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I. Introduction

The Arbitrage Pricing Theory(APT), originally developed by Ross(1976),
has been subject to various extensions(e.g., Connor, 1984: Chamberlain and
Rothschild, 1983). We can broadly classify the existing variants of the APT
into two different classes: arbitrage-based APT and “equilibrium” APT. The
arbitrage-based APT includes Ross{1976), Huberman(1982), Chamberlain
(1983), Chamberlain and Rothschild(1983) and Ingersoll(1984). The equili-
brium APT includes Connor{1984), Dybvig(1983), Grinblatt and Titman
(1983). Wei(1988), Milne(1988) and Latham(1989) among others.

The existing arbitrage-based APT models have an approximate pricing
relation under an uncorrelated-residuals or approximate factor structure. In

the absence of arbitrage opportunities, there exist factor “prices” such that
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an infinite sum of squared deviations from the multifactor pricing equation is
finite. This approximate pricing has been criticized on empirical grounds.
Since the model prices ‘most’ assets well but permits arbitrarily large
deviations from exact pricing on a finite set of assets, it is difficult to conceive
of any(finite) empirical procedure that could be used to refute the actual
conclusion of the APT(see Shanken, 1985).

The existing “Equilibrium’ APT models have an exact or approximate
multi-factor pricing relation under an uncorrelated-residuals or approximate
factor structure. These models restrict investors’ preferences. Connor(1984)
derives an exact pricing relation based on the assumption that the market
portfolio is “well-diversified”. Dybvig(1983), Grinblatt and Titman(1983) and
Wei (1988) provide an explicit bound for the pricing error for individual
securities. The equilibrium APT models have also been criticized on
testability grounds, since testing these models requires a joint hypothesis
about the true market portfolio. In particular, the equilibrium APT is subject
to the same difficulties encountered in testing the Capital Asset Pricing
Model as raised by the Roll’s(1977) critique (see Shanken, 1982, 1985).

The pricing error bound has been derived only in the context of the
equilibrium APT. In the existing literature, there is a presumption that the
important and interesting pieces of the APT are based on equilibrium rather
than arbitrage analysis{see Latham, 1989). This paper derives an APT
model in the arbitrage framework which yields the exact pricing error from
the APT pricing for individual securities. Thus, this paper contributes to the
strand of literature associated with arbitrage-based APT models.

In the arbitrage framework, Chamberlain(1983) has demonstrated that an
exact pricing APT model holds in the sense that idiosyncratic risk is not
priced, if the mean-variance frontier is well-diversified. In Chamberlain
(1983), a global “benchmark” portfolio should be diversified in order to have

a well-diversified mean-variance frontier. This paper shows that an exact
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pricing APT holds if the efficient arbitrage portfolio is well-diversified. The
efficient arbitrage portfolio is unique only up to a given subset of assets in
the economy. We do not need to refer to the universe of assets.1? Our model
is consistent with the original APT which merely requires that a given subset
of assets satisfies a factor structure(see Roll and Ross, 1980).

This paper explains how idiosyncratic risk is priced if the efficient
arbitrage portfolio is not well-diversified. The efficient arbitrage portfolio is
important in pricing and plays a role as an extra factor. Our model does not
require an additional distribution assumption on idiosyncratic risk, unlike
Wei (1988) who requires equilibrium analysis. Our model can be used to find
the impact of omitting factors in an empirical investigation of the APT. If all
of the factors are omitted, then our model becomes an exact APT pricing
relation with one factor as the efficient arbitrage portfolio.

This paper also demonstrates the robustness of the original arbitrage-based
APT to market imperfections. The APT has been examined in friction-free
markets. The arbitrage-based APT survives with market imperfections
associated with transaction costs. We derive an APT model by imposing the
no arbitrage condition in an economy where investers pay transaction costs
in trading securities. In this model, there are two additional pricing factors,
the efficient arbitrage portfolio and the transaction cost factor. Reinganum
(1981) tests APT model with the data of the CRSP daily stock returns
between 1962 and 1978. His test shows that the APT is not supported by
the data. He finds that portfolios of small firms earn on average 20% per
year more than portfolios of large firms, even after controlling for APT risk
premium. Our model provides the implication that if transaction costs for

trading a small firm stock are greater than a large firm stock, the expected

1) Ingersoll(1984) has shown that the pricing error for a well-diversified portfolio is
zero. However. he has not shown the pricing error for a portfolio which is not
well-diversified.
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rate of return on a small firm stock should be greater than the expected rate
of return on a large firm stock, given other things held constant. Thus, it
may explain the size anomaly of the APT raised by Reinganum(1981). Stoll
and Whaley(1983) also find a similar result using a similar data set except
for 6% mean abnormal returns on the portfolio of the smallest firms. This
theoretical analysis is consistent with the findings of Stoll and Whaley.

