The Effect of Δ ¹²PGJ2 and PPAR γ Agonist on the Proliferation and Differentiation of Osteoblast

Jeong-Mi Heo¹, Kyoung- Wha Kim¹, Kyoung-Wook Chung¹, Hye-Joon Lee¹, In-Chul Rhyu¹, Young Ku^{1,2}, Chong-Pyoung Chung^{1,2*}

¹Department of Periodontology, College of Dentistry, Seoul National University ²Intellectual Biointerface Engineering Center, KOSEF

I Introduction

Inflammatory periodontal disease is the most important cause of tooth loss in adults. Although multifactorial, the pathogenesis of periodontitis involves the presence of the plaque-retentive factors that initiates local inflammatory reaction in a predisposed host, thus provoking edema, cell influx, and release of inflammatory mediators. Among these, eicosanoids, mainly prostaglandins, seem to be important candidates in causing tissue destruction and ultimately, alveolar bone loss. Prostaglandins (PG) are 20-carbon essential fatty acids, a family of biologically active molecules and synthesized in most tissues.

Early studies showed that PGs are important mediators of the inflammatory process and bone resorption, especially PGE₂ is the most potent agent, PGF₂ are detected in significantly high levels in inflammed gingival tissues, and up-regulate the production of the inflammatory cytokine, MMP-1.

However, increased bone formation was also con-

firmed in animal studies by both systemic and local injection of PGE₂, and it is through the divergent actions on growth and differentiation of oteoblastic cells.

PGD₂ is a early anti-inflammatory signal in experimental colitis, and stimulates calcification of human osteoblastic cells. PGJ₂ is formed from PGD₂ in vivo and PGJ₂ can be rapidly converted to Δ ¹²PGJ₂ in the presence of plasma.

Unlike other PGs which act through plasma membrane receptors, $\Delta^{12}PGJ_2$ is a high affinity ligand to peroxisome proliferator-activated receptor gamma (PPAR γ). PPARs are ligand-activated transcription factors belonging to the nuclear receptor family. Although adipose tissue has been recognized as a principle site of expression of PPAR γ , it is expressed at lower levels in many other tissues and cell types, including cells of the monocyte/macrophage lineage, neutrophils, T lymphocyte, and chondrocytes. Recent studies in different cell types suggest that PPAR ligands not only regulate lipid and glucose homeostasis, but may also mitigate

Correspondence author: Chong-Pyoung Chung, Department of Periodontology, College of Dentistry, Seoul National University, 28 Yongon-Dong, Chongno-Ku, Seoul, 110-744, South Korea, Fax: 82-2-744-0051; E-mail: ccpperio@snu,ac,kr

the inflammatory process.

The purpose of this study is to examine the expression of PPAR γ and the effect of Δ^{12} PGJ₂ on the proliferation and differentiation of human osteoblastic Saos-2 cell line and mouse osteoblastic MC3T3-E1 cells in vitro to investigate the function of Δ^{12} PGJ₂ on ossification.

II Review of Literature

1. Prostaglandins (PG)

1) Biosynthesis

Prostaglandins (PG) are 20-carbon essential fatty acids that contain three, four, or five double bonds with a cyclopentane ring, a family of biologically active molecules and synthesized in most tissues. The predominant precursor is arachidonic acid, cleaved from phospholipids in the lipid bilayer of cells. The first step in the formation of PGs involves intracellular release of arachidonic acid from plasma membrane phospholipids via the action of phospholipase A2. The key step in the formation of PGs is the convertion of arachidonic acid by the cyclooxygenase and peroxidase activities of a single enzyme, PGH synthase (also called PG synthase or simply cyclooxygenase). One enzymatic action of COX is to convert arachidonic acid to PGG₂, and the other action is to reduce PGG2 to PGH2 by its peroxidase activity¹⁻²⁾. PGH₂ is converted to PGE₂, PGD₂, PGF2 q prostacyclin (PGI2), and thromboxane by tissue-specific isomerase and reductase.

There are two forms of COX, constitutive form (COX-1) and inducible form (COX-2). 2 isozymes are encoded by different genes³⁾, and expression of COX-2 is induced by proinflammatory cytokines, mitogens, lipopolysaccharides ⁴⁻⁶⁾ and mechanical tension force⁷⁾.

2) PG receptors

PGs have complex actions on bone metabolism that depend on interactions with different types and subtypes of receptors. Physiological actions of E.D. and F series prostaglandins are mediated by binding to specific high affinity trans-membrane G-protein coupled prostanoid receptors. For PGE2, there are four classes of receptors: EP1, which increases the intracellular Ca 2+ concentration; EP2 and EP4, which increases the intracellular cAMP levels; and EP3, which mainly decreases the intracellular cAMP ceoncentration8). Suda et al. reported that EP1, EP2, and EP4 are present in MC3T3-E1 cells, EP1 promotes cell growth, and EP2 and EP4 mediate differentiation of osteoblast⁹⁾. In human osteoblasts, the presence of DP,EP4, IP, FP and TP receptor mRNA was revealed in primary culture experiment¹⁰⁾.

On the other hand, the actions of cyclopentenone prostaglandins PGA_2 , PGA_1 , and PGJ_2 result from their interaction with other cellular target proteins. $\Delta^{12}PGJ_2$ is a high affinity ligand for the nuclear recepter $PPAR \gamma^{11}$.

3) Role of PGs on bone resorption

Early in vitro work showed that PGs are important mediators of the inflammatory process and bone resorption¹²⁾, prostaglandins of the E series are the most potent, while PGFs are somewhat less potent.

Akatsu *et al.* showed in their in vitro assay systems that PGE₂ is involved in the mechanism of IL-1 mediated osteoclast-like cell formation, and its direct interaction between osteoclast progenitors and osteoblastic cells is required in the osteoclast recruitment induced by PGE₂ and IL-1. ¹³⁾ Gardner *et al.* reported IL-6 as another agonist to PG induced bone resorption in their neonatal mouse parietal bone culture study¹⁴⁾.

This led to clinical investigations of their possible role in in vivo conditions in which there was localized bone resorption associated inflammation like periodontal disease. Elevated level of PG are detected in the crevicular fluid of periodontitis patients, and it has been associated with increased severity of the disease¹⁵⁾, and COX inhibition prevented alveolar bone loss in experimental periodontal disease model¹⁶⁾.

However, when comparison were made in some studies with prostanoid levels in gingival crevicular fluid, there was poor correlation between PG concentration and the stage of disease, indicating other resorbing factors, not sensitive to the antiprostaglandins were involved¹⁷⁻¹⁸⁾.

4) Role of PGs on bone formation

Many studies indicate PG is also a powerful bone forming agent. Yoshiyuki et al, first reported stimulatory effect of PGs on the differentiation of osteoblastic clone MC3T3-E1 cells; PGE2 stimulated ALP activity in the cells in a dose-depentednt fashion and PGE2 also increased cAMP content with the maximal effective concentration of 100 ng/ml¹⁹⁾. In fetal rat calvarial cell culture study, 3 X 10 -8 M PGE₂ induced a 2-fold increase in mineralized bone nodule formation and a 1.5-fold increase in alkaline phosphatase activity without affecting cell growth, suggesting that PGE2 may increase the proportion of functional osteoblasts able to produce mineralized bone nodules in the population by stimulating differentiation during the post-confluent stage of rat calvarial cell culture. 20) In assay system using a cultured cell from human femur explant, Koshihara et al. showed PGD2 and its derivatives stimulate ALP activity and calcification unexpectedly, with potencies nearly equal to 1,25(OH)2D3 at 108 M and suggested that the effective form is probably a metabolite, $\Delta^{12}PGJ_{2^{21}}$. Later, Tasaki et al. reported that PGD₂ metabolite, Δ ¹²PGJ₂ enhanced transcription of type I collagen mRNA synthesis at 10⁻⁵ M using the same cultural system²²⁾.

