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I. Introduction ‘

Analytical cost control models which have appeared to date in the literature
focus on a subset of the elements of the cost control process.”’ In particular,
the major efforts have been directed toward the determination of an optimal
policy for process investigation, the determination of an optimal reporting
schedule, or the decision implementation effect of altering the performance
evaluation scheme. An exception to this generalization is the work of Stallman

- (1971, 1972), who provides a heuristic discussion as to how an optimal
combination of preventive and corrective action can be determined.

The objectives of this study are (1) to develop a cost control model to be
used for studying the control process and (2) to understand the interacting
nature of decisions concerning the reporting interval and the timing of the

investigations.

* Professor, School of Management, Seoul National Univérsity.
(1) See, for example, Dyckman (1969), Kaplan (1969, 1975), Hannum (1974), Gonedes (1971),
Hinomoto (1971), and Demski (1969, 1970, 1971).




The major benefits of this study are provided by insights into the design of
effective cost control policies under a variety of environmental conditions, and
into the potential consequences of using non-optimal policies. The general
concepts developed in this study would be applicable to a variety of prbcesses.

To develop an integrated cost control that is comprehensive in the sense that
it embraces all significant aspects of the control process, it is necessary to
describe certain mathematical relationships among the elements in the control
model as shown in Figure 1. Such a description enables us to determine the
dependent relationships among the interacting variables in the model, and to
identify the critical variables which have a significant impact on the efficiency
and effectiveness of the process under consideration. As a first step toward this
ultimate goal, this study critically examines the relationship between the

process intervention decision and the variance reporting interval decision.

| Plans and objectives 1————»[ Business system I—>| System performance \
Feedback mechanism Transmittal of reports Measurement of
and data performance
. . - Evaluation of
Decision ecriteria —— performance
; Corrective action ‘<—l Decision rules ‘

Fig. 1. Flow of Control Process

II. General Formulation of the Problem

A survey of the existing literature reveals that a few studies advocate a
non-constant reporting interval.® In general, one would speculate that a best

reporting interval would decrease with the increasing degradation of the process.

(2) For example, see Hannum (1974), Parretta (1974, 1975).




Of course, the optimal reporting interval also depends on the cost of preparing
a report. Thus it is necessary to construct a general model that is directed

toward answering the following questions:

(a) Given a variance report when should an investigation of the variance be pursued
and (b) what is the optimal length of the next reporting interval, subject to the
condition that we minimize the total reporting, investigation, and inefficiency costs
over the entire planning horizon N (N=1, 2,---)?

Following the development of a general model of the problem, the following

situations are analyzed:

The condition of the process is classified as either in-control or out-of-control, and

the transition from one state to the alternative state may occur at any point in time,

The performance of a process under consideration is measured in terms of
operating cost over the planning horizon of the controlled unit, where there
are 1,2,..., N periods in the planning horizon. Since the control objective is
to minimize the expected costs which are successively generated in the multistage
process, it is appropriate to use a dynamic progfamming approach. It is assumed
that a variance report is prepared only at discrete intervals (but not at fixed
intervals) of time, and that a decision to investigate a variance is made
immediately upon the receipt of the variance report on the basis of the process
condition. Furthermore, it is assumed that the report does not convey perfect
information as to the current condition of the process.

For the case where the condition of the process can be represented by a
single variable, the stochastic behavior of the process may be described by

8 (n+1)=0(n) +¢ (D
where 6(n+1) =<£ondition of the process at time n+1
8(n) =condition of the process at time =z
g, =random variable having some known probability density

function f(&)

If, on the other hand, the condition of the process is represented by multiple




discrete states, the above behavior may be described by

0:(n+1) =0:(n) f (&) : €)]
where #;(n+1) =ith state of the process at time n+1
| 0:(n) =ith state of the process at time =

£ =transition probability density function
As an example, assume that the process is dichotomized into “in-control” (6,)
and “out-of-control” (@,) states, and that the transition probability from &4, to
8, and the one from @, to 6§, are 1—a and 1— 8, respectively. Then

8, (n+1)=6,(n) xa+6,(1—p)

B,(n+1)=0,(n) X (1—a) +6,(n) X : 3)
However, as a general formulation of the problem, thel subscript of 4 is
omitted in the remaining part of this section.

Since the report conveys imperfect information as to the current state of the
process, it is necessary to generate a posterior probability distribution over the
states given the reported variance.

For simplicity of presentation, let

R=cost of preparing a single report

I=cost of investigation and correction

K=number of periods until the next report is prepared

t=number of periods elapsed since the last correction of the process

6(t) =current state of the p-rocess with the posterior probability density

CIOH)

Z=state of the process immediately after the correction with the
probability density f(Z)

6(K) =state of the process at the time the next report is prepared with
the probability density f(6(K);Z, K), assuming that the process
is corrected at the beginning of the current period

6 (:+K) =state of the process at the time the next report is prepared with

the probability density f(6(t+K);8(s), K), assuming that the

process is not corrected at the beginning of the current period




C(4(¢), K) =operating cost of the process over the next K periods given 8(¢)
Vi ((@), (¢)) =minimum expected cost that can be achieved starting from an
initial estimate of f(6(¢);#) and following an optimal policy for
the next N periods, N>K.
When the variance report is received one of two possible actions may be
taken, i.e., investigate, or do nothing,
Suppose the decision is not to inves{igate the reported variance and to
prepare the next report at the end of Kth period. The expected cost to be
incurred over the next K periods is then the sum of the reporting cost and

the expected operating cost of the process over the K periods

R+ [CO®), K) 70000 @
The expected cost duriﬂg N—K periods is the weighted average of costs
resulting from a state 8(¢+K) with the corresponding probability being used

as a weight:

| Va8 G+ B 1F G+ KD 30, K)o ®)
Note that the expected cost varies, depending on the values of K. But we
want to find a particular K which results in the minimum expected cost. Thus,

the expected cost of a policy which incorporates an optimal reporting interval

over the N periods is given by:
Vy(0(®) =R+min{ [CO®, ) f 6316+

[ Vuxs e+ KIF 0+ K 300), K) o) 6)
On the other hand, if the reported variance is investigated, and the next
report is prepared at the end of the Kth period, then the expected cost to be

incurred over the first K periods is

RHIO+ [C(Z K f(2)az @
The expected cost over the remaining N— K periods is
| Vaslo ()17 0(K) 32, Ky at ®)

