
1 Introduction
The development and elaboration of spatial association measures have recently been
focal points in a wide range of disciplines dealing with geographically referenced data.
In univariate situations, spatial autocorrelation indices, such as Moran's I and Geary's
c have been intensively utilized to parameterize univariate spatial dependence (Cliff
and Ord, 1981; Goodchild, 1986; Griffith, 1987; Odland, 1988). In bivariate situations,
Cross ^Moran has been formulated (Wartenberg, 1985) and illustrated (Griffith, 1993;
1995; Griffith and Layne, 1999). Hubert and his associates developed a nonparametric
bivariate spatial association measure (Hubert and Golledge, 1982; Hubert et al, 1985).
Finally, Lee (2001a) proposed a parametric bivariate spatial association measure (L ) for
gauging bivariate spatial dependence by integrating Pearson's correlation coefficient
and Moran's I.

For a measure to be confirmatory, a significance testing method should be provided.
With respect to this, hypothesis testing for univariate spatial association measures is well
established: distributional moments of Moran's I and Geary's c have been approximated
by sets of equations predicated on both the normality and the randomization assumptions
(Cliff and Ord, 1981); exact testing procedures have also been undertaken (Hepple, 1998;
Tiefelsdorf, 1998; 2000; Tiefelsdorf and Boots, 1995); and permutation approaches includ-
ing Monte Carlo simulation have been utilized either as a supplementary or an alternative
method (Anselin, 1995; Anselin and Rey, 1991; Kelejian and Robinson, 1998; Sokal et al,
1998). Among these methods, normal approximation with the first two moments,
whether based on normality or randomization assumptions, has been preferred not
only because it is computationally simple, but also because it provides a reasonable
estimation with a sufficient number of observations (Boots and Tiefelsdorf, 2000).

It is recognized that both Moran's I and Geary's c are special cases of Mantel's
(1967) generalized cross-product association measure (Cliff and Ord, 1981; Getis, 1991;
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Glick, 1979; Hubert, 1978; Hubert et al, 1981; Sokal, 1979), and that the associated
significance testing method can be used to obtain distributional properties of spatial
autocorrelation indices (Cliff and Ord, 1981; Upton and Fingleton, 1985). In particular,
Hubert et al (1981) strongly appreciate the benefits of generality that Mantel's statistic
and the associated randomization inference may provide for spatial association. When
two matrices in Mantel's statistic are properly defined for Moran's I and Geary's c, one
can easily find that Mantel's equations for the first two moments [Mantel, 1967; see also
Cliff and Ord, 1981, page 23, equations (1.44) ^ (1.46)] become identical to those for both
measures based on the randomization assumption [see Cliff and Ord, 1981, page 21,
equations (1.37), (1.39), and (1.42)]. It follows that Mantel's notion of matrix comparison
can be extended to bivariate situations, and their distributional properties can be derived
accordingly as attempted (Hubert and Golledge, 1982; Hubert et al, 1985).

It needs to be recognized, however, that the link between the Mantel test and spatial
association measures is sustained only when an arbitrary restriction is imposed on
defining a spatial weights matrix; that is, diagonal elements are set to zero. This restriction
is by no means a universal principle. The importance of considering nonzero diagonals is
obvious both for spatial data analysis in general and for spatial association in particular. In
a general sense, various forms of map smoothing and cluster detection methods exhaus-
tively utilize the nonzero diagonal scheme for constructing a spatial weights matrix
(Haining, 2003, page 85). Also, most spatial weighting schemes based on interobject
distances, such as kernel functions, allow a data point itself to have a nonzero value as
can be seen in the calibration of geographically weighted regression (Fotheringham
et al, 2002, page 56) and the associated summary statistics (Brunsdon et al, 2002).

In the particular context of spatial association, it is worth noting that there are two
different perspectives on how to measure spatial dependence: one comparing a refer-
ence area with its neighbors; the other regarding a reference area plus its neighbors as a
focal set. Evidently, Moran's I and Geary's c belong to the first perspective. However,
a global counterpart of a modified Getis ^Ord G �i (see Leung et al, 2003, page 730) and
Lee's spatial smoothing scalar S (2001a; 2001b) compute a representative value for
an overall focal set, which obviously depends upon a nonzero diagonal scheme. This
situation is more complicated for bivariate measures. Wartenberg's Cross ^Moran
compares a data point in one variable and its neighbors in the other variable, mainly
because it is just a bivariate extension of Moran's I. This substantially erodes the feasibility
of the measure in parameterizing the bivariate spatial dependence (Lee, 2001a; Tiefelsdorf,
2001). Hence, it seems inevitable in a bivariate setting that we must compare a focal set
in one variable with its counterpart in the other variable by utilizing a nonzero diagonal
weighting scheme (Lee, 2001a).