Transaction costs may vary depending on assets. A striking result from our
model is that there may be multiple rates of return on zero-beta portfolios.
These rates are dependent on transaction costs of the assets which are
asset-specific. The analysis under market imperfections establishes a con-
venient framework for understanding pricing an asset in an international
context. Thus far, international extensions of the APT are minimal, and they
are conducted only under perfect market conditions characterized by
exchange rate risks{e.g., Solnik, 1983: Cho, Eun and Senbet, 1986.) This is
an issue that we shall pursue in the future, given that market imperfections
vary not only across assets but also across naticnal boundaries.

Section 2 derives an APT model by imposing the absence of arbitrage
profits in ‘friction-free’ markets. It derives the exact pricing error for
individual assets. It also examines a condition for an exact pricing APT
model.

Section 3 derives an APT model in the arbitrage framework when

transaction costs exist. It shows how transaction costs affect the exact

pricing error for individual assets. Finally, section 4 provides conclusions.
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II. Arbitrage Pricing Theory

The APT assumes that returns are generated by a K-factor structure

denocted by
R =E + Bf+ e (L)

where R = an N-dimensicnal vector of the random asset returns

E = an N-dimensional vector of the ex ante expected returns
B = an N x K matrix of factor loadings
f

= an K-dimensional vector of mean zero factors, which are assumed
to be uncorrelated with each other?

¢ = an N-dimensional vector of mean zero idiosyncratic disturbances.

which are assumed to be uncorrelated with the factors but

correlated with each other.

Suppose we form an arbitrage portfolio with no systematic risk such that
wly =0 and wB = 0 (2)

where w = an N-dimensional vector of portfolio weights and 1y is an
N-dimensional vector of ones.

Ross(1976) has shown that an approximate pricing APT model holds under
a uncorrelated-residuals factor structure in an infinite economy. The sum of

squared deviation from APT pricing is bounded as the number of assets

approaches

infinity, i.e,

2) The assumption that factors are uncorrelated with each other is not necessary to
derive our model. It can be easily relaxed but we follow the convention.
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(E —Agly —BA(E — Agly — B’ (®as N - . (3)

where A, is a constant and 4 is a K-dimensional vector. In order to obtain
the pricing relationship (3), Ross considers the following problem.
Minimize w'Vw
w
subject to wly = 0
wB = 0

and 0 < c¢c = wE.

where V is the covariance matrix of ¢.3)

He demonstrates that the minimum variance for the above problem is
strictly positive. In other words, the variance of the efficient arbitrage port-
folic with zero factor risk and zero net investment which provides a positive
expected return must be bounded away from zero (i.e., positive). This result
is intuitively appealing, since if a zero-investment, zero-loadings arbitrage
portfolio with positive expected return has zero variance, it implies an
arbitrage opportunity.

In what follows, we will derive an APT model by using the Ross result and

duality. The Ross result implies that if
w'ly=0. w'B=0,andw"E)>0forw RV, (4)
then we must have
w'Vw >0 (5)

where w' is the efficient arbitrage portfolio, the solution of the Ross

Problem. In other words, Ross shows that the variance of the efficient

3) This problem allows a correlated-residual structure so that V need not be diagonal.
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arbitrage portfolio is strictly positive.

It follows from (4) and (5) that there is no solution, w*'eRY, which

satisfies the following system,
w'ly=0, w"B=0,w"Vw'=0and w'E > 0. (6)

The following lemma shows that if and only if there is no solution for the

system (6). the other system has a solution.

Lemma 1. Exactly one of the following systems has a solution.

System A: w'ly = 0, w"Vw* = 0 and w“E > 0 for w' e RN,
w"B =0,

System B: E = Ajly + BA+ oVw* for A € R¥,
where A; and @ are constants.

Proof: See Appendix.

