A STUDY OF OPTIMUM REPLACEMENT POLICY

Jae Kwan Lee

]. INTRODUCTION
I. ANALYSIS OF FAILURE DATA
1. Conditional Probability of Failure
2. Computation of the Number of Failures
I. COST FACTORS RELEVANT TO REPLACEMENT
1. Costs Depending on the Number of Replacements
2. Costs Resulting from Retention of Failed Items
: 3. Other Costs
L i . SYSTEMATIC CONTROL OF REPLACEMENT
: Unit Replacement System
Group Replacement System
Unit and Group Replacement System
Part Replacement System
. The Point of Problem Suggested by an Example
V. PROCESS FOR PART REPLACEMENT POLICY
1. Workable Policies
2. (s, S) Control Systems Approach
3. Fixed-Interval Systems Approach
Vi. APPLICATIONS
1. Equipment Replacement Problem

2. Staffing Problem
Vi. CONCLUSIONS

.
.......................................................................................................

' [. INTRODUCTION

The problems concerned with replacement of equipment, parts and
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M.B.A., 1971, Seoul National University.




components, and personnel can generally be viewed in two ways, depending
on the life pattern of the above items. The first is a kind of replacement
which has resulted from deterioration of Iitems in use(Category I) and the
second is a kind of replacement which has resulted from instantaneous and

complete failure of items in use(Category II)." -

Category I replacement deals mainly with such - alternative measures as

whether to make continuous use of outworn and inefficient equipment
without replacing it or introduce more efficient equipment by sacrificing the
replacement cost. Category II replacement can in turn be divided into two
parts; (1) the failure of any one item can result in the failure of the entire
system and (2) with the increase in the number of failures in a system,
the overall efficiency of the system will accordingly drop.

In the former case each faulty item should be replaced at the time of
failure but it is really in the latter case that the alternative problem arises
of whether to keep the inefficient equipment or to replace the failures at
the sacrifice of replacement cost. In this thesis only the latter case in Cat-
egory II replacement will be analyzed and studied in some detail.

Although failures are continuous, it is likely that failure data would be
collected and recorded within discrete time intervals. But in practice it Is
measured at discrete time period. Thus, most replacement models are cons-
tructed under the assumption that failures occur instantaneously only at the
end of a time period. Unit(or individual) Replacement System and Group
Replacement System are good examples of this. Generally accepted optimum
replacement policy is known to follow one or a mixture of these two
extremes, Unit Replacement System and Group Replacement System.®

On the other hand, an assumption is made in such a way that failure

(1) Fabrycky, W.]., Torgersen, P.E., Operations Economy, Englewood Cliffs: Prentice-Hall, Inc.,
1966. p.155.

(2) Churchman, C.W., Ackoff, R.L., Arnoff, E.L., Introduction to Operations Researck, New
York: John-Wiley & Sons, Inc., 1957. pp.478—479.




of items occurs continuously, failures in a certain period will be set aside
until the time of replacement at the end of the period. In any case, because
of replacement intervals, the‘accumulation of failures for a certain period is
inescapable. And it is necessary to make an economic choice between ineffi-
ciency cost and replacement. If inefficiency cost is dealt with as a sort of
replacement cost, then replacement problems can be reduced to minimize
the total replacement cost including inefficiency costs.

The production efficiency in the system which has only all “live” items
differs greatly from the system where only part of the items have failed
while part of the items are still operating. Also, frequent replacement of
faulty items for better production efficiency will render high replacement cost.

Thus, ocur ﬁroblem is to determine how frequently and how many replace-
ments should be made to obtain the minimum replacement cost. To do this,
let’s think of a possible model which can answer the question of how many
and how frequently replacements should be made. We shall call one such
model “Part Replacement Model”, which replaces only the amount at the
time when failures are accumulated up to the point. The process for finding
out the optimum replacement policy under “Part Replacement Model” is

discussed in Chapter V.

There is a strong analogy between a probabilistic inventory model and
our part replacement model. The former has two random variables, the
procurement quantity and the number of periods per cycle fixed. The latter
also has two random variables, the size of replacement and the replacement
interval. Furthermore, both of them are for problems concerning minimum
cost expedition.

We have” several ways to solve probabilistic inventory problems: Fixed —

Interval Systems, Fixed —Quantity Systems and (s,S) Control Systems.® I

(3) Magee, ].F., Boodman, D.M., Preduction Planning and Imventory Control, New York: Mc
Graw-Hill, Inc., 1967. pp.119—132.
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thought that these techniques could also be applied to finding out an
optimum replacement policy.

In this paper, the techniques of Fixed-Interval Systems, Fixed-Quantity
Systems and (s,8) Control Systems are employed for optimum replacement

policy, and examples are given in order to illustrate the methods.

. ANALYSIS OF FAILURE DATA

1. Conditional Probability of Faliure
Replacement models for items that fail require the use of probabilistic

concepts and statistics of failure data. We should be able to analyse the

given data to solve the replacement problem. Some definitions and terms

are introduced as follows.

Definition 1

The reliability of a component at time ¢, say R(t), is defined as R(t)=
Pr(T>t), where T is the life length of the component. R() is called the
reliability function.

The definition given here simply says that the reliability of a component
equals the probability that the component does not {ail during the interval
{0,£]. In terms of the probability density function of T, say f, we have
R(D)= r f(s)ds. In terms of the cumulative distribution function of T, say
F, we have R()=1—Pr(T=<£)=1—F(®. '

In addition to the reliability function R, another function plays an -
important role in describing the failure characteristics of an item.

Definition 2 .

The failure rate Z associated with the random variable T is given by

ZO=fEO/1-FE=f(/R®), defined for F( <.

(4) Meyer, P.L., Introductory Probability and Statistical Applications, Addison-Wesley, Inc..
1966. pp.207—216.



In order to interpret Z(f), consider the conditional probability Pr(t=T=
£+ 40 = 4tf(®)/R(), where t<é<t+4t. For small 4t and supposing that f
is continuous at 0*, the right term is approximately equal to 4tZ(2). Thus,
simply, 4tZ(t) represents the proportion of items that will fail between
and ¢+ 4, among those items which are still functioning at time 2.

The pdf of T, uniquely determines the failure rate Z. Conversely, the
failure rate Z uniquely determines the pdf f. Failure rate Z is an increasing,
decreasing or constant function of ¢ according to the life pattern of the
equipment. (Cf. figure 2.1)

¢2.1 Figure)

Z is increasing

o \
’)&Z is constant
Z is decreasing

t

There are many types of Components whose failure behavior may be
represented by an increasing failure rate. The most typical pattern of these
is showed in the case of normal distribution. But it is known that “infant
mortality” is one of the cases which is represented by a decreasing failure
rate.

We very interestingly have a third case. The time for failure T has an
exponential distribution if and only if it has constant failure rate. Applying
the definition of conditional probability, we find that, for small 4, Pr(¢<
T<t+4t /T> )=1—exp.(—adt)=adt, i{ Z(t)=a(constant). Hence, this
is independent of ¢, depending only on 4.

It is in this sense that we may say that an exponential failure law implies

that the probability of failure is independent of past history. That is, as




— 40 —

long as the item is still functioning, it is “as good -as new”. For example,
it is quite reasonable to suppose that a fuse or a jeweled bearing is “as
good as new” while it is still functioning. '

However, when exponential failure law is assumed, past history does have
an effect on an item’s performance. And in this case, we must consider the
data which is available in age-probability relations. As an example, table

2.1 is given here.®

{Table 2.1>
PERIOD SURVIVORS FAILURES
(A - ©) P (D Pe(t)  (E)

0 1,000 — — —

1 500 © 100 ' 0.10 100/1, 000 -
2 750 150 0.15 150/900

3 500 250 0.25 250/750

4 200 300 0.30 300/500

5 0 200 0.20 200/200

Column (B) of the table gives the number of items functioning prdperly
at the end of each time period. Column (C) gives the number of items
which failed within each time period. The probability of an item failing
within each time period is given in column (D), _.