In this case, if K is the optimal reporting interval, the minimum expected




cost over the N periods is given by

Vi (8()) =R+1(6) +mKin{ f C(Z, K)f(Z)dZ+

| Vaerto®) 11 (0K 3 2, K) ) (9)

The optimal decision rule results from minimizing expected cost as follows:

R+mKin{f0(a(:) . K)do+

Vi (6(2)) =min .[V”—"E"(HK)}f(ﬁ(tvLK);B(t),K)dﬁ} (10)
R+1(9) +m}n{fC(Z, K)f(Z)dZ+

j Vix[6(K)]f(0(K) ; Z, K)db}

III. General Description of the Solution Algorithms

This section describes a solution approach to the discrete case. The next
section will discuss computer algorithms to implement the control model for
the discrete case. The general framework introduced here follows Bertsekas’
discussion (1976), but with some modifications and clarifications. An outline
of the solution approach is followed by the results of three numerical analyses
carried out on the computer in the next section. The purpose of such analyses
is to ascertain the validity of the computer program. The solution procedures
for the third example are provided in detail to demonstrate the application
of dynamic programming algorithms.

Suppose the decision maker makes the following observations:

2o="ho(Z, vy)
2e=h(xe, ey, v), t=1,2,, N—1

A random observation disturbance v, is characterized by the given proba-

bility measures P, (:|z;) and P, (- |z, ;). The initial state z, is also

random and characterized by a given probability measure P.,. The probability

(3) v: may be viewed as a measurement process which does not yield perfect state information.




measure P, (+ |z, #.) of input disturbance w, is given and may depend explicitly
on z, and #,. Let I, denote the information available to the decision maker
at time ¢, and call it the information vector. Then .

Iy=2

To= (20, 21, ** Zts thoy Uy, +=s Be1), £=1,2, =, N—1
The problem is to find an admissible control policy 7= (ug, 11, *+* #n—y) that
minimizes the cost functional

V= > {gv(xw) +th (e, e (I, w)}, t=0,1,-,N—-1 an

oswn”e

subject to the system equation
PARES ACTATENR w),® t=0,1,,N—1 (12)
and the observation equation -
2o=ho(Zo, Vo)
R (s, s (o), 00, £=1,2,-, N—1 | (13)
Once a control policy m= (tto, pt1, ***s tn—1) 18 adopted, the following sequence
of events may be conceived (Bertsekas, 1976, pp.114-115). At stage 0:
1. The initial state z, is generated according to the given probability
measure P,,.
2. The observation disturbance v, is generated according to the probability
measure P, (+|x,).
3. The decision maker observes zo="ho(Zo, %o) and applles uo=p,(ly), where
Iy=2,.
4. The input disturbance w, is generated according to the probability
tto(Io)).
5. The cost go(Za, pto(lo), o) is incurred.

.
Wy

6. The next state x, is generated according to the system equation z,=f,

(xo, o (Io), wo)-
At stage ¢t

1. The observation disturbance v, is generated according to the probability

(4) Notation g, (I;) indicates that each function p maps the information vector I, into the
control space.




measure P, (- |z, #-y).

The decision maker obser"ves ze=hi(zs, o1 (1:-;), v:) and applies u,=yp,
(1), where I=_(zq, **, 2, tho, **, th_y).

The input disturbance w, is generated according to the probability measure
Pw.(’ [z, #e(L)).

The cost g,(z:, p:(I.), w,) is incurred and added to previous costs.

The next state z.,, is generated according to the system equation z. ;=

Sz, (1), w)).

At the last stage (N—1):

1.

6.

The observation disturbance vy., is generated according to P,,_, (- xy-y,
fHN-2).

The decision maker observes zy_;=#hy_,(zy_1, pv_2(y-s), wvx_;) and
applies uy_;=py_, (Iy~,), where Iy_,= (2q, -, Zn_1, o, ***, Un_2).

The input disturbance wy-, is generated according to the probability
measure P,,_,(+|zn_y, g v=y)). \

The cost gy_y(zn-s, pv—1(In-1), wn-,) Is incurred and added to previous
costs.

The final state zy is generated according to the system equation zy=
Su-a(znoyy pyvoi(noy), wwoy).

The terminal cost gy(xy) is incurred and added to previous costs.