The Ross result (6) implies that there is no solution of w e RN for
System A, Lemma 1 states that if System A has no solution, there is a

solution for System B. Thus. there is a solution of A, €R, 1= RF¥ and

e R for System B. System B is an APT model

E = Aly+ Bl+ aVw'. (7)

We can identify a by premultiplying the efficient arbitrage portfolio, w®,
with both sides of (7). It is easy to see that @ is the risk-return tradecff for

the efficient arbitrage portfolio. The Ross result implies that o is strictly

positive.

Define a positive constant Az as ew " "Vw' = w'E .
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Theorem 1. Under no arbitrage and the factor structure (1), an APT model
holds,

E = Aly+ BA+ 2l (8)

where £ is an N-dimensional vector of the efficient arbitrage portfolio betas,

e, Vw'/w'Vw"',

Note that the efficient arbitrage portfolio is important in pricing and acts
as an additional factor. As long as the efficient arbitrage portfolio holds
idiosyncratic risk, the idiosyncratic risk of the individual asset correlated to
that of the efficient arbitrage portfolio is priced. However, the pure
idiosyncratic risk of the individual asset is not priced when it is uncorrelated
with the idiosyncratic risk of the efficient arbitrage portfolio. Namely,
var(e)) — cov(e;, Bwiey) is pure idiosyncratic risk, where e; and w! are the
ith elements of the vectors e and w", respectively.

Our model has a similar spirit to Wei (1988) in that residual risk can be
priced. However, there are important differences. First, our model is derived
in the arbitrage framework. On the other hand. Wei has used utility-based
equilibrium arguments. Second, Wel has employed an assumption that the
idiosyncratic risk follows a separating distribution of Ross (1978). Our result
is immediate from Ross (1976). It does not require any additional
distributional assumptions. Third, the efficient arbitrage portfolio plays a
role in pricing residual risks here, whereas the market portfclio does in Wei
(1988). Fourth, our pricing relationship is unique only up to a subset of
assets. The pricing relationship in Wel (1988) includes all of the universe of
assets. As argued earlier, the equilibrium APT has testability issues of
Roll’s critique variety. Finally, an exact error bound in the equilibrium

context has already been established, but never in the arbitrage framework.
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An explicit pricing error bound for the Ross APT for the individual asset
can be easily examined by using (7) and (8). Dybvig (1984) and Grinblatt
and Titman (1984) have shown in the utility-based framework, or
equivalently, in an "Equilibrium” APT framework that under an uncorrelated-

residuals structure (i.e., V is diagonal), the pricing error for asset i

is bounded by Ro?ai, where R is the measure of relative risk aversion, ¢

is the asset i's residual variance and @; is the proportion of total wealth
represented by the asset. Assuming that V is diagonal, the exact pricing

error is given by ed®w!, where a is the risk-return tradeoff of the efficient

arbitrage portfolio and w{ is the proportion of this efficient arbitrage
portfolio represented by the asset.

Wei (1988) has derived an exact pricing error for the individual asset in
the utility-based framework, which is given by Rbvar(e,) where R is the
measure of relative risk aversion, by, is the market-residual beta andis the
var(ey) is the residual variance of the market portfolio. His result requires
an additional assumption that each residual e; and total wealth are

bivariate normally distributed.
However, our model derives an exact pricing error in the arbitrage pricing
context and needs no additional distribution assumptions te derive an exact

pricing error. It follows from (7) and (8) that the exact pricing error is given

by A8 = aBvar(w’e), where B; is the efficient arbitrage portfolio beta of
asset 1 and var(w’e)is the idiosyncratic risk of the efficient arbitrage

portfolio, i.e., w"'Vw.
Omne interesting result in our analysis is that the exact pricing error is zero
for all assets if the variance of the efficient arbitrage portfolio is zero, or

alternatively, if the efficient arbitrage portfolio is well-diversified. 49 A

4) In order to have zero variance. the efficient arbitrage portfolio should have zero
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similar observation is made by Chamberlain (1982) and Connor (1984).
They have shown that an exact APT pricing is obtained if the mean-variance
frontier or the market portfolio is well-diversified. Their models require that
a global benchmark portfolio, which includes all of the universe of assets,
needs to be well-diversified. On the other hand, our model does not require
knowledge of the universe of assets but only the efficient arbitrage portfolio,
which is unique up to the subset of assets.