The probability that a bulb, having survived to an age t—1, will fail
during the interval z—1 to ¢ can be defined as the conditional probability of
failure. These conditional probabilities are given in column (E). This example
is bdsed on empirical data. If there is good reason to believe that failure
.data conform to a known theoretical distribution, then the entries in column
(B) could be found by calculation.

2. Computation of the Number of Failures

Definition 3

An n-component age distribution A is a row vector written as (a,, a4, 42,
------- , a,-1). The i—th component a;, i=0,1,2,--, n—1, are assumed to

(5) Sasieni, M., Yaspan, A., Friedman, L., Operations Research:methods and problems, New york:
John-Wiley & Sons, Inc., 1959. pp.108—109, Example 4.




be the number of items whose age is i. Thus, @, is the number of new
items just replaced.

Definition 4

The transition matrix for a Markov Chain is the matrix P with entries
Pi;. “Pi” means the probability that an item in state i will be in state j at
next time period. If a problem has n different states, transition matrix for

the problem will be an n Xz matrix,©

In the replacement problem, conditional probability £ is defined as
follows; (1) Piy=0, if j*i+1 (2) Pu=0, for all i except i=0. @

The entries Pi, of the first column in a transition matrix indicate the pro-
babilities that an item in state ¢ is replaced at once, because of failure at
the next time period.

If we use the transition matrix P=(P:), Pix0, in calculation, then it
means that we replace failures at every period. By induction, we can get
an equality Ai—A,_,P. Assume that transition matrix P, with its first column
entries, Pi,, vanished, we can get an age distribution of the next period
by the equation Ar=._,P, even if we do not replace the failures each period.

Theorem 1

There exists a steady age distribution A. such that A.=A.P, for some =,
in replacement problem. If we do not replace the failures each period, A

converges to the null vector 0. ®
Theorem 2

The first component a, of A: means the number of failures at the end of

period ¢. The first component a7, of the steady age distribution A. is the

mean of the numbers of failures per period. The reciprocal of a% is the

(6) Kemeny, J.G., Snell, J.L., Finite Markov Chains, New York: D. Van Nostrand, Inc., 1960.
pp. 24—26.

(7) Churchman, C.W., op. cit., p.500.

(8) Churchman, C.W., op. cit., p.501 An illustrative example is given in Chapter V (p.59) in
this thesis.
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mean life length of the item,®
. COST FACTORS RELEVANT TO REPLACEMENT

1. Costs Depending on the Number of Replacements

A. Purchasing Costs

When items are purchased, quantity discounts may be allowed, i.e., the
unit price of the item may be adjusted depending on the quantity purchased.
Quantity discounts are conventionally quoted in terms of price breaks or
brackets, volume Mmits within which fixed unit prices apply, or in terms of
a discount schedule, a statement of percentage allowance granted on orders
or quantities of given amounts or over.

The differences in cost may result from reduction of paper work or
machine set up incident to an order, differences in manufacturing method,
economies in shipping and packing, or even administrative or selling
economies. Figure 3.1 and 3.2 illustrate a typical unit price-quantity relation
from a discount schedule and the corresponding total cost-quantity relation.

If such costs in personnel replacement as those of announcement, testing,

(Figure 3.1> {Figure 3.2>
Unit Price-Quantity Relation Total Cost-Quantity Relation
—
o - 5
;U —— o
2 2
Quantity

Quantity
(9) Clough, D.]., Concepts in Management Science, Englewood Cliffs: Prentice-Hall, Inc., 1963.
p.229.




and physical examination necessary for recruiting, selecting, and placing
personnel are considered as purchasing cost, the problems or theory
concerning equipment replacement can directly be applicable to those in
personnel replacement.

B. Replacing Cost

Since equipment replacement is indispensable for normal production
activities, the cost for equipment replacement is an important factor in
overall production cost. Here the replacing cost, as a part of replacement
costs, includes all costs for removing failures and installing new items.
Important elements in this cost are the cost for workers who participate in
replacement operation and the cost incurred from suspending activities of
the company (Cf. Figure 3.3).

Especially if replacement and installation make necessary specialized
techniques and relatively long time periods, the replacing cost should be
considered as important. If suspension of operations will take place at
every replacement, then economy can be achieved by minimizing the number

of replacement operations.

(Figure 3.3> Replacing Cost

109 nup

Size of Replacements




Replacing cost will accordingly be increased when the replacement is
troublesome and necessitates a long period of work. It follows then for
minimum replacing cost to choose the one which minimizes the frequency
of replacements and maximizes the size of replacements (the number of items
replaced at one replacement). Certainly, if the replacing cost incurred from
suspension of operations is not significant, replacing cost in general will be
increased in proportion to the number of items per one replacement.

Replacing cost in personnel replacement, unlike equipment replacement,
includes such costs as necessary for training personnel recruited to fll
vacancies. Though the training cost will differ depending on the methods
of training such as orientation, vestibule school training, and  programmed
tfaining,“"’ it will generally be dependent upon the number of replaced
personnel and particularly the amount of recruitment in a certain period.

2. Costs Resulting from Retention of Failures.

A. Maintenance Cost .

Maintenance cost is usually an important element of factory overhead
cost. As maintenance cost indicates the cost of maintaining items in use or
“live items”, it follows that maintenance cost increases in direct proportion
to the quantity of “live items”. Accordingly, if failures are not retained
and if instead replaced at the time of failure, there will be only those items
which are always operating. In that case maintenance cost remains constant.
And maintenance cost will not be relevant to the discussion of replacement
problem. This is also the case with the Unit Replacement model as well as
with the Group Replacement model.

But in a model in which retention costs of failures over a certain period is
- significant, the maintenance cost of existing survivors should not be regarded
for it is usually affected by or dependent upon a replacement policy.

While both purchasing cost and replacing cost occur only at the time of

(10} Yoder, D., Personnel Management and Industrial Relations, Englewood Cliffs: Prentice-Hall,
Inc., 1962. pp. 394—402.




" replacement, maintenance cost will always occur for a certain period even
when items are not used or functioning.

The calculation of maintenance cost for a period is as follows:(Mainten--
ance cost per period)=(the average quantity of survivors for a period) X
(Maintenance unit cost per period).

In personnel replacement, the cost corresponding to or comparable to:
maintenance cost is Arbeits haupt Kosten such as wages, salary and bonus,
Since the wages for employees are proportional to the number of employees,
the total wages will accordingly decrease as the number of vacancies.

Increase.

{Figure 3.4> Maintenance Cost

300 feI0]

Average Number of Failures per Period

In personnel replacement the total cost of wages taken for recruiting-
needed personnel to fill current vacancies is what we are interested in and
we can regard it as the replacing cost in personnel replacement.

B. Inefficiency Cost

Along with the cost resulting from suspending operations, ineficiency cost,
though not shown in general financial statements, is a functional cost which

should be included as important when regarding replacement policy. Penalty
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cost in inventory control is calculated as adding additional surplus to satisfy

a shortage by assumming that when a backlog is present, the shortage to

o

fully meet the demand is met by overseas import or delivery from remote

N

distances.
On the other hand, in replacement, the estimated amount of reduction in

revenue is added to the amount of failed items kept over a period for the

estimated reduction in revenue is from sluggish production caused by

R . ] Bl i e i S
%

retaining failures over a period. If the number of failures increases, inefficiency
; will accordingly appear and finally the system as a whole will stop
functioning. We do not in the least want this worst case to come about.

Figure 3.5 shows the relationship between the average number of fail-

ures retained and the total inefficiency cost.

