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1. Introduction

The routing of a fleet of vehicles is an area of both theoretical and practical
importance. From a practical point of view, government and industry could
save many million dollars by routing vehicles efficiently. Its practical applications
encompass a wide variety of activities such as school bus routing, railway fleet
routing, delivery of mail, and dispatching of delivery truck for customer goods.
There are numerous variations due to the various underlying assumptions
associated with the problem. Despite these varieties, the essential components of
the problem are a fleet of vehicles and a set of customers with known demands.

To formalize the routing problem we provide notation and give below a
formulation of the vehicle routing problem.

Parameters

V={l,.. K}, set of vehicles
I ={l,..., N}, set of customers

I’ =11 {0}, index O denotes the depot
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g, : capacity of vehicle &
. fu ¢ fixed cost of using vehicle %
d; : demand of customer i
pis : fixed cost of serving customer i by vehicle %

L : restriction on tour length for each vehicle

Variables
L if vehicle & is used
o B l 0, otherwise
L if customer i is assigned to vehicle %
T ‘0, otherwise

T,(X) =length of shortest tour which vehicle & travels to serve the cus-
tomers assigned to it
In this paper we consider a variant of the vehicle routing problem where
there is a restriction on the length of each tour travelled by vehicles. With
the above parameters and variables the formulation of the vehicle routing
problem is as follows.

The Vehicle Routing Problem is:
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Expression (1), (2), (3) are constraints of the simple plant location problem
and state that each route starts and finishes at the central depot, and that every
customer is served by some vehicle. Expression (4) states that the sum of

demands of customers assigned to each wvehicle is within its capacity limits,




Expression (5) states that the tour length of each vehicle must be less than a
pre-specified restriction. Once the clustering variables v, and z;; are determined,
for given 2, T, (X) is an optimal value of the traveling salesman problem over
customers assigned to vehicle 2 and customer 0 (depot).

The above formulation can *be basically viewed as a composite of two-well
known combinatorial problems-traveling salesman and simple plant location pro-
blems. It is important to distinguish the clustering decision which is represented
by x: and v, variables from the routing decision associated with T, (X) varia-
Bles. Once the complicating clustering decision has been made, the problem
reduces to a relatively easy traveling salesman problem for each vehicle.

In the next section we propose a decomposition algorithm which iterates
between solving (VRP) as a master problem to determine clustering variabels
z; and y, and solving traveling salesman problem as a sub-problem to determine

the actual vehicle route to serve the customers.
2. Decomposition Method

The constraint set (5) can be expressed as a set of linear constraints which
is similar to the Benders cut. '
Let X= {2y, ..., Z1k, -+, Ty, ooy Tany, ¥=1{y, .-, ¥a}.

\ 1, if vehicle # travels from customer 7 to j

i

0, otherwise
c;; ¢ distance of traveling directly from customer i to customer j

T,(X) can be defined mathematically as:
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By replacing expression (9) with cutting planes, that is, by relaxing the

integrality condition on 2} and adding cutting planes to enforce integrality, we

obtain an equivalent linear program which we denote by (TSP); as follows:
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where expression (12) includes sub-tour elimination
constraints and cutting planes to enforce integrality.
Let UV, W be dua_l variables associated with constraints (10), (11), (12)-
respectively. Any dual feasible solution to (TSP), satisfies
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since the objective value of the dual problem to A(TSP)k is a lower bound on
the optimum of (TSP),, which itself is at most L. Let (U, W, V) oy, L1 be
the set of all extreme solutions of dual problem to (TSP),.

Proposition 1:

Tour T,(X) has a length of at most L if and only if
,é (2uf—§.)v§f)x.vk—W‘B§L, =1, ., T (13)
or equivalently,
SlzasL, t=1,.., T (19)

Proof: immediate

Hence re-formulation of vehicle routing, which we denote by (VRP), is
(VRP):




N K K
Z=Min§ ElPikxiH'hZ::lfkyk
subject to (1), (2), (3), (4), (14)
Note that the expression (14) is summed not over &I but over i&I’. This
can be easily resolved, since ¥, zox=31%_,7, and the fact that y,=1 means

zoz=1. Hence the expression (14) can be re-written as
N
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Since the expression (14) can be I:égarded as a kind of Benders cut, the above
reformulation offers an elegant method of iteratively coﬂstructing a solution.
We use an algorithm based ona decomposition method. The algorithm iterates
between solving (VRP) as a master problem to determine clustering wvariables
X and Y and solving (TSP), as a sub-problem to determine the actual vehicle
route through customers determined by clustering variables and customer 0
(depot). Any sub-problem whose optimal T,(X) is greater than L generates
Benders’ type cut of expression (14). A detailed description of the solution

method is given in the following section.