A distinction should be made in discussing the validity of nonzero diagonal schemes
between formulating a measure and obtaining its distributional properties. In other
words, it is often necessary to transform a matrix with zero diagonal elements to one
with nonzero elements to calibrate statistical moments even though the measure does not
have to rely on a nonzero scheme in its original formulation. As can be seen throughout
the paper, a presentation of Geary's measure in a quadratic form entails a redefinition
of the spatial weights matrix, which is necessary to obtain distributional properties of the
measure if predicated on the normality assumption or guided by the exact distribution
approach. The method presented in this paper will also utilize the transformation.

With respect to this, Heo and Gabriel (1998) succeeded in extending the Mantel test by
devising a way of dealing with nonzero diagonal elements in either of two matrices
involved. Thus, the main purpose of the present paper is to apply their formulations to
global measures of spatial association to obtain an adequate set of distributional proper-
ties. Subsequently, I first present an extended Mantel test predicated on Heo and Gabriel
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(1998) by utilizing a set of matrix quantities for the first two moments. Second, I apply
the extended Mantel test to five global measures of spatial association; Moran's I,
Geary's c, the spatial smoothing scalar S (Lee, 2001a; 2001b), Wartenberg's Cross ^
Moran (Wartenberg, 1985), and Lee's L (Lee, 2001a). In doing so, I (1) demonstrate how
they are defined according to Mantel's general statistic; (2) provide equations for
expected values and variances and discuss variabilities among different forms of spatial
weights matrices; (3) compare values approximated by the derived equations with
values from 10 000 permutations, focusing on the effect of nonzero diagonal elements
in a spatial weights matrix; (4) evaluate the applicability of the extended Mantel test to
bivariate spatial association measures, specifically to Lee's L.

2 An extended Mantel test
Mantel's generalized cross-product association measure (Z ) was originally proposed to
explore spatiotemporal dependence among events (Mantel, 1967), and is given by

Z �
X

i

X
j 6� i

xij yij �
X
i; j 6� i

�X � Y� ,

where xij is an element in a spatial (dis)similarity matrix X, and yij is an element in a
temporal (dis)similarity matrix Y, and X � Y denotes a pairwise dot product between
the two matrices. By calculating the sum of pairwise dot products between two
matrices, the measure evaluates whether there is a certain relationship between spatial
distance and temporal distance between the members of all possible n(nÿ 1) pairs
(Mantel, 1967). Based on the randomization assumption, the expected value (E) and
variance can be presented as (see Cliff and Ord, 1981, page 23)

E�Z � � S0T0

n�nÿ 1� , (1)

var�Z � � S1T1

2n�nÿ 1� �
�S2 ÿ 2S1 ��T2 ÿ 2T1 �

4n�nÿ 1��nÿ 2�

� �S
2
0 � S1 ÿ S2 ��T 2

0 � T1 ÿ T2 �
n�nÿ 1��nÿ 2��nÿ 3� ÿ �E�Z ��2 , (2)

where

S0 �
X

�2�wij , T0 �
X

�2�tij ,

S1 � 1
2

X
�2��wij � wji �2, T1 � 1

2

X
�2��tij � tji �2 ,

S2 �
Xn
i � 1

�wi: � w:i �2, T2 �
Xn
i � 1

�ti: � t:i �2 ,

wij is the weight assigned to a link between spatial objects i and j,
tij is the value assigned to the pair of spatial objects i and j,

wi: �
Xn
j � 1

wij , w:i �
Xn
j � 1

wji ,

ti: �
Xn
j � 1

tij , t:i �
Xn
j � 1

tji ,

X
�2� �

Xn
i � 1

Xn
j � 1

i 6� j

.
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Note that a restriction of i 6� j is required for all the elements in equations (1) and (2).
In other words, diagonal elements in at least one of the two matrices should be set to
zero.

By eliminating the restriction, a generalized global measure of spatial association
(G) is defined as

G �
X

i

X
j

pij qij �
X
i; j

�P �Q� � tr�PTQ� � tr�PQT � , (3)

where P is a matrix of spatial proximity of locations, and Q is a matrix of numeric
proximity of values on those locations (Haining, 1990, page 230). The measure is
obtained by summing all the pairwise dot products or all the diagonal elements of
the inner or outer product of P and Q. An overall expected value needs to be decom-
posed into two elements, one for off-diagonal elements and the other for on-diagonal:

E�G� � E�G off � � E�G on � . (4)

Accordingly, an overall variance is decomposed into three elements (Heo and Gabriel,
1998, page 847).

var�G � � var�G off � � var�G on � � 2cov�G off , G on � . (5)

The equations that will be presented for all the elements in equations (4) and (5) are
based on what Mantel calls a ``finite population approach'' (1967, page 213). This is
basically identical to what has been called the randomization approach. Rows and
columns of matrix Q are permuted while those of the P matrix are arbitrarily kept
the same. Mantel makes a requirement in the permutation process that `̀ if any 2 rows
are permuted, the corresponding 2 columns are also permuted so that, for each i, the
ith row and ith column will correspond to the same case'' (1967, page 215).