{Figure 3.5> Inefficiency Cost

1500 0L

Average Number of Failures per Period

As in the case of maintenance cost, if immediate replacement for failures
in order to fully operate existing items is made possible, inefficiency cost
will not be significant and thus can be ignored. This is also true in Unit

Replacement as well as in Group Replacement. If the occurrence of failures
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is continuous over time, replacing must be carried out at discrete intervals.
In the light of the above fact, we should not disregard inefficiency cost.
but take it into consideration. The calculating formula for this cost is derived
from the average number retained over a period multiplied by the unit
inefficiency cost over a period. The average number retained. over a period
comes to a half of the number of failures in a period under the assumption
that the number of failures are equally distributed over a small period.

3. Other Costs
The preceding four factors have been thought pertinent in dealing with’

replacement problems but the following also hold as the occasion demands.
A, Inspection Cost
B. Clerical Cost
C. Capital Cost

D. Miscellaneous Costs

V. SYSTEMATIC CONTROL OF REPLACEMENT

1. Unit Replacement System (UR) OV
A. Assumptions

(1) Failures occur instantaneously only at the end of a time period.

(2) Units are replaced as they fail.

(3) In a Unit Replacement System, only purchasing cost and replacing
cost are considered as cost factors relevant to replacement.
B. Objective Function

(1) Notations U(#)=the cost of UR per period

z,=the number of failures made at the end of the i-th
period.

c(z)=cost of UR per unit

{11} Churchman, C.W., op. cit., p.478 and p.491.




(2) The cost of UR per period may be expressed as

U(t)="z_;.' (D) zi/t.

If ¢(z)=c (constant), then U(t)=c§ zi/t=ca’, where z' is the

average number of failures per period.
2. Group Replacemeni System (GR) 2

A. Assumptions
(1) Failures occur instantaneously only at the end of a time period.

(2) All units, both survivors and failures, are replaced as one or more
of them fail. .
| (3) Only purchasing cost and replacing cost are considered as cost factors
relevant to replacement.
B. Objective Function
(1) Notations ®
G()=the cost of GR per period
N=total number of components in a system
¢(N)=cost of GR per unit
(2) If we replace all the components » times for ¢ periods, the cost of
GR per period may be expressed as follows:
G =c(N)n N /t, n<t.
3. Unit and Group Replacement System (UGR} 13

A. Assumptions
(1) Failures occur instantaneously only at the end of a time period.
(2) Units are replaced as they fail but, in addition, all units will be

replaced at a specified interval.
(3) Only purchasing cost and replacing cost are considered as cost factors

relevant to replacement.

(12) Churchman, C.W., op. cit., p.478 and pp. 491—492.
(13) Fabrycky, W. J., op. cit., p.186. ®




B. Objective Function

Let K(#) be total replacement cost per period through ¢ periods after the
previous group replacement. The total cost per period will be the cost of
UR per period plus the cost of GR per period, or K(1)=U(+G(®).

The cost of UR per period may be expressed as U(t)=é c(D)zi/t,
where the summation of zi is over t—1 periods, to allow for the replacement
of failures in period ¢ as part of the group.

The cost of GR per period may be expressed as

G(t)=c(N)N/t.
Therefore, the total cost per period with UGR may be expressed as

follows:
K =E=ll o(2)z,/t+c(NIN/t.

4, Part Replacement System(PR)
A. Assumptions
(1) Failure of items occurs continuously.
(2) Accumulative number of failures is to be replaced at a specified period
according to replacement policy.
(3) Cost factors relevant to replacement are
a. purchasing cost
b. replacing cost
c. maintenance cost
d. inefficiency cost
e. miscellaneous costs
B. Objective Function
Total cost of replacement under PR system is determined by a replacement
policy; the policy is determined by the time to replace and the number
of failures to handle. Hence, the objective function is to follow the process

of policy-making. Chapter V will show you the cost function under a PR




System.
5. The Point of Problem Suggested by an Example
Suppose that a group of 10,000 light bulbs is installed and at the end of

t time periods the number of bulbs surviving is some function of ¢ Failure

data is given in Table 4.1,

{Table 4.1> Analysis of light bulb failure data®

Period Survivors ! Failures P(t) Pe(t) Ps(&)
(4) (B L © (D) ‘ (B ‘ (¥

0 10, 000 - — — 1.00

1 9, 000 1,000 0.10 1/10 0.90

2 7,000 2,000 0.20 2/9 0.70

3 4,000 3,000 0.30 ' 3/7 0.40

4 2, 000 2,000 . 0.20 1/2 0.20

5 500 1,500 0.15 3/4 0.05

6 0o | 500 0.05 1 1.00
7 0 0 0. 00 - ‘ —

P(t)=(failures during the time period £)/10,000. Pc(t)=the conditional
probability that a bulb, having survived to an age t—1, will fail during the
interval t—1 to ¢ and computed as Pc(#)=(failures during the time period
t)/(the numbér of survivors through time ¢—1). Ps(¥)=the probability of
survival to an age ¢ and computed as (the number of survivors through time
£)/10, 000 |

This example is based on empirical data. In an actual analysis of failure
data, more precision would, be obtained by increasing the number of time
periods and dividing the survivor data finely.

To calculate the number of failures, we have to make a transition matrix
P and an age distribution.

The Markov Chain in this case has 7 states—0, 1,2, 3, 4, 5, 6—and hence,

matrix P could be made as follows:

(14) Fabrycky, W. J., op. cit., p.182. (The example and its solution}




0 1 2 3 4 5 6
0/1/109/100 6 0 0 0 O,
112/9 0 7/9 0 0 0 0|
2(38/7 O 0 4/7 0 0 0
P=3|1/2 0 0 0 1/2 0 0
413/4 0 0 0 0 1/4 0
51 1 0 0 0 0 0 0
6\ 1 0 0 0 0 0 0
Let A: be the age distribution at the end of the i-th period, then
A,= (10, 000, 0, 0, 0, 0, 0, 0
A,=( 1,000, 9,000, 0, 0, 0, 0, 0)=AP
A,=( 2,100, 900, 7,000, 0, 0, 0, 0)=A,P
A;=( 3,410, 1,890, 700, 4,000, 0, 0, 0)=A,P
44=( 3,061, 3,069, 1,470, 400, 2,000, 0

The number of failures at the end of each period is the first component
of an age distribution corresponding to the period. Figure 4.1 illustrates
that the number of replacements required per period oscillates until a steady-

state condition is achieved.

(Figure 4.1> Total failures per time period and failures
per time period of the original units
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A. Solution by Unit Replacement Policy

The average life of the units under consideration is given by the expres-
sion él}t P(?). For example, the average life of the light bulbs is 1(0.10)

+2(0. 20> +3(0. 30) +4(0. 20) +5(0. 15) +6(0. 05)=3. 25 periods. Hence, the
number of replacements required per time period in the steady-state
condition is 10, 000/3. 25 or 3,080. This value agrees with that illustrated
by Figure 4.1.

If the cost of replacing one unit is $0.10, the cost per period would be
$0.10(3,080) or $308. This period cost should be compared with the policy
of group replacement.

B. Solution by Unit and Group Replacement Policy

Assume that units are réplaced as they fail but, in addition all units will
be replaced at a specified interval. And assume that the population of 10, 000
bulbs has a group replacement cost of $0.05 per unit. As before, assume
that the cost of unit replacement per unit is $0.10.

The total cost per period for various group replacement intervals is calcu-

lated from K(H)=0. 1§ @i/t +0. 05010, 000) /2.

