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Abstract

We consider a problem of minimizing the number of batches of a fixed capacity
processing the orders of various sizes on a finite set of items. This batch consolidation
problem is motivated by the production system typical in raw material industries
in which multiple items can be processed in the same batch in case they share
sufficiently close production parameters. If the number of items processed in a batch
is restricted up to some fixed integer k, the problem is referred to as the k-batch
consolidation problem. We will show that the k-batch consolidation problem admits
an approximation whose factor is twice that of the k-set cover problem. In particular,
this implies an upperbound on the approximation factor, 2H; — 1, where Hy =
I+3+-+¢
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1 Introduction

Consider a production system where the orders r(v) € @, on a finite set of items
v € V are processed in batches. Each batch has a fixed capacity 1: the total order
of items processed in a single batch cannot exceed 1. We are given a set of pairs of
compatible items (u,v) € E C V x V. Any set of items S C V can be processed
in the same batch if and only if they are compatible pair-wise, in other words, S
induces a clique on the compatibility graph G = (V| E). Then naturally we can
consider a problem of finding a minimum number of batches that can process the
complete set of orders {r(v) : v € V'}. This problem will be referred to as the batch
consolidation problem or generalized batch consolidation problem for an emphasis. If
there is an additional constraint that each batch cannot process more than k items
for some constant k € Z,, we call the problem the k-batch consolidation problem,
which models the situation that proliferation of items in a single batch is prohibitive
for a logistic reason.

Consider an integral version of the batch consolidation problem: given integer-valued
orders r(v) € Z, and batch capacity A € Z,, the orders of items processed in the
batches are required to be integer-valued. But, in [1], it has been observed that,
when k£ = 2, given an optimal solution allowed to process non-integral orders, one
can construct the solution processing integral orders without increasing the number
of utilized batches. Therefore it is an optimal solution of the integral version of the
problem. It is not hard to show that such an observation extends to a general k.
Thus, our definition of the batch consolidation problem using a unit batch capacity
is general enough to cover integral version.

The batch consolidation problem, first proposed by Lee et al. [7], was motivated by
the production system typical in raw material industries such as steel, chemical and
semiconductor. The process of a particular batch is characterized by a finite set of
production parameters. Hence multiple items can be processed in the same batch if
their parameters are sufficiently close. Naturally, the production efficiency depends
on how well the batches are consolidated so that the number of utilized batches is
minimized.

It is not hard to see that the batch consolidation problem includes the clique parti-
tion problem [7, 1], which implies that it does not admit an approximation within a
factor of |V|¢ for some € > 0 [9]. But, as we will see, the k-batch consolidation prob-
lem is approximable within 2H;, — 1 times the optimum, where H, = 1+ % +ee %
The idea is to decompose the orders of items so that a minimum cardinality set
cover problem whose elements of the ground set correspond to the decomposed or-
ders provides a well-consolidated set of batches. Note that this algorithm provides a



2-approximation when k& = 2. Chang et al [1] develop a %—approximation algorithm,
for k = 2, based on a more elaborated scheme of the decomposition of orders of items.
However, as also will be discussed later, once k£ becomes > 3 such a scheme does
not help improving the approximation factor strictly better than the one provided

by the algorithm proposed in this paper.

The batch consolidation problem is related with the bin-packing with conflicts, or
BPC [6, 4]. Although a bin packing problem is fundamentally different from the
batch consolidation problem as an item cannot be split over bins, BPC bears some
similarity with the batch consolidation problem in that it specifies the pairs of items
that cannot be packed in the same bin. [1] discusses some relations between the
batch consolidation problem and BPC.

Another related model is the packing splittable items with cardinality constraints, or
PSIC [5]. PSIC is a generalization of the bin packing: the items can be split over bins
but a bin cannot contain more than k items. Notice, then, PSIC [5] is the special
case of the k-batch consolidation problem in which the compatibility graph G is
complete. In this special case, the problem admits a polynomial time approximation
scheme while, in general, the problem is max-SNP-hard and not approximable within
1.0021 times the optimum as discussed later.

This paper is organized as follows. Section 2 discusses a simple but useful property
of an optimal solution helpful in the analysis of the approximation algorithm. In
Section 3, we establish an inapproximability of the k-batch consolidation problem.
Section 4 is devoted to the discussion of an approximation algorithm.