Although only six quantities are needed to define the original equations [(1) and
(2)] (Mantel and Valand, 1970), some additional quantities need to be defined, at least
twelve being necessary in total (table 1), because those original quantities are relevant

Table 1. Twelve quantities of matrices P and Q.

P matrix Q matrix

quantity notation quantity notation

Foff
0

X
i

X
j 6� i

pij � 1TP1ÿ tr(P) Goff
0 As for P with

p replaced by q
and P replaced by Q

Fon
0

X
i

pii � tr(P) Gon
0

Foff
1

X
i

X
j 6� i

p 2
ij � tr(PTP)ÿ [diag(P)Tdiag(P)] G off

1

Fon
1

X
i

p 2
ii � diag(P)Tdiag(P) Gon

1

Foff
2

X
i

�X
j 6� i

pij

�2

� [P1ÿ diag(P)]T [P1ÿ diag(P)] Goff
2

F all
2

X
i

�X
j

pij

�2

� (P1 )T(P1 ) � 1T (PTP)1 G all
2

Note. 1 is an n� 1 vector of ones and diag( ) is an operator which yields a column vector
consisting of the diagonal elements of a matrix. Note that, without loss of generality, both P
and Q need to be symmetrized.
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only to off-diagonal elements. One restriction is that both matrices should be symmetric
to compute those quantities. An asymmetric matrix (for example, row-standardized
spatial weights matrices) can be rendered symmetric by an equation, 1

2
(P� PT ).

From equations (4) and (5), one can see that five elements need to be obtained in
order to compute the expected value and variance; two for the expected value [E(G off )
and E(G on )] and three for the variance [var�G off ), var�G on ), and cov�G off , G on )]. Table 2
presents equations for the five elements utilizing quantities defined in table 1. Original
equations for those elements are given in the appendix. By combining the first two
rows in table 2 and referring to quantities in table 1, we obtain an equation for an overall
expected value in accordance with equation (4):

E�G � � E�G off � � E�G on � � ��1
TP1� ÿ tr�P���1TQ1� ÿ tr�Q��

n�nÿ 1� � tr�P�tr�Q�
n

, (6)

and an overall variance, var(G ), can be defined according to equation (5). Here three
things should be noticed. First, if diagonal elements in either P or Q are set to zero,
then the overall expected value reduces to one for off-diagonal elements, because
E(G on ) will be equal to zero. If a sum of all the elements in either P or Q turns out
to have a constant value, E(G off ) will be further simplified. Second, equation (2) and
the equation for var(G off ) in table 2 that are seemingly different are in fact identical.
Third, if there is no on-diagonal variance, the overall variance reduces to the variance
for off-diagonal elements alone, because covariance will also be zero.

Table 2. Five elements for the expected value and variance of G with the quantities defined in
table 1.

Moment Element Notation

Mean
E(G off )

F off
0 G off

0

n�nÿ 1�

E(G on )
F on
0 G off

0

n

Variance
var(G off )

2Foff
1 G off

1

n�nÿ 1� �
4�Foff

2 ÿ F off
1 ��G off

2 ÿ G off
1 �

n�nÿ 1��nÿ 2�

� ��F
off
0 �2 � 2Foff

1 ÿ 4F off
2 ���G off

0 �2 � 2G off
1 ÿ 4G off

2 �
n�nÿ 1��nÿ 2��nÿ 3� ÿ �E�G off ��2

var(G on )
F on
1 G on

1

n
� ��F

on
0 �2 ÿ F on

1 ���G on
0 �2 ÿ G on

1 �
n�nÿ 1� ÿ �E�G on ��2

cov(G off, G on )
�F all

2 ÿ Fon
1 ÿ Foff

2 ��G all
2 ÿ G on

1 ÿ G off
2 �

2n�nÿ 1�

� ��F
on
0 Foff

0 � ÿ �F all
2 ÿ Fon

1 ÿ F off
2 ����G on

0 G off
0 � ÿ �G all

2 ÿ G on
1 ÿ G off

2 ��
n�nÿ 1��nÿ 2�

ÿ E�G off �E�G on �
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3 An application of the extended Mantel test to global measures of spatial association
Table 3 lists the five global measures of spatial association in both summation and
matrix notations. Without loss of generality for spatial weights matrices, V allows for
any method of defining topological relationships among observations. The matrix
notation column in the table is presented by utilizing a z-transformation procedure
[see the annotation in the table and note that a population variance (s) rather than a
sample variance is used to compute a z-socre].