{Table 4.2> Seolution by Unit and Group Replacement

Period ¢ 'zjx, 0.1 fé:.-/: (0. 05) (10, 000)/¢ K@
1 0 0 500 500
2 1000 50 250 300
3 3100 103 167 270
4 6510 163 125 288
5 9571 191.4 100 291. 4

A group replacement interval of three periods will result in a minimum
total cost per period. Since this cost is $270, a saving of $308 less $270,
or $38 per period, will result if the policy of group replacement is

implemented.
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C. The Point of Problem

The above solution is based on two important assumptions:

(1) Replacement cost $0.10 per umit is independent of the size of
replacements.

(2) A number of failures, even more than 3,000 items, fail instan-
taneously at the end of each period.

Under these assumptions, replacement model becomes very simple but it
is far from the practical realities. It is desired to build a model that is more
practical. When items are purchased, quantity discounts may be allowed,
i.e., the unit price of the item may be adjusted depending on the quantity
purchased. Genefally, the bigger the size of replacements, the cheaper the
cost of replacing one unit.

A number of failures fail continuously and we should consider the ineffi-

ciency of the organization caused by the retention of the cumulated failures.

For small time period, we may assume that the average number of retention

per period is calculated as follows;
(the number of failures per period)/2.

The calculating formula for inefficiency cost is derived from the average
number of retention over a period multiplied by unit inefficiency cost over
a period.

If some cost data are added here in this problem (Cf. Table 4.3), the
solution by Unit and Group Replacement could be showed as Table 4.4
with a difference from Table 4.2.

{Table 4.3) Cost data for replacement

N o | b S | Mmoo | ey co
1—1000 $0.10 1--1000 $0.02
10012000 $0.08 1001—2000 $0.08
2001—3000 $0.07 2001—3000 $0.10
3001—4000 $0.06 3001—4000 $0.20
more than $0.05 more than $0.80
4000 4000




{Table 4.4)>

Another solution by the new data

Do No. of Cost of UR per Cost of GR| Inefficiency cost
Per(lc;g £ failures period per ¢ per ¢t K(%t))
B © ¢D)] (E)
1 0 0 j‘ 500 100(0.08). 510
2 1000 (1000% 0.0 I 250 gg+0.ogggoo/2> 057
3 2100 9-.15,19@9;:@7&21@0‘ 7 | GLHO.XUIOD | gy
0.08 x 3061
4 so | 1001470063410 |1 (230,44 0085308 1%%.1
| J 4 -
' 3318%0.08
5 | 06 | %L 6:+3061x0.06 } o |2 s+ B0
I , i 5
6. 3318 ’ wreare ’ ...............

Since the corresponding failure at the end of each period converges to

& stable number by the existance of a steady age distribution, the replacing

"_cost in column (C) and the inefficiency cost in column (E) of Table 4.4

_ slowly approach stability.
~ Table 4.4 shows us that the second period is the best time for group
‘replacement. The purpose of this table lies not in getting the best solution

: but in suggesting that the solution from Table 4.2 is not practical due to

.- the over simplified assumptions.

V. PROCESS FOR PART REPLACEMENT POLICY

"1, Workable Policies,

Two random variables are important in the replacement process as in the
. stochastic inventory process. If we let one variable r be the size of replace-
_ments“? and the other variable I be the replacement interval, then we may
';;.'have a two-variable function C=f(r, I) where C is total replacement cost
" per unit period. | '

LI

(18) The term “the number of replacements” is somewhat ambiguous since it can refer either to
the size of replacements (the number of items replaced at one replacement) or to the
frequency of replacements. In this paper, this distinction should not be confused.




If 8C/ar, 8C/al exist, it would be useful to examine the followings:“®
3C/3r <0 '
0C/oI=Q
PO e (1)
| 120

If equations (1) holds, we can get the values of r=r* and I=I* which
minimize C. But we have no way to find out whether function f has the
partial derivatives with respect to r and I, and moreover, we are expected
to determine the exact pattern of function f. Accordingly, no analytical
solution of the problem using calculus can be possible. _

We now turn to the stochastic inventory process to build an adequate
replacement model for this problem. We have seen that the two variable
function f(r,I> holds true. From this we have two different approaches to
analyse the problem. One is to determine a policy by examining the
changing value of I when variable r is kept fixed. The other is to examine
the changes in value of r when variable I is kept constant.

To put it simply, (1) Fixed-Quantity System (2) Fixed-Interval System
are the two possible approaches to finding the minimum cost policy.

When the number of cumulative failures increases to a certain fixed level,
the failures are immediately replaced in a Fixed-Quantity System. In this
system, replacement intervals are hardly expected to be constant as we are
only interested in the value r. That is, the length of replacement interval
I is a variable. In this system the times of replacing cumulative failures are
determined by or dependent upon the level we fix r. The selection of a
constant value r will also affect the total cost per perod.

In a replacement problem unlike inventory, we can hardly expect the

Fixed-Quantity System to actually exist. The number of failures is in practice

calculated at discrete periods in the case of given failure data. But in reality,

(16) Hadley, G., Nonlinear and Dynamic Programming, Addison-Wesley, Inc., 1964. pp.185-190.
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failures occur not discretely but continuously. Since failures are conceived
in terms of continuous processes, the exact time at which the cumulated
failures reach a fixed value of » can not be checked.

We can find out the exact time at which cumulative failures reach a
fixed value of r by reviewing continuously. And it is meant by finely
splitting the length of a period of the given data. But the method of splitting
the length of a period has two important demerits: First, it is uneconomical
because of inspection costs and because of too much computer time for
calculation of the number of failures in each subperiod.

Second, if we plan to replace failures not by calculation based on failure
data but by practical inspection, no future prediction will be made possible.
In fact, if we plan to calculate the failures continuously, the dimension of
the transition matrix we use becomes enormously high.

But the use of given failure data helps eventually to reduce the determi-
nation time when the cumulative failures reach a fixed value of r at
discrete intervals. That is, discrete approximations to the continuous
distribution of life spans are applied. Some compromises between the fixed-
interval system and the fixed-quantity rules are possible and often useful, not
only as practical operating systems, but also as models for the examination
of certain replacement systems characteristics.

An excellent example of this is found in (s,S) system. In this thesis, the
two approaches to determining optimum replacement policy will be modified
as follows: (1) (s,S) Control System (2) Fixed-Interval System.

2. (8,S) Control Systems Approach

The ordering rule for an (s,S) inventory control system can be very
simply stated: If fewer than s units are available order enough to bring stock
up to a level S; otherwise, do not order. In application to a fixed-interval
system, the rules operate as follows:

(i) Choose two inventory levels S and s, S larger than s.

(17) Magee, J.F., op. cit., pp. 136—137.




(i) At each review period, compare the available inventory # with S
and s.

(iid) If % lies between S and s, place no order. If & is at or below the

 level s, place an order for an amount equal to S-h.

This consideration of the inventory model also holds for the replacement
model. That is, with given set-intervals of examining the quantity of
survivors, immediate replacement must be made if cumulated failures exceed
r, and no additional supply is necessary until the next period if cumulated
failures are less than r.

Determination of a minimum cost policy by (s,S) system presupposes
adequate solutions of the following three points:

(i) Determination of the value of . (What value of r confributes to

finding minimum cost policy?)

(ii) Determination of the length of period.(At what interval should the
examination of failures be carried out?)

(ii) What is the cost functions for finding the total replacement cost per
period in (s,S) system, especially in the case of short-term policy
and of long-term policy?

We will begin with a simplified method of finding minimum cost policy in

such a way that we first set several possible policies and then try to find
out the total cost per period for each policy and compare them one another.

What are then the possible policies and how do we find them?
A. Criteria for Finding the Fixed Value r

(1) Based on the given quantity-cost data, pick out several quantities
where total cost per unit is minimized.

(2) Consider the various limitations set for overall systems, especially
when top management limits the quantity of failures on hand and adjusts
the quantity suitable for service level.