2 Preliminaries

Given a solution of the problem, consider the hypergraph H = (V, B) whose vertices
and edges, respectively, correspond to the items V and the collection of batches
B € B processing items with their nonzero orders. (See Figure 1)

Proposition 2.1 Any solution of the k-batch consolidation problem can be modified
efficiently without increasing the number of utilized batches so that its hypergraph H
is acyclic: there is no sequence (vy, By, ve, Bo, ..., vy By, v1) with I > 2 such that
B; are all distinct, v; are all distinct, and v;,v;iq1 € B; fori=1,2,...,1 —1, and
v, v1 € By (We refer to such sequence as a circuit of a hypergraph.)
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Fig. 1. The hypergraph determined by the batches By, By and Bs.

PROOF. Suppose H have a circuit C := (vy, By, vo, Ba, ..., v; By, v1). For each v;,
i=1,2,...,1,from C, write, as p; and p; , respectively, the orders of v; processed by
B;_1 and B; batches where By denotes B;. Reverse the direction and/or redesignate
the initial vertex of circuit so that min,.cc{p; , pi } = pi. Then the modified solution
o — pf, pi + pT, Yu; € C is feasible with the same number of batches. And the
circuit is disconnected since vy is deleted from B;. Repeating this procedure, we can
convert any solution to have an acyclic hypergraph. O

Proposition 2.2 Any problem (G,r) can be reduced in polynomial time into one
(G,s) with s(v) < deg(v) +1,Vv € V.

PROOF. From Proposition 2.1, there is an optimal solution which has at most
deg(v) batches processing the order of v € V with other items. In other words,
when r(v) > deg(v) + 1, we can first construct |r(v) — deg(v)] batches processing
exactly 1 out of the order r(v) without compromising the optimality. Then the orders
are reduced to s(v) = r(v) — |r(v) — deg(v)| < deg(v)+1. O

3 Inapproximability

We can derive an easy inpproximability of the k-batch consolidation problem from
the inpproximability of the 2-batch consolidation problem by Chang et al. [1]. In
the reduction from the vertex cover problem with bounded degree to an instance
of the 2-batch consolidation problem, they construct the compatibility graph G
to be bipartite. A k-batch consolidation problem on a bipartite G is simply a 2-
batch consolidation problem and hence the reduction is also valid for the k-batch
consolidation problem.

Theorem 3.1 The k-batch consolidation problem cannot be approrimated within
1.0021 times the optimum for all k > 2 unless P = NP.



PROOF. Chang et al. [1] prove that if vertex cover problem with J-bounded degree

cannot be approximated within p, then the k-batch consolidation problem cannot

be approximated within 1+ 2"5;;1. And Chlebik and Chlebikova [3] show that vertex
53

cover problem with 4-bounded degree cannot be approximated within £5. Therefore

the k-batch consolidation problem cannot be approximated within 1.0021. O

4 Approximation
4.1 Set-cover-based algorithm

For a problem (G, r) defined by G = (V, E) and r € QY, the approximation algo-
rithm is conveniently described by defining an auxiliary problem (U, §) where U and
§ are constructed as follows. For each v € V', compute n, := [kr(v)]| and accordingly
construct a decomposition of r(v): a set of n, elements, D, = {vy,v1,v9,...,Un,-1}
and their orders 1'(vg) = r(v) — 22=%, '(v1) = 1'(v2) = -+ = '(Vy,—1) = 7. Let
U= Uy Dy and § = {S CU|Xes7'(u) < 1,|S| < k, S is a clique}. Following
(U, 8) is an auxiliary problem of instance G = (V, E) in Figure 1 for k = 2.

U = {vo, wo, w1, Wy, To, Yo }
8 = {{vo}, {wo}, {wi}, {wa}, {zo}, {10}
{vo, wo}, {vo, w1}, {vo, w2}
{wo, w1}, {wo, wa}, {wo, zo}, {wo, yo}
{wr, wa}, {wy, w0}, {wr, o}
{wa, zo}, {w2, Yo}, {0, yo}}
In the above, |U| = ¥ey[kr(v)] < Epev[[VIr(v)] < Xy (L +[V]r(v)) < [V]+
V| > ey r(v). But, due to Proposition 2.2, we have r(v) < 1+deg(v), Vv € V', which

impiles [U] < [V]+[V] Z,ev(1+deg(v)) = [V + [V + 2|V E]. As [8] < 25, [UF,
the construction can be performed in polynomial time for a fixed k.