The matrix notation for Geary's c needs to elaborated. Cliff and Ord (1981,
page 167) demonstrate that Geary's c can be presented in a quadratic form like
Moran's I. Matrix X is defined as a diagonal matrix with nonzero elements, each of
which is defined as

oii � 1
2

X
j

�vij � vji � �when V is symmetric, oii �
X

j

vij � .

Note that the diagonal of X becomes identical to a vector of row sums of V, when V is
symmetric.

Table 3. Notation for five global measures of spatial association.

Measure Summation notation Matrix notation

Univariate
Moran's I

nX
i

X
j

vij

X
i

X
j

vij �xi ÿ �x��xj ÿ �x�X
i

�xi ÿ �x�2
�zX �TVzX
1TV1

Geary's c
nÿ 1

2
X

i

X
j

vij

X
i

X
j

vij �xi ÿ xj �2X
i

�xi ÿ �x�2
nÿ 1

n

�zX �T �Xÿ V�zX
1TV1

Lee's spatial

nX
i

�X
j

vij

�2

X
i

�X
j

vij �xj ÿ �x�
�2

X
i

�xi ÿ �x�2
�zX �T �VTV�zX
1T �VTV�1

smoothing
scalar (S )
(2001a)

Bivariate
Wartenberg's

nX
i

X
j

vij

X
i

X
j

vij �xi ÿ �x�� yj ÿ �y�
�X

i

�xi ÿ �x�2
�1=2�X

i

� yi ÿ �y�2
�1=2 �zX �TV zY

1TV1

Cross ±Moran
(1985)

Lee's L

nX
i

�X
j

vij

�2

X
i

��X
j

vij �xj ÿ �x�
��X

j

vij � yj ÿ �y�
��

�X
i

�xi ÿ �x�2
�1=2�X

i

� yi ÿ �y�2
�1=2 �zX �T �VTV�zY

1T �VTV�1

(2001a)

Note. zX and zY are z-transformed vectors of variables X and Y. For example, an element in zX
is given by

�xi ÿ �x�
�X

i

�xi ÿ �x�2=n
�ÿ1=2

� �xi ÿ �x�=sX .
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The spatial smoothing scalar in table 3 was proposed by Lee (2001a, page 375) and
later denoted S (Lee, 2001b), and can be seen as a univariate counterpart of Lee's L just
as Moran's I is of Wartenberg's Cross ^Moran, which can clearly be seen from the
notational equivalence in each pair. The spatial smoothing scalar can also be seen as a
global counterpart of a modified version of Getis-Ord's G �i that is derived by just
squaring the original equation (Leung et al, 2003, page 730).

By using the equations in the matrix notation, one can define the matrices P and Q
for each spatial association measure in order to conform to the general form of
Mantel's statistic in equation (3) (table 4, over). For all the measures, matrix P takes
the standardized form of a spatial weights matrix. The P matrix for Geary's c should
be further elaborated. For a symmetric V, a matrix Xÿ V is presented as:

Xÿ V �

X
j

v1j ÿ v11 ÿ v12 . . . ÿ v1n

ÿ v21
X

j

v2j ÿ v22 . . . ÿ v2n

..

. ..
. . .

. ..
.

ÿ vn1 ÿ vn2 . . .
X

j

vnj ÿ vnn

2666666664

3777777775
.

Because each row sum is equal to zero, the sum of all the elements in the matrix is
also equal to zero. On the other hand, the sum of on-diagonal elements is given by

tr�Xÿ V� �
X

i

X
j

vij ÿ
X

i

vii

� 1TV1ÿ tr�V� . (7)

When equation (7) is applied to the definitional equation for Geary's c in table 4, one
can see that the sum of diagonal elements in P is given by

tr�P� � nÿ 1

n

�
1ÿ tr�V�

1TV1

�
,

as seen in the table.
Next, matrix Q is identical among the univariate measures as well as among the

bivariate measures. For the univariate measures, an outer product of a z-transformed
variable X is presented:

Q �

�x1 ÿ �x��x1 ÿ �x�
s 2
X

�x1 ÿ �x��x2 ÿ �x�
s 2
x

. . .
�x1 ÿ �x��xn ÿ �x�

s 2
x

�x2 ÿ �x��x1 ÿ �x�
s 2
X

�x2 ÿ �x��x2 ÿ �x�
s 2
X

. . .
�x2 ÿ �x��xn ÿ �x�

s 2
X

..

. ..
. . .

. ..
.