Many in vivo studies also have shown that PGs are involved with increases in bone formation. In their series of extensive in vivo studies in rats. Jee et al, reported increased metaphyseal hard tissue and cortico-endosteal bone formation in growing rats,²³⁾ production of new cancellous bone in the axial skeleton of ovariectomized rats²⁴⁾, and increase of bone mass and activity of intracortical bone remodeling in intact and ovariectomized female rats²⁵⁾. While relatively high doses of PGE2 were administrated in Jee et al. 's experiments, Yang et al. showed that a lower dose of PGE2, as low as 1 pmol/day for 2 weeks induced a greater response in bone formation without significant changes of metaphyseal cancellous bone tissue in the contralateral control limb²⁶⁾. Takagi et al. reported that subcutaneous administration of a slow-release preparation of PGD₂ not only prevented the ovariectomy-induced suppression of bone mineral density, but also augmented the steady increase in bone mineral density of the sham-operated rat²⁷⁾.

2. PGJ₂: a member of the cyclopentenone prostaglandins

1) Biosynthesis and cellular target

The cyclopentenone prostaglandins PGA_2 , PGA_1 , and PGJ_2 are formed by dehydration within the cyclopentane ring of PGE_2 , PGE_1 , and PGD_2 , respectively. PGJ_2 was discovered by Fukushima and coworkers in the course of studies of antitumor activity of PGD_2^{26} . These investigators discovered that PGD_2 undergoes spontaneous dehydration in aqueous solutions to yield PGJ_2 , a compound known previously only as a synthetic prostanoid. In aqueous solutions containing serum albumin, PGJ_2 isomerizes to yield $\Delta^{12}PGJ_2^{26}$. Further study demonstrated that $\Delta^{12}PGJ_2$ had considerably more potent anti-tumor activity than the parent compound, PGD_2 , but had

very low activity or was inactive in bioassay for PGD2 such as inhibition of platelet aggregation and relaxation of rabbit stomach strip³⁰⁾. These results suggested that the effect of Δ ¹²PGJ₂ was not mediated by binding to high affinity DP receptors, but by an unidentified cellular targets. Much excitement was generated in 1995 when this compound was found to be a high affinity ligand for the peroxisome proliferator-activated receptor (PPAR γ)³¹⁾.

2) Influence on inflammation

It has been suggested that the locally produced 15 d-PGJ₂ may function as a negative feedback regulator of inflammation by the inhibition of pro-inflammatory genes in activated macrophages³²⁾. On the basis of transfection studies in macrophage-like cell lines, antagonism of the transcription factors AP-1, NF- &B, and STAT was implicated as the mechanism of the observed anti-implammatory effects³³⁾.

Azuma *et al.* reported that $dPGJ_2$ inhibits LPS-induced IL-10 and IL-12 production by macrophages and the inhibition may be through PPAR γ^{34} .

However, growing body of evidence has emerged that PGI₂ metabolites, in addition to the PPAR yactivation, exerts also PPAR γ-independent effects. Inhibition of inducible nitric-oxide synthase35, TNF- α , IL-12³⁶⁾ production by PGJ₂ in microglial cell and macrophage³⁷⁾ does not appear to involve PPAR γ because these actions were not mimicked by other specific PPAR yagonist. Boyault et al. reported that 15 d-PGI₂ was highly potent to counteract IL-1 β effects in human chondrocytes by inhibiting NF- &B and AP-1 (activator protein-1) activation pathway through PPAR γ-independent action, and suggested the possibility of 15 d-PGJ₂ as a modulater of inflammatory disease, osteoarthritis³⁸⁾. Some studies, however, indicated that 15d-PGJ2 can be a mediator of inflammatory response by PPAR \u03c4 dependent 39), and independent pathway40-41).

3) Influence on cell cycle

15d-PGJ₂ is recognized as a potent apoptotic and growth inhibitory factor. Δ^{12} PGJ₂ effectively inhibited cell growth, caused a cell cycle arrest in G1 through a non-cAMP mediated mechanism⁴²⁾. 15 d-PGJ₂ is a potent apoptotic factor for human hepatic myofibroblasts, and 15 d-PGJ₂-induced cell death is independent of PPAR γ activation because PPAR γ is not expressed in these cells. ⁴³⁾ Kondo *et al.* showed that cyclopentanone prostaglandins are potential inducers of intracellular oxidative stress in human neuroblastoma cells (SH-SY5Y) and suggested that it may serves as second messenger of the apoptotic effect⁴⁴⁾. Details regarding the mechanism for antineoplastic activity remain to be determined,

3. PPAR γ

1) Classification and tissue distribution

The peroxisome proliferator-activatied receptors (PPAR γ) are a family of transcriptional factors belong to the nuclear receptor superfamily that includes the estrogen receptors, thyroid hormone receptors, and glucocorticoid receptors. So far, three distinct PPAR γ , termed α , δ (also called β , NUC-1 or FAAR) and γ , have been identified, each encoded by a separate gene and showing a distinct tissue distrubution⁴⁵).

The PPAR γ gene is transcribed into three PPAR γ messenger RNA (mRNA) speicies, that is PPAR γ 1, PPAR γ 2, and PPAR γ 3, which are derived from alternative splicing and promoter usage⁴⁶. Although adipose tissue has been recognized as a principal site of expression of PPAR γ 2, PPAR γ 1 is expressed in many other tissue and cell types, including hepatocyte, fibroblasts, myocytes, breast and colony epithelial cells, human marrow precursors, monocyte/machrophage lineage, neutrophils, and T lymphocytes⁴⁷⁻⁵⁰. PPAR γ can be activated by naturally

occuring arachidonic acid metaboletes derived from the cyclooxygenase pathway, such as $\Delta^{12}\text{PGJ}_2$, 15 d-PGJ₂su, but also by synthetic ligands such as thiazolidinediones, which are insulin sensitizers used as orally active antidiabetic agents⁵²⁾, or certain nonsteroidal antiinflammatory drugs (NSAIDs)⁵³⁾.

2) Function of PPAR γ

PPAR γ was originally characterized as a regulator of adipocyte differentiation and lipid metabolism⁵⁴⁾. But, recent studies in different cell types suggest that PPAR γ ligands may be important antiinflammatory agents⁵⁵⁾. Fahmi *et al.* reported that PPAR γ is present and functionally active in human chondrocytes, and PPAR γ ligands inhibit IL-1 β induced production of nitric-oxide and MMP-13 at the transcriptional level, probably through repression of NF- κ B and AP-1 signaling⁵⁶⁾.