The problem with the above approach is that at each state, the optimal

control policy must be determined for all possible values of the information

vector (i.e., for every sequence of observations made and controls employed

up to time £), thereby causing a dimensional problem. By representing the

state variable in terms of a sufficient statistic instead of an information vector,

the dimensionality can be reduced. A widely-used sufficient statistic is the

conditional probability measure of the state z,, given the information vector

I,, This conditional probability P,,;, summarizes all the information necessary

for control purposes at time ¢. In the case where the knowledge of the state

is imperfect, the decision maker can be viewed as controlling the probabilistic




state P, ;, to minimize the expected future cost conditioned on the information
I, available. ’

The sufficient statistic P,,,;, is generated recursively in time and can be
viewed as the state of a controlled system. Using Bayes’ rule, P, can be
written as

Pivir1=0c(Pr, 11, thy 2411), ¢=0,1,+, N—2
where ¢, may be considered as a stage transformation process which expresses
each component of the output state as a function of the input state, decisions,

and random variable. The above equation indicates that P;,., s, can be expressed

in terms of P,,;, for all possible combinations of » and z., If the state

space for each time ¢ is a finite set (z!, «+, z"), then P, 1+, can be recursively

generated as follows: |
Px.+1I!.+1=P(xt+1=ilI!+l)

— P(I¢i1=1.|I:, uuﬁlz'j)
P(zes1 =71 us)

— P(z.+1=j|u,, x,+1=i)P(.r,+1=i|I,, u,) (14)
Zl_:P(zt+l=j|ul, .r,+1=i)P(x,+1=i{L, )

Where P(I;+1=iII¢, u¢)=zI:P(x¢+1=ilxt=l, ul)P(xg=I|It).

The dynamic programming algorithm now can be written in terms of the

sufficient statistic P;,;;, as follows:

Vo1 (Pay-118-,)=min  {E  {gn(zy) +&r-1

. (-rN—l’ UnN_1, wN—l) IIN-D uN—i}} (15)
Vi (Px.u.) =min {E {g. (.r;, 2, W)

R
+ V¢+1E¢r (P:q 11 Uty Zepr e w0} ) (16)
Note that in the above algorithm the expectation is conditioned on I, and u..
Equations (15) and (16) indicate that the optimal controller can be separated
into two parts: (1) an estimator which uses #,,, 2. to generate new conditional

probability P., 1, and (2) a controller #* that generates optimal inputs as a

function of P,




The above algorithm yields a control policy of the form:
ur=u*(P,,1), t=0,1, - N—1
The optimal value of the problem is given by:
Vo*=f{Vo (Peyi1,)} an

Equation (17) makes it necessary to generate the probability measure P, (- |x,).
Alternatively, the optimal value of the problem can be obtained simply by
extending one more period backward, say t=—1, and then considering the
optimal decision at t=—] to be “do nothing.” In this setting, the computation
of backward optimization of equation (16) at t=—1 automatically yields the
value of V,* in equation (17).

In the special case, where both g,(x,, %) and arguments of all random
variables are countable, equation (16) can be written as:

Vi(Pyi1) =1Tlin 1}‘{3: (zo, u) | I, ) +{E{Vt+1(Px,+,|I.+.) | Ity e} }

=min {3.g.(z.=1, ) P(z,=i|I) + 2

V3+1E¢t (P": R 3:+I=J')P(3t+1=j | In#!)]} (18)
The probability P(z.,,=j|L, u) in the above equation is given by:
P(z,+1=j|I,, u) =;P(Zt+1=j|xr=l, u) P (x,=1]z,) (19)

IV. Computer Program

The numerical analysis was performed using a FORTRAN program. Figure
2 provides a description of the program logic flow. This program has been
tested, using three sets of test data. The first example was drawn from Ber-
tsekas (1976, pp.115, 126-128), the second example from Kaplan (1969),
and the third example was contributed for purposes of the present study. All
three examples deal with two-state cases (in-control and out-of-control states).
Assuming periodic reporting, the first two examples cover only the “operating
decision” to investigate or not to investigate the process. With a conjecture

that the periodic reporting is not necessarily optimal, the contributed example




Start
Initialize the parameter values

——'Iteratéa over the periods, starting with one period to go, then the immediately preceding
perio

——Tterate over the values of the state variable

/ —Tterate over the values of the decision variable
Uslé the transformation equation

Compute the value of recursive function

Find a decision that minimizes the value of recursive function

Proceed to the next state variable

Save the optimal decision and minimum value of recursive function

End
(Fig. 2> General Logic Flow of Computer Program to Compute Optimal Policies

superimposes the “reporting decision” on the operating decision. To demonstrate
the solution approach to the conceptual framework discussed above, the solution
process for the last example, which covers a relatively longer planning horizon,
is discussed in detail.
1. Bertsekas’ Example
Bertsekas (1976) provides the following example to illustrate the nature of

the sequential optimization problem with imperfect state information:

A machine can be in one of two states: a good state or a bad state. If the machine
is operated for one unit of time, it stays in good state with probability 2/3 provided
it started in a good state; and it stays in a bad state with probability 1 if it started
in a bad state. The machine is operated for a total of three units of time and starts

| in a good state. At the end of the first and second unit of time the machine is inspected
| and there are two possible inspection outcomes: a probably good state or a probably
bad state. If the machine is in a good state the inspection outcome is a probably good
state with probability 3/4; if the machine is in a bad state, the inspection outcome is
a probably bad state with probability 3/4.
After each inspection one of two possible actions can be taken:
Action C: Continue operation of the machine. ‘
Action S: Stop the machine, do a .complete and accurate inspection, and if the
machine is in a bad state bring it back to a good state.

There is a cost of 2 units for using a machine in a bad state for one time unit and

zero cost for using a machine in a good state for one time unit. There is also a cost




of 1 unit for taking action S.

The problem is to determine the policy that minimizes the expected costs over the
three periods,

In this exampie, a periodic inspection interval is assumed. The choice of
possible actions is restricted to a choice of whether or not the machine should
be stopped. We call this class of optimization problems “operating decision”
problems. The decision choices concerning the determination of an inspection
interval or a reporting interval may be labelled a “reporting decision” problem.
The last example in this section will incorporate the operation decision with
the reporting decision.

Bertsekas® analytical solutions to the above problem are summarized below.