�xn ÿ �x��x1 ÿ �x�
s 2
X

�xn ÿ �x��x2 ÿ �x�
s 2
X

. . .
�xn ÿ �x��xn ÿ �x�

s 2
X

2666666666664

3777777777775
. (8)

The sum of off-diagonal elements in an ith row is given byX
j 6�i

qij �
�xi ÿ �x���x1 ÿ �x� � .:: � �xiÿ1 ÿ �x� � �xi�1 ÿ �x� � .:: � �xn ÿ �x��

s 2
X

�
�xi ÿ �x�

��Xn
i � 1

�xi ÿ �x�
�
ÿ �xi ÿ �x�

�
s 2
X

� ÿ�xi ÿ �x�2
s 2
X

.
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Table 4. Definitions of P and Q and the equations for the expected values of five global measures of spatial association.

G P Q E(G )

definition 1TP1 tr(P) definition 1TQ1 tr(Q)

Univariate
Moran's I V

1TV1
1

tr�V�
1TV1

zX (zX )
T 0 n

�
n

�
tr�V�
1TV1

�
ÿ 1

��
�nÿ 1�

Geary's c nÿ 1

n

�Xÿ V�
1TV1

0
nÿ 1

n

�
1ÿ tr�V�

1TV1

�
1ÿ tr�V�

1TV1

Lee's spatial VTV

1T�VTV�1 1
tr�VTV�
1T�VTV�1

�
n

�
tr�VTV�
1T�VTV�1

�
ÿ 1

��
�nÿ 1�smoothing

scalar (S )

Bivariate
Wartenberg's V

1TV1
1

tr�V�
1TV1

zX (zY )
T 0 nrX;Y rX;Y

�
n

�
tr�V�
1TV1

�
ÿ 1

��
�nÿ 1�Cross ±Moran

Lee's L VTV

1T�VTV�1 1
tr�VTV�
1T�VTV�1 rX;Y

�
n

�
tr�VTV�
1T �VTV�1

�
ÿ 1

��
�nÿ 1�

1694
S-I

L
ee

N
:/psfiles/epa3609w

/



Therefore, the sum of all the off-diagonal elements in Q can be computed by summing
up all the row sums:

X
i

X
j 6� i

qij �
ÿ
X

i

�xi ÿ �x�2

s 2
X

� ÿn .

On the other hand, the sum of on-diagonal elements in equation (8) is given by

tr�Q� �
X

i

qii �

X
i

�xi ÿ �x�2

s 2
X

� n .

Thus, the sum of all the elements in Q, that is, 1TQ1, will be zero (see table 4).
Accordingly, an outer product of z-transformed variables X and Y defines the

matrix Q for both Cross ^Moran and Lee's L, and is given by

Q �

�x1 ÿ �x�� y1 ÿ �y�
sXsY

�x1 ÿ �x�� y2 ÿ �y�
sXsY

. . .
�x1 ÿ �x�� yn ÿ �y�

sXsY

�x2 ÿ �x�� y1 ÿ �y�
sXsY

�x2 ÿ �x�� y2 ÿ �y�
sXsY

. . .
�x2 ÿ �x�� yn ÿ �y�

sXsY

..

. ..
. . .

. ..
.

�xn ÿ �x�� y1 ÿ �y�
sXsY

�xn ÿ �x�� y2 ÿ �y�
sXsY

. . .
�xn ÿ �x�� yn ÿ �y�

sXsY

2666666666664

3777777777775
. (9)

The sum of off-diagonal elements in an ith row is given byX
j 6� i

qij �
�xi ÿ �x��� y1 ÿ �y� � .:: � � yiÿ1 ÿ �y� � � yi�1 ÿ �y� � .:: � � yn ÿ �y��

sXsY

�
�xi ÿ �x�

��Xn
i � 1

� yi ÿ �y�
�
ÿ � yi ÿ �y�

�
sXsY

� ÿ�xi ÿ �x�� yi ÿ �y�
sXsY

.

Therefore, the sum of all the off-diagonal elements in the entire matrix Q is given by

X
i

X
j 6� i

qij �
ÿ
X

i

�xi ÿ �x�� yi ÿ �y�

sXsY

� ÿnrX;Y . (10)

On the other hand, the sum of all the on-diagonal elements in equation (9) is given by

tr�Q� �
X

i

qii �

X
i

�xi ÿ �x�� yi ÿ �y�

sXsY

� nrX;Y . (11)

From equations (10) and (11), it is acknowledged that the sum of off-diagonal elements
is identical to Pearson's correlation coefficient between two variables, multiplied by
ÿn , and that the sum of on-diagonal elements is the same as Pearson's correlation
coefficient, multiplied by n. Hence the sum of all the elements in Q is equal to zero, as
in Q for univariate measures (see table 4).