Few researches were undertaken about the role of PPAR γ s in osteoblastic differentiation and proliferation. Czernik *et al.* recently reported that PPAR γ 2 stimulate adipocyte differentiation, suppress osteoblast differentiation in U-33/ γ 2 cells, a model bipotential mesenchymal progenitor cell line⁵⁷⁾. On the other hand, Jackson *et al.* demonstrated that activators of PPAR α , δ , and γ induced alkaline phosphatase activity, matrix calcification and the expression of osteoblast genes as determined by reverse transcriptase-polymerase chain reaction⁵⁸⁾. The precise role of PPAR γ 0n osteoblastic cells is therefore not fully elucidated,

III. Materials and methods

Cell culture and incubation with ¹²PGJ₂ and ciglitazone

A human osteosarcoma cell line Saos-2 (ATCC. HTB 85) obtained from the American Type culture

collection, and MC3T3-E1 osteoblasts (Riken, Japan) derived from a mouse calvaria, were grown to confluence in culture flask of 75 cm² surface (Falcon, Oxnard, CA). Cell lines were incubated at 37°C in a humidified atmosphere containing 5 % CO₂ in air with 20 ml of minimum essential medium (α -MEM; Gibco, Grand Island, NY) supplemented with 10 % fetal bovine serum (FBS; Gibco NY) and 1 % penicillin-streptomycin solution (Gibco, NY),

When confluent monolayer was reached, the cells were enzymatically lifted from the dishes using 0.25 % trypsin and 4 mM EDTA (Gibco, Grand Island, NY). Aliquots of 20 μ l of cell suspension were seeded into 24-well flat-bottomed tissue culture plates (Corning, New York, NY, USA) or 96-well multiplates at a density of 5 x 10⁴ cells/well. The test groups were cultured with medium described above, except it contained 10^{-5} - 10^{-9} M of Δ^{12} PGJ₂ (Cayman Chemicals, Ann Arber, MI) or 10⁻⁵ - 10⁻⁹ M of ciglitazone (Biomol, Plymouth Meeting, MA). The medium was changed every 2-3 days. For mineralization assay, cell lines were cultured in 6-well multiplates with α MEM supplemented with 50 μ g/ml acsorbic acid (Sigma, St Louis, MO) and 10 mM β glycerophosphate (Sigma, MO).

2 Cell proliferation assay

Cell proliferation was measured at 1, 2, and 3 days. For measurement of cell proliferation, Saos-2 and MC3T3-E1 cells were cultured in 96-well multiplates. The effects of $\Delta^{12}PGJ_2$, ciglitazone on the proliferation of these cells were determined by the tetrazorazolium salt 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) (Sigma) assay. Briefly, 50 μ l of 0,2% MTT in phospate buffered saline (PBS) was added to 200 ul of medium of each culture. After incubation for 4 h at 37°C, the medium was removed and the cells were dissolved in

DMSO. Then, the absorbance of lysates was measured at 540 nm.

3. Alkaline phosphatase activity

Production of alkaline phosphatase (ALPase) was measured spectroscopically at 2 days. After incubation, the adherent cells were removed from the wells by incubation of 1.0 ml of 0.25 % trypsin in 4 mM EDTA for 30 minutes at 37°C, washed with 0.5 ml of PBS, and centrifuged for 5 minute at 6.5 X 10 g.

The cell pellet was homogenized with 0.5 ml of double distilled water (DDW) and sonicated for 1 minute in ice. 0.1 ml of cell lysate were mixed with 0.1 ml of 0.1 M glycin-NaOH buffer, 0.1 ml of 15 mM para-nitrophenol phosphate (pNPP), 0.1 % triton X-100/saline and 0.1 ml of DDW. Each aliquots was incubated at 37°C for 30 minutes. After incubation, each tube was added 2.5 ml of 0.1 N NaOH and placed on ice. The production of para-nitrophenol (PNP) in the presence of ALPase was measured by monitoring light absorbance by the solution at 405 nm. The slope of absorbance versus time plot was used to calculate the ALPase activity.

RNA extraction and reverse transcriptasepolymerase chain reaction (RT-PCR)

1) RT-PCR for expression of PPAR χ

Total RNA from cultured osteoblasts was isolated with the use of high pure RNA Isolation Kit (Roche Molecular Biochemicals, Manheim, Germany) according to manufacturer's instruction, RT-PCR assays were carried out with the thermal cycler (Effendorf),

Two micrograms of total RNA were reverse transcribed into complementary DNA (cDNA) with 2 units/ μ l RT (AMV reverse transcriptase, Roche Molecular Biochemicals), 2.0 μ l of 1 reaction buffer (100 mM Tris, 500 mM KCl; pH 8.3), 4.0 μ l of 5 mM MgCl₂, 2.0 μ l of deoxynucleotide mix primer, 1.0 μ l of RNAase inhibitor at 25°C for 10 minutes for annealing and then at 42°C for 60 minutes for reverse transcription resulting in cDNA synthesis. Following the 42°C incubation, the AMV reverse transcriptase is denaturated by incubating the reaction at 99°C for 5 minutes and then cooling to 4°C for 5 minutes

The resulting single stranded DNA is amplified using the reverse transcribed mixture containing 250 μ M dNTP, 2 mM MgCl₂, 1 X volume of reaction buffer, and 0.5 unit of Taq polymerase (Roche) as a

Table 1. Nucleotide sequences of the primers used for RT-PCR

	Sequence	Expected size of PCR product (bp)
Human PPAR Y	(s) 5' -TCTCTCCGTAATGGAAGACC-3'	474
	(as) 5' -GCATTATGAGACGTCCCCAC-3'	
Human type I collagen	(s) 5' -TATGGCGGCCAGGGCTCCGACCCTG-3'	325
	(as) 5' -CCAAGGGGGCCACATCGATGATGGG-3'	
Human alkaline phosphatase	(s)5' -ACGTGGCTAAGAATGTCATC-3'	475
	(as) 5' -CTGGTAGGCGATGTCCTTA-3'	
Human osteopontin	(s) 5' -CCAAGTAAGTCCAACGAAAG-3'	347
	(as) 5' -GGTGATGTCCTCGTCTGTA-3'	
Human osteocalcin	(s) 5' -CATGAGAGCCCTCACA-3'	310
	(as) 5' -AGAGCGACACCCTAGAC-3'	
18S ribosomal RNA	(s) 5' -GCGAATTCCTGCCAGTAGCATATGCTTG-3'	126
	(as) 3' -GGAAGCTTAGAGGAGCGAGCGACCAAGG-3'	

template with the specific oligonucleotide primers for human PPAR γ^{55} which were derived from known sequences (Table 1).

The PCR mixtures were incubated at 95°C for 1 minute, followed by 35 cycles each at 94°C for 30 seconds and 60°C for 1 minute, with a final elongation step at 60°C for 8 minutes. PCR product (10 μ l/50 μ l) reactions were separated on a 1.8 % agarose gel and stained with ethicium bromide

2) Semi-quantitative RT-PCR for osteoblastic differentiation markers.