Wei (1988) has examined the impact of omitted factors from an econo-
metric model. Since there is no consensus regarding the number of factors
generating asset returns, it would be informative to find the effect of
omitting factors. Let us investigate the impact of omitting factors in
empirical tests of our APT model, when the true number of factors is K, but
the first J factors (less than K) are included in empirical testing. Define
B=I[B;:B,] , where B, is an N x J matrix of factor loadings and B; is an
N x (K-J) matrix. Let f = [f;:f,]", where f;is a J-dimensional vector of
factors and f, is a (K-J)-dimensional vector. Let V = V + By’ E(f,1,)B,
be the matrix of residuals with omitted factors, where E is an expectation

operator. Thus, the omitted factor structure is given by R = E +
Bii + V. We can easily demonstrate using the technique deriving

Theorem 1 that when K-J factors are omitted, an APT model with J+1

factors holds: E = Ajly + Bid; + 8 73, where A, is a J-dimensional vector

of factor risk premia, 75’ is an N-dimensional vector of the efficient
arbitrage portfolio betas and ﬁ,g is a positive constant. If J is zero {i.e.,

all the factors are omitted), we have the model that E = Ajly + 8 },g.
This is an exact pricing one factor model with the efficient arbitrage portfolio
as the factor. Thus, when factors are omitted, the expected rate of return

on an asset is a linear combination of non-omitted factors loadings and the

expected return. If it has a positive expected return, it allows an arbitrage opportunity.
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efficient arbitrage portfolio beta. In the extreme case, where all the factors
are omitted, the risk premium of an asset is solely determined by the

efficient arbitrage portfolio beta.

. The Model with Transaction Costs

There has been an extensive empirical investigation of variants of the APT
and the associated extensions at the theoretical level. Surprisingly. virtually
nce work exists that looks at the effects of transaction costs on pricing in an
APT framework. In this section, we introduce transaction costs into our APT
model developed in the previous section. We examine the impact of
transaction costs on the APT pricing. Understanding the impact of trans-
action costs may be insightful in understanding some important anomalies in
empirical investigations. Further, a theoretical analysis in this context
allows us to study international pricing of assets in an APT framework.
Fortunately, as demonstrated below, the APT is robust to a simple but
reasonable transaction cost structure.

We assume that there are two types of transaction costs. Let T? denote
transaction costs which investors pay for buying or selling asset i at the
beginning of the period. Let ﬁe denote transaction costs which investors
pay for buying or selling asset i at the end of the period. Transaction costs,
T.®. are unknown at the beginning of the period. Following Garman and
Ohlson (1981), for simplicity, we assume that transaction costs are linear in
terms of the number of shares traded.

We assume that pre-transaction cost returns are generated by a K-factor

structure denoted as®

5) We have made this assumption in order to examine the effect of transaction costs on the
APT pricing.
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R =E + Bf + e. (1)

The ith element of the ex post return vector, R, is given by

- X,
Ri=Ti'—l (9)

Where X, is the observed payoff of asset i at the end of the period and

is the pre-transaction costs price of asset i at the beginning of the

period. The post-transaction costs (ex post) return on asset i, ITiT , 18

% - 2
W -1 (10)

1

ﬁi=

Qur transaction cost structure is very similar to the structure of Garman
and Ohlson(1983). Qurs is different from theirs in that ours does not
differentiate transaction costs in the case of buying from selling whereas

theirs does. This simplification is made because it would not change the
implications from the model. Define t!’ as the transaction cost rate at the
beginning of the period given by

TD

- S
ty = P, + TV (11

and f}e as the transaction cost rate at the end of the period given by

[

"ﬁ. (12}

!
T3

Substituting X; of (9} into (10) and using (1), (11) and (12) gives
RT = 1-t)E+Bf+e] — & -’ (13)

where E; and e; are the ith elements of vectors E and e, respectively,
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and B;the ith row of the matrix B. We rewrite (13) in matrix notation

RT = E,+Bf+e,~t*—t° (14)

where E, = [(1-tHE,, -, (1-tY)EN]", B, = [(1—-t)B,, -, (1-t%)Bx],

e. = [(A—tDhel, - (1—-th)ex]” . t° = [t} t}) and

te = [ ae’..., E;e]’
We assume that an idiosyncratic disturbance is uncorrelated with the
transaction cost rate at the end of peried for any securities, i.e.. for all i and
Cov(e:, t;) = 0 for all j.6) However, we allow factors to be correlated

with transaction costs at the end of period for any securities., i.e.,

Cov(f;, i) *+ 0 for all i and j. The covariance matrix of the residuals need

not be diagonal. Factors are assumed to have unitary variances.
Post-transaction costs returns and risks should be considered in this

analysis rather than pre-transaction costs counterparts, since investors are

concerned about net receipts. Suppose that an investor forms a portfolio

whose weights are given by w. The expected rate of post-transaction-costs

return on the portfolio is given by

E(w'RT) = wE,— E(wt)—-w't® (15)

where E denotes an expectation operator.