When all these definitions are applied to equation (6), one can formulate the equation
for the expected value specific to each spatial association measure as seen in the last
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column in table 4.With a binary connectivity matrix (C) or its row-standardized version
(W), the equation reduces to the well-known equation, ÿ1=(nÿ 1) for Moran's I and 1
for Geary's c, because tr(V) is equal to zero. Those familiar expected values, however,
do not hold for a spatial weights matrix with nonzero diagonal elements. The equations
suggested here provide for proper expected values with all types of spatial weights
matrices, which will be illustrated subsequently.

The expected value for Cross ^Moran is given by ÿrX;Y =(nÿ 1) with C or W, which
proves Griffith's findings (Griffith, 1993, page 111; Griffith and Amrhein, 1997, page 48).
The expected values for the spatial smoothing scalar (S ) and Lee's L hardly reduce to
simpler equations, because VTV in both measures always has nonzero diagonal elements
regardless of V. When a row-standardized matrix W� with nonzero diagonal elements is
applied, the equations are simplified respectively toX

i

X
j

w �2ij ÿ 1

nÿ 1
, and

X
i

X
j

w �2ij ÿ 1

nÿ 1
rX;Y

[note that tr(VTV) �
X

i

X
j

v 2
ij , and 1T(VTV)1 � n with a row-standardized spatial

weights matrix].

4 An illustration
As an experiment, I designed two different spatial patterns on a hypothetical space that
is composed of 37 hexagons (figure 1). The two spatial patterns have the same mean
(1.838) and variance (0.514) and the Pearson's correlation coefficient between them is
0.422. Pattern A is used for univariate measures, and the relation between pattern A
and B is utilized for bivariate measures.

Four different spatial weights matrices were built to examine how the extended
Mantel test works with different methods of defining spatial relationships among areal
units. They are
C � fcij g, where cij � 1 if i and j share a common boundary, and cij � 0 otherwise;
W: a row-standardized version of C;
C�: ones on the diagonal of C;
W�: a row-standardized version of C�.

1
2
3

Mean: 1.838
Variance: 0.514

A B

Correlation: 0.422

Figure 1. Hypothetical spatial patterns.
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In order to investigate how reasonable is the approximation from the extended
Mantel test, I conducted a Monte Carlo simulation with 10 000 permutations for
each type of spatial weights matrix for each measure. Table 5 (over) lists the results
along with all the elements in table 2. For all the measures over all the types of spatial
weights matrices examined, the approximation drawn from the extended Mantel
test appears highly reasonable for the first two moments when compared with the
permutation results. This verifies that the decomposition of distributional moments
into ones for off-diagonal and on-diagonal elements provides a fundamental insight into
the sampling distribution of global measures of spatial association.

Overall, Moran's I and Cross ^Moran appear to behave similarly. In both measures,
zero-diagonal spatial weights matrices (C and W) produce the same expected values
whereas the matrices of C� and W� move the expected values to the positive side and
reduce the variance to a significant extent. This is basically because of the introduction
of the expected value for on-diagonal elements.

Another way to investigate the exactness of the proposed procedure on Moran's I is
to compare the derived moments with moments from a set of well-known equations
based on the normality assumption (Anselin, 1988, page 102; Upton and Fingleton,
1985, page 338):

E�I � � n

1TV1

tr�MV�
nÿ 1

, (12)

var�I � �
�

n

1TV1

�2 tr�MVMVT � � tr��MV�2 � � �tr�MV��2
�nÿ 1��n� 1� ÿ �E�I ��2 , (13)

where M � In ÿ 1
n
11T. Equation (12) provides an identical set of expected values for

the different spatial weights matrices, but equation (13) gives slightly different values
for variance, which simply reflects the differences between the two approaches in
terms of inferential assumption. The same sets of equations were derived for Geary's
c and the spatial smoothing scalar (S ) (Lee, 2001b) and the results reported the same
thing.

Geary's c, the spatial smoothing scalar (S ), and Lee's L have certain values in all
the distributional elements in table 5, mainly because the diagonal elements of P are
always nonzero and are usually different from one another. Here, it should be under-
lined that the impacts of nonzero diagonal elements on the expected value for the
spatial smoothing scalar (S ) and Lee's L are significant but are negligible on
the on-diagonal variance and covariance over all the spatial weighting schemes. This
suggests that the equation for off-diagonal variance alone could provide a good
approximation to the overall variance and that the task of constructing equations for
higher moments could be made much easier.

From the last column in table 5, one can recognize that the skewness for the
measures is not negligible. Owing to the exact distribution approach (Hepple, 1998;
Tiefelsdorf, 1998; 2000; Tiefelsdorf and Boots, 1995), Moran's I is no longer subject to
the problem of nonnormality, and the approach could be extended for Geary's c and
the spatial smoothing scalar (S ). Unfortunately, as Tiefelsdorf (2001) shows, it is not
possible to apply the exact distribution approach to bivariate spatial association mea-
sures at this point. Given the high level of positive skewness for Lee's L (see also, Lee,
2001a, figure 3), a fundamental adjustment should be made for adequate inference,
even though a large sample could alleviate the skewness issue to a large extent.
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Table 5. Distributional properties of five global measures of spatial association based on the extended Mantel test, compared with the results from 10 000
Monte Carlo simulations.