For quantitation of mRNA expression, primers for collagen type I (COL I), alkaline phosphatase (ALPase), osteopontin (OPN), osteocalcin (OCN), and 18s ribosomal RNA (rRNA) were used for reverse transcriptase-polymerase chain reaction (RT-PCR). Total RNA was isolated from cultures of Saos-2 cells and reverse transcribed to cDNA as described above. Then the cDNA was amplified with genespecific primers, which were derived from known sequences (Table 1) by using AMV reverse transcriptase mixture⁵⁹⁻⁶⁰⁾.

The mRNA level of 18s ribosomal RNA (rRNA) was analyzed in the same samples as an amplification control. The amplification condition was 95°C (1 min) - 60°C (2 min) for 23 cycles. PCR products were electrophorased onto a 2 % agarose gel containing ethicium bromide and visualized under UV light. The intensity of the bands was quantified by gel doc 2000 (Bio-Rad). The amount of RT-PCR products were compared to the amount of 18s rRNA, and relative expression ratios were obtained.

5. Mineralization assay

MC3T3-E1 cells were cultured in 12-well multiplates with α -MEM containing 50 ul/ml ascorbic acid, 10 mM β -glycerophoxphate (β -GP), and Δ

 $^{12}\text{PGJ}_2$ or ciglitazone for 20 days. The medium was aspirated and the cells were fixed in 10% neutral formalin for 20 min at 4°C, washed with PBS, and stained with 2,5 % silver nitrate for 30 min.

For alizarin Red S staining, washed monolayers were fixed for 30 minutes at room temperature in 10 % buffered formaline, washed 2 times with dH₂O, and stained for 10 minutes at room temperature with 2 % Alizarin Red S (Sigma, Aldrich) (pH 4.1-4.3). Monolayers were washed extensively with dH₂O. Alizarin Red S and von Kossa staining were visualized using light microscopy.

6. Statistical analysis

All measurements were collected in more than triplicate and expressed as means \pm standard deviations. Analysis of differences were performed with one-way ANOVA with Fisher LSD test using SPSS version 11.0 program (SPSS, Chicago, IL). p \langle 0.05 and p \langle 0.01 were considered significant.

IV. RESULTS

PPAR γmRNA expressed by osteoblastic cells

To investigate the expression of PPAR γ in osteoblastic cells, we performed an RC-PCR analysis using specific primers on RNA from Saos-2 cells. PPAR γ mRNA was detected as a single band with the predicted size (474 bp) in all 3 groups of cells; control, Δ ¹²PGJ₂, and ciglitazone treated cells (Figure 1).

2. Effect on the proleferation of Saos-2 cells

Because RT-PCR analysis indicated that the Saos-2

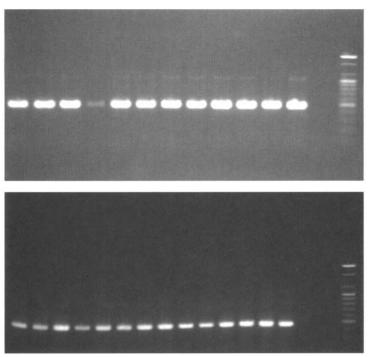


Figure 1, PPAR γexpression in Saos-2 cell

Table 2. Cell proliferation by MTT assay

		1 day	2 day	3 day
Control		0.584 ±0.039	0.604 ±0.069	0.743 ±0.058
⊿12PGJ ₂	10-9	0.582 ± 0.315	0.637 ±0.085	0.762 ± 0.044
(M)	10-8	0.604 ± 0.042	0.647 ± 0.035	0.832 ± 0.065
	10-7	0.584 ± 0.037	0.615 ± 0.040	0.715 ± 0.063
	10-6	0.583 ± 0.024	0.598 ± 0.053	0.730 ± 0.047
	10-5	0.494 ±0.043	0.374 ± 0.082	0.333 ± 0.036
Ciglitazone	10 ⁻⁹	0.596 ±0.055	0.595 ±0.070	0.740 ± 0.034
(M)	10 ⁻⁸	0.562 ± 0.034	0.615 ± 0.079	0.724 ± 0.027
	10-7	0.587 ± 0.055	0.634 ± 0.098	0.731 ± 0.061
	10-6	0.557 ± 0.043	0.655 ± 0.093	0.772 ± 0.067
	10-5	0.506 ± 0.062	0.628 ± 0.055	0.751 ± 0.061

cells have PPAR γ mRNA, we next investigated the biological activity of Δ^{12} PGJ₂ and selective PPAR γ agonist, ciglitazone, on the cells. First we studied the effect on the proliferation of the cells. As shown in Table 2, Δ^{12} PGJ₂ stimulated the proliferation of Saos-2 cells inversely proportional to concentration

in 10^{-5} - 10^{-8} M range. Ciglitazone also stimulated proliferation, but the effect was modest. Both agent indicated inhibitory effect at 10^{-5} M (Figure 2). When 10^{-8} M of Δ^{12} PGJ₂ and 10^{-6} M of ciglitazone are compared to control cells, they indicated higher proliferation rate in a time-dependent manner and their

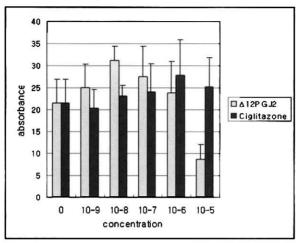


Figure 2. Effect of the concentration of $\Delta^{12}PGJ_2$ and ciglitazone on the proliferation of Saos-2 cells at day 2

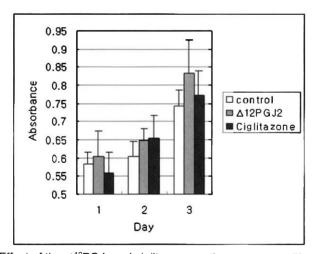


Figure 3_. Effect of the \varDelta ¹²PGJ₂ and ciglitazone on time-course proliferation

Table 3. ALPase activity (nM/µg/30 min)

	control	10-9	10-8	10-7	10-6	10-5
⊿ 12PGJ2	21.42 ±5.44	24.94 ±5.33	31.18 ±3.22	27.48 ±6.78	23.82 ±7.15	8.68 ±3.36
Ciglitazone	21.42 ±5.44	20.36 ±4.09	22.94 ±2.53	23,94 ±6,59	27.78 ±8.01	25.14 ±6.70

effect were observable after 1day (Figure 3). Here, the effect of ciglitazone was more modest than Δ $^{12}PGI_2$.

3. ALPase activity

The effect on ALPase was investigated at day 2 in 10^{-5} - 10^{-9} M concentration range. The stimulation pattern was similar to that of proliferation; $\Delta^{12}\text{PGJ}_2$ stimulated the ALPase activity of Saos-2 cells mostly at 10^{-8} M and ciglitazone modestly at 10^{-6} M. (Table 3, Figure 4). So, there seems to be appropriate maximum effective concentration in both agents.

Effects of Δ¹²PGJ₂ and ciglitazone on the expression of mRNA of osteoblastic- differentiation in Saos-2 cells.

Based upon the results of MTT assay and ALPase activity test, the appropriate concentrations for Δ ¹²PGJ₂ and ciglitazone were determined as 10⁻⁸ M and 10⁻⁶ M for Saos-2 cells, respectively. To investigate the effect on the expression of the differentiation markers of osteoblast, we next performed semi-

quantitative RT-PCR using specific primer sets at day 1 and day 7. The relative mRNA levels of COLI and ALPase in the Δ^{12} PGJ₂ treated cells were significantly higher than those in ciglitazone treated cells or control cells (Figure 5). The relative mRNA levels of OPN were also higher in Δ^{12} PGJ₂ treated cells (Figure 6).