(3) Consider the average number of failures per period in UR. We have
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a stable age distribution when replacement is made at every period. (Cf.
Chapter I1I) Then, we can get the convergence of failures to a fixed value
a,. If we select an r such that r<a,, failures per period are more than r.
And then we must replace them at every period as in Unit Replacement. If
r>a,, the length of replacement cycle will be more then 2. Accordingly,
there is no need to choose several values of r such that r<a,. Instead, it
" will be much simpler if we choose only one value of r as in UR and later
compare it with r’s where r>a,.

B. Determination of Optimum. Length of an Interval

There are some differences in meaning between the length of an age-
period on the given failure data and the length of review period. The
frequency of review can be determined by examining the effect of cost factors.

It is better to have shorter review periods for lower inefficiency cost. On
the other hand, it is better to have longer review periods either for lower
inspection cost or for replacing cost.

There is a case where the subdivision of measuring period is desirable.
Let’s suppose the average number of failures per period ¢, is sufficiently big
so that selection of r’s where a,<{r becomes difficult. In this case, an altern-
ative to the solution is directed at determining the value of r where a;>r.

As a result, the number of failures per period will be lower than the
lower control limit s(=S-r). The implication from the above observation
demands that the replacement be made at every set period. This method of
subdividing the length of an age-period on given failure data will yield to

more elaborate analysis of the problem.

It is, however, not an easy problem to find the probabilistic age distribu-

tion in terms of more subdivided periods. For this problem, the following
assumptions may be made.
(1) If data is given in theoretical probability distributions such as normal

distribution, binomial distribution, and Poisson distribution, the probability




value for the corresponding period can be found by calculation.

(2) Whether data is given in the form of theoretical probability distri-
butions or obtained by other empirical methods, each initial probability of
failure for the initial intervals of a given period can be so adjusted as to
allow uniform distribution of the probability for the more subdivided
interval of the adjusted period.

To have a clear picture of this, the following example is given. Suppose
that the following is a table for failure probability distribution of an item

whose maximum span of life is 4 when its age is taken in two months.

PFRIOD ¢ PROBABILITY P(2)
0 ‘ _
1 0. 10
2 0.20
3 0. 40
4 0. 30

Then, transition matrix P is made as follows:

0.1 0.9 0 0
p_12/9 0 17/9 0 |
47 0 0 3/7
L1 0 o o

Let the stable age distribution be A.=(ay, @y, as, a;) such that A,P=A.,

and 3E=0 ai=1, 000.

We have 5 linear equations relating 4 variables. They can be written:

ot ar+atas=1,000  eeeeeeeeeerrenannn €D
(1/10)a0+ (/D ai+ (4/T)ap+az=ay -++erreerermsereeenes 2
(9/10)ag=a, e 3)
(7/9Da;=a, i )
(B/Da,=a;, (5)

Not all of these equations are independent since equation (2) can be

obtained from equations (3) and (4) and (5). The above set of linear




equations can be solved and the value of a,, the number of failures per
period, is thus calculated.
a,=345

If top management does not allow for the failures on hand to exceed
300, the only possible determination of the value of r is limited by the
maximum number of 300. And hence, it is inescapable to make a conclusion
such that the best policy is *“to replace failures at every end of the period”.
But it will be too hasty to have the above solution as the optimum policy
we are seeking.

Because in this system, the number of failures on hand at all times
exceeds 300 even though replacement is carried on at every end of the period.
That is, allowance for failures per period is not to exceed 300 but the
number of failures is always over 300. This method does not seem to lead
to an adequate solution.

To improve the above solution, for example, we may divide the initial
age period into two and set half of the initial age period as the new age
period. And then, the maximum span of life is increased to the age of 8
when its age is taken in one month. The following is a table for the failure

probability distribution of the above item whose maximum span of life is 8.

INITIAL DIVIDED PROBABILITY PROBABILITY
PERIOD ¢ PERIOD ¢ P P
0 0 -— —
— 1 — 0.05
1 2 0.10 0.05
— 3 — 0.10
2 4 0.20 0.10
— 5 — 0.20
3 6 0.40 0.20
— 7 — 0.15
4 8 0.30 0.15



Transition matrix P’ for the above table will be made as follows:

5/100 95/100
5/05 0
1;3
P=12anm
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Let A, be the stable age distribution of 1x 8 matrix for this problem. The
value of a.’ of the first element in A,/ yields 189 which is obviously less
than 300. From this, we can find some possibilities of more refined
replacement models.

The further subdivision of the periods is made, the higher the exponent
of transition matrix will be but calculation of the value becomes more diffi-
cult. With the help of a computer, subdivision into 1/2, 1/3, 1/4,---*
etc. of the initial periods will be easily achieved.

C. Computation of Replacement Cost

(1) Short-term policy (finite period)

Of several possible policies, the choice of optimum policy is made, after
we have calculated costs according to the policies. Since we are dealing
with relatively short-term policies, not much time will be spent calculating

replacement cost.

{Table 5.1> Computation of Replacement Cost

. . Purchasi Average No. o - : Total
Period ¢ lLFS‘;L; e | & Igoegtlacilrllgg | ﬁﬂf:?:i?l £ [eticency ance cost| Repl
1| = n | o | F=a2 LalBF | (S |
2 |z | atm || 0 | Featolz  |a®R | a8
3 3 | ;ptaetaa | alr) ézi { Fa=z1t 23+ 2s/2 csF3 553
4 | Iy I 4 | 0 ' Fi=z,/2 ! NN ‘ Sy
5 5 e l cl.;‘i_‘,‘z.- \ Fo=x+x5/2 i e Fs 555 |




The above chart illustrates how to compute the total replacement cost
for a given policy that is to replace at the 3rd period and at the 5th period.
2 (Cf. Table 5.1)

k. Notes: (i) ¢;, ¢;(z)=Purchasing cost and replacing cost per unit.
. (1) ¢4, ¢y (F)=Inefficiency cost per unit per period.
| (iii) ¢;, 5 (S)=Maintenance cost per unit per period.
) (iv) Average number of failures in a period, F, was calculated under
: the assumption that items fail in direct proportion to time in a .
= period. Hence, Fi is calculated by adding the initial number of
failures of the t-th period with a half of the number of items
failed in the t-th period.
(v) 8i=N—F.; Average number of survivors in a period.

N= Total number of components in a system.

To determine the minimum cost policy, each replacement cost for differ- |

ent policies should be properly compared and for this purpose, it is desired

to determine the replacement cost per period for each policy. That is, total
replacement cost of the above table will be divided by ¢, the number of
periods. Generally, if we replace the failures at ¢-th period and at s-th period |
during the first s periods (¢<(s) then, total replacement cost during the first
s periods is equal to the sum (a)+(b) +(c) +(a)’ + (b)’ + ()’ given below.
(a) Purchasing cost and replacing cost during the first ¢ periods: |
c(x)(x +xpt-ee + ) 7

(b) Maintenance cost during the first ¢ periods:

(N—21/2)e(8) + (N— <x1+xz/z>]c<S)+-.-+[N— (g‘ix.-ﬂ,/z)}ccm
(© Ineﬂiéiency cost during the first ¢ periods: |

(2y/2)e(F) + (214 25/ 2)e(F) + -+ (Z;‘;’ zitzi/2)e(F)

(a)’ Purchasing cost and replacing cost during a time interval from the
(t+1)-th period to the s-th period: e




C'(.‘E) (Ig+1+$1+2+ ------ +I;)

(b)’ Maintenance cost during a time interval from the (¢+1)-th period
to the s-th period:

(N_ x,H/Z)C(S) + [(N- (x4, '{"-1714—2/2)]6(5) e +[JV_ (1§1$" +I’/2)}C(S)

(¢)’ Inefficiency cost during a time interval from the (¢+1)-th period
to the s—th period:

(e /2De(F) 4+ (zrgpy + 3042/ 2)c (F) + - + (§1$f+‘"’/2 ) c(F)

What we are interested in is to choose a policy which minimizes

. @+M+@Q+ @'+ M+’ (0 cach policy.