The variance of post-transaction-costs return on the portfolio is given by

Var(w'R") = w’ E(B,B,)w+w’ Viw +w’ Var(tw + 2w'B,Cov(f, tOw (16)

where V, is defined as [(1=t)Iy (1 —t3INIVI—tD1 (1 —t2)18] and

Var(t®) need not be diagonal (i.e., transaction cost for one asset at the end

6) This assumption can be relaxed. If an idiosyncratic disturbance is correlated with the
transaction cost rate at the end of period. then the idiosyncratic risk is priced through
its correlation with the efficient arbitrage portfolio’s transaction cost rate at the end of
period.
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of period may be correlated with transaction costs for other assets).

We formulate a problem in accordance to Ross(1976). We assume that the

arbitrage portfolio requires zero investment and zero transaction-cost-

adjusted-factor loadings such that?
wly = 0 and wB, = 0

where B, is defined in (14). Consider the following problem.

Problem 1: Minimize var(w'R")
W
subject to wly = 0
wB, = 0

and 0 <c< E(WRD = wE,~ E(wt)—w't’,

(17)

The solution of the above problem is defined as the efficient arbitrage

portfolio, w". Following Ross(1976), it can be shown that the minimum

variance of Problem 1 is strictly positive. The arbitrage portfolioc with a

positive post-transaction-costs expected return should have a positive

variance. Otherwise, there would be an arbitrage opportunity, in accordance

with the Ross problem.

We derive an APT model under transaction costs from Problem 1. Problem

1 implies that if
w'ly = 0, w'B, = 0 and E(w*'R") > 0 for w* € RN,
then we must have

var(w*RT) > 0

(18)

(19

7) If the arbitrage portfolio is allowed to have non-zero transaction-cost-adjusted- factor
loadings, i.e., w B, = 0, then theoretically the existence of transaction costs affects the

factor risk premia.
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where w' is the efficient arbitrage portfolio, the solution of Problem 1. It

follows that there is no solution, w” = RY, which satisfies the following
system,
w ly = 0, w'B = 0, w"'Vw" = 0, w’'Var(tHw" = 0 and

wE,— E(w"t)—-w"t® > 0. (20)

We can find the alternative system to (20) by using the following lemma.

Lemma 2. Exactly one of the following systems has a sclution.8)

System A: w1y = 0, w'B =0, w"'Vw' = 0, w'Var(t)w” = 0 and
w E,— E(Ww"t)—w™t® > 0 for w* = RN,
System B: E,— E(t®)—t® = Aly+BA+ e, Var(tDw' + a,Vw” for 4 e R¥,

)
where Ay, @ and a, are constants.

From Problem 1, there is no solution of w*® e RY for System A. Thus,

~

there a solution of A4, € R, A & R¥,2, € R and @, € R for System B. Note

that the notations A,and A and are used to indicate that they can differ

from Ay and 4 obtained in Section 2 without transaction costs. System B

is an APT model under transaction costs
E. = E{)+t°+ Aly+BA+ e, Var(tDHw' + a,V,.w'. (21)

By premultiplying both sides of (21) with w*, we obtain

w'E,— E(w"t)—w"t" = E(w'R") = aw"Var(t)w + ayw" ' V,w'  (22)

8) The proof of this lemma is omitted since it is similar to Lemma 1.
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Thus, we can easily see that @, and a; are the marginal risk premia from

taking an additional one unit of transaction-cost risks and residual risks for
the efficient arbitrage portfolio respectively. Rearranging (21), we obtain an
APT pricing model under transaction costs given by the following theorem.
Theorem 2. Under no arbitrage, the factor structure (1) and the
transaction costs structure (11) and (12), the pre-transaction-costs expected

rate of return on asset 1 is given by

E; = 4B+ A4, + B, (23)
where
7o At EGH 5 Covlthw't) o Covle,w't?)
0= 1—t? O (=t Var(w't) P T Varw't)

il

Ag = aVar(w™t%), 4z = a;Var(w'e,), Var(w't?) = w'Var(t)w" and

Var(w"t%) = w'V,w’.