5. Effect on the mineralization of MC3T3-E1 cells

To investigate whether $\Delta^{12}PGJ_2$ and ciglitazone induced formation of mineralized bone nodules by MC3T3-E1 cells, these cells treated with 10^5 - 10^9 M of $\Delta^{12}PGJ_2$ or ciglitazone were cultured in the presence of 10 mM β -GP and 50 μ g/ml ascorbic acid for 30 days. MC3T3-E1 cells treated with 10^6 M of $\Delta^{12}PGJ_2$ and 10^{-5} M of ciglitazone showed marked mineralization whereas untreated control cells showed only slight mineralization.

V. Discussion

Prostaglandins are lipid regulators of a number of

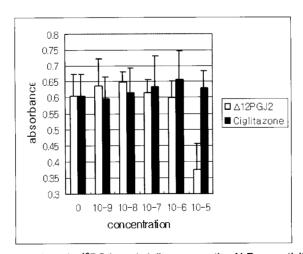
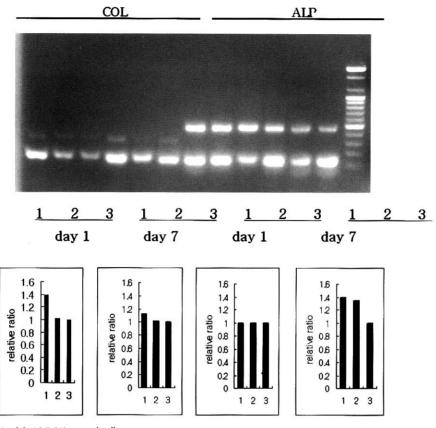
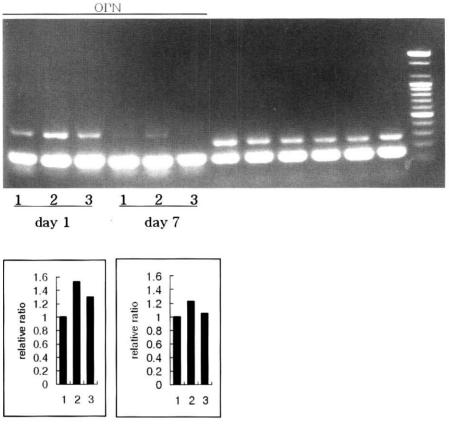



Figure 4. Effect of the concentration of ⊿ ¹²PGJ₂ and ciglitazone on the ALPase activity of Saos-2 cells at day 2

lane 1 : delta12 PGJ2 treated cells lane 2 : Ciglitazone treated cells

lane 3 : Control cells


Figure 5. Effect of the mRNA expression of COL1 and ALPase

important cellular processes. Much of the prostaglandin literature on bone has focused on major PGs and the role of cell surface receptors in mediating the pleiotropic effects of these compounds. However, given their circulating concentrations, lower molecular weights, and lipophilicity, it seems plausible that a subset of prostaglandins could activate nuclear receptors directly or indirectly after diffusion into target cells,

In this study, we showed that PPAR 7 is expressed in human osteoblastic cell line, Saos-2 cells at the mRNA levels. Jackson et al. also reported the

expression of PPAR γ 1, α , and δ mRNA in mouse osteoblastic cell line, MC3T3-E1⁵⁸⁾. They showed these PPARs were functional in transfection study using a PPRE-luciferase promoter-reporter construct containing 110 bp of the acyl CoA oxidase promotor, harboring a binding site for PPARs. With this result, we next investigate the effect of Δ ¹²PGJ₂, known as a natural PPAR γ ligand, on the proliferation and differentiation of human osteoblastic cell line, Saos-2 cell and compare the result with that of ciglitazone, a synthetic selective PPAR γ agonist.

In present investigation, both of $\Delta^{12}PGJ_2$ and

lane 1 : Control cells

lane 2: delta12 PGJ2 treated cells

lane 3: Ciglitazone treated cells

Figure 6. Effect on the mRNA expression of OPN and OCN

ciglitazone directly stimulated the proliferation of human osteoblastic cells, but their maximum effective concentration was defferent. While $\Delta^{12}PGJ_2$ supported the proliferation of Saos-2 cells at low concentration, ciglitazone at relatively high concentration. And both of agents inhibited the proliferation of this osteoblastic cell line at 10^{-5} M. These findings also showed with mouse osteoblastic cell line, MC3T3-E1 in our laboratory (data not-shown). Consistant of this, Jackson et al. reported inhibitory effect of ciglitazone at 10^{-5} M concentration to mouse osteoblastic cell line⁵⁸⁾. Yu et al. also report-

ed in their experiment with series of eicosanoids, that 10⁻⁴ M of PGD₂ caused death of the human osteosarcoma line, U2OS cells transfected with PPAR γ fusion protein⁵¹⁾. Considering the fact that eicosanoids generally circulate at low levels (less than 1 nM) in the plasma, concentration below those at which they are normally able to elicit responses⁶¹⁾ and 10⁻⁵ M is non- physiologic, excessive concentration, it is thought that the cytotoxicity at this high concentration doesn't have significant meaning.

In this study, we have demonstrated that 10⁸ M of

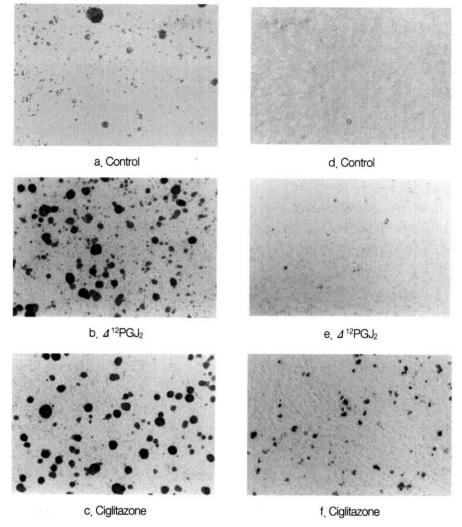


Figure 7. Effects on mineralization of MC3T3-E1 cells (X100, a, b, c - Alizarin red S stain / d, e, f- von Kossa stain)

 Δ^{12} PGJ₂ and 10⁻⁶ M of ciglitazone stiumlated human osteoblastic differentiation using semi-quantitative RT PCR analysis. And we also showed that 10⁻⁶ M of Δ^{12} PGJ₂ and 10⁻⁵ M of ciglitazone markedly increased formation of mineralized bone nodules by MC3T3-E1 cells. PPAR γ was originally known as a key player of adipocyte differentiation and Czernik et al. reported that PPAR γ ligand, 15-d PGJ₂ and rosiglitazone, stimulates adipogenesis and inhibits

osteoblastogenesis in U-33/ γ 2 cells, mesenchymal progenitor of adipocytes and osteoblasts⁵⁷⁾. But, in their study, inhibition of osteoblastic differentiation required the induced expression of endogenous PPAR γ 2, which was not detected in MC3T3-E1 cells. So, it is thought that PPAR γ ligands act differently to cells in different levels of mesenchymal lineage commitment. Our data are in agree with Koshihara et al. who reported in their human femur

explant cultural study, that PGD2 stimulates ALPase activity and calcification unexpectedly, with potencies nearly equal to 1.25(OH)₂D₃ at 10⁻⁸ M²¹⁾. They suggested that active metabolite is $\Delta^{12}PGJ_2$, because PGD₂ is easily metabolite by plasma albumin to give Δ ¹²PGJ₂ and PGD₂ added to a culture medium containing 10 % fetal bovine serum and incubated at 37 $^{\circ}$ C for 2 days is converted 100 % into $\varDelta^{12}PGI_2$. Tasaki et al. also reported that 10⁻⁵ M of △ ¹²PGJ₂ stimulate collagen synthesis by human osteoblasts from femur explant, though they didn't know the mechanism of action²²⁾. In our investigation, maximum effective concentraion of $\Delta^{12}PGJ_2$ on Saos-2 cell line was 10-8 M, lower than previous studies, indicating that this cell line is more sensitive to this bone inducing prostanoid.

