fair comparison, we trained ECG-JEPA with and without CroPA for 100 and 200

epochs and compared their performance on the PTB-XL multi-class task. The results

show that CroPA improves the model’s performance, demonstrating its effectiveness in

capturing inter-lead relationships and enhancing the model’s ability to learn meaningful

representations.

5.6.2 Masking Ratio

Table 5.7 presents the performance of ECG-JEPA in linear evaluation with different mask-

ing ratios and strategies. The results indicate that the model benefits from a high masking
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Table 5.7: Effect of masking strategy. Linear evaluation results on PTB-XL multi-label
task using different masking ratios and strategies.

Mask Ratio Freq. AUC F1

Random (0.3, 0.4) 1 0.884 0.652

Random (0.4, 0.5) 1 0.904 0.698

Random (0.5, 0.6) 1 0.906 0.697

Random (0.6, 0.7) 1 0.906 0.690

Random (0.7, 0.8) 1 0.909 0.706

Multi-block (0.10, 0.15) 4 0.904 0.678

Multi-block (0.15, 0.20) 4 0.905 0.687

Multi-block (0.175, 0.225) 4 0.912 0.712

Table 5.8: Comparison of 8-Lead and 12-Lead Models on PTB-XL multi-label.

Model epochs AUC F1

8-Lead 100 0.906 0.690

12-Lead 100 0.905 0.699

ratio. Notably, multi-block masking is advantageous for linear evaluation, while random

masking is more effective for fine-tuning, as indicated in Table 5.2. Although random

masking with a ratio of (0.7, 0.8) achieves better performance in the PTB-XL multi-label

task, a masking ratio of (0.6, 0.7) performs better in other tasks. Therefore, we chose the

latter for our main experiments.

5.6.3 Comparison with 12-Lead Model

We now investigate the practical sufficiency of using 8 leads for ECG-JEPA pretraining.

To evaluate the impact of this reduction, we trained models using both 8 leads and 12

leads and compared their performance on the linear evaluation of a multi-label task for

PTB-XL.

Table 5.8 presents the results of this comparison using ECG-JEPArb. As expected, the

performance difference between the 8-lead and 12-lead models is minimal, indicating that

using 8 leads is sufficient for effective pretraining without significant loss of information.
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5.7 Discussion

5.7.1 Insights and Interpretations

The results demonstrate that ECG-JEPA effectively captures high-quality representa-

tions from 12-lead ECG signals, as evidenced by its superior performance across vari-

ous downstream tasks, including classification, low-shot learning, and feature extraction.

The model’s ability to maintain robust performance under reduced lead configurations

underscores its practical applicability in resource-constrained scenarios, such as wearable

devices and remote health monitoring.

Moreover, the proposed Cross-Pattern Attention (CroPA) mechanism introduces a

clinically inspired inductive bias, aligning with the physiological patterns of multi-lead

ECG signals. This targeted attention contributes to enhanced model performance, par-

ticularly in tasks requiring inter-lead correlations. The findings validate the importance

of incorporating domain-specific design elements into self-supervised learning frameworks

for medical data.

Compared to previous SSL approaches, ECG-JEPA offers significant advancements.

While several methods rely on extensive augmentations or manual feature engineering,

ECG-JEPA bypasses these requirements by learning semantic representations directly in

the latent space.

To the best of our knowledge, we are the first to demonstrate that ECG representations

learned through self-supervised learning can successfully recover key ECG features such as

heart rate and QRS duration. This finding highlights the dual capability of ECG-JEPA to

encode both high-level semantic information and low-level morphological details, making

it versatile for various diagnostic and monitoring tasks. These results pave the way for

further exploration of self-supervised learning methods in uncovering clinically meaningful

patterns in physiological signals.

5.7.2 Limitations and Challenges

While ECG-JEPA achieves state-of-the-art performance, certain limitations remain. One

notable limitation is the lack of inherent explainability in the model’s learned representa-

tions. Although ECG-JEPA effectively captures semantic and morphological features, it

provides limited insights into how these features are utilized for specific predictions, which

can be crucial in medical applications. The absence of a clear interpretability mechanism
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may hinder its adoption in clinical settings, where understanding the decision-making

process is often as important as the results themselves.

5.7.3 Broader Implications

The implications of this work extend beyond ECG analysis. The principles underlying

ECG-JEPA, particularly the combination of latent-space prediction and domain-specific

attention mechanisms, could inspire advancements in other multivariate physiological sig-

nal domains, such as EEG and EMG. By leveraging these principles, researchers could

develop models capable of extracting meaningful representations from diverse biomedical

data, potentially accelerating progress in multimodal diagnostic systems.

5.7.4 Future Directions

Looking ahead, integrating ECG-JEPA with complementary diagnostic modalities, such

as chest X-rays or echocardiograms, could provide a more holistic understanding of cardiac

health. This multi-modal approach has the potential to improve diagnostic accuracy by

leveraging the strengths of different data types, enabling a richer representation of patient

conditions.

One significant challenge in pursuing these extensions is the scarcity of large-scale

datasets in other modalities. Addressing this limitation is crucial for advancing the multi-

model foundation model.

5.8 Conclusion

We proposed ECG-JEPA, a novel SSL method tailored for 12-lead ECG data. By uti-

lizing a JEPA coupled with the innovative relative positional encoding method, CroPA,

ECG-JEPA effectively learns meaningful representations of ECG signals. This approach

addresses the challenges posed by noise and artifacts in ECG data, demonstrating sub-

stantial improvements over existing SSL methods in various downstream tasks, with the

added benefit of significantly faster convergence.