2.1. Sub-problem

Let X= {1‘11, cuey LiKy sory LNL-wny .Z'NK}, Y= {yl, ceey yx}
Given clustering variables X’ and Y’, consider a sub-problem; for given &,

which gives the length of tour T, (X’).
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wﬁere sz {1 . .Z'i,g:l} U {0}
We solve this sub-problem as proposed by Miliotis, for example, by Gomory’s

method of integer form. In other words, we relax the integrality condition

on z!; and add Gomory’s cuts when neceded to achieve integrality. Hence the
equivalent. formulation which we denote by (TSP), is as follows.
(TSP),:
Tu(X)=Min}, ez

iEV‘ iEV‘
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where Vi=1{i: zu=1} U {0}, and

expression (8) includes sub-tour elimination constraints

and cutting planes to enforce integrality. |
We need a cutting plane algorithm to solve the sub-problem (TSP).. Bellrﬁore
and Nemhauser [1] surveyed early research on the cutting plane approach to
the traveling salesman problem. Grotschel (7], Grotschel and Padberg (6],
Padberg and Hong [12), Padberg and Rao [11], and Miliotis (9, 10] have
made an impressive success recently., According to Fisher and Jaikumar 3],
A. Land reported that the Miliotis algorithm sloved 100 city problem relatively
comfortably. The Miliotis algorithm,v based on ‘Gomory's method of integer
forms, is a dual based method which deals with constraints (12) implicitly,
and generates as they are violated.

We find that the algorithm goes well with our requirement, because we can

terminate the algorithm whenever the objective value of relaxed sub-problem

exceeds L, and still get a valid cut of expression (14).
2.2. Master Problem

We solve the master problem (VRP) which is actually a relaxed master
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problem by the Lagrangian relaxation method. The idea of Lagrangian method
is that many difficult problems can be viewed as a relatively easy problem _
complicated by a set of side constraints. Lagrangian relaxation has applied to
many difficult problems and made great success during the 1970s, since Held
and Karp [8] devised a dramatically successful algorithm for the traveling
salesman problem using subgradient optimization, Existing applications of the
Lagrangian relaxation method are surveyed in Fisher [4,5) By dualizing cons-
traint sets (1), (4), (14), we have a Lagrangian problem.
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It is simple to solve (LR.;. optimally to determine Zp(a,f,7) for fixed

Lagrangian multipliers.
Let au=pu+a:it+dif+ ZTHTL il, k&K
e

The VUB constraints (2) and the objective of Lagrangian problem imply that
¥, if a0

Zipp= .
0, otherwise

Hence, defining
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which is a trivial problem.
The above solution procedure is very similar to that of Cornuejols et al [2]
for the k2-median problem. The best choice for Lagrangian multipliers would
be an optimal solution to the Lagrangign dual problem, Zp(a, 5, 7).
1 Zp=Max Zo(a, §,7)
a B.r

We use the subgradient method to determine multipliers a, 8, 7.
2.3. Interaction between Master Problem and Subproblem

We initialize the above procedure by solving master problem. After obtaining

Fig. 1: Overall Flowchart for the VRP
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values of X and Y variables, we solve a traveling salesman problem for each
vehicle. Any subproblem whose optimal value is greater than L generates cut

of expression (10). Note that if 77,(X) is greater than L, we should add cut
of expression (10) to master problem (VRP) for all 2 =K. Suppose we we add

- cut for only k=%, then at later iteration we might have same sub-problem
for B=#, This is especially true at the early stage of iteration and - master
| problem has a solution with few y, being positive. One other thing to note is
| that when we solve Sub-problem, (TSP),, as noted at section 3, we can
terminate sub-problem whenever value is greater than L. The overall flowchart

‘ ~ for our algorithm is given in Fig. 1.

3. Example

In practical situation, there are lots of variations in Vehicle Routing Problem.
In this section we will illustrate two examples. First example has operating
cost and fixed cost. In second example, there is no operating cost. -

The following example illustrates the procedure "described in section 2 with
N=4, K=3, The distance matrix (C;;), cost matrix (P;) are given below.

The limit on length of each route is 10.