Ciglitazone belongs to the thiazolidinedione (TZD) class of insulin-sensitizing drugs, and is clinically used as an oral antidiabetic agent for NIDDM patients. These drugs were originally developed without any knowledge of their molecular targets, but later known to act as direct agonists for PPAR χ and TNF-q leptin, lipoprotein lipase, aP2 (fatty-acid binding protein) and GLUT4 are suggested as potential target genes for PPAR y relevant for the antidiabetic action of the TZD⁵⁴⁾. It is well known that periodontal tissue destruction is one of the serious complications of DM⁶²⁾. So, it is likely that favorable periodontal state of controlled diabetic patients is due partly to direct action of TZD on osteoblastic cells if pharmacological does of this drug is sufficient to stimulate PPAR 7 at these sites. This assumption awaits further research.

The underlying molecular mechanisms by which PPAR γ affects proliferation and differentiation of osteoblastic cells are not fully understood. A putative PPAR binding site was identified in the promotor of the osteopontin gene⁶³⁾ and PPAR induces expression of the glucose transporter, GLUT4 during

adipocytic differentiation which was recently shown to be required for bone growth, perhaps related to increased energy requirements during matrix synthesis $^{64)}$. It is possible that the PPAR-independent pathway also exists because high affinity ligand, ciglitazone showed more modest effect than Δ $^{12}PGJ_2$ in our investigation,

Many independent series of studies on $\Delta^{12}PGJ_2$ metabolites indicate that this agents mitigate the inflammatory process by inhibiting pro-inflammatory cytokines at the transcriptional level³²⁻³⁸⁾, and several observations suggests that $15dPGJ_2$ functions as a physiological negative feedback regulator of prostaglandin synthesis by repressing the COX-2 expression^{65,66)}. In view of the fact that proinflammatory cytokines play crucial roles in the connective tissue destruction seen in periodontitis⁶⁷⁾, it would be beneficial to apply this agent for resolution of chronic inflammation of the periodontal tissue.

It is hasty to consider the clinical application of this bone inducing prostanoid in periodontal field, because the majority of studies are limited to in vitro study, and the physiological role of these compound in vivo needs further research. Nevertheless, it will be promising field of research considering the favorable biologic effect on osteoblastic cells and anti-inflammatory function of these compound.

VI. Conclusion

In this study, the expression of PPAR γ was examined by RT-PCR analysis using specific primers on RNA, PPAR γ mRNA was detected as a single band with the predicted size (474 bp) in human osteoblastic Saos-2 cell line. Next, the effects of Δ ¹²PGJ₂ and ciglitazone on proliferation and differentiation of human and mouse osteoblastic cell line were examined. In MTT assay, both agents stimulated the proliferation of Saos-2 cells. When 10^8 M of

 $\Delta^{12}PGJ_2$ and $10^6 M$ of ciglitazone are compared to control cells, they indicated higher proliferation rate in a time-dependent manner and their effect were observable after 1 day. When the effect on ALPase activity was investigated at day 2 in 10⁻⁵ - 10⁻⁹ M concentration range, the stimulation pattern was similar to that to proliferation, $\Delta^{12}PGJ_2$ stimulated the ALPase activity of Saos-2 cells significantly at 10-8 M and ciglitazone modestly at 10-6 M. To investigate the effect on the expression of the differentiation markers of osteoblast, we next performed semiquantitative RT-PCR using specific primer sets. The relative mRNA levels of type I collagen and ALPase in the $\Delta^{12}PGJ_2$ treated cells were significantly higher that those in ciglitazone treated cells or control cells. The relative mRNA levels of osteopontin were also higher in △12PGJ₂ treated cells. MC3T3-E1 treated with $10^{-6} \,\mathrm{M}$ of $\Delta^{12}\mathrm{PGJ_2}$ and $10^{-5} \,\mathrm{M}$ of ciglitazone showed marked mineralization whereas untreated cells showed only slight mineralization. These findings show favorable biologic effect of \$\Delta\$ 12PGI2 on osteoblastic cells and its mechanism of action may involved PPAR \(\gamma \) dependent pathway.

VII. REFERENCES

- Pagels WR, Sachs RT. Marnett LJ, Dewitt DL, Day JS, Smith WL. Immunochemical evidence for the involvement of prostaglandin H synthase in hydroperoxide-dependent oxidations by ram seminal vesicle microsomes. J Biol Chem 1983;258:6517-6523.
- Miyamoto T, Ogino N, Yamamoto S, Hayaishi O. Purification of prostaglandin endoperoxide synthetase form bovine vesicular gland microsomes. J Biol Chem 1976;251:2629-2636.
- 3. Kraemer SA, Maeda EA, DeWitt DL. Prostaglandin endoperoxide synthase gene structure: identification of the transcriptional

- start site and 5'-flanking regulatory sequences. Arch Biochem Biophy 1992;293:391-400.
- 4. Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci (USA) 1992;89:7384-7388.
- jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines, J Biol Chem 1993;268:9049-9054.
- 6. Lee SH, Soyoola E, Chanmugam P, etal. selective expression of mitogen -inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 1992; 267:25934-25938.
- Shimizu N, Ozawa Y, Yamaguchi M, Goseki T, ohzeki K, Abiko Y. Induction of cox-2 expression by mechanical tension force in human periodontal ligament cells. J Periodontol 1998;69:670-677.
- Coleman RA, smith WL, Narumiya S. Classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994;46:205-229
- 9. Suda M, Tanaka K, Natsui K, Usui T, Tanaka I, Fukushima M, Shigeno C, Konishi J, Narumiya S, Ichikawa A, Narumiya K. Prostglandin E receptor subtypes in mouse osteoblastic cell line. Endocrinology 1996;137:1698-1705.
- 10. Sarrazin P, Bkaily G, Hache R, Patry C, Dumais R, Rocha FA, de Brum-Fernandes AJ. Characterization of the prostaglandins receptors in human osteoblasts in culture. Prosstaglandins Leukot Essent Fatty Acids 2001;64:203-10.
- Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γand promotes adipocyte differenti-