Our extensive experimental evaluations reveal that ECG-JEPA outperforms state-of-

the-art SSL methods across several tasks, including linear evaluation, fine-tuning, low-

shot learning, and ECG feature extraction. Moreover, our investigation into the use of 8
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leads, as opposed to the full 12-lead ECG, indicates that this reduction does not compro-

mise performance while optimizing computational efficiency. This finding is particularly

significant for applications constrained by limited computational resources.

5.A Supplementary Materials

5.A.1 Experimental Details

Downstream Datasets Details

Table 5.9, and 5.10 show the distribution of the PTB-XL and CPSC2018 datasets, re-

spectively. Note that the sum of samples in each class exceeds the total number of ECG

recordings in multi-label task.

The PTB-XL dataset is stratified into ten folds, where the first eight folds are used for

training, the ninth fold for validation, and the tenth fold for testing. In our experiments,

we used the first nine folds for training and the tenth fold for testing, as we did not observe

overfitting during linear evaluation and fine-tuning.

For the CPSC2018 dataset, only the training set is publicly available, which is strati-

fied into seven folds. We used the first six folds for training and the seventh fold for test-

ing, omitting the validation set. The original CPSC2018 dataset consists of 6,877 ECG

recordings, but we excluded recordings with a length of less than 10 seconds, resulting in

6,867 ECG recordings.

Table 5.9: PTB-XL Distribution.

Type Set # ECG Norm MI STTC CD HYP

Multi-label

Total 21799 9514 5469 5235 4898 2649

Train 19230 8551 4919 4714 4402 2387

Test 2158 963 550 521 496 262

Multi-class

Total 16244 9069 2532 2400 1708 535

Train 14594 8157 2276 2158 1524 479

Test 1650 912 256 242 184 56
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Table 5.10: CPSC2018 Distribution.

Type Set # ECG Norm PVC AF LBBB STE 1AVB PAC STD RBBB

Multi-label

Total 6867 918 1220 235 220 721 614 699 868 1854

Train 5989 805 1059 206 197 632 534 615 742 1616

Test 878 113 161 29 23 89 80 84 126 238

Multi-class

Total 6391 918 975 178 185 685 531 606 783 1530

Train 5577 805 849 159 169 600 459 534 671 1331

Test 814 113 126 19 16 85 72 72 112 199

Hyperparameters for ECG-JEPA

Hyperparameters for ECG-JEPA pretraining, linear evaluation, and fine-tuning are pro-

vided in Tables 5.11, 5.12, and 5.13, respectively. In ECG-JEPAmb, the number of visi-

ble patches in ECG-JEPAmb varies more than in ECG-JEPArb, resulting in higher GPU

memory usage. Consequently, we reduced the batch size to 64 to fit the model on a single

NVIDIA RTX 3090 GPU. Interestingly, ECG-JEPAmb benefits from larger learning rates,

even with the halved batch size.

For fine-tuning process, the actual learning rate is calculated as

lr = base lr × batchsize/256,

following the heuristic by [19].

Table 5.11: Pretraining Settings for ECG-JEPA.

config ECG-JEPArb ECG-JEPAmb

optimizer AdamW AdamW

learning rate 2.5e-5 5e-5

weight decay 0.05 0.05

batch size 128 64

learning rate schedule cosine decay cosine decay

warmup epochs 5 5

epochs 100 100

drop path 0.1 0.1
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Table 5.12: Linear Evaluation Settings

config value

optimizer AdamW

learning rate 5e-4

weight decay 0.05

batch size 32

learning rate schedule cosine decay

warmup epochs 3

epochs 10

Table 5.13: Fine-tuning Settings.

config value

optimizer AdamW

base learning rate 1.0e-4

weight decay 0.05

batch size 16

learning rate schedule cosine decay

warmup epochs 3

epochs 10

Hyperparameters for Other Pretrained Models

Besides pretraining ECG-JEPA, we also pretrained other models, including CMSC [27],

CPC [54], and SimCLR [10] using the same datasets as ECG-JEPA.

For CMSC and CPC, we adhered to the original architecture and hyperparameters.

SimCLR utilized a ResNet50 [23] encoder with an output dimension of 2048. CMSC and

SimCLR were pretrained for 300 epochs, selecting the best checkpoint at 100, 200, or 300

epochs based on linear evaluation performance on the PTB-XL multi-label setting. Due to

the slow training process, CPC was pretrained for only 100 epochs, taking approximately

9 days on a single NVIDIA RTX 3090 GPU due to the LSTM module in the model. For

ST-MEM [38], we employed the publicly available checkpoint pretrained for 800 epochs.

Given SimCLR’s sensitivity to data augmentations, we applied several that work well

empirically: baseline shift (adding a constant to all leads), baseline wander (low-frequency

noise), Gaussian noise (random noise), powerline noise (50Hz noise), channel resize, ran-
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dom crop, and jump noise (sudden jumps). These augmentations aimed to enhance the

robustness of the model to various signal distortions.

5.A.2 Exponential Moving Average

The teacher network is initialized as a copy of the student network and is updated using

an exponential moving average (EMA) of the student’s weights. The EMA is computed

as follows:

θiteacher = βiθ
i−1
teacher + (1− βi)θistudent

where i denotes the current training iteration, and βi is a momentum parameter that

evolves during training. The momentum parameter βi is computed as:

βi = ema0 +
i · (ema1 − ema0)

iterations per epoch · epochs

Here, ema0 and ema1 represent the initial and final values of the momentum parameter,

respectively. For our implementation, ema0 = 0.996 and ema1 = 1.0.
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