Period to Go Decision Policy

1 stop if ¢<{1/2
continue if ¢>1/2

2 stop if ¢<<5/8

continue if ¢>>5/8

where g represents the posterior probability that the machine is in a good
state. The minimum expected cost for the process over the three periods is
1.222. A numerical analysis, using this example, was carried out on a com-
puter. As indicated in the discussion in equat‘ion (7), the numerical analysis
was performed over three time periods, fixing the decision at the beginning
of the process at Action C(continue). The range of the state variable was
divided into 200 equal intervals. The computer provided solutions identical to
Bertsekas’, except that the expected cost was 1.214. The relative error is
approximately 0.7%. The error is due to a combination of computer rounding
error and finite sub-division of a state variable.

2. Kaplan's Example

Kaplan’s (1969) example is also intended to illustrate how the optimal
operating decision should be made. His example deserves special attention.

Although his paper is widely referenced, his solution approach contains




some mistakes.® In this section. (1) an alternative way of reformulating
his example within the general framework discussed earlier is provided; (2)
some conceptual mistakes made in his paper are pointed out; (3) suggestions
as to how to correct them are made; and (4) the results of the implementation
of his example on computer are reported.

He considers the following situation:

A reporting segment of a firm, when in control, reports zero deviation 80 percent of

that time, and a positive (unfavorable) deviation of three units 20 percent of the time.
If this segment is out of control, it will always report a positive deviation of three
units. An out-of-control situation when discovered can be corrected in a short time,
and the cost of an investigation is one unit. The probability that the division operates
in an in-control mode during a period, given that it entered that period in control, is
.95. The discount factor for a single period is .98. The problem for management is

to decide if it pays to investigate after receiving a cost report of three units.

Using discrete dynamic programming, he obtains the optimal decision policies

and resulting costs as summarized in Table 1,

Table 1. Kaplan’s Solution to his Example

};gri&i)s Decision Rule Mnimum Cost

1 investigate if 9<.533 1.72

do not inspect if ¢>.533 3—2.4¢q
2 investigate if ¢<<.675 2.537

do not inspect if ¢>>.675 {g Sg?—fﬁég‘lq :g gggéggggs
3 invetsigate if ¢=.654 3.4

. . — i <

do not inspet if  ¢>.654 (Fai HsEE

4 investigate if g*<.658 45,22

{ 47.31—3.18¢ if .658<¢<.919

do not inspect if ¢>>.658 49,37—5.42¢ if .919<¢<.95

For the infinite period case, discounting future costs guarantees that the

critical value (break-even value) g* converges. As noted in Table 1, g¢* con-

(5) It should be pointed out that these mistakes have not been corrected in his later paper (1975).
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verges to 0, 658. Then the optimal decision policy is to investigate if ¢<0. 658.
Observe that

Pl un=3) =7

Starting from an initial value of gx=0.95, the probability that the division
is in control after reporting 3 units of deviation in two consecutive periods
is 0,43. The optimal rule, then, is “to inspect ‘and take corrective action
immediately, after two consecutive high cost outputs have been reported.”
Since it was impossible to run an infinite period case on the computer, it
was decided to see whether the computer output would agree with the figures
in Table 1 for three periods, and whether the critical value ¢* would con-
verge to (. 658, In the process of testing the computer program, hand calcu-
lations were carried out because of this author’s suspicion that Kaplan
incorrectly solved his example.
For convenience of presentation, let:
px=N : do not investi.gate the division
px=I : investigate the division
xx=0, : the division is in control
zx=0, : the division is out of control
gx : posterior probability that the division is in control
: probability of the process remaining in control for one period
: discount factor
zx= $0: the division reports a deviation of zero unit
zx=$ 3: the division reports a deviation of three units
P($0): probability that a report indicating zero deviation is to be
received
P($3): probability that a report indicating three deviations is to be
received
With some modifications of equation (4), the estimates of sufficient statistic

gx+1 18 given by:

o~




.95 if px=N and 2x,;=$0
. 19x : =N =
Irer= 1\ 1—. 8qx if e and zri=$3 :
.95 if pxg=I and zx;;=$0
. 752 if px=I and zx4,=$3

One can immediately observe that once a zero deviation is reported, the
posterior probability of the division’s state is constant at 0.95 regardless of
whether the division is corrected in the previous period. This observation is
not intuitively appearing. One would expect that gx.,, following the implémen-
tation of corrective action, would be higher than it otherwise would be. Some
clarifying comments are in order.

The Kaplan example assumes that “the probability that the division operates
in an in-control mode during a period, given that it entered that period in
control, is 0.95.” Because of the resulting implication that transitions occur
after costs are reported and after an investigation is made, equasion (14) needs
to be modified. For the first two cases (cases where ux=N), the computation
of gx:, is carried out as if there were no transition from one’ state to another
state. Call the resulting figure a “pseudo-posterior.” The real posterior gx., is
the product of the pseudo-posterior and transition probability g. For example,
- for the cade in which ux=N and zx;,= $3, | »

Qri1—=g X P(zke1=$3) | Zx11==01) X gx
Plexi=$3) [2x4:=0)) Xgqx+P(2xp1=$3) |zxs1=02) X (1—gx)

— .2(11(
=,05X — % —
25+ (1—qx)

— 19«
1—.8qx

" On the other hand, for the last two cases (cases where px=1I), Kaplan’s

solutions force one to compute gx,, using equation (14) except to the extent
that the result of equation (14) is again multiplied by the transition probab-

ility g. For example, for the case where px=1 and 2zx;,= $3,

o Pzxi=$ 3| zxai=01) X (g)
IE1=E " Plagi= $ 3| 2xp1=01) X (@) +P (1= § 3| 2x1=0) X (1—g)