- ation Cell 1995;83:813-819.
- 12. Klein DC and Raisz LG. Prostaglandins: Stimulation of bone resorption in tissue culture. Endocrinology 1970;86:1436-1440.
- Akatsu T, Takahachi N, Udagawa N, Imamura K, Yamaguchi A, Sato K, Nagata N, Suda T. Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J Bone Miner Res 1991;6:183-190.
- 14. Gardner CR, Blanque R, Cottereaux C. Mechanism involved in prostaglandin-induced increase in bone resorption in neonatal mouse calvaria. Prostaglandins Leukot Essent Fatty Acids 2001;64:117-125.
- Offenbacher S, Heasman PA, Colllins JG. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. J Periodontol 1993;64:432-444.
- 16. Bezerra MM, de Lima V, Alencar VBM, Vieira IB, Brito GA, Ribeiro RA, Rocha FA. Selective cyclooxygenase-2 inhibiton prevents alveolar bone loss in experimental periodontitis in rats. J Periodontol 2000;71:1009-1014.
- 17. Williams RC. Offenbacher S, Jeffcoat MK, Howell TH, Johnson HG, Hall CM, Wechter WJ, Goldhaber P. Indomethacin of flurbiprofen treatment of periodontitis in beagles: Effect on crevicular fluid arachidonic acid metabolites compared with effect on alveolar bone loss. J. Periodont Res 1988;23:134-140.
- 18. Yalcin F, Basegmez C, Isik G, Berber L, Eskinazi E, Soydinc M, Issever H, Onan U. The effects of periodontal therapy on intracrevicular prostaglandin E2 concentrations and clinical parametners in pregnancy. J Periodontol 2002;73(2):173-177.
- Yoshiyuki H, Yoshinori N, Masahiki H, Eiko I, Masayoshi K. Inductive effects of prostaglandins on alkaline phosphatase in osteoblastic cells,

- clone MC3T3-E1. J Biochem 1085;97:97-104.
- 20. Nagata T, Kaho K, Nishikawa S, Shinihara H, Wakano Y, Ishida H. Effect of prostaglandin E2 on mineralization of bone nodules formed by fetal rat calvarial cells. Calcif Tissue Int 1994;55:451-457.
- 21, Koshihara Y and Kawamura M. Prostaglandin D2 stimulates calcification of human osteoblastic cells. Biochemical and Biophysical Research Communications 1989;159(3): 1206-1212.
- 22. Tasaki Y, Takamori R, Koshihara Y. Prostaglandin D2 metabolite stimulates collagen synthesis by human osteoblasts during calcification. Prostaglandins 1991;41(4):303-313.
- 23. Jee WSS, Ueno K, Deng YP, Woodbury DM. The effects of prostaglandin E2 in growing rats: increased metaphyseal hard tissue and corticoendosteal bone formation. Calcif Tissue Int 1985;37:148-157.
- 24. Mori S, Jee WSS, Li XJ, Chan S, Kimmel DB. Effects of prostaglandin E2 on production of new cancellous bone in the axial skeleton of ovariectomized rats. Bone 1990;11:103-113.
- 25. Jee WSS, Mori S, Li XJ, Chan S. Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone 1990;11:253-266.
- 26. Yang RS, Liu TK, Linshiau SY. Increased bone growth by local prostaglandin E2 in rats. Calcif Tissue Int 1993;52:57-61.
- 27. Takagi T, Yamamoto T, Asano S, Tamaki H. Effect of prostaglandin D2 on the femoral bone mineral density in ovariectomized rats. Calcif Tissue Int 1993;52(6):442-446.
- 28. Fukushima M. Prostaglandin J2-anti-tumour and anti-viral activities and mechanisms involved. Eicosanoids 1009;3:189-199.
- 29. Fitzpatrik FA, Wynlda MA. Albumin-catalyzed metabolism of prostaglandin D2. Identification

- of products formed in vitro. J Biol Chem 1983;258(11):713-718.
- 30. Kikawa Y, Narumiya S, Fukushima M, Wakatsuka H, Hayaishi O. 9-Deoxy- 12-13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma. Proc Natl Acad Sci USA 1984;81:1317-1321.
- 31. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ Proc Natl Acad Sci USA 1997;94:4318-4323.
- 32. Jiang C, Ting AT, Seed B. PPAR γagonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391(1);82-86.
- 33. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator- activated receptor γ is a negative regulator of macrophage activation, Nature 1998;391(1):79-82.
- 34. Azuma Y, Shinohara M, Wang PL, Ohura K. 15-Deoxy-⊿12,14-prostaglandin J2 inhibits IL-10 and IL-12 production by macrophages. Biochemical and Biophysical Research Communications 2001;283:344-346.
- 35. Petrova TV, Akama KT, Eldik LJ. Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy- ⊿ 12,14-prostaglandin J2. Proc Natl Acad Sci USA 1999;96:4668-4673.
- 36. Drew PD, Chavis JA. The cyclopentone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 represses NO, TNF-α and IL-12 production by micorglial cells. J Neuroimmunol 2001;115:28-35.
- 37. Guyton K, Bond R, Reilly C, Gilkeson G, Halushka P, Cook J. Differential effects of 15-

- deoxy- Δ 12,14-prostaglandin J2 and a peroxisome proliferator-activated receptor γ agonist on macrophage activation. J Leukoc Biol 2001;69(4):631-638.
- 38. Boyault S, Simonin MA, Bianchi A, Compe E, Liagre B, Mainard D, Becuwe P, Dauca M, Netter P, Terlain B, Borkji K. 15-deoxy- ⊿ 12,14-prostaglandin J2 but not troglitazone, modulates IL-1 β effects in human chondrocytes by inhibiting NF- κB and AP-1 activation pathways. FEBS Lett 2001;501(1):24-30.
- 39. Yuchang F, Nanlan LK, Maria F. Lopes V. Upregulation of interleukin-8 expression by prostaglandin D2 metabolite 15-deoxy-delta 12, 14 prostaglandin J2 (15d-PGJ2) in human THP-1 macrophages. Atherosclerosis 2002;160:11-20.
- 40. Thieringer R, Melody JF, Grand CB, Shelton BA, Detmers PA, Somers EP, Carbin L, Moller DE, Wright SD, Berger J. Activation of peroxisome proliferator-activated receptor γdoes not inhibit IL-6 of TNF-α responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunology 2000;164:1046-1054.
- 41. Jozkowicz A,Dulak J, Prager M, Nanobashvili J, Nigish A, Winter B, Weigel G, Huk I. Prostaglandin-J2 induces synthesis of interleukin-8 by endothelial cells in a PPAR γ-independent manner. Prostaglandins & other Lipid Mediators 2001;66:165-177.
- 42. Hughes-Fulford M, Fukushima M. Control of cell cycle by metabolites of prostaglandin D2 through a non-cAMP mediated mechanism. Life Sci Adv Exp Clin Endocrinol 1993;12:57-64.
- 43. Li L, Tao J, Davaille J, Fdral C, Mallat A, Rieusset J, Vidal H, Lotersztajn S. 15-deoxy-⊿12,14-prostaglandin J2 induces apoptosis of human hepatic myofibroblasts. J Biol Chem 2001;276(41):38152-38158.
- 44. Kondo M, Oya-Ito T, Kumagai T, Osawa T,