If there are no transaction costs, then (23) becomes (8). Thus, the pricing
equation derived in Section 2 is a special case of (23).
~Several explanations for (23) are warranted. First, our arbitrage based
APT model is robust to market imperfections caused by a transaction cost
structure examined here. The arbitrage argument survives in markets with
frictions.

Second, the constant, ﬁ) is not identical to all assets. It includes asset-
specific transaction costs. A zero-beta portfolic may have different expected
rates of returns, depending on transaction costs. The small firm effect of the
APT exists as an empirical anomaly (see Reinganum (1982)).

Reportedly, the expected rate of return on portfolio of small firms is greater
than that of large firms by average 6% per year, even after controlling for

APT risks (see Stoll and Whaley (1983)). Perhaps, transaction cost rate of
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small firms’ stocks may be higher than transaction cost rate of large firms’
stocks. The expected rate of return on small firms should be higher than that
on large firms, ceteris paribus. Our model with transaction costs is consistent
with the empirical anomaly, although it may not explain its entirety. This
explanation is consistent with an empirical study of Stoll and Whaley (1983)
and a mean-variance theoretical analysis with imperfect information by
Merton (1987). Merton’s analysis is based on the notion that individual
securities are held by a subset of the universe of investors. Thus. each
security has its own followership.

Third, the factor risk premia under transaction costs can differ from that
under no transaction costs. The factor risk premia under transaction costs
indirectly depend on the structure of transaction costs. If a zero transaction-
cost-adjusted-loadings pertfolio is unavailable, it affects the value of the
factor risk premia. However, the functional form would not be changed.
The pricing equation (23) still holds. Even though frictions (i.e.. trans-
action costs) are asset specific, there exist the factor risk premia whose
elements do not depend on assets. This result is consistent with the previous
literature on asset pricing with frictions (e.g., Garman and Ohlson (1981)
and Prisman (1986)). Garman and Ohlson (1981) and Prisman (1986) using
the state preference model have the implicit prices which are identical across
securities.

Fourth, unless the efficient arbitrage portfolio completely eliminates
transaction cost risks, namely, w* Var(t®)w* + 0, a transaction cost risk
plays as a factor and is priced. The quantity of risk is captured by B,. the
efficient arbitrage portfolio beta with respect to transaction costs. As long as

the efficient arbitrage portfolio includes residual risk, namely, w'V,w* % 0,

the risk is priced. The quantity of risk is captured by B2, the efficient

arbitrage portfolio beta with respect to residual risk.
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We can examine the pricing error of the Ross APT under transaction costs.

From (23). the exact pricing error for asset i can be written as

E——Bd = A48 +A58 (24)

where ﬁ = [(1+ At + E(tH}/(1—t" and explicitly bounded by
Ei— 1= Bid < |+ I45llvar(t))/ (1 —t)Var(w" £)]

+1iAgllvar(e)/var(w* e )] 2, (25)

If transaction costs at the end of the period are known at the beginning of
the period, 8, disappears.

If some factors are omitted in empirical testing our model with transaction
costs, then we can analogously demonstrate that an APT model holds. If all
the factors are omitted, then we have an exact pricing APT model with two
factors, the efficient arbitrage portfolio and the transaction cost factor.

The preceding model can be used conveniently te analyze the pricing of
assets internationally where transaction costs are not only firm-specific but
vary across national boundaries. Indeed, the model suggests that there exist
multiple zero-beta returns in the presence of transaction costs. This is
consistent with the existence of multiple real rates of interest across
countries. Thus far, the limited APT extensions into an international context
have been under perfect market conditions and hence do not permit analysis

of the effects of market segmentation on international pricing. This is an

issue that we shall pursue further.
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V. Conclusion

This paper derives an APT pricing model in the arbitrage-free economy
with and without transaction costs. This model does not require additional
distributional assumptions and restrictions on investors’ preferences. Nor
does it require that the market portfolio as the global benchmark portfolio be
well-diversified and efficient. The model is derived by using the nonlinear
duality theory and the intermediate result of Ross (1976) that the efficient
arbitrage portfolio with zero factor risk and zero net investment which earns
a positive expected return must have a positive variance.