Consider the following algorithm of the k-batch consolidation problem.
Algorithm 4.1

Step 1 Construct the auxiliary problem (U,8) of (G,r).
Step 2 Compute a minimum set cover € C 8§ of U.



Step 3 For each subset C' of C, construct a batch processing the assigned orders,
r'(u),Yu € C. Return the batches as a solution.

From the construction of (U, 8), the batches from Step 3 can cover the complete set
of orders. Also notice that we can adjust the processing orders without increasing
the number of batches so that each order r’(u) is exactly covered. As the orders 7’
of the auxiliary problem are a decomposition of the original orders r, the batches
from Step 3 are clearly a feasible solution of the original problem.

Let us define some more notations. Denote by OPT (G, r) and z(G, 1), respectively,
the numbers of batches of an optimal solution and a solution returned by Algorithm
4.1. And ¢(X) is the cardinality of a minimum set cover from 8 of X C U. Then,
for the analysis of Algorithm 4.1, the following lemmas are useful.

Lemma 4.2 For any partition (X;Y) of U, 2(G,r) = c¢(U) < ¢(X) 4+ ¢(Y).

PROOF. Let C; and @, respectively, be the minimum set covers of X and Y.
Then, €; UG5 is a set cover of U. Therefore,

2(G,r) =c(U) <|Cq| +|Ca| = ¢(X) + c(Y). O

Lemma 4.3 Ifr <s, OPT(G,r) < OPT(G,s) and z(G,7) < 2(G, s).

PROOF. The first half of the statement is trivial.

For the second half, define r such that r(w) = s(w) — 4, with 0 < § < ¢ for any
fixed w € V and r(v) = s(v),Vv € V \ {w}. Let (U,,S,) and (U, 8;), respectively,
be the auxiliary problems for (G, r) and (G, s). Also let D,, = {wp, w1, ..., w;} be a
set for w in the decomposition of s(w) from (G, s).

If s'(wy) > 0 in the decomposition of s(w), then U, = Uy and hence §, D S;.
Therefore a set cover of (Us, 8,) is also a set cover of (U, 8,) and we have z(G,r) <

2(G, s).

If, on the other hand, s'(wg) < ¢, then we get D,, = {wp, wy, ..., w;_1} for w in the
decomposition of r(w) from (G, 7). Let €5 be any set cover of Us. Delete wy from
the subset of C,. And replace w; with wg. Then the resulted collection is a set cover
of U, whose cardinality is no greater than |C4|. (See Figure 2.) Therefore we have
z(G,r) < z(G, s). Repeating this procedure we can prove z(G,r) < z(G, s) for any
cascof r <s. O
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Fig. 2. Modifying a set cover of Uy to that of U,.
Theorem 4.4 z(G,r) <20PT(G,r).

PROOF. By induction on OPT (G, ). Suppose OPT(G,r) = 1. Then G is a com-
plete graph with |V| < k and Y,cy 7(v) < 1. This implies both S} = {u € Ulr'(u) <
£} and Sy = {u € U|r'(u) = 1} are elements of 8. But, {5, S} is a set cover of U

k
and we have z(G,r) <2 =20PT(G,r).

Assume the theorem holds for any problem whose optimal batch number is less
than n and consider any problem (G,r) with OPT(G,r) = n. Let S(G,r) be a
corresponding optimal solution. From Proposition 2.1, the hypergraph H determined
by S(G,r) can be assumed to be acyclic. Therefore there is a batch B which has at
most one item v € V' whose order r(v) is split over more than one batch.

Suppose B has none of such a split item. Then define X := U, ep Dy and Y := U\ X.
Let s and t be the vectors obtained by restricting » to X and Y, respectively. Then
we get OPT(G,s) =1 and OPT(G,t) = n— 1. From Lemma 4.2 and the induction
hypothesis, we have

2(Gyr) <e(X)+c(Y) <2+20OPT(G,r)— 1) =20PT(G,).