- Uchida K. Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress. J Biol Chem 2001;276(15):12076-12083.
- 45. Gelman L, Fruchart JC, Auwerx J. Review: An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer CMLS, Cell Mol Life Sci 1999;55:932-943.
- 46. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R. The human PPARgamma gene: organization, promoter analysis and expression. J Biol Chem 1997; 272:18779-18789.
- Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391:82-86.
- 48. Ricote M, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptorgamma is a negative regulator of macrophage activation. Nature 1998;391:79-82.
- 49. Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expr 1995;4:281-299.
- 50. Clark RB, Bailey DB, Hernandez TE, Hla T, Puddington L, Padula SJ. The Nuclear receptor PPAR γand Immunoregulation: PPAR mediates inhibition of helper T cell responses. J Immunology 2000;164:1364-1371.
- 51. Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA. Differential activation of peroxisome proliferatoractivated receptors by eicosanoeds. J Biol Chem 1995;270(41):23975-23983.
- 52. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkinson WO, Willson TM, Kliwer SA. An antidiabetic thiazolidinedione is a high affinity

- ligand for peroxisome proliferator- activated receptor γ (PPAR γ) J Biol Chem 1995;270(22):12953-12956.
- 53. Lehmann JM, Lenhard JM, Oliver BB, Ringold Gm, Kliewer SA. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997;272(6):3406-3410.
- 54. Spiegelman BM. Perspectives in diabetes: PPAR-γ: adipogenic regulator and thiazolidine-dione receptor. Diabetes 1998;47:507-514.
- 55. Fahmi H, Battista JA, Pelletier JP, Mineau F, Ranger P, Pelletier JM. Peroxisome proliferator-activated receptor γactivators inhibit interleukin-1βinduced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis & Rheumatism 2001;44(3):595-607.
- 56. Altiok S, Xu M, Spiegelman BM. PPAR γ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes & Development 1997;11:1987-1998.
- 57. Czernik BL, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor- γ 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 2002;143(6):2376-2384.
- 58. Jackson SM, Demer LL. Peroxisome proliferatoractivated receptor activators modulate the osteblastic maturation of MC3T3-E1 preosteoblasts. FEBS 2000;471:119-124.
- Rickard DJ, Kassem M, Hefferan TE, Sarkar G, Spelsberg TC, Riggs BL. Isolation and characterization of osteoblast precursor cells from human bone marrow. J Bone Miner Res 1996;11:312-324.
- 60. Qu Q, Perälä-Hepeape M, Kapanen A, Dahllund

- J, Salo J, Väänänen HK, Härkönen P. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture, Bone 1998;22:201-209.
- 61. Smith WL. The eicosanoids and their biochemical mechanisms of action. Biochem J 1989;259:315-324.
- Emrich LJ, Schlossman M, Genco RJ. Periodontal disease in noninsulin-dependent diabetes mellitus. J. Periodontal, 1991;62:123-130
- 63. Hijiya N, Setoguchi M, Matsura K, Higuchi Y, Akizuki S, Yamamoto S. Cloning and characterization of the human osteopontin gene and its promoter. Biochem J. 1994;303:255-262.
- 64. Maor G and Karnieli E. The insulin-sensitive glucose transporter (GLUT4) is involved in early

- bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor, Endocrinology 1999;140:1841-1851.
- 65. Inoue H, Tanabe T, Umesono K. Feedback control of cyclooxygenase-2 expression through PPAR γ J Biol Chem 2000;275(36):28028-28032.
- 66. Quraishi O, Mancini JA, Riendeau D, Inhibition of inducible prostaglandin E2 synthase by 15-deoxy-⊿12,14-prostaglandin Js and polyunsaturated fatty acids. Biochemical Pharmacology 2002;63:1183-1189.
- Birkedal-Hansen H. Role of cytokines and inflammatory mediators in tissue destruction. J Periodont Res 1993;28:500-510.

△ ¹²PGJ₂ 및 PPAR 감마 길항체가 조골세포의 증식 및 분화에 미치는 효과

허정미¹, 김경화¹, 정경욱¹, 이혜준¹, 류인철¹, 구 영¹², 정종평¹²

1서울대학교 치과대학 치주과학교실 2지능형생체계면공학연구센터, 과학재단

1. 목적

Prostaglandin은 치주질환과 관련된 국소적 골 대사에 중요한 역할을 한다. Δ^{12} PGJ₂는 생체 내에서 혈장의 존재 하에 형성되는 천연 PGD₂ 대사산물이며 peroxisome- proliferator에 의해 활성화되는 감마 수용체 (PPAR γ)에 대해 높은 친화성을 갖는 리간드로서 핵 수용체군에 속하는 전사조절인자이다. 이 연구의 목적은 골화 과정에서 Δ^{12} PGJ₂의 역할을 규명하기 위해, 조골세포주의 증식과 분화에 미치는 영향과 그에 관련된 세포기전을 조사하는 데에 있다.

2. 방법

인간 골육종세포주인 Saos-2 (ATCC.HTB 85)와 쥐의 조골세포주 (MC3T3-E1)를 배양한 후 실험군에 농도가 각각 10^5 , 10^6 , 10^7 , 10^8 , 10^9 몰인 4^{12} PGJ₂와 ciglitazone (합성 PPAR 감마 길항체)를 첨가하였다. 조골세포에서 PPAR 감마의 발현을 관찰하기 위해 역전사효소-중합효소연쇄반응(RT-PCR)을 특정한 primer를 이용하여 시행하였다. 세포 증식은 1 일, 2 일, 3 일째에 MTT 분석법으로 측정하였고, 2 일째에 알칼리성 인산효소 (ALPase) 생산을 측정하였다. 위의 결과에서 얻은 적정한 농도에서 다양한 조골세포 분화의 표지자들-제 1 형 교원질, 알칼리성 인산효소, osteopontin 및 bone sialoprotein-에 대한 간이 정량적 역전사효소-중합효소연쇄반응 (semi-quantitative RT-PCR)을 실시하였으며 골결절 형성에 대한 효과를 알아보고자 석회화 분석도 시행하였다.

3. 결과

 Δ^{12} PGJ₂와 ciglitazone 모두 Saos-2 세포주의 증식을 촉진시켰다. 10^8 몰의 Δ^{12} PGJ₂와 10^6 몰의 ciglitazone을 첨가한 실험군을 대조군과 비교했을 때, 시간에 비례하여 세포 증식률이 증가되었다. 알칼리성 인산효소의 활성화 검사에서도 증식률에서와 유사한 결과를 보여주었다. 간이 정량적 RT-PCR에서는 Δ^{12} PGJ₂로 처리한 군의 경우 제 1 형 교원질, 알칼리성 인산효소, osteopontin, 그리고 bone sialoprotein의 상대적 mRNA 수준이 유의하게 높았다. 석회화 분석에서는 MC3T3-E1 세포를 10^6 몰의 Δ^{12} PGJ₂로 처리한 군과 10^5 몰의 ciglitazone으로 처리한 군에서 현저한 골결절 형성을 보였다. 이러한 결과들은 Δ^{12} PGJ₂가 유용한 골 유도물질이 될 수 있으며 또한 그 작용기전이 PPAR 감마-의존형 경로와 연관되어 있음을 보여준다.

주요어 : Δ^{12} PGJ₂, PPAR γ , ciglitazone, 조골세포, 역전사효소-중합효소연쇄반응