Table i : Shortest Distance Matrix for Example 1

0 1 2 3 4
0 — 4 1 4
1 4 — 3 o2 3
2 2 3 — 2 4 “O” refers to the depot.
3 1 2 — 5 ’
4 1 3 5 —

By solving the master problem (VRP), we obtain the clustering variables,
Y=1(0,1,0), Zi1p=2m=x3—=zs,,=1 and other X are zero with cost of 21.

Since the value of (TSP); is greater-than 10, we generate cut (14) from dual

variables.




3x1+ 320+ 2as+ 324+ ¥, <10, k=K, (15)
At iteration 2, the master problem with cut (15) produces a solution with
Y=(0,1,1), ;,=Zp—=x33—x—1 and other X are zero. The cost is 24, The
solution of the sub-problem (TSP), are:

Table 2: Other Data for Example 1

1 2 3 demand

1 10 3 12 3
2 7 6 1 4 (P
3 1 3 1 5
4 2 4 3 3
Fixed cost: 10 5 10
Capacity: 15 15 15

Route for vehicle 2 : 0—1—4, (TSP),=11
Route for vehicle 3: 0—2—3, (TSP);=5 .
Since (TSP), is greater than 10, the route for vehicle 2 generates cut (16).

Table 3: Shortest Distance Matrix for Example 2

|
|

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 2 4 4 5 5 6 6 1 5 5 4 2 2 6 5

1 2 0 1 3 4 6 7 7 6 8 7 6 4 4 5 2

2 4 "1 0 2 4 6 7 8 7 9 9 8 6 5 5 6

3 4 3 2 0 1 5 6 7 7 9 9 9 7 6 8 8

4 5 4 4 1 0 4 5 6 6 9 9 9 7 6 9 9

5 5 6 6 5 4 0 1 2 3 6 7 7 6 4 11 10

6 6 7 7 6 o 1 0 1 3 6 7 7 7 4 11 11

7 6 7 8 7 6 2 1 0 2 5 6 6 6 4 12 il

8 4 6 7 7 6 3 3 2 0 3 4 4 4 2 10 9

9 b 8 9 9 9 6 6 5 3 0 1 2 4 4 10 8

10 5 7 9 9 9 7 7 6 4 1 0 1 3 4 9 7
11 4 6 8 9 9 7 7 6 4 2 1 0 2 3 8 6
12 2 4 6 7 7 6 7 6 4 4 3 2 0 2 6 4
13 2 4 5 6 6 4 4 4 2 4 4 3 2 0 8 6
14 6 5 5 8 9 11 11 12 10 10 9 8 6 8 0 2
5 5 6 8 9 1 11 1 9 8 7 6 4 6 2 0

—
o




Table 4: The Optimal Solution to Example 2

Vehicle customer length of tour Route
1 1,2,3,4 11 0-1-2-3-4-0
2 9,10,11 11 0-9-10-11-0
3 14,15 13 0-15-15-0 A
\ 4 56,7,8,12 : 15 0-56-6-7-8-13-12-0
3x1k—2x35+4x4ﬁ+4yk310, k=K. (16)

At iteration 3 with cuts (15) and (16), a solution generated by the master
problem is: Y=1(0,1,1), zi,=%;3=x3=x,=1 and other X are zero. The cost

is 25. The length of tour of vehicle 2, 3 is 10, 9 respectively. So the algorithm

terminates.

In the following example, N=15 M=5 and the restriction oh tour length
is 15.

For above example, our algorithm generates 14 cuts to produce a solution

and the solution is provided in table 4.

4. Computer Implementation

A computer program is developed for our algorithm based on fast algorithms

Table 5: Computional Results on the YRP

7 CPU —'ITime (seconds)

#of customers #of cuts generated #of nehicles used on DEC-20

10 1 2 0.330
10 5 3 0.716
10 5 4 1.018
0 7 4 1. 001
5 g 2 0. 671
15 9 3 0.989
15 14 4 1. 354
20 15 4 1.332
20 22 5 ) 2.379
30 30 b 2.790
40 ’ 12 3 2.598
40 30 5 3.291
50 14 3 5. 756
50 45 5 8.721




Fig. 2: The Traveling Salesman Flowchart
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for the simple location problem and the traveling salesman problem. The com-
puter algorithm incorporate sub-gradient method to find the Lagrangian dual
and Miliotis method to find the traveling salesman optimum. The overall
flowchart for our algorithm and flowchart for sub-problem are given in Fig. I, :

Fig. 2 respectively. The computational results are given in Table 5.
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