(2) Determination of long-tefrn policy

In the foregoing, we have discussed an optimum policy for short-term
replacement which can be best determined by comparing the (s,S) replace-
ment policies with each other. In this section, we are dealing with a long-
term replacement policy which necessitates an entirely different approach.
Unlike the short-term policy, calculating the replacement period for a (s, S)
policy is a tedious job and it requires a great amount of time because
repeated trials are necessary until the replacement cost approaches a limited
value. To solve this difficulty, the simulation process is introduced here: a
technique of calculating the mean number of periods per replacement
interval (cycle).
The age distribution changes in accordance with certain policies established

' by the decision maker. Assume the values of s and S, and that we apply

the (s,8) policy to a given replacement problem. We can get the number
of periods per replacement cycle for the given policy as in Table 5. 2. Refer
to Table 5.2 and Table 5.3 in order to get a more complete understanding
of the simulation scheme.

The data in Table 5.2 is drawn from the record of a firm which is

adopting(s, S) policy. The age distribution for the next period is obtained by
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multiplying the initial age distribution by transition matrix P, where the
element of the first columfl, i.e., Py, where i=0,1,2, - , n—1is taken
as zero. This means failed items are retained without immediate replacement.
As the period passes, the number of survivors will be less than the already
set value of s, Then immediate replacement is made and the size of replace-
ment is filled in the column of the first component of the age distribution.
After replacing the accumulated failures, we again operate matrix P, on
the age distributions.

{Table 5.2> The Number of Periods per Cycle under a (s, S) Policy

Age distribution Final

stock

Cycle | Period sllll:t'ti]‘illrs ‘{Faﬂures ’[ a ] “ [ “
0 1 2

azn-2 an—],

|

Table 5.3 is an abridged cycle-by-cycle summary of the simulated replace-

ment process performed on a digital computer. Column (A) gives the cycle
number. Column (B) gives the number of periods in the cycle, designated
P,, since it is a random variable. Column (C) gives the running average,

P., of the individual values in column(B).

{Table 5.3> Limiting Values of P., S;, and F;

Cycle | Number of | Average no. of | Total no. of |Average no.| Total no. Average no.
periods P, |periods per cycle| survivors S; | of survivors) of failures | of failures
(A) B P, (© (D) S= (E) F @ (@) F,

The relative stability of the mean values may be noted by comparing the
terminal cycles with the initial cycles in Table 5.3. Continuing the simu-

lation for more times would contribute further to their stability. Table 5.3




is a simplified version of the results obtained from Table 5.2. From the

results obtained from Table 5.2, we can make a simplified graph where
the value P» of the average number of periods per a replacement cycle has
already been determined and P= corresponds to the initial fixed value of r °
in (s,8) policy. If we adopt the notation used in (s,S) inventory system, we

have s==S—r where S is the total number of items in a system.

{Figure 5.1,

Quantity

In the above graph, P. is the average number of periods per cycle (re-
placement interval) and is obtained by hundreds of trials of (s,8) system-
simulation. S, is the average number of survivors and Fa is the average
number of failures on hand.

Total replacement cost per period is expressed as follows, C/P, and C=
{r+c(F)Fn+c(8S)Sn.

So far we have applied simulation technique to determining optimum re-
placement policy. The simulation model we have achieved is believed effective

for the long term replacement policy.

3. Fixed-Interval Systems Approach

Periodic replacing systems are popular and are {requently used, particular-
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ly where it is convenient to examine items on a fixed time cycle. Look
at the survivors on a fixed frequency, and replace the failures that are

cumulated since the last replacement, as shown in Figure 5.2.

(Figure 5.2> Balances Under a Fixed-Interval System

1 T2 ry

As shown in the above, each corresponding value of the number of re-
placing items (ry, 7, 73, =- r,, +--) is determined by a certain regular interval
I As has been shown in the case of (5,5) control system, of several work-
able assumed values of I, one value of I=I* is empirically set such that
it can generate the minimum replacing cost. .

To in practice determine the minimum cost policy by fixed interval system
presupposes the solution of the following two problems. First, what is the
exact value of I to generate the minimum cost policy (the choice of the
value I)? Second, what is the best model for calculating the replacing cost

by this system (calculation of the replacement cost)?

A. Choice of the Interval I

As the name indicates, the fixed-interval system is a system where the
replacement cost for each interval is determined by the length of replacing
interval. Accordingly, the replacing intervals should be chosen such that
they can generate the minimum replacément cost and so that the calculation
of failures at each interval is possible. The factors affecting the choice of
the length of interval I will generally be viewed in two ways: the effect

of age-length based on the given data and the effect of cost factors.




(1) The effect of age-length on choosing the interval I

In determining the interval I, it is convenient to set it either as integer-
multiples of the age-length or as equal-division of the age-length. This pro-
vides an easier way for calculating the number of failures per interval with

transition matrices. That is
al, if I=L
L/v, if I<L, where u,v are positive integers and L is the given

I=

age-length.
I—uL means that an interval consists of x periods. Then the number of
failures per interval can be calculated by accumulating the number of fail-
ures per period within a given interval.

In the case of I=L/v, the number of failures can be determined by |
dividing equally a given period into subperiods as shown in the foregoing
section; 2. B. Then it becomes necessary to remodel the matrix.

If we try to apply the equal-division of age-length to replacement, how-
ever, the given data are usually not sufficient enough for precise and clear-
cut analysis; consequently, the initial age-length is assumed to have been
set longer than what is relevant for our analysis.

(2) The effect of cost factors

It is better to have shorter replacement intervals for lower inefficiency
cost. On the other hand, it is better to have longer replacement intervals
either for lower inspection cost or replacing cost.

Let’s study the following figures to compare the two approaches. The
below shows a four-period division of age-length from t=0 to t=4. The
top figure is for the case of I=2L while the lower is for the case of I=L/2.

In the case of I=2L, z, and x, amounts of replacement and made at t=
2 and t=4, respectively. In the case of I=L/2, 8 times replacement y,,%,,
------ , s are made from t=0 to ¢t==4. As clearly shown in the figure below,
z>y; and the average retentions of failures in the case of I=2L is much

larger than those in the case of I=L/2. It follows that inefficency cost
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the former is higher than that in the latter.

On the other hand, the number of replacements (or inspections) is larger
by the ratio 2 : 8 in the latter case. That is, the overall inspection cost
occurring just before the actual replacement and the replacement cost are
4 times higher in the latter case than in the former.

It is tiresome and uneconomical to replace failures too frequently and
continuously in order to have lower inefficiency cost. On the contrary, if
the interval is set long enough to have lower inspection and replacing cost, '
the value » in the case of I=nL becomes larger. The problem in this case
is that all or most items in a system may stop operating, which is a very
undesirable consequence. Then it becomes a matter of balance in choosing

the value I so that after careful consideration of various cost factors in-




volved, several relevant values of I should be chosen from the many

possible values.
B. Calculation of Replacement Cost

To determine the minimum cost policy, each replacement cost for differ-
ence policies should be properly compared and for this purpose, replacement
cost for the initial age-period is set as a basis for the comparison. As dis-
cussed in Chapter III, Cost Factors, the replacement cost is divided into two
parts: the cost occurring at each replacement and the cost occurring due to
the retention of failures for a period.

The costs occurring at every replacement such as purchasing cost, re-
placing cost, and inspection cost vary according to the number of
replacements and the number of replaced items.