Spatial Measure Extended Mantel test 10 000 permutations
weights

expected values variances Zmatrices

(a) Moran's I E(I ) E(Ioff ) E(Ion ) var(I ) var(Ioff ) var(I on ) 2cov(I off; I on ) Z(I ) mean(I ) var(I ) skewness

C 0.3092 ÿ0.0278 ÿ0.0278 0 0.0097 0.0097 0 0 3.4240 ÿ0.0275 0.0101 0.3352
W 0.3860 ÿ0.0278 ÿ0.0278 0 0.0104 0.0104 0 0 4.0621 ÿ0.0276 0.0104 0.3508
C� 0.4270 0.1475 ÿ0.0230 0.1705 0.0067 0.0067 0 0 3.4240 0.1481 0.0069 0.3401
W� 0.4919 0.1560 ÿ0.0228 0.1788 0.0069 0.0068 4:35� 10ÿ5 1:23� 10ÿ5 4.0397 0.1555 0.0068 0.3719

(b) Geary's c E(c) E(c off ) E(con ) var(c) var(coff ) var(c on ) 2cov(c off; c on ) Z(c) mean(c) var(c) skewness

C 0.6202 1 0.0270 0.9730 0.0109 0.0092 0.0016 0.0002 ÿ3.6350 1.0000 0.0108 0.2000
W 0.5774 1 0.0270 0.9730 0.0101 0.0098 0.0003 3:09� 10ÿ5 ÿ4.1998 1.0005 0.0101 0.3609
C� 0.5144 0.8295 0.0224 0.8071 0.0075 0.0063 0.0011 0.0001 ÿ3.6350 0.8289 0.0077 0.2138
W� 0.4810 0.8212 0.0222 0.7990 0.0068 0.0065 0.0003 3:18� 10ÿ5 ÿ4.1241 0.8213 0.0068 0.3474

(c) Lee's Spatial E(S ) E(S off ) E(Son ) var(S ) var(S off ) var(S on ) 2cov(S off; S on ) Z(S ) mean(S ) var(S ) skewness
Smoothing Scalar (S)
C 0.3489 0.1711 ÿ0.0224 0.1935 0.0019 0.0019 6:20� 10ÿ5 ÿ3:83� 10ÿ5 4.0351 0.1715 0.0020 0.8275
W 0.4177 0.1991 ÿ0.0216 0.2207 0.0025 0.0025 7:86� 10ÿ5 ÿ1:91� 10ÿ5 4.3547 0.1988 0.0025 0.7252
C� 0.3563 0.1403 ÿ0.0232 0.1635 0.0026 0.0026 3:05� 10ÿ5 ÿ2:58� 10ÿ5 4.2176 0.1403 0.0026 0.8980
W� 0.4361 0.1560 ÿ0.0228 0.1788 0.0031 0.0031 1:67� 10ÿ5 ÿ4:58� 10ÿ6 5.0374 0.1565 0.0031 0.8567

(d) Wartenberg's E(CM ) E(CM off ) E(CMon ) var(CM ) var(CMoff ) var(CM on ) 2cov(CM off; CM on ) Z(CM ) mean(CM ) var(CM ) skewness
Cross ^ Moran (CM)
C 0.3358 ÿ0.0117 ÿ0.0117 0 0.0057 0.0057 0 0 4.5896 ÿ0.0113 0.0057 0.2492
W 0.3572 ÿ0.0117 ÿ0.0117 0 0.0061 0.0061 0 0 4.7088 ÿ0.0123 0.0063 0.2586
C� 0.3505 0.0622 ÿ0.0097 0.0719 0.0039 0.0039 0 0 4.5896 0.0628 0.0041 0.2513
W� 0.3688 0.0658 ÿ0.0096 0.0754 0.0041 0.0041 3:98� 10ÿ5 1:12� 10ÿ5 4.7266 0.0667 0.0042 0.2341

(e) Lee's L E(L ) E(Loff ) E(Lon ) var(L ) var(Loff ) var(Lon ) 2cov(L off; L on ) Z(L ) mean(L ) var(L ) skewness