2x%,95
= X, —_—=r v t
% .2X.95+4.05

=, 752
Note that the notation of g, which appeared in parenthesis, is used as a prior
probability that the division is in control. However, due to Kaplan’s explicit
assumption that an investigation forces the division back to the in-control
state, the above probability 0.752 is wrong. The implication of his approach
is that the transition occurs twice within the same period, if and when an
investigation is taken, which is clearly wunjustifiable. In the event that an

investigation has taken place, the correct posterior probabilities would be:

Plzgy =8 O!xK+1=Bl) Xg
J Plzxii= 30| xxs,=0)) Xg+P(zxp= $0lxxs1=02) + (1—8)
q B
o [ P(zry = $ 3| xxe1=0) Xg
Pzxii= $ 3| zx1=0,) Xg+P (zgr1= $ 3| Zxs1=02) X (1 —g)

1
a {0. 792
Since the main purpose of using the Kaplan example is to check the validity
of the computer program, his “wrong” probabilities are used in the subsequent
analysis. A
With the use of equation (19), the observation probabilities may be expressed
in terms of ¢y as:
P(zxi1= $ 0] ux=N) =0. 76¢x
P(zge1= $ 3| px=N)=1-0. 76qx
P(zki1= $ 0| px=1)=0.76
P(zge1=$3|pux=1)=0.24
As an example, consider P(zx,;= $3|jpx=N).
P(zri1=$ 3| Ins1, pxs1) =;P(2K+1= $3|zx=1, ux=N) P(zx=1|2x)

=P($K=01 |Zx) [P(zks1= $ 3| zx=10, ,u;(=N)] +P(IK='92|ZK)
[P(zky1=$ 3| xx=0,, px=N)]

=P(.rx=61]2;;) [P(zx+1= $ 3| 2k11=01) P (Xg41 =0, x5 =0y, px=N)
+P(2x11= $ 3| xx41=0;) P (k1 =0,| zx=0,, px=N) ]
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+ P (zx=0,|2x) [P (zx41= $ 3| 2x11=01) P (xx1=01| k=0, px=N)
+P (2= $ 3| xx41=02) P (Tr4,=0:| zx =8, px=N) ]
=gx[ (0. 2) (0.95) + (1) (0. 05) 1+ (1—gx) [ (0.2) (0) + (1) (V)]
=1—0. 769« ’
If, in fact, Kaplan’s final solution is correct, then one must assume that the
© cost resulting from the combination of state and decision (CPC) is given by:
CPC(zg=0, and px=N)=$0.6
CPC(xx=06, and pux=I) =$1.72
CPC(xx=0, and puxy=N)=$3 _
CPC(xx=0, and ux=I) =$1.72
~ The procedure by which the above cost figures are obtained, and the question
of whether these figures are correct, are discussed below. Assuming that the
above figures are correct for the time being, equations (15) and (16) yield
the following dynamic programming algorithms:
0. 6gn—1+3(1—gn-1)
1. 72gn_1+ 1. 72(1—gn_y)
3—2. 4gx+a[ (0. 76¢x) Vi1 (gx+1) + (1—0. 76qx) Vi1 (grs1) ]
1. 72+a[0. 76 Vks1(gr+1) +0. 24V (gr11) ]

When the above algorithm is carried out in a backward manner, solutions

Vi-1(gn-1) =min {

Vi (gx) =min {

identical to Kaplan’s shown in Table 1 are generated. This study also reports
that the computer program, which is slightly modified to take into account
the timing of transition occurrence and the data for the CPC matrix, provides
the same results. Having divided the state variable into 200 equal intervals,
a numerical analysis (N=15) was carried out on the computer. The behavior

of the critical value ¢* was observed as follows:

Period to Go g*
1 0. 530
2 0. 680
3 _ -0. 655

4 and thereafter 0. 660




Recall that the probability of the process being in control is treated as a state
variable, and that the expected cost is a function of the state variable. However,
the state variable is a real number from zero to one. Thus, the computation
of the expected cost on the computer makes it necessary to sub-divide the
value of the state variable. The entire range of the state variable is divided
into 200 equal intervals (i.e., an increment of 0,005 starting with zero).
Then the expected cost is computed for each of the 201 values of the state
variable. Therefore, it is not possible to generate Kaplan’s steady-state value
of 0.658. However, the computed value of (.660 is the best that one can
obtain in this setting of finite sub-division.

The elements of the above CPC matrix are the sum of the expected cost
associated with a particular state and cost of investigation, if any. Then it
follows that:

CPC(xx=0, and px=N)=(0.8)($0)+(0.2)($3)=50.6

CPC(xx=0; and px=N)=(9) ($0)+(1)($3)=$3
However, Kaplan might follow the following approach for the other two
elements:

CPC(zx=06, and px=I)=(0.76) ($0)+(0.24)($3)+ $1=81.72

CPC(zxx=6, and px=I)=(0.76)($0)+(0.24)($3)+ $1=$1.72
Note that P($0)=0.76 and P($3)=0.24.

This computation incorrectly implies that the probability of reporting $3
deviation after an investigation is higher than one in the absence of corrective
action. '

3. Example of the Reporting Interval and the Timing of an Investigation

The decision alternatives in the preceding two examples are restricted to
the choice of the operating decision in a two-state case (in-control and out-
of-control states), For simplicity of computation, the two-state case is retained
in this contributed example. However, it adopts the argument that periodic
reporting is not necessarily optimal, nor should it be followed by convention.

Relaxing the assumption of periodic reporting makes it necessary to consider




the operating decision and the reporting decision simultaneously. This situation
may be envisioned as indicated in the next paragraph.

At the beginning of period K, a controller estimates posterior probabilities
of the states. He then chooses, by making use of posterior probabilities, one
of the following four decision alternatives open to him:

Action px=1 Do not investigate the process at the beginning of period
K, but prepare a variance report at the end of the perioﬁ.