The costs occurring due to the prolonged retention of failures are ineffi-
ciency cost and the cost holding “live” items. These costs vary according
to the size of the calculation period. _

That is, in the case of I=uL, the average number of failures on hand

for an interval is calculated as

HE e )+ (e g) v (o g)

where z,, x,, 2, -+ , z« are the number of failures of the 1st, 2nd, ------
the u-th period within an interval.

If the data on inefficiency cost are made for age-length, the total inef-
ficiency cost can be calculated by adding each inefficiency cost for each period.
Refer to the following figure in the case of I=3L.

If the interval is taken by dividing equally the age period i.e., in the
case of I=L/v, it is not as easy to calculate the number of failures per
interval(also refer to the foregoing section (s,S) control system). In other
words, the probability distribution for failures for each period is first changed

into the probability distribution for failures in more divided intervals
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{Figure 5.5)

Average number of 1 Y Dzt 2L . T =3
failures per period; 2 2 2 5 Tt

and next, the transition matrix is remodeled. Then this remodeled Iﬁatrix is
used for calculating the number of failures for each interval.

If the number of failures is set as y,, y,, -+ , >, for the 1st, the 2nd,
------ » the v-th interval, the average number of failures on hand for the
age period of L is calculated as

Gt yate-eee +9.)/2v.

If the data on inefficiency cost are made for one period, the total inef-

ficiency cost can be calculated by adding each inefficiency cost for each period.

The following figure is for the case of I=L/3.

{Figure 5. 6>
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(1) Notations
¢1(z)=purchasing cost per unit

¢2(z) =replacing cost per unit




c;=inspection cost for one inspection
¢,(F) =inefficiency cost per unit per period
¢s(S) =maintenance cost per unit per period
¢.(F)’ =inefficiency cost per unit for one replacement interval
¢s(8)’ —maintenance cost per unit for one replacement interval
ri—the number of replacement at the i-th interval (In the case of I=
uL, r is the number of cumulative failures)

F=average number of failures per period
S=N—F, where N is the total number of components in a system.
F’=average number of failures over one replacement interval

- §'=N—F

(2) The cost related to replacement (pattern—1 replacement cost)

Let the number of replaced items for each replacement be 7,75, - R
when the replacement is made 1,2, ----- , t times for z periods in which the
. total costs are assumed.
t
(a) Purchasing COSt=§€1(J€)Ti .............................. 1*
1
(b) Rep]acing Cost:%‘ Cg(l‘)r.‘ .............................. 2*
(C) Inspection COSt=tf 3 +rervrrremsmnmresmnrremnnnneniies 3%
(3) The costs incurred from retention of failed items (pattern-2)
t
(a) Inefficiency Cost=§{‘ Ca(FY Fieovvnrenneenen 4*
1 ) i1 i_1yu iv—-1 - Liu
_E_[ ( Z ,21) _J_r_l_) + (xti—l)u+1+ _{L,g;rz,) 4ot (;:‘?1)u+1x’+ 5 )]
Fif= _
if I=uL and u is a positive integer.
. A z/=y, if I=L/v and v is a positive integer.
On the other hand, if we have not F but Fi, then the total inefficiency
cost for z periods is expressed as follows:
Y (i) z=ut (in the case of I=L)
i
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total inefficiency cost for z periods

:{54(5‘) (_“21_)+c4(F) (o +-2 )+...I+c4(F) (z= +%)}

"'“F\;(F) (.I‘_,;L) + ey (F) (j:{_—,i'lx,--l- ';2"~)J+...+[C4(F)L2)"H

fu—1

ot (B (

i=(1—-1

T Nk
Tty )} 4*1

<(F) in the ‘a‘bo_ve equation is not a constant number but a function of a
variable F.

(i) z=t/v (in the case of ISL)
total inefficiency cost for z periods

= yl+y2+."+y"}c4(F) _I_l( yv+1+yu+2+"'+y2aJc4(F)+

2'0 2v
y‘=—1’"+1+"'+3’="J ............. STURR *
+ R 2
(b) Maintenance COSt:;’Cs(S)'S,-', ........................ 5%

‘where S/=N—F/.
On the other hand, if we have not S but S;, then the total maintenance

cost for z periods is expressed as follows:
(1) z=ut (in the case of I=L)

total maintenance cost for z periods

=[(N- 2 )es(S) + [ N— (= + »{22*)} cs(8) + -

+ { V- (Ea +L2)} cs(S)}+---+{ (N—L‘gﬂ)cs(S)%--

fu-1 Lt ]
+ {N— ({=(§_Em+1:c;+ 5 )}Cs(S) .................. 5*—1
(i1) z=¢/v (in the case of I<L)
total maintenance cost for = pericds

=[N— y1+y22-;“-+yvjcscs)+ -I-(N— y"“”"“é_:'"'+y‘"Jc5(S)---5*%2




(4) The total replacement cost for z periods: C
C=1%+2%+3*%4-4*+-5* or
C=1*+2*%+3*+4*—1(or 4*¥—2)+5%—-1(or 5*—2).

(5) The total replacement cost per period

The total replacement cost per period is obtained by calculating C/=.

V. APPLICATIONS

1. Equipment Replacement Problem

An Illustrative Example

Let’s suppose a company is equipped with 1,000 drills of the same quality
and the bits of drills deteriorating below a certain quality should be
replaced by new ones.

In most cases, the maximum age-length of the bits approximates twelve
months and the failure data for the bits conforms to a normal distribution.
With a given data on the given cost, we can determine the optimum
replacement policy for a fixed-interval system so that we can calculate the
minimum replacement cost for the following one year period. In this case,
if the interval is assumed to be set as three months, two months, and one

month, then which one is the most appropriate solution for us?

(Table 6.1> Quantity-Total Ineﬂicnency Cost Relations

Average number of feulures per month ‘ Total mefﬁc1ency cost per month

1— 50 1 $ 1,000
51—100 | $ 1,300
101—150 | $ 1,800
151—200 $ 2,500
201—300 l $ 4,000
301—400 | $ 7,000
401—500 \ $10,000

|

more than 501 $ 20,000




{Table 6.2> Purchasing Cost and Replacing Cost (Quantity-Unit Cost Relations)

The size of replacement Purchasing cost Replacing cost

1— 50 $ 20 $ 20

51—100 $ 16 $ 14
101—150 $ 14 $ 11
151—200 $ 12 $ 8
201—300 $ 10 $ 5
301—400 $ 9 $ 5
401500 $ 8 $ 4

more than 501 $ 7 $ 4

Solution

A. One-month Interval
Transition matrix P for a Markov Chain of 12 states in the case of normal

distribution is calculated as below.
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Let’s assume the initial age distribution is A,=(1000,0,0, -+ , 0), then
the number of replacements per interval and their cost are calculated as in
the above chart-Table 6.3 where the age distribution of a given period is
determined by multiplying P by the age distribution of the preceding

period.

B. Two-month Interval

The following transition matrix is a P, matrix. The age distribution of
| the final period of a certain year can be given by multiplying P, by the
? final age distribution of the preceding year. The amount of shortage a, is
' calculated such that the total number of replacement reaches 1,000. (Cf.
Table 6.4)
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:r 1000 |
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C. Three-month Interval

As in the case of the two-month interval, the age distribution of a given
period can be given by calculating P, matrix. That is, the total number of
replacement per three-month period should reach 1,600. (Cf. Table 6.5)

The following table results from the comparison of the three different
intervals. From this, we can easily understand that the best policy for the
fixed-interval system is the two-month interval system. The longer the length

of interval is set, the inefficiency cost increases though the purchasing cost

and replacing cost decrease.