C 0.2769 0.0722 ÿ0.0095 0.0817 0.0012 0.0011 5:66� 10ÿ5 ÿ3:50� 10ÿ5 6.0157 0.0719 0.0012 0.6053
W 0.3269 0.0840 ÿ0.0091 0.0931 0.0015 0.0015 7:17� 10ÿ5 ÿ1:74� 10ÿ5 6.2487 0.0836 0.0015 0.5488
C� 0.2969 0.0592 ÿ0.0098 0.0690 0.0016 0.0016 2:78� 10ÿ5 ÿ2:35� 10ÿ5 6.0284 0.0591 0.0015 0.6901
W� 0.3346 0.0658 ÿ0.0096 0.0754 0.0018 0.0018 1:53� 10ÿ5 ÿ4:18� 10ÿ6 6.2757 0.0654 0.0019 0.5982



5 Concluding remarks
This paper has shown that spatial association measures can be presented in accordance
with Mantel's generalized cross-product statistic by adequately defining matrices P and
Q. It also demonstrates that the proposed extended Mantel test can be applied to all
the measures under investigation, univariate or bivariate, over all the different forms of
spatial weights matrices, zero or nonzero diagonals. Most importantly, this successfully
provides a set of equations of the expected value and variance for a new bivariate
spatial association measure, Lee's L. Furthermore, the method presented here could
offer a solid inferential foundation for new spatial association measures.

Given a high level of skewness and the impossibility of pursuing the exact distribu-
tion approach, a further step should be taken for Lee's L. This could become more
serious when it is acknowledged that the distribution of Mantel's cross-product statistic
is not asymptotically normal (Mielke, 1979; Siemiatycki, 1978). This issue of nonnormal-
ity is also associated with the impacts of geometrical characteristics of spatial units on
distributional properties and thus with the validity of the assumption of the asymptotic
normality. As demonstrated by Boots and Tiefelsdorf (2000), a tessellation of hexagons
has a much shorter feasible range of Moran's I in the negative direction than tessellations
of squares and triangles. More importantly, even though the validity of the asymptotic
normality assumption becomes more sustainable as the number of observations
increases (say, a sample size more than 50), this property is less operative for hexagons
than for other tessellations, and may require a sample size of more than 100 (page 329).
Highly positive skewness values for all the measures listed in the last column in table 5
are obviously associated with the fact that the spatial configuration in this paper is based
on hexagons and the sample size is rather small (n � 37). Furthermore, extremely high
skewness values for Lee's S and L imply that the validity of the asymptotic normality
assumption and thus normal approximation for the measures would be much less
reliable than any other measure even with a large sample size.

A simple way to deal with this nonnormality problem is to take some transforma-
tions with the expected value and variance (Heo and Gabriel, 1998). An initial step for
a more comprehensive solution, however, is to compute higher moments for skewness
and kurtosis as presented (Hubert, 1987; Mielke, 1979; Siemiatycki, 1978). Because
table 5 reports that the elements of off-diagonal variance and covariance are negligible
for Lee's S and L, the procedures for deriving higher moments could be applied to the
measures without being bothered by nonzero diagonals, which will be attempted else-
where.When skewness is approximated, a Pearson Type III (gamma) function could be
applied to take skewness into account for a more reliable inferential test (Costanzo
et al, 1983). When both skewness and kurtosis are known, they can be utilized to fit a
beta distribution (Hepple, 1998).

The extended Mantel test presented here could also offer a valuable insight into
investigating distributional behaviors of local measures of spatial association, not only
univariate LISA (for example, Anselin, 1995; Bao and Henry, 1996; Getis and Ord,
1996; Leung et al, 2003; Ord and Getis, 2001; Sokal et al, 1998; Tiefelsdorf, 1998; 2002)
but also bivariate counterparts such as local Cross ^Moran and local Li (Lee, 2001a;
2001b; 2003). As Tiefelsdorf demonstrates (1998; 2000), a local measure of spatial
association can be obtained and tested by applying a star-shaped local spatial weights
matrix for each areal unit to the corresponding global spatial association measure and
significance testing. This implies that the extended Mantel test can be applied to local
measures by replacing the global matrix P with its local version of Pi , which will be
examined elsewhere.
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Appendix
Original equations for the five elements in table 2
The expected value for off-diagonal elements (Cliff and Ord, 1981; Mantel, 1967) is
given by

E�G off � � E
�X

i

X
j 6� i

pij qij

�

�
X

i

X
j 6� i

pijE�qij � �
X

i

X
j 6� i

pij

X
i

X
j 6�i

qii

n�nÿ 1� .

The expected value for on-diagonal elements can be given (Heo and Gabriel, 1998,
page 848):
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The variance for off-diagonal elements (Cliff and Ord, 1981; Mantel, 1967) is defined as
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The variance for on-diagonal elements (Heo and Gabriel, 1998, page 848) is given
accordingly:
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Finally, the covariance between off-diagonal and on-diagonal elements (Heo and
Gabriel, 1998, page 848) is given by
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