Now suppose B has such a split item v € B (see Figure 3). And B processes the order
rg(v) := é+(5 from r(v) forsomel € Z, and 0 < § < % Let D, = {vo, v1,v2,...,0n,}
be a set for v in the decomposition of r(v). Note that n, > [+ 1if 6 > r’(vg). Define

{v1,...,u}, fd=0,

A= 4 {vg,v1,... 0}, if 7/ (vg) > 6 >0,

{v1,.. ., u41}, 6> 1" (vo),

and X := Uye(p\w) DwUA and Y := U\ X. Then notice that 0 < 3=, c 4 7'(u)—rp(v) <

% and therefore we have > ,cxr'(u) < 1+ % This implies that there are at most



k elements u of X such that r'(u) = 1. Also |B| < k implies that no more than
k elements u of X have '(u) < 1. Thus, if we set S; := {v € X|//(v) = 1}, and
Sy :={v € X|r'(v) < +}, then Sy, S, € 8 and {5, 5} is a set cover of X and we

have ¢(X) < 2.

Let s and ¢ be the vectors obtained by subtracting from r the orders corresponding
to the elements of X and B, respectively. Then, s < ¢t and hence from Lemma 4.3,
OPT(G,s) < OPT(G,t) = OPT(G,r) — 1 and z(G,s) < z(G,t). But, then from
the induction hypothesis, ¢(Y) = 2(G,s) < z(G,t) < 2(0OPT(G,r) — 1). Finally,
from Lemma 4.2, we have

2(G,r) <ce(X)+ce(Y) <2+2(0PT(G,r)—1) =20PT(G,r). O

Fig. 3. The case r(v) is split over two batches.

A tight example of Theorem 4.4 Consider a complete graph @ = (W, A) with
|W| =k and an order vector s € Q% where s(v1) = + — e(k — 1), and s(v) = § + ¢,
Vo € W\ {v1}. Then, OPT(Q,s) =1 and 2(Q,s) = 2.

Construct a graph G by connecting [ such @)’s via a path consisting of v; of each Q.
The order r € Q¥ of G is simply the direct sum of [ identical order vectors s € Q.
Then, as easily checked, OPT(G,r) = | and z(G,r) = 2l. Hence the analysis of
Theorem 4.4 is tight.

The Step 2 of Algorithm 4.1, however, cannot be performed in polynomial time as
the k-set cover problem is NP-hard. We can, however, rely on an approximation
algorithm of the k-set cover problem. For instance, the approximation algorithm of
2] guarantees the approximation factor of (Hj, — 3), where Hy = 144 +--- 4 1.
Thus, employing the approximate solution instead of an exact one, Algorithm 4.1 is
an (2Hy — 1)-approximation. For k > 4, we can use the (Hy — %)—approximation
algorithm of [8] instead to get a slightly improved (2Hj — 22¢)-approximation for the

195
k-batch consolidation problem.



4.2 An alternative decomposition scheme

When k = 2, Algorithm 4.1 employing an (Hy — %)—approximation of k-set cover
problem provides a 2-approximation as the corresponding 2-set cover problem is
no other than the polynomially solvable minimum edge-cover problem. But, the
specialized 2-batch problem algorithm of [1] guarantees the approximation factor,
%. The algorithm is based on the same idea of solving the edge-cover problem on the
auxiliary problem obtained by decomposition of the orders of vertices. But, it uses
a slightly different decomposition: each vertex v of order r(v) is decomposed into
2x |r(v)] vertices all assigned the order, 1, and one vertex of the order r(v) — |r(v)]
in the auxiliary problem. The remaining steps are exactly the same as Algorithm
4.1 for k = 2. Thus there is one (and at most one) auxiliary vertex per original
one, whose order can be greater than 1. As shown in [1], when the number of items
processed in a single batch is restricted to as small as k£ = 2, such vertices are crucial
in attaining the approximation guarantee of %

Interestingly enough, when k£ > 3, however, such decomposition scheme does not
help improving the approximation guarantee strictly better than 2. To see this,
consider the complete graph G = (V, E) with |[V| =2l—1 and r(v) = ; +¢, Vv € V.
Then, for each v € V| we get r'(vg) = % + ¢ and therefore vy participates only in a
singleton set in the auxiliary problem. Thus z(G, r) = 21 — 1 while the optimal value
of the k-batch problem is OPT(G,r) = [(2l —1)(3 +¢)] =l for all k > 3. Thus the

approximation factor is 2 — %

5 Further research

There is currently a significant gap between the upperbound (2Hy — 1) and the
lowerbound 1.0021 on the approximability of the k-batch consolidation problem.
It is an interesting open problem whether the lowerbound can be tighten to log k,
asymptotically the same as the upperbound, or vice versa.
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