, {Table §.6> Costs for the three policies ‘ :i
B Number of . e Average no. k

Length of p Size of Repl.| Purchasing & ; Total

Interval ;igiacmg PET | “per year Replacing cost ;)nfofl:;l}imes per| Ineffi. cost cost f

one-month 12 1,451 33,000 | 61 | 14,90 | 47,910

two-month 6 1,126 21,808 ’ 112 23,000 | 44,808 2

° three-month 4 1314 | 17,612 | 158 36,800 | 54,412 1

The second case of our optimal policy problem is depicted as in the

following graph.

{Figure 6.1)
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2. Staffing Problem

Ilustrative Example

Suppose an airline company with 500 hostesses has a personnel policy

which requires that for every applicant the qualification for the initial appli-
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cation is limited to only single persons of under 23 years of age. The
maximum age limitation for the job is 31 years of age. Under this condition,
the transfer rates of hostesses approximates 1/5 and the necessary costs
spent for recruiting those shows in the following figure.

In case that absentee rates become high, depending on its degree, a num-
ber of problems result from bad service due to the charge of route, ad-
ditional payments for the additional work load, the reduction of the usual
flight schedules, and the overwork or exhaustion of the remaining hostesses.

Suppose we have 500 new hostesses under 23 years of age, let’s try to.
determine the optimum replacement policy (or personnel recruitment policy)

for the following 5 years.

{Table §.7> Cost Data

Cost for stafing (Recruitment,

Number of vacancies selection & training)

t Total Ineficiency cost per year

1—30 $ 2,100 ‘ $ 100,000

- 31—60 $ 1,680 5 $ 200,000

] 61—100 $ 1,370 $ 300,000

101—150 $ 1,100 1 $ 600,000

- 151200 $ 950 | $ 1,500,000

. 201—250 $ 850 ! $ 5,000,000

more than 250 $ 650 \ $ 10,000, 000

* Salary for one year= $6, 000 L

g (Table) 6.8 Failure Data

Period Age Survivors Vacancies Condition;i (1:5 obability

!- 0 — 100 — -

1 23 . 80 20 1/5

2 24 64 16 1/5

3 25 51 13 1/5

| 4 26 41 10 1/5

5 27 33 8 1/5

g 6 28 26 7 1/5

’ 7 29 21 5 1/5

i 8 30 17 4 1/5

- 9 31 14 3 1/5
10 32 0 14 1/5




Of the three workable policies, that is, (400,500) system, (350,500)
system, and (300, 500) system, which is the best policy?

Solution

Transition matrix P and age distribution A: are calculated as follows:

1/5 4/5 0 0 0 0 0 0 0 0

1/5 0 4/5 0 0 0 0 0 0 0

1/5 0 0 4/5 0 0 0 0 0 0

' 1/5 0 0 0 4/5 0 0 0 0 0

p=| 1/5 0 0 0 0 4/5 0 0 0 0

1/5 0 0 0 0 0 4/5 0O 0 0

. 1/5 0 0 0 0 0 0 4/5 0 0

1/5 0 0 0 0 0 0 0 4/5 0

1/5 0 0 0 0 0 0 0 0 4/5

1 0 0 0 0 0 0 0 0 0 ~

. A;=(500, 0, 0, 0, O, 0,0 0 0, 0
=100, 400, O, O, , , 0, 0, 0, 0

A,=(100, 80, 320, O,
A,=(100, 80, 64, 256,
A,=(00, 80, 64, 51, 205,
A;=(100, 80, 64, 51, 41, 164,

0)
1))
0)
0
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If the replacement of personnel is made at the end of every year, the

total needed number of personnel is 100. With a given transfer rate of

{Table 6.9> Total replacement cost for 5 years under (400,500) policy

Year | Failures Cumula- lCost for | Average

f zs tit:! Policy I staffing failures Inefficiency cost Salary
1 100 100, Replace 137,000 50 200, 000 2,700, 000
. 2 100] 100 Replace 137,000 50 200, 000, 2, 700, 000
3 100 100; Replace 137,000 50 | 200, 000, 2, 700, 000
4 100 100, Replace 137, 000, 50 ' 200, 000 2,700, 000
5 100 100% Replace 137,000 50 | 200, 000 2, 700, 000
I
| E Total 685, 000 1, 000, 000 13, 500, 000
® o Total replacement cost for 5 years ;1;1_5, 185,0(;0_ o T



1/5, we can find that the group replacement policy is not relevant. The
reason is that group replacement policy is entirely against our existing person-
nel policy in a democratic society because the purpose of group replace-

ment lies in preventing the massive transfer of personnel at a single time.

(Table §.10> Total replacement cost for 5 years under (350, 500) policy

Ye;:ar F a:icl'ures Ct":‘rlzzma Policy C-\;)tztﬁf;logr ﬁ}ﬁrr?se Inefficiency cost Saldry
1 100 100 o 50 200, 000 2,700, 000
2 80 180 Replace 171,000| 14 600, 000 2,160, 999
3 100 100 o 50 200, 000 2,700, 000
4 80 180| Replace 171, 000 140 600, 000 2, 160, 000
5 100 100 0 50 200, 000 2,700, 000
Total 342, 000) 1,800,000, 12,420,000

Total replacement cost for 5 years= $ 14, 562, 000.

(Table .11> Total replacement cost for 5 years under (300,500) policy

Y?r Falh.zzz;es C‘iﬁ}]a Policy S(;‘ggnfgor ﬁﬁi‘:ﬁe Inefficiency cost1| Salary
1 100 100 0 50 200, 000 2,700, 000
2 80 180 0 140 600, 000 2, 160, 000
3 64 244! Replace 207, 400 212 5, 000, 000 1,728,000
4 100 100 0 50, - 200, 000 2, 700, 000
5 80 180 0 140 600, 000 ' 2,160,000
Total 207, 400| 6,600,000 - 11,448,000

Total replacement cost for 5 years= § 18, 255, 400.

The following table is the results of comparing the three different (s, $)

policies.
{Table §.12) Costs for the three policies
Polic Number of ooy for Staffing | Ineficiency Cost| Total Sal Total C
y Replacing ost for Stafhng | Inethciency Cost ota alary otal Cost
(400, 500) 5 $ 685,000 $ 1,000,000 $ 13,500,000 % 15,185,000
(350, 500) 2 342, 000 1, 800, 000 12, 420, 000 14, 562, 000—
(300, 500 1 207, 400 6, 600, 00 11, 448, 000 18, 255, 400

From the above table, we can easily find out that the best policy of the

given(s,S) policies is (350, 500) control system.




VI. CONCLUSIONS

When we try to find out optimum replacement policy under(s,S) control
system, we are faced with problems which must be solved first. Initially,
we should set several values of the length of interval between reviews and
the number and values of replacement point s’s. Next, we should try to
answer the question whether the length of replacing cycle P, converges
or not when we calculate the replacement cost for long term policy.

In this thesis, the writer believes the first problem has been dealt with
vigorously and in some detail. On the other hand, the second problem has
been touched rather loosely without proof for the question whether Px con-
verges with P» or not. It is believed that the proof would be achieved if
the given data was calculated with the use of a computer; hence, the writer
admits that further study on this problem remains to be explored.

Part replacement model can be dealt with only when we consider the
inefficiency resulting from the retention of failures; hence, any comparison
between part replacement and group replacement which is based on different
assumptions is considered irrelevant or meaningless. If the data on inef-
ficiency cost, quantity discount schedule, and inspection cost were available,
a better replacing policy can be achieved by the use of more applicable
model, part replacement model. Where such data is not available, the
replacement policy should rely upon simpler models, unit replacement model
and group replacement model.

In using part replacement model, we can compare and evaluate the two
systems for optimum policy, (5,8) control system and fixed-interval system.
In conclusion, the optimum replacement policy under part replacement model
is achieved by choosing the one which renders the minimum replacement
cost between the cost obtained from (s,S) control system and the cost for

fixed-interval system.