Action pg=2 Investigate the process at the beginning of period K, and
prepare a variance report at the end of the period.

Action px=3 Do not investigate the process at the beginning of period
K, and do not prepare a variance report at the end of the
period.

Action px=4 Investigate the process at the beginning of period K, but do
not prepare a variance report at the end of the period.

At the beginning of the next period, K+1, the controller again estimates
the posterior probabilities of the states following the results of the previous
decision made. In the event that the variance report is obtained at the end of
period K, the estimates of pogterior probabilities reflect the information con-
tained in the report. If, on the other hand, a report is not prepared at the end
of period K, the estimation of posterior probabilities is done by incorporating
prior probabilities with the presumption of transition probability from one state
to another state. The controller then makes a decision based on these posterior
probabilities. The choice of optimal decision policies is demonstrated by means
of an example.

Consider a process that can be in one of two states, “in-control” or “out-of-
control.” It is assumed that once the process is in the out-of-control state, it
remains in that state until it is investigated and corrected. The time the
process remains in-control before going out-of-control state is assumed to be
an exponentially distributed random variable with mean 1/2 (i.e., the average

rate of occurrence of a shift is 2 per unit of time). At the end of a period,



a variance report may be prepared at a cost of R, or one may not be prepared
at all. The variance report conveys imperfect information as to the state of
the underlying process. Upon receipt of a variance report, the ‘manager may
investigate the process and correct it to the in-control state at a cost of L
The inefficiency cost to operate the process in the out-of-control state for a
unit of time is QC,; that is, OC, is an opportunity cost resulting from an
out-of-control state for a unit of time. The planning horizon is N periods,
with the length of one period of £ units of time. For simplicity of computation,
it is assumed that the process is in the in-control state at the beginning of
the planning herizon, and that the shift from one state to another state occurs
at the end of a period, but just before a variance report is prepared. If the
underlying process is an in-control state, the variance report indicates the in-
control state with the probability of 1—a; if the underlying process is an out-
of-control state, the variance report indicates the out-of-control state with the
probability of 1—pA. The problem is to determine how long the optimal
reporting interval should be, when the investigation decision is made that
minimizes the expected total costs over the entire planning horizon N.

To carry out the calculations to find the optimal policies it is necessary to
assign values for the process parameters and cost coefficients. For iﬂput data,

let:

N =10

G =0.8
l—a=1—45 =0.9

R =§15

I =8$30

OC=$100

Notice that, for ease of calculations, it is assumed that a shift from one state
to another state occurs at the end of a period. When this assumption is made,
the values of an opportunity cost per period (OC) and transition probability
(G) are to be simply assigned. In the absence of this assumption, OC and G




should be computed incorporating %, 4, and ATI (6;)), where ATI stands
for an average time interval.
To characterize the structure of the dynamic programming problem at each
state K, K=0,1, -, N—1, it is necessary to specify the following six elements.
1. Input state variable=gy
2. Output state variable=gy,
3. Decision variable= pux
4. Random variable: (see below)
5. Stage return: (see below)
6. Stage transformation: (see below)
For convenience of presentation, define:
gx posterior probability that the process is in-control
zx=4¢, the process is in-control
\ zg=0, the process is out-of-control
zx=40, report signals an in-control state
zx=0, report signals an out-of-control state
P(zx=0;| zx=0;) conditional probability that the report signals a state 4,,
when the process is in state 8;
P(zx+,=0:|px=j) conditional probability that the report signals a state 6;,

given a decision j made in the period K
CPC(xx=0;, ux=7j) cost resulting from a combination of state & and

decision j
Random Variable. Since both 1—a and 1— 8 are 0.9, which may be inter-

preted as a 90 percent accuracy of reporting signal, the probability distribution
of a measurement (actual observation) zy.is given by:

P(zx=0,|2x=0,)=.9

Pzx=0,| xg=8,) =. 1

P(zx=0,|zx=0,)=.1

P(zx=0,]zx=0,)=.9
In addition, the probabilities P (zx.,=6;}Ix, px) are given by:




Pzry =0, |Ix, ix=1)=. 1 +. 64qx

P (zxi1=0,| I, x=1) =. 9—. 64qx

P(zxpy=0,|Ix, px=2) =. 74

P (2x01=0,|Ir, px=2) =. 26
Calculations of the above probabilities are carried out by making use of
equation (17). Recall that for a decision, #xk=3 or px=4, no variance report
is prepared at the end of period K, thereby making P(zx+1=t9,-]IK, /x) nonexi-
stent.

Stage Return. The cost functional resulting from a sequence of states 6; and

decisions yux is given by:
. N—1
Vv=min E{3CPC(xy, ux)}
kg %z K=0

where CPC(zx=0,, gx=1)=R= $ 15
CPC(xx=0;, px=1)=R+0C= $ 115
CPC(zx=0,, ux=2) =R+ 1(6,) — $ 45
CPC(zx=0,, ux=2) =R+1(6,) = $ 45
CPC (zx=0,, pix=3) — $ 0
CPC(zk=0,, px=3) =0C= $ 100
CPC(xx=0,, ux=4)=1(6,) = $ 30
CPC(zx=0, ptx=4) =1(8,) = $ 30

Thus, the return at stage K can be expressed as:

15gx+115(1—qx) if px=1
RET,— 45gx+ 45(1—gqx) if px=2
0 +100(1—gx) if px=3
30gk+ 30(1—qx) if px=4 |
Stage Transformation. The stage transformation, expressing each component
of the output state as a function of the input state and decision, represents the
probability measure P (zx41=0:|Ix+,). The calculation of these probabilities is

carried out by making use of equation (14). The results are given by




\ .—:l'_z—.z-%%q;— if zx+1=01 aﬂd !JK=1
~.9.—_0.896-i'q7‘ if 25+1=62 and P‘}(=1
gk+1=),973 if 2k, =6, and px=2
. 308 if Zx+1=02 and ﬂ5=2