The model yields an exact pricing relation for individual securities. The
efficient arbitrage portfolio plays an extra pricing factor if the efficient
arbitrage portfolio is not well-diversified. The pricing error from APT pricing
for individual asset is readily derived. An exact APT pricing model arises
when the efficient arbitrage is well-diversified. This efficient arbitrage
portfolio is not a global portfolio unlike the market portfolio in the literature
of equilibrium APT. It is unique up to a given subset of assets. Thus, we
do not need to refer to the universe of assets.

Our arbitrage-based model is robust to market frictions raised by
transaction costs, The existence of transaction costs reduces a room for
arbitrage. However, the absence of arbitrage profits under transaction costs
vields the model. Transaction costs play as an extra pricing factor along with
the efficient arbitrage portfolio. Our model gives the implication that the
small firm effect of the APT can be partially explained through the effects of
transaction costs (see Reinganum (1981)}. In the future, we shall pursue an
empirical test of this model with market data. Also the model establishes a
convenient framework for the study of asset pricing in an international

context through an APT framework. Despite the prevalence of market

imperfections and possible segmentation of international capital markets (at
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least for a subset), there is very little work done in extending the APT into
an imperfect international financial environment. Indeed, the current model
itself, which delivers multiple zero beta returns, may be consistent with
multiple international real interest rates. This is also a future research

agenda.

APPENDIX

Proof of Lemma 1

i} Suppose system A has a solution w' € RY. Then we have to show

that system B has no seolution. On the contrary, suppose that system B

has a solution, A, A and @. Multiplying w* on both sides of system B gives
w'E = Aw ly+w Bi+aw Vw".

From system A,

0 ¢ Ww'E = Aw”lny+w" B At aw”Vw" = 0,

a contradiction. Hence, system B cannot have a solution.

ii) Suppose system A has no solution. Then we have to show that system

B has a solution, A, 4 and . Note that the efficient arbitrage portfolio w*

is the optimal sclution of the Ross problem. This fact provides that the

following system {which is referred as system A’) has no solution w & RV
wB = 0,wly = 0,w'Vw" ¢ 0 and wE = 0.

If there is a solution w € RY to system A’, then we choose w'+ ow
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where ¢ is arbitrarily small positive number. It follows from system A’
that

(W' +ow)B = w'B=0, (W +éw)ly = w'ly=0, (W' +ow)E = w"E >0 and

(W' +ow)Viw +ow) ¢ w"Vw*

where the last inequality follows from w'Vw® ¢ 0. The last inequality

contradicts the fact that w* is the optimal solution of the Ross problem,

Consider the following sets:

Ci = {(ux,y,2): wB=u, wly=x, wVw =y and wE=z}

Cy, = {(ux,y,2) : u=0, x=0,y (0 and z = 0}

Since there is no solution for system A’, C,()C,=®. Then there exists a
hyperplane that separates C; and C,. That is, there exist non-zero vector

71 and non-zero scalars ¥,, 73 and 7, such that

w By W Iyt w T VW ya+w  Eyy 2 uyy + xyy 4+ vrs + 27,

for , x, yand zecl C,, 7,€R%, y.€R, 7,€R and 7,=R.

Since v can be an arbitrarily large negative number, it follows that

s > 0.

Let = 0, x =0,y = 0and 2 = 0, since the origin is in the closure
of C,. Then we have that

w{(By +1xr,+Vw s +Ey) = 0.

By choosing w = —(By;+1nxr+Vw'y;+Ey,), it follows that

By, +1xr:+ Vw 'y +Exll° < 0.
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Thus By, +1xrz+Vw'ys+Ey, = 0.

This equation is called the Fritz John optimality condition.

Suppose system A has no solution. Then we have that
{ wB=0, wily=0, w Vw'20 and w' E>0}={w" Vw">0}.

It follows from Corollary 18 (Mangasarian (1969, p26)})) that there exist

non-zero vector 7, and non-zero scalars 7, 73 and 7; such that

By +1lnntVw'n+Ey = 0
which is identical to the Fritz John optimality condition. It implies that
E = 401N+BA+GVW*

where Ay = — /744 = —»/rs and @ = — 7/7,. Hence, system B has a

solution.
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