. Bagx if px=3

.8 if px=4

Now, algorithms (15) and (18) may be written in terms of the state
yariable and the stage transformation as follows: -
115—100gs—; if voi=1
Vii-1(gn-) =min 1 i =2
#v-1 | 100—100gn-, if pv1=3

30 if py1=4

115— 100gx+ (. 1+. 64gx) Vx+1(—'1";7’2%i"q—x‘)

+ ( 9—. 64‘1}() VK+1 (—“9'__—08%1;;:)

45+ T4Vss (L 973) +. 26 Vrer (. 308)
100— 100gx+ Vi1 (. 8gx)
30+ Vx1(. 8)

Vil(gr) = nﬂn

The minimum expected total costs and optimal decision policies can now be
found by solving the above recursive relations.

The calculations are basically done in two facets. The first facet is to solve
the above functions in a backward manner. For a given value of K, it is
necessary to determine the range of the state variable within which the value
of a particular function is the lowest among the values of the above four
functions. Then the tables of ux and Vx(gx) within the range are saved for
future calculations. The second facet is to trace the optimal decision policies
and minimum expected total costs in a forward manner.

The results of the first facet are summarized in Table 2. A computerized
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numerical analysis for this example was run; Table 2 also reports the results
of this analysis. The results of the second facet are reported in Fig. 3.

The critical value of the state variable (the point at which the values of
two functions are identical) is sensitive to an error in function value which,
in turn, results from the finite sub-di\‘fision of the state variable; it is conceivable
that the computer output would show erroneous decisions around some value
of the state variable. To minimize such an error, the function values are

computed by incrementing the value of the state variable by 0.002. In other

{Table 2> Solution to the Example

Hand Calculations Computer OQutput

Period to Go State Variable Decision Cost State Variable Decision
1 q<.7 4 30 q<.698 4
T<q 3 100—100q .7<q 3
2 q=<.8 4 50 q=.8 4
.8<q=<.809 3 130—100q .802<{q<, 804 3
. 809<q=. 909 1 152—127.2q . 806<q <. 906 1
q=.908 3*
q=.910 1+
.909<q 3 200—180q .912<=q 3
3 q=.736 2 76.4 q=.736 2
.736<q<.893 3 150—100q .738<q<, 882 3
.893<q 1 180—133. 6q .884<q 1
4 q=.764 4 100 q=.762 4
.764<q<.848 3 176.4—100q L764<q=<.840 3
.848<(q<.963 1 201.76—129.89q .862<q=.966 1
.963<q 3 250—180q .968<q 3
5 q=<.736 2or4 126.4 q<.736 2 or 4
.736<q=<.887 3 200—100q .738=q<.876 3
.887<q<.926 1 225,18—128. 39q .878<q=<.996 1
.929<q<1.0 1 230—133.6q q=.998 3
q=1 lor3 96.4 q=1.0 lor3
6,8,10 Identical to the results with 4 periods to go except cost.
7.9 Identical to the results with 5 periods to go except cost.

* When q=0.908, the decisions should be 1 as opposed to the computer output of 3. This error
is due to the discretization of state variable,
** The decision should be 3 rather than 1 because of the error explained above.

-
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words, the state variable in divided into 500 equal intervals. A comparison
of the analytical and numerical results reveals that the minimum expected
costs of the two results differ by no more than (.3 out of a total expected
cost of $220. As expected, the comparison also shows some erroneous decisions
in the computer output. Had a finer division been used, this problem would
have been alleviated. However, even the 500 sub-division takes a substantial
amount of CPU time on a computer.

This example reveals an interesting aspect of the reporting policy. Table
9 shows a switch in decisions from no report (ux=3) to report (ux=1) as gx
(transition probability) increases, which may not be obvious at the first glance.
Although some insight into the optimal decision policies may be gained by
examining Fig. 3, an intuitive argument is also helpful.

Suppose that there is a range of gx within which an intervention of the
process is not economically justified at the beginning of period K. Consider
the case where the process is around the lower end of this range. Stated
differently, it may be said that the present condition of the process is not bad
~enough to justify an immediate intervention, but is sufficiently bad to trigger

an investigation in the following period. Then a value of gxy;, whichlis

Pericd ko - ) - o
%Go 10 9 ] 7 6 5 4 3 2 1
Pattern ‘

A lo—— 1£ gm m— L1 3 if z=0j— 3—- 4 3 —4 3— 4 —3
L 4 1f z=ay
*k -
if':=02
B N— 3 g -3 —— b 31—t Yo b
i‘ 4 1if 2=
2
c —3 2 3 A zmh— 3 — & 3— 4 —4
4 1f z=8
2
D 4——3—-—-——-—‘-1—{31Ez'81—-3-——1‘——4
4 ILf z=8
2
E 4o e 2 ek —4

*
z-al designates that the variance report indicates an in-control state.

A% .
ztaz desglantes that tha variance report lndicates an out-of-control state.

Fig. 3. Sequence of Optimeal Decisions




estimated in the light of the information contained in the report obtained at
the end of period K, would suggest an investigation at the beginning of period
K+1. Perhaps another vaiue of gxy;, which incorporates a controller’s prior
expectation about the deterioration rate of the process, might also signal an
investigation at the beginning of period K+1. This being the case, a decision
to suppress a report at the end of period K (i.e., px=3) would yield - the
minimum expected cost.

Next, consider the case where the process is in the higher end of this range.
Here, the process is not bad enough to justify an immediate investigation, and
its current condition may or may not require an investigation in the following
period. In this case, it may be advisable to make the intervention decision
after gathering more information about the process condition at the end of
period K(i.e., ux=1). The above argument explains why it is sometimes best
to switch from px=3 to px=1 as gx increases.

As shown in Table 2, with five periods to go, both decisions u;=2 and Us
=4 result in the same minimum cost. Given that the decision p;=2 incurs a
reporting cost, this conclusion may not be obvious at the first glance. The table
also shows that with three periods to go, the optimal decision is 1s=2 (if
q<0.736) even though this decision is not indicated during the early periods
of the planning horizon. One may wonder why a report should be prepared
when the planning horizon approaches the terminal point, rather than at an
early period. These perplexing phenomena can be explained by examining the

sequence of optimal decisions to follow.
Suppose that the process begins with an in-control state, and that the

controller has decided to prepare a report at the end of the first period. He
estimates the probability that the process is in-control, using the state trans-
formation functions. On the basis of this estimate of posterior probability, he
makes a decision. The optimal path to be pursued at each period is shown in
Figure 3. Note that the subscript in Figure 3 represents the number of periods

to go. Some comments on Figure 3 are in order.




First, consider the case in which the report signals an in-control state. With
nine periods to go, the optimal decision is not to investigate the process, but

to prepare another report at the end of the period. Then, depending on the
reporting signal the process is either investigated or not investigated in the
period. From that period on, the process is investigated in every other period.
But no report is due in this time span.

Next, consider the case where the report signals an out-of-control state with
nine periods remaining. In this case, the optimal decision is either an investi-
gation, followed by another report, or just an investigation (i.e., either po=2
or puy=4). If the controller decides to investigate the process and prepare a
. report at the end of the period (i.e., the adoption of ps=2), the subsequent

paths of optimal decision follow the one described in the preceding paragraph.
If, on the other hand, ‘the controller decides to investigate the process and not
to prepare a report at the end of the period (i.e., implementation of pte=4),
" his optimal decision in the next period is to do nothing (i.e., ps=3). However,
after one more period elapses, he again has to choose between p,=2 and p,=
4. As shown in Figure 3, the adoption of y;=4 leads to another problem of
choice (selection of either ps=2 or p;=4) two periods later. If ;=2 is chosen,
his decisions in ;che subsequent periods are restricted to the operating decision.
If he chooses ps=4, he must generate a report two periods later (i.e., ts=2).

In this example, p,=1 suggests that one more report may or may not be
prepared depending on the information contained in the first report. If the first
report signals an in-control state, no report needs to be prepared for the
remaining periods. An indication of an out-of-control state on the first report
requires that another report be prepared. However, the timing of the report
is not fixed: the controller is free to choose the reporting time.

This example assumes that the reporting cost is § 15. Following the sequence
of optimal decisions, the controller will incur the expected total minimum cost

of §220 for the ten periods. If the reporting cost were $13, the report

would be prepared in every period except the last two periods. The resulting




expected minimum cost is only $207. This is because additional reporting
costs are offset ‘by the savings in opportunity costs. If, on the other hand, it
were $17, no report would be prepared in any period. The expected total
minimum cost is $222. These observations, made on a very limited .scale,
support the argument that the reporting interval is contingent upon the
reporting cost. Earlier in this study, it is also argued that the reporting
interval also‘depends on the condition of the process.

This example assumes that the probability of the process staying in the
in-control state is 0. 8. Assuming the reporting cost to be $ 15, but merely
varying the transition probability from 0.8 to 0.7, another computerized
numerical analysis was run. The result shows that the report would be
prepared in every period except the very last period. The expected total
minimum cost is increased to $ 258. 68. An intuitive explanation for the change
of reporting interval would be that a fast deterioration of the process results

in a need for more frequent feedback on the process.

V. Conclusion

As stated earlier, the objective of this study is to construct a cost control
model to be used for studying the control process. The model developed is an
extension of the Kaplan (1969) development, and is used to examine issues
relating to the reporting interval as well as to the timing of investigations.

This study demonstrates the interwound nature of the reporting decision and
the investigation decision. It also provides a way to assess the economic con-
sequences of using a non-optimal policy.

The prevailing current practice is to prepare a report every period. In the
event that the reporting cost is small relative to other costs such as opportunity
costs and investigation costs, and that the reporting accuracy is high, the
results of this study provide theoretical support for such a practice. If,

however, the above conditions are not met, then the variance report, whose




sole purpose is to provide information useful for the investigation decision
should not be prepared for every period. In the light of the fact that the
proper timing of an investigation is also affected By the reporting interval
chosen, it must be concluded that the investigation policy based on the
assumption of a constant report in every period is not necessarily optimal.

Of course, the above conclusions should not be accepted in every case. It is
possible that the length of a reporting period, as now practiced, may not
coincide with the one that is envisioned in this study. This study assumes
ouly one shift from an in-control to an out-of-control state during one period.
In other words, in the two-state case, an in-control state may switch to an
out-of-control state during one period. In the instance of the multistate case,
either a shift from an in-control state to any one of the out-of-controi states
or a shift from a less severe out-of-control state to one of more severity takes
place during one period. In effect, the length of a period is defined in terms
of the number of switches, rather than a calendar breakdown such as weekly,
bi-weekly, monthly, periods. To the extent that such a switech-governed period
agrees with the conventional accounting period, it is suggested that the
prevailing current reporting interval is too short.

The optimal reporting policy involving no-report might be disconcerting to
some accountants, especially those who believe that a report conveys valuable
information. If the optimal reporting policy calls for an irregular reporting
interval, then the use of a non-optimal policy involving a report in every

period does not appear to have serious consequences in terms of opportunity